
SmartZone: Enhancing the security of TrustZone
with SmartCards

Afonso Maria Viegas Bota Carreira Caetano
Instituto Superior Técnico, Universidade de Lisboa

Abstract—Current cloud storage services have limited security
and require users to grant full access privileges to individual
cloud storage accounts. With recent advances the need for mobile
devices that can manage identities and provide convenient access
authorisation reliably and securely is an ever growing need and
concern. Towards this several solutions have been proposed and
designed by the industry. In regard to general use processors,
ARM TrustZone provides a much more reliable platform and
user interaction than ’normal world’ applications. On the other
hand, dedicated constrained systems such as smart cards (SC)
also exist, which are considered very secure due to their isolation
and specifications.

The proposed work consists in the creation of a highly secure
cloud storage aggregator service, by merging the functionalities
of the ARM TrustZone (now present in most mobile phones),
with a smart cards embedded on a microSD card, and applying
these functionalities to the already developed cloud storage
aggregator service Storekeeper [1]. With this, it will be possible to
provide a very strong user authentication and key management
functionalities on mobile devices.

This new approach will combine the functionality of the
Enhanced Cloud Storage Aggregation Service with the secure
interface and performance of the ARM processors supporting
TrustZone, and the high level security and robustness of smart
cards.

I. INTRODUCTION

Cloud storage services are currently a commodity that al-
lows users to store data persistently, access it from everywhere,
and share it with friends or co-workers. Cloud aggregator sys-
tems provide users a global view of all files in their accounts
and enable file sharing between users from different cloud
services. In spite of a considerable usability improvement,
with existing cloud aggregator services, users incur additional
security risks. In particular, since cloud infrastructures are
owned and managed by the cloud service provider, the users
have to grant to the cloud aggregator full access permissions to
users’ cloud storage accounts so that the cloud aggregator can
automatically exchange file updates between different cloud
storage providers. This results in the customer data being
outside of its control and introduces significant security and
privacy risks concerning the confidentiality and integrity of
data.

The need for mobile devices that can manage identities and
provide convenient access authorisation reliably and securely
is an ever growing need and concern. Towards this, several
solutions have been proposed and designed by the industry.
In regard to general use processors, ARM now provides
TrustZone and Intel provides SGX secure computational en-
vironments. On the other hand, dedicated constrained systems

such as Smart Cards (SC), which are characterized by having
an integrated circuit embedded in a card body and the compo-
nents for transmitting, storing and processing data also exist,
which are considered very secure due to their isolation and
specifications [2].

Storekeeper [1] is a security-enhanced cloud storage ag-
gregator service that enables file sharing on multi-user multi-
cloud storage platforms while preserving data confidentiality
from cloud providers and from the cloud aggregator service.
To provide this property, Storekeeper decentralizes most of
the cloud aggregation logic to the client side enabling security
sensitive functions to be performed only on the client end-
points. Even though Storekeeper provides privacy-preserving
cloud aggregation by pushing the security logic from the cloud
aggregator to trusted clients’ endpoints, it creates multiple
security risks if the client endpoint is attacked. If the Store-
keeper client mobile device is compromised, a regular file
based keystore can be copied and the device can be a target
of attacks where this file can be easily exposed, if this occurs
it results in the compromise of the user private keys, resulting
in the violation of the users identity.

When dealing with highly sensitive data, Storekeepers’
traditional operating system file based keystore approach to
protect private cryptographic keys of identity certificates is
not secure enough for more critical settings where stronger
security properties are required.

To address the concerns outlined above, the proposed work
consists on the creation of a highly secure system, denomi-
nated SmartZone, by merging the functionalities of the ARM
TrustZone, now present in most mobile phones, with a smart
card embedded on a microSD card [3]. The target application
for these functionalities is the distributed cloud storage service
Storekeeper that has already been developed [1]. SmartZone
will combine the security of the Enhanced Cloud Storage
Aggregation Service with the secure interface and performance
of the ARM processors supporting TrustZone, and the high
level security and robustness of smart cards, which provides a
much more reliable platform than ’normal world’ applications,
alongside very strong user authentication and key management
functionalities on mobile devices.

An important aspect of SmartZone is that the security prop-
erties are achieved based on strong cryptographic guarantees
as well as physical and access control mechanisms.

1



II. SMARTZONE

This chapter describes the design of our system, which con-
sists on a highly secure solution by merging the functionalities
of the ARM TrustZone with a smart card embedded on a
microSD card. SmartZone is a distributed solution, consisting
on an enabled ARM TrustZone mobile application and a smart
card applet. The target application for these functionalities
is the distributed cloud storage service Storekeeper, where
SmartZone will be responsible for the client-side security
critical operations.

A. Overview and Use Cases

The proposed solution addresses the problems with dealing
with highly sensitive data on a vulnerable mobile device
that is being used as a client of a distributed cloud storage
system, using smart card technology for key management and
ARM TrustZone for file encryption and decryption operations.
Instead of generating and storing keys on the device normal
world environment, a smart card is used to generate and
store these keys, granting the security advantages provided by
this technology when compared to using the device storage.
Since there is no set limit for file size, operations regarding
cipher and decipher of files must be performed on the Trusted
Execution Environment (TEE) of the mobile device due to
smart card hardware constraints. For this, we use ARM
TrustZone, for cipher and decipher of files when provided with
the respective key, in order to perform these operations on a
isolated environment from the normal OS.

The target application for these functionalities is the dis-
tributed cloud storage service Storekeeper, so two main uses
cases must be addressed:

1) Add File - In this first scenario a new (unprotected) file
is added by the user to the SmartZone app, either this file
was created by the user on its mobile device or the user
has received this file, for example, via e-mail. Therefore,
the respective file keys must be generated, and the file
must be ciphered (protected) by the user device, before
sending it to the cloud storage service with all respective
metadata.

2) Read File - For this scenario, the user must request
to view a ciphered file (protected) that was previously
added to the SmartZone app (via Storekeeper). For this,
the solution must decipher the protected file and display
it contents to the user. After that, the file must be
protected again.

These two uses cases were designed with Storekeeper
algorithm in mind, hence a special attention was given to
the integration between the SmartZone application and Store-
keeper.

B. Assumptions and Threat Model

We distinguished 3 levels of security regarding our solution
that can be correlated with each environment. For all the
software running on the normal world, i.e. SmartZone app,
we consider as Level 0, and consequently unsafe, so no keys
can be disclosed while executing on this level. On Level 1

layer occurs all the execution that is performed on ARM
TrustZone, and consequently file contents and file keys are
disclosed at this level. Finally all the execution regarding key
management and storage happens on the smart card, resulting
on this environment being classified as Level 2, the higher
secure level of our solution.

In order to justify our design and implementation, we have
to describe the assumptions and threat model considered for
our solution that can be separated by each security level
described above:

Level 0 - SmartZone Application
• We assume that the normal world runs an untrusted

kernel and is used by untrusted users, which however
do not have access to the secure world resources and
configuration.

• The username and password are shared securely with the
smart card on the initialization step. The attacker cannot
have access to these fields.

• The SmartZone app does not provide confidentiality of
the file when opened.

Level 1 - Secure World
• An attacker can trigger a SMC call and attempt to pass

fake data onto the secure world. The attacker may do this
call repeatedly to cause a local denial-of-service.

• We assume that the hardware is correct, i.e., that all
TrustZone security features supported by the processor
are correctly implemented and cannot be compromised
or circumvented by an attacker.

• A symmetric key is securely imported to TrustZone
beforehand and shared with the smart card, in order to
provide confidentiality between both parties.

Level 2 - SmartZone Applet
• The smart card is tamperproof, no hardware attacks are

taken into account.
• No other application internal to the smart card can

access the keys resorting to a proper implemented firewall
between applications.

• Only the authenticated user has access to he smart card
API. If someone authenticates with the user password, he
is the expected user.

• The SmartZone smart card applet is reliable, so the client
application trusts in the smart card applet.

C. Architecture

The proposed architecture is divided among two environ-
ments, the device side and the smart card side. As can be
seen on Figure 1, in the device side we have represented the
SmartZone application (client-side) component, running on the
user device on top of Android OS. On the smart card side
we have the SmartZone applet component running inside the
smart card. In green we have the components related or native
to Android that are used by SmartZone application, while on
blue we have the SmartZone specific components.

In this picture it is possible to see that on the ”normal
world” we have the SmartZone Application component. This

2



Fig. 1: SmartZone architecture.

component interacts with AndroidKeystore via the Android
Framework API, by using the Android-specific extension ”an-
droid.security.keystore” in order to perform secure operations
like the cipher and decipher of the files. These operations
are performed by the secure software running inside ARM
TrustZone (Keymaster TA and Gatekeeper TA). The Smart-
Zone Application component also interacts with Storekeeper
Application (Client side) via specific API in order to provide
integration with the cloud storage service.

The SmartZone applet running on the smart card is running
on top of JavaCard Platform and implements the desired
behaviours of key generation and management. The interaction
between both SmartZone components its achieved via the
Android-specific extension ”android.se.omapi”, which is going
to be explained in more detail on Section III-B.

In order to guarantee confidentiality between the two Smart-
Zone components it is assumed that during the initialization
phase a shared symmetric-key KS is generated by the smart
card and imported securely to the ARM TrustZone via secure
key import mechanisms currently available on Android 9 (API
level 28) that allows to import encrypted keys securely into the
Keystore using an ASN.1-encoded key format. This is possible
by encrypting KS with the user’s device public key which
is generated by Android Keystore. The encrypted key in the
SecureKeyWrapper format, which also contains a description
of the ways the imported key is allowed to be used, can
only be decrypted in the Keystore hardware belonging to the
specific device that generated the wrapping key. Keys are
encrypted in transit and remain opaque to the application and
operating system, meaning they’re only available inside the
secure hardware into which they are imported.

When it comes to the keys used by SmartZone and their
exposure, they are listed below and is illustrated on the Table
2, respectively:

• KF and KR - File specific keys.
• KU - User key-pair.
• KS - Shared key, securely shared between client appli-

cation and smart card applet for confidentiality between
both parties.

• KT - Device key-pair, used in order to securely import
keys into the Keystore.

We use two file specific keys for all the required file
operations, KF and KR.

Fig. 2: Keys Exposure.

Fig. 3: SmartZone user authentication.

D. Basic Operation

To present the basic operation of SmartZone solution, we
first consider the initialization phase which comprises the user
authentication phase and then the main file operations which
are performed when the user wants to open a specific file.

E. User Authentication

In the proposed solution, where file keys are stored inside
the card, there is a need to authenticate the user, in order
to assure that no keys will be handed to an attacker. To
achieve this, the proposed solution uses Challenge-Response
as the authentication protocol. The user, via the SmartZone
application, initializes the authentication protocol by sending
the username and password to the smart card. After this
information is validated by the smart card applet, a challenge
is generated and sent back to the SmartZone application. After
challenge computation and validation by the smart card applet,
a user key-pair KU is generated inside the smart card. The
public key of this pair must be used to cipher the file keys
while the private key never leaves the smart card. See Figure
3.

This authentication mechanism respects Storekeeper user
credentials handling protocol, when it comes to the fields
username and password for authentication. The user username
and password must be sent by the user to the smart card,
and it is important to ensure its confidentiality. To enable this
confidentiality, the communication between these two parties
is ciphered by the shared key Ks that was shared previously.

F. File Operations

When a new file is created/added to SmartZone, the client
application running on the device takes care to send a com-
mand to the smart card applet in order to generate the file-
key KF and read-key KR for the file in question. The key

3



Fig. 4: SmartZone new file operation.

Fig. 5: SmartZone view file operation.

KR is basically an intermediate symmetric key that is shared
between all users that can read the file in order to revoke
access to the file without re-encrypting it (See Storekeeper).
SmartZone uses key wrapping for encrypting one key using
another key, in order to securely store it or transmit it over an
untrusted channel. This way, the smart card applet wraps KF
with KR, and stores the tuple {KF}KR on its memory. Then it
encapsulates KR with the public part of the user key-pair KU
in order to generate the tuple {KR}KU+. Finally the smart
card applet returns the file-key KF and the wrapped read-key
{KR}KU+ to the SmartZone Application.

After receiving the file-key KF from the smart card applet,
this key is imported to the Android Keystore alongside the file
to be ciphered. When the file is ciphered by ARM TrustZone
with KF, it is returned to the client application in order to
be sent with the tuple {KR}KU+ to Storekeeper. Storekeeper
stores the ciphered file {file}KF on the cloudstore and the
tuple {KR}KU+ on the Storekeeper Directory Server (SDS).

In order to read the file in the future, either by downloading
it from the cloudstore or by having the file ciphered on local
storage, all that the user must do is send a command to the
smart card applet with the fileID and the tuple {KR}KU+, re-
ceived from Storekeeper SDS. The SmartZone applet running
on the smart card will unwrap the tuple by using the private
part of the user key-pair KU in order to obtain KR, and after
that it is going to fetch the wrapped file-key {KF}KR from
memory, and return the file-key KF, now unwrapped, to the
client application. Now all that is left it to securely import KF
to the Android Keystore alongside the ciphered file {file}KF in
order to be unciphered by ARM TrustZone. Finally the user
is able to have access to the unciphered file for viewing or
editing purposes.

The received and returned arguments for each operations
takes account the Storekeeper API in order for full integration
between SmartZone solution and Storekeeper cloud storage
service.

G. Communication

As described, the proposed solution requires a series of
messages to be exchanged between the SmartZone application
running on the device, and the smart card SmartZone applet,
in order for this latter to be able to generate and store new
keys. The communication between both parties is performed
in Application Protocol Data Unit (APDU) format messages
in a command-response style interaction. This format is used
to send attributes on the messages which perform operations
over the smart card. The operations defined correspond to the
User Authentication and File operations. Appendix B specifies
in detail the format of the APDUs that correspond to these
operations.

During the User Authentication process, two commands
are sent consecutively to the smart card being the Chal-
lengeCommand and the AuthenticationCommand respectively.
For these commands, a response is expected by the client
application, specifically a ChallengeResponse and a Authen-
ticationResponse. When it comes to the File Operations, one
single command-response is used, the GetFileKeyCommand
and GetFileKeyResponse messages, being that the only differ-
ence is in the fields present in each command that triggers a
different behaviour on the smart card applet. A third command
for getting the smart card status regarding authenticated users
and existing file keys also exist and is designated GetStatus-
Command.

Each command and response is encapsulated inside a APDU
Command and APDU Response (Data fields) as specified by
ISO/IEC 7816-4 for smart card communication.

III. IMPLEMENTATION

The proposed architecture is composed by several compo-
nents which cooperate to provide the desired features and
properties. The implementation, the components and their
communication requires technologies matching the required
properties. This chapter describes the technologies used to
implement the system and the properties obtained from each. It
also describes some implementation details regarding quality
properties of the system.

A. SmartZone Application

The SmartZone Application running on the user mobile
device was developed for the Android platform. This platform,
and consequently OS, was chosen because it is an open source
project and any hardware manufacturer can build a device
that runs the Android OS, resulting on an availability of the
OS on phones of a large number of manufacturers. Java was
the chosen language for the application development using
the Android Software Development Kit (SDK). In this kit
there is a variety of tools (debugger, libraries, etc) that were
used for the development of the client side app. When it
comes to the execution of the application the native emulator,
based on QEMU, was used to run and test the application.
The application was developed for the minimum API level of
28 (Android 9 Pie). Described below is the Android Virtual
Device (AVD) configuration user for implementation:

4



• AVD Name : Pixel 3a XL;
• API Version : 28 Android 9.0 (Pie);
• Screen Resolution : 1080x2160;
• CPU Core Count - 4 (Multi-Core).
• RAM : 1536 MB.
• VM heap : 256 MB.
• Internal Storage : 800 MB.
• SD Card Storage : 512 MB.
To perform cryptographic functions the Android security

library (androidx.security) was used since it provides strong
security that make balances between noticeable encryption and
acceptable performance. This library also promotes the use of
the Android Keystore.

Since the access to ARM TrustZone on Android is very
limited, one can use security-oriented API’s provided by
Google but can not create his own secure app or use the
TrustZone in any other way. SmartZone uses Android Keystore
API (android.security.keystore) to access Keystore function-
ality. We will be extending its uses and integrating it with
ARM Trustzone, since since the majority of smartphones and
tablets nowadays use ARM processors capable of TrustZone
this means that a TEE like ARM TrustZone is deployed in
almost every smartphone and tablet. The availability of a
trusted execution environment in a system on a chip (SoC)
offers an opportunity for Android devices to provide hardware-
backed, strong security services to the Android OS, to platform
services, and even to third-party apps.

B. Smart Card Access

Although smart cards allow several security solutions to
be implemented, there is still a burden related with the
transportation of the peripherals required to communicate with
the smart card. This section proposes the usage of a smart
card inside a smart phone in a microSD. This solution brings
advantages like flexibility, support and backward compatibility,
but also allows an host device to select and communicate with
a security system in the SD card while maintaining its most
basic functionality, data storage. SD cards in the microSD
format are widespread format included in most mobile phones
allowing to bring some of the advantages of smart card element
usage to mobile phones.

For communication between the Android application and
the smart card, the Open Mobile API (OMAPI) implementa-
tion is used. This mechanism enables an authorized mobile
app to communicate with applets within a smart card inside
a device. With Android API 28 the Open Mobile API is
accessible by the package android.se.omapi.

C. Applet Emulation

To implement the desired smart card behaviour, and guar-
antee the sucessfull integration with the client application
running on Android, the smart card applet was emulated. The
smart card applet was emulated via a Java application, while
maintaining the APDU command-respose message format.
The applet behaviour was emulated in order for the operations
to run in a consecutively order. When a command is received

Fig. 6: Comparison of DFCloud with proposed solution.

from the client application, the smart card applet performs
the required operation and return the response to the client
application.

An extra module was added designated APDUParser, which
is responsible for parsing of the APDU commands and re-
sponses. When an APDU command is received by the smart
card, this module unwraps the SmartZone command from the
Data field of the APDU command and passes it along to
the applet for execution. When the SmartZone applet is done
with the execution, the response passes through the module in
question to be wrapped with the APDU response message.
Then the APDU response is sent to the client application
running on the device.

To perform cryptographic operations we used the Java
library provided by the JCA framework (Java Cryptography
Architecture). Regarding symmetric encryption, we use AES
cipher and generate 256-bit symmetric encryption keys ran-
domly. For asymmetric encryption, we use 1024-bit RSA
asymmetric keys randomly generated.

IV. EVALUTATION

In order to evaluate our system we have decided to take
into account the state of the art and both the design and
implementation details to assess the proposed solution and its
provided properties.

A. Solution Comparison

Due to its nature, it is relevant to assess the proposed
system by comparing it with other existing systems. The most
significant properties to take into account are the environment
where file encryption occurs, file key storage and management.

Table 6 allows for the the comparison of the proposed
solution with the secure data access control method of cloud
storage DFCloud [4].

The proposed solution presents some similarities and some
differences to other solutions, more specifically to DFCloud.
When it comes to the file encryption environment both so-
lutions perform the file cipher and decipher operations using
ARM TrustZone, hence these operations are performed in a
TEE. This way, an attacker that manages to compromise the
local OS will not be able to recover the content of the files.

When it comes to key storage approaches each solution dif-
fer. DFCloud uses a TPM emulator inside the secure world to
storage the file encryption keys, while, SmartZone implements
a hybrid key storage solution, where the key KR is securely
stores (ciphered with KU+) on the Storekeeper SDS and the
the file key KF never leaves the smart card, providing a high
level of security due to the use of the smart card.

Finally the key management also differs between solutions,
since on the Storekeeper design the user is relived from the

5



Fig. 7: Execution times in milliseconds for User Authentica-
tion operation.

responsibility of maintaining file credentials by having them
stored on the server side in a ciphered format. SmartZone
applies the same logic, while DFCloud burdens the client with
the job of storing and managing all the necessary keys. Also
the keys are generated on the TEE on DFCloud while the main
objective of SmartZone was to move the key generation and
management to the smart card due to the high level of security
and robustness provided by it.

B. Solution Performance

Since a reduced performance may affect the usability and
utility of a system it is necessary to analyse how the proposed
solution performs its most commonly used operations and how
said performance scales depending on the size of each file. It is
also relevant to analyse this performance when communicating
with a smart card.

The evaluation of SmartZone focuses on execution time
measurements that were obtained running several benchmarks.
We must bear in mind that the SmartZone application was
executed on the AVD emulator running on top of a Macbook
Pro with an Intel®Core™i7-6700HQ 2,6GHz CPU and 8GB
of RAM, running MacOS Catalina (v.10.15.7). Each bench-
mark measures an operation provided by SmartZone, such
operations are the user authentication, new file and read file
operations. The file size parameter was used with different
data unit sizes of 10KB, 100KB, and 1MB. For each file size
a category was attributed, being that the 10KB, 100KB and
1MB files were attributed to the Small (S), Medium (M) and
Large (L) categories respectively. Due to various factors, such
as operating system scheduling and system load, the same
operation’s time span may vary.

The first benchmark consists of measuring the total timed
used by the application to perform the user authentication
operation. These calls consist of sending user credentials to the
smart card, generate a challenge and authenticate the user. Also
the time to generate the user key-pair is taken into account
in this benchmark. For the entire operation, the execution
time was 1330ms, which is divided between the Challenge
Command and Response execution which took 437ms and the
Authentication Command and Response which took 893ms.
The higher execution time for the second command can be
attributed to the generation of the user key-pair on the smart
card since is the Authentication Command that triggers this
operation. See Table 7.

For the benchmarks related to the file operations, we can
divide the measurements in two different sub-benchmarks.

On the first file operation benchmark, the execution time
for the new file operation was measured. This operation is

performed when a new unprotected file is added to SmartZone,
as described on Section II-F. This benchmark is divided in
two steps: GetFileKey Command and Response interaction
between the SmartZone Application and the smart card; File
cipher operation performed inside the ARM TrustZone. On the
Figure 8 note that the GetFileKey Command and Response
interaction maintains a similar execution time of 23ms, 19ms
and 29ms for S, M and L files respectively. On the other hand,
for an increase on the file size is is possible to verify an
increase on the execution time of the file cipher operation.
On the cipher operation for the S file an execution time of
75ms was measured, for the M file a 92ms execution time
and finally the L file cipher operation resulted on a 308ms
execution time.

Fig. 8: Performance of new file operation.

Now on the second file operation benchmark, the execution
time for the read file operation was measured. This operation is
performed when a protected file already exists in SmartZone
and the user wants to open the respective file, as described
on Section II-F. This benchmark is divided in three steps:
GetFileKey Command and Response interaction between the
SmartZone Application and the smart card; File decipher
operation followed by the cipher operation, both executed
inside the ARM TrustZone. On the Figure 9 note that the
GetFileKey Command and Response interaction maintains a
similar execution time independently from the file size, as
on the previous benchmark. On this benchmark the execution
time measured for these interactions were 33ms, 28ms and
23ms for the S, M and L files respectively. Now when it
comes to the uncipher operation execution time it is possible
to verify that it takes considerably more time than the cipher
operation. The uncipher operation execution time for the S
file was 67ms, on the M file was 205ms and on the L file it
was 1533ms, increasing as the file size increases. The cipher
operation execution times on this benchmark are similar to
the previous benchmark, being for the S file a 69ms execution
time, for the M file a 91ms time and for the L file a 340ms
execution time.

As depicted in Figures 8 and 9, in both operations the

6



Fig. 9: Performance of read file operation.

proposed solution performance has a significant increase of
execution time, specially on the file cipher and decipher
operations. Such increase was expected, although since the
smart card applet was emulated and no benchmark tests were
performed on a real smart card hardware it is difficult to
predict the impact of the smart card applet execution on the
solution.

C. Objectives Fulfilment

This subsection presents how the properties and behaviour
of the solution match the objectives outlined initially.

1 - Allow for a greater isolation between the operating
system and the critical operations performed by Store-
keeper

By merging the functionalities of the ARM TrustZone,
which provides a much more reliable platform and user
interaction than ’normal world’ applications, with a smart card
embedded on a microSD card it is possible to provide the
highly secure cloud storage aggregator service. The critical
operations, like file cipher and decipher operations and the key
management, are now performed on ARM TrustZone TEE and
on the smart card applet, respectively.

2 - The user must be able to use the system indepen-
dently of his location

By design the proposed solution is based on a Smart Card,
such as those presented in section 2.2. These smart cards have
the property of being easily transported. The proposed solution
is easily transported and can be utilized by the user in any
location without requiring transportation of its data into any
insecure devices or synchronization through other systems.

3 - The performance overhead must be low enough to
not critically impact the system usability

There were no specific benchmark tests performed, however,
from the results of the execution of the solution on the emu-
lator the performance loss does not affect the user experience.

4 - The overall system and the authentication operations
must be ”user-friendly” and easy to the user

As can be seen by the solution UI and operation flow, the
user is abstracted from the authentication and file operations.

The solution adopts a ”file explorer” style UI, with clear icons
distinguishing between protected and unprotected files, for
easy user comprehension.

D. Security Considerations and Limitations

The attack surface of our work is mainly divided by the
ARM TrustZone TEE and the smart card. As already detailed
there are a series of considerations when it comes the ARM
TrustZone security.

The main concern is the possibility of abusing the SMC
instruction to perform a loop of world switches, resulting in
a denial of service by locking the normal world OS. The
shared memory region, which allows to read and write data
between worlds, also presents a concern since a possible attack
is writing wrong information into the secure world through
this region, although there are hashing functions in the secure
world that can be used to verify the veracity of the data
provided by the normal world. Due to the support of secure
memory provided by the ARM TrustZone, we can safely say
that the memory allocated for the secure world is protected
and therefore cannot be accessed by the normal world in any
way.

The normal world is not protected, so it can be compro-
mised. Since the normal world OS is vulnerable an attacker
can spoof the world switch and return fake information the
user. As such we can not provide confidentiality of the files
when the user opens the file on the device to see its contents,
since the ability for the secure world to display information
to the user is very limited.

Finally any kind of system on chip attacks to the ARM
architecture or on the smart card are out of the scope of this
paper and are not considered. We assume that the hardware is
correctly implemented and the TrustZone mechanisms cannot
be circumvented.

V. RELATED WORK

While cloud storage has a lot of potential, unless the issues
of confidentiality and integrity are addressed many users will
be reluctant fully trust these services with their personal data.
One way to do it is by using trusted execution environments
combined with the high level of security and robustness of
smart cards, on mobile devices.

A. Cloud Storage

Cloud providers put a lot of effort in making such services
highly available, allowing users to access their files anytime
everywhere (as long as there is network connectivity). Multiple
file replicas are stored in the cloud, assuring higher fault
tolerance than storing files locally on users desktops or servers.

Storekeeper is a distributed system compromised of a client
application (installed on the user device) and a centralized
cloud aggregator server, which provides a secure cloud aggre-
gation service for multi-user multi-cloud storage platforms, re-
sorting to mechanisms for user identity management between
different cloud providers, and key management and storage
solutions. By having the security-sensitive logic on the client

7



endpoint it is possible to provide end-to-end data confidential-
ity without entrusting sensitive user account credentials to the
cloud aggregator server.

The two main components of Storekeeper are: the client
application and the Storekeeper Directory Server (SDS). On
the user device the client application along with a local cache
of the files stored on the cloud store, serve as an interface
in order to interact with the system, while on the other hand
the SDS runs on a dedicated server and is responsible for
managing all the meta-data associated with the users, files and
stores. The cloud accounts are represented by stores which are
provided by the user and stored on the SDS, by having the
files stored on these stores it results on the files not being
directly stored on the SDS.

Storekeeper depends on access tokens and user keys, as a
basis to overcome the challenges involving user authentication
when accessing cloud stores and confidentiality protection of
user files, respectively. When it comes to end-to-end confiden-
tiality, Storekeeper generates a symmetric key, designated file
encryption key (KF), for each file before sending them to the
cloud. In order to protect this key, Public Key Infrastructure
(PKI) is used by having the user generating a public key-
pair, designated user key (KU), and encrypt the file encryption
key with the user public key. Assuming that the private user
key is maintained private the access to the file encryption
key is restricted. In order to prevent the user from having
the responsibility to maintain the user credentials (access
token and user keys), Storekeeper resorts to another symmetric
key designated access key (KL), which it uses to generate a
cryptogram, containing the username, user private key (KU)
and access tokens (AT) for the respective user, and store it on
the SDS.

When a user creates a file, the local client must first encrypt
the file with a file encryption key and then upload the resulting
ciphertext to the file’s home store. The file key is randomly
generated and is specific to that file. To protect the file key,
the client encrypts it with the public part of the user key and
sends it to the SDS. To read the file in the future, the client
downloads the encrypted file from the home store, and fetches
from the SDS the encrypted credentials: file encryption key
and private part of the user key. Next, based on the access key,
the private part of the user key is obtained, which in turn uses
to decipher the file encryption key and consequently decipher
the file itself. Since both file and file keys are encrypted,
neither SDS nor cloud provider can read the file contents. In
order to share a file with another user, the file encryption key
is encrypted with the other user public key.

Storekeeper consider cloud providers to be potentially ma-
licious with respect to violation of data confidentiality, and
honest but curious regarding to passively listening to the
the exchanged messages in order to learn any sensitive data.
Communication channels are assumed to be insecure, since
they can be eavesdropped or manipulated but, side-channels
attacks are not taken into account. By not handling or storing
the keys in a secure way, an attacker can obtain the access key,
followed by the private key-pair of a user and consequently

obtain the the file encryption keys of a file or the access token,
violating the end-to-end confidentiality and authentication
premises. Integrity of data and meta-data is also not guaranteed
by Storekeeper when intentional modifications are performed
by the cloud aggregator or cloud providers [1].

B. Smart Cards

Smart cards are perhaps some of the most widely used
and underestimated electronic devices in use today. In many
cases these devices are in the front-line, defending citizens and
systems alike against attacks on information security [5]. A
smart card is a portable, tamper-resistant platform that provide
secure storage of confidential data and can protected against
unauthorized access and manipulation. It is used in many
different industries that come in different sizes and forms such
as SIM cards, identification card, USB sticks, etc [6].

Smart cards can also be classified on the basis of their data
transmission method. Data can be transmitted using mechan-
ical contacts on the surface of the card or wirelessly using
electromagnetic fields. Also in regards to smart card with chip
element, they can be divided into two groups that differ in both
functionality and price: memory cards and processor cards.
The functionality of memory cards is usually optimized for
a particular application which severely restricts the flexibility
of these cards but, in contrast makes them quite inexpensive.
When it comes to processor cards they are very versatile in
use.

To communicate with smart cards, a specific type of mes-
sage must be used. These messages are on the Application
Protocol Data Unit (APDU) format, as specified by ISO/IEC
7816-4. The protocols used to communicate with smart cards
are client-server based, where the card is the server, which only
answers to requests from the client. The messages sent from
the client must be in the request APDU format as follows:

• CLA [1 Byte]: Class of the instruction to be executed.
• INS [1 Byte]: Instruction to be executed.
• P1-P2 [2 Bytes]: Instruction parameters for the instruc-

tion.
• Lc [1 Byte]: Encodes the size of data to follow.
• Data [Lc Bytes]: Instruction specific data.
• Le [1 Byte]: Maximum number of expected bytes for the

response message.
And from the smart card, the messages must respect the

format:
• Data [up to Lc Bytes]: Response data.
• SW1-SW2 [2 Bytes]: Message processing status, where

0x9000 (hexadecimal) represents success.
It is practically impossible to configure a smart card to

provide perfect security that can defend against everything and
everybody. If sufficient effort and expense is devoted to an at-
tack, every system can be breached or manipulated. However,
every potential attacker performs a sort of cost/benefit analysis
and the reward of breaking a system must be worth the time,
money and effort necessary to achieve this objective. Most
currently known successful forms of attack on smart cards

8



take place at the logical level. These attacks are based on
pure contemplation or computation.

There are several countermeasures for protecting crypto-
graphic algorithms and microprocessors against side channel
attacks and fault attacks. By using execution and data random-
ization it is possible to change the order in which operations
in an algorithm are executed. Also the introduction of random
delays at different points in the algorithm execution, although
does not prevent an attack, but can be used to increase the
time required to attack. The use of checksums, execution
and variable redundancy prevents data (e.g. key values) or
execution results from being modified by a fault by repeating
execution of algorithms or reproduce variables in memory in
order to be able to verify if these values are correct [7].

SmartSD cards [3] are a subset of Advanced Security
SD cards that integrates smart card functionality with other
components like a microSD card, allowing for the implemen-
tation of a secure storage on any mobile phone that supports
the ASSD [8] specification. Using this specification brings
advantages like flexibility, support and backward compatibility,
but also allows an host device to select and communicate with
a security system in the SD card while maintaining its most
basic functionality, data storage. SD cards in the microSD
format are a widespread format included in most mobile
phones allowing to bring some of the advantages of smart
card element usage to mobile phones [9]. Integrating smart
card functionality with other components like a microSD card,
which is a widespread format in most mobile phones, brings
some of the advantages by providing flexibility, support and
backward compatibility, combined with stable increase in SD
cards read and write speeds and storage capacity throughout
the years.

Smart card hardware and software are very closely coupled
together and they both contribute, along with other factors,
towards the success of smart card technology. The develop-
ment of smart card operating system followed a similar path to
the development of operating systems in traditional computing
devices. The main efforts for the provision of multi-application
smart card platforms was with the introduction of distinct
smart card platforms, where Java Card [10], Multos [11] and
GlobalPlatform [12] are the most widely utilised smart card
platforms [13].

A Java Card is a smart card capable of running Java pro-
grams, taking advantage of the modularity and encapsulation
encouragement brought by the object-oriented programming
model of the Java programming language, which relates on
more independence between objects and their interaction using
well defined interfaces [14]. It also allows more than one
applet to be deployed on the card. To develop Java Card
applications, or applets, the programmers can use a subset
of the Java language. Since applications run in a virtual
environment, the process of debugging applications is also
simplified, since in the development phase they can be ran
into a Java Card virtual machine in the developer’s computer.
The Java Card platform is at its core a very minimal subset
of Java, complemented with the following specific features

catered for the development of secure elements [15].

C. Trusted Execution Environments

As mobile operating systems grow in size and complexity,
they are increasingly susceptible to software vulnerabilities. A
Trusted Execution Environment (TEE) is a tamper resistant
processing environment that runs on a separation kernel,
designed to provide protection against attacks that exploit
these vulnerabilities by providing a secure, integrity-protected
processing environment, consisting of processing, memory
and storage capabilities. This architecture guarantees the au-
thenticity of the executed code, the integrity of the runtime
states (e.g. CPU registers, memory and sensitive I/O), and the
confidentiality of its code, data and runtime states stored on a
persistent memory.

TrustZone is a hardware based TEE technology incorpo-
rated into ARM processors consisting of security extensions
to an ARM System-On-Chip (SoC), covering the processor,
memory, and peripherals. These mechanisms can be leveraged
by system designers to run secure services in isolation from
the OS, providing the capability to virtually separate hardware
into two domains referred to as ”worlds” [16].

The software that is executed in the secure world may be
bare-metal, containing nothing but security libraries, or it can
be a full-fledged OS. Since most platforms provide limited
resources, mostly in in terms of memory, to this environment,
it gravitates to be small in size and only contain the bare
essentials. Trusted applications can come pre-installed from
the factory or they can be installed during the lifetime of the
device. The normal world runs the traditional OS, the Rich
OS, which the user interacts with. Common examples include
Windows 10 [17], iOS [18] and Android [19]. Applications
can request that data be encrypted/decrypted by the secure
world which in turn, encrypts the data and returns the en-
crypted/decrypted data to the application in the normal world.
This way, the keys used are never exposed to the normal world.

Despite this, ARM TrustZone is vulnerable to a different
set of attacks that can be explored through direct or indirect
critical links between the attacker and security-critical appli-
cations. This critical links can be broadly categorized in three
categories [20]: Type 1, where the attacker makes link to
security critical application through privileged software. Type
2, attacker links to security critical application through micro-
architectural events of hardware, and finally Type 3 where
the attacker makes link to security critical application through
directly probing hardware.

Android OS [19] is an operating system developed by
the Open Handset Alliance consortium led by Google. The
operating system is based on a Linux kernel that is modified
to better fit a mobile operating system. Android provides the
security of the Linux kernel by providing a secure inter-
process communication ensuring a good isolation (Application
Sandbox) between applications, the operating system or the
user. Since applications must declare which permissions they
may require, the smart card API takes advantage of this

9



architecture by defining a permission class that the application
must request to obtain access to the API [9] [21].

Android Keystore is the Android Framework API and
component used by apps to access Keystore functionality. It
is implemented as an extension to the standard Java Cryptog-
raphy Architecture APIs, and consists of Java code that runs
in the applications own process space. Keymaster TA (trusted
application) is the software running in a secure context, most
often inside TrustZone on an ARM SoC, that provides all
of the secure Keystore operations, has access to the raw key
material, validates all of the access control conditions on keys,
etc.

Nowadays anyone has access to wireless networks very
easily and have access do computing devices with strong
computing power and high portability, so the need for efficient
methods to sharing or synchronizing his or her data among
several devices have arisen. Cloud storage services is one of
the possible solutions and has become very popular, but due
to the nature of cloud storage service there are several security
problems such as data leakage, modification, or data loss.

To handle these problems, Jaebok Shin et al. proposed a
secure data access control method of cloud storage named
Data Firewall Cloud (DFCloud) [4]. DFCloud aims to leverage
a TrustZone-assisted TEE on users’ mobile devices to provide
secure access control capability to cloud storage services. This
is achieved by using client-based encryption, relying on the use
of TPM functionalities to manage encryption keys, assuming
that each client mobile device is ARM TrustZone enabled and
that DFCloud performs remote attestation on each client in
order do prevent credential or data leakage.

VI. CONCLUSIONS

Current cloud storage aggregator services have limited se-
curity since they fail to provide end-to-end privacy. In order
for mobile devices to manage identities several solutions have
been proposed and designed. ARM TrustZone provides secure
computational environments, and smart cards are known for
providing a very strong user authentication and key manage-
ment functionality. By marrying trusted execution environment
with smart card technology it is possible to obtain a very
strong user authentication and key management functionalities.
This solution aims to mitigate the key management and user
authentication problem present on the distributed cloud storage
service, Storekeeper. In addition to this, several tests should be
performed in order to evaluate the performance and security
impact of this work.

This documented presented the design, implementation, and
evaluation of SmartZone, a distributed solution, consisting on
an enabled ARM TrustZone mobile application and a smart
card applet. The target application is the privacy preserving
cloud aggregation service Storekeeper. SmartZone addresses
the problems with dealing with highly sensitive data on a
vulnerable mobile device that is being used as a client of a dis-
tributed cloud storage system. Using smart card technology for
key management and storage provides tamper-proof storage
and secure computation capabilities. ARM TrustZone provides

clear isolation from a possibly compromised normal world
OS and guarantees that sensitive data is only handled in the
trusted execution environment, being used for file encryption
and decryption operations it provides security advantages
when compared to using the device storage and normal world
environment.

REFERENCES

[1] S. Pereira, A. Alves, N. Santos, and R. Chaves, “Storekeeper: A
Security-Enhanced Cloud Storage Aggregation Service,” Proceedings of
the IEEE Symposium on Reliable Distributed Systems, no. May, pp.
111–120, 2016.

[2] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys, vol. 51, no. 6, 2019.

[3] SD Association, “Activating New Mobile Services and Business Models
with smartSD Memory cards,” 2014.

[4] J. Shin, Y. Kim, W. Park, and C. Park, “DFCloud: A TPM-based
secure data access control method of cloud storage in mobile devices,”
CloudCom 2012 - Proceedings: 2012 4th IEEE International Conference
on Cloud Computing Technology and Science, pp. 551–556, 2012.

[5] K. Mayes, “An introduction to smart cards,” in Smart Cards, Tokens,
Security and Applications. Springer, 2017, pp. 1–29.

[6] T. Tariq, “Extending Secure Execution Environments Beyond the TPM
(An Architecture for TPM & SmartCard Co-operative Model),” Depart-
ment of Mathematics, Royal Holloway, University of London, Tech.
Rep., 2 2009.

[7] W. Rankl and W. Effing, Smart Card Handbook Fourth Edition, fourth
edi ed. John Wiley & Sons, Ltd, 2010.

[8] SD Association, “SD Express and microSD Express Memory Cards :
The Best Choice for Your Future Product Designs,” 2019.

[9] L. A. Maia and M. E. Correia, “Java JCA/JCE programming in Android
with SD smart cards,” Iberian Conference on Information Systems and
Technologies, CISTI, pp. 1–6, 2012.

[10] Oracle, “Java Card Technology.” [Online]. Available:
https://www.oracle.com/java/technologies/java-card-tech.html

[11] Multos, “The Multos Technology.” [Online]. Available:
https://www.multos.com

[12] GlobalPlatform, “Card Specification.” [Online]. Available:
https://globalplatform.org

[13] K. Markantonakis and R. N. Akram, “Multi-application smart card
platforms and operating systems,” in Smart Cards, Tokens, Security and
Applications. Springer, 2017, pp. 59–92.

[14] J.-J. Vandewalle and E. Vétillard, “Developing Smart Card-Based Ap-
plications Using Java Card,” in Smart Card Research and Applications,
J.-J. Quisquater and B. Schneier, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 105–124.

[15] Oracle, “Java Card: The Open Application Platform
for Secure Elements,” pp. 1–5, 2019. [Online]. Avail-
able: https://www.oracle.com/technetwork/java/javacard/overview/java-
card-data-sheet-19-01-07-5250140.pdf

[16] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using {ARM TrustZone}
to build a trusted language runtime for mobile applications,” in Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014, pp. 67–80.

[17] Microsoft, “Windows 10.” [Online]. Available:
https://www.microsoft.com/en-us/windows

[18] Apple, “iOS.” [Online]. Available: https://www.apple.com/ios/ios-13/
[19] Google, “Android.” [Online]. Available: https://www.android.com/
[20] M. A. Mukhtar, M. K. Bhatti, and G. Gogniat, “Architectures for

Security: A comparative analysis of hardware security features in Intel
SGX and ARM TrustZone,” 2019 2nd International Conference on
Communication, Computing and Digital Systems, C-CODE 2019, pp.
299–304, 2019.

[21] Android, “Android Secure.” [Online]. Available:
https://source.android.com/security

10


