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Finalmente, aos meus amigos que estão comigo desde o inı́cio, obrigado pela amizade e por todos

os momentos que passamos ao longo desses anos.

Em especial agradeço a Alexandra pela paciência e por acreditar em mim. Obrigado por estar

sempre presente.

iii



iv



Resumo

O uso de marcadores como pontos de referência têm sido cada vez mais frequente em diversas

aplicações incluindo sistemas de localização em espaços fechados, robótica e realidade aumentada.

De um modo geral, a localização dos marcadores é crucial para um desempenho eficiente e confiável da

aplicação em questão, como por exemplo, no caso de localização em espaços fechados, onde o erro de

posicionamento aumenta de forma significativa devido a obstáculos e oclusões, frequentes nesse tipo

de ambiente. Também, na ausência de um método de localização absoluta, as estimativas de posição

estão sujeitas a erros provenientes do escorregamento das rodas no caso de veı́culos terrestres e aos

erros acumulativos tı́picos dos sensores inerciais usados em drones.

Esta tese apresenta um método de optimização para colocação de marcadores em um determi-

nado ambiente, que é representado no plano como um polı́gono, para fins de navegação de robots

terrestres, aéreos ou mesmo subaquáticos munidos de sensores não omnidirecionais. Além disso, o

método desenvolvido leva em consideração as dimensões dos marcadores. Em primeiro lugar, é re-

solvido um problema relaxado assumindo marcadores pontuais e evoluindo para uma abordagem real-

ista considerando pontos de referência não pontuais. O método implementado consiste em duas fases:

primeiro, um conjunto de intervalos candidatos a receber um marcador, são calculados por algoritmos

de complexidade polinomial; segundo, a colocação dos marcadores é formulado como um problema de

Programação Linear Inteira e por intermédio de um solver padrão, obtém-se uma solução globalmente

óptima.

Quando restringido ao mesmo perı́odo de tempo, o método desenvolvido obtém melhor cobertura

do que um conjunto de meta-heurı́sticas considerados. Uma abordagem de optimização multi-critério

permitiu estudar um possı́vel trade-off entre a cobertura e o número de marcadores instalados.

Palavras-chave: Marcadores, Problema de Optimização, Programação Linear Inteira, Localização.
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Abstract

Landmarks have an important role in a wide range of applications in different fields including indoor po-

sitioning, mobile robotics, and augmented reality. In the general case, the localization of the landmarks

is crucial for efficient and reliable performance of the application, for instance, in the case of indoor posi-

tioning systems where the accuracy of the position estimation drops significantly in occlusion situations.

In addition, the position estimation is affected by wheel slippage for ground vehicles and accumulative

errors typical from inertial sensors used in aerial vehicles.

This thesis presents an optimization method for landmarks placement in a polygonal environment,

for ground, underwater, and aerial autonomous vehicles featured with non-omnidirectional sensors. In

addition, the developed method considers the dimensions of the landmarks. Firstly, a relaxed problem is

solved by assuming pointwise landmarks and evolving to a realistic approach considering non-pointwise

landmarks. The implemented method consists of two phases: first, a set of candidate intervals in which

a landmark can be placed, are computed by polynomial-time algorithms, and second, the landmarks

placement problem is formulated as an Integer Linear Programming (ILP) and a globally optimal solution

is obtained through a standard ILP solver.

The method satisfies theoretical upper bounds established by Art Gallery Theorems. When con-

strained to the same period of time our method obtains better coverage than a set of meta-heuristic

algorithms considered. A Multi-criteria optimization problem formulation allowed us to study a possible

trade-off between the coverage and the number of landmarks.

Keywords: Landmarks, Mobile robotics, Localization, optimization problem.
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Chapter 1

Introduction

1.1 Motivation

The advances in electrical, mechanical and computer engineering and the rise of artificial intelligence in

recent years have fueled the growth of autonomous systems. Robots, networks of sensors and actua-

tors, autonomous vehicles and other devices have been used in several civilian and military applications,

performing monotone, difficult, or even dangerous tasks to human beings in applications such as en-

vironment monitoring, mapping, survey, surveillance and rescue. The idea that motivates this present

thesis is a real example of this trend, proposed by the Institute for Plasma and Nuclear Fusion (IPFN),

which consists of using Unmanned Aerial Vehicles (UAV) inside nuclear facilities, intending to perform

inspection operations to minimize hazardous exposures to radiation. Since 2008, IPFN in a collab-

oration with the Institute of Systems and Robotics (ISR) has been participating in Remote Handling

activities of the International Thermonuclear Experimental Reactor (ITER) that aims to use fusion as a

large-scale and carbon-free energy source. In a thermonuclear reactor, tasks including inspections and

maintenance operations can become potentially dangerous exposures to radiation when performed by

humans.

Aerial inspection is a recent demand application aiming to decrease human risk and reduce opera-

tional costs and the time of inspections [1]. There are several research projects in which UAVs perform

inspections tasks in a wide range of terrains and situations such as bridges [2], power plant boilers [3],

wind turbines [4] and tunnels.

Generally, navigation and/or localization are crucial aspects for autonomous systems with an essen-

tial role in system control. An efficient and reliable navigation and/or localization method increases the

operational capabilities, reduces the risks and costs of the autonomous system. The usual practice in

mobile robotics is to combine measurements obtained through satellite-based signals e.g. the Global

Positioning System (GPS) with inertial sensor-based methods complemented with traditional filtering

techniques to estimate the position and orientation. Inertial sensor-based are Relative (local) Localiza-

tion methods that use data obtained from a set of sensors such as accelerometers, gyroscopes and

magnetometers, also known as Inertial Measurement Unit (IMU). For instance, accelerometers and gy-
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roscopes are used to measure linear acceleration and angular rate, respectively. The measurements

are integrated once for the gyroscope and twice for the accelerometers to yield position and orientation,

the integration starts from a known position and the estimations are continuously updated in time [5].

Inertial navigation systems are self-contained since they do not need external references, which

makes them immune to occlusions, shadowing, or signal outage [5, 6]. However, when used over

longer periods the sensor readings are impacted by drift and offsets, due to the integration, any small

constant error increases without bound. Hence, the importance of merging with an Absolute (global)

Localization method like GPS which does not require noisy data integration. On the other hand, for

some indoor applications, GPS is not a reliable method, since GPS signals are much more attenuated

as they propagate through buildings; multipath interference is more intense and disruptive regarding the

signal acquisition indoors [7].

Therefore, solutions for the indoor localization problem have been provided, including radars, laser

sensors, ultrasonic sonars, infrared sensors, radio frequency identification (RFID) devices and vision-

based systems. Also technologies like WiFi, Ultra-Wide-Band (UWB), Wireless Local Area Networks

(WLANs) and Bluetooth systems, which play an important role in the emerging fields of Indoor Position-

ing Systems (IPS), Ambient Assisted Living (AAL) and Internet-of-Things, among others [8]. Surveys of

indoor localization systems and technologies for these emerging applications are presented in [8, 9].

However, despite the significant differences between the referenced solutions, a common feature in

most of them is the need to deploy appropriate reference devices in the environment where possible

targets are supposed to be localized and tracked. Usually, such devices (sometimes referred to as

“anchor nodes”, “tags”, “markers” or “landmarks”, depending on whether they are active or passive

and on the kind of sensing technology adopted) have known coordinates and/or orientation in a given

reference frame [10]. For practical reasons, it is not convenient to consider an arbitrarily large number of

artificial landmarks which in addition to the cost would require significant computational power. Hence,

one question that immediately arises is: Where to place the landmarks to have continuous position

and orientation estimation? The focus of this thesis is the subsequent Optimization Problem, which

consists in determining the optimal placement of a set of landmarks for a given environment.

This thesis proposes a novel method to optimize the landmarks placement, in a polygonal shape

environment, for navigation purposes of an agent (a robot, unmanned vehicle, or even a person) fitted

with a detection system with limited field-of-view and finite range. This thesis builds upon the work of

Cordeiro [11]. In his work, Cordeiro used a Monte Carlo algorithm to obtain the landmarks placement,

which does not guarantee optimality.

The implemented method is based on a set of witness poses that are randomly generated or obtained

from predefined trajectories and it involves two major steps:

• Pre-Processing phase where a visibility algorithm computes a set of potential locations (intervals

along the edges of the polygon) for the landmarks;

• Optimization phase where the pose coverage problem is formulated as an ILP and finally, a stan-

dard ILP solver is used to obtain the optimal solution.
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Although the approach of this thesis was originally developed bearing in mind a robot navigation

application for both indoor and outdoor environments, it is also suitable for fields such as the advertising

industry. The location of the information (in form of posters, banners, or roll-ups) is crucial to reach

as many people as possible. In such applications, it may be interesting to consider the size of the

”landmarks” (the device that supports the information), instead of a pointwise approach that is common

in landmarks placement solutions, since in the advertising industry, the size of a poster or a banner is

often not neglectable when compared with the walls of a building. Thus, due to this interesting application

and the fact that real-world landmarks are having a certain dimension, it is proposed a method able to

deal with non-pointwise landmarks.

1.2 Objectives

This thesis aims to find a solution to the problem of determining the optimal landmarks placement for a

given closed environment modeled as a polygon, to maximize the coverage of the given environment.

The implemented method relies on a simulation of a set of candidate poses of certain agents with limited

field-of-view. The coverage is defined as the percentage of the total number of agent poses where the

agent detection system identifies at least one landmark.

One of the main objectives is to develop a method that guarantees optimality, which remains an open

issue in previous works [11].

Another objective is to study a possible trade-off between the required coverage and the number

of landmarks (or the cost of landmark installation). To address this trade-off, this thesis formulates

the landmarks placement problem as a Multi-Criteria Optimization Problem, where the coverage and

the cost (number of landmarks) are two conflicting objective functions to be maximized and minimized

respectively.

1.3 Contribution

The main contribution of this thesis is the development of a global optimization method for the land-

marks placement problem. The method is implemented in two phases: a pre-processing phase and

an optimization phase. For the pre-processing phase, two visibility algorithms are developed, for both

pointwise and non-pointwise landmarks. The pre-processing algorithms compute in polynomial time the

intersections of the visibility polygons of a set of poses to generate candidate intervals where a landmark

can be placed. In the optimization phase, the landmarks placement problem is formulated as an ILP and

it is solved with a state-of-the-art ILP solver which guarantees optimality on its own.

1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2 are presented the important theoretical background

and concepts that may be unfamiliar to the reader, allowing a sustained and comprehensible unfolding
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of this project. It is also presented a survey of the state-of-the-art solutions for the Landmark Placement

Problem (LPP).

In Chapter 3 it is presented an ILP formulation of the LPP as well as the key elements to the formu-

lation of the problem including the environment, the detection system of the agents (the sensors), and

the landmarks.

Chapter 4 presents a discussion of the chosen methodology regarding the advantages and disad-

vantages of the method implemented. In addition, it is given a detailed explanation of the pre-processing

algorithms.

Chapter 5 shows the most important results obtained from the simulation of the implemented algo-

rithm in different environments. The results of a comparison with several meta-heuristic algorithms are

presented to evaluate the performance of the method.

Finally, in Chapter 6 are presented the conclusions of the results achieved in this thesis as well as

the suggestions and possible improvements for future works.
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Chapter 2

Background

This chapter provides general insight on the fundamental concepts for the comprehension of this thesis

including the Art Gallery Problem (AGP) a well-known approach to tackle sensor and landmarks place-

ment problems, point visibility concept, and Visibility algorithms to compute the region that is visible to

a given point. Finally, a literature review is presented aiming to highlight the most common and newest

solutions to similar problems.

2.1 Definitions

Point

In Euclidean geometry, a point is a primitive notion that represents an exact location in the space and has

no length, width, or thickness. In Point-Set Topology a point is interpreted as an element of a set called

space. In this thesis, a point is described by an ordered set of numbers (coordinates) so that relations

between points are represented by relations between coordinates. For instance, in a two-dimensional

Euclidean space a point is represented in Cartesian coordinates by an ordered pair (x, y) of numbers.

Line

In Euclidean geometry, a line is an object with no width, thickness, and with an infinite length, uniquely

identified by two points. Regarding a two-dimensional Euclidean space, Analytical geometry describes

a line as the set of points whose coordinates satisfy a given linear equation:

L = {(x, y)|ax+ by = c} (2.1)

here a, b and c are constant real numbers.

Line segment

A line segment is a finite portion of a line bounded by two distinct points, called endpoints. A line segment

with endpoints A and B is denoted by AB. And the length of the line segment, which is the shortest
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distance between the endpoints, is denoted by
∥∥AB∥∥. A line segment AB contains precisely those

points of the line through A and B that lie between A and B; the endpoints themselves are included in

the line segment.

Note: Often in this thesis, the term interval is used to refer to a line segment mainly a subset of a

given line segment.

Connectedness

To understand the definition of the following mathematical objects, it is important to introduce the con-

cepts of connectedness and path-connectedness. Intuitively a connected space does not fall apart into

two or more pieces [12].

Definition 2.1.1. A topological space S is connected if it does not admit partition into two non-empty

open subsets A and B such that S = A ∪B and A ∩B = ∅.

To introduce the notion of path-connectedness, one must first define the concept of path.

Definition 2.1.2. Given two points x and y in a topological space S, a path in S from x to y is a continuous

map f : [0, 1]→ X such that f(0) = x and f(1) = y. Thus, such a path is said to join x and y.

Definition 2.1.3. A topological space S is path-connected if there is a path joining any to points x and y

in S.

Intuitively, a path-connected space is simply connected if it consists of one piece and it does not have

any “holes“. In other words, S is simply connected if any closed curve in S can be shrunk continuously

into a point within S. For the following definition consider that C and D denote the unit circle and the

closed unit disk in the Euclidean plane respectively.

Definition 2.1.4. A topological path-connected space S is simply-connected if for any closed curve in S

defined by f : C → S exists a continuous map F : D → S such that F restricted to C is f .

If a topological space S is path-connected but not simply connected, then S is said to be multiply-

connected or h-connected where h ≥ 1 is the number of holes in S.

Polygon

A polygon P is a closed and path-connected space in a two-dimensional Euclidean space, bounded by

a finite set of line segments, called edges. The endpoints of an edge of P , are called vertices. The

boundary of P consists of cycles of edges and it is denoted by ∂P . Two consecutive edges in a cycle

share a vertex [13, 14].

A polygon is classified as:

• Simple polygon if it is a simply connected space. Thus, the boundary of the polygon consists of

only one cycle of edges;
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• Polygon with holes or with obstacles, if it is multiply-connected. Thus, the boundary consists of

two or more cycles of edges.

Note that in some literature sources the term ”simple polygon” refers to polygons that do not cross

themselves, and ”self-intersecting polygons”, denotes the polygons in which two nonconsecutive edges

intersect. However, this thesis does not consider self-intersecting polygons. The term ”simple polygon”

will refer only to a polygon without obstacles. Figure 2.1 illustrates both a simple and a polygon with

holes.

(a) (b)

Figure 2.1: (a) A simple polygon and (b) a polygon with holes.

Definition 2.1.5. Consider R2, a two-dimensional Euclidean space. A polygon P ⊂ R2 is said to be a

simple polygon if its boundary is a Jordan Curve i.e. if there are exactly two disjoint path-connected

subsets of R2 \ ∂P , which are the interior and exterior of P respectively. Thus, P is simply connected.

Definition 2.1.6. A polygon P ⊂ R2 is a polygon with holes if P is multiply-connected.

A polygon P consists in the union of its boundary and its interior here defined as int(P ), the comple-

mentary region of P in the plane is called exterior and it is denoted as ext(P ).

P = ∂P ∪ int(P ) (2.2)

Let P be a polygon with holes. The set of holes in P is denoted by H(P ) = {P1, . . . , Ph} where h is

the number of holes in P . Pk with 1 ≤ k ≤ h is a simple polygon enclosed by an outer polygon P0,

commonly referred to as shell of P . And P has the following proprieties:

• Pk ⊂ P0, 1 ≤ k ≤ h,

• ∂Pk ∩ ∂Pj = ∅, ∀k,j : k 6= j

• int(P ) = int(P0) \ [P1 ∪ . . . ∪ Ph]
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The set of vertices of an arbitrary polygon P is denoted by

V(P ) = {v1, . . . , vn}

and the set of edges will be denoted by

E(P ) = {e1, . . . , en}

where n is the number of vertices and edges of P , if P is a simple polygon (the boundary consists of

only one cycle of edges) then an edge ei = vivi+1 with i = 1, . . . , n and vn+1 = v1. In the case that

P is a polygon with holes, then ei = vivi+1 only if vi and vi+1 belong to the same cycle of edges. Two

vertices vi and vi+1 belong to the same cycle of edges if the line segment e = vivi+1 connecting the two

vertices is an edge of P :

∃k ∈ {0, . . . , h} : e ⊂ ∂Pk

Figure 2.2 shows the representation of a polygon with 10 vertices and 1 hole.

Figure 2.2: Representation of a polygon with one hole, where the list of edges E =
{{(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v1)}, {(v7, v8), (v8, v9), (v9, v10), (v10, v7)}} is a set of two
cycles of edges, one for the outer and other the inner (hole) boundary.

2.1.1 Point Visibility

The notion of visibility is present in everyday tasks, seeing an object means identifying the portions of

the objects that are visible to the current position of the observer and determining shapes and sizes of

the visible portions [13]. Determining the portion of a geometric object that is visible from a given source

is a well-studied and the most fundamental problem in Computational Geometry (CG) [14]. However,

this thesis considers visibility computations only in polygons.

Definition 2.1.7. Given a polygon P and a point x ∈ P , x sees or covers a point y ∈ P if the line

segment xy that connects both points lies inside the polygon: xy ⊆ P . The points x and y are both said
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to be visible from each other [15, 16].

Figure 2.3 illustrates different situations of point-visibility. The portion of P that is visible from x is

Figure 2.3: Concept of point-visibility in a polygon. The points c and d are mutually visible as there is
a direct line-of-sight, the point e is not visible from c and vice versa because an obstacle interrupts the
direct line-of-sight. Also, a is not visible from b because the line segment ab does not lies inside the
polygon.

called the point-Visibility Polygon of x in P and it is denoted by V (x). The point-visibility polygon can be

defined as V (x) = {p ∈ P : x sees p }.

Definition 2.1.8. A polygon P ′ is said to be star-shaped if exists a point x ∈ P ′ such that all points in P ′

are visible to x. The set of all such points x of P ′ is called kernel of P ′.

By construction V (x) is a star-shaped polygon [13]. And x belongs to the kernel of V (x). The Kernel

of a star-shaped polygon is always convex and it results from the intersection of all interior half-planes

determined by edges of the polygon. In figure 2.4 is presented the visibility polygon of a pose q in a

simple polygon (a) and in a polygon with holes. There are several visibility algorithms to compute the

point-visibility polygon [17–20].

2.2 Point Visibility Algorithm

In this thesis, it is used the Erdem and Sclaroff [21] algorithm to compute the point-visibility polygon.

This algorithm performs a radial sweep over a range of [0, 2π] around an interior point x of a polygon

with holes, P , computing the visible line segments of the boundary of the polygon.

Regarding the work of Erdem and Sclaroff [21], a polygon is represented as a list of edges in Carte-

sian coordinates ordered in counterclockwise (CCW) and clockwise (CW) for the outer boundary (∂P0)

and inner boundaries (the holes) respectively. Is important to remind the reader that P0 refers to the

shell of the polygon with holes P and ∂P0 denotes the outer boundary of P .
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(a) (b)

Figure 2.4: The visibility polygon of a point q (a) in a simple polygon and (b) in a polygon with holes.

ELC = {(vcs1, vce1), (vcs2, vc
e
2), . . . , (vcsi , vc

e
i ), . . . , (vc

s
n, vc

e
n)},

where vcsi and vcei ∈ R2 are the start and end vertices of ith edge.

The first step is to convert ELC to its polar coordinates representation:

ELP = {(vps1, vpe1), (vps2, vp
e
2), . . . , (vpsi , vp

e
i ), . . . , (vp

s
n, vp

e
n)}

where vpi = {θi, ri} denotes the angle and radius of the ith vertex, θi is measured between the hori-

zontal half-line starting from x to the right. With this formulation only edges satisfying θs < θe are fully or

partially visible from q, those edges which do not satisfy this condition are eliminated in this step. This

condition is evaluated by computing the cross product −→u × −→ei , between the edge −→ei 1 and the vector
−→u which is the vector connecting the point q with the start vertex of ei, note both −→u and −→ei are vectors

of R2. The cross product is positive only when θs < θe [21]. To proceed with an angular scan of the

polygon, the vertices in polar coordinates are sorted in increasing angular order, forming an ordered list

of vertices. The algorithm scans the polygon counterclockwise evaluating each vertex in the ordered list,

the visibility polygon is constructed by tracking the visible edge during the angular sweep.

Only the interior region of P0 and the outside region of the holes may form the visibility polygon. As

the vertices of P0 are ordered CCW, the inside region is the intersection of the left half-planes defined by

each edge. By ordering the vertices of the holes clockwise, the algorithm will work correctly, by detecting

that the exterior of holes is the feasible region to build the V (x).

2.3 Art Gallery Problem

The AGP is a classic problem in CG. The AGP and its variants have the goal of determining the number

and the positions of a set of guard points that are sufficient to see an entire polygon, such that every
1Here −→ei is the oriented line segment from the starting vertex to the end vertex of the edge ei.
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point in the polygon is seen by at least one of the guards. In the primal version of the AGP, the guards

are static points that can survey 360o about their fixed positions and the art gallery room is a polygon P

without holes and with n vertices. The goal is to determine the number of guards that suffice to oversee

the inner walls of any polygon with n vertices.

Several variations of the problem have been intensively studied [14], resulting in an extensive collec-

tion of theorems and algorithms addressed to find the minimum number of guards as well as to compute

their position. One of the most important theorems, known as the Chavátal’s art gallery theorem es-

tablished that bn3 c guards are occasionally necessary and always sufficient to cover a polygon (without

holes) of n vertices [14]. Since then, this theorem has an important role in CG and has been further

developed by computer scientists in the scope of partitioning algorithms. Fisk [22] gave a concise suffi-

ciency proof of this theorem. Fisk proof consists of: first, triangulate the polygon P (in such a way that

any new vertex is added) and next 3-coloring the vertices of the triangulation graph [16], so that adjacent

vertices in the graph have always different colors; choosing one of the three colors classes it will result

in a set of vertices that can see the entire polygon. The smallest set of the three classes is at most bn3 c.

This elegant proof led the way to several similar results and algorithms, such as the proof presented in

[23] for an orthogonal polygon 2, which consists in decomposing the polygon in convex quadrilaterals

rather than triangles and assigning four different colors to adjacent vertices of the resulting graph, from

which yields that bn4 c guards are always sufficient and occasionally necessary to guard any orthogo-

nal polygon with n vertices. Based on the same argument a O(n log n) guard placement algorithm is

presented in [24].

An important variant of the AGP is one in which each guard is mobile and allowed to patrol a line

segment s ∈ P . A point y ∈ P is said to be visible to s if exists a point x ∈ s such that y is visible to x.

According to the degree of mobility, the guards can be classified as an edge guard when the path of the

guard is restricted to an edge of P ; a diagonal guard when s is an internal diagonal of P ; and finally, a

line guard, which is any line contained in P . The following table presents a summary of some important

results in AGPs.

Polygon type Stationary Guards Mobile Guards

General Simple bn3 c bn4 c O’Rourke [15]

Simple Orthogonal bn4 c b(n+ 4)/16c

With Holes d(n+ h)/3e

Table 2.1: Theoretical bounds on the smallest number of guards necessary to cover a polygon with n
vertices.

Several variants of the AGP have been proved to be NP-hard even for restricted and special cases

[25–27]. Due to the complexity of these problems, researchers have been working in approximation
2An orthogonal polygon is one whose edges are all aligned with a pair of orthogonal coordinate axes, which are taken to be

horizontal and vertical.
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algorithms for some of the variants of the AGP rather than an exact solution.

Greedy strategies are natural and common approaches to address the AGP, by adding guards it-

eratively until coverage is achieved, choosing at each step a guard that maximizes the contribution to

the coverage. Greedy approximation algorithms for the AGP explore the similarities with the Set Cover

Problems (SCPs) and benefit from well-studied approximation algorithms for the SCP [28–30]. Greedy

methods are common approaches in the set cover problems, yielding O(log n) approximation ratio. Ap-

proximated solutions for the minimum vertex and edge guard problems are presented in [31], these

solutions can be computed in O(n4) for a polygon without holes and O(n5) for a polygon with holes. The

algorithms in [31] partition the polygon into convex components and construct sets from these compo-

nents. Then the Greedy heuristic approximation algorithm presented in [29] for the set cover problem

is used to locate the minimum guard set. Although, the algorithm presented in [29] has an O(log n) ap-

proximation ratio, for the AGP it is an upper bound that may not be reached due to geometric constraints.

Other approximation algorithms of the AGP including can be found in [32–35].

Recently, different approaches have been used to achieve an efficient approximation of the AGP

including randomized, heuristics algorithms and computational geometry results and techniques. A

randomized approximation algorithm is presented in [33] to locate the smallest set of vertex guards

in a polygon P with n vertices. For a simple polygon, the algorithm runs in O(nc2opt log4 n) expected

time with an approximation ratio of O(log copt), where copt is the cardinality of the optimum set. And

for a polygon with h holes, the expected running time is O(nc3opt polylog n). However, the randomized

approximation algorithm does not guarantee solutions and the quality of the approximation is correct with

high probability. A practical iterative primal-dual approach is presented in [36] to solve discrete instances

of the AGP named Art Gallery Problem with Witness (AGPW). Where given a finite set of witness points

W ⊂ P and the goal is to determine the minimum set of guards that are sufficient to cover all points inW .

The basic idea is to discretize the problem to formulate the AGP as a SCP. The algorithm successively

computes tighter lower and upper bounds by refining the witness and guard sets during the iterations

while seeking to reach an exact solution. The solutions of the primal and dual problems are used to

refine the witness and the guard candidate sets to reduce the duality gap. The procedure stops when

the lower and upper bounds coincide. Even though the algorithm obtains provably optimal solutions,

finding theoretical proof of the convergence remains an open issue. Similar approaches can be found in

[37, 38]. The main challenge of these approaches is not only to determine the ideal witness set but also

to handle the huge SCP instance that ensues. It would be interesting to consider an integration of the

visibility algorithms presented in this thesis with iterative primal-dual algorithms for the exact solution of

the AGP as the ones presented in [36–38] that are also based on a witness set.

Based on an incremental algorithm, a new heuristic is presented in [39] to solve restricted instances

of the AGP. A list of heuristic approximation algorithms based on greedy strategies is presented in [40]

for the AGP.

Generally, these approximation algorithms of the AGP have a common principle, which is to reduce

the AGP problem to an instance of the SCP [25, 31]. However, despite the relation between the two

families of problems is hard to apply straightforward IP formulation. This difficulty arises from the fact
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for the AGP, the set to be covered and the covering set is both in most cases uncountably infinite [41].

Typically the discretization of a continuous problem leads to imperfections, from which can be driven

only approximately optimal solution of the general continuous problem.

In summary, the AGP remains an open subject with significant contributions to several modern appli-

cations such as sensor and landmarks placement, motion planning, computer graphics and computer-

aided architectural design [16]. The appeal of these trending applications makes researchers around the

world seek more practical approaches and solutions while taking advantage of the solid theoretical base

from decades of research on the AGP. Similar works as the one found in [21] and the one presented

in this thesis aim to combine the well-known theoretical fundamentals of CG with realistic assumptions

that are more suitable in real worlds applications, especially regarding sensors and landmarks place-

ment problems.

2.4 Optimization Problem

Mathematical Optimization plays an important role in several areas such as economics, computer sci-

ence, logistics and engineering. The essence of an Optimization problem consists in finding the ”best”

configuration of a set of parameters to achieve some goals hence is required to identify an objective,

a quantitative measure of the performance of the system. The objective is a scalar function of certain

parameters of the system, called variables or unknowns. The variables can be constrained by budget,

time, space or any type of constraints that yield from the nature of the system at hand.

Mathematically, an optimization problem consists of maximizing or minimizing a scalar function f ,

subject to constraints on its variables. To formulate an abstract optimization problem consider:

• f a scalar that denotes the objective function to be maximized or minimized;

• x the vectors of variables or unknowns;

• ci the constraints on the values of x.

Finally, the optimization problem can be written as follows:

min
x
f subject to

ci(x) = 0 i ∈ E

ci(x) ≥ 0 i ∈ I
(2.3)

here E and I are sets of indices for equality and inequality constraints, respectively.

Depending on the nature of the variables, optimization problems can be classified into three cate-

gories:

• A discrete optimization problem has discrete variables and the optimal solution is found from a

finite or infinite countable set. A discrete optimization problem may contain not only integers and

binaries variables but also more abstract variable objects including permutations, set and graphs.

• A continuous optimization problem has continuous variables.
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• Mixed Integer Programming (MIP) are optimization problems that have both discrete and continu-

ous variables.

Due to the smoothness, continuous optimization problems are usually solved by local solvers, which

using derivative information achieve in most cases very efficient optimization. On the other hand, the

objective function of discrete optimization problems generally presents several non-differentiable points,

as well as sudden variations in the objective function and constraints which yields an extremely non-

convex behavior of the feasible set [42]. The difference between discrete and continuous optimization

problems regarding the nature of the variables and behavior of the objective leads to distinct approaches

and algorithms to find the optimal solution.

Continuous optimization algorithms are in general derivative-based methods including Line search,

Trust region, Newton-methods and others [42]. These methods are iterative and use derivative informa-

tion available at the current iterate step to generate a quadratic model of the objective function. Based

on the model it is chosen future steps in the gradient direction to minimize (or maximize) the objective

function.

In the case of discrete optimization especially for Integer Programming problems, in which typically

the lack of smoothness of the objective function does not allow the use of derivative information in the

optimization, the most popular methods are Branch-and-Bound and Branch-and-Cut. To understand

better these kinds of methods the next section is focused on a particular subset of discrete optimization

that is the Integer Programming problem.

2.5 Integer Programming Problem

Some authors consider discrete optimization as consisting of Integer Programming and Combinatorial

Optimization Problem (COP) which variables would be other than integers, for instance, graph struc-

tures, however, these two topics are closely intertwined and COP models are often referred to as integer

programming models. Classical combinatorial problems such as Knapsack Problem, Traveling Sales-

man Problem and the Set Covering Problem are often modeled as IP [43]. In this type of problem, the

vector of variables is binary, representing on/off decisions.

The most general definition for an IP is:

min f(x)

gi(x) = 0 i ∈ E

gi(x) ≥ 0 i ∈ I

x = (x1, . . . , xn) ∈ Zn

(2.4)

However, this section focus on optimization problems in which the objective function and constraints are

linear, such kind of problems are called Integer Linear Programming. On some occasions, one will refer

to ILP as just Integer Programming. The canonical form of Integer (Linear) Programming can be written
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as:

min cx

Ax ≤ b

x ≥ 0, integer

(2.5)

Where A is a m by n matrix, b is a m-dimensional column vector and c a n-dimensional row vector.

The vector of variables is denoted by x ∈ Zn. As said before ILPs are generally solved by algorithms

such as Branch-and-Bound and Branch-and-Cut [44].

The branch-and-bound algorithm can be described as the process of trying to construct a proof that a

solution is optimal, based on successive partitioning of the feasible set. During this partitioning process

are estimated lower bounds (or upper bound in case of a maximizing problem) that are used to construct

a proof of optimality without exhaustive search [43, 44]. For ILP the lower bounds are derived from a

Linear Programming relaxation. Relaxation of an ILP is the process of removing the integrality constraint

of each variable.

The ILP in 2.5 can alternatively be written as:

zIP = min{cx : x ∈ S}, S = {x ∈ Zn
+ : Ax ≤ b} (2.6)

By removing the integrality constraints we obtain:

zLP = min{cx : x ∈ P}, P = {x ∈ Rn
+ : Ax ≤ b} (2.7)

Solving the LP relaxation, we obtain x0, which in general is not an integer. The cost c(x0) of the

obtained solution is a lower bound on the optimal cost of the Integer Programming problem. Thus, if x0

is an integer then it is the solution of the original problem, in other words, if x0 ∈ S and c(x0) = zLP then

x0 is the optimal solution of the IP. Back to the case where a component x0i of x0 is not an integer, the

initial problem (2.5) is split into two subproblems adding two mutually exclusive constraints:

min cx

Problem1 Ax ≤ b

x ≥ 0, integer

xi ≤ bx0i c

(2.8)

min cx

Problem2 Ax ≤ b

x ≥ 0, integer

xi ≥ bx0i c+ 1

(2.9)
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The solution of the Integer Programming problem is in the feasible region of one of these two sub-

problems. Then, one of the subproblems is chosen and the procedure is repeated. The branch-and-

bound algorithm can be understood as a binary tree, where the feasible region of the original problem

is the root node and the other nodes are the feasible set of the subsequent sub-problems. The process

of splitting the feasible region of a node by generating new problems represents the branching of the

node’s two children.

A given node j of the tree can be pruned by the following criteria:

• Infeasibility Pj = ∅ where P i is the feasible region of the ith problem;

• Optimality xj ∈ Zn
+ and it is the solution of the IP

• Value dominance zjLP ≥ zmLP where zmLP is the optimal cost of a node m, any descendent node of

j with a solution x would have a solution cost c(x) ≥ zjLP ≥ zmLP , hence the node j is pruned

The Branch-and-cut combines branch-and-bound and the cutting plane method. The principle of the

cutting plane method is to add new constraints to an ILP that does not exclude integer feasible points,

then the optimal integer solution is preserved. Such constraints are called cutting planes. In summary,

this strategy consists of successively adding such constraints to an ILP, until the solution to the LP

relaxation is an integer. For a more detailed explanation of Integer and combinatorial optimization and

the solving algorithms, one refers to the book of Wolsey and Nemhauser [43].

This method combines the branch-and-bound and the cutting plane method.

2.6 Multi-criteria optimization problems

Several real-world optimization problems involve simultaneous optimization of multiple objectives, these

types of optimization problems are called Multi-objective or Multi-criteria optimization problems. A multi-

criteria optimization is a useful tool in different areas especially in situations that require trade-offs where

at least two objective functions are conflicting. Mathematically one can define a multi-criteria optimization

problem as:

min(f1(x), . . . , fk(x))

subject to x ∈ S
(2.10)

With the objective functions fi : X → R to be minimized (or maximized) simultaneously, where X is

the decision variable space (in case of integer programming X = Zn
+). The feasible set S is a subset of

the variable space X defined by the constraints of the problem that are not explicit in (2.10).

In the case where objective functions are conflicting, there is no single solution that is simultaneously

optimal for all objective functions, instead, this kind of problem gives rise to a set of trade-off optimal

solutions known as Pareto-optimal or non-dominated solution.
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Definition 2.6.1. A decision vector xp is said to be Pareto optimal or non-dominated solutions if none of

the components of the objective vector f(xp) = (f1(xp), . . . , fk(xp)) can be improved without deteriora-

tion to at least one of the other components.

The set of non-dominated solutions is called the Pareto frontier or Pareto optimal set.

2.7 Landmarks Placement for Robot self-Localization

The rising demand for applications such as mobile robotics, indoor positioning system and ambient as-

sisted living services has led to an increasing interest in indoor localization. Over the last few years, a

lot of research has been made to improve and design more reliable solutions for the indoor localization

problem [9]. The ability to navigate accurately is fundamental for mobile robots to execute a variety

of tasks including surveillance, transportation and manipulation, especially indoors which often contain

ambiguous areas, obstacles and traffic (of people or other robots) that are challenges to the attempt

of maintaining robust navigation. A common approach to overcome this challenge is the use of artifi-

cial landmarks from which is possible to measure the relative position and orientation [6, 10]. Several

applications in mobile robotics rely on artificial landmarks as standalone or integrated with different tech-

nologies to achieve accurate and robust localization [45–48]. Different types of landmarks are used in

several indoor localization solutions such as based on time-of-flight (ToF), radio signal strength inten-

sity (RSSI) measurements [49, 50], detection of radio frequency identification (RFID) tags [51, 52] and

vision-based systems [53].

For practical reasons it is not convenient to consider an arbitrarily large number of artificial landmarks

since generally, the computational power on-board of the robot is limited, which imposes substantial

limits on the number of landmarks that can be placed [54], as an excessive number of landmarks pose

serious scalability and cost issues [10]. Therefore, it is of interest to select the smallest number possible

of landmarks while still providing reliable and accurate localization. This raises the optimization problem

of where to place the landmarks within the environment in order to ensure a reliable localization. The

landmarks placement problem has been addressed with several approaches.

AGP-based approaches

A common strategy is to face the landmark placement as an AGP, which benefits from the theoretical

knowledge yielding from decades of research [14, 15]. As established in theory bn3 c guards are sufficient

and occasionally necessary to cover a polygon of n vertices, in this case, it is assumed that the guards

have complete peripheral perception and can detect features in the environment that are either infinitely

far or arbitrarily close. The LPP can be reformulated in terms of a sensor placement problem exchanging

landmarks by sensors [55]. In [55] an algorithm based on the AGP is proposed to compute the position

of visual landmarks, where is assumed that the landmarks are planar patch and that can be pasted

in planar walls of the environment that which its floor plan is simplified by a polygonal shape. The

objective is to maximize the area in which the robot has clear line sight to at least one landmark. The
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basic principle is that the optimal landmarks placement maximizes the sum of the areas of intersection

between the visibility region (the range of distances and the range of angles from where the visual

system can extract information from a landmark) of each landmark and the polygonal environment. A

Simulated Annealing algorithm is proposed to determine the optimal set of landmarks. As highlighted

by the author, this approach may be complementary to path planning methods based on the assumption

that a given set of landmarks already exists [56, 57] such that the landmarks create regions where

both control and positioning sensing are ensured. An AGP-based approach to solving the problem of

colored landmarks is proposed in [58]. The same landmark placement problem is considered, however,

is added the constraint that two landmarks of the same color can not simultaneously be visible from any

point of the map, the aim is to ensure that the landmarks are distinguishable. A theoretical bound was

established for the minimum number of classes (landmarks colors) needed for any guard set.

The main drawback is the fact that in real-world applications most of the sensors are not omnidi-

rectional neither have an infinite range. Thus, has emerged more realistic approaches to address the

problem, which take into consideration characteristics of the sensors such as field-of-view, resolution (in

case of optical systems) and even the dynamic motion model of the robot. A discrete instance of the

AGP employing realistic requirements of computer vision applications is proposed in [21] to solve the

general camera placement problem. In this method, each coverage region is converted into a discrete

domain represented as a grid. The goal is to find a set of cameras that maximize a given cost function.

This approach is more suitable for real-world applications when compared with other AGP-based meth-

ods since it considers realistic configurations of the cameras such as limited FoV, finite depth-of-field

(DoF) and resolution constraints. Despite the similarities, this approach distinguishes from our method

as it assumes active guards, as the landmarks are exchanged by cameras which simplify the coverage

problem in comparison with a passive-landmark placement problem where the detection of a landmark

does not depend only on the position of the robot but also on its orientation, this, obviously in case the

onboard sensor has a limited field limited field-of-view.

Control-based approaches

In [54] the extended problem of placing landmarks for localization and control of a mobile robot that

carries out, predefined navigation tasks are addressed. It is used a linearized version of the system

dynamic and sensor observation model to incrementally place the landmarks. The goal is to find the

minimum set of landmarks for which a bound is guaranteed on the maximum deviation from the desired

trajectory. This method is suitable for real-world mobile robotics applications as it can deal with arbitrary

trajectories. In addition, the maximum allowed deviation of the robot can be defined individually for every

part of the trajectories according to the risks and consequences of a collision in different regions of the

environment.

A similar approach that aims to optimally place landmarks given a predefined trajectory of an un-

manned vehicle (UV) is presented in [59]. The goal is to ensure that the system is always observable

from a control standpoint, guaranteeing that the error in state estimates of the position and heading of

the UV remains bounded while taking into account collision avoidance constraint and the restricted FoV
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of the cameras. It is assumed a discrete set of potential landmark locations in contrast with [54] where

the landmarks are selected from continuous space. In this approach, the trajectory of the UV is defined

by a set of target points, that the vehicle visits exactly once until it reaches a destination point. Thus,

the landmarks placement problem is formulated as a graph-theoretic problem where portions between

two consecutive target positions are the edges of the graph. The problem is divided into sub-problems

(one for each edge) in the UV path, a greedy algorithm is then used to obtain the optimal solution of

each sub-problem, and finally, the solutions to the sub-problems are put together to construct a feasible

solution of the global problem.

Geometrical non-AGP approach

A solution for building an accurate and reliable localization system based on combing artificial and

natural landmarks is presented in [60]. This method selects the landmark positions on the walls of

an indoor environment close to a given set of localization points. The landmark placement is done by

defining and optimizing a confidence level describing the expected localization estimation error. The

optimization criteria, the confidence level is based on geometrical information such as the distance from

the observation point and the landmarks, the observation angle and the numbers of visible landmarks.

The optimal sensor placement with limited detection area in ideally unbounded rooms is addressed

in [10]. The goal is to determine the minimum number of landmarks for any given configuration of the

sensors such that at least one landmark deploys inside the sensor detection area. The problem is

tackled as a tiling problem, where the vertices of the tiles coincide with the position of the landmarks and

the goal is converted into determining the maximum distance between the landmarks that guarantee

the detection of at least one landmark. A numerical and analytical solution was presented to solve the

optimization problem. The strength of this approach is that the configuration parameters of the sensors

are not neglected in contrast with [54] where is considered a circular field of view. However, the main

drawback is that this approach is not immune to occlusions, since in real environments the detection of

at least one landmark is not guaranteed due to obstacles.

Discussion

Depending on the application and its specifications there are several approaches to address the land-

marks placement problem. In general, AGP-based approaches consider ideal sensors, which make

these methods unsuitable for many applications. Control-based approaches are interesting especially in

robot self-localization, however, the main drawback is the limited number of specific trajectories used in

the optimization. Some methods presented in this survey, especially the ones based on the AGP rely on

approximation or meta-heuristics algorithms which, despite high efficiency do not guarantee optimality,

in contrast with our method that uses a standard ILP solver to obtain the optimal solution. A common

aspect between our method and the majority presented here in this survey is the discretization of the

landmarks placement problem, either considering a finite set of poses from specific trajectories or a finite

set of potential landmarks locations from which is selected an optimal subset. Of course, discretization
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may lead to imperfections. Increasing the cardinality of the sets of poses or potential landmarks leads

to more robust solutions, however penalizing the overall cost of the applications. Our method considers

non-pointwise landmarks, which to the best of our knowledge is barely addressed in the literature, and in

our understanding, this feature may be of interest in applications such as indoor advertising placement.
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Chapter 3

Landmark Optimal Placement Problem

3.1 Problem Statement

In theory, an infinite number of landmarks ensure that there are no occlusion or non-covered areas.

However, it is not realistic to consider an arbitrarily large number of landmarks, due to the cost of the

system and computation capability required to the pose estimation. Hence, it is of great interest to op-

timize the placement of the landmarks. As mentioned in Chapter 1, real-world landmarks are obviously

non-pointwise. In addition, for applications as indoor advertising would be more realistic to consider the

size of the landmarks in the placement problem.

Several solutions to the landmarks placement problem are discussed in Chapter 2, however, the

topic remains an open issue, due to the difficulty to find a solution for the general continuous problem

and discretization is a common strategy to obtain a tractable solution [10, 21].

This chapter addresses the problem of determining the optimal location of a given set of landmarks

both pointwise and non-pointwise in a given environment. Next is presented the key elements for the

problem formulation, namely the environment, landmarks and the characteristics of the detection sys-

tem.

Environment

In Robotics is usual to model a complex real-world environment to a simplified 2D representation, es-

pecially regarding Automated Guided Vehicles (AGVs), where the robot maintains contact with the floor,

similar simplifications are also suitable for UAV applications where the vehicle keeps its altitude approx-

imately constant. This approach reduces a complex 3D problem to a simpler problem in the plane.

Therefore, this thesis considers a simplified 2D layout representation of the real environment, The

map of the environment is assumed to be a closed and connected planar region which, for instance,

represents a building floor plan, that is allowed to have holes caused by obstacles e.g. columns, walls,

furniture. Hence, the map of the environment is modeled as a polygon, consequently, every curve

surface is approximated by a set of line segments.
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Landmarks

Throughout this thesis, it is considered passive landmarks installed on the edges of a given environment.

The landmarks are assumed to be readable by means of a sensor (e.g. cameras or RFID readers), for

instance, standard QR codes or state-of-the-art ArUco [61] for cameras and RFID tags for RFID readers

[52]. It is considered two possible representations for a landmark l:

• A point representation l = {(x, y)}, where the landmark is referred to as a pointwise landmark ;

• A line segment representation l = ab, where a and b are the endpoints of the line segment. In this

case, the line segment has a fixed length:

Dl =
∥∥ab∥∥ =

√
(xa − xb)2 + (ya − yb)2

where (xa, ya) and (xb, yb) are the coordinates of the endpoints a and b respectively. Note that in both

representations, a landmark l is treated as a set of points: a set with a single element for a pointwise

landmark and a line segment (a set of points) for a non-pointwise landmark. For P , a polygonal repre-

sentation of a given environment, the location of the landmarks is restricted to the edges of P :

Assumption 1. A landmark can be represented by a set of points. A set with a single element in case

of pointwise landmark and a line segment for a non-pointwise landmark.

Assumption 2. The landmarks are restricted to the edges of P . Thus for a landmark l exists an edge e

of P such that l is a subset of e, in other words:

∃e ∈ E(P ) : l ⊆ e (3.1)

Sensors

It is assumed agents fitted with a sensor system that allows perceiving the external environment by

identifying specific landmarks. The sensor detects the landmarks within a limited region of space, char-

acterized by a field-of-view angle denoted as θ and a detection range R. The pose of the sensor is

represented by p = (x, y, ψ), where x and y are the Cartesian coordinates of the position and ψ de-

notes the orientation, that is the angle measured between the optical axis and the XW axis of a world

reference frame 〈W 〉 = (OW , XW , YW ). Throughout this work, the region within which a landmark can

be detected by a sensor is referred to as the Sensor Detection Area (SDA) [10]. The field-of-view of a

sensor is usually defined as the angular range, in which objects can be observed for a fixed orientation

of the sensor [62, 63]. In the case of optical sensors, the FoV is in fact a solid angle through which the

detector can sense electromagnetic radiation and it is required to specify an angular range in the main

directions: vertical, horizontal and diagonal. However, this work considers only the horizontal direction,

since the problem at hand is two-dimensional in the horizontal plane.

These assumptions are suitable for real sensors such as standard RGB-D cameras where the visi-

bility depends on parameters as, for example, the field-of-view, depth-of-field and resolution. Also, light
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detection and ranging sensors (LiDAR) can be modeled similarly. Without loss of generality, the FoV

angle is assumed to be less than π, such that the SDA can be approximated by an isosceles triangle

with a vertex angle 0 < θ < π and height R. Thus, the two equal sides of the triangle have lengths

r = R/cos(θ). The SDA is denoted by s.

Figure 3.1: Field-of-view and detection range of the sensors.

In a reference frame with origin in the pose p, and with the x-axis aligned with the optical axis, a point

with coordinates (x, y) in such a reference frame is within s if:

0 < x ≤ R ∧
∣∣∣y
x

∣∣∣ ≤ tan

(
θ

2

)
(3.2)

A point q is visible to a pose p if the following condition is verified:

(qp ⊂ P ) ∧ (q ∈ s) (3.3)

where qp denotes the line segment that connects q with the pose p. In other words, a given point q is

visible to p if:

• (i) the line segment connecting q with the position of the sensor is a subset of the polygon and

• (ii) q is inside the sensor detection area.

Note that the first term of condition 3.3 is the concept of point visibility presented in [13] and [31], such

that the set of points of P that satisfy the first term is the visibility polygon V (p). However, only a subset
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of V (p) satisfies condition 3.3 which are the set of points of P that are inside the SDA s. In other, words

only the intersection of the visibility polygon V (p) with the detection area s is visible to the pose p. From

now on this intersection region is referred to as limited-visibility polygon and it is denoted by.

v(p) = V (p) ∩ s.

By definition, the visibility polygon V (p) is a star-shaped polygon. Hence v(qi) is also star-shaped.

Theorem 3.1.1. For an internal pose p of a polygon P , the limited-visibility polygon v(p) is star-shaped.

Proof. By construction V (p) is star-shaped and p belongs to the kernel of V (p). The limited-visibility

polygon is given by v(p) = V (p)∩ s, where s ⊂ R2 is a convex and connected space since p ∈ v(p), one

can conclude that every point y ∈ v(p) is visible to p, thus v(p) is star-shaped.

Assumption 3. A given landmark l is visible to a sensor located at the pose p with an SDA s if for every

point q ∈ l the condition 3.3 is satisfied.

Figure 3.2: The landmark l1 is visible from the pose p. But l2 and l3 are not visible, although l2 is inside
the detection area there is no direct line-of-sight from p while l3 is not totally inside the detection area.

3.2 Analytical formulation

This thesis presents an ILP formulation to address the optimal landmark placement problem. The

method relies on a simulation of a large set of possible poses inside a polygon P , from now on, such

poses are called witness poses and the witness set is denoted byW = {w1, . . . , wM}.

By computing the limited-visibility polygon of each witness, it is possible to determine the regions of

the polygon where a landmark can be seen by a maximum number of poses. The intersections between
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the visibility polygons of each pose determine whether a certain portion of the boundary of P is visible

or not and to which subset of poses it is visible. This way is computed a set of candidate intervals along

the edges of P, where can be placed a landmark.

Definition 3.2.1. A candidate interval is a connected subset of an edge of P , this subset is totally visible

to a non-empty set of witness poses.

Thus, it is redundant to place more than one landmark in the same candidate interval as they would

be visible to the same set of poses.

Assumption 4. At most one landmark is placed at each candidate interval.

Consider L = {l1, . . . , lN}, a set of candidate intervals where can be placed a landmark. The can-

didate interval lj is associated with a non-empty subset of poses Wj , which corresponds to the set of

poses that can successfully decode a landmark placed at lj . The candidate intervals along the edges

are computed such that every witness pose can see at least one potential landmark:

N⋃
j=1

Wj =W (3.4)

The primal goal is to select a subset of potential landmarks such that the number of covered poses

is maximized.

Definition 3.2.2. A witness wi is said to be covered by a set of candidate intervals L if at least one

candidate interval l ∈ L, is visible from wi.

This formulation resembles the Set-Covering Problem presented in [43] and [64]. The Set-Covering

Problem is a classical combinatorial optimization problem, where given a ground set U and a collection

of subsets S = {S1, . . . SN} such that for 1 ≤ i ≤ N , Si ⊆ U . The objective is to determine the minimum

number of sets from S such that their union is U :

min |S′| s.t
⋃

Si∈S′

Si = U (3.5)

where |S′| is the cardinality of the set S′. In [64] a particular variant of this problem is considered, which

is the Maximum Coverage Problem, that in addition to the traditional Set-Covering Problem is given an

integer constant k and the objective is now to pick at most k sets from S such that the size of the union

is maximized. In other words, the goal is to find a subset S′ ⊆ S such that:

max

∣∣∣∣∣ ⋃
Si∈S′

Si

∣∣∣∣∣ s.t |S′| ≤ k (3.6)

Similarly to [43] and [21], the pose coverage problem in hand is formulated as a Binary Integer

Programming, where the authors analytically formulate the set-covering problem in matrix notation as

follows:

min cx s.t Ax ≥ b (3.7)
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Where A is an M ×N incidence matrix, N is the number of elements in the covering set and M is the

number of elements in the set to be covered, b is an M × 1 vector whose ith element is the right-hand-

side coefficient of constraint i, c is a 1×N vector where ci is the associated cost of the ith element of x

with 1 ≤ i ≤ N . In turn, x is an N × 1 decision variables vector [21].

Problems 3.5 and 3.6 are important to the formulation of the problem at hand since that for practical

reasons it is common to constrain the number of landmarks that may not allow the coverage of the

entire environment, which is the goal of problem 3.5. From the conflicting objectives of maximizing

coverage and minimizing the number of landmarks arises a multi-criteria optimization problem, which

allows computing the Pareto Frontier and that can be used as a baseline approach to study a trade-

off between the coverage and the number of landmarks. The simplest way to obtain a multi-criteria

optimization problem is to adapt the problem in 3.6, transforming the maximum number of landmarks L

in an objective function to be minimized.

Let f1 be a function over a set of landmarks, that gives the number of poses in W that are covered

by the set of landmarks. And let f2 be the cardinality of the considered set of landmarks (i.e the number

of landmarks). The multi-criteria optimization problem can be formulated as follows:

max(f1(x),−f2(x)) s.t C (3.8)

where C is the set of constraints and x is the decision variable vector that in the case of this present

thesis is the positions of a set of landmarks. Figure 3.3 illustrates problems 3.5 and 3.6 in the case of

polygon coverage.

Figure 3.3: Illustration of Pareto frontier in solution space. The point P1 determines the minimum number
of landmarks f∗2 that cover the entire set of poses W, while P2 determines the maximum coverage f∗1
(in percentage) obtained for at most L landmarks.

Next, is presented the mathematical formulation of the coverage problems 3.5 and 3.6. For sake of

simplicity, it is first considered a pointwise and followed by an extension to a non-pointwise landmark.
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Pointwise landmarks

A pointwise landmark is a single point in the boundary of P , hence, it is assumed that the landmarks

can fit within any position in a certain edge of P without any space constraints. Let x be an N × 1 binary

decision variable vector and A a M × N incidence matrix where the element aij = 1 if the witness wi

observes the j-th candidate interval, thus wi ∈ Wj , otherwise aij = 0. The minimum Set-Cover problem

presented in expression 3.5 is now formulated as:

min

N∑
j=1

xj s.t


N∑
j=1

aijxj ≥ 1, i = 1, . . . ,M

xj ∈ {0, 1}
(3.9)

the M constraints in problem 3.9 guarantee that for any subset of potential landmarks selected the entire

witness setW is covered.

To formulate the Maximum Coverage problem presented in expression 3.6 in matrix notation, it is

necessary to define y, an M × 1 binary decision variable and its respective constraints:

N∑
j=1

aijxj ≥ yi (3.10)

Note that the ith element of y only can take the value of 1 when the ith pose is covered (i.e the left-hand

side of 3.10 inequality is greater or equal to 1. Therefore, the number of covered poses for a given

distribution of landmarks is given by:
M∑
i=1

yi

Finally, problem 3.6 can be formulated in matrix notation as follows:

max

M∑
i=1

yi s.t



N∑
j=1

xj ≤ L
N∑
j=1

aijxj ≥ yi, i = 1, . . . ,M

xj ∈ {0, 1}

(3.11)

where L is a limit for the number of landmarks that can be used in the environment.

Non-pointwise landmarks

The first difference between a pointwise and non-pointwise approach is the space limitations that arise

from the fact that not all edges of P can receive a landmark, since, the edge must have a length greater

or equal to the length of the landmarks.

Hence, the procedure to compute the candidate intervals is more complex than it is for a pointwise

landmark. As some intersection regions might not satisfy the space constraints, in contrast with a

pointwise approach in which the length of a candidate interval is not relevant, since the landmark (a point)

can always be placed in the interval. Figure 3.4 illustrates a situation where a portion of the boundary
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of P (I2) is visible to the poses p1 and p2, however, due to the length of the landmark considered it

is not possible to place one landmark such that it is visible to both poses. Note that for the pointwise

approach, the intersection of the limited-visibility polygons would generate three candidate intervals: I1,

I3 and I2. The first two are visible to only one of the poses p1 and p2 respectively and the third one is

simultaneously visible two both poses. However, for a non-pointwise approach, it may be necessary to

consider two overlapping candidate intervals: I ′1 = I1 ∪ I2, which is visible only to p1 and I ′3 = I3 ∪ I2
visible to p2. For instance, consider the optimization problem 3.11, with L = 1, i.e. only one landmark

is allowed to be installed within the environment. In this case, it is not possible to cover p1 and p2

simultaneously, since for any possible location, the landmark is at most visible to only one of the poses,

and the intervals I ′1 and I ′3 are the only possibilities to cover at least one of the pose with only one

landmark.

Figure 3.4: The Intervals I1 and I3 are visible only for the poses p1 and p2 respectively. On the other
hand, I2 is visible from both poses, however, the length Dl of a landmark is greater than ‖I2‖.

Let us consider now that two landmarks can be installed in the environment. In this case, it is only

possible to cover p1 and p2 with two disjoint landmarks only if ‖I1 ∪ I2 ∪ I3‖ ≥ 2Dl. Let Ia and Ib, be

two overlapping candidate intervals, visible to pose a and b respectively, such that ‖Ia ∪ Ib‖ < 2Dl. It

is trivial that there is no pair of disjoint landmarks l1 and l2 with l1 ⊆ Ia and l2 ⊆ Ib, that can cover the

poses a and b.

Since, for practical reasons, there can be no overlapping landmarks, it is possible to select only one
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interval from a pair of intervals to place a landmark. Such pair of candidate intervals are referred to as

mutually exclusive. These intervals form a graph G(N ,A), where N denotes the set of nodes of the

graph, a node of the graph is a candidate interval that has a mutually exclusive relation with at least

another interval in the graph; A is the set of edges 1 of the graph, an edge of the graph (u, v) means

that the candidate intervals with index u and v are mutually exclusive.

Definition 3.2.3. Two overlapping candidate intervals Ia and Ib such that ‖Ia ∩ Ib‖ < Dl, are mutually

exclusive if every pair of landmarks l1 ⊆ Ia and l2 ⊆ Ib are not disjoint.

To prevent mutually exclusive intervals from simultaneously receiving a landmark, a new restriction is

added to problems 3.9 and 3.11 for each pair of mutually exclusive intervals. Thus, for a non-pointwise

landmarks, the minimum set-cover problem is now formulated as follows:

min

N∑
j=1

xj subject to



N∑
j=1

aijxj ≥ 1, i = 1, . . . ,M

xv + xu ≤ 1, ∀(u, v) ∈ A

xj ∈ {0, 1}

(3.12)

and the maximum-coverage problem is formulated as follows:

max

M∑
i=1

yi s.t subject to



N∑
j=1

xj ≤ L
N∑
j=1

aijxj ≥ yi, i = 1, . . . ,M

xv + xu ≤ 1, ∀(u, v) ∈ A

xj ∈ {0, 1}

(3.13)

1Not to be confused with edges of a polygon
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Chapter 4

Methodology

4.1 Methodology Outline

An ILP formulation for the landmark placement problem is described in the previous chapter, which

consists of finding an arrangement of landmarks from a finite set of candidate intervals to receive a

landmark, in order to cover a representative set of poses. Similar approaches in which a finite set of

potential markers are discussed in section 2.7. It is also common to consider a finite set of poses, often

referred to as witness sets, to find tractable solutions for problems such as the AGP. The main challenge

of optimizing landmarks placement based on a witness set is to determine an ideal set of poses that

is representative of the environment. This might raise some questions such as: How many witnesses

are needed for a given environment (polygon)?; How should be generated the witness set?.

A method that does not depend on a witness set, potential landmarks, or even predefined trajectories

is presented in [55]. However, this elegant solution only maximizes the influence area of the landmarks,

in other words, only maximizes the probability of a potential robot pose to detect a landmark, but does

not guarantee that a robot in the influence zone of a landmark can see the landmark. In addition, it is

used a SA algorithm to place the landmarks, which on its own do not guarantee optimality and on some

occasions may be needed to check near all possible combinations of the decision variables which takes

O(2N ) time.

In contrast with meta-heuristic solvers like SA, an appropriated Integer Linear Programming formu-

lation approach, in theory, improves the expected time complexity and guarantees an optimal solution.

Despite the worst-case computational complexity of standards ILP solvers, such as branch-and-bound

search, is the same as the complexity of the brute force search, however, a branch-and-bound approach

is generally applied to an NP-hard global optimization problem for which the worst-case complexity gives

a little or no insight into the performance of the approach [65]. Those are the reasons why is proposed

an ILP to solve the landmarks placement problem.

In figure 4.1 is presented the overview scheme of the implemented method.
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Figure 4.1: Block diagram of the implemented method. The pre-processing algorithm receives as input
the map of the environment P ; and a witness set W. And has as output a set of candidate intervals L;
a set {W1, . . . ,WN} where Wj is the subset of poses that can see candidate interval lj ; and in case
of non-pointwise landmark a graph constraint G of mutually-exclusive candidate intervals. Finally, the
coverage problem is formulated as an ILP and solved.

4.1.1 Pre-Processing

The Pre-Processing phase takes as input the polygon P and the witness set W. And has as output a

set L = {l1, . . . , lN} of candidate intervals, each one associated with a potential landmark; the set of

subsets {W1, . . . ,WN} ⊂ 2W , where an element Wj is the subset of poses that can see the potential

landmark placed at lj and finally the graph constraint G(N ,A) with all pairs of mutual exclusive intervals

in the entire polygon. Algorithm (1) implements the procedure to compute the set of candidate intervals.

This algorithm will be also referred to as Visibility Intersection Algorithm (VIA). The objective of this

algorithm is to compute and identify the intersections of the limited-visibility polygons of all witnesses.

Then, it is identified the edges of the limited-visibility polygon v(wi) that are also a subset of an edge

of P . An edge e′ of v(wi) that is a subset of an edge ek of P is a candidate interval visible to wi. Every

candidate interval is identified by a 3-tuple, ε = (k, i, u) where k = 1, . . . , n, is the index of the edge ek of

P that contains the candidate interval, the second element of the tuple is the index of the witness pose

wi from which is computed the limited-visibility polygon. Finally, the third element is a unique identifier

of the candidate interval. The set of all 3-tuples that identify each candidate interval is denoted by E .

From lines, 4 to 14 is performed the identification of the candidate intervals and constructed the set

E . The function VisIntersect computes the intersections of all identified candidate intervals contained

in ek for every edge ek of P . Thus, the VIA has as output a set of smaller candidate intervals that are

also subsets of the edge ek.

Time and space complexity

The standard O notation has been used to evaluate the time and space complexity of the algorithm

presented above. The goal is to understand the asymptotic behavior of the running time and memory of

the algorithm as the size of the input increases.

To compute the visibility polygon of a pose in a polygon P with n vertices it used the O(n log n) time

complexity algorithm presented in [21]. Hence, it is needed O(nM log n) to obtain the visibility polygon

of the M poses. Computing the intersection between the sensor detection area (line 6 of algorithm 1)

takes at most O(n log n) [66].
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Algorithm 1 Candidate landmarks location Algorithm
1: Input: Polygon P with n vertices, witness setW = {w1, . . . , wM}.
2: Output: A list of candidate locations for the landmarks L = {l1, . . . , lN}; {W1, . . . ,WN} and the

constraint graph G(N ,A) of mutual exclusive intervals
3: E = ∅
4: for i = 1, . . . ,M do
5: Compute visibility polygon V (wi)
6: Compute v(wi) = V (wi) ∩ si
7: for every edge ek of P do
8: for every edge e′ of v(wi) do
9: if e′ ⊆ ek then

10: E ← E ∪ {(k, i, u)}
11: end if
12: end for
13: end for
14: end for
15: L = ∅
16: for k = 1, . . . , n do
17: Lk = VisIntersect(k, E)
18: L ← L ∪ Lk

19: end for

The loop of line 8 of the pseudo-code presented above, search in the list of edges of the limited

visibility polygon v(wi), thus, the time complexity of this search yields from the number of edges of

v(wi) which is complex to estimate a tight upper bound. As an upper bound of the number of edges of

the limited visibility polygon, it is taken the worst-case number of edges of the unlimited point-visibility

polygon V (wi): in a simple polygon at the worst-case V (wi) has n vertices, however for a polygon with

holes the number of edges may increase due to the obstacles, thus it is trivial that for every obstacle

(holes) can be added two new vertices, if h is the number of holes in polygon P then the visibility polygon

may have at most n+ 2h vertices.

Proposition 4.1.1. The limited visibility polygon v(qi) has at most n+ 2h edges and vertices.

In the absence of a tighter upper bound, proposition 4.1.1 leads to a rough worst-case scenario of

the loop of line 8, with a time complexity of O(n + h). It is also considered that the number of holes is

much smaller than the number of vertices of P , in other words: h << n.

Thus, the from line 4 to 14 the time complexity is

T4−14 = O
(
M
(
n log n+ n log n+ n2

))
= O

(
Mn2

)
With a similar procedure is computed the space complexity:

S4−14 = O (Mn)

which is the space complexity of set E .

From lines, 16 to 19 is computed the intersections of all visible portions of ∂P . Intersections only

occur between to subset of the same edge of P , thus for every edge ek of P is called the functions

VisIntersect(k, E) or VisIntersectNP(k, E) for a pointwise and non-pointwise landmarks respec-

32



tively. For both cases, the running time depends on the size of the set E and the time complexity is

computed afterward in sections 4.2 and 4.3 respectively. The first function is executed in O
(
M2 logM

)
and the latter one in O

(
M3 logM

)
.

The running time from lines 16 to 19 of the pointwise algorithm is

T16−19 = O
(
nM2 logM

)
and for the non-pointwise algorithm is

TNP
16−19 = O

(
nM3 logM

)
Finally, the total running time of the pointwise algorithm is:

T4−14 + T16−19 = O
(
Mn2 + nM2 logM

)
and for the non-pointwise is:

T4−14 + TNP
16−19 = O

(
Mn2 + nM3 logM

)
These results lead to the conclusion that both algorithms have polynomial time complexity.

Implementation

Algorithm 1 was implemented in Python, and the input data of the polygon and the set of poses are given

as independent text files. The output data is written as a mathematical model of the problems presented

in chapter 3 using the Zuse Institute Mathematical Programming Language (ZIMPL) [67] which is a

mathematical modeling language that translates a model of a problem into a linear or (mixed-)integer

mathematical program.

The computational geometry operations namely computing the visibility-polygon are performed using

the C++ open-source VisiLibity library [68].

4.1.2 Optimization

The Optimization phase has been addressed in chapter 3, namely the formulation of the problem as an

ILP, where is given a detailed explanation of the decision variables, objective function and constraints.

That is why, in this chapter, is only given complementary information regarding the analytical formulation

of the problem, especially related to the constraint of overlapping candidate landmark locations.

4.2 Algorithm for Pointwise landmarks

To simplify the intersections computations, the initial step is to parameterize the endpoints of each visible

portion of the edge ek, the parameterization is performed such that the entire edge ek goes from 0 to 1.
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Algorithm 2 considers a point landmark as it is assumed that any interval along the edge can receive

a landmark. The fundamental principle of the algorithm is that from an input list of overlapping intervals,

each one known to be visible to one of the witness poses wi ∈ W is possible to generate an output

list of disjoint intervals (the intervals may intersect only in one endpoint) that are visible to a group of

poses. The resulting intervals are defined by a pair of consecutive endpoints and each new interval is

visible to a set of posesWz ∈ 2W . The setWz is computed by the function Intersection-Query, which

determines which intervals of the input list that intersect the new interval Fz formed by two consecutive

endpoints. A pose wi is added to the list Wz if the interval Fz lies totally inside of an input candidate

interval that is visible to the pose i.

Algorithm 2 VisIntersect(k, E) for a pointwise landmark
1: Input: Edge e ∈ E(P ) and set E of detectable portions of ∂P
2: Output: List of potential landmarks in the edge ek: Lk = {l1, . . . , lN ′}
3: I = ∅
4: for every candidate interval c indexed by ε = (k, i, u) ∈ E do
5: Normalize c to an interval ι ⊆ [0, 1] such that the edge ek goes from 0 to 1
6: I ← I ∪ {ι}
7: end for
8: Build a balanced binary Interval Tree T (I) according to the value of the left endpoint of each interval
9: Construct an ordered set F of the endpoints from the intervals in I

10: I = ∅
11: for z = 1, . . . , |F| do
12: In T (I) perform an Intersection-Query for Fz = [fz, fz+1] and build the list of poses Wz that

can see the interval Fz

13: if Wz 6= ∅ then
14: I ← I ∪ {(k,Wz, z)}
15: end if
16: end for
17: Transform the intervals in I to line segments (candidate intervals in the edge) and construct the set

of potential landmarks Lk

Intersection Query

To handle intersections queries, it was used an interval tree [69–71], which is a common interval data

structure used in problems such as Interval intersection, Interval stabbing and Interval cover. A dynamic

Interval tree allows queries in O(k logM), where M is the number of intervals in the tree and k is the

number of reported output (output-sensitive), however considering a worst-case in which all intervals

in the tree intersect a given query interval than the worst-case scenario to report all intersections is

O(M logM) [69].

Output

The output of the VIA is the list Lk where lz ∈ Lk is a potential landmark associated with one candidate

interval that is a subset line segment of the edge ek and it is represented by 3-tuple (k,Wz, z) with

k ∈ {1, . . . , n}, Wz ∈ 2W and z is a unique identifier of the potential landmark and the candidate interval.

34



Running time

Every edge has O(M) input candidate intervals, thus the loop of line 4 has a time complexity of O(M).

Constructing an interval tree with O(M) intervals take O(M) time, from lines 11 to 16 is performed a

loop that search in a list of endpoints of O(M) intervals, in each iteration of the loop is performed an

intersection query taking O(M logM). Finally, it is transformed the output intervals into line segments

which also take O(M) time. Thus the total time complexity of the algorithm is O(M2 logM).

4.3 Algorithm for non-Pointwise landmarks

In contrast with the method described in the previous section, for a non-pointwise landmark approach,

it is not possible to guarantee that any visible interval along ∂P can receive a landmark due to the

assumption that a ”partially visible” landmark is considered as not visible. The main difference be-

tween the two formulations is that for a pointwise landmark the candidate locations are disjoint, however,

when considered a landmark with dimension it is important to assume the possibility of intersections

between candidate intervals. In the algorithm, this difference is implemented by replacing the function

VisIntersect to VisIntersectNP in the algorithm 1. The pseudo-code of VisIntersectNP is presented

in Algorithm 3.

Algorithm 3 VisIntersectNP(ek, E) for a non- pointwise landmark
1: Input: Edge ek ∈ E(P ) and set E of detectable portions of ∂P
2: Output: List of potential landmarks in the edge ek: Lk = {l1, . . . , lW } and S a list of pairs of mutually

exclusive intervals
3: if Dl ≤ length(ek)) then
4: I = ∅
5: for every candidate interval c indexed by ε = (k, i, u) ∈ E do
6: Normalize c to an interval ι ⊆ [0, 1] such that the edge ek goes from 0 to 1
7: I ← I ∪ {ι}
8: end for
9: Normalize the length of the landmark Dl to a value dl ∈ [0, 1] such that dl = 1 if Dl = length(ek))

10: Build a balanced binary Interval Tree T (I) according to the value of the left endpoint of each
interval

11: Construct an ordered set F of the endpoints from the intervals in I
12: I = ∅
13: Sk = ∅
14: for fz in F do
15: Find the nearest endpoint such that fz − f ≥ dl
16: In T (I) perform an Intersection-Query for Fz = [fz, f ] and build the list of poses Wz that

can see the interval Fz

17: if Wz 6= ∅ and Fz is not a subset of an interval already in I then
18: I ← I ∪ {(k,Wz, z)}
19: Find all the intervals that with Fz forms mutually exclusive pair and add to the set of space

constraints Sk

20: end if
21: end for
22: Transform the intervals in I to line segments (candidate intervals in the edge) and construct the

set of potential landmarks Lk

23: end if

The intersection queries are performed in a similar way as explained for the pointwise algorithm. The
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main difference is that now, the interval Fz = [fz, f ] is not between consecutive endpoints of the input

candidate intervals but between two endpoints such that the distance between them is greater or equal

to the normalized landmark length dl.

The time complexity of the algorithm is computed similarly as done previously for the pointwise

algorithm. The total time complexity of the algorithm is O
(
M3 logM

)
.

Output

In addition to the list of potential landmarks Lk it is also computed a list of constraints Sk, one constraint

to each pair of mutually exclusive candidate intervals. The constraints are computed by performing an

intersection query on a new tree that is formal with the intervals already found visible. Sk is a list of

2-tuples, where each tuple contains the indexes of a pair of mutually exclusive intervals.

4.4 Verification and Validation

This section presents a numerical validation of the designed method. It is approximated the point version

of the AGP to a landmark coverage problem based on a finite witness set. Is important to remember that

in classical AGP, the guards (landmarks in the case of this thesis) can survey 360o around its position

with an infinite range.

The goal is to compare the experimental results with the theoretical bounds on the number of guards

(landmarks) needed to cover a certain type of polygon with n vertices and h holes (obstacles). For

validation/experimental purposes were considered the polygons shown in figure 4.2. The polygons are

referred in this thesis as Room 1 and Room 2 respectively.

(a) Room 1: Simple Polygon (b) Room 2: Polygon with holes

Figure 4.2: Polygons used in validation experiments.

The polygon shown in figure 4.2 (a) is an orthogonal polygon with 8 vertices, according to theory

bn4 c guards are sufficient to guard any orthogonal polygon with n vertices, hence 2 guards are enough

to guard the considered polygon. A polygon with 20 vertices and 2 holes is presented in figure 4.2 (b).
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According to the theory, such polygon can be covered by d(n + h)/3e, hence 8 guards are needed for

the second polygon.

Figures 4.3 and 4.4 show empirical results that although are not sufficient to prove the optimality,

give an important validation of the designed method, as the theoretical limits on the number of guards

were respected in several simulations tests for the considered polygons.
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Figure 4.3: Room 1: Coverage percentage per number of landmarks when considered unlimited FoV
and infinite range, according to the results, 2 guards were always sufficient to cover all witness poses,
which respect the theoretical bound of 2 guards to cover a simple orthogonal polygon with 8 vertices.
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Figure 4.4: Room 2: Coverage percentage per number of landmarks when considered unlimited FoV
and infinite range, 3 guards were always sufficient to cover all witness poses, which respect theoretical
bound of 8 guards needed to cover a polygon with 2 holes and 20 vertices.
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(a) Room 1 (b) Room 2

Figure 4.5: Solutions to the AGP approximated problem for an orthogonal and a polygon with holes.

(a) Room 1

(b) Room 2

Figure 4.6: Covered area by the approximated solution of the AGP in Room 1 (a) and Room 2 (b).
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Chapter 5

Numerical Results

This chapter presents the most important results of several simulation tests performed to the landmarks

placement optimization method implemented in this thesis. The experiments consider two sources of

witness sets: random poses generated with uniform distribution; sample poses from predefined trajec-

tories in the polygons presented in figure 4.2.

In addition, we present a comparative analysis between our method and a set of meta-heuristics

algorithms used to solve the landmarks optimal placement problem. For this purpose, the method has

been implemented in python, the experiments have been performed on a 1.6 GHz quad-core computer

with 8 GB of RAM. In the comparative analysis we consider a time limit of 300 seconds for each algorithm

to determine the optimal solution, in the case where the time limit is reached, the procedure is interrupted

and the current best variable vector is taken as the solution.

It is explored the behavior of the algorithms when varying different parameters such as the max-

imum detection range and the landmarks length. For sake of simplicity, all the witnesses poses are

associated with the same type of sensors, hence, with the same parameters configurations. Sensors

with characteristics similar to those used by Cordeiro [11] are assumed. Cordeiro assumed a standard

drone camera that has a custom-built lens with a 94o FoV and a resolution of 1920x1080p. Cordeiro

also considers three different detection ranges R. Where two of these ranges correspond to the max-

imum distances that a standard drone camera can detect two specific state-of-the-art visual markers:

R = 4.4[m] for ArUco and R = 13.181[m] for Whycon respectively. And finally is considered an infinite

maximum detection range.

Optimization based on random Witness set

Figures 5.1 and 5.2 present examples of randomly generated witness sets and their respective Pareto

frontiers. The following results were obtained based on a statistical analysis of several simulations of

different witness sets.

Figures 5.3 and 5.4 highlight that the maximum coverage increases with the detection range of the

sensors and with L, the number of landmarks. However the incremental gain, i.e. the difference between

the coverage obtained for L− 1 and L, decreases.
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(a) (b)

Figure 5.1: Set of 500 random possible poses for Room 1 (a) and Room 2 (b).

G(L) = C(L)− C(L− 1) (5.1)

where C(L) is the maximum coverage percentage obtained for L landmarks and G(L) is the respective

incremental gain.

The author in [11] suggests the stabilization of the coverage percentage as a criterion for a trade-off

between the number of landmarks and coverage. Since after a certain point, adding more landmarks to

the system only increases the overall system cost and complexity without significant gains in coverage

[11]. A coverage assessment based on this criteria is presented in section 5.3 aiming to achieve a

trade-off between the coverage and the number of landmarks.

Figures 5.5 and 5.6 show the estimated Probability Density Function (PDF) of the maximum-coverage

percentage for a given number of landmarks. As one can see in these results, consecutive clusters (for

L and L + 4) tend to be closer as the number of landmarks increases, suggesting a behavior similar to

that found in [11].

The dispersion of the maximum coverage shown in figures 5.7-5.9 is an important result that shows

the consistency and accuracy of the method implemented in this thesis. A key aspect regarding con-

sistency and accuracy of the method is the selection of the witness set of poses, figure 5.9 shows that

increasing the cardinality of the witness set reduces the standard deviation of the maximum coverage, as

it approximates the general continuous polygon coverage problem. However, it is important to empha-

size that a large number of witness poses increase the computational workload of the pre-processing

algorithm and a larger output is generated, which requires more time to read and convert the output of

the pre-processing algorithms into an ILP, as well as the optimization time, is also penalized.

Figures 5.7 and 5.8 show a higher dispersion of maximum coverage for intermediate numbers of

landmarks. For a detection range of R = 4.4m, the dispersion around the mean value of the maximum

coverage always increases for the number of landmarks considered in the experiments. Eventually, if

considered a greater number of landmarks, a similar behavior to that observed for the other two detection

range values would be verified. As the number of landmarks increases, it is more likely to cover any set
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Figure 5.2: Pareto frontier of a given set of random poses for Room 1 (a) and for Room 2 (b).

of poses and the coverage tends to 100%, which roughly explains the less dispersion of the coverage

for larger numbers of landmarks. A similar argument can be made to explain the low dispersion for a

fewer number of landmarks: the coverage decreases as the number of landmarks approximate to zero;

since it is not possible to have coverage less than zero the distribution is flattened for smaller numbers of

landmarks which decreases the standard deviation of the maximum coverage. For intermediate values

of L it is either possible to have coverage below and above the average (central value), explaining the

higher dispersion that occurs for intermediate values. However, it is needed a more formal and detailed

explanation of this behavior than the one given in this thesis.

For a robustness assessment, the method is trained and then tested in different witness sets. There-

fore, a Cross-coverage test was performed. The procedure consists of optimizing the landmarks place-

ment for a given set of poses (train) and testing the obtained solution in different sets of poses (testing).

The aim is to compare the coverage percentage obtained under training and testing conditions. Let us

consider the following witness sets {W1, . . . ,Wt} in a polygon P whereWi andWj are two independent

sets of random poses for any i, j ∈ {1, . . . , t} and i 6= j. And let xi and xj be the solution vectors of

length L (maximum number of landmarks) of both Wi and Wj respectively. For i 6= j, let Cij denotes
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Figure 5.3: Room 1: Coverage graph per number of landmarks, considering 500 poses.

the percentage of Wj that is covered by solution xi (testing). Hence, for i = j Cij is equal to the maxi-

mum coverage that is obtained with at most L landmarks (training). For a witness setWj , the difference

between the maximum coverage Cjj and the cross-coverage value Cij obtained with the landmarks

position xi, expresses how good xi is, compared to the optimal solution xj :

∆Cij =
Cjj − Cij

Cjj
100% (5.2)

The lower the value of ∆Cij with i 6= j the better the solution xi having as reference the optimal solution.

From now on ∆Cij is referred to as the Cross-Coverage relative error. The average of this difference

tends to zero when the number of poses increases. Figure 5.11 shows the behavior of ∆Cij for a fixed

number of landmarks L = 10.

This behavior demonstrates that the larger the set of poses used in the optimization, the more robust

the solution obtained is, as the coverage increases even for different sets of poses. The same conclusion

can be driven from Figure 5.10, where it is shown a comparison between the maximum coverage and the

average cross-coverage. It is possible to note that the two curves tend to converge with the number of

poses. While the maximum coverage decreases because the number of visual markers is kept constant

and it is more likely to obtain less coverage percentage for a larger number of poses. On the other

hand, the cross-coverage slowly increases approximating the maximum coverage. This convergence

reinforces that the landmark placement method tends to be more robust when considered a larger set

of poses.

Despite the results demonstrating that the robustness increases with the number of poses, the ques-

tion arises whether the number of poses is representative for a given polygonal environment. Aspects

such as the number of vertices of the polygon, the ratio between the environment area and the SDA, the

existence or not of holes in the polygon are important to answer this question.
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Figure 5.4: Room 2: Coverage graph per number of landmarks, considering 500 poses.

Figure 5.5: Room 1: Histograms of the Maximum Coverage percentage for different number of land-
marks (L) and the respective estimated PDF obtained with Kernel density estimation method.
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Figure 5.6: Room 2: Histograms of the Maximum Coverage percentage for different number of land-
marks (L) and the respective estimated PDF obtained with Kernel density estimation method.
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Figure 5.7: Room 1: Standard deviation of the Maximum Coverage per number of landmarks for 500
poses.
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Figure 5.8: Room 2: Standard deviation of the Maximum Coverage per number of landmarks for 500
poses.
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Figure 5.9: Standard deviation of the Maximum Coverage per number of landmarks with a sensor de-
tection range of R = 13.181m in Room 1 (a) and Room 2 (b).
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Figure 5.10: Cross-Coverage relative error per number of poses, obtained for 10 landmarks in Room 1
(a) and Room 2 (b).
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Figure 5.11: Comparison between the average coverage obtained in training and test condition for a
fixed number of landmarks L = 10 in Room 1. (a) and Room 2 (b).
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Trajectories

Aiming to understand the behavior of the method when the witness poses are not randomly generated,

but with a plausible meaning, a similar analysis is now made for sets of poses obtained by sampling

realistic trajectories.

Figures 5.12 and 5.13 present a set of predefined trajectories and their respective Pareto frontiers.

(a) Room 1 (b) Room 2

Figure 5.12: Considered Trajectories.

According to the results shown in figure 5.14 a set of landmarks optimized for random poses obtains

better results at trajectories than a set of landmarks optimized for trajectories obtains when crossed

with random witness sets. It is possible to conclude that a random poses-based solution is more robust

than a trajectory-based solution obtaining better coverage of the polygon in general. Which is perfectly

understandable once the random poses are uniformly scattered in the polygon. However, a trajectory-

based optimization is more appropriated when one has a family of similar paths that for instance, must

be traversed by a robot.

5.1 Pointwise vs non-Pointwise

As expected a non-pointwise obtains less coverage than a pointwise approach, as shown in figures 5.16

and 5.17. Figure 5.18 shows the mean processing time, for both Pointwise and non-Pointwise algorithms

as a function of the number of poses. Similar to the theoretical calculations, the results suggest that the

non-pointwise algorithm has a higher time complexity than the pointwise version.

The asymptotic behavior of the mean pre-processing time of the Pointwise algorithm suggests a

polynomial time complexity as it was theoretically estimated in Chapter 4. The result also suggests that

the non-Pointwise algorithm has a polynomial time complexity, however with higher order. Note that for

smaller numbers of poses there are only slight differences in the mean pre-processing time of the two

methods, this similarity is mainly due to the reduction of the distance between consecutive endpoints

of the visible intervals in each edge of the polygon. To better understand this phenom, is important to

remind the reader how the non-Pointwise algorithm computes the candidate intervals: a given portion of
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Figure 5.13: Pareto Frontier for a set of poses obtained from predefined trajectories in Room 1 (a) and
Room 2 (b).

an edge of P is considered to be a candidate interval if its length is greater or equal to the length of the

landmark. Thus, to build a candidate interval the algorithm search in an ordered list for two endpoints

such that the distance between them is greater than or equal to the length of the landmark. The smaller

is the average distance between endpoints more often the algorithm needs to search nearly the entire

list of endpoints.

Although the number of poses has a direct influence on the computation time, the most important

factor is the number of raw intervals and even the number of pre-processed intervals, which indicates an

output-sensitive behavior. Figure 5.19 highlights the correlation between the size of the output and the

pre-processing time.

According to the experiments, the cardinality of the list of candidate intervals is proportional to the

number of poses, which suggests a linear space complexity of both Pointwise and non-pointwise algo-

rithms. It should be noted that the pointwise algorithm generates more candidate intervals. The number

of candidate intervals translates to a larger ILP in the optimization phase (even with fewer constraints)

requiring computational capacity. Figure 5.21 shows the time percentage that both approaches spent in

each phase of the method.
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Figure 5.14: Room 1: Average coverage obtained in test conditions considering random poses and
trajectories.

When considered solely the Visibility Intersection Algorithms, the pointwise algorithm is faster than

the non-pointwise version, as it takes fewer computations. On the other hand, the Reading time is

correlated with the size of the output of the Visibility Intersection Algorithms.

5.2 Comparison with meta-heuristic algorithms

Figure 5.22 presents the mean coverage of three meta-heuristics algorithms: Simulated Annealing;

Particle Swarm (PS) and a Genetic Algorithm (GA). The results were obtained for benchmark sets of

poses. Due to the complexity to integrate the non-Pointwise landmark approach with the straightforward

meta-heuristic algorithms, a comparison of the non-Pointwise version of the four algorithms was not

performed.

Based on the results of this analysis, the method developed in this thesis (VIA+ ILP) was shown to

have better results than the meta-heuristic algorithms considered in the experiments. To achieve ≈ 80%

of coverage, the VIA + ILP method requires 8 landmarks. To achieve the same level of coverage the PS

and GA require 12 landmarks while the SA requires at least 15. By searching a range of possible solution

points, meta-heuristic methods generally can find ”good” solutions in a relatively short time frame when

for instance compared with an exhaustive search algorithm, however, the optimality of the solutions is

not guaranteed, particularly for problems with non-smooth objective function with several local optimal.

This disadvantage is perceptible when for a greater number of landmarks, a lower coverage is obtained

than that found for a certain lower number of landmarks, showing the non-optimality of the method.

From the meta-heuristic methods evaluated in the experiments, the GA is shown to have better

results for the landmark placement problem, as for the same period of time it can find a set of landmarks

that cover a higher percentage of the polygon. Figure 5.23 shows the mean processing time of the GA

solver and the VIA + ILP method.
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Figure 5.15: Room 2: Average coverage obtained in test conditions considering random poses and
trajectories.

The results of this section reinforce the choice of an ILP approach instead of a straightforward opti-

mization with meta-heuristic algorithms or even exhaustive search algorithms. It is clear an exponential

asymptotic behavior of the GA. For the VIA + ILP, the number of landmarks does not even affect the

optimization time which only depends on the number of variables and constraints of the ILP.

5.3 Coverage and redundancy assessment

Figure 4.2 presents the results of the coverage assessment performed in both polygons. One of the

main goals of this thesis is to study a possible trade-off between the number of landmarks and the

coverage. The problem formulation does not directly consider the installation cost of the landmarks

within the environment. However, the installation cost can be interpreted as proportional to the number

of landmarks. For a trade-off analysis, it is suggested a multi-criteria optimization problem formulation,

as presented in equation 3.8, where it is aimed to simultaneously minimize and maximize the number

of landmarks and the coverage respectively. Since the optimal landmarks placement strongly depends

on a sample set of poses, a statistical analysis is crucial. The following analysis is made based on the

results presented in figures 5.3 and 5.4.

To achieve a trade-off, for instance, one can define a minimum required coverage percentage and a

threshold value for the gain. Thus the first number of landmarks that have an average gain below the

threshold value and an average coverage above the required coverage is selected to achieve a trade-off

between the landmarks installation cost and the percentage of covered area.

Figures 5.24 and 5.25 show the gain, G(L) that is obtained as a function of the number of landmarks

in both environments. For the experimental results let us consider a Gain threshold value gt = 2.5%

and a minimum required coverage CReq = 75%. Note that for R = 4.4[m] it is not possible to satisfy the

minimum required coverage of 75% with M ≤ 20, thus for experimental purposes it is selected M = 20
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Figure 5.16: Coverage per number of landmarks in Room 1 for different maximum detection range and
a non-pointwise landmark with length Dl = 1[m].

landmarks.

M Gain [%] Average Coverage [%]

Room 1
R = 4.4[m] - - -

R = 13.181[m] 14 2.46 86.34
R =∞ 11 2.34 87.09

Room 2 R = 4.4[m] - - -
R = 13.181[m] 19 1.95 76.39

R =∞ 14 2.22 76.77

Table 5.1: Selection of M for each maximum range of detection. Based on the results of figures 5.3 and
5.24 is selected the smaller M for which is obtained an average coverage above 75% and an average
gain below 2.5%.

Since the objective function does not address redundancy, one can have an insight into redundancy

by considering the percentage of witnesses poses covered by more than one landmark. Figure 5.26

shows that redundancy tends to increase with the coverage and the number of landmarks.
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Figure 5.17: Room 1: Maximum Coverage for different landmark lengths, obtained for 500 poses with
R = 13.181m.
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Figure 5.26: Room 1: Coverage for more than one landmark, considering 500 poses with R = 13.181m.

5.4 Discussion

The main objective of this thesis is to present a global optimization method for the landmarks placement

problem in a given environment. However, numerical and simulations results are not sufficient to prove

the optimality of the method, one can have significant insights and indicators that reinforce the theory

on the optimality of the method. Especially the results presented in figures 4.3 and 4.4 where the

same method developed in this thesis to optimize the landmarks placement is used as an approximation

method of the AGP. For the two polygons considered, the method respects the theoretical bound on the

number of guards that are sufficient to cover both simple and polygon with holes. Another important
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Figure 5.18: Room 1: Pre-Processing time as a function of the number of poses. In the experiments
have been considered 10 landmarks.

result is the shape of the Pareto frontier and curve of coverage as a function of the number of landmarks

in general, in our method (VIA + ILP), which is monotonically increasing. For a greater number of

landmarks is always obtained a greater coverage percentage as one can see in figures 5.2 5.3 and

5.4. For instance, the heuristics algorithms considered in this thesis do not show the same monotone

behavior, which is a clear indicator of non-optimality.

The training/test results display that as greater the cardinality of the witness set, the greater the

robustness of the method, especially, for a random set of poses. Since the landmarks placement opti-

mization based on a random witness set is only plausible under the assumption that the witness set is

representative of the polygon or of a certain region of interest that is aimed to be covered. The coverage

obtained in training and testing sets of poses tend to converge as the number of poses increases. In fact,

the number of poses is crucial for the optimization problem. Not only it can penalize the computational

time if arbitrary large, but also can affect the robustness of the solution if it is considered a small number

of poses. Also, the standard deviation of the maximum coverage of a random witness set decreases

with the number of poses.

The results provide important information to address a trade-off between the number of landmarks

and the coverage. Especially, the analysis of the Pareto frontier’s shape and the behavior of the incre-

mental gain (see figures 5.24 and 5.25). However, it is important to have in mind that several factors may

affect the shape of the curve including the number of poses, the area of the polygon, the field-of-view

and the detection range. And the selection of the number of landmarks that better suit a trade-off with

the coverage must concern all these factors.

The implemented method shows to be faster than the heuristic algorithms, especially greater num-

bers of landmarks. However, the optimization is performed offline, which makes the time complexity

difference not as relevant as the difference in coverage percentage. Regarding coverage, our method

always shows better results, for a certain number of landmarks, our method cover approximately 20%
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Figure 5.19: Room 1: Scatter plot of mean processing time per number of candidate intervals, have
been considered 10 landmarks.

and 8% more poses than the best meta-heuristic algorithm in Room 1 and Room 2 respectively.

As expected, pointwise landmarks can cover a higher percentage of poses when compared with non-

pointwise landmarks. this difference is explained by constraints on the length of the candidate intervals

since candidate intervals with lengths shorter than the landmark are eliminated in the pre-processing

phase. In terms of time complexity, the results show a higher complexity of the non-pointwise algorithm

which is aligned with the theoretical results.
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Figure 5.20: Room 1: Relation between the number of poses and the number of candidate intervals.

Figure 5.21: The contribution percentage of the pre-processing phase (implemented by the VIA) and the
optimization phase for the total elapsed time. The Reading is the process of loading the parameters to
build the ILP, the reading time is correlated with the size of the input of the solver. The optimization time
is the sum of the parameters reading time and the solving time. The results have been obtained from
100 runs, where each run considers 500 random poses with a detection range R = 13.181m.
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Figure 5.22: Mean Coverage comparison with meta-heuristics algorithms for Room 1 (a) and Room 2
(b).
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Figure 5.23: Average elapsed time comparison with the Genetic Algorithm for 500 poses with R =
13.181m in Room 1.
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Figure 5.24: Room 1: Difference of coverage obtained for L and L+ 1.
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Figure 5.25: Room 2: Difference of coverage obtained for L and L+ 1.
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Chapter 6

Conclusions

This thesis presents an optimization method for the placement of robot navigation landmarks. Firstly,

it is solved a relaxed problem assuming pointwise landmarks and evolving to a realistic approach con-

sidering non-pointwise landmarks. The method relies on a simulation of possible robot poses that are

believed to be representative of the environment. The designed method consists of a pre-processing

phase and an optimization phase. The pre-processing phase is implemented by pointwise and non-

pointwise polynomial-time algorithms that compute a set of candidate intervals where a landmark can

be placed. Then, the problem is formulated as an ILP and a standard ILP solver is selected to optimize

the landmarks placement in the environment. It is studied a trade-off between the number (or cost of

installation) of landmarks and the coverage required since there is an interest in minimizing the number

of landmarks due to the system cost and computation capability that is necessary to process a large

number of landmarks. In addition, the problem was formulated as a Multi-Criteria optimization problem

to discuss criteria for a trade-off between the number of landmarks installed and the coverage, based

on a Pareto frontier analysis. The implemented method was compared with meta-heuristics solvers

including Particle Swarm, Simulated Annealing, and Genetic Algorithm.

An ILP solver guarantees global optimality in contrast with metaheuristic algorithms. Moreover, this

significantly reduces the optimization time, since an ILP solver with an appropriate formulation can yield

solutions in much less time than the worst-case scenario. It is important to mention that the obtained

solution is optimal for the selected set of poses, which is an approximation of the continuous coverage

problem similar to the NP-hard Art Gallery Problem, with the additions of a limited range and field-of-view

for the sensor.

Determining the ideal pose set is one of the primal challenges of this approach, which on its own is

an interesting topic for future works. The difference between in coverage obtained in training and testing

conditions tends to decrease with the number of poses, which reinforces that the landmark placement

method tends to be more robust when considered a larger set of poses.

Considering an infinite range and unlimited field-of-view for the sensors reduces the landmarks place-

ment problem to the AGP. Under these conditions, in several simulations performed, the method always

yields solutions with fewer guards (landmarks) than the theoretical upper bounds established by the Art
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Gallery Theorems. This experiment was used as a validation of the method.

According to the results, a non-pointwise approach yields slightly less coverage than the relaxed

pointwise version, as expected. However, the complexity of the pre-processing algorithm has greater

order than a non-pointwise approach.

Finally, one can conclude that the presented method can be used as an optimization tool in appli-

cations including indoor localization and indoor advertising. In the latter application, the non-pointwise

landmarks approach presented can offer an insight into the optimal placement of the advertising devices

to reach as many people as possible.

6.1 Future Work

Many aspects of this thesis remain as open issues, thus, there is much room for future improvements,

such as determining the ideal set of poses according to the environment and features of the sensor

systems, improving the time complexity of the pre-processing algorithms especially the non-pointwise

version and a more detailed study on the advantages of considering a non-pointwise landmark for appli-

cations other than robot localization.

Future works should include aspects like uncertainty on the identification of the landmarks and re-

dundancy. In a landmarks-based localization method, it is important to ensure that a detected landmark

is distinguishable from other landmarks. The presented method, for instance, does not consider a sepa-

ration distance between two landmarks which may lead to data association errors, such problems could

be addressed by including more features of the landmarks such as colors, shape, probability of a land-

mark identification error, and among others aspects. Although redundancy can be addressed with the

presented method, it is important to directly include redundancy in the objective function. The results

presented in this thesis were obtained through simulation. Hence, future works need to include prac-

tical experiments, taking into consideration aspects like the sensor uncertainty, error on the landmarks

localization

Many other interesting possibilities have not been addressed in this thesis. One that stands out is the

possibility to consider moving obstacles. Giving that there is traffic in a typical robot work-space whether

it is people or other robots, a dynamic environment would be a better model than a static approach

that is considered in this thesis. Another possibility is to deal with a 3D landmarks placement problem,

which would bring new challenges especially to the pre-processing algorithm and in this case, more

sophisticated computer-graphic methods would be required to deal with 3D obstacles and compute the

intersections zones in the walls.

Our method represents a significant advance compared to the work of Cordeiro [11] in terms of

optimality and complexity. Although the problem is far from being considered closed, this project together

with Cordeiro’s work leaves strong foundations for a new and practical approach to address the problem

of placing landmarks that can be used in applications of great scientific and economic potential.
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Appendix A

Figures and Tables

(a)

(b)

Figure A.1: Histograms of the Maximum Coverage percentage for different numbers of landmarks and
the respective estimated PDF for 100 poses in Room 1 (a) and Room 2 (b).
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(a)

(b)

Figure A.2: Histograms of the Maximum Coverage percentage for different numbers of landmarks and
the respective estimated PDF for 300 poses in Room 1 (a) and Room 2 (b).

(a)

(b)

Figure A.3: Histograms of the Maximum Coverage percentage for different numbers of landmarks and
the respective estimated PDF for 1000 poses in Room 1 (a) and Room 2 (b).
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