
ECMA-SL - A Platform for Specifying and Running the
ECMAScript Standard

Luı́s Miguel Alves Loureiro

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. José Faustino Fragoso Femenin dos Santos

Examination Committee
Chairperson: Prof. José Luı́s Brinquete Borbinha

Supervisor: Prof. José Faustino Fragoso Femenin dos Santos
Members of the Committee: Prof. João Costa Seco

September 2021

Acknowledgments

I would like to thank my supervisor, Prof. José Fragoso Santos, for his encouragement and confidence in
the direction of the project. His continued support and tremendous availability were of great importance
for the success of this thesis.

Also, I would like to thank my friends and all those that have supported me during the time of the
development of the dissertation and that, inclusively, have helped me with the revision of some of my
texts. Their encouragement helped me push forward in my darkest times.

i

Abstract

ECMAScript, commonly known as JavaScript, is one of the most widespread dynamic languages and
it is the de facto language for client-side web applications. Due to its complexity, ECMAScript is both a
hard language to understand by typical developers and a difficult target for static analyses. We present
ECMARef5, a reference interpreter for ECMAScript that follows the ECMAScript standard version 5.1
line-by-line and is thoroughly tested against Test262, the official ES5 conformance test suite. To this end,
we introduce ECMA-SL: a dedicated intermediate language for ECMAScript analysis and specification.
We also present ECMA-SL2English, a tool to generate the HTML English description of the standard
from ECMARef5. The resulting document is compared against the official document using classical
text-based comparison metrics and HTML-specific metrics, obtaining high similarity scores using both
classes of comparison metrics. On the whole, we believe that this project is a steppingstone towards the
goal of automating the generation of the textual description of the standard.

Keywords: ECMAScript, Specification Language, Reference Interpreters, Dynamic Languages,
Test262, OCaml

iii

Resumo

ECMAScript, vulgarmente conhecida como JavaScript, é uma das linguagens dinâmicas mais di-
fundidas e é a linguagem de facto para aplicações web que se executam num browser. Devido à sua
complexidade, ECMAScript é uma linguagem difı́cil de compreender pelos programadores e um alvo
difı́cil para análises estáticas. Apresentamos ECMARef5, um interpretador de referência para ECMAS-
cript que segue a versão 5.1 da linguagem linha-a-linha e que é testado com bastante pormenor usando
Test262, a suite de testes oficial para ECMAScript. Para este fim, introduzimos a ECMA-SL: uma lin-
guagem intermédia dedicada à análise e especificação de ECMAScript. Apresentamos também ECMA-
SL2English, uma ferramenta para geração da versão em inglês do documento HTML do standard EC-
MAScript a partir da ECMARef5. O documento HTML resultante é comparado com o documento oficial,
sendo os resultados analisados detalhadamente. Em comparação com outros interpretadores de re-
ferência existentes, a nossa abordagem facilita a passagem de uma descrição textual do standard para
uma executável.

Keywords: ECMAScript, Linguagem de especificação, Interpretadores de referência, Linguagens
dinâmicas, Test262, OCaml

v

Contents

List of Tables viii

List of Figures xi

1 Introduction 1

2 Background 5
2.1 ECMAScript Standard . 5

2.1.1 Language Overview . 5
2.1.2 ES5 Objects and Properties . 6
2.1.3 Property Descriptors . 7
2.1.4 Function Objects . 9
2.1.5 String Objects . 10
2.1.6 Array Objects . 11
2.1.7 Global Object . 12
2.1.8 Other Objects . 13
2.1.9 ES5 Prototype-based Inheritance . 14
2.1.10 ES5 Functions and Scoping . 15
2.1.11 ES5 Syntax and Control Flow . 16
2.1.12 ES5 Internal Functions . 18

3 Related Work 21

4 ECMA-SL 25
4.1 Designing the ECMA-SL Language . 25
4.2 Compiling ECMA-SL to Core ECMA-SL . 28

5 Implementing ECMAScript in ECMA-SL 33
5.1 ECMARef5 Internal Representations . 33
5.2 ECMARef5 Built-ins and Initial Heap . 36
5.3 Line-by-line Closeness . 39
5.4 Compiling ECMAScript to ECMA-SL . 41

6 HTML Generator 45
6.1 HTML Structure of the ECMAScript Standard . 46
6.2 Code Generation Algorithm . 48
6.3 Code Generation Directives and Rules . 53

6.3.1 Code Generation Directives . 54
6.3.2 JSON Rules . 56

vii

7 Evaluation 61
7.1 ECMARef5 Evaluation . 61

7.1.1 Test selection . 62
7.1.2 Testing pipeline . 63
7.1.3 Testing results . 65

7.2 ECMA-SL2English Evaluation . 67
7.2.1 Evaluation Pipeline . 68
7.2.2 Text-based Metrics . 69
7.2.3 HTML-specific Metrics . 71

8 Conclusions 73

Bibliography 75

viii

List of Tables

2.1 Default values for the internal properties of any Number object or Boolean object 13

7.1 Breakdown of the Test262 tests. 62
7.2 Test262 testing results per section of the ECMAScript standard. 65
7.3 Test262 testing results per section of the ECMAScript standard with information about the

number of Core ECMA-SL executed commands. 66
7.4 Results of the application of some Edit Distance algorithms to sections of the ECMAScript

standard generated by the ECMA-SL2English tool. 70
7.5 Results of the application of HTML similarity to sections of the ECMAScript standard ge-

nerated by the ECMA-SL2English tool. 71

ix

List of Figures

1.1 The evolution on the number of pages of the ECMAScript standard official document . . . 1
1.2 Tools that can be created from a ES5 reference interpreter 3

2.1 A graphical overview of the main components of the ECMAScript language version 5.1 . . 5
2.2 ES5 object and its properties . 7
2.3 ES5 object and one of its data property descriptors . 8
2.4 ES5 object and one of its accessor property descriptors 8
2.5 Program using the accessor property descriptor created in figure 2.4 9
2.6 Function object and its properties . 10
2.7 String object with its properties . 11
2.8 Array object with its properties . 12
2.9 Example defining an array element to be non-configurable and trying to delete the con-

tents of the array . 12
2.10 Accessing properties of the Global Object . 13
2.11 Using the method toFixed accessible to all Number objects 13
2.12 Program demonstrating ES5 prototype-based inheritance (top); graphical illustration of

the prototype chain obtained after executing the program (bottom) 14
2.13 Identifier generator program (top); Lexical Environments and Environment Records that

result from the execution of the program until line 10 (bottom left); Lexical Environments
and Environment Records that result from the complete execution of the program (bottom
right) . 15

2.14 Semantics of the If-Then-Else statement defined in the standard 17
2.15 Semantics of a simple assignment expression defined in the standard 18
2.16 A portion of the Call graphs of the internal functions GetValue and PutValue 18
2.17 The specification of the Object internal function [[GetOwnProperty]] 19
2.18 The specification of the Object internal function [[GetProperty]] 19

4.1 Syntax of ECMA-SL expressions. The non-terminals 〈prop〉, 〈var〉, and 〈f-name〉 respec-
tively range over property names, variable names, and function names. 26

4.2 Syntax of ECMA-SL statements. The non-terminals 〈prop〉, 〈var〉, and 〈f-name〉 respecti-
vely range over property names, variable names, and function names. 27

4.3 Syntax of the Core ECMA-SL language. The non-terminal 〈var〉 ranges over variable names. 28
4.4 Example of effect free expressions in ECMA-SL (left) together with compiled to Core

ECMA-SL version (right). 29
4.5 Example of a foreach statement in ECMA-SL (left) together with compiled to Core ECMA-

SL version (right). 30
4.6 Example of a match statement in ECMA-SL (left) together with compiled to Core ECMA-

SL version (right). 30

xi

4.7 Example of accessing global variables in ECMA-SL (left) together with compiled to Core
ECMA-SL version (right). 31

4.8 Example of a function call with guard in ECMA-SL (left) together with compiled to Core
ECMA-SL version (right). 31

5.1 ECMAScript and ECMA-SL objects representations. 33
5.2 Function Objects’ internal representation. 36
5.3 Standard Built-in ECMAScript Objects: in green are the ones we implemented; in yellow

are the ones we partly implemented; and, in red are the ones implemented as part of
other projects. 37

5.4 Global Object’s built-in objects circular dependencies. 38
5.5 Example of the GlobalObject initialisation in ECMA-SL (left) with corresponding Heap JSON

serialisation (right). 39
5.6 Objects representation matching the initialisation of the GlobalObject. 40
5.7 GetOwnProperty and GetProperty specifications and corresponding ECMA-SL code. . . . 41
5.8 Code snippet of the main match statement used for interpreting ECMAScript statements . 42
5.9 ECMAScript file execution pipeline. 42
5.10 Syntax tree object and corresponding generated ECMA-SL function for the ECMAScript

program x = 2 . 43
5.11 ECMAScript file execution pipeline with optimisation. 43
5.12 The new operator, While statement, and Try statement specifications and corresponding

ECMA-SL code. 44

6.1 Excerpts of the ECMAScript standard: 8.7.2 PutValue (left); and 8.12.7 [[Delete]] (right). . 46
6.2 A fraction of the HTML code corresponding to the internal function [[GetOwnProperty]].

See Figure 5.7 for the corresponding snippet of the standard. 47
6.3 Conversions table present in the ToPrimitive abstract operation. 48
6.4 A fraction of the HTML code corresponding to the try statement. 49
6.5 ECMA-SL2English execution pipeline. 50
6.6 try statement and corresponding ECMA-SL code. 50
6.7 Code snippet of the HTML generation for variable assignments (a); ECMA-SL code snippet

containing three variable assignments (b); Snippet of the ECMAScript standard corres-
ponding to the ECMA-SL code snippet (c). 51

6.8 Four different rules for HTML generation of if-then-else statements. 52
6.9 Four ECMA-SL code snippets illustrating the use of code generation directives. 54
6.10 ECMA-SL code snippet (left) and corresponding ECMAScript standard HTML text (right). 56
6.11 Example of code generation rule applied to a function call, including string template (a),

rule in JSON (b), HTML of the standard (c), and the ECMA-SL code (d). 57
6.12 Example of code generation rule applied to the binary operation ”greater than”, including

string template (a), rule in JSON (b), HTML of the standard (c), and the ECMA-SL code (d). 57
6.13 Example of code generation rule applied to the binary operation ”greater than”, including

string template (a), rule in JSON (b), HTML of the standard (c), and the ECMA-SL code (d). 58

7.1 Contents of two Test262 test files. 61
7.2 Test262 test execution pipeline. 63
7.3 Test262 test fully optimised execution pipeline. 64
7.4 Pipeline used to calculate the HTML similarity and text distance between generated and

official version of the ECMAScript standard. 68

xii

xiv

Chapter 1

Introduction

ECMAScript, commonly known as JavaScript, is one of the most widespread dynamic languages: it is the
de facto language for client-side web applications; it is used for server-side scripting and it even runs on
small embedded devices. It is used by 97.4% of websites1, and is the most active language on GitHub2

and the second most active on StackOverflow3. ECMAScript is specified in the ECMAScript standard [1],
a long highly complex document written in English. Due to its complexity, ECMAScript is both a hard
language to understand by typical developers and a difficult target for static analyses. For this reason,
most program analyses for ECMAScript aim at limited, ad-hoc fragments of the language. Also, it is
a constantly evolving language whose specification has been mostly growing every year. Figure 1.1
presents the evolution in number of pages of the official ECMAScript standard, by version. Note that the
language standard suffered a large addition of pages between ES7 and ES8 and this occurred in a time
interval of only one year. This shows how fast the language evolves.

Figure 1.1: The evolution on the number of pages of the ECMAScript standard official document

The ECMAScript English standard is written as if it was the pseudo-code of an ECMAScript inter-
preter. The semantics of all commands is described in operational style, detailing each step of the
evaluation. Hence, maintaining and extending the ECMAScript standard is a complex error-prone task
that involves manually editing complex HTML documents with the textual description of the semantics
of the language. Furthermore, when adding a new feature to the standard, one has to guarantee that
this feature is compatible with the internal invariants maintained by the semantics of the language and,

1Usage statistics of JavaScript as client-side programming language on websites, July 2021, W3Techs.com -
https://w3techs.com/technologies/details/cp-javascript

2Github most active programming languages based on pull requests - https://madnight.github.io/githut/
3Stack Overflow Trends over time based on use of their tags - https://insights.stackoverflow.com/trends

1

most importantly, that it does not break the behavior of previous features. Given the current size and
complexity of the standard, such guarantees are extremely hard to get. Therefore, the ECMAScript com-
mittee has established a multi-step procedure for new feature proposals, which involves the creation of
test suites and the implementation of multiple prototypes in ECMAScript engines, parsers, transpilers,
type checkers, among others.

As the ECMAScript standard becomes more complex, it also becomes more difficult to manage and
extend. Hence, we believe that the ECMAScript specification should be generated from a reference
implementation of the language. This methodology would bring several benefits to the official specifica-
tion of the language when compared to the current text-based methodology adopted by the ECMAScript

committee; namely:

1. Writing code is easier than writing HTML pseudo-code following the conventions of the standard.

2. Making sure that a new change to the standard is backward compatible with previous versions is
easier to achieve; for instance, one can run the extended reference interpreter on the official test
suite and check if the new change causes tests to fail.

3. Generating test cases for newly introduced features can be done by applying automatic test gen-
eration techniques [2] to the reference interpreter focusing on the new features.

4. Measuring the coverage of the official test suite can be done simply by running the reference
interpreter on it.

In this thesis, we demonstrate that it is possible to generate an HTML version of the ECMAScript

standard from a reference implementation without significant changes to its text. To achieve this goal,
we have implemented ECMARef5, a novel reference interpreter for ECMAScript that follows the English
standard line-by-line, together with a tool that generates a faithful HTML version of the standard from the
code of ECMARef5. Indeed, we believe that most ECMAScript developers would not be able to identify
the official standard when presented with both versions of the standard (the official one and the one
generated by our tool). Furthermore, the automatically generated version is superior to the official one
in that it is more consistent in the use of language, with the same behaviours always described in the
same way in similar contexts.

At the core of ECMARef5 is ECMA-SL, a dedicated intermediate language for ECMAScript analysis and
specification. ECMA-SL is a simple language that supports all of the meta-constructs used in the standard
to describe the semantics of ECMAScript programs. Hence, using ECMA-SL, we were able to implement
ECMARef5 without departing from the pseudo-code of the standard. However, some of the programming
language constructs included in ECMA-SL can be expressed using more fundamental constructs. There-
fore, we have additionally designed a simpler intermediate language called Core ECMA-SL that we use
as a compilation target for ECMA-SL.

Contributions Overall, the ECMA-SL project contributes to the research effort to streamline the man-
agement and maintenance of the ECMAScript standard by developing:

• ECMA-SL: a new intermediate language for the specification of the ECMAScript language. Our
implementation of ECMA-SL includes an ECMA-SL parser, a compiler from ECMA-SL to Core ECMA-SL,
and a Core ECMA-SL interpreter (implemented in the context of a parallel thesis [3]).

• ECMARef5: a reference interpreter of the ECMAScript standard (version 5) written in ECMA-SL. We
have chosen to target the fifth version of the standard for two reasons. First, it the most stable
version of the language, being entirely supported by all major browsers. Second, the size of the

2

Figure 1.2: Tools that can be created from a ES5 reference interpreter

more recent versions of the standard would make it impossible to complete a reference interpreter
within the time frame of this project. We must note, however, that there are various transpilers [4]
from the more recent versions of the standard to ECMAScript 5.

• ECMA-SL2English: an HTML code generation tool that we use to automatically generate the En-
glish HTML version of the ECMAScript standard from the code of ECMARef5.

Evaluation We have thoroughly evaluated the two main outcomes of this thesis: the ECMARef5 refer-
ence interpreter and the ECMA-SL2English HTML code generation tool. ECMARef5 was tested against
Test262 [5], the official ECMAScript test suite. Out of a total of 12,068 applicable tests, we pass 99.6%
of the tests, giving us a strong guarantee that ECMARef5 implements the ECMAScript 5 standard cor-
rectly. We evaluated ECMA-SL2English by comparing the generated version of the standard against
its official version. To this end, we made use of both classical text-based comparison metrics [6] and
HTML-specific metrics based on the concept of tree similarity [7]. We have obtained consistently high
scores for both classes of metrics, thereby validating our methodology for automatically generating the
HTML version of the ECMAScript standard.

Other applications Figure 1.2 presents other tools that we believe can be generated from the code of
ECMARef5; for example:

1. Compilers to intermediate languages [8; 9]: the idea is to first compile the input program to Core

ECMA-SL by partially evaluating [10] ECMARef5 on the input program and then compile the obtained
Core ECMA-SL program to the targeted intermediate representation using a custom made compiler;

2. Automatic conformance test suite generators: the idea is to automatically synthesise a test suite
for JavaScript engines by applying a dynamic symbolic execution tool, in the spirit of DART [11], to
ECMARef5. Dynamic symbolic execution tools generate concrete inputs for the program to analyse
by exploring multiple execution paths. In the case of ECMARef5, the generated concrete inputs
would be the ECMAScript programs to be executed.

Related work There have been numerous research projects with the goal of developing a trustworthy
reference implementation of the ECMAScript standard [12; 13; 14; 15]. Among these projects, the JSCert
project is of special interest to us as it was the first project to emphasize the importance of linking the
code of the reference interpreter to the text of the standard. The authors of JSCert claim that the code
of the JSCert semantics is eyeball-close to the text of the standard, arguing that if one places side-
by-side the English prose of the standard and the formal rules of JSCert and compares the two, ”one
line of ES5 pseudo-code corresponds to one or two rules in JSCert”. In this thesis, we improve on the

3

eyeball closeness methodology by taking the human out of the process. More concretely, using ECMA-
SL2English we can precisely measure the closeness between our implementation of the standard and
the official one through the use of out-of-the-box text-comparison metrics. In general, we believe that
this project is a steppingstone into establishing more robust methodologies for implementing reference
implementations of programming languages tightly connected to their respective standards.

Thesis structure This document is organized as follows: In Chapter 2, we give a detailed description
of the ECMAScript 5 language focusing on its key aspects, such as built-in objects and internal functions.
In Chapter 3, we give an overview of several other research efforts related to the work we performed in
this thesis. In Chapter 4, we present both the ECMA-SL (4.1) and the Core ECMA-SL (4.2) intermediate
languages, also describing the compilation process from ECMA-SL to Core ECMA-SL. In Chapter 5, we
start by explaining the internal representations that we have used to model the different internal types
of the ECMAScript standard (5.1), followed by the description of our implementation of ECMAScript
built-in objects and initial heap (5.2). In this chapter, we also demonstrate how ECMARef5 follows the
ECMAScript standard line-by-line (5.3) and provide an overview of the compilation of ECMAScript pro-
grams to ECMA-SL (5.4). In Chapter 6, we present ECMA-SL2English; we describe the HTML structure
of the ECMAScript standard (6.1), present the main code generation algorithm (6.2) together with the
annotations we provide to the code generator (6.3). In Chapter 7, we evaluate the main outcomes of this
thesis: ECMARef5 7.1 and ECMA-SL2English 7.2. Finally, Chapter 8 draws some conclusions about our
work and points out some future research directions.

4

Chapter 2

Background

2.1 ECMAScript Standard

The ECMAScript Standard edition 5.1 [1] is the official document that defines the ECMAScript scripting
language (commonly known as JavaScript) for version 5.1, hereafter referred to as ES5. The standard
defines the types, values, objects, properties, functions, and program syntax and semantics that should
exist in an ES5 language implementation. Note that the standard allows an implementation of the
language to provide additional types, values, objects, properties, and functions.

The following subsections give a detailed description of the ES5 language based on the standard.
We put the focus on the key aspects of the language, like built-in objects, semantics of some expressions
and statements and internal functions.

2.1.1 Language Overview

Figure 2.1: A graphical overview of the main components of the ECMAScript language version 5.1

We divide the ES5 language in three main components: syntax and semantics; internal functions;
and built-in objects. This is illustrated in the Figure 2.1.

The syntax and semantics component groups all the syntactic grammars and semantics of expres-
sions (assignment expressions, built-in operators, ...), statements (loop statements, conditional state-
ments, ...), built-in types (Undefined, Null, Boolean, Number, String, and Object) and also some lexical
conventions, for instance, the definition of what is a white space, how comments are constructed and all
the reserved words and keywords of the language.

5

The internal functions component include all functions that help define the semantics of the language.
These are functions that are not exposed outside the scope of the language internals, that is, an ES5
program cannot call these functions directly. A detailed explanation of the internal functions is presented
in 2.1.12.

The final component is the one that contains all the built-in objects available whenever an ES5 pro-
gram executes. These built-in objects include the Global object, the Object object, the Function object,
the Array object, the String object, the Boolean object, the Number object, the Math object, the Date ob-
ject, the RegExp object, the JSON object, and the following Error objects: Error, EvalError, RangeError,
ReferenceError, SyntaxError, TypeError, and URIError.

2.1.2 ES5 Objects and Properties

The ES5 language is object-based. This means that basic language and host facilities are provided by
objects and an ES5 program is a cluster of communicating objects. An object is defined as a collection
of properties. These properties are containers that hold other objects, primitive values, or functions.
Each property contains attributes that determine how it is used. Each object property is either described
as an internal property, a named data property, or a named accessor property. Objects are dynamic in
that it is possible to add/remove properties to/from an object during execution.

Internal Properties vs Named Properties

Internal properties contain values that provide meta-information about the object they are associated
with, for instance, the object type (e.g., "Function", "Array", "String", etc...). They are meta-properties
and cannot be directly accessed or modified by an ES5 program. They are used for the implementation
of the internal algorithms and operations presented in the standard. Every ES5 object contains, at least,
three internal properties:

1. [[Class]] representing the type of the object in the form of a string;

2. [[Prototype]] representing the internal prototype of the object (used to implement prototype-
based inheritance discussed in 2.1.9). Its value is either a pointer to an object, also referred to as
an object location, or null;

3. [[Extensible]] storing a boolean that determines whether or not it is possible to add new named
properties to the object.

Named properties are the properties explicitly created by the program. They are split in two subtypes:
named data properties and named accessor properties.

Figure 2.2 shows an ES5 program together with the object graph on which it operates. In line 1, we
declare the variable car as an object containing two named properties: isMoving and color. In 2-a), we
show the object resulting from the evaluation of this assignment with its two named properties (rectangle
in blue) and three default internal properties (red-dashed rectangle). The small blue rectangles represent
Property Descriptors (discussed in 2.1.3) that contain the value of the respective property. In line 2, we
execute a delete expression that removes the property color from the object car. In 2-b), we show
that the property color was indeed removed from object car. In line 3, it is shown how the execution
of the statement Object.freeze(car); affects the internal property [[Extensible]] of the object car,
henceforth inhibiting any code from adding/removing named properties to/from the object car. In 2-c),
we show the change in the internal property [[Extensible]]. Line 4 shows an example that will take
no effect in the object car.

6

Figure 2.2: ES5 object and its properties

2.1.3 Property Descriptors

Named properties are the properties explicitly set by the program, either through built-in functions or as-
signment expressions. They are represented by Property Descriptors. A property descriptor is a record
with specific attributes representing both the property value and meta-information about the property.
There are three types of property descriptors:

1. Data Property Descriptors;

2. Accessor Property Descriptors; and

3. Generic Property Descriptors.

Below we describe each each type of property descriptor appealing to an example.

Data Property Descriptors

A data property descriptor holds a data value together with meta-information about the property. Each
descriptor consists of a record with four attributes:

1. [[Value]] holds the actual property value that is of one of following language types: undefined,
null, boolean, string, number, or object;

2. [[Writable]] determines whether the property value may or may not be modified;

3. [[Enumerable]] determines whether the property is to be visible by operations that iterate on
properties of the object, like for-in enumerations;

4. [[Configurable]] determines whether the property can be deleted, have its attributes changed
(other than [[Value]]), or if it can be transformed into an accessor property descriptor.

Figure 2.3 shows the internal representation of ES5 data property descriptors. Note that the value of
the property color is stored inside the [[Value]] attribute of the corresponding descriptor.

In ES5, a program can update existing properties or create new properties, either using the usual
property assignment expression or the less usual built-in function Object.defineProperty. This built-in
function lets the program specify the attributes associated with the given property descriptor. Depending
on the way a property is defined, the attributes [[Writable]], [[Enumerable]], and [[Configurable]]

of the corresponding descriptor have different values. There are two possible scenarios:

7

Figure 2.3: ES5 object and one of its data property descriptors

1. When using object initialiser expression or property assignment expression, all these attributes will
have the value true;

2. When using the built-in function Object.defineProperty, if any of these is not specified it gets the
default value of false.

Accessor Property Descriptors

An accessor property descriptor associates a given property with a function get that computes its value
and a function set that updates or sets its value. Each descriptor consists of a record with four attributes:

1. [[Get]] if defined, returns the property value for every get access that is performed on the prop-
erty;

2. [[Set]] if defined, updates or sets a new property value for every set access that is performed on
the property;

3. [[Enumerable]] and [[Configurable]] have the same meaning as the ones described above in
Data Property Descriptors.

Figure 2.4: ES5 object and one of its accessor property descriptors

Figure 2.4 shows the internal representation of ES5 accessor property descriptors. Two functions
with the same name, i.e. tank, are defined at the time of the creation of the object car, but with slightly
different signatures: one is preceded with the keyword get and has no arguments; another is preceded

8

with the keyword set and has one argument, i.e., quant. Internally these functions are associated with
two different attributes of the corresponding accessor property descriptor: [[Get]] and [[Set]].

Analogously to data property descriptors, the value assigned to the attributes [[Enumerable]] and
[[Configurable]] of an accessor property descriptor varies depending on how the property is updated
or set. The attributes [[Get]] and [[Set]] are set to undefined when not specified.

Figure 2.5: Program using the accessor property descriptor created in figure 2.4

Below we give a detailed description of the program given in Figure 2.5:

• in line 1, we access the value of the property tank. The function get is executed returning the
string "half-empty", since the value of the property gas is not greater than 20;

• in line 2, we set the value of the property tank to 30. This triggers the execution of the set function
that sets the value of the property gas to 30;

• in line 3, we access again the value of tank which this time returns the string "half-full";

• in line 4, we try to set the value of the property tank to -10, that is an invalid value considering the
code of the set function.

• in line 5, we confirm that the execution of the set function did not change the state of the object
car. We access the value of the property tank which results in the string "half-full".

Generic Property Descriptors

A generic property descriptor is one that is neither a data nor an accessor property descriptor, but it can
have two of the attributes identified in the other two descriptors: [[Enumerable]] and [[Configurable]].
This kind of property descriptor is only useful in the context of the internal algorithms and operations de-
fined in the standard and they cannot be created by an ES5 program.

2.1.4 Function Objects

In ES5, functions are internally represented as Function Objects that besides the three internal proper-
ties contained by all ES5 objects, contain three extra internal properties:

1. [[Scope]] stores the scope chain in which the function was created (discussed later in 2.1.10);

2. [[FormalParameters]] contains the list of the function’s formal parameters;

3. [[Code]] contains the code of the body of the function.

The remainder internal properties have the following values:

1. [[Class]] - all function objects have class "Function";

2. [[Prototype]] - all function objects have prototype Function.prototype;

3. [[Extensible]] - all function objects are extensible (value true), meaning that they can be ex-
tended with new data properties.

9

Function objects also contain a single data property named length that indicates the number of the
expected arguments of the corresponding function. This property is non-enumerable and immutable: it
is read-only and non-configurable.

Figure 2.6: Function object and its properties

Figure 2.6 shows the code and the graphical representation of a Function object called increment.
The internal properties with their corresponding values are presented in the red-dashed rectangle. Apart
from these internal properties, it is possible to verify how the named data property length is represented
including its corresponding attributes and values.

2.1.5 String Objects

In ES5, Strings may be represented either as String literals or String objects. In the latter case, String
objects are wrappers around the primitive type string. The corresponding string value is maintained in
an internal property called [[PrimitiveValue]].

The three default object properties have the following values:

1. [[Class]] - all string objects have type "String";

2. [[Prototype]] - all string objects have prototype String.prototype;

3. [[Extensible]] - all string objects are extensible (value true), meaning that they can be extended
with new data properties.

String objects contain a data property named length that indicates the total number of characters of
the corresponding primitive value. This property is also non-enumerable and immutable.

Figure 2.7 shows a program that creates a String object storing the primitive string "Figures.odp",
as well as its internal representation. The internal properties with their corresponding values are pre-
sented in the red-dashed rectangle. As referred above, the string value is presented in the internal
property [[PrimitiveValue]]. Note that we also give the internal representation of the data property
descriptor associated with the property length.

String objects differ from other ES5 objects in that they contain indexing properties. These properties
are also represented by data property descriptors and are read-only, enumerable and non-configurable.
The number of indexing properties in a String object are limited to the number of characters that form
the containing string value (corresponding to the value of the length named data property), i.e., the
example above shows that the string value contains 11 characters, so the String object has 11 indexing

10

Figure 2.7: String object with its properties

properties, the first one, with index 0, having the value "F" and the last one, with index 10, having the
value "p". The access of an invalid indexing property, e.g., 11, evaluates to the value undefined.

To access the value of these indexing properties, an ES5 program should contain expressions that
enclose a valid integer value (or the equivalent string, e.g., "1") in square brackets, as shown in the lines
2 and 3 in Figure 2.7.

2.1.6 Array Objects

In ES5, Arrays are internally represented as objects. Each array object only contains the three internal
properties that any other ES5 object contains, which have the following values:

1. [[Class]] - all array objects have type "Array";

2. [[Prototype]] - all array objects have prototype Array.prototype;

3. [[Extensible]] - all array objects are extensible (value true), meaning that they can be extended
with new data properties.

These objects are created containing a data property named length that indicates the number of
existing items in the array. This property is writable, non-enumerable and non-configurable.

Figure 2.8 shows the code and the graphical representation of an Array object called cars. The
internal properties with their corresponding values are presented in the red-dashed rectangle. Apart
from these internal properties, it is possible to see how the named data property length and the indexing
properties are represented as well as their corresponding attributes and values.

Like String objects, Array objects also contain indexing properties, which are represented by data
property descriptors. Unlike the indexing properties of String objects, the indexing properties of Array
objects are writable, enumerable, and configurable. The number of indexing properties and the value of
the property length are equal and always kept in sync, i.e., whenever a new indexing property is added
to the array object, the length property is updated to match the new number of indexing properties; also,
whenever the length property is changed, the indexing properties are also updated, either by removing
some of these properties to match a lower length value or by adding new properties (with default value
of undefined) to match a greater length value.

Figure 2.8 also represents the indexing properties of the Array cars, showing the data descriptor
associated with index 2. To access the value of these indexing properties, an ES5 program should

11

Figure 2.8: Array object with its properties

contain expressions that enclose a valid integer value (or the equivalent string, e.g., "1") in square
brackets, as shown in the lines 2 and 3 in the figure.

Figure 2.9: Example defining an array element to be non-configurable and trying to delete the contents
of the array

In contrast to what happens with the named data property length of a String object, the one of
an Array object is not immutable meaning that it is possible to add/remove items to/from the array by
updating the value of length. For instance, if we set the length of cars to 0, all the elements of the array
are implicitly removed. Consider the example in Figure 2.9. In line 1, we declare an array containing
three elements: the numbers 1, 2, and 3. In line 2, we modify the element in the index 1 to the number
4, making this index property non-configurable. In line 3, we set the value of the length property to 0,
trying to implicitly remove the contents of the array. In line 4, we check the contents of the array and
verify that it still contains elements, in this case, numbers 1 and 4. This happened due to the modification
in line 2: a non-configurable property cannot be deleted. This causes the algorithm to stop removing the
elements at this index. The result is that the code in line 3 removed only one element.

2.1.7 Global Object

In ES5, the Global Object is the object that holds global variables, global functions, and all the built-in
objects. For instance, when a global variable is created as part of an executing program, it is stored as
a property of the Global Object. Considering any of the worldwide most used desktop web browsers1,
one is able to access the Global Object using the global variable window or, at the global scope level,
the keyword this.

In Figure 2.10, we show a program that declares two global variables x and y, in lines 1 and 2, setting
them respectively to the values 3 and 4. In line 3, we update the value of the property x of the Global
Object to 10 but through the use of the global variable window. In line 4, we update the value of y to 10

using another syntax: with the keyword this, that in this global scope context is resolved to the Global

1Desktop Browser Market Share Worldwide (July 2021) - https://gs.statcounter.com/browser-market-share/desktop/worldwide

12

Figure 2.10: Accessing properties of the Global Object

object, and accessing the property using array-like notation. Finally, in line 5 we evaluate an addition of
these two global variables, resulting the value 20.

2.1.8 Other Objects

As stated above in 2.1.1, ES5 comes with a large number of built-in objects, including the String object
or the Array object. In the above subsections, we have described the Global object, the String object, the
Array object, and the Function object. Besides these objects, there are the Object object, the Number
object, the Boolean object, the Math object, the Date object, the RegExp object, the Error object, and
the JSON object. Here, we describe the Number object and the Boolean object for illustrative purposes.
The other objects do not pose additional challenges.

Number objects and Boolean objects are wrappers around primitive numbers and booleans, respec-
tively. Both these objects store their corresponding primitive values in the [[PrimitiveValue]] internal
property. The three default internal properties of Number objects and Boolean objects are given in the
following table:

Internal Property Number Objects Boolean Objects

[[Class]] "Number" "Boolean"

[[Prototype]] Number.prototype Boolean.prototype

[[Extensible]] true true

Table 2.1: Default values for the internal properties of any Number object or Boolean object

All Number objects have the same prototype, Number.prototype, which stores the methods shared
by all the Number objects. For instance, the method toFixed formats a number using fixed-point notation
and is accessible to all objects of type Number. This method receives as argument the number of digits
after the decimal point. Consider the code in Figure 2.11. In lines 1 and 2, we declare two variables

Figure 2.11: Using the method toFixed accessible to all Number objects

numLit and numObj, setting them respectively to 12 and 5.678. Note that we are using two different
syntactic constructs to create two numbers. In the case of line 1 we are assigning the variable numLit

the primitive number 12. In line 2 we are assigning the variable numObj a Number object wrapping the
primitive number 5.678. Also note that in ES5 both integers and real numbers are represented with the
same type: Number.

In lines 3 and 4, we use the method toFixed to get the string representations of both number vari-
ables. In line 3, we pass the value 2 as argument to this method and get a string containing the number

13

12 with the fractional part padded with two zeros: the string "12.00". In line 4, we pass the value 1

as argument getting the string "5.7". Note that the only digit after the decimal point is not 6, as one
may expect, but 7. This happens because this method toFixed rounds the number so that it has the
specified length.

2.1.9 ES5 Prototype-based Inheritance

ES5 is a class-less language. The distinction between classes and instances present in other object-
oriented languages (like Java) does not exist in ES5. An object is always an instance and it inherits
properties from other objects through the use of the internal property [[Prototype]]. This is called
Prototype-based Inheritance [8]. When an ES5 object is created, it takes an existing object as its proto-
type. That object also has its own prototype defined. These together form a prototype chain.

Every time a program wants to retrieve a value of an object’s property, that property is searched in
the object itself. When not present, the prototype chain is traversed until the property is found or until
the search reaches the top-level object which has no prototype set.

Figure 2.12: Program demonstrating ES5 prototype-based inheritance (top); graphical illustration of the
prototype chain obtained after executing the program (bottom)

Figure 2.12 shows a program that illustrates the inner-workings of ES5 prototype-based inheritance.
In line 1, the program sets the variable tesla to an object that contains a single property brand with
value "Tesla". By default, the prototype of this object is set to Object.prototype. In lines 2 and 3, the
program makes use of the method Object.create to create two new objects, respectively assigned to
variables modelS and modelX. This method has two parameters: the first is the object to be set as the
prototype of the new object; and the second is an object containing the named properties that are going
to be added to the new object. So, both modelS and modelX have prototype tesla and have a single
property each, model, with the values "Model S" and "Model X", respectively. In line 4, the program
tries to get the value of the property brand that does not exist in the object modelS. However, the property
brand exists in the prototype chain of modelS, so the property lookup evaluates to the string "Tesla".
Finally, in line 5, the program tries to get the value of the property color which does neither exist on
the object modelX nor in any of the objects of its prototype chain. In this case, the value returned is
undefined.

14

2.1.10 ES5 Functions and Scoping

In ES5, code is run in three different types of execution context : globally, inside functions, and during the
execution of the eval built-in function. Global code is the code that is at the top-level of an ES5 program
and not inside functions.

Each execution context contains a Lexical Environment. A Lexical Environment is a type defined in
the ES5 standard for storing the bindings of variables and function identifiers. It can be seen as a pair
that contains an Environment Record and a (possibly null) reference to an outer Lexical Environment.
An Environment Record is an internal object, created upon the invocation of a function, that maps the
variables declared in the body of that function and its parameters to their respective values. It can be
seen as a lookup table of key-value pairs that maps identifiers to their corresponding values.

Figure 2.13: Identifier generator program (top); Lexical Environments and Environment Records that
result from the execution of the program until line 10 (bottom left); Lexical Environments and Environment
Records that result from the complete execution of the program (bottom right)

Scope resolution is performed by inspecting the identifier bindings present in lexical environments.
Consider the identifier (ID) generator example presented in Figure 2.13. The function makeIdGen takes
a string prefix, and returns a new object with two properties: getId, storing a function for creating fresh
IDs; and reset, storing a function that resets the ID generator. getId guarantees that the returned ID is
fresh by using a counter, stored in variable count, which is appended to the generated ID string (prefix
+ " id ") and is incremented afterwards. Note that the code inside the functions getId and reset

accesses variables that are not defined inside these functions, though the program executes normally.
During the execution of the code in the figure, various lexical environments and associated envi-

ronment records are created. On the left-side of the figure, we have a representation of the lexical
environments (in the blue rectangle) and environment records (in the yellow rectangle) created by the
execution of the program until line 10. On the right-side, we represent the lexical environments and

15

environments records created as a result of the complete execution of the program.

The LEglobal is the lexical environment created for the global scope. It contains a pointer to the
environment record ERglobal with the mappings for the global variables ig1 and id1 and the global
function makeIdGen. Note that ERglobal is the global object discussed in Section 2.1.7, which is accessible
via the window variable and the this keyword at the global scope level. Hence, it is possible to change
the bindings of global variables by interacting directly with the global object.

In line 10, the program creates a new ID generator and assigns it to the global variable ig1. When
calling the function makeIdGen with the argument "foo", the lexical environment LEmIG1 is created with
mappings for the variables prefix, count, getId, and reset, respectively set to "foo", 0 and two
different anonymous functions with no arguments (lines 3 till 6). The lexical environment LEmIG1 points to
lexical environment LEglobal because the function makeIdGen is defined in the global context.

In line 11, the program uses the generator ig1 to obtain a fresh ID and assigns it to the global variable
id1. When calling the function getId, the lexical environment LEgI1 is created with an empty mapping.
This lexical environment points to lexical environment LEmIG1 because the function getId is defined inside
makeIdGen.

During the execution of getId, variables are resolved with respect to the current list of lexical environ-
ments ([LEgI1, LEmIG1, LEglobal]), traversing this list from left to right. Such lists are called scope chains.
When the prefix variable is accessed, internally ES5 tries to get its value by searching the environment
record of the current lexical environment, ERgI1. As no match is found, the search proceeds to the next
lexical environment in the scope chain, in this case, the lexical environment LEmIG1. When searching for
prefix in the environment record ERmIG1, a mapping is found and its associated value is returned. The
same applies for the variable count.

Finally, the programs calls the reset function to reset the ID generator ig1. During the execution
of reset, the programs assigns count to 0. To this end, the ES5 semantics will first have to find the
environment record that defines count in the current scope chain. The traversal of the scope chain
works as explained for getID, meaning that the semantics will find count in the environment record
ERmIG1. Once the corresponding environment record is found, the semantics will simply update the value
of count appropriately.

2.1.11 ES5 Syntax and Control Flow

The purpose of this section is to illustrate how the standard specifies the semantics of the various
constructs of the language. To this end, we give a detailed description of the specification of the If-Then-
Else statement and the variable assignment expression.

References

Before proceeding to the description of the semantics of the If-Then-Else and variable assignment, we
must introduce ES5 references. A reference represents an unresolved name binding. It consists of
a base value and a referenced name. The base value is either undefined, an object, a boolean, a
string, a number, or an environment record. A base value of undefined indicates that the reference
could not be resolved to a binding. The referenced name is a string, typically the name of the binding we
want to resolve, e.g., the name of a variable or the name of a property of an object. For instance, (ERf,
x) denotes a variable reference, where x is the variable name and ERf the environment record where x

is to be found, and (Obja, p) denotes an object reference where p is the name of the property name
and Obja the object in whose prototype chain p is to be found. Note that the base value of an object
reference is not necessarily the object where the referenced property is defined, but rather an object in

16

Figure 2.14: Semantics of the If-Then-Else statement defined in the standard

whose prototype chain that property can be found.

To obtain the associated value, the reference needs to be dereferenced. This is the job of the internal
function GetValue.

If-Then-Else

In Figure 2.14, we show the fragment of the ES5 standard that specifies the semantics of the If-Then-
Else statement. This statement is described in three steps: the evaluation of the guard expression (line
1), returning the reference exprRef; the conversion of this reference to a boolean value using the internal
functions ToBoolean and GetValue (line 2); and the evaluation of one of the two statements (then or else)
depending on whether the value returned is true or false.

The semantics of the If-Then-Else statement is exactly what one would expect, but for the detail of
the call to the internal ToBoolean function. This function is called because the resolution of exprRef to
a value (using the internal function GetValue) may yield a non-boolean value. The ToBoolean function
will then perform the necessary coercion by considering both the type of its argument and its value. For
instance, consider the following program:

var car = "";

if(car) { 1 } else { 0 }

The evaluation of the If-Then-Else statement will generate the value 0 because the internal function
ToBoolean returns false when supplied the empty string. For any other string value, it returns true.
Implicit coercions (such as those performed by ToBoolean) are a common source of mistakes in ES5
programs.

Variable Assignment

In ES5, the basic assignment operator is the equal operator, =, which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The standard also defines other
assignment operators, that are shorthand for other standard operations. For instance, the multiplication
assignment operator, *=, where x *= y is syntactic sugar for x = x * y. Figure 2.15 shows the seman-
tics of the simple assignment defined in the ES5 standard. Consider the following expression: x = y.
We can describe the semantics of this expression in four different steps: evaluate the variable x (line 1),
assigning the returned reference to lref; evaluate the variable y (line 2), assigning the returned refer-
ence to rref; get the value associated with rref, using the internal function GetValue, and assigning it
to rval; assign this value to the reference lref using the internal function PutValue. This will replace
any previous value assigned to x with the value of rval. Note that some assertions are checked on the
lref before calling PutValue (line 4) to make sure that some reserved keywords (eval and arguments)
are not used on the left-side of the assignment expression.

17

Figure 2.15: Semantics of a simple assignment expression defined in the standard

2.1.12 ES5 Internal Functions

Figure 2.16: A portion of the Call graphs of the internal functions GetValue and PutValue

For the purpose of describing the semantics of the ES5 language, the standard defines a number
of internal functions with corresponding algorithms. The range of internal functions goes from type
conversion and testing, to objects’ internal methods, functions to operate on property descriptors, or to
operate or access the components of references.

In the previous subsection, we mentioned two internal functions (GetValue and PutValue) used to
deal with references. GetValue resolves a reference to a value, that is, the value of a property of an
object or the value bound to an identifier present in an environment record. PutValue assigns a certain
value to a variable or an object property pointed to by a reference. Both these functions have complex
behaviours. Their definitions are intertwined with other internal functions, making it difficult to understand
all their possible behaviours. Figure 2.16 shows a portion of the call graphs of the GetValue and the
PutValue internal functions. We only present the internal functions that deal with objects and property
descriptors.

Next, we will give a more detailed explanation of two of these internal functions called as part of the
execution of GetValue and PutValue, respectively [[GetOwnProperty]] and [[GetProperty]]. In the
following we consider the application of these functions to an object O and property P.

18

Figure 2.17: The specification of the Object internal function [[GetOwnProperty]]

GetOwnProperty

The internal function [[GetOwnProperty]] retrieves a property descriptor representing the value of the
property P in the object O or undefined if P does not exist in O (line 1). The section of the standard
that specifies this function is given in Figure 2.17. Note that instead of returning the property descriptor
obtained in line 3, this internal function returns a copy of that property descriptor (lines 4 till 8). In this
way, it is guaranteed that further changes to the returning property descriptor do not affect the one stored
in the object O.

Figure 2.18: The specification of the Object internal function [[GetProperty]]

GetProperty

The internal function [[GetProperty]] recursively traverses the prototype chain of the object O to re-
trieve the descriptor associated with the property P. The semantics of this function is presented in Figure
2.18. Initially, this function calls [[GetOwnProperty]] to retrieve this descriptor from the object O (line
1). If not found, it gets the prototype of the object (line 3) and recursively calls itself on this prototype
object (line 5). This is performed until the descriptor is obtained or until the end of the prototype chain is
reached, in which case it returns undefined (line 4).

19

20

Chapter 3

Related Work

The research literature covers a wide range of program analysis and instrumentation techniques for
ECMAScript, such as: type systems [16; 17], abstract interpreters [18], points-to analyses [19], program
logics [8; 20], operational semantics [13; 12; 14], intermediate representations/compilers [8], among
others. Here we focus on operational semantics/reference interpreters for ECMAScript and intermediate
languages and compilers for ECMAScript analyses.

Operational semantics and reference interpreters for ECMAScript There have been numerous
research projects with the goal of formalising the semantics of ECMAScript including its built-in libraries.
In the following, we review the most relevant of these projects in chronological order.

Maffeis et al. [13] were the first to design an operational semantics for ECMAScript following the
standard faithfully. They designed a small-step operational semantics for the third version of the standard
and used this semantics to reason about the security properties of web applications and mashups [21;
22]. However, they did not mechanise their semantics, leaving it as a long text document comprising a
large number of semantic rules written in their own custom-made syntax.

Guha et al. [9] defined λJS , a core lambda calculus that captures the most fundamental features
of ECMAScript 3: extensible objects, prototype-based inheritance, and dynamic function calls. λJS

comes with a Racket [23] interpreter and a de-sugaring translation that converts ES3 programs into λJS
expressions. This project also includes a type system for checking a simple confinement property of
λJS programs. Importantly, λJS does not support dynamic code evaluation via eval and several of the
language built-in libraries. Later, Politz et al. [24] extended λJS from ES3 to ES5 including, for the first
time, a formal semantics of ECMAScript accessor property descriptors (a.k.a. getters and setters) and a
thorough treatment of the eval statement.

Bodin et al. [12] developed JSCert, the first mechanised specification of the ECMAScript semantics.
The authors formalised a pretty-big-step semantics [25] of ECMAScript 5 in the Coq [26] interactive
proof assistant. Besides JSCert, the paper also describes JSRef, an ECMAScript reference interpreter
defined in Coq and extracted from Coq to OCaml in order to be executed. The authors proved that
JSRef is correct with respect to the formalised operational semantics and tested it against a fragment
of Test262 [5]. Later, Gardner et al. [27] extended the JSRef reference interpreter with support for ES5
Arrays. To this end, the authors linked JSRef to the Google’s V8 [28] Array library implementation. In
this second paper, the authors additionally assessed the previous and current states of the JSCert and
JSRef projects, providing a thorough analysis of the methodology as a whole and a detailed breakdown
of the passing/failing tests. The JSCert project is especially relevant to us because it was the first project
to emphasise the importance of having the code of a reference implementation matching the code of
the corresponding standard. The authors proposed the methodology of eye-ball closeness. We improve

21

on this methodology by removing the human out of the process, in that we can quantify the similarity
between ECMARef5 and the official standard using the ECMA-SL2English HTML generator.

Park et al. presented KJS [14], the most complete formal semantics of ES5 to this day. KJS was de-
veloped using the K framework [29], a well established term-rewriting system supporting various types
of symbolic analyses. KJS was thoroughly tested against Test262 passing a total of 2,782 core lan-
guage tests. The K framework comes with a built-in symbolic analysis mechanism based on reachability
logic [30]. This means that if one formalises the semantics of a given programming language in the K
framework, one obtains a symbolic analysis for that language for free. Taking advantage of this mecha-
nism, the authors of KJS later leveraged their ECMAScript semantics implemented in K to symbolically
reason about simple ECMAScript programs [31].

Charguéraud et al. presented JSExplain [15], a reference interpreter for the ECMAScript 5 lan-
guage that closely follows the text of the specification. JSExplain was written in a custom-made purely
functional language with a built-in monadic operator for automatically threading the implicit state of the
interpreter across pure computations. The authors further implemented a translator from their functional
language to ECMAScript, allowing them to run JSExplain in the browser. The main goal of JSExplain is to
allow programmers to debug the execution of ECMAScript programs, having access to both the state of
the program and the internal state of the ECMAScript interpreter. In other words, with JSExplain, we can
not only code-step the execution of an ECMAScript program but also the execution of the ECMAScript

interpreter itself. While the goals of JSExplain are very close to our own, important differences remain:
(1) JSExplain was not tested against Test262, and (2) the authors do not quantify the similarity between
their reference interpreter and the official text of the standard.

Besides complete implementations of the ECMAScript standard, the research community has also
worked on stand-alone reference implementations of some of the built-in libraries that comprise the
ECMAScript standard. For instance, Sampaio et al. [32] developed a trusted infrastructure that includes
a reference implementation of JavaScript Promises following the standard line-by-line. The authors also
developed JaVerT.Click, a symbolic execution tool that, for the first time, supported reasoning about
JavaScript programs that use promises.

Intermediate representations and compilers The complexity of the ECMAScript language, renders
the direct development of precise program analysis and verification tools for ECMAScript an extremely
challenging task. A well established approach to deal with this complexity, is to move the analysis to sim-
pler intermediate languages via compilation. Instead of analysing an ECMAScript program directly, one
first compiles it to a simple intermediate language and applies the analysis at the intermediate language
level. Hence, the research community has proposed a wide variety of intermediate representations for
ECMAScript analysis. These intermediate representations can be divided into two main classes: (1)
those that are aimed at syntax-directed analysis, which are generally variations of either imperative-
style While languages or lambda calculi, such as λJS [9], S5 [24], notJS [33] , and JISET [34]; and
(2) those that are aimed at control-flow-graph-based analysis, which are generally variations of simple
goto languages, such as the IR of TAJS [16; 35] , WALA [36] , JSIR [37] , and JSIL [8]. In both cases,
typical intermediate languages for ECMAScript analysis have native support for extensible objects and
their associated operations. Importantly, the first class of intermediate representations is more suited for
high-level analyses, such as type-checking and type inference, while the second class is more suited for
low-level analyses, such as symbolic execution and bounded model-checking .

In the following, we describe the two intermediate representations that we consider to be the closest
to ECMA-SL: JSIL, the intermediate language of JaVerT [8; 38; 39], and JISET, the intermediate repre-
sentation that is at the core of a novel ECMAScript implementation developed at KAIST [34].

Fragoso Santos et al. proposed JSIL [8], a simple goto language with support for extensible objects,

22

dynamic function calls, and dynamic code evaluation. JSIL was developed in the context of the JaVerT
project. JaVerT is a separation-logic-based verification tool for reasoning about functional correctness
properties of ES5 (strict) programs. JaVerT works by first compiling the given ECMAScript program
to JSIL using a compiler called JS-2-JSIL. Verification takes place at the JSIL level using a dedicated
verification engine for JSIL called JSILVerify. Importantly, JaVerT does not apply any simplifications to
the ECMAScript semantics, analysing all the corner-cases of the language.

Very recently, Jihyeok Park et al. presented JISET [34], a JavaScript IR-based semantics extrac-
tion toolchain with which the authors were able to semi-automatically obtain a partial implementation of
ECMAScript 10. More concretely, the authors were able to semi-automatically synthesize a set of trans-
lation rules that they used to compile ECMAScript programs to their own instruction set, called JISET.
The project comes with a JISET execution engine, which the authors used to test the extracted imple-
mentation of ECMAScript against Test262, passing 18,064 tests out of 28,952 applicable tests. However,
JISET comes with no mechanism for generating an English description of the standard from their JISET
implementation, as their goals are exactly the opposite of ours: while we want to obtain the text of the
standard from the code of ECMARef5, the authors of JISET want to obtain their reference implementation
from the text of the standard.

Comparison with ECMA-SL Despite the large number of existing implementations of the ECMAScript

standard, we believe that ECMA-SL makes two distinct contributions:

• ECMARef5 is the most complete academic reference implementation of the ECMAScript 5 standard.
More concretely, ECMARef5 passes 12,026 tests out of 12,068 applicable tests, while JSCert [12]
passes 1,796 tests, KJS [14] passes 2,782 tests, S5 passes 8,157 tests, and JS-2-JSIL passes
8,797 tests. While it is true that JISET passes 18,064 tests, one has to take into account that
JISET targets the tenth version of the ECMAScript standard and therefore has a considerably
larger pool of available tests (passing only 62,4% of all the applicable tests). More importantly,
neither JISET nor any of the existing academic reference implementations have support for all of
the ECMAScript 5 built-in objects, which we do. Namely, ECMARef5 is the first academic project
that supports the RegExp and the JSON built-in objects, albeit developed in the context of another
parallel MSc thesis1.

• ECMARef5 is the first ECMAScript reference interpreter from which one can obtain an HTML version
of the standard, closely matching the official text. We believe that the ideas of this project can be
leveraged to improve the current ECMAScript standardisation process.

1As this thesis is still in progress, we cannot cite it

23

24

Chapter 4

ECMA-SL

Our main goal with the design of ECMA-SL was to obtain the simplest possible intermediate language
that would allow us to implement the ECMAScript standard in a faithful way. To this end, we included
in ECMA-SL all the meta-constructs of the ECMAScript standard in order to implement an ECMAScript

reference interpreter that matches the pseudo-code of the standard line-by-line. However, some of
these meta-constructs can be expressed using more fundamental constructs. For instance, the standard
makes use of a repeat statement and a foreach statement which can both be modelled using a simple
while statement. Hence, we have designed a simpler intermediate language called Core ECMA-SL that
we use as a compilation target for ECMA-SL. On the whole, our ECMA-SL engine comes with: (1) an
ECMA-SL parser, (2) a compiler from ECMA-SL to Core ECMA-SL, and (3) a Core ECMA-SL interpreter. All
three modules were written in the OCaml programming language [40].

This chapter presents both the ECMA-SL (4.1) and the Core ECMA-SL (4.2) intermediate languages,
also describing the compilation process from ECMA-SL to Core ECMA-SL. We omit the description of the
Core ECMA-SL interpreter as it was implemented in the context of another MSc thesis [3].

4.1 Designing the ECMA-SL Language

ECMA-SL is a simple imperative language that retains the fundamental dynamic behavior of ECMAScript:
(1) dynamic function calls, (2) dynamic creation and deletion of object properties, and (3) dynamic code
evaluation. Importantly, ECMA-SL does not include the implicit behaviors of the ECMAScript language,
such as implicit type coercions and prototype-based inheritance.

An ECMA-SL program is simply a set of top-level functions with a designated entry-point function called
main. The complete grammar of ECMA-SL is shown in Figures 4.1 and 4.2, respectively presenting the
grammar for ECMA-SL expressions and ECMA-SL statements. It includes three main syntactic categories:
(1) values v ∈ V, (2) expressions e ∈ E , and (3) statements st ∈ Stmts. ECMA-SL values include integers,
floats, booleans, strings, types, object locations, symbols, the special values null and void, as well as
value lists and tuples. We use (v1, ..., vn) to denote the n-tuple consisting of values v1−vn and [v1, ..., vn]

to denote the list containing the elements v1 − vn. Lists differ from tuples in that they can be extended
and shrunk during execution, while tuples always keep the same number of elements.

ECMA-SL expressions can be divided into the following sub-groups:

1. Simple expressions consisting of values, local variables 〈var〉, and global variables | 〈var〉 |;

2. Operator expressions consisting of the application of unary, binary, and n-ary operators;

25

〈expr〉 ::= 〈simple-expr〉 | 〈operator-expr〉 | 〈object-expr〉 | 〈call-expr〉 〈simple-expr〉 ::= 〈value〉
| 〈var〉
| |〈var〉|

〈operator-expr〉 ::= 	 〈expr〉
| 〈expr〉 ⊕ 〈expr〉
| ⊗(〈expr〉, ..., 〈expr〉)

〈object-expr〉 ::= ‘{’ 〈prop〉 ‘:’ 〈expr〉, ..., 〈prop〉 ‘:’ 〈expr〉 ‘}’
| 〈expr〉 ‘.’ 〈prop〉
| 〈expr〉 ‘[’ 〈expr〉 ‘]’
| 〈expr〉 ‘in’ 〈expr〉
| ‘fields’ 〈expr〉

〈call-expr〉 ::= 〈expr〉 ‘(’ 〈expr〉, ..., 〈expr〉 ‘)’
| 〈expr〉 ‘(’ 〈expr〉, ..., 〈expr〉 ‘) catch ’ 〈f-name〉
| ‘extern’ 〈expr〉 ‘(’ 〈expr〉, ..., 〈expr〉 ‘)’

Figure 4.1: Syntax of ECMA-SL expressions. The non-terminals 〈prop〉, 〈var〉, and 〈f-name〉 respectively
range over property names, variable names, and function names.

3. Object expressions consisting of the object literal expression and static and dynamic property
lookup expressions;

4. Call expressions consisting of simple function calls, function calls with a catch clause, and external
function calls.

All ECMA-SL expressions are standard with the exception of static and dynamic property lookup expres-
sions, function calls with a catch clause, and external function calls, which we explain below:

• Property lookup expressions: In ECMA-SL, as in ECMAScript, there are two types of property lookup
expressions: static and dynamic. For static property lookup expressions the name of the property
being inspected is known at static time (e.g. o.foo). In contrast, for dynamic property lookup
expressions, it must be dynamically computed (e.g. o[y])1.

• Function calls with a catch clause: In ECMA-SL, function calls may be extended with a catch clause
that specifies an error handler h to process the outcome of the corresponding function in case it
throws an error. In such cases, the whole function call expression evaluates to the return of the
error handler h. For instance, consider the call f(3) catch h. If the body of function f throws an
error, the ECMA-SL engine executes the handler h giving it as input the error thrown by f, with the
whole expression evaluating to the return of h.

• External function calls: Finally, external function calls provide a mechanism for seamlessly extend-
ing the semantics of the ECMA-SL language without having to change its syntax. More concretely,
external function calls allow for the execution of functions directly implemented in OCaml. These
functions can, in turn, call arbitrary system commands, executing programs written in other lan-
guages. As an example, we have used an external function called parseJS in our implementation
of the ECMAScript standard. This function is used to dynamically parse ECMAScript programs in
text format. When interpreting the call extern parseJS(str), the ECMA-SL engine first checks if it
contains an external function called parseJS. If it does, it then executes that function on the string
argument given as input. Note that, in contrast to normal ECMA-SL functions, the parseJS function
is directly implemented in OCaml, effectively stepping out of the ECMA-SL semantics.

1Note that o.foo is equivalent to o["foo"].

26

〈stmt〉 ::= 〈simple-stmt〉 | 〈object-stmt〉 | 〈conditional-stmt〉 | 〈loop-stmt〉 | 〈ret-error-stmt〉

〈simple-stmt〉 ::= 〈var〉 ‘:=’ 〈expr〉
| ‘|’〈var〉‘| :=’ 〈expr〉
| ‘{’ 〈stmt〉 ‘;’ ... ‘;’ 〈stmt〉 ‘}’
| ‘print’ 〈expr〉
| ‘skip’

〈object-stmt〉 ::= 〈expr〉 ‘.’ 〈var〉 ‘:=’ 〈expr〉
| 〈expr〉 ‘[’ 〈expr〉 ‘]’ ‘:=’ 〈expr〉
| ‘delete’ 〈expr〉 ‘[’ 〈expr〉 ‘]’

〈conditional-stmt〉 ::= ‘switch (’ 〈expr〉 ‘) { case’ 〈expr〉 ‘:’ 〈stmt〉 ... ‘case’ 〈expr〉 ‘:’ 〈stmt〉 ‘}’
| ‘if (’ 〈expr〉 ‘) {’ 〈stmt〉 ‘} elif (’ 〈expr〉 ‘) {’ 〈stmt〉 ‘ }’ ... ‘else {’ 〈stmt〉 ‘}’
| ‘match’ 〈expr〉 ‘with |’ 〈pattern〉 ‘ -> ’ 〈stmt〉 ‘|’ ... ‘| default -> ’ 〈stmt〉

〈pattern〉 ::= ‘{’ 〈pattern-pair〉, ..., 〈pattern-pair〉 ‘}’

〈pattern-pair〉 ::= 〈prop〉 ‘:’ 〈value〉
| 〈prop〉 ‘:’ 〈var〉
| 〈prop〉 ‘: None’

〈loop-stmt〉 ::= ‘while (’ 〈expr〉 ‘) {’ 〈stmt〉 ‘}’
| ‘repeat {’ 〈stmt〉 ‘}’
| ‘repeat {’ 〈stmt〉 ‘} until’ 〈expr〉
| ‘foreach (’ 〈var〉 ‘:’ 〈expr〉 ‘) {’ 〈stmt〉 ‘}’

〈ret-error-stmt〉 :== ‘return ’ 〈expr〉
| ‘throw ’ 〈expr〉
| ‘fail ’ 〈expr〉

Figure 4.2: Syntax of ECMA-SL statements. The non-terminals 〈prop〉, 〈var〉, and 〈f-name〉 respectively
range over property names, variable names, and function names.

ECMA-SL statements can be divided into the following sub-groups:

1. Simple statements include the block statement, the skip statement, the print statement, and the
global and local variable assignment statements.

2. Object statements include the static and the dynamic property assignment statements and the
property delete statement. Note that, as for the case of the property lookup expression, the dy-
namic property assignment differs from the static property assignment in that the name of the
property being assigned must be dynamically computed.

3. Conditional statements include the standard if-then-else statement with an arbitrary number of
else-if clauses, the switch statement, and the match statement. While the if-then-else and the
switch statements have their usual semantics, the match statement requires further consideration.
The idea of the match statement is to allow the programmer to match an argument object against
multiple object patterns, specifying for each pattern an associated statement clause (analogously
to the switch statement). Currently, we support a simple object-pattern language that allows pro-
grammers to specify which properties must be present in the argument object and which must not.
For instance, consider the following pattern { foo: x, bar: "banana", baz: None }. This
pattern specifies that the argument object must have a property foo with an arbitrary value and a
property bar with the value "banana", and must not have a property baz; it may, however, have
any other properties. Note that the statement clause associated with this pattern may contain the
variable x, in which case, it binds the value of the property foo.

27

〈expr〉 ::= 〈simple-expr〉 | 〈operator-expr〉

〈simple-expr〉 ::= 〈value〉
| 〈var〉

〈operator-expr〉 ::= 	 〈expr〉
| 〈expr〉 ⊕ 〈expr〉
| ⊗(〈expr〉, ..., 〈expr〉)

〈stmt〉 ::= 〈simple-stmt〉 | 〈object-stmt〉 | 〈cf-stmt〉

〈simple-stmt〉 ::= 〈var〉 ‘:=’ 〈expr〉
| ‘print’ 〈expr〉
| ‘skip’
| ‘{’ 〈stmt〉 ‘;’ ... ‘;’ 〈stmt〉 ‘}’

〈object-stmt〉 ::= 〈var〉 ‘:= {}’
| 〈var〉 ‘:=’ 〈expr〉 ‘[’ 〈expr〉 ‘]’
| 〈expr〉 ‘[’ 〈expr〉 ‘]’ ‘:=’ 〈expr〉
| ‘delete’ 〈expr〉 ‘[’ 〈expr〉 ‘]’
| 〈var〉 ‘:=’ 〈expr〉 ‘in’ 〈expr〉
| 〈var〉 ‘:= fields’ 〈expr〉

〈cf-stmt〉 ::= ‘if (’ 〈expr〉 ‘) {’ 〈stmt〉 ‘} else {’ 〈stmt〉 ‘}’
| ‘while (’ 〈expr〉 ‘) {’ 〈stmt〉 ‘}’
| 〈var〉 ‘:=’ 〈expr〉 ‘(’ 〈expr〉, ..., 〈expr〉 ‘)’
| ‘return ’ 〈expr〉
| ‘fail ’ 〈expr〉

Figure 4.3: Syntax of the Core ECMA-SL language. The non-terminal 〈var〉 ranges over variable names.

4. Loop statements include the standard while statement, the bounded and unbounded repeat state-
ments, and the foreach statement. The foreach statement is used to iterate over the elements of
a given list. For instance, the foreach statement foreach(item : lst) { s } iterates over the
items of the list lst, executing the body of the foreach statement, s, for each element of the list.
Note that the variable item binds the current list item inside the body of the foreach statement.

5. Return and error statements include the return, throw, and fail statements. The return statement
has its usual semantics; the throw statement transfers the control to the closest error-handling
function in the callstack; and the fail statement simply terminates execution in error mode, as the
exit(1) command in C-like languages.

4.2 Compiling ECMA-SL to Core ECMA-SL

As ECMA-SL contains several programming-language constructs that can be expressed using more fun-
damental constructs, we created a simpler version of ECMA-SL, called Core ECMA-SL, together with a
compiler from ECMA-SL to Core ECMA-SL. With this compiler, instead of interpreting an ECMA-SL program
directly, one first compiles it to Core ECMA-SL and then interprets the obtained program. Note that de-
veloping an interpreter for Core ECMA-SL is substantially simpler than doing so for the entire ECMA-SL

language. In fact, such an interpreter was developed as part of a parallel MSc thesis [3], focused on
the design of a dynamic information flow analysis for ECMA-SL. In this section, we describe the Core

ECMA-SL language and the compiler from ECMA-SL to Core ECMA-SL.
The syntax of Core ECMA-SL is given in Figure 4.3. Core ECMA-SL differs from ECMA-SL in the follow-

ing aspects:

28

1. It only allows for side-effect-free expressions that do not interact with the heap, i.e. Core ECMA-SL

expressions can only interact with the variable store;

2. It contains a single loop statement (no repeat, repeat-until, and foreach statements);

3. It contains a single conditional statement (no switch and match statements);

4. It does not support global variables;

5. It does not include an error-handling mechanism (no throw statement and no function call with
catch clause).

Since Core ECMA-SL expressions do not have side-effects and cannot interact with the object heap,
the ECMA-SL expressions with these features were ”promoted” to equivalent Core ECMA-SL statements.
For instance, while ECMA-SL contains a property lookup expression of the form 〈expr〉 ‘[’ 〈expr〉 ‘]’, Core
ECMA-SL contains a single dedicated property lookup assignment of the form 〈var〉 := 〈expr〉 ‘[’ 〈expr〉 ‘]’.
Analogously, while ECMA-SL contains a function call expression of the form 〈expr〉 ‘(’ 〈expr〉, ..., 〈expr〉 ‘)’,
Core ECMA-SL contains a dedicated function call assignment of the form 〈var〉 := 〈expr〉 ‘(’ 〈expr〉, ...,
〈expr〉 ‘)’. The same holds for the membership-check, empty object literal, and property collection ex-
pressions, which were all promoted to dedicated assignment statements.

The ECMA-SL to Core ECMA-SL compiler was implemented in the OCaml programming language.
It is structured in a modular fashion with compilation functions for ECMA-SL programs (compile prog),
functions (compile func), statements (compile stmt), and expressions (compile expr). The function
compile prog creates a new Core ECMA-SL program with the compiled functions of the original ECMA-SL
program. Analogously, the function compile func creates a new Core ECMA-SL function with the com-
piled statements of the original ECMA-SL function. The functions compile stmt and compile expr are
more involved as they have to model the behavior of ECMA-SL statements and expressions using the
simpler statements and expressions of Core ECMA-SL. Below, we describe this compilation process by
appealing to five illustrative examples, each focusing on one of the five aspects stated above.

Side-effect-free heap-independent expressions As stated above, Core ECMA-SL expressions nei-
ther have side-effects nor interact with the heap. To this end, the ECMA-SL expressions that include these
features were promoted to dedicated Core ECMA-SL assignment statements. Hence, our Core ECMA-SL

expression compiler, compile expr, compiles the given expression to a pair consisting of a statement
that captures the effectful behavior of the given expression and a side-effect-free expression that holds
the value of the original expression. Consider the example below.

1 z := o1[x] + o2[y]
1 __v0 := o1[x];
2 __v1 := o2[y];
3 z := __v0 + __v1

Figure 4.4: Example of effect free expressions in ECMA-SL (left) together with compiled to Core ECMA-
SL version (right).

On the left, we show an ECMA-SL statement and on the right its Core ECMA-SL counter-part. We can
see that the original assignment includes the expression o1[x] + o2[y] that interacts with the heap.
The application of compile expr to this expression yields the statements v0 := o1[x]; v1 :=

o2[y], which capture the heap-manipulating logic of the expression, and the expression v0 + v1,
which holds the value of the original expression after the execution of its effectful statements. Using the
output of compile expr, the function compile stmt constructs the statement that is shown on the right
in the expected way.

29

Single loop statement As Core ECMA-SL only includes the standard while statement, the bounded
and unbounded repeat statements, as well as the foreach statement, are compiled to equivalent while
statements. The compilation of these three loop statements is straightforward. In the following, we give
an example of the compilation of the foreach statement.

1 foreach(p : lst) {
2 print(p)
3 }

1 i := 0;
2 list_length := l_len(lst);
3 while (list_length > i) {
4 p := l_nth(lst , i);
5 print p;
6 i := i + 1
7 }

Figure 4.5: Example of a foreach statement in ECMA-SL (left) together with compiled to Core ECMA-SL
version (right).

On the left, we show an ECMA-SL statement and on the right its compilation to Core ECMA-SL. Recall that
the foreach statement is used to iterate over the elements of a list. Hence, in the compiled code, we
simply generate an iterating variable i that keeps track of the current index of the list. At each iteration,
we start by obtaining the element of the list at index i and assigning it to p. Then, we execute the body
of the foreach statement. And, finally, we increment the current list index. The loop terminates when the
current index coincides with the value of the list length.

Single conditional statement Match statements and switch statements are compiled to sequences of
if-then-else statements. In contrast to the compilation of switch statements, which is straightforward, the
compilation of match statements is substantially more involved. In particular, we designed an auxiliary
compiler that given a simple object pattern, returns the sequence of checks that must hold for the
pattern clause to be executed. Consider the example given in Figure 4.6. On the left, we present the

1 match obj with
2 | { foo: 42, baz: None } -> {
3 print "banana"
4 }
5 | default -> {
6 print "apple"
7 }

1 __v0 := "foo" in_obj obj;
2 __v1 := obj["foo"];
3 __v2 := __v1 = 42;
4 __v3 := "baz" in_obj obj;
5 __v3 := !(__v3);
6 if (__v0 && __v2 && __v3) {
7 print "banana"
8 } else {
9 print "apple"

10 }

Figure 4.6: Example of a match statement in ECMA-SL (left) together with compiled to Core ECMA-SL
version (right).

ECMA-SL match statement and on the right its compilation to Core ECMA-SL. The pattern { foo: 42,

baz: None } matches objects that have the property foo with the value 42 and that do not have the
property baz. This pattern is compiled to the sequence of statements given in lines 1-5 on the right-hand
side of Figure 4.6 as well as the expression v0 && v2 && v3. Intuitively, v0 is true if the
object obj has the property foo, v2 is true if the property foo has value 42, and v3 is true if the
object obj does not have the property baz. Hence, if the expression v0 && v2 && v3 is true

the compiled program executes the statement clause associated with the pattern; otherwise, it executes
the default clause.

30

No support for global variables The ECMA-SL language only contains top-level functions. This means
that functions cannot be nested inside each other and each function executes in its own scope. However,
ECMA-SL does allow programmers to make use of global variables, which are shared by all functions. In
contrast, Core ECMA-SL does not support global variables. To account for them, the compiler from
ECMA-SL to Core ECMA-SL adds the extra parameter globals to all function definitions, with the
goal of simulating the global variable scope. The compilation of function definitions must fit together
with the compilation of call expressions. To this end, call expressions are compiled to equivalent call
statements that include the additional argument globals. Consider the example below.

1 function f() {
2 |foo| := 3;
3 bar := |foo| + 2;
4 ...
5 }

1 function f(___globals) {
2 ___globals["foo"] := 3;
3 __v0 := ___globals["foo"];
4 bar := __v0 + 2;
5 ...
6 }

Figure 4.7: Example of accessing global variables in ECMA-SL (left) together with compiled to Core
ECMA-SL version (right).

The program on the left makes use of a global variable |foo|, both updating and reading its value. The
compiled program updates the value of foo and reads its value directly on/from the object bound to the
parameter globals.

No support for errors Core ECMA-SL does not support the throw statement and the call expression
with catch clause. To account for this, the compiler from ECMA-SL to Core ECMA-SL instruments the re-
turn of each function with an additional Boolean flag indicating whether or not the function has thrown an
error. More concretely, the statement throw e is compiled to the statement return (true, e), where
the Boolean true indicates that the function threw an error. Following the same logic, the statement
return e is compiled to the statement return (false, e), indicating that the function returned nor-
mally. Naturally, the compilation of call expressions must check if the called function threw an error and
proceed accordingly; there are three scenarios to consider:

• the execution of the called function threw an error and the programmer specified an error handler;

• the execution of the called function threw an error and no error handler was specified;

• the execution of the called function returned normally.

1 function f(y) {
2 x := g(y) catch h
3 ...
4 }
5 function g(x) {
6 if (x > 0) {
7 ...
8 return x + 1
9 } else {

10 throw 0
11 }
12 }

1 function f(___globals , y) {
2 __v0 := g(___globals , y);
3 if (fst(__v0)) {
4 __v0 := h(___globals , snd(__v0));
5 if (fst(__v0)) {
6 return __v0
7 } else {
8 __v0 := snd(__v0)
9 }

10 } else {
11 __v0 := snd(__v0)
12 };
13 ...
14 }

Figure 4.8: Example of a function call with guard in ECMA-SL (left) together with compiled to Core
ECMA-SL version (right).

31

Figure 4.8 shows the compilation of a function call with catch clause. The compiled code first checks
if the first element of the pair returned by g is true. If it is, the compiled code calls the error handler h
giving it the error value as an argument (recall that the error value is the second element of the pair).
If it is not, the compiled code simply extracts the value returned by g from the pair and assigns it to

v0. Note that, the handler h may itself throw an error. In such cases, the compiled function f returns
immediately.

32

Chapter 5

Implementing ECMAScript in
ECMA-SL

In this chapter, we explain the internal representations used in ECMARef5 to model the different types
of artifacts used in the ECMAScript standard (5.1), followed by the description of the implementation
of ECMAScript built-in objects and initial heap (5.2). Finally, we demonstrate how ECMARef5 follows
the ECMAScript standard line-by-line (5.3) and provide an overview of the compilation of ECMAScript
programs to ECMA-SL (5.4).

5.1 ECMARef5 Internal Representations

We start by explaining the internal representations that we have used to model the different types of
artifacts used in the ECMAScript standard. More specifically, we discuss our internal representations of:
(1) ECMAScript objects; (2) property descriptors; and (3) function objects.

var o = { foo: 1, bar: 2 };

Object.prototype

foo: 1
bar: 2

Prototype:

o : Object

(a) ECMAScript

Value: 1
Writable: true

Enumerable: true
Configurable: true

Data Property Descriptor

JSProperties:

o : Object

Class: "Object"
Prototype:

Extensible: true

[Object internal
methods] Value: 2

Writable: true
Enumerable: true
Configurable: true

Data Property Descriptor

Object.prototype

JSProperties:

Class: "Object"
Prototype: null
Extensible: true

[Object internal
methods]

foo:
bar:

constructor:
toString:

toLocaleString:
valueOf:

hasOwnProperty:
isPrototypeOf:

propertyIsEnumerable:

(b) ECMA-SL

Figure 5.1: ECMAScript and ECMA-SL objects representations.

ECMAScript objects As discussed in Subsection 2.1.2, ECMAScript objects can be thought of as
key-value dictionaries mapping properties to values. Each ECMAScript object has a set of internal prop-
erties, providing meta-information about the object, and a set of named properties, which are explicitly
controlled by the programmer. In ECMA-SL, we represent every ECMAScript object as two distinct ob-
jects: one main object storing the internal properties of the original ECMAScript object, and one auxiliary

33

object storing its named properties. The main object has a dedicated property, JSProperties, which
points to the auxiliary object. For instance, Figure 5.1 shows an ECMAScript object on the left and its
representation in ECMA-SL on the right. One can see that object o is split into two objects: the one that
keeps its internal properties and the one that keeps its named properties. For clarity, we refer to the
main object as o and leave the auxiliary object unnamed, as it is always accessed through the main one.
In the following, we represent auxiliary objects as white boxes and main objects as three-colored boxes:
a green segment pointing to the auxiliary object; a yellow segment storing its internal properties; and a
grey segment storing the internal methods that can be applied to that object.

Importantly, we have to associate two objects with each ECMAScript object to avoid clashes between
named properties and internal properties. Suppose that, instead, we used a single object containing all
the named properties and internal properties of a given ECMAScript object. Furthermore, suppose that
one of the named properties of the original object was, for instance, the property Class. In this situation,
how could we distinguish the internal property Class from the named property Class? We automatically
avoid this type of clash by keeping the named properties in a separate object.

Note that the alternative decomposition, which stores the named properties in the main object and
the internal properties in the auxiliary object, does not work as it leads to the same property-clash
problem. To understand this issue, let us assume that we implement the alternative decomposition and
connect the main object to the auxiliary object via a dedicated property internalProps. How can we
guarantee that there are no clashes between named properties and the property internalProps? We
get back to stage zero.

1 object ECMAScriptObject {

2 constructor(string class , boolean extensible , ECMAScriptObject prototype);

3 attribute string Class;

4 attribute boolean Extensible;

5 attribute ECMAScriptObject? Prototype;

6 attribute dictionary <string , any > JSProperties;

7

8 private any getJSProperty(string propertyName);

9 private void setJSProperty(string propertyName , any propertyValue);

10 private any getInternalProperty(string internalPropertyName);

11 private void setInternalProperty(string internalPropertyName , any internalPropertyValue);

12

13 [section 8.12]

14 internal [[GetOwnProperty]](string P);

15 internal [[GetProperty]](string P); ...

16 }

Listing 5.1: Interface of ECMAScript objects in ECMA-SL.

Finally, Listing 5.1 describes the internal structure of ECMAScript objects as they are implemented in
ECMA-SL using IDL, a standard interface description language. We can see that every ECMAScript ob-
ject defines the properties Class, Extensible, and Prototype, respectively storing a string, a boolean,
and an ECMAScript object, as well as the property JSProperties, storing a key-value dictionary with
the named properties of that object. Every ECMAScript object also contains properties for keeping
the internal methods that can be applied to it. For instance, the internal methods GetProperty and
GetOwnProperty. Besides these internal properties and internal methods, we also define some auxil-
iary methods useful for getting or setting either internal properties or named properties. For instance,
getJSProperty and setInternalProperty.

Property descriptors As previously stated, ECMAScript objects contain two types of properties: inter-
nal properties and named properties. The named properties are stored in the auxiliary object which is
accessed through the property JSProperties. As discussed in Subsection 2.1.3, the ECMAScript stan-
dard mandates that named properties be represented by property descriptors. Each property descriptor

34

is a record containing specific attributes representing both the property value and meta-information about
the property. Depending on the attributes contained in the record, property descriptors are classified as
data property descriptors or accessor property descriptors.

In ECMA-SL, we represent property descriptors as objects which store the attributes defined in the
ECMAScript standard: [[Value]] and [[Writable]] for data property descriptors; [[Get]] and [[Set]]

for accessor property descriptors; and, [[Enumerable]] and [[Configurable]] for both types of prop-
erty descriptor. We explain our internal representation of property descriptors by appealing to the ex-
ample given in Figure 5.1. Here, we represent property descriptors as blue boxes containing their corre-
sponding attributes. Specifically, we have two property descriptors, respectively storing the values of the
properties foo and bar of object o. Each descriptor stores the value of the corresponding ECMAScript

named property in its property Value; for the foo property Value: 1 and for the bar property Value: 2.
Additionally, each descriptor has the three meta-properties that fully populate the corresponding data
property descriptor: Writable, Enumerable, and Configurable. All these meta-properties have value
true since it is their default value.

1 object PropertyDescriptor {

2 attribute boolean Enumerable;

3 attribute boolean Configurable;

4 }

5

6 object DataPropertyDescriptor : PropertyDescriptor {

7 constructor(any value , boolean writable , boolean enumerable , boolean configurable);

8 attribute boolean Writable;

9 attribute any Value;

10 }

11

12 object AccessorPropertyDescriptor : PropertyDescriptor {

13 constructor(getter get , setter set , boolean enumerable , boolean configurable);

14 getter any Get?();

15 setter void Set?(any value);

16 }

Listing 5.2: Interface of Property Descriptors in ECMA-SL.

Finally, Listing 5.2 describes in IDL the internal structure of ECMAScript property descriptors as they
are implemented in ECMA-SL. We define a super-object PropertyDescriptor containing the two boolean
properties that both data property descriptors and accessor property descriptors must have, Enumerable
and Configurable. Then, we can see the concrete definition of the two types of property descriptors.
Each definition only contains the properties that correspond to the specific type of property descriptor.
Note that we indicate that the two specific properties of accessor property descriptors may be absent.
This illustrates exactly what is expressed in Table 6 of the ECMAScript standard. Besides these proper-
ties, we also define the constructors that help with the creation of property descriptors in ECMA-SL.

Function objects Function objects are a special type of ECMAScript object used to represent func-
tions. A function object stores meta-information regarding the corresponding function in dedicated in-
ternal properties; for instance, it stores its list of parameters in the property [[FormalParameters]] and
the internal representation of its body in the property [[Code]]. Furthermore, programmers can add
named properties to function objects.

In ECMA-SL, we represent function objects as a special type of ECMAScriptObject with six addi-
tional internal properties: Call, Code, Construct, FormalParameters, HasInstance, and Scope. The
properties Call, Construct, and HasInstance store the identifiers of the ECMA-SL functions used to in-
terpret function calls, constructor calls, and the instanceOf expression. The remaining properties store
meta-information about the function; namely, its list of parameters (FormalParameters), its body (Code),
and the scope in which it was created (Scope).

35

Listing 5.3 describes in IDL the internal structure of ECMAScript Function Objects as they are imple-
mented in ECMA-SL.

1 object FunctionObject : ECMAScriptObject {

2 attribute string Call;

3 attribute oneOf <string , object > Code;

4 attribute string Construct ?;

5 attribute list <any > FormalParameters;

6 attribute string HasInstance;

7 attribute LexicalEnvironment Scope;

8 }

Listing 5.3: Interface of Function objects in ECMA-SL.

The property Code of function objects is worth discussing in detail as it can store values of different
types. If a function object represents a function created by the programmer, its Code property stores the
corresponding AST; more precisely, it stores the ECMA-SL object corresponding to the root of the AST.
If a function object represents a built-in function, its Code property stores the identifier of the ECMA-SL

function that implements the corresponding algorithm; for instance, the function object corresponding to
String.prototype.split stores the identifier StringPrototypeSplit.

var o = { foo: 1 };

function f() {
 return 2
}

f.prototype = o;
f.bar = 3;

prototype:
length:

constructor:
toString:
apply:
call:
bind:

constructor:
toString:

toLocaleString:
valueOf:

hasOwnProperty:
isPrototypeOf:

propertyIsEnumerable:

JSProperties:

Function.prototype

Class: "Function"
Prototype:

Extensible: true

Call:
Construct:

HasInstance:
Scope:

FormalParameters:
Code:

[Object internal
methods]

JSProperties:

f : Function Object

Class: "Function"
Prototype:

Extensible: true

Call:
Construct:

HasInstance:
Scope:

FormalParameters:
Code:

[Object internal
methods]

prototype:
bar:

Value: 3
Writable: true

Enumerable: true
Configurable: true

Data Property Descriptor

Value: 1
Writable: true

Enumerable: true
Configurable: true

Data Property Descriptor

Object.prototype

JSProperties:

Class: "Object"
Prototype: null
Extensible: true

[Object internal
methods]

JSProperties:

o : Object

Class: "Object"
Prototype:

Extensible: true

[Object internal
methods]

foo:

Get:
GetOwnProperty:

GetProperty:
CanPut:

Put:
HasProperty:

Delete:
DefaultValue:

DefineOwnProperty:

Object Internal Methods

Value:
Writable: true

Enumerable: true
Configurable: true

Data Property Descriptor

Figure 5.2: Function Objects’ internal representation.

Finally, Figure 5.2 shows an ECMAScript code snippet together with the ECMA-SL object graph result-
ing from its execution. The code snippet creates a function f with prototype o and assigns the value
3 to the property bar of f. In the heap, function objects are represented as normal ECMAScript objects
except that they contain a further purple segment with the internal properties that are specific to function
objects. We can see that function f has two named properties: bar and prototype. The property bar

stores a data property descriptor with value 3. The property prototype stores a data property descriptor
whose value points to object o.

5.2 ECMARef5 Built-ins and Initial Heap

The ECMAScript standard defines a comprehensive runtime library, which provides a large number of
utility functions to operate on objects, functions, primitive types, and regular expressions. These func-

36

Figure 5.3: Standard Built-in ECMAScript Objects: in green are the ones we implemented; in yellow are
the ones we partly implemented; and, in red are the ones implemented as part of other projects.

tions are made available to the programmer via dedicated built-in objects; for instance, most regular
expression functions are exposed via the RegExp built-in object. Built-in objects are created in the heap
whenever an ECMAScript program executes. They include the Global object, the Object object, the
Function object, the Array object, the String object, the Boolean object, the Number object, the Math
object, the Date object, the RegExp object, the JSON object, and various Error objects. We refer to the
heap that only contains the ECMAScript built-in objects as the initial heap.

Built-in objects Our ECMAScript interpreter fully supports all the ECMAScript built-in objects except
for the Global Object, which is still not yet fully implemented; four of its functions are still ongoing
(decodeURI, decodeURIComponent, encodeURI, and encodeURIComponent); we expect to have these
functions implemented by the time this thesis is presented. However, not all built-in objects were imple-
mented in the context of this thesis. Figure 5.3 illustrates our relative contribution to the implementation
effort, showing in green the built-in objects that we implemented and in red those that we did not.

Initial heap The standard does not specify how built-in objects are created in the initial heap; instead,
it simply states that they must be there. In contrast, ECMARef5 creates the built-in objects in the heap by
calling the function initGlobalObject. The creation of the initial heap is not straightforward because
of the mutual dependencies between built-in objects. For instance, the value of the internal property
[[Prototype]] of the function constructor is the function prototype object and the value of the named
property constructor of the function prototype object is the function constructor. This circular depen-
dency is illustrated in blue in Figure 5.4. Circular dependencies may involve more than two built-in
objects. In Figure 5.4, we show in red a circular dependency involving the objects: Object Constructor,
Function Prototype, and Object Prototype.

In order to cope with the circular dependencies discussed above, we have to postpone the creation
of certain properties when initialising their corresponding objects. As an example, let us consider the
mutual dependency between the Function Constructor and the Function Prototype shown in blue in
Figure 5.4. In order to create these two objects, we proceed as follows:

• We first create the Function Prototype object without initialising its named property constructor

(note that, as a rule, we create prototype objects first and only then their corresponding construc-
tors);

• We create the Function Constructor object, setting its internal property Prototype to the Function
Prototype object created in step 1;

37

Object:
Function:

Array:
String:

Boolean:
Number:

Date:
RegExp:

Error:
EvalError:

RangeError:
ReferenceError:

SyntaxError:
TypeError:
URIError:

Math:
JSON:

[[Class]]: "Object"
[[Prototype]]: null
[[Extensible]]: true

Global Object

Object Constructor

[[Class]]: "Object"
[[Prototype]]:

[[Extensible]]: true

length: 1
prototype:

...
constructor:

...

Object Prototype

[[Class]]: "Object"
[[Prototype]]: null
[[Extensible]]: true

length: 1
prototype:

...

Function Constructor

[[Class]]: "Function"
[[Prototype]]:

[[Extensible]]: true

length: 0
constructor:

...

Function Prototype

[[Class]]: "Function"
[[Prototype]]:

[[Extensible]]: true

length: 1
prototype:

...

Array Constructor

[[Class]]: "Function"
[[Prototype]]:

[[Extensible]]: true

length: 0
constructor:

...

Array Prototype

[[Class]]: "Array"
[[Prototype]]:

[[Extensible]]: true

Figure 5.4: Global Object’s built-in objects circular dependencies.

• We set the constructor named property of the Function Prototype object to the Function Con-
structor created in step 2.

The initialisation process is managed by the function initGlobalObject, which is used to create the
entire initial heap. Note that inter-dependencies become more difficult to manage as we consider longer
dependency chains. It is the job of the initGlobalObject to create the various built-in objects in the
appropriate order, returning a pointer to the Global Object through which all of the built-in objects can
be accessed. In Figure 5.5, we give the fragment of the function initGlobalObject that creates the
Function Constructor and the Function Prototype objects.

The first three statements of initGlobalObject create and initialise the Global Object, the Function
Prototype object, and the Function Constructor object, without initialising the properties that would gen-
erate a circular dependency between them; for instance, it does not initialise the constructor named
property of the Function Prototype object. After creating the Function Prototype and the Function Con-
structor objects, we can now establish the circular dependency. To this end, in line 16, we initialise
the constructor named property of the Function Prototype object, setting it to a data property descrip-
tor whose Value attribute is the Function Constructor object. The remaining three attributes are set to
false, since Subsection 15.3.3.1 of the ECMAScript standard mandates that the property constructor

of the Function Prototype object be non-writable, non-enumerable, and non-configurable. Finally, in line
22, we use the auxiliary function createBuiltInProperty to assign the Function Constructor to the
property Function of the Global Object.

Instead of creating the initial heap programmatically, constructing one built-in object at a time and
carefully establishing the dependencies between them, one can instead load the initial heap to memory
from a pre-computed serialised version. In Figure 5.5, on the right, we show the serialisation of the
fragment of the initial heap constructed on the left, which is represented diagrammatically in Figure 5.6.

The initial heap that is the result of the execution of the ECMA-SL example detailed above is illustrated
on the right-side of the Figure 5.5.

38

1 function initGlobalObject () {
2

3 /* create $l_glob and $l_glob_props */
4 global := NewECMAScriptObjectFull(
5 ’null , "Object", true);
6

7 /* create $l_fproto , $l_fproto_props ,
$l_dd_apply , and $l_apply */

8 FunctionPrototype :=
9 initFunctionPrototype(global);

10

11 /* create $l_fconstr , $l_fconstr_props and
$l_dd_length */

12 FunctionConstructor :=
13 initFunctionConstructor(global);
14

15 /* create $l_dd_fproto and add the property
"prototype" to $l_fconstr_props */

16 createBuiltInPropertyWithFullDescriptor
17 (FunctionConstructor , "prototype",
18 FunctionPrototype , false , false ,
19 false);
20

21 /* create $l_dd_fconstr and add the
property "Function" to $l_glob_props */

22 createBuiltInProperty(global , "Function",
FunctionConstructor);

23

24 ...
25

26 return global
27 }

1 {
2 "$l_glob": {
3 "JSProperties": "$l_glob_props", ...
4 },
5 "$l_glob_props": {
6 "Function": "$l_dd_fconstr"
7 },
8 "$l_fproto": {
9 "JSProperties": "$l_fproto_props", ...

10 },
11 "$l_fproto_props": {
12 "apply": "$l_dd_apply", ...
13 },
14 "$l_dd_apply": {
15 "Value": "$l_apply", ...
16 },
17 "$l_apply": {
18 "Prototype": "$l_fproto",
19 "Code": "FunctionPrototypeApply", ...
20 },
21 "$l_fconstr": {
22 "JSProperties": "$l_fconstr_props",
23 "Prototype": "$l_fproto", ...
24 },
25 "$l_fconstr_props": {
26 "prototype": "$l_dd_fproto",
27 "length": "$l_dd_length"
28 },
29 "$l_dd_length": {
30 "Value": 1, ...
31 },
32 "$l_dd_fproto": {
33 "Value": "$l_fproto", ...
34 },
35 "$l_dd_fconstr": {
36 "Value": "$l_fconstr", ...
37 }
38 }

Figure 5.5: Example of the GlobalObject initialisation in ECMA-SL (left) with corresponding Heap JSON

serialisation (right).

5.3 Line-by-line Closeness

We demonstrate that ECMARef5 follows the ECMAScript standard line-by-line by example. We consider
the internal functions [[GetProperty]] and [[GetOwnProperty]], already discussed in Subsection
2.1.12, the new operator, and the while and try statements, presenting for each example both the
pseudo-code of the standard and our ECMA-SL implementation. Figures 5.7-(a) and 5.7-(b) show our
implementations of GetOwnProperty and GetProperty, while Figures 5.12-(a), 5.12-(b), and 5.12-(c)
show our implementations of the new operator, While statement, and Try statement. One can easily see
that the given ECMA-SL implementations precisely coincide with the text of the standard. In the following,
we will briefly explain the examples, highlighting their specific challenges from the point-of-view of the
design of ECMA-SL.

Internal Functions Implementing the internal functions of the ECMAScript standard in ECMA-SL is
straightforward given that ECMA-SL contains syntactic constructs corresponding to all the meta-constructs
used in the standard. For instance, if statements are mapped to ECMA-SL if statements, let as-
signments are mapped to ECMA-SL variable assignments, return statements are mapped to ECMA-SL

return statements, and property updates are mapped to ECMA-SL property updates. However, in or-
der to streamline the interaction with our internal representation of ECMAScript objects, we make use
of a range of auxiliary functions, such as: (1) getJSProperty(O, P) for obtaining the property de-
scriptor associated with P in O; (2) NewPropertyDescriptor() for creating a new empty property de-
scriptor; (3) IsDataPropertyDescriptor(X) for checking if X is a data property descriptor; and (4)

39

Value:
Writable: true

Enumerable: false
Configurable: true

$l_dd_fconstr

Value: 1
Writable: false

Enumerable: false
Configurable: false

$l_dd_length

Value:
Writable: false

Enumerable: false
Configurable: false

$l_dd_fproto

JSProperties:

$l_glob

Class: "Object"
Prototype: 'null
Extensible: true

[Object internal methods]

$l_fconstr

JSProperties:

Class: "Function"
Prototype:

Extensible: true

[Function Object Internal Properties]

[Object internal methods]

$l_fproto

JSProperties:

Class: "Function"
Prototype: ObjectPrototypeObject

Extensible: true

[Function Object Internal Properties]

[Object internal methods]

Value:
Writable: true

Enumerable: false
Configurable: true

$l_dd_apply

$l_apply

JSProperties: ...

Class: "Function"
Prototype:

Extensible: true

Code: "FunctionPrototypeApply"

[Other Function Object Internal Properties]

[Object internal methods]

Function:

$l_glob_props

length:
prototype:

$l_fconstr_props

apply:
bind:
call:

constructor:
length:

toString:

$l_fproto_props

Figure 5.6: Objects representation matching the initialisation of the GlobalObject.

getInternalProperty(O, P) for obtaining the internal property P of O.

It is worth noting the use of dynamic function calls in our ECMA-SL implementations of internal func-
tions. For instance, in the code of [[GetProperty]], the expression {O.GetOwnProperty}(O, P) will
call the function bound to the property GetOwnProperty of O with parameters O and P. In contrast to
the ECMAScript language, ECMA-SL does not include the keyword this; hence, we have to pass O as a
parameter in order to be able to refer to it from within the code of GetOwnProperty.

Expressions and Statements Implementing the ECMAScript expressions and statements in ECMA-SL

required adding support for pattern matching over ECMA-SL objects in the form of a simple match state-
ment. Hence, in the interpretation of statements/expressions, we start by matching the statement/ex-
pression given as input against all possible types of statements/expressions. In Figure 5.8, we give a
code snippet of the main match statement used for interpreting ECMAScript statements.

The different types of ECMAScript statements/expressions are represented by ECMA-SL objects whose
structure is given by the Esprima version of the ESTree specification [41], a standardised AST for-
mat for representing ECMAScript programs. In particular, every statement/expression is modeled as
an object with a property type, which identifies its type. For instance, while statements have type
"WhileStatement" and try statements have type "TryStatement".

Consider the example of the try statement. The standard has several productions associated with
it, depending on whether or not it contains a catch clause and/or a finally clause. Accordingly, our
interpreter has several patterns, each corresponding to one of the productions. For instance, we have
a pattern for the case when there is a catch clause but no finally clause, a pattern for the opposite

40

(a) The specification of the Object internal function [[GetOwnProperty]] and the corresponding ECMA-SL code.

(b) The specification of the Object internal function [[GetProperty]] and the corresponding ECMA-SL code.

Figure 5.7: GetOwnProperty and GetProperty specifications and corresponding ECMA-SL code.

case (finally clause and no catch clause), and a final pattern for when both clauses exist. Note that the
absence of a given clause in the try statement is denoted by the null value in its corresponding pattern.

5.4 Compiling ECMAScript to ECMA-SL

The compilation of an ECMAScript program to ECMA-SL and its interpretation are organised as an execu-
tion pipeline that comprises the following three steps:

1. Compiling the input program to ECMA-SL, storing the resulting code in a file called out.esl.

2. Compiling the file out.esl to Core ECMA-SL obtaining the file core.cesl.

3. Interpreting the obtained Core ECMA-SL program using our ECMA-SL interpreter.

ECMA-SL comes with two execution pipelines: a non-optimised one given in Figure 5.9, and an opti-
mised one given in Figure 5.11. The main difference between these two pipelines pertains to the loading
of the ECMAScript initial heap. While the non-optimised pipeline builds the initial heap via the execution
of the function initGlobalObject, described in Subsection 5.2, the optimised pipeline loads it directly
to memory from a pre-generated JSON file with its contents. Below we describe the three main phases
of our execution pipelines and detail the design of the optimised pipeline.

JS2ECMA-SL Given a file containing an ECMAScript program, we first pass it to the JS2ECMA-SL com-
piler. JS2ECMA-SL parses the given program using Esprima [42], a standard-compliant ECMAScript

41

1 function JS_Interpreter_Stmt(stmt , scope) {
2 match stmt with
3 | { type: "ExpressionStatement", expression: Expression } -> {
4 ...
5 }
6 | { type: "WhileStatement", test: Expression , body: Statement , labelSet: currentLabelSet } ->

{
7 ...
8 }
9 | { type: "TryStatement", block: Block , handler: Catch , finalizer: null } -> {

10 ...
11 }
12 | { type: "TryStatement", block: Block , handler: null , finalizer: Finally } -> {
13 ...
14 }
15 | { type: "TryStatement", block: Block , handler: Catch , finalizer: Finally } -> {
16 ...
17 }
18 ...
19 };

Figure 5.8: Code snippet of the main match statement used for interpreting ECMAScript statements

import

import

core.cesl

output

ast.eslinput.js

x = 2 JS2ECMA-SL

ECMA-SL
Interpreter ECMA-SL2Core

out.esl

ECMARef5.esl

Figure 5.9: ECMAScript file execution pipeline.

parser. The AST of the given program generated by Esprima is then transformed into an ECMA-SL

program that recreates it in ECMA-SL. For instance, the ECMAScript program x = 2, which corresponds
to the AST object given in Figure 5.10-(a), is transformed into the ECMA-SL function buildAST shown in
Figure 5.10-(b). Note that this function simply creates the AST of the given program in the ECMA-SL heap.
In order to obtain an ECMA-SL program that actually emulates the behaviour of the original ECMAScript
program, we must call the ECMAScript interpreter on the result of buildAST. To this end, we gener-
ate the program out.esl, which imports both the ES5 interpreter, ECMARef5.esl, and the generated
buildAST function, ast.esl, and simply calls the interpreter on the result of buildAST. This program,
which corresponds to the compilation of input.js to ECMA-SL, is given in Figure 5.10-(c).

ECMA-SL2Core The obtained ECMA-SL program is compiled to Core ECMA-SL using the compiler in-
troduced in Chapter 4 resulting in the file core.cesl. All the imports included in the file out.esl are
resolved as part of the compilation to Core ECMA-SL. Hence, the returned program, core.cesl, is com-
pletely self-contained, including all the code of ECMARef5 as well as the code of the buildAST function of
the program to be run.

ECMA-SL Interpreter The obtained Core ECMA-SL program is interpreted using our ECMA-SL Inter-
preter written in OCaml. The interpreter has two main execution modes: silent and verbose. In silent
mode, the interpreter outputs the final ECMA-SL heap generated by executing the program. In verbose

42

{

 "type": "Program",

 "body": [

 {

 "type": "ExpressionStatement",

 "expression": {

 "type": "AssignmentExpression",

 "operator": "=",

 "left": {

 "type": "Identifier",

 "name": "x"

 },

 "right": {

 "type": "Literal",

 "value": 2,

 "raw": "2"

 }

 }

 }

],

 "sourceType": "script"

}

(a) Syntax tree object

function buildAST () {

 __n0 := { };

 __n0["type"] := "Program";

 __n0["sourceType"] := "script";

 __n2 := { };

 __n2["type"] := "ExpressionStatement";

 __n3 := { };

 __n3["type"] := "AssignmentExpression";

 __n3["operator"] := "=";

 __n4 := { };

 __n4["type"] := "Identifier";

 __n4["name"] := "x";

 __n3["left"] := __n4;

 __n5 := { };

 __n5["type"] := "Literal";

 __n5["value"] := 2.;

 __n5["source"] := "2";

 __n5["raw"] := "2";

 __n3["right"] := __n5;

 __n2["expression"] := __n3;

 __n1 := [__n2];

 __n0["body"] := __n1;

 __n6 := [];

 __n0["variableDeclarations"] := __n6;

 __n7 := [];

 __n0["functionDeclarations"] := __n7;

 __n0["codeType"] := "global";

 __n0["strict"] := false;

 return __n0

}

(b) ECMA-SL function

import "ast.esl";

import "ECMARef5.esl";

function main() {

 x := buildAST();

 ret := JS_Interpreter_Program(x);

 return ret

}

(c) out.esl function

Figure 5.10: Syntax tree object and corresponding generated ECMA-SL function for the ECMAScript
program x = 2

import

import

core.cesl

output

ast.eslinput.js

x = 2 JS2ECMA-SL

ECMA-SL
Interpreter ECMA-SL2Core

heap.jsondoes not execute initGlobalObject

out.esl

ECMARef5.esl

Figure 5.11: ECMAScript file execution pipeline with optimisation.

mode, the interpreter additionally logs the sequence of executed commands for debugging purposes.

Optimised Pipeline When interpreting an ECMAScript program, one starts by constructing the initial
ECMAScript heap, which contains the Global Object as well as all the other built-in objects described
in Section 2.1. The simplest way to set up this initial heap is to actually execute the ECMA-SL code that
constructs its objects. In fact, our non-optimised pipeline simply calls the function initGlobalObject

which creates the entire initial heap. This involves the execution of thousands of ECMA-SL commands,
often taking a significant amount of time when compared to the amount of time taken by the execution
of the whole program. However, the initial heap is always the same. This means that we do not need
to recompute it every time we execute a compiled ECMAScript program. To this end, we designed
an optimised version of the execution pipeline. Figure 5.11 presents the optimised execution pipeline.
The optimization consists in not recomputing the initial heap from scratch but instead loading it from a
previously generated JSON file. This additional step is performed before start the interpretation of the
Core ECMA-SL program.

43

(a) The specification of the new expression and the corresponding ECMA-SL code.

(b) The specification of the While statement and the corresponding ECMA-SL code.

(c) The specification of the Try statement and the corresponding ECMA-SL code.

Figure 5.12: The new operator, While statement, and Try statement specifications and corresponding
ECMA-SL code.

44

Chapter 6

HTML Generator

ECMARef5 follows the ECMAScript standard line-by-line. This methodology has been proposed in other
projects [12; 8; 32] as a means to establish trust in the reference interpreter. However, no prior project
has quantified the closeness between the code of the corresponding ECMAScript implementation and
the text of the standard. In this chapter, we describe ECMA-SL2English, our tool for generating the text of
the standard from the code of ECMARef5, which we use to automatically generate an HTML version of the
standard. In the next chapter, we use out-of-the-box text-comparison metrics to measure the closeness
between the generated standard and its official version.

Using ECMA-SL2English, we demonstrate that is possible to generate the ECMAScript standard
from a reference implementation without significant changes to its text. Indeed, we believe that most
ECMAScript developers would not be able to tell the difference between the version of the standard gen-
erated by our tool and the original one. Furthermore, the automatically generated version is superior to
the original one in that it is more consistent in the use of language; the same behaviour is described in
the same way in similar contexts. This is not the case of the actual standard where, even in analogous
contexts, the same behaviour can be described in different ways. For instance, consider the following
four different descriptions of a call to the internal method [[GetOwnProperty]], where we underline the
differences between the four:

1. Let ownDesc be the result of calling the [[GetOwnProperty]] internal method of O with argument P.

2. Let prop be the result of calling the [[GetOwnProperty]] internal method of O with property name P.

3. Let desc be the result of calling the [[GetOwnProperty]] internal method of O with P.

4. Let desc be the result of calling the [[GetOwnProperty]] internal method of O passing P as the argument.

There is no special context in which any one of these function calls occur, so there is no need
to have different descriptions for the same behaviour. We decided to go with an implementation that
generates the HTML corresponding to the first example, since most of the occurrences in the standard
follow that pattern. Also, this happens in various other function calls, not just calls to the internal method
[[GetOwnProperty]] or calls to functions that only receive one argument.

Although ECMA-SL is very close to the pseudo-code of the standard, the design of ECMA-SL2English
was not straightforward. We highlight two main challenges:

• The use of phrases that cannot be inferred from the code of the interpreter to describe specific
behaviours of ECMAScript; for instance, step 4 of the pseudo-code of the [[Put]] internal method
appears as follows: ”Let desc be the result of calling the [[GetProperty]] internal method of O with
argument P. This may be either an own or inherited accessor property descriptor or an inherited
data property descriptor”. The second sentence is merely informative as it describes the expected
result of calling [[GetProperty]]; hence, it cannot be inferred by our reference implementation.

45

1 6. If IsAccessorDescriptor(desc) is true ,
then

2 a. Let setter be desc .[[Set]] (see 8.10)
which cannot be undefined.

3 b. Call the [[Call]] internal method of
setter providing base as the this value
and an argument list containing only W.

4 7. Else , this is a request to create an own
property on the transient object O

5 a. If Throw is true , then throw a
TypeError exception.

1 2. If desc is undefined , then return true.
2 3. If desc .[[Configurable]] is true , then
3 a. Remove the own property with name P

from O.
4 b. Return true.
5 4. Else if Throw , then throw a TypeError

exception.
6

Figure 6.1: Excerpts of the ECMAScript standard: 8.7.2 PutValue (left); and 8.12.7 [[Delete]] (right).

• The use of different syntactic constructions/HTML structures to describe the same behaviour in
different contexts; for instance, if-else statements have different HTML representations throughout
the standard. Figure 6.1 illustrates six different textual representations for if-else statements. In
particular, it shows that sometimes the standard includes a line break after the keyword then, while
other times it does not; and analogously for the keyword else. Furthermore, sometimes an if-else
statement has its own separate item, while other times it is represented as part of the item of the
construct where it occurs.

In order to allow for greater flexibility when generating the text of a given ECMA-SL construct, we extend
ECMA-SL with a set of code generation directives that we use to determine the way each construct is to be
turned into text. Furthermore, as we did not want to hard-code in ECMA-SL2English the code generation
patterns specific to the ECMAScript standard, we made it parametric on a set of code generation rules
that are fed to the tool in JSON format. The support for code generation directives and rules makes
ECMA-SL2English a highly flexible tool, which can be readily adapted to the more recent versions of
the standard.

We organize this chapter into three sections. In the Section 6.1, we present the detailed description
of the HTML structure of the ECMAScript standard. In Section 6.2, we present the main code generation
algorithm underpinning the ECMA-SL2English tool. Finally, in Section 6.3, we detail the code generation
directives and rules that we use to determine the way each construct is to be turned into text.

6.1 HTML Structure of the ECMAScript Standard

The structure of the generated HTML version of the ECMAScript standard must coincide with the struc-
ture of its official version. To accomplish this, we start by characterising the official HTML structure of
the standard. It is important to note that we only generate the parts of the standard that were included
in our reference interpreter. For instance, we do not generate parts of the standard that only consist of
textual description of internal data structures.

The ECMAScript standard is composed of five main types of organisational elements: sections, sub-
sections, sub-sub-sections, algorithms, and production rules. These elements are all represented in the
HTML version of the standard as <section> elements with an attribute id storing their unique identifiers.
In the following, we describe the HTML structure of ECMAScript algorithms and semantic production
rules. We do not describe the HTML structure of syntactic production rules as they are not modelled by
our interpreter.

HTML structure of ECMAScript algorithms Each algorithm presented in the standard corresponds
to an HTML <section> element with the following inner elements:

46

1 <section id="sec -8.12.1">
2 <h1>
3
4 8.12.1
5
6 [[GetOwnProperty]] (P)
7 </h1>
8

9 <p>When the [[GetOwnProperty]] internal method of <var>O</var> is called ... </p>
10

11 <ol class="proc">
12 ...
13 If <i>X</i> is a data property , then
14 <ol class="block">
15 Set <i>D</i>.[[Value]] to the value of <i>X</i>’s [[Value]] attribute.
16 Set <i>D</i>.[[Writable]] to the value of <i>X</i>’s [[Writable]] attribute
17
18
19 ...
20
21

22 <p>However , if <var>O</var> is a String object it has ... </p>
23 </section >
24

Figure 6.2: A fraction of the HTML code corresponding to the internal function [[GetOwnProperty]].
See Figure 5.7 for the corresponding snippet of the standard.

1. an HTML heading, <h1>, containing an HTML anchor element, <a>, with the corresponding section
number and title;

2. an optional HTML paragraph element, <p>, containing a textual description of the algorithm;

3. an HTML ordered list element, , containing the pseudo-code of the algorithm, where each
step of the algorithm is represented as an HTML list item, . Note that, a step of the algorithm
may require performing a sequence of sub-steps, in which case, the list item associated with the
main step contains an inner HTML ordered list with the sub-steps;

4. a final optional HTML paragraph containing further notes and details about the algorithm.

For instance, the internal function [[GetOwnProperty]] corresponds to the HTML code given in Fig-
ure 6.2.

Even though most of the algorithms of the standard are described in operational style, a few algo-
rithms are described in declarative style using tables. For instance, the description of the ToPrimitive

abstract operation, presented in Subsection 9.1 of the standard, contains the table shown in Figure 6.3,
which maps each possible type of input to the expected result.

HTML structure of ECMAScript semantic productions Some expressions/statements of ECMAScript
are associated with multiple semantic productions. For instance, the semantics of the try statement has
three main productions:

1. a production for try Block Catch describing the evaluation of try statements that do not contain
a Finally clause.

2. a production for try Block Finally describing the evaluation of try statements that do not contain
a Catch clause.

3. a production for try Block Catch Finally describing the evaluation of try statements that contain
both a Catch clause and a Finally clause.

47

Figure 6.3: Conversions table present in the ToPrimitive abstract operation.

These productions further rely on two auxiliary productions describing the evaluation of the Catch clause
and the Finally clause. Hence, in total, the semantics of the try statement is described by five sepa-
rate productions. In such cases, instead of a single ordered list element, the standard includes several
ordered list elements, each preceded by an HTML paragraph element with the description of the produc-
tion. For instance, Figure 6.4 shows the structure of the HTML code corresponding to the try statement.

6.2 Code Generation Algorithm

The HTML generation of the ECMAScript standard from a reference interpreter written in ECMA-SL in-
volves the execution of several preliminary steps, which guarantee that all the ECMA-SL code that is to
be transformed is correctly organised and does not contain language constructs that are unrecognised
by the ECMA-SL2English tool.

Figure 6.5 illustrates the main algorithm of ECMA-SL2English, which is composed of the following steps:

1. Filter out all the ECMA-SL code that is not to be transformed into HTML;

2. Normalise the code to be generated so as to facilitate the code generation process;

3. Sort all the interpreter functions by section/subsection identifier;

4. Load all the HTML rules supplied in JSON format;

5. Transform the ECMA-SL code into HTML.

Filter Our ECMAScript interpreter contains functions that are not to be transformed into HTML, of
which the most relevant are auxiliary functions that capture implementation-specific behaviors; for in-
stance, functions that mediate programmatic interaction with our internal representation of ECMAScript
objects. The first step of the code generation process consists of filtering out these functions. More
precisely, all functions to be transformed into HTML must contain a code generation directive next to
their signature with their corresponding unique identifier in the standard. Functions that do not contain
this code generation directive are removed by the filtering process. The syntax and semantics of code
generation directives are explained in Subsection 6.3.1.

48

1 <section id="sec -12.14">
2 ...
3

4 <!-- try Block Catch -->
5 <p>The production TryStatement :

 <code class="t">try</code> Block Catch</
span> is evaluated as follows:</p>

6

7 <ol class="proc"> ...
8

9 <!-- try Block Finally -->
10 <p>The production TryStatement :

 <code class="t">try</code> Block Finally </
span> is evaluated as follows:</p>

11

12 <ol class="proc"> ...
13

14 <!-- try Block Catch Finally -->
15 <p>The production TryStatement :

 <code class="t">try</code> Block Catch</
span> Finally is evaluated as follows:</p>

16

17 <ol class="proc"> ...
18

19 <!-- Catch -->
20 <p>The production Catch :

<code class="t">catch</code> <code class="t">(</code> Identifier <
code class="t">)</code> Block is evaluated as follows:</p>

21

22 <ol class="proc"> ...
23

24 <!-- Finally -->
25 <p>The production Finally :</

span> <code class="t">finally </code> Block is evaluated as
follows:</p>

26

27 <ol class="proc"> ...
28

29 ...
30 </section >
31

Figure 6.4: A fraction of the HTML code corresponding to the try statement.

Normaliser The algorithms of the ECMAScript standard are implemented in our reference interpreter
as ECMA-SL functions. For instance, the internal method [[GetOwnProperty]] is implemented as an
ECMA-SL function called GetOwnProperty. In contrast, the semantic productions that define the behav-
ior of ECMAScript expressions are implemented within the body of the JS Interpreter Expr ECMA-SL

function, which interprets ECMAScript expressions. Likewise, the JS Interpreter Stmt ECMA-SL func-
tion encodes the semantics of ECMAScript statements. Both these functions start with an ECMA-SL match
statement that selects the production to be applied. Hence, the productions for ECMAScript expressions
and statements are implemented as pattern clauses of an ECMA-SL match statement.

Figure 6.6 shows three semantic productions of the try statement and corresponding ECMA-SL code.
One can see that each semantic production corresponds to a different pattern clause of the match
statement. For instance, the semantic production try Block Catch corresponds to the following pattern
clause:

| { type: "TryStatement", block: Block, handler: Catch, finalizer: null } -> { ... }

The ECMA-SL2English tool does not contain code to transform ECMA-SL match statements into HTML.
Instead, in order to support match statements, we transform each pattern clause into a single ECMA-SL

function. The name of the newly created function is automatically generated and its body is set to
the statements of the corresponding pattern clause. By transforming each semantic production into
an ECMA-SL function, we make the code generation process uniform in that we use the same code to
generate the internal algorithms of the standard and its semantic productions.

49

Filter Normaliser

Sorter

Rule Loader

GeneratorHTML

ECMA-SL

JSON

output

input

Figure 6.5: ECMA-SL2English execution pipeline.

Figure 6.6: try statement and corresponding ECMA-SL code.

Sorter To generate an HTML version of the standard that coincides with the official ECMAScript doc-
ument, we must ensure that the HTML file produced by the ECMA-SL2English tool follows the order by
which the algorithms appear in the standard. However, the organisation of the ECMA-SL functions in our
interpreter does not precisely match the organisation of the corresponding algorithms in the standard.
Note that the code of our reference interpreter is split into multiple files with each file not necessarily
following the exact same order as the standard. So, before the HTML generation step, we need to order
the ECMA-SL functions according to their respective position in the standard. To this end, we annotate
our ECMA-SL functions with a code generation directive that specifies their section number; for instance,
the [[Call]] internal method is annotated with the section number 13.2.1. Given that all algorithms are
annotated with their corresponding section numbers, we simply sort them according to the lexicographic
order of their respective numbers; for instance, the [[Call]] internal method, which has section number
13.2.1, appears after the algorithm for Creating Function Objects, which has section number 13.2.

Recall the structure of the official ECMAScript HTML document described in 6.1. The organisational
elements of the standard follow a hierarchical structure where a sub-sub-section is represented by an
HTML element that is a descendant of an HTML element that represents a sub-section which, in turn,
is a descendant of an HTML element that represents a section. For instance, the algorithm of the
[[Call]] internal method is a descendant of the algorithm for Creating Function Objects. In ECMA-SL,
however, functions cannot be placed inside other functions, they are all top-level elements of the same
ECMA-SL program. Hence, we cannot directly encode the hierarchical structure of the standard into

50

1 | Assign (x, e) ->
2 match ctxt with
3 | SameItem ->
4 sprintf
5 "let <i>%s</i> be %s"
6 x
7 (E_Expr.to_html Let e)
8 | _ ->
9 sprintf

10 "Let <i>%s</i> be %s.</i>"
11 x
12 (E_Expr.to_html Let e)

(a) OCaml

1 bindings := getBindingObject(envRec);
2 assert ({ bindings.HasProperty }(bindings , N) = false)

;
3 if (D = true) {
4 configValue := true
5 } else {
6 configValue := false
7 };

(b) ECMA-SL

(c) ES5 standard

Figure 6.7: Code snippet of the HTML generation for variable assignments (a); ECMA-SL code snippet
containing three variable assignments (b); Snippet of the ECMAScript standard corresponding to the
ECMA-SL code snippet (c).

the syntax of our reference interpreter. In order to reproduce this hierarchical structure, we also rely on
section numbers, creating a tree-like intermediate structure that organises ECMA-SL functions per nesting
level. This intermediate structure is then fed to the Generator component of our pipeline, which simply
replicates it at the HTML level.

Rule Loader Loading the HTML rules written in JSON format occurs independently from the previously
described steps and before the Generator step. Here, all the rules that apply to function calls, property
lookups, or binary operations that were written in JSON format are loaded to the system and stored into
three dedicated dictionaries: a dictionary for function call rules; a dictionary for property lookup rules;
and another dictionary for binary operations rules.

Code generation rules are used for HTML generation in the Generator step. For instance, when
generating the HTML code of a function call expression, we first check if we have a code generation
rule for the function being called. To this end, we look for the function identifier in the domain of the
dictionary used to store function call rules. If we have a code generation rule for that function, we fetch
it from the corresponding dictionary and apply it to the supplied arguments to obtain the corresponding
HTML representation.

Generator At the HTML generation stage all ECMA-SL functions are already loaded in memory, cor-
rectly sorted, and normalised. Furthermore, all the code generation rules are also stored in the cor-
responding dictionaries. To obtain the HTML code for a given ECMA-SL function, we go through all the
statements contained in its body and generate their corresponding HTML code. This is a recursive
process since a statement may be composed of other statements, expressions, and/or literal values,
which have to be processed and turned into HTML code as part of the HTML generation of the en-
closing statement. More concretely, to obtain the HTML code for a given ECMA-SL function, we apply
the OCaml function E Stmt.to html to its body. This function traverses the given ECMA-SL statement
recursively, calling itself on the sub-statements of the given statement and calling the OCaml function
E Expr.to html on the sub-expressions. Analogously, the OCaml function E Expr.to html traverses
the given expression recursively calling itself on its sub-expressions.

To illustrate the code generation process, let us consider the ECMA-SL code shown in 6.7-(b). The ap-

51

1 | If (e, s, None) when is_basic s && swappable s ->
2 sprintf
3 "%s, if %s."
4 (E_Stmt.to_html ~ctxt:SameItem s)
5 (E_Expr.to_html IfGuard e)

(a) Swappable if-then statement with basic then-clause with OCaml code (left) and snippet of the corresponding generated
standard (right).

1 | If (e, s, None) when is_basic s ->
2 sprintf
3 "If %s, %s."
4 (E_Expr.to_html IfGuard e)
5 (E_Stmt.to_html ~ctxt:SameItem s)

(b) Non-swappable if-then statement with basic then-clause with OCaml code (left) and snippet of the corresponding generated
standard (right).

1 | If (e, s, None) ->
2 sprintf
3 "If %s<ol class =\" block\">%s"
4 (E_Expr.to_html IfGuard e)
5 (E_Stmt.to_html s)

(c) Non-swappable if-then statement with non-basic then-clause with OCaml code (left) and snippet of the corresponding
generated standard (right).

1 | If (e, s1, Some s2) when is_let s1 && is_let s2 ->
2 sprintf
3 "If %s, then %s, else %s."
4 (E_Expr.to_html IfGuard e)
5 (E_Stmt.to_html ~ctxt:SameItem s1)
6 (E_Stmt.to_html ~ctxt:SameItem s2)

(d) Non-swappable if-then statement with non-basic then-clause with OCaml code (left) and snippet of the corresponding
generated standard (right).

Figure 6.8: Four different rules for HTML generation of if-then-else statements.

plication of our code generation algorithm to this snippet of code results in the HTML code corresponding
to the textual representation given in Figure 6.7-(c). Importantly, this HTML code exactly coincides with
the HTML code of the standard. In the following, we will examine the application of the code generation
algorithm to this snippet of code.

The statement to be turned into HTML is a block statement composed of a variable assignment, an
assert statement, and an if-else statement. The if-else statement contains both a then clause and an
else clause, each of them comprising a single variable assignment statement. The variable assignments
correspond to lines 1, 4, and 6 of the code snippet in Figure 6.7-(b). The three variable assignments are
turned into HTML using the following pattern:

Let <variable-name> be <expression HTML>.

However, depending on the context where they occur, they may or may not be associated with a separate
list item. For instance, the variable assignment in line 1 has its own separate list item, while variable
assignments in lines 4 and 6 are included in the list item of their enclosing statement. Note that when
a variable assignment has its own list item, the word let starts with an upper-case L; in contrast, when
a variable assignment is included in the list item of its enclosing statement, the word let starts with a
lower-case l.

In Figure 6.7-(a), we give the snippet of the OCaml function E Stmt.to html that turns variable
assignments into HTML. Observe that this function uses a variable ctxt to reason about the context
in which the statement is to be generated. In our example, we only have to distinguish between the
SameItem context and the other contexts. The SameItem context indicates that the statement is to be
generated within the list item of its enclosing statement, while in all other contexts we create a new
list item.

While the rules for the HTML generation of variable assignments are relatively straightforward, other
ECMA-SL statements have substantially more complex HTML generation rules. In particular, the if-then-

52

else statement has fourteen different rules, four of which are shown in Figure 6.8. Below, we give the
intuition behind these rules:

1. Swappable if-then statement with basic then-clause: We say that an if-then statement is swap-
pable if the HTML code of the then clause is to appear before the HTML code of the if guard.
Additionally, we say that a statement is basic if it is neither a control flow statement nor a function
call. In this case, we generate the HTML of the if-then statement using the pattern:

[HTML statement_then], if [HTML expression].

Figure 6.8-(a) shows the snippet of the OCaml function that turns swappable if-then statements
with a basic then-clause into HTML and an excerpt of the standard generated using this rule.

2. Non-swappable if-then statement with basic then-clause: In this case, we generate the HTML
of the if-then statement using the pattern:

If [HTML expression], [HTML statement].

Figure 6.8-(b) shows the snippet of the OCaml function that turns non-swappable if-then state-
ments with a basic then-clause into HTML and an excerpt of the standard generated using this rule.

3. Non-swappable if-then statement with non-basic then-clause: In this case, the HTML gener-
ated for the then clause of the if-then statement must be enclosed in its own ordered list; accord-
ingly, we generate the HTML of the if-then statement using the pattern:

If [HTML expression] <ol class="block">[HTML statement]

Figure 6.8-(c) shows the snippet of the OCaml function that turns non-swappable if-then state-
ments with a non-basic then-clause into HTML and an excerpt of the standard generated using
this rule.

4. Non-swappable if-then-else statement with two simple assignments: This rule applies to if-
then-else statements whose then and else clauses consist of a single variable assignment. In
this case, the HTML generated for both then and else clauses is included in the list item of the
entire if-then-else statement. Figure 6.8-(d) shows the snippet of the OCaml function that turns
non-swappable if-then-else statements with two simple assignments into HTML and an excerpt of
the standard generated using this rule. Note that the context SameItem is passed to the function
E Stmt.to html (lines 5 and 6) guaranteeing that the HTML code generated for the then and else
clauses does not introduce new list items. Observe that this rule is used to generate the HTML
code of the if-then-else statement given in Figure 6.7-(b) (lines 3-7).

6.3 Code Generation Directives and Rules

In order to allow for greater flexibility during the HTML generation process, we extend ECMA-SL with
a set of code generation directives and make our code generation algorithm parametric on a set of
implementation-independent code generation rules to be fed to the tool in JSON format. In this section,
we first describe the code generation directives that we added to the syntax of ECMA-SL (Subsection
6.3.1) and then explain the mechanism used to load new code generation rules to our system (Subsec-
tion 6.3.2).

53

1 /* 10.2.1.2.6 ImplicitThisValue () */
2 /* Object Environment Records return undefined as their ImplicitThisValue
3 unless their provideThis flag is true. */
4 function ImplicitThisValueObject(objectEnvRec) [
5 "10.2.1.2.6",
6 "Object Environment Records return undefined as their ImplicitThisValue
7 unless their provideThis flag is true.",
8 "",
9 "ImplicitThisValue"

10] [
11 "objectEnvRec:the object environment record for which the method was invoked"
12] {
13 /* 1. Let envRec be the object environment record for which the method was invoked. */
14 envRec := objectEnvRec;
15 ...
16 };

(1) Example of the use of code generation directives in ECMA-SL functions.

1 /* 3. Otherwise , return undefined. */
2 gen_wrapper ["before:Otherwise , "] {
3 return ’undefined
4 }

(2) Example of the use of code generation directives in ECMA-SL wrapper statements.

1 /* a. If HasPrimitiveBase(V) is false , then let get be the [[Get]] internal method of base ,
2 otherwise let get be the special [[Get]] internal method defined below. */
3 if (HasPrimitiveBase(V) = false) ["after:then"] {
4 get := base["Get"]
5 } else ["replace -with:otherwise"] {
6 get := "Get_internal"
7 };

(3) Example of the use of code generation directives in ECMA-SL if-then-else statements.

1 /* 5. For each element P of names in list order , */
2 foreach (P : names) ["after: in list order ,"] ["P:element"] {
3 descObj := {props.Get}(props , P);
4 desc := ToPropertyDescriptor(descObj);
5 descriptors := l_add(descriptors , [P, desc])
6 };

(4) For-each directive

Figure 6.9: Four ECMA-SL code snippets illustrating the use of code generation directives.

6.3.1 Code Generation Directives

We extended the syntax of ECMA-SL with five main code generation directives:

1. Function signature directive: The function signature directive is used to provide additional meta-
data about the function that it annotates. More concretely, it includes: (1) the corresponding
ECMAScript standard section number; (2) the HTML text with a high-level description of the cor-
responding algorithm; (3) the HTML text containing further notes and details about the algorithm;
and (4) the title of the section of the standard where the function is contained. As an example,
consider the code given in Figure 6.9-(a). Here, we include a snippet of the ECMA-SL function
ImplicitThisValueObject, which implements the algorithm ImplicitThisValue of Object En-
vironment Records. This function is annotated with its section number, textual description, and
section name. We use the empty string, "", to indicate that the algorithm has no additional notes
or details to be appended to its HTML code.

Additionally, the function signature directive allows us to specify custom textual descriptions for
the program variables used in the function. This is illustrated in lines 13 and 14 of the function
ImplicitThisValueObject given in Figure 6.9-(a). While line 13 shows the text of the standard,
line 14 shows our ECMA-SL implementation. One can see that the formal parameter objectEnvRec
should be turned into the text ”the object environment record ...”. To achieve this, we associate
the parameter objectEnvRec with the appropriate string in line 11, instructing the HTML code
generator to replace its default HTML text with the specified one.

54

2. Statement wrapper directive: This directive is used to add more text to the HTML code gener-
ated for the enclosed statement. The extra text can be either prepended or appended to the gen-
erated HTML code. We use the syntax gen wrapper [before:str] { s } to prepend the string
str to the HTML code generated for statement s. Analogously, we use the syntax gen wrapper

[after:str] { s } to append the string str to the generated HTML code. As an example, con-
sider the code given in Figure 6.9-(b). The text of the standard should be Otherwise, return

undefined. However, the ECMA-SL statement in our reference implementation is simply return

’undefined. If no additional information is provided, it is not possible to infer that the generated
text should include the word Otherwise. To account for this, we enclose our return statement within
a statement wrapper directive that explicitly instructs the code generator to add the required word.

Some ECMA-SL statements of our reference implementation do not have direct counter-parts in
the official text of the standard. For instance, in some cases our implementation uses additional
statements to update our internal representations of the standard types. In such cases, we make
use of a statement wrapper directive that instructs the code generator to ignore the enclosing
statement. More concretely, we use the syntax gen wrapper [print ignore] { s } to ignore
the statement s during HTML code generation.

3. Then and else directives: The then and else directives are used to annotate ECMA-SL if-then-
else statements. These annotations can be added to either the then clause or the else clause,
extending these clauses with a code generation directive with the format [keyword]:[HTML]. In
addition to the before and after keywords, already seen for the statement wrapper, we also have
the keyword replace-with, which is used to replace the default HTML code with the provided
HTML code. As an example, consider the code given in Figure 6.9-(c). The then directive in line
3 instructs the HTML generator to append the word ”then” to the HTML code generated for the if
guard, which normally does not include it. The else directive in line 5 instructs the HTML generator
to replace the word ”else” with the word ”otherwise”, guaranteeing that the generated version of
the ECMAScript standard is faithful to the official one.

4. For-each directive: With the for-each directive we follow the same approach as the one we used
with the statement wrapper and the then and else directives, applying the same ideas to the
ECMA-SL for-each statement. We annotate this statement with a code generation directive with
the format [keyword]:[HTML], where the possible keyword values are before and after. In ad-
dition, this directive allows us to prepend extra HTML code to that of the iterating variable. As an
example, consider the code given in Figure 6.9-(4). The default HTML code generated for this
for-each statement is: For each P of names. Using the for-each directive, we improve the gen-
erated HTML in two ways. First, we add the string ”in list order,” to the end of the for-each guard.
Second, we refer to variable P as ”element P” instead of simply ”P”. With these two directives, we
get the text ”For each element P of names in list order”, which exactly coincides with the text of
the standard.

5. Match pattern directive The match pattern directive is used to annotate pattern clauses of the
ECMA-SL match statements. Pattern clauses are mainly used to implement semantic productions
of expressions and statements. Analogously to the function signature directive, the match pattern
directive includes metadata for: (1) the corresponding ECMAScript standard section number; (2)
the description of the semantic production; (3) the HTML text with further notes; and (4) the title of
the section of the standard.

55

1

2 return AbstractEqualityComparison(rval , lval)
3

Figure 6.10: ECMA-SL code snippet (left) and corresponding ECMAScript standard HTML text (right).

6.3.2 JSON Rules

While most ECMA-SL functions and operators used in ECMARef5 can be turned into HTML in a straight-
forward way, some ECMA-SL functions and operators have specific textual descriptions and patterns
associated with them. For instance, Figure 6.10 shows, on the left, an ECMA-SL return statement with
a call to the AbstractEqualityComparison function. On the right, it shows the corresponding standard
HTML text.

As we did not want to hard-code specific textual descriptions in our implementation of the HTML code
generator, we decided to make the code generator parametric on a set of implementation-independent
code generation rules to be fed to the tool in JSON format. The support for code generation rules makes
ECMA-SL2English a highly flexible tool as it allows for the addition of new rules without modifying its
code base.

ECMA-SL2English includes three types of code generation rules: function call rules, operator rules,
and property lookup rules. These rules are specified in JSON format and loaded into the code gener-
ator before the starting of the code generation process. Code generation rules can be seen as string
templates whose placeholders are going to be filled with strings computed at code generation time. For
instance, the rule for AbstractEqualityComparison can be seen as the following string template:

the result of performing abstract equality comparison {0} == {1}

where {0} and {1} are placeholders to be replaced with the text generated for the first and the second
arguments given to the function call, respectively.

We specify a rule template by giving its list of static phrases and the order in which the dynamically
generated elements are to be inserted between those phrases. For instance, the template above con-
sists of the static phrases: (1) ”the result of performing abstract equality comparison ” and (2) ” == ”,
and the insertion order should be 0 and 1, meaning that the text of the first argument is to be inserted
between the two static phrases and the text of the second argument is to be placed at the end. Note
that, for some functions, the order of the arguments changes; for instance, the text of the first argument
may not correspond to the first placeholder.

In the following, we explain how we represent each type of rule in JSON format by appealing to three
illustrative examples.

Function call rule Figure 6.11 presents the rule for the function isUninitialisedBinding and shows
how it is used to generate a concrete fragment of the standard. The function isUninitialisedBinding is
an auxiliary function of ECMARef5 that interacts with our internal representation of Environment Records.
Hence, it has no direct counter-part in the ECMAScript standard, given that the standard is agnostic
with respect to the particular data structures used to implement Environment Records. More concretely,
this function checks whether or not the Environment Record envRec contains an immutable binding
for variable N. While the standard uses the phrase ”If the binding for N in envRev is an uninitialised
immutable binding”, ECMARef5 simply calls the function isUninitialisedBinding.

To make sure that the generated text of the standard coincides with the original one, we make use
of a function call rule that instructs the code generator to produce the matching text as given by the
template of Figure 6.11-(a). Note that the arguments of the function call appear in reverse order in

56

the binding for {1} in {0} is an

uninitialised

immutable binding

(a) Template string corresponding the code generation
rule in (b).

1 {
2 "func_name": "isUninitialisedBinding",
3 "phrases": [
4 "the binding for ",
5 " in ",
6 " is an uninitialised immutable
binding "

7],
8 "active_params": [1, 0]
9 }

(b) Code generation rule in JSON format corresponding to
function calls to isUninitialisedBinding

(c) ECMAScript standard HTML text corresponding to the
ECMA-SL code snippet in (d).

1 if (isUninitialisedBinding(envRec , N)) {
2 if (S = false) {
3 return ’undefined
4 };
5 throw ReferenceErrorConstructorInternal ()
6 }
7 else {
8 return getBindingValue(envRec , N)
9 }

(d) ECMA-SL code snippet showing a call to the function
isUninitialisedBinding.

Figure 6.11: Example of code generation rule applied to a function call, including string template (a),
rule in JSON (b), HTML of the standard (c), and the ECMA-SL code (d).

{0} is greater than {1}

(a) Template string corresponding the code generation
rule in (b).

1 {
2 "oper": ">",
3 "phrases": [
4 "",
5 " is greater than ",
6 ""
7],
8 "expressions_order": [0, 1]
9 }

(b) Code generation rule in JSON format corresponding to the
binary operator ”greater than”.

(c) ECMAScript standard HTML text corresponding to the
ECMA-SL code snippet in (d).

1 if (n > argCount) {
2 v := ’undefined
3 }

(d) ECMA-SL code snippet showing a ”greater than” binary
operation.

Figure 6.12: Example of code generation rule applied to the binary operation ”greater than”, including
string template (a), rule in JSON (b), HTML of the standard (c), and the ECMA-SL code (d).

the rule template; the second argument is the first to appear and the first argument the last. This rule
template is represented by the JSON rule given in Figure 6.11-(b). This rule is composed of:

• The name of the function to which it applies, isUninitialisedBinding.

• Three static phrases: (i) ”the binding for ” ; (ii) ” in ” ; and (iii) ” is an uninitialised ...”.

• A list specifying which parameter is to be inserted between each two consecutive static phrases;
hence, the number of active parameters must be equal to the number of static phrases minus one.
As we have three static phrases, we must have two active parameters describing which parameters
are to be inserted between the first and second phrases and the second and third phrases. Note
that the same parameter may appear multiple times.

Finally, Figures 6.11-(c) and 6.11-(d) show the generated snippet of the standard and its correspond-
ing ECMA-SL implementation.

57

the value of the [[{1}]]

internal property of {0}

(a) Template string corresponding the code generation
rule in (b).

1 {
2 "prop_name": [
3 "Extensible",
4 "Prototype"
5],
6 "active_elements": [1, 0],
7 "phrases": [
8 "the value of the [[",
9 "]] internal property of "

10]
11 }

(b) Code generation rule in JSON format corresponding to
property lookups on the properties Extensible and Prototype.

(c) ECMAScript standard HTML text corresponding to the
ECMA-SL code snippet in (d).

1 if (proto = ’null) {
2 return O.Extensible
3 }

(d) ECMA-SL code snippet showing a property lookup of
Extensible in object O.

Figure 6.13: Example of code generation rule applied to the binary operation ”greater than”, including
string template (a), rule in JSON (b), HTML of the standard (c), and the ECMA-SL code (d).

Operator rule Figure 6.12 presents the rule for the binary operator ”greater than” and shows how it
is used to generate a concrete fragment of the standard. Most of the operations in the ECMAScript

standard have a textual representation that is not equal to their corresponding mathematical symbol.
For instance, the standard ”greater than” operator, typically represented by the symbol ”>”, appears in
the standard in words; instead of ”x > y”, the standard uses ”x is greater than y”.

To make sure that the generated text of the standard coincides with the original one, we make use of
an operator rule that instructs the code generator to produce the matching text as given by the template
in Figure 6.12-(a). This rule template is represented by the JSON rule given in Figure 6.12-(b), which is
composed of:

• The ECMA-SL operator to which it applies, >.

• Three static phrases: (i) ””; (ii) ” is greater than ” ; (iii) ””.

• A list specifying the order in which the left- and right-hand side expressions are to be inserted in
between the static phrases.

Analogously to function call rules, the number of static phrases of an operator rule is equal to the
arity of the operator plus one. The ”active parameters” specify the order in which the HTML code of the
parameters is to be inserted in between the static phrases. Finally, Figures 6.12-(c) and 6.12-(d) show
the generated snippet of the standard and its corresponding ECMA-SL implementation.

Property lookup rule Figure 6.13 presents the rule for property lookups and shows how it is used to
generate a concrete fragment of the standard. The default textual representation for a property lookup
uses the dot-notation; for instance, accessing the attribute [[Configurable]] of a property descriptor
Desc is presented in the standard as Desc.[[Configurable]]. However, there are various exceptions.
Most notably, accesses to internal properties of ECMAScript objects are usually represented according
to the template given in Figure 6.13-(a). For example, instead of writing O.[[Extensible]], the standard
uses the phrase ”the value of the [[Extensible]] internal property of O.”

To make sure that the generated text of the standard coincides with the original one, we make use
of a property lookup rule that instructs the code generator to produce the matching text as given by the
template in Figure 6.13-(a). This rule template is represented by a JSON rule given in Figure 6.13-(b).
This rule is composed of:

58

• The name of the property to which it applies. Note that a list of properties is also acceptable,
making this rule applicable to all the specified properties.

• Three static phrases: (i) ”the value of the [[”; (ii) ”]] internal property of ”; (iii) ””.

• A list specifying the order in which the object and the property expressions are inserted when
concatenating the static phrases.

Note that an empty string is provided in the list of static phrases as the last element. This means that no
extra text is added after the generated HTML for the property expression.

59

60

Chapter 7

Evaluation

In this chapter, we evaluate the main outcomes of this thesis: ECMARef5, our ECMAScript interpreter
written in ECMA-SL, and ECMA-SL2English, our HTML generator tool with which we obtain an HTML
version of the ECMAScript standard directly from the code of ECMARef5. Hence, we structure this chapter
into two sections with the first one covering ECMARef5 and the second one ECMA-SL2English.

7.1 ECMARef5 Evaluation

ECMARef5 was tested against Test262 [5], the official ECMAScript test suite. This test suite provides
a set of non-normative software tests used to help validate conforming ECMAScript language imple-
mentations. Test262 is routinely used by developers of ECMAScript engines to test their ECMAScript
implementations. As the ECMAScript language is in constant evolution, Test262 also has to evolve to
cover the new features of the language. Test262 is comprised of thousands of test files, often including
multiple test cases per test file. The size of test files varies substantially, ranging from a few lines to
hundreds of lines1.

(a) 11.13.1-4-28gs.js (b) 15.2.3.13-2-1.js

Figure 7.1: Contents of two Test262 test files.

Figure 7.1 shows two Test262 files. Each test is composed of three distinct sections: (1) copyright
section with information regarding the authors of the test; (2) frontmatter section with the metadata of
the test; and (3) body section with the code of the test. The frontmatter comprises various components
describing different aspects of the test file, such as:

• description: a short one-line description of the purpose of the test;

• esid: the version of the standard targeted by the test;

• negative: a keyword indicating whether or not the test is supposed to throw an error; and

1e.g. 328 lines in test file language/expressions/left-shift/S11.7.1 A5.2 T1.js

61

• flags: a list of boolean properties associated with the test, of which the most relevant to us is
onlyStrict that is used to indicate whether or not the test is to be run in strict mode.

Considering the two examples given in Figure 7.1, the left-hand side test targets Section 11.13.1 of
the 5th edition of the standard, must be run in strict mode, and is supposed to throw an error of type
TypeError. In contrast, the right-side test targets Section 15.2.3.13, must not be run in strict mode, and
is not supposed to throw an error during execution.

Test262 comes with a number of auxiliary functions to be used in test cases. For instance, the func-
tion assert(e) is used to check whether or not e evaluates to true; the function isEqual(num1, num2)

tests if two numbers denote the same value; and the function compareArray(a, b) checks whether two
arrays have the same length and, if so, if they have equal values at equal indexes. These functions are
all organised in a collection of files referred to as the harness of Test262. Hence, in order to run any
Test262 test, one needs to include the code of the harness. In our project, we simply prepend the code
of the harness to the code of the test to be executed.

7.1.1 Test selection

In its current version, Test262 targets the most recent edition of the ECMAScript standard, ES11, and
comprises ≈40k test files. As mentioned before, test files are annotated with the version of the stan-
dard that they target. The ECMAScript committee has striven to maintain retro-compatibility between
older versions and more recent versions of the standard. Hence, tests targeting ECMAScript 5 should
exhibit the same behaviour in ECMAScript engines that support at least the fifth version of the standard.
There are, however, exceptions. In the sixth version of the standard, the length property of function
objects is configurable, while in the fifth it was not. For all exceptions, we have chosen to follow the
behaviour described in the more recent versions of the standard, meaning that, if there is, for instance,
an incompatibility between ES5 and ES6, we will implement the behaviour described in ES6.

ES5 Tests 12,186

Misclassified 58
Unimplemented features 54
Timed-out 6

Applicable Tests 12,068

Passed Tests 12,026
Failed Tests 42

Table 7.1: Breakdown of the Test262 tests.

The breakdown of the test filtering process is presented in Table 7.1. The version of Test262 used
in our evaluation contains 12,186 test files that target the fifth version of the standard. From these,
we removed 118 tests: 58 tests that are misclassified, are annotated as targeting the fifth version of
the standard but that we identified as testing features of the sixth version of the standard; 54 tests
that target features of the language that are not yet implemented in ECMARef5, for instance, function
decodeURIComponent; and, 6 tests that timed-out during tests execution. This leaves us with 12,068
applicable tests of which we pass 99.6%, giving us a strong guarantee that ECMARef5 implements the
ES5 standard correctly.

62

7.1.2 Testing pipeline

We are now at the position to explain our testing pipeline. We will first present a non-optimised pipeline,
which is easier to understand, and only then present the optimised pipeline that we have used to test
our tool. Importantly, with the included optimisations, we gained a 295% performance boost.

import

import

core.cesl

JS2ECMA-SL

ECMA-SL
Interpreter ECMA-SL2Core

test262_harness.js

test262.js ast.esl

out.esl

Is strict
mode? "use strict";

Y

Is
negative

test?

Throws
exception?

YY

NN

ECMARef5.esl

Figure 7.2: Test262 test execution pipeline.

Non-optimised testing pipeline

Figure 7.2 illustrates the non-optimised testing pipeline. Before compiling the ECMAScript program to
ECMA-SL, both the source code of the test file and the source code of the testing harness must be con-
catenated. If the test is to be run in strict mode, the test code must also be prepended with the directive
"use strict", which activates strict mode. A test is to be run in strict mode if the property onlyStrict is
included as a flag in the frontmatter section of the test. The resulting ECMAScript program is then given
to the JS2ECMA-SL compiler, which generates an ECMA-SL file, ast.esl, with the compilation of the test.
Recall that this file simply contains an ECMA-SL function returning the ECMA-SL object graph representing
the input program. This file is then combined with the ECMARef5 written in ECMA-SL, ECMARef5.esl, to
obtain the final compiled program, out.esl.

In the next phase, the obtained ECMA-SL file is compiled to Core ECMA-SL, generating the core.cesl

file. Note that all the imports included in the file out.esl are resolved as part of the compilation to Core

ECMA-SL. Hence, the returned program, core.cesl, is completely self-contained, including all the code
that is required for the execution of the test in a single file.

Finally, we interpret the obtained Core ECMA-SL program using our ECMA-SL interpreter. The output of
the interpreter is then compared against the expected output of the test. Test262 includes both positive
and negative tests; positive tests are expected to execute normally, while negative tests are expected
to throw an exception. A test is negative if the property negative is included as a flag in the frontmatter
section of the test file. Hence, in order to validate the test result, we first check whether or not the test is
negative. If the test is negative, we check if the interpretation of the code throws an exception and if the
thrown exception has the same type as the one identified by the key negative. If the test is positive, we

63

simply check if the interpretation completes successfully.

test262.js

core.cesl

ECMA-SL2Core

JS2ECMA-SL

ECMA-SL
Interpreter

 for each

Previously compiled once and for all

heap.json

test262_ast.cesl

ECMARef5.esl ECMARef5.cesl

Compiled once per running of the test suite

harness.json

Figure 7.3: Test262 test fully optimised execution pipeline.

Optimised testing pipeline

Running the non-optimised pipeline on all selected tests takes approximately 3 hours and 28 minutes.
This delay renders the development process cumbersome, as we have to run all tests regularly to make
sure that we have not introduced new bugs in ECMARef5. This is especially important when modifying
core functionalities, such as internal functions and auxiliary code in general. In order to streamline the
testing process, we have developed an optimised version of the testing pipeline introduced above. Figure
7.3 illustrates the optimised testing pipeline, which is based on the following four main optimisations:

1. Test262 tests are compiled directly to Core ECMA-SL once and for all. More specifically, we have
compiled all Test262 tests directly to Core ECMA-SL and stored their compilation for later use.
Recall that each compiled test file simply contains a Core ECMA-SL function that generates the
object graph corresponding to the AST of the respective test. We do not need to recompile tests
because their code never changes.

2. ECMARef5 is compiled to Core ECMA-SL only one time per running of the Test262 test suite. In
contrast to the code of the test files, which always stays the same, ECMARef5 is an evolving project
whose code base is frequently changed. Hence, every time we want to run the test suite, we must
recompile ECMARef5 to Core ECMA-SL. However, as the same interpreter runs for all tests, we only
need to do it once per running of the test suite. Given a test file, the final Core ECMA-SL program to
be executed is obtained by concatenating its compilation to Core ECMA-SL with the compiled code
of ECMARef5.

3. The initial heap is loaded directly to memory from a pre-generated JSON serialisation. Recall that
one of the first steps of the interpretation of an ECMAScript program is to create the initial heap
on which that program is to be evaluated. This initial heap contains all the built-in objects and
their corresponding function objects. Unsurprisingly, the creation of the initial heap involves the
execution of thousands of ECMA-SL commands (≈ 454k) , taking a significant amount of time when
compared to the time taken by the actual execution of the test. However, much like the code of the
test files, the initial heap is always the same. Hence, we do not need to re-compute it every time a
test is run. Instead, we generate a JSON file with the serialisation of the ECMAScript initial heap
in ECMA-SL once and for all and we load this file directly to memory at the start of the interpretation
of an ECMAScript program.

64

Section #T Passed Failed Opt. Time Non-Opt. Time

7 (Lexical Conventions) 545 543 2 02m36s 08m10s
8 (Types and Objects Internal Methods) 184 184 0 00m55s 03m00s
9 (Type Conversion and Testing) 115 115 0 00m30s 01m50s
10 (Execution Code and Contexts) 414 413 1 02m08s 06m49s
11 (Expressions) 1635 1634 1 09m20s 27m56s
12 (Statements) 648 648 0 03m16s 10m12s
13 (Function Definition) 228 228 0 01m12s 03m42s
14 (Program) 24 24 0 00m06s 00m23s

15.1 (Global) 195 195 0 01m48s 04m05s
15.2 (Object) 2885 2885 0 14m35s 47m44s
15.3 (Function) 411 410 1 02m22s 07m02s
15.4 (Array) 2268 2268 0 15m12s 41m21s
15.5 (String) 861 856 5 04m24s 14m14s
15.6 (Boolean) 34 34 0 00m09s 00m32s
15.7 (Number) 191 174 17 00m53s 03m04s
15.8 (Math) 171 171 0 01m14s 03m10s
15.9 (Date) 539 533 6 02m44s 08m55s
15.10 (RegExp) 520 513 7 05m56s 11m52s
15.11 (Error) 84 84 0 00m26s 01m23s
15.12 (JSON) 116 114 2 00m40s 02m00s

Total (this thesis) 7764 7742 22 41m30s 2h09m02s
Total 12068 12026 42 1h10m26s 3h27m44s

Table 7.2: Test262 testing results per section of the ECMAScript standard.

4. The harness AST is loaded directly to memory from a pre-generated JSON serialisation. Much
like the initial heap, the code of the harness never changes and is shared by all Test262 tests.
Hence, we can load its AST directly to memory from a pre-generated JSON serialisation.

The speedups obtained using the proposed pipeline are given in the following subsection together
with the breakdown of the testing results.

7.1.3 Testing results

Table 7.2 presents the breakdown of the testing results per section of the ECMAScript standard, with
the exception of Section 15 for which it presents the results at the subsection granularity, as this section
contains the specification of all the ECMAScript built-in objects and we chose the give our results for
each built-in object separately. The results show that ECMARef5 passes 12,026 tests out of 12,068
applicable tests. In total, only 42 tests are currently failing; of these, only 22 tests pertain to sections
that were implemented in the context of this thesis. From these 22 failing tests, the two that pertain
to Section 7 have two distinct reasons for failing: one fails because we still have issues regarding the
parsing of unicode escape sequences, and the other one is impossible to solve, since the AST created
by Esprima returns an error message that is handled by ECMARef5 as a ReferenceError and the test is
annotated as throwing a SyntaxError. The tests that are failing in Section 15.7 indicate that ECMARef5
has implementation issues in some of the Number.prototype functions. Additionally, the implementation
of one of these functions is causing one test to fail in Section 11. At the time of writing, we were not able
to identify the reasons for the failing tests in Section 10 and Section 15.3.

65

Section #T
Executed Commands

Min Max Mean

7 (Lexical Conventions) 545 1413 1418962 103965
8 (Types and Objects Internal Methods) 184 718 19947460 155821
9 (Type Conversion and Testing) 115 1632 243506 24097
10 (Execution Code and Contexts) 414 1413 868626 54300
11 (Expressions) 1635 1345 957352 37924
12 (Statements) 648 1413 552813 38220
13 (Function Definition) 228 1413 673708 36791
14 (Program) 24 7665 54763 21992

15.1 (Global) 195 2362 150983 43841
15.2 (Object) 2885 2635 2775198 152295
15.3 (Function) 411 2617 216521 41835
15.4 (Array) 2268 2362 147320457 578229
15.5 (String) 861 2362 779023 32418
15.6 (Boolean) 34 2635 150641 25437
15.7 (Number) 191 2635 275352 43131
15.8 (Math) 171 3352 22656750 611864
15.9 (Date) 539 2635 665132 49216
15.10 (RegExp) 520 2362 311306551 675194
15.11 (Error) 84 2661 2179770 129620
15.12 (JSON) 116 12775 1486922 270168

Total 12068 - - -

Table 7.3: Test262 testing results per section of the ECMAScript standard with information about the
number of Core ECMA-SL executed commands.

Table 7.2 also presents the total execution time per section. For each section we show the times ob-
tained using both the optimised and the non-optimised execution testing pipelines, clearly demonstrating
that the implemented optimisations were instrumental to streamline the testing process. They allowed us
to achieve an overall 295% performance boost and an average 309% performance boost. For instance,
the non-optimised execution time for the Array built-in object is 41 minutes and 21 seconds, while the
optimised execution time is 15 minutes and 12 seconds. These times were obtained using a machine
with an Intel Core i7-3610QM 2.3GHz, DDR3 RAM 12GB, and a 256GB solid-state hard-drive running
Manjaro Linux.

Finally, the purpose of Table 7.3 is to show the number of Core ECMA-SL commands executed per
section. Hence, for each section of the standard, we give its total number of tests together with the min-
imum, maximum, and average numbers of executed Core ECMA-SL commands. For instance, Section
15.2 contains 2,885 test files and, on average, each test file executes 152,295 Core ECMA-SL com-
mands. Furthermore, the shortest-running test executes 2,635 commands and the longest-running one
executes 2,775,198 commands. It is clear that even small ECMAScript programs trigger the execution of
thousands of Core ECMA-SL commands. This is due to the fact that the ECMARef5 interpreter performs
all the steps established by the ECMAScript standard without applying any simplifications/optimisations.

66

7.2 ECMA-SL2English Evaluation

In this section we evaluate the closeness of the generated ECMAScript standard to the official HTML
version of the standard. To this end, we make use of both classical text-based comparison metrics [43]
as well as HTML-specific metrics based on the concept of tree similarity [7]. For both classes of metrics,
we rely on existing out-of-the-box open-source implementations; for text-based comparison metrics we
have used the textdistance open-source Python project [6], and for HTML-specific metrics we have
used the HTMLSimilarity open-source Python project [44]. Below, we briefly describe these two classes
of comparison metrics.

Text-based metrics Text-based metrics are used to measure the similarity or dissimilarity between two
given character strings. More concretely, given two character strings, text-based comparison algorithms
compute a number that represents the (dis)similarity between the two given strings. Text-based metrics
can be broadly divided into two main groups: character-based metrics, which take into account the
order in which individual words (also referred to as tokens) appear within the two given character strings,
and token-based metrics, which ignore that order. Here, we focus on character-based text-comparison
metrics as the order in which words appear in the standard is relevant to us.

Most character-based text-comparison metrics are based on variations of the popular Edit distance
algorithm [45]. The edit distance between two sequences of characters measures the similarity of the
two given sequences as the number of edit operations needed to turn one sequence into another. Typ-
ically, the edit distance operations are: (1) character insertion; (2) character deletion; and (3) character
replacement. For instance, the edit distance between abb and abc is 1 (replace b for c in the first string)
and the edit distance between abb and ab is also 1 (remove b in the first string). In our context, the edit
distance between the generated standard and the official one gives us the number of edit operations
that are required to turn the generated standard into the official one or vice-versa.

HTML-specific metrics HTML-specific metrics are calculated using two different measures: structural
similarity and style similarity. The structural similarity applies a sequence-comparison algorithm to the
lists of HTML tags existing in both HTML documents. This algorithm is adapted from the Gestalt Pattern
Matching [46] and the idea is to find the longest contiguous matching subsequence. The style simi-
larity calculates the jaccard similarity coefficient [47] between the CSS classes existing in both HTML
documents.

Scope and Granularity Before proceeding to the presentation of the results, we should clarify the
scope and granularity of the evaluation. The HTML generator was only applied to the parts of ECMARef5
developed in the context of this thesis (recall that the ECMA-SL implementations of the built-in objects
Array, String, Date, JSON, and RegExp were developed as part of other projects). Furthermore, we
excluded Sections 15.6, 15.7, 15.8, and 15.11. The reason for not applying the ECMA-SL2English

to the entire ECMARef5 implementation is that in order to obtain good results one must annotate the
implementation with code generation directives and provide the appropriate code generation rules. This
is a time-consuming task that we could not carry out in the time-frame of this thesis and therefore leave
for future work. Here we focus on the core sections and built-in objects of the standard.

Analogously to the Test262 results, the code generator results are also presented at the granularity of
the sections of the standard, with the exception of Section 15, whose results are given at the subsection
granularity. Hence, in the following, we present the results of the comparison algorithms for Sections 8,
9, 10, 11, 12, 13, 14, 15.1, 15.2, and 15.3.

67

Splitter

HTML

8.7.1_official.html 8.7.1_generated.html

8.7.2_official.html 8.7.2_generated.html

15.3.5.4_official.html 15.3.5.4_generated.html

Calculator

8.7.1

nr. chars/lines ...

distance/similarity ...

8.7.2

nr. chars/lines ...

distance/similarity ...

15.3.5.4

nr. chars/lines ...

distance/similarity ...

Aggregator

HTML

HTML HTML

HTML HTML

HTML

generated_standard.html

HTML

official_standard.html

Distance/Similarity
Section 8 ...

Section 9 ...

...

Section 15.3 ...

Figure 7.4: Pipeline used to calculate the HTML similarity and text distance between generated and
official version of the ECMAScript standard.

7.2.1 Evaluation Pipeline

It is not practical to apply the selected text-comparison algorithms to entire sections of the standard since
most of these algorithms have quadratic asymptotic complexity and therefore would exhibit prohibitive
execution times. Hence, to obtain the evaluation results for each section of the standard, we first have
to pre-process the two HTML documents, the generated one and the official one. More concretely, we
split both documents into two sets of files, with each file containing a single algorithm/function of the
standard, and apply all text-comparison algorithms at the standard-algorithm granularity level; then, we
combine the obtained results using a weighted arithmetic average. For instance, Section 9 is comprised
of Subsections 9.1 to 9.12, each consisting of a single algorithm of the standard. Hence, we start by
splitting the generated and the official versions of Section 9 into the corresponding subsections; then, we
apply the text-comparison algorithms to each pair of subsections (generated 9.1 vs official 9.1, ...,
generated 9.12 vs official 9.12) obtaining the corresponding similarity measures; finally, we com-
pute the weighted average of the similarity measures, assigning to each pair the weight corresponding
to the size of the official subsection. The complete evaluation pipeline is shown in Figure 7.4 and is
divided into the following three components:

1. The Splitter component gets both HTML documents and splits them into multiple HTML files, with
each file containing a single algorithm of the standard;

2. The Calculator component applies all the HTML similarity and Edit distance algorithms to each
pair of HTML files created by the Splitter component. The Calculator returns a list with all the
computed results together with the number of lines and characters of the given standard algorithm;

3. The Aggregator component calculates the final results for each section of the standard by com-
puting the arithmetic average of the results generated in the previous step. For each section Seci
and similarity measure Mk, we compute the similarity between the official and generated sections
according to the measure Mk using the formula below:

Sk
i =

∑n
j=1 SS

k
ij .Lij∑n

j=1 Lij
(7.1)

Where SSk
ij denotes the computed similarity for the j-th subsection of section i using the measure

Mk and Lij denotes the number of lines of the j-th subsection of section i in the official version of
the standard.

68

7.2.2 Text-based Metrics

In order to compute the similarity between the official and the generated versions of the standard, we
make use of the textdistance Python open-source project [6]. This project comes with nine different
variations of the edit distance algorithm, of which we use the following six:

• Levenshtein: the Levenshtein distance metric is the most classical edit distance metric. It defines
the distance between the two given strings by counting the number of edit operations needed to
transform one into the other. The allowed edit operations are: insertion, deletion, and substitution.

• Jaro-Winkler: the Jaro-Winkler distance metric is an extension of the Jaro distance metric, which
gives more favorable scores to strings that match from the beginning. More precisely, the Jaro-
Winkler distance requires the common characters of both strings to appear in the same order and
within a certain distance of each other. To illustrate, consider the examples below:

1 >> textdistance.jaro_winkler("apple", "appl")

2 0.96

3 >> textdistance.jaro_winkler("apple", "app")

4 0.87

5 >> textdistance.jaro_winkler("apple", "ple")

6 0.51

1 >> textdistance.levenshtein("apple", "appl")

2 0.8

3 >> textdistance.levenshtein("apple", "app")

4 0.6

5 >> textdistance.levenshtein("apple", "ple")

6 0.6

In the first two cases, the Jaro-Winkler algorithm returns a high score as the strings match from
the beginning having, respectively, one and two characters missing. In the third case, the two
strings do not match from the beginning, resulting in a lower Jaro-Winkler similarity score. As
expected, the scores obtained for the Levenshtein distance metric are lower than those obtained
for the Jaro-Winkler distance metric in the first two cases and higher in the last one.

• Needleman-Wunsch: the Needleman-Wunsch distance metric is a distance metric originally de-
signed to match large DNA sequences. Unlike the previous metrics, this metric is customisable,
allowing for the specification of a penalty factor for matching gaps. This penalty factor is rele-
vant for bioinformatic applications but here we set it to 1. Hence, the results we obtained for
the Needleman-Wunsch distance metric almost coincide with those obtained for the Levenshtein
distance metric.

• Smith-Waterman: the Smith-Waterman distance metric is a variation of the Needleman-Wunsch
distance metric that allows for the definition of a variable penalty factor for matching gaps. While
the Needleman-Wunsch metric uses a constant penalty factor, the Smith-Waterman metric allows
for the specification of penalty factors that vary with the size of the matching gap. This means
that one can configure the Smith-Waterman metric to prioritise local matches over sparse global
matches.

• Gotoh: the Gotoh distance metric is yet another variation of the Needleman-Wunsch distance
metric which uses a different cost model for matching gaps. In particular, the chosen cost model
stems from the assumption that a single large matching gap is biologically more likely to occur
than a large number of smaller matching gaps interspersed with matching elements.

• strcmp95: the strcmp95 distance metric is an alternative implementation of the Jaro-Winkler dis-
tance metric; hence, the obtained results for these two metrics almost exactly coincide.

Below we explain the reasons for excluding the following edit distance metrics:

69

Section Levenshtein Jaro-Winkler Strcmp95 Needleman-Wunsch Gotoh Smith-Waterman

8 88.2 91.1 91.2 91.6 94.4 84.1
9 74.3 87.9 88.0 76.9 88.8 66.0
10 82.3 90.2 90.2 85.7 92.5 92.5
11 86.1 90.9 90.9 88.1 94.6 84.2
12 82.2 90.0 90.0 85.1 92.8 78.1
13 81.6 89.4 89.5 84.4 92.9 76.2
14 64.0 86.8 86.9 69.2 85.7 65.5

15.1 81.9 89.7 89.7 84.1 93.2 75.9
15.2 86.7 90.8 90.8 89.1 94.5 82.6
15.3 81.0 89.8 90.0 84.8 74.9 91.9

Average 80.8 89.7 89.7 83.9 90.4 79.7

Table 7.4: Results of the application of some Edit Distance algorithms to sections of the ECMAScript

standard generated by the ECMA-SL2English tool.

• Hamming: the Hamming distance metric compares two strings character-by-character, ignoring
possible matching (mis-)alignments. This metric is entirely inadequate for our setting given that
the generated and the official versions of the standard often use words with different lengths. This
results in mis-alignments between the two texts that would cause the Hamming distance metric to
output very low values. Note that it suffices for one word in the generated text to have one extra
character than the corresponding word in the official text for their similarity to be highly affected.

• Damerau-Levenshtein: we have run the Damerau-Levenshtein algorithm on our datasets, obtain-
ing exactly the same results as those obtained by the Levenshtein algorithm. Hence, we chose not
to present these results.

• MLIPNS: the MLIPNS distance metric was designed to compute the similarity between short char-
acter strings corresponding to commercial product names. This metric is not applicable to our
setting because it was not designed to deal with large fragments of text consisting of thousands of
words, such as the text of the ECMAScript standard.

Results We present the overall results for the six selected metrics in Table 7.4. For each section of
the standard, we highlight in bold the highest value and underline the lowest one. Excluding the scores
obtained using the Smith-Waterman algorithm and with the exception of Sections 9 and 14, the obtained
results are consistently high for all metrics (always above 80%). It is important to note that Sections 9
and 14 represent a small fragment of the total amount of generated text (≈5%). Below, we clarify the
reasons for the lower results obtained for these sections:

1. In Section 14, ECMARef5 slightly deviates from the pseudo-code of the official standard. For in-
stance, it does not include the initial step required to determine whether or not the code is to be
executed in strict mode. Given that this is a particularly small section, with only 298 lines in total,
even small deviations have a considerable impact on the overall similarity score.

2. In Section 9, the low overall score is caused by the low score obtained for Subsection 9.10, which
is below 50%. This subsection describes the abstract operation CheckObjectCoercible which is
used to check if the given argument can be converted into an object. This abstract operation is
described in tabular form. However, in contrast to all other HTML tables of Section 9, for which

70

Section Style Structural Joint #Lines Official #Lines Generated

8 94.9 90.2 92.5 3731 3737
9 75.6 88.4 82.0 1022 1137
10 96.6 44.0 70.3 3961 4123
11 92.6 80.7 86.6 8999 8862
12 97.4 70.6 84.0 4714 4392
13 96.6 90.3 93.2 1404 1353
14 100 82.1 91.1 298 253
15.1 91.6 90.5 91.1 307 330
15.2 97.6 93.3 95.4 2232 2270
15.3 100 86.6 93.3 1627 1746

Average 94.3 81.7 88 - -
Total - - - 28295 28203

Table 7.5: Results of the application of HTML similarity to sections of the ECMAScript standard generated
by the ECMA-SL2English tool.

only the header cells have an in-lined custom CSS style, all cells of this table have a similar in-
lined custom CSS style. This is a particularly poor design choice since the applied CSS style
has no visible effect on the associated table cells. We could have easily ”fixed” this difference by
generating this specific table with the required CSS style applied to all cells. If we were to do that,
the obtained similarity score for the Subsection 9.10 would increase from ≈50% to ≈93% and the
overall score would increase from ≈74% to ≈85%.

7.2.3 HTML-specific Metrics

Besides the text-based metrics discussed in the previous subsection, we have used HTML-specific
metrics based on the concept of tree similarity [7]. More specifically, we have used the HTMLSimilarity
open-source Python project [44] to compute the structural similarity and the style similarity between the
official and the generated versions of the standard. Results are presented in Table 7.5. The measured
structural and style similarities are generally high except for the cases of Sections 10 and 12. These two
sections have their respective structural similarities highly affected by lower values computed for some
of their enclosed subsections. More concretely:

1. Section 10 is affected by the structural similarity scores calculated for Subsections 10.5 and 10.6.
Both these subsections represent approximately half of the total number of lines of Section 10.

2. Section 12 is affected by the structural similarity score calculated for Subsection 12.11, which
represents one forth of the total number of lines of Section 12.

The common characteristic of these three subsections (10.5, 10.6, and 12.11) is that they are substan-
tially larger than a typical subsection of the standard. We observed that differences in structure tend
to have a non-linear impact on the computed structural similarity score. Hence, the larger a subsection
is, the less likely it is to have a good similarity score. We could have fixed this issue by splitting these
subsections into smaller fragments, computing the similarity score for each fragment, and combining the
obtained scores using a weighted average. We chose not to do this to keep our evaluation methodology
consistent across all subsections of the standard.

71

72

Chapter 8

Conclusions

As the ECMAScript standard becomes more complex, it also becomes more difficult to manage and
extend. We believe that programming language tools should play a central role in the ECMAScript

standardisation process in order to guarantee that newly added features maintain the internal invariants
of the ECMAScript standard and, most importantly, do not break the behavior of existing features. In this
thesis, we have demonstrated that it is possible to generate the ECMAScript standard from a reference
implementation without significant changes to its text. The integration of such a tool into the ECMAScript

standardisation pipeline would bring several benefits; in particular, it would simplify both the specification
process and the testing of new features.

We developed this project as part of a wider project whose goal is to build a tool-suite for ECMAScript
analysis and specification based on ECMA-SL. We contributed to the overarching ECMA-SL project in three
different ways. First, we designed the ECMA-SL and Core ECMA-SL languages and developed the com-
piler from ECMA-SL to Core ECMA-SL. Second, we developed ECMARef5, a new ECMAScript 5 reference
interpreter that follows the standard line-by-line; importantly, ECMARef5 is, to the best of our knowledge,
the most complete academic reference implementation of the fifth version of the ECMAScript standard.
Third, we designed ECMA-SL2English, our HTML code generator that creates an HTML version of the
standard from the code of ECMARef5. With ECMA-SL2English we were able to measure the closeness
between ECMARef5 and the official ECMAScript 5 standard using out-of-the-box text-based comparison
metrics, thereby improving on the eyeball closeness methodology of the JSCert project [12].

The two main outcomes of this thesis, ECMARef5 and ECMA-SL2English, were thoroughly evaluated.
ECMARef5 was tested against Test262 [5] passing 12,026 tests out of 12,068 applicable tests. Impor-
tantly, ECMARef5 is the most complete reference implementation of the ECMAScript 5 standard, with
JS-2-JSIL [8], the second most complete, only passing 8797 tests. We evaluated ECMA-SL2English

by comparing the generated standard against the official one using both text-based and HTML-based
comparison metrics. We have obtained consistently high scores for both metrics (always above 80%
similarity score).

The software deliverables of this thesis will be open-sourced and made available online in the future,
together with the remaining modules of the ECMA-SL project.

Future work We highlight two types of future work: immediate and long-term. Due to the time-frame
of the project, we were not able to apply the ECMA-SL2English HTML generator to the entire ECMARef5

implementation. Therefore, our immediate future work would be to extend ECMARef5 with the code gen-
eration directives and rules necessary to obtain the HTML code of the missing sections of the standard
(15.4 to 15.12). In the long term, we would like to adapt our ECMARef5 implementation to the more recent
versions of the ECMAScript standard and to leverage it to semi-automatically obtain various other types

73

of tools, such as:

• A compiler from ECMAScript to an existing intermediate language for ECMAScript analyses, such
as JSIL [8]. The idea would be to first compile the input program to Core ECMA-SL by partially
evaluating ECMARef5 on the input program and then compile the resulting Core ECMA-SL program
to JSIL using a custom-made compiler.

• A test suite synthesizer that would generate a conformance test suite for the ECMAScript standard
from the code of ECMARef5. The idea would be to apply dynamic analyses techniques [11] to
the code of ECMARef5 to obtain a set of input programs that would maximise the coverage of the
standard.

• A tool that would generate a reference interpreter written in ECMA-SL from the text of the ECMAScript

standard.

74

Bibliography

[1] “Ecmascript® language specification, 5.1 edition / june 2011.” http://www.ecma-international.
org/ecma-262/5.1/ECMA-262.pdf. Accessed on 2020-06-07.

[2] S. Anand, E. Burke, T. Chen, J. A. Clark, M. B. Cohen, W. Grieskamp, M. J. Harrold, A. Bertolino,
J. Li, and H. Zhu, “An orchestrated survey on automated software test case generation i,” 2013.

[3] F. Quinaz, “Precise information flow control for javascript,” Master’s thesis, Instituto Superior
Técnico, July 2021.

[4] S. McKenzie, “Babeljs - a free and open-source javascript transcompiler.” https://babeljs.io.
Accessed on 2021-07-30.

[5] “Test262 - official ecmascript conformance test suite.” https://github.com/tc39/test262. Ac-
cessed on 2020-06-07.

[6] “Textdistance - python library for comparing distance between two or more sequences by many
algorithms.” https://github.com/life4/textdistance. Accessed on 2021-07-13.

[7] H. Xu, “An algorithm for comparing similarity between two trees,” Master’s thesis, Duke University,
April 2014.

[8] J. Fragoso Santos, P. Maksimović, D. Naudziuniene, T. Wood, and P. Gardner, “Javert: Javascript
verification toolchain,” Proceedings of the ACM on Programming Languages, vol. 2, pp. 1–33, 12
2017.

[9] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of javascript,” pp. 126–150, 06 2010.

[10] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial evaluation and automatic program generation.
Prentice Hall international series in computer science, Prentice Hall, 1993.

[11] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated random testing,” in Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005 (V. Sarkar and M. W. Hall, eds.), pp. 213–223, ACM, 2005.

[12] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt, and
G. Smith, “A trusted mechanised javascript specification,” vol. 49, pp. 87–100, 01 2014.

[13] S. Maffeis, J. Mitchell, and A. Taly, “An operational semantics for javascript,” pp. 307–325, 12 2008.

[14] D. Park, A. Stefănescu, and G. Roşu, “Kjs: A complete formal semantics of javascript,” ACM SIG-
PLAN Notices, vol. 50, pp. 346–356, 06 2015.

[15] A. Charguéraud, A. Schmitt, and T. Wood, “Jsexplain: A double debugger for javascript,” pp. 691–
699, 04 2018.

75

http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
https://babeljs.io
https://github.com/tc39/test262
https://github.com/life4/textdistance

[16] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for JavaScript,” in Proc. 16th International
Static Analysis Symposium (SAS), vol. 5673 of LNCS, Springer-Verlag, August 2009.

[17] A. Chaudhuri, P. Vekris, S. Goldman, M. Roch, and G. Levi, “Fast and precise type checking for
javascript,” Proceedings of the ACM on Programming Languages, vol. 1, pp. 48:1–48:30, 08 2017.

[18] K. Dewey, V. Kashyap, and B. Hardekopf, “A parallel abstract interpreter for javascript,” pp. 34–45,
IEEE Computer Society, 02 2015.

[19] D. Jang and K.-M. Choe, “Points-to analysis for javascript,” pp. 1930–1937, 01 2009.

[20] P. Gardner, S. Maffeis, and G. Smith, “Towards a program logic for javascript,” vol. 47, pp. 31–44,
01 2012.

[21] S. Maffeis and A. Taly, “Language-based isolation of untrusted javascript,” in Proceedings of the
22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson, New York,
USA, July 8-10, 2009, pp. 77–91, 2009.

[22] S. Maffeis, J. C. Mitchell, and A. Taly, “Isolating javascript with filters, rewriting, and wrappers,”
in Computer Security - ESORICS 2009, 14th European Symposium on Research in Computer
Security, Saint-Malo, France, September 21-23, 2009. Proceedings, pp. 505–522, 2009.

[23] “Racket - general-purpose programming language.” Accessed on 2020-06-07.

[24] J. Politz, M. Carroll, B. Lerner, J. Pombrio, and S. Krishnamurthi, “A tested semantics for getters,
setters, and eval in javascript,” vol. 48, pp. 1–16, 10 2012.

[25] A. Charguéraud, “Pretty-big-step semantics,” in Programming Languages and Systems
(M. Felleisen and P. Gardner, eds.), (Berlin, Heidelberg), pp. 41–60, Springer Berlin Heidelberg,
2013.

[26] “Coq - interactive formal proof management system.” https://coq.inria.fr. Accessed on 2020-
06-07.

[27] P. Gardner, G. Smith, C. Watt, and T. Wood, “A trusted mechanised specification of javascript: One
year on,” vol. 9206, pp. 3–10, 07 2015.

[28] “V8 - google’s open source high-performance javascript and webassembly engine, written in c++.”
https://v8.dev. Accessed on 2020-06-07.

[29] “K - rewrite-based executable semantic framework.” http://www.kframework.org/index.php/

Main_Page. Accessed on 2020-06-07.

[30] G. Rosu, A. Stefanescu, Ş. Ciobâcă, and B. M. Moore, “One-path reachability logic,” in 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25-28, 2013, pp. 358–367, 2013.

[31] A. Stefanescu, D. Park, S. Yuwen, Y. Li, and G. Rosu, “Semantics-based program verifiers for
all languages,” in Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, pp. 74–91, 2016.

76

https://coq.inria.fr
https://v8.dev
http://www.kframework.org/index.php/Main_Page
http://www.kframework.org/index.php/Main_Page

[32] G. Sampaio, J. F. Santos, P. Maksimović, and P. Gardner, “A Trusted Infrastructure for Symbolic
Analysis of Event-Driven Web Applications,” in 34th European Conference on Object-Oriented Pro-
gramming (ECOOP 2020) (R. Hirschfeld and T. Pape, eds.), vol. 166 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 28:1–28:29, Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020.

[33] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wiedermann, and
B. Hardekopf, “Jsai: A static analysis platform for javascript,” FSE 2014, (New York, NY, USA),
p. 121–132, Association for Computing Machinery, 2014.

[34] J. Park, J. Park, S. An, and S. Ryu, “JISET: javascript ir-based semantics extraction toolchain,” in
35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020, Mel-
bourne, Australia, September 21-25, 2020, pp. 647–658, 2020.

[35] E. Andreasen and A. Møller, “Determinacy in static analysis for jquery,” in In Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA, 2014.

[36] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip, “Correlation tracking for points-to anal-
ysis of javascript,” in Proceedings of the 26th European Conference on Object-Oriented Program-
ming, ECOOP’12, (Berlin, Heidelberg), p. 435–458, Springer-Verlag, 2012.

[37] B. Livshits, “Jsir, an intermediate representation for javascript analysis.” http://too4words.

github.io/jsir/, 2014. TypeScript language specification. Technical Report. Microsoft.

[38] J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner, “Javert 2.0: Compositional sym-
bolic execution for javascript,” Proc. ACM Program. Lang., vol. 3, Jan. 2019.

[39] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby, and P. Gardner, “Symbolic execution for
javascript,” PPDP ’18, (New York, NY, USA), Association for Computing Machinery, 2018.

[40] “Ocaml - general-purpose, multi-paradigm programming language.” https://ocaml.org/. Ac-
cessed on 2020-06-07.

[41] “Estree specification.” https://github.com/estree/estree. Accessed on 2021-07-30.

[42] “Esprima - a high performance, standard-compliant ecmascript parser written in ecmascript.”
https://esprima.org/. Accessed on 2021-07-30.

[43] A. H. Gomaa, Wael ; A. Fahmy, “A survey of text similarity approaches,” vol. 68, April 2013.

[44] “Htmlsimilarity - compare html similarity using structural and style metrics.” https://github.com/
matiskay/html-similarity. Accessed on 2021-07-27.

[45] G. Navarro, “A guided tour to approximate string matching,” ACM Comput. Surv., vol. 33, p. 31–88,
Mar. 2001.

[46] J. W. Ratcliff and D. E. Metzener, “Pattern matching: The gestalt approach,” Dr. Dobb’s Journal,
p. 46, July 1988.

[47] P. Jaccard, “Distribution de la flore alpine dans le bassin des dranses et dans quelques régions
voisines,” Bulletin de la Société Vaudoise des Sciences Naturelles, pp. 241–272, 1901.

77

http://too4words.github.io/jsir/
http://too4words.github.io/jsir/
https://ocaml.org/
https://github.com/estree/estree
https://esprima.org/
https://github.com/matiskay/html-similarity
https://github.com/matiskay/html-similarity

	List of Tables
	List of Figures
	Introduction
	Background
	ECMAScript Standard
	Language Overview
	ES5 Objects and Properties
	Property Descriptors
	Function Objects
	String Objects
	Array Objects
	Global Object
	Other Objects
	ES5 Prototype-based Inheritance
	ES5 Functions and Scoping
	ES5 Syntax and Control Flow
	ES5 Internal Functions

	Related Work
	ECMA-SL
	Designing the ECMA-SL Language
	Compiling ECMA-SL to Core ECMA-SL

	Implementing ECMAScript in ECMA-SL
	ECMARef5 Internal Representations
	ECMARef5 Built-ins and Initial Heap
	Line-by-line Closeness
	Compiling ECMAScript to ECMA-SL

	HTML Generator
	HTML Structure of the ECMAScript Standard
	Code Generation Algorithm
	Code Generation Directives and Rules
	Code Generation Directives
	JSON Rules

	Evaluation
	ECMARef5 Evaluation
	Test selection
	Testing pipeline
	Testing results

	ECMA-SL2English Evaluation
	Evaluation Pipeline
	Text-based Metrics
	HTML-specific Metrics

	Conclusions
	Bibliography

