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ABSTRACT 
The aim of this work is to develop regression models for the shoulder which predict the orientation of the clavicle and the 
scapula from the humeral orientation. It aims to extend these models to a wider envelope of arm postures than the one available 
in the literature. Two types of regression models are built: one using exclusively the humeral orientation as a predictor and 
another one which also uses anthropometry data as predictors. 

An optoelectronic tracking system, complemented with inertial measurement units and an external frame, is used. Shoulder 
kinematics are assessed using a non-invasive procedure with cutaneous markers and a scapula locator. Regression equations are 
obtained for the two types of regression models. For the one which uses individual factors as predictor variables, 
multicollinearity is detected and thus a statistical processing is made. The models are validated using an independent dataset. 

The model without individual factors shows a fit to the data in the range of the preceding literature. The models with individual 
factors show a better fit to the test dataset than the model without. The inclusion of individual factors has, however, varying 
results when predicting the validation dataset. This can be explained by the high multicollinearity found among the predictors. 
This causes the regression coefficients to be very sensitive to small changes in the model.  

Keywords: Shoulder; Kinematics; Scapulo-humeral rhythm; Shoulder rhythm; Regression model. 

 
1  INTRODUCTION 
The shoulder is, from a biomechanical standpoint, the most complex structure in the human body. It is also the most mobile 
joint in the body, relying on an intricate system that allows motion in six degrees of freedom. It is comprised of four joints. 
The rounded humeral head articulates with the glenoid cavity of the scapula, forming the glenohumeral joint. The 
acromioclavicular joint is formed by the junction of the lateral clavicle and the acromion process of the scapula. The 
sternoclavicular joint results from the articulation of the medial aspect of the clavicle with the manubrium of the sternum. 
Finally, the scapulothoracic joint, which is not a true anatomic joint, since it does not display the usual joint characteristics, i.e., 
union by fibrous, cartilaginous, or synovial tissues, is formed by the articulation of the scapula with the thorax. The shoulder 
joint plays an important role in many daily activities as well as in sports performances.  

It is composed of three bones, the clavicle, the scapula, and the humerus. Together they form a kinematic chain: during 
movement of the upper limb a defined relation between their individual motions has been observed (Hogfors et al., 1991; 
Inman et al., 1944). This movement pattern has been called the shoulder rhythm (De Groot & Brand, 2001; Grewal & 
Dickerson, 2013; Xu et al., 2014a). Assessing the orientation of the shoulder girdle bones using in vivo non-invasive methods 
can be difficult due to the soft tissue overlying the bones (Brochard et al., 2011; Karduna et al., 2001; Prinold et al., 2011; van 
Andel et al., 2009). Nowadays, the application of a scapula locator is considered the optimum method for non-invasively 
tracking the movement of the scapula (Meskers et al., 2007). Static measurements using this device are found to provide more 
accurate data when compared to a dynamic acquisition, as the mismatches due to skin deformation are minimized (van Andel et 
al., 2009). Some studies have taken a regression-based shoulder rhythm approach (Hogfors et al., 1991; De Groot & Brand, 
2001; Grewal & Dickerson, 2013), using the more easily measurable humeral orientation to estimate the orientations of the 
scapula and clavicle. Some of these studies also consider readily available anthropometric factors as covariates in the regression 
process. This results in a set of regression equations that help define the shoulder rhythm. However, these regression equations 
tables have a limited range of application due to the considered envelope of arm postures. Extrapolating shoulder rhythms to an 
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untested range may result in poor prediction of the scapula and clavicle orientation (Xu et al., 2014a). 

In this work 3-D shoulder rhythm regression model are extended to a wider envelope of arm postures. Past studies have 
neglected arm postures in negative planes of elevation. To do so, an optoelectronic tracking system, complemented with inertial 
measurement units (IMU) and an external frame, is used to acquire shoulder kinematics. This external frame is built with the 
goal of improving the consistency of arm positioning and the comfort of the subjects. Shoulder kinematics are assessed using a 
non-invasive procedure with cutaneous markers and a scapula locator to help determine the locations of three scapula 
landmarks simultaneously. This scapula locator is 3-D printed to reduce the inaccuracies that arise relating to the placement of 
markers or soft tissue displacement. Two types of regression models are built to predict the 3-D orientations of the clavicle and 
scapula. The first model uses exclusively the humerus orientation as a predictor. The other two regression models use as input 
the humerus orientation as well as readily available anthropometry data as predictors. The regression models are validated 
using an independent dataset. 

 

2 METHODS 
2.1 Data acquisition 
The present work focuses on the relationship between the movement of the humerus, the clavicle and the scapula. To study it 
12 right-hand-dominant subjects (6 females and 6 males, 26.4 years ± 9.8, height: 1.72 ± 0.1 cm; weight: 66.1 ± 10.5 kg) with 
no acute or chronic upper extremity musculoskeletal disorders are recruited. Their anthropometrical data are represented in 
Table 1. The 3D-kinematics of the shoulder rhythm are collected using the precision motion capture and 3-D positioning 
tracking system Qualysis Tracking Manager (QTM), at the Lisbon Biomechanics Laboratory (LBL). It utilizes 14 digital 
infrared cameras interacting with 22 retro-reflective markers and one marker cluster per arm. The retro-reflective markers are 
attached to the bony landmarks of the thorax, clavicle, scapula, humerus and forearm, of each subject’s right arm.  The shoulder 
is tracked in a series of static arm postures in five elevation planes (-90º, -60º, -30º, 0º, 45º and 90º), five elevation angles (0º, 
40º, 80º,120º,160º) and in three humeral axial rotation configurations (maximum internal, neutral and maximum external). The 
arm is kept straight in all tested postures. The data acquisition includes the usage of an external frame, a scapula locator and 
inertial measurement units, as detailed in Sections 2.2, 2.3 and 2.4, respectively. 

 
Table 1: Average anthropometry data for the 12 subjects that participated in this study 

Anthropometry Data Definition Average (mm) SD (mm) 

Length Thorax IJ-PX 191.2732 26.5123 

Depth Thorax PX-T8 237.2062 21.6918 

Length Clavicle SC-AC 155.3850  13.0864 

Length Scapular Spine AA-TS 127.2294 10.8616 

Length Scapula AA-AI 189.3719 14.5157 

Upper Arm Length AC-EL 347.2010 16.2983 

 

2.2 External Frame 

The external frame aims at standardizing and supporting arm posture. It consists of a vertical support in the shape of a 
“question mark”. The arc has an amplitude of 180º and a radius of 22 cm and is located at the end of a linear 78 cm segment. 
The discretized elevation angles are painted on the frame’s arc. The vertical support is fixed (encastre) in a 30x1.8x10 cm wood 
platform, stabilized by two blocks. This platform is allowed to rotate around the axis of a 20 cm steel screw, fixed (encastre) in 
a panel laid on the floor. This rotation allows the entire vertical frame to rotate to the selected thoracohumeral elevation plane, 
painted on the floor panel. The participant has to be aligned with the centre of the external frame, in order to correctly attain 
each humeral. For the more uncomfortable postures an extra frame (Figure 1b) is set next to the participant’s left arm to provide 
extra support and minimize lateral flexion of the thorax. 
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   (a)                                            (b) 

Figure 1: (a) Overview of the built external frame; (b) Data acquisition for a humeral posture in the 0º elevation plane and with 160º 
elevation angle and maximum internal rotation, with the aid of the two external frames. The digitally superimposed protractor has the 

goal of visually estimating the joint elevation angle and assuring it matched the given frame elevation angle 

2.3 Scapula Locator 

The scapula locator is designed using SolidWorks and then 3-D printed. This three-rod device uses the two adjustable beams to 
locate the positions of the scapula’s angulus acromialis, trigonum spinae, and angulus inferior. After adjusted to the individual 
scapula, the rods are fixed into a rigid triangular position. At each new position, the scapula locator is readjusted to the bony 
landmarks of the scapula and a new recording is made. After 9 designs with various flexion angles, thicknesses, lengths and 
edges profiles, the final design, shown in Figure 2, is reached. The two segments of the scapula locator are printed with a 17º 
degree of curvature to better adjust to the natural curvature of the participant’s scapula region. This value is chosen following 
the average curvature of the upper thoracic spine of 16.5º (Wakimoto et al., 2018). The corners of the apparatus are rounded to 
improve ergonomics.  

2.4 Inertial Measurement Units 

A wireless inertial sensor system Biosyn’s F.A.B. System-Functional Assessment of Biomechanics, from Biosyn, Canada, is 
used. The IMU are placed over the skin or clothes using elastic bands. The sensor data are transmitted to a receiver (F.A.B Belt 
Clip receiver) and then to the computer to which it is connected. Here, an avatar is animated and displayed in real time, 
providing immediate visual feedback. This helps detect thorax tilts and the need to readjust the participant’s posture or the 
bench’s height. These sensors also estimated in real time the humeral axial rotation, which allowed the participant to be directed 
to the neutral axial rotation. The sensors also estimated the thoracohumeral joint’s elevation angle before kinematic data were 
processed. 

2.5 Data Analysis 

For each arm posture, joint angles are calculated using software developed in-house (Quental et al., 2015, 2018) and coded in 
MATLAB (Mathworks, Natick, MA). Joint angles are calculated using the three-dimensional coordinates of relevant markers. 
The glenohumeral joint centre is estimated using the algorithm of Gamage & Lasenby (2002). The thoracohumeral joint, 
scapulothoracic joint and the sternoclavicular joint angles are decomposed using the Euler angle sequence recommended by the 
ISB (Wu et al., 2005) (Table 2). 
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Table 2:  Euler decomposition orders and their interpretations according to ISB standards (Wu et al., 2005) describing the orientation of 
clavicle, scapula, and humerus orientation with respect to the thorax. 

Joint Euler decomposition   
order 

Rotation description Designation 

Sternoclavicular Y 
X 

Retraction/protraction  
Elevation/depression  

SC1 
SC2 

Scapulothoracic Y 
X 
Z 

Retraction/protraction  
Lateral/medial rotation  
Anterior/posterior tilt  

ST1 
ST2 
ST3 

Thoracohumeral Y 
X 
Y 

Plane of elevation  
Elevation  
Axial rotation  

HT1 
HT2 
HT3 

 
2.6 Regression Models 

 
Out of the 12 subjects (6 females and 6 males), 4 females and 4 males (age: 27.8 ± 12.0 years, height: 1.72 ± 0.04 m, weight: 
66.4 ± 9.5 kg) are randomly selected to build the regression models. Two types of regression models are computed: the first 
type included only the three thoracohumeral angles as predictor variables; and the second type included the three 
thoracohumeral angles as well as a selection of individual factors as predictors. Each regression model is built through a two-
step regression process, in agreement with previous studies (de Groot and Brand, 2001; Grewal and Dickerson, 2013; Xu et al., 
2014a). In the first step, all predictors are centred to reduce multicollinearity (Aiken et al., 1991) and the z-score of each 
variable’s measurement is calculated. The three thoracohumeral angles are treated as continuous variables, and, in the models 
that included individual factors, gender is treated as a nominal variable while the remaining individual factors are treated as 
continuous variables. A linear regression model is used to assess the influence of the independent variables, detailing the p-
value for each variable and defining the significant variables. In the second step, the significant variables from the first step are 
treated as continuous variables to build the regression equation by forward and backward stepwise regression. For the stepwise 
regression, the p-value required for a term to be entered in the model (i.e. considered a predictor variable) is 0.05, and the p-
value for a term to be retained in the model is 0.10. In previous studies (Grewal and Dickerson, 2013; Xu et al., 2014a), only 
the thoracohumeral angles, if deemed significant in the first step, had their quadratic and interaction terms evaluated in the 
second step. In this study, this analysis is extended to all significant variables, in order to better understand the influence of 
individual factors on the shoulder rhythm as well as the dependency between predictor variables. The output model may 
contain an intercept, linear and squared terms for each significant predictor, and all products of pairs of significant distinct 
predictors. 

Three regression models are developed: Model 0 (M0), Model 1 (M1) and Model 2 (M2). Model 0 includes only the three 
thoracohumeral angles as predictor variables. Model 1 includes as predictors the three thoracohumeral parameters plus a 
comprehensive set of 10 individual factors: gender, age, height, weight, thorax length, thorax depth, clavicular length, scapular 
spine length, scapular length, upper arm length. The anthropometric data includes segments that are constrained by their 
relation in a closed chain mechanism. If predictors are correlated among themselves, multicollinearity is said to exist among 
them. Correlation between predictor variables does not exclude the ability to obtain a good model fit or tend to affect inferences 
about mean responses or predictions of new observations. However, the estimated regression coefficients tend to have large 
sampling variability and thus the estimated regression coefficients tend to vary widely from one sample to the next when 
predictor variables are highly correlated (Kutner et al., 2005). Variable inflation factors (VIF) are estimated to assess the 
strength and sources of collinearity among the variables. The higher the VIF, the more serious the multicollinearity, thus 
requiring correction. The three variables with the highest VIF are excluded from the second step of the regression analysis. The 
remaining variables were included as predictors. Lastly, an alternative third model, Model 2, is devised. The adopted strategy 
involved performing Belsley collinearity diagnostics (Belsley, 1991) and analysing the Pearson correlation coefficients. Belsley 
collinearity diagnostics consist of a two-step procedure. First, singular values of the scaled variable matrix are computed and 
converted into condition indices. These values represent the collinearity of combinations of variables in the dataset, through the 
relative size of the eignevalues of the matrix. Afterwards, the variance of the ordinary least squares estimates of the regression 
coefficients in terms of the singular values (variance-decomposition proportions) is computed. These values indicate the 
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proportion of variance for each regression coefficient (and associated variable) attributable to each condition index 
(eigenvalue). These identify groups of variables involved in dependencies, and the extent to which the dependencies degrade 
the regression. Afterwards, an analysis of the Pearson correlation coefficients is made. If two variables have a Pearson 
correlation coefficient above 0.75, one of them is dropped. This process is repeated until only variables with correlation 
coefficients (between them) below 0.75 existed. These final variables are then included as predictors in the stepwise regression. 

 
2.7 Model Validation 
The data of the remaining 4 participants not chosen to integrate the model building (2 females and 2 males, age: 23.8 ± 1.3 
years, height: 1.73 ± 0.11 m, weight: 65.5 ± 14.1 kg) are used to validate the regression models. Lastly, the model developed by 
Xu et al. (2014a) that only included thoracohumeral angles and the model developed by Grewal and Dickerson (2013) were 
applied to this work’s validation dataset. This was made to assess how well the regression equations developed by other 
authors, which exclude thoracohumeral negative planes of elevation, estimate the wider-ranging dataset of joint rotations 
contained in the present work.  

 
3 RESULTS AND DISCUSSION 

3.1 Regression Equations 
The following tables 3 and 4 indicate the obtained regression equations for Model 0 (M0), Model 1 (M1) and Model (3). All the 
equations are in Wilkinson notation (Wilkinson et al., 1973). In this notation, each term is multiplied by the coefficient 
associated with it. A colon ( : ) between two variables indicates the interaction (product) of the two independent variables. The 
intercept is added to all the other variables predictors as its value, the intercept’s coefficient. The joint angle is calculated in the 
form: Joint Rotation = Intercept’s coefficient + Term1 * Coefficient 1 + Term 2 * Coefficient2 + … Term n * Coefficient n , 
where the terms 1 to n are the terms listed in each row of the following tables and the coefficients 1 to n are their corresponding 
coefficients. 

 
Table 3: Regression equations obtained for the scapular retraction/protraction (ST1), scapular lateral/medial rotation (ST2) and scapular 

anterior/posterior tilt (ST3 for Model 0 (M0), Model 1 (M1) and Model 2 (M0). 
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Table 4: Regression equations obtained for the clavicular retraction/protraction (SC1) and clavicular elevation/depression (SC2) for Model 0 
(M0), Model 1(M1) and Model 2 (M2). 

 
3.2 Analysis of Developed Models 
For the first model, excluding all individual factors, the first step of the regression analysis indicated that all 
thoracohumeral predictors contributed to all sternoclavicular and scapulothoracic joint angles. The second step eliminated 
HT2 as a predictor of retraction/protraction of the scapula and HT1 as a predictor of the elevation/depression of the 
clavicle. The lateral/medial rotation of the scapulothoracic joint had the greatest R2, of 0.81, while the 
retraction/protraction of the scapulothoracic joint had the least R2, of 0.26. The RMSE of the model ranged between 5.26º, 
for the anterior/posterior tilt of the scapula, and 8.36º, for the retraction/protraction of the scapula. For the validation 
dataset, R2 ranged between 0.05, for the retraction/protraction of the scapula, and 0.75 for the retraction/protraction of the 
clavicle, while the RMSE ranged from 5.05º, for the anterior/posterior tilt of the scapula, and 10.80º, for the lateral/medial 
rotation of the scapula. 

 

Figure 3: The correlation between the measured and the predicted sternoclavicular and scapulothoracic joint angles for Model 0. 

Model 1 considered the three thoracohumeral angles as well as the individual factors. After the statistical processing, thorax 
depth, scapular length and upper arm length were the three variables with the highest VIF and were thus excluded from the 
second step of the regression analysis. Quadratic prediction models were obtained for all scapular and clavicular angles. The 
retraction/protraction of the sternoclavicular joint had the highest R2 value of 0.86, which means that approximately 86% of the 
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observed variation can be explained by the model's inputs. As with Model 0, retraction/protraction of the scapulothoracic joint 
had the lowest R2 value of 0.62. The RMSE of the model ranged between 3.75º for the anterior/posterior tilt of the scapula and 
7.09º for lateral/medial rotation of the scapula.  

 

Figure 4: The correlation between measured and predicted sternoclavicular and scapulothoracic joint angles for Model 1. 

Model 2 included both Belsley collinearity diagnostics (Belsley, 1991) and analysing the Pearson correlation coefficients, in 
order to reduce multicollinearity among variables. The first indicated all variables with the exception of the three 
thoracohumeral angles, i.e., all individual factors were involved in strong dependencies. Afterwards, the predictor variables 
selected to integrate the stepwise regression were decided following an analysis of the Pearson correlation coefficients. The 
only predictors with correlation coefficients (between them) below 0.75 were age, weight, scapular spine length, clavicular 
length, thorax depth and upper arm length, plus the three thoracohumeral angles, HT1, HT2 and HT3. Quadratic prediction 
models were obtained for all scapular and clavicular angles. The retraction/protraction of the sternoclavicular joint had the 
greatest R2 value of 0.89, retraction/protraction of the scapulothoracic joint had the least R2 value of 0.65. The RMSE of the 
model ranged between 3.60º for the anterior/posterior tilt of the scapula and 6.63º for lateral/medial rotation of the scapula. 

 

Figure 5: The correlation between the measured and the predicted sternoclavicular and scapulothoracic joint angles for Model 2. 

Some differences are exhibited between the regression models computed in this study and those from past works (de Groot and 
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Brand, 2001; Grewal and Dickerson, 2013; Xu et al., 2014a). Xu et al. (2014a) considered the three thoracohumeral parameters 
significant for all joint rotations, with the exception of scapular retraction/protraction. This was not supported by this work or 
the work of Grewal and Dickerson (2013). Both in his work and in this study, the three thoracohumeral angles were significant 
predictors for all joint angles except for scapular retraction/protraction and clavicular elevation/depression. In the present study 
scapular retraction/protraction was only influenced by HT1 and HT3, which is in agreement with the work of Xu et al. (2014a) 
but opposes the findings of Grewal and Dickerson (2013), where the two significant angles were HT1 and HT2. A possible 
explanation for this could be the more efficient thoracohumeral discretization achieved by the present work and the one from 
Xu et al. (2014a). In the present work axial rotation was tracked using IMU and Xu et al. (2014a) resorted to frame 
stabilization. Grewal and Dickerson (2013) did not track the axial rotation configurations, which might have obscured the 
influence of this parameter angle. In what concerns clavicular elevation/depression both this study and the one from Grewal and 
Dickerson (2013) considered HT2 and HT3 as the only significant thoracohumeral predictors. All three clavicular 
elevation/depression regression equations obtained in this work have a squared elevation angle predictor term. This is supported 
by observed non-linear changes of clavicular elevation with humeral elevation (Barnett et al., 1999; Ludewig et al., 2009; 
McClure et al., 2001). Every sternoclavicular and scapulothoracic joint angles had, in models 1 and 2, individual factors as 
significant predictor variables. This agrees with Xu et al. (2014a) but opposes the findings of other previous works. In de Groot 
and Brand (2001), it was found that gender and anthropometry data were not significant predictors. In Grewal and Dickerson 
(2013), age, height, and weight were also excluded in the regression model due to lack of predictive power. Xu et al. (2014a) 
hypothesized that this could be a result of participant selection. In his study, the participants had a larger diversity in terms of 
age and weight than the participants in those previous studies, which might have contributed to less model predictability and 
accentuated the effect of the individual factors. All individual factors considered in this study impacted at least one of the joint 
rotations, with the exception of scapular length, which was always excluded by the statistical processing. Scapular length was 
shown to be involved in severe multicollinearity. This is in agreement with Campobasso et al. (1998) who found that the 
scapula could be reliably employed for the estimation of stature in forensic practice. 

The models show how the inclusion of individual factors in the regression improves the fit to the data from the test group. This 
is possibly due to the increase in degrees of freedom (maximum number of logically independent values, which are values that 
are free to vary). But this inclusion has varying results when predicting the validation dataset. This is a direct consequence of 
the multicollinearity among the predictor variables. Multicollinearity causes the estimated regression coefficients to vary 
widely from one sample to the next. All in all, the inclusion of individual factors worsened the predictability of mainly 
clavicular retraction/protraction and, for Model 1, scapular anterior/posterior tilt. For the current model with no individual 
factors, the RMSE are in a similar range as those found in the works of de Groot and Brand (2001) and Xu et al. (2014a) . The 
inclusion of individual factors in our model reduced the computed RMSE, which were in general lower than the ones in the 
literature. The values of R2 in Model 0 were higher than the ones obtained by Xu et al. (2014a). The inclusion of individual 
factors in our models further increased R2. 

The models applied to the validation dataset which included individual factors revealed a difference between measured and 
predicted values in the range of the models derived by de Groot and Brand (2001) and Xu et al. (2014a). The differences were, 
however, generally larger than the ones found in the work of Grewal and Dickerson (2013), especially those in Model 2. This 
may be due to the inclusion of a larger selection of anthropometric data in the regression models of this study, which likely 
increased multicollinearity problems, even when filtered through the analysis of the Variable Inflation Factors (VIF) (Model 1) 
and the Belsley collinearity diagnostics and Pearson correlation coefficients (Model 2). On the other hand, past regression 
models were built using a larger number of participants with greater diversity of age, height, weight and anthropometric data. 
This could explain why past models showed better predictive power in their respective validation stages, as the regression 
equations were computed using more diverse values of predictor variables. 

Lastly, the model developed by Xu et al. (2014a) that only included thoracohumeral angles was applied to our validation 
dataset. The largest error was obtained for the scapular lateral/medial rotation, where the RMSE was 14.00°. The application of 
Model 0 to the validation dataset also resulted in the largest error for this joint angle, with RMSE = 10.80º. The RMSE obtained 
from the validation dataset used by Xu et al. (2014a) was the second highest presented in his work, 7.40°. The best prediction 
using the equations of Xu et al. (2014a) was observed for clavicular retraction/protraction (R2 = 0.70). The same process was 
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done for the model developed by Grewal and Dickerson (2013), applying it to our validation dataset. The largest error was 
obtained for the scapular lateral/medial rotation, where the RMSE was 14.50°. It was also the angle where Model 0 presented 
the highest RMSE. The best prediction using the equations of Grewal and Dickerson (2013) was observed for clavicular 
retraction/protraction (R2 = 0.45), which is in agreement with the highest R2 found in his own work. It was also the joint angle 
for which the equations from Xu et al. (2014a) provided the best prediction. This shows the equations developed in these past 
works have moderate success predicting some of the studied joint angles for wider-ranging humeral postures, specifically those 
in negative elevation planes, being surpassed by the model developed over the course of this work. 

 
3.3 Accuracy of the External Frame 
All the postures, with the exception of the ones with a thoracohumeral elevation of 0°, were standardized with the aid of the 
external frame. This frame efficiently systematized the tracked postures. The highest angle differences occurred at the most 
negative elevation plane (frame defined plane of -90°) where the average angle difference between frame-defined and measured 
planes was 17.4°, and at the postures with the highest elevation angle (frame defined elevation angle of 160°). For this 
elevation angle, the average angle difference between frame-defined and measured elevation angles was 23.7°. This is a 
significant improvement to the work of Xu et al. (2014b) who had a lower maximum elevation angle (150°), for which average 
angle differences of 49.2° were found. This shows an improvement in the standardization of humeral postures even at the most 
extreme positions of the novel range of motion. 
 
4 CONCLUSION 
Regression equations for 3-D multiplanar shoulder rhythms were developed considering a larger envelope of arm postures than 
the one currently available in the literature. Past studies neglected arm postures in negative planes of elevation, which are 
particularly prevalent in ample upper limb motions, such as those in swimming activities. An optoelectronic tracking system 
complemented with the usage of inertial measurement units was used to acquire shoulder kinematics, in a series of arm postures 
supported by an external frame. This external frame efficiently improved the consistency of arm positioning and the comfort of 
subjects. A three-pointed palpatory, scapula locator, was 3-D printed to help locate the scapular anatomical landmarks during 
postures with significant soft tissue displacement. Overall, this work was successful in extending the regression-based 3-D 
shoulder rhythm equations to a wider range of arm postures. The model without individual factors showed a fit to the data in 
the range of the preceding study with the highest angular resolution of arm postures (Xu et al., 2014a). This allows the 
conclusion that an extension of the 3-D regression models to ranges of motion including negative planes of humeral elevation 
was possible, without compromising the models´ predictability. The impact of individual factors on the regression models 
requires, however, a more careful approach. The models with individual factors showed a better fit to the initial test dataset than 
the model without, possibly due to the increase in degrees of freedom. The model from the validation dataset showed, on the 
other hand, that the inclusion of individual factors in the regression has varying results when predicting the validation dataset. 
This can be explained by the high multicollinearity found among the predictor variables, which causes the computed regression 
coefficients to be very sensitive to small changes in the model. Even after a preselection of the individual factors through a 
statistical study, multicollinearity was still found. The anthropometrical data includes segments that are constrained by their 
relation in a closed chain mechanism and thus a degree of variable dependency is unavoidable. This study had important 
limitations. First and foremost, the subjects were selected from an homogenous group. This lack of diversity might have 
confounded the influence of personal factors.  Additionally, the effects of force exertion on shoulder rhythm were not studied. 
A future study should consider these external forces in conjunction with the newly tested negative planes of humeral elevation. 
Another point of future interest is the definition of the body orientations. This study used Euler angles, in alignment, and to 
allow comparison, with the existing literature. These orientation angles are computed from a given rotation matrix by 
performing an inverse transformation. The inverse transformation problem has, however, two solutions for which two of the 
Euler angles, describe the same rotation and cannot be computed separately, and thus one degree of freedom is lost (Project, 
1986). This problem can be solved using Euler parameters to parametrize the rotation matrix. It would therefore be interesting 
to see a 3-D regression model that studied the shoulder rhythm using as predictors thoracohumeral positions represented by 
these Euler parameters. This could help generalize the prediction of the shoulder rhythm from the positions of the thorax and 
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the arm and thus lead the way to a better understanding of the intricacies of shoulder kinematics. 
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