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Abstract

Automated Fiber Machines (AFP) can manufacture composite panels with curvilinear fibers. The stiffness

of the panel depends on the spatial location. This can be tailored to improve the structural performance.

In this work, the buckling performance of composite panels with curvilinear fibers and grid stiffeners

is optimized using a genetic algorithm. To this end, the objective is to maximize the critical buckling

load. The skin is composed of layers in which the fiber orientation varies along one spatial direction.

Two design variables define each unique layer: the fiber angle at the center and side of the panel. The

stiffener layout is parametrized by other two design variables, which are the stiffener location and its

curvature. Manufacturing constraints in terms of maximum curvature allowable by the AFP machine

are imposed for both skin and stiffener fibers. The effect of manufacturing-induced gaps in the laminates

is also incorporated. The finite element method is used to perform the buckling analyses. The skin is

modeled with shell elements and the stiffeners are idealized by beam elements. The panels are subjected

to in-plane compressive loads and shear loads under several boundary conditions. Optimization results

show the use of curvilinear fibers for both skin and stiffeners can increase the critical buckling load.

The improvement over the straight fiber design depends on the load case and boundary conditions. The

optimization framework developed can help the designer to evaluate in which scenarios grid-stiffened

curvilinear fiber composite panels provide the greatest benefit for the critical buckling load

Keywords: Variable Stiffness composite structures, Curvilinearly grid-stiffened panel, Manufacturing

constraints, Buckling, Finite element analysis, Optimization.
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Resumo

As máquinas automáticas de fibra (AFP) podem fabricar painéis compósitos com fibras curvilíneas. A

rigidez do painel depende da localização espacial. Isto pode ser utilizado para melhorar o desempenho es-

trutural. Neste trabalho, o comportamento de encurvadura dos painéis compósitos com fibras curvilíneas

e reforços de grelha é optimizado utilizando um algoritmo genético. O objectivo é maximizar a carga

crítica de instabilidade. Duas variáveis de projeto definem cada capa única do laminado da pele: o ân-

gulo de fibra no centro e lado do painel. A disposição de reforços é parametrizada por duas variáveis de

projeto, que são a localização e a curvatura do reforço. A curvatura das fibras da pele e dos reforços é

limitada ao máximo permitido pela máquina AFP. O efeito de vazios induzidos pelo fabrico em laminados

é incorporado. O método dos elementos finitos é utilizado para realizar análises de encurvadura. A pele

é modelada com elementos de casca e os reforços com elementos de viga. Os painéis são submetidos a

cargas compressivas e cargas de cisalhamento no plano e várias condições de fronteira. Os resultados da

optimização mostram que o uso de fibras curvilíneas para a pele e reforços pode aumentar a carga crítica

de instabilidade. A melhoria sobre o desenho de fibra recta depende do caso de carga e das condições de

fronteira. A estrutura de optimização elaborada pode ajudar o projetista a determinar em que cenários

os painéis compósitos de fibras curvilíneas com reforços curvilíneos proporcionam o maior benefício para

a carga crítica de instabilidade.

Palavras-Chave: Estruturas compósitas de rigidez variável, Painel com grelha curvilínea, Restrições

de fabricação, Encurvadura, Análise de elementos finitos, Optimização.
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Chapter 1

Introduction

This chapter aims to provide an overview of the goal of this thesis: the design of composite panels with

curvilinear fibers and grid stiffeners. Section 1.1 discusses the motivation of the thesis. Section 1.2 states

the objectives to be achieved. And Section 1.3 briefly explains the contents of the chapters of this thesis

1.1 Motivation

In the aerospace industry, weight is crucial. Weight savings mean less fuel is required, which in turn

results in a higher payload capacity or a longer range for the aircraft. The call for weight reduction drives

the aerospace industry to continually search for lighter or stronger structures.

Composite materials have been increasingly employed in aerospace structures due to their high specific

strength and stiffness. Traditional composite laminates are composed of plies with straight fibers. The

material properties can be tailored by combining plies with different fiber orientations and changing the

number of plies. In addition, structural performance can be enhanced through grid-stiffened composite

skins. Typically, orthogrid or isogrid panels in which the stiffeners follow straight paths are used.

Recent advances in the manufacturing technologies of composites have made it possible to steer the

fibers. The Automated Fiber Placement (AFP) machines can manufacture laminates in which the fiber

orientation continuously varies. The stiffness of these laminates is not constant and depends on the

spatial location. Therefore, they are called variable stiffness laminates. It is also possible to manufacture

composite panels reinforced with curvilinear stiffeners. The use of curvilinear fibers for the laminate and

for the stiffener path provides a larger design space to exploit the directionality of the material properties.

Composite laminates can be employed to manufacture wing or fuselage skins. Skins are thin-walled

panels subjected to in-plane loads and are prone to buckling. Hence, the study of buckling is essential

for the structural design of an aircraft.

The present thesis aims to determine whether the use of curvilinear fiber composite panels leads to

a significant increase in buckling load over straight fiber designs. In other words, the motivation of the

study is to answer the following question: To what extent tailoring the stiffness variation can improve

the buckling performance?

1



1.2 Objectives

To the best of the author’s knowledge, there is no study on the buckling optimization of curvilinear fiber

composite panels reinforced with curvilinear stiffeners that simultaneously considers the manufacturing

aspects in terms of the maximum curvature allowed by the AFP machine and induced gaps on the

laminate. And that constitutes the main goal of this thesis. To this end, an integrated optimization

framework will be developed following the steps indicated:

• Modeling of variable stiffness laminates and curvilinearly grid-stiffened layouts.

• Modeling the effect of gaps in variable stiffness laminates.

• Development of a Python-Abaqus script to conduct the buckling analysis of the panels

• Integration of the Python script and the Genetic Algorithm in MATLAB to perform the optimiza-

tion

• Implementation of curvature constraints for both skin and stiffener fibers

• Optimization of panels for buckling performance under several loading cases and boundary condi-

tions

1.3 Thesis Outline

This thesis has been structured in six chapters. The contents of the five subsequent chapters are explained

below.

Chapter 2 presents a short background on the relevance of composite materials in the aeronautical

industry and describes the manufacturing of composite materials by fiber placement technology. A

literature review of the design of variable stiffness laminates and curvilinearly grid-stiffened panels is

next given. The manufacturing-induced defects of VS laminates and their impact on the design phase

are also addressed. A brief explanation of the linear buckling analysis is then provided. Lastly, the

optimization strategies available to maximize the buckling performance of curvilinear fiber composite

panels are discussed.

Chapter 3 first outlines the workflow of the Python script developed to build the FE model and process

the FE analysis results. Next, the methodology for modeling variable stiffness laminates and for including

the effect of gaps in the FE model is described. This chapter follows with the geometry parameterization

and modeling of curvilinearly grid-stiffened panels. Finally, the mesh convergence study is presented.

Chapter 4 presents the optimization framework. In this chapter, the optimization problem is defined.

The chapter describes the objective function, the design variables and constraints in terms of allowed

curvature for both skin and stiffener fibers. The theoretical basis of Genetic Algorithms as well as the

genetic parameters and functions selected are then explained. The last section discusses how to integrate

the FE module into the optimization module.

2



Chapter 5 describes the case studies to be optimized. Several boundary conditions and load cases

are considered in the optimization. The results for ideal panels are presented and discussed. Next, the

optimized panels including the effect of gap are introduced and analysed. A comparison is finally made

between the different scenarios of boundary conditions and loads and panels with or without considering

the gap effect.

Chapter 6 discusses the conclusions drawn from the present work as well as several aspects that may

be of interest for future research.
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Chapter 2

State of the Art

This chapter first addresses the importance of composite materials in the aerospace industry. The man-

ufacturing of composite materials by Fiber Placement is presented in Section 2.2. Variable stiffness

laminates and available modeling methods are discussed in Section 2.3. The manufacturing-induced

defects of VS laminates and how their impact has been included in the design phase are described in

Section 2.4. Next, the design of curvilinearly grid-stiffened panels are introduced in Section 2.5. Section

2.6 explains the fundamentals of the linear buckling analysis. Finally, Section 2.7 provides a literature

review of the buckling optimization of VS laminates and curvilinearly grid-stiffened panels.

2.1 Relevance of Composite Materials in the Aerospace Industry

The main driver in the development of materials for aerospace structures is weight reduction. The decrease

in structural weight results in fuel savings that allow for higher payload capacity or a larger range of the

aircraft. Besides structural efficiency, aerospace structure materials must demonstrate adequate damage

tolerance, fatigue resistance, safety level, durability, affordable costs, and availability.

The call for weight reduction in the aerospace industry has led to the increasing use of composite

materials due to their higher specific strength and stiffness compared to metals. In general, the usage of

composite materials reduces the structural weight by 20–30%.

Composite materials can be defined as a combination of materials that differ in composition or form on

a macroscopic scale. The constituents maintain their identity in the composite, i.e., they do not dissolve or

melt into each other although they work together. The constituents can be physically identified and show

a definite interphase between them. The composite material presents beneficial physical characteristics

that are very distinct from those that the individual components can offer.

Fiber-reinforced composites are composed of two constituents: the fibers and the matrix. The main

function of the fibers is to support and carry loads along their direction. They provide strength and

stiffness to the composite. The mechanical properties of the composite material will be proportional to

the volume and characteristics of the fibers. The matrix holds the fibers in their proper position and

protects them from environment. It transfers and redistributes the load to and between the fibers and

5



provides interlaminar shear strength.

In the aerospace industry, the most common reinforcements are glass and carbon fibers. For the

matrix, thermoset and thermoplastic polymeric resins are the most used ones. The type of compos-

ite material considered in this thesis is thermoset carbon fiber reinforced plastic (CFRP) in the form

of laminate, which is currently the most widespread primary/secondary structures in the aeronautical

industry.

Fiber-reinforced composites are orthotropic materials. The composite exhibits high strength and stiff-

ness in the fiber direction, but much lower in the direction perpendicular to the fiber. Hence, the stiffness

and strength properties of the laminate can be varied by combining layers with different orientations

and changing the number of layers. This characteristic allows engineers to tailor the material properties

according to the loads supported by the structure, resulting in weight savings.

Composites have also an outstanding fatigue resistance and by themselves do not corrode, which

can decrease the maintenance cost of the aircraft. When using composite materials, fewer integration

operations are required, so there is a reduction in the number of parts and the cost of assembly. Complex

shapes are easier to obtain and the material waste is less than in metals.

Composites are a good alternative from an environmental perspective. Despite the higher environ-

mental impact in the manufacturing phase and more complex disposal or recycling, the environmental

benefits are due to the lower fuel consumption of the aircraft, which reduces atmospheric emissions over

its lifetime.

The introduction of composite materials in aircrafts occurred progressively over time. Firstly, com-

posite materials were employed in the tertiary components, such as interior parts, sidewalls and galleys.

Then they were incorporated into secondary structures like control surfaces. Over the last two decades,

composite materials have been implemented in primary structures such as the wing, fuselage and stabi-

lizers.

The mid-1960s and early 1970s saw the first application of composite materials, developed in the

military field. Examples of this were the empennages of the F-14 and F-15 fighter aircrafts. The use

of composite materials steadily expanded from only 2% of the F-15 airframe to 20% of modern fighter

aircraft, including significant parts like the wing (skins and substructure), forward fuselage and horizontal

stabilizer [1].

Composite materials went through a similar path in commercial aviation. Figure 2.1 shows the increase

in the percentage of structural weight attributed to composite materials in commercial aircraft. The

Airbus A320 with its all-composite tail was the first commercial aircraft to employ composite materials

on a large scale. Until recently, Airbus has relied more on composite materials than Boeing, reaching up

to 15% of composite materials relative to overall airframe weight for the A320, A330 and A340 families of

aircraft. Airbus has continued to incorporate composites into primary load-carrying airframe structures

with the A380 development. The major Airbus commitment to composite materials has come with the

A350 XWB aircraft model. Half of the A350 XWB’s structure is made of composite materials, which

accounts for more than 50% of composite in terms of weight.

However, in the last decade, Boeing has taken a step forward by introducing its 787 Dreamliner.
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Figure 2.1: Evolution of the percentage of structural weight attributed to composite in commercial

aviation, reproduced from [2]

The Boeing 787 makes extensive use of composite materials in its airframe and primary structure, such

as the wing and fuselage. Figure 2.2 schematizes how materials are applied throughout the Boeing 787

Dreamliner. As can be seen, 50% of the structural weight corresponds to composite materials. Aluminum

alloys represent only 20% and titanium 15%.

Figure 2.2: Materials used throughout the Boeing 787 expressed as a percentage of total structural weight,

reproduced from [3]

In addition to military and commercial aircrafts, helicopters or General Aviation airplanes have incor-

porated composite materials into their structures. Another application for the use of composite materials

is in the growing Urban Air Mobility (UAM) vehicles. In these segments, the aircrafts are smaller and

the incorporation of composite materials is easier. The percentage of composites is very significant to the

extent that some vehicles can be considered ’all-composite aircraft’.
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The strong growth of the aeronautical composites market is largely due to a better understanding

of the behavior and capabilities of composite materials, increasing demand for lighter and more fuel-

efficient aircrafts, and improved manufacturing processes. However, some challenges must be overcome

before composites can fully displace aluminum and other metal alloys, especially, in large aircrafts.

Composites are a relatively new material and, consequently, have a high cost. They require intensive

labor and complex and expensive manufacturing machines. Development, testing, certification, mainte-

nance, and end-of-life costs must also be considered. Composites are difficult to inspect for flaws and can

absorb moisture or be affected by temperature. These materials are susceptible to damage by impact and

delamination can occur, which are not simple to repair. There is still a shortage of "standard" design

rules and knowledge on some aspects of their behavior. Recycling of parts is also another concern.

The aerospace industry needs to address these hurdles through innovative design and manufacturing

technologies since the use of composite materials has shown significant benefits over metallic alloys.

The developments in automated manufacturing methods, specifically in Automated Fiber Placement

machines, have broadened the number of design possibilities. The fiber placement technology is discussed

next.

2.2 Fiber Placement Technology

2.2.1 Automated Fiber Placement

Automated Fiber Placement (AFP) machines are a recent advance in composite manufacturing tech-

niques. They can manufacture complex structures that may not be created with other manufacturing

techniques. The AFP machine can continuously vary the orientation of the fibers. This fiber steering

capability allows manufacturing variable stiffness laminates and curvilinearly grid-stiffened composite

panels. Typical aircraft components manufactured by fiber placement include engine cowls, inlet ducts,

fuselage sections, pressure tanks, nozzle cones, tapered casings, fan blades, among others.

The most commonly employed materials in AFP machines are thermoset prepegs, however, thermo-

plastic materials or dry fibers can also be used. Depending on the machine design, the prepeg tows are

grouped from 8 to 32, named collectively as a course. Common values for tow width are 3.175× 10−3 m,

6.35× 10−3 m and 12.7× 10−3 m [4].

Modern AFP machines employ an active and passive feeding system to deposit the tows onto the

surface. The tows are moved from the material spools to the delivery head by means of guide rollers.

These rollers press and transport the tows to the compaction roller. The compaction roller transfers the

tows to the nip point and, by rotating and moving, places them on the tool surface. The compaction

roller helps to decrease the trapped air and gaps between tows. These two previous steps are considered

as active feeding. At that point, the rollers are released because the adhesive between the tow and the

tool is increased, allowing the tow to move at its own speed (passive feeding). It should be mentioned

that the tow tension must be kept constant, as it is a crucial parameter in the AFP process. Figure 2.3

shows the scheme of the delivery head of an AFP machine.
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Figure 2.3: AFP delivery head, reproduced from [5]

A major feature of the AFP delivery head is the capability to individually control the speed each tow

is deposited on the surface. Termed as differential tow payout, this is the key when dealing with curved

trajectories. If one considers Figure 2.4, it can be observed that path A is longer than path B. This is

possible because the head places tows at different rates.

Figure 2.4: Manufacture of curved fiber paths using different speeds on AFP machines, reproduced

from [6]

Curved tows require in-plane deformation. Therefore, compressive forces will occur along the inner

edge and tensile forces along the outer edge, as it can be seen in Figure 2.5. If a tow is overly curved, the

compression force will be high enough to produce local tow buckling or wrinkling. This fiber deformation

out-of-plane is undesirable due to the decrease in the laminate quality. It results into imperfections and

reduces the structural load carrying capability. Hence, a maximum curvature, kmax, or the equivalent

minimum turning radius, Rmin, has to be established. The value depends on the tow width, material

stiffness and tackiness, layup rate and compaction pressure used by the machine [7].

AFP machines can also cut and restart individual tows while continuing to lay the remaining tows.

This capability allows parts to be manufactured closer to their final shape and, therefore, the scrap rate

is lower. In addition, as tows can be added or dropped at any point, the course width can vary along the
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Figure 2.5: Compressive and tensile forces generated on a curved course

path of the AFP head. This can be employed to avoid large gaps or overlaps formed between tow steered

courses.

In the case of thermoset materials, to increase the tackiness and thus the adhesion to the mould, a

heat unit is employed. This unit is placed in the delivery head and prior to the material deposition. On

the other hand, cooling can be used to reduce tackiness when performing cutting, clamping and restating

processes.

The great flexibility of the AFP machine to position the delivery head onto the surface is due to its

seven axes of motion. Three components make it possible to achieve this seven degrees of freedom. The

fiber delivery head is attached to a robotic wrist that can rotate about three axes (yaw, pitch and roll).

The sled for positioning the delivery head can move in two directions (cross-feed and carriage traverse)

and rotate on one axis (arm tilt). The mandrel rotates the mould.

The AFP machine is also computer controlled. The software converts the CAD part and tooling

data into commands for the seven axes of motion, determining the tow path and boundaries. Then a

manufacturing simulation is run to confirm that the predefined paths are valid.

2.2.2 Continuous Tow Shearing

Continuous Tow Shearing (CTS) is presented as an alternative technique to the conventional AFP pro-

cess. It has recently been developed by B.Kim, P.Weaver and K.Potter at the Advanced Composites

Collaboration for Innovation & Science (University of Bristol) [8–10]. The key feature is that the CTS

head provides a continuous in-plane shear deformation to the tow as opposed to the AFP head that places

the tow using in-plane bending. The difference is that while the AFP head keeps the axis perpendicular

to the tow path, the CTS head moves along the shifting direction. Figure 2.6 shows the tow arrangement

and the head rotation for AFP method and CTS method.

The aim of this novel technique is to minimize the defects generated by the AFP process such as

fibre wrinkles, resin-rich areas and fibre discontinuities. Shearing the tow constantly can decrease the

minimum radius of curvature, and avoid the gaps/overlaps induced by the shifted method as the fibers

can exactly follow the designed path. The design process is simplified as it is no longer necessary to model

the geometry of the gaps/overlaps. However, the tow subjected under shear and with fixed boundaries
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Figure 2.6: Tow arrangement and head rotation for AFP (a,b) and CTS (c) techniques, reproduced

from [8]

experiences an increase in thickness that has to be taken into account in the design [9].

The conventional pre-impregnated tow material is not utilized in the CTS method. The relatively

high viscosity of its resin matrix prevents the fibers from shearing easily and, instead, fiber wrinkles will

appear. Thus, a hybrid between the prepeg and a dry tow is used. The CTS machine impregnates a dry

tow in situ to form a semi-impregnated tow [8].

Although Continuous Tow Shearing is a promising technology, it is not as mature as the AFP tech-

nology in terms of design, manufacturing, testing and certification [10]. Therefore, in this work, the AFP

method has been chosen to manufacture the variable stiffness laminates.

2.3 Variable Stiffness Laminates

The stiffness of a laminate depends on the number of plies and the fiber orientation within the plies.

Traditionally, the fiber angle orientation is uniform (straight fibers), resulting in Constant Stiffness (CS)

laminates. As discussed in Section 2.2, advances in manufacturing technology have made it possible to

curve the fibers. Therefore, laminates in which the fiber orientation of the plies is not constant can be

manufactured. This results in laminates with variable stiffness that can be tailored to produce more

efficient load paths than CS laminates. The design space is enlarged and substantial improvements in

structural performance or weight savings can be obtained. Another approach to spatially vary the stiffness

is to add patches of plies over the laminate, thus changing the stacking sequence and the number of plies

in a discrete manner.

In this thesis, Variable Stiffness (VS) laminates refer to laminates composed of plies in which the fiber

orientation changes continuously with the spacial location. This type of laminate may also be termed

tow-steered laminate or Variable Angle Tow (VAT) laminate.
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In the literature, different approaches are available to model VS flat panels. Several authors have

used mathematical modeling common in computer graphics to represent curves as a direct method to

parameterize curvilinear fibres. Nagendra et al. [11] modeled the fiber paths by using Non-Uniform

Rational B-Splines (NURBS) with a fixed number of control points. Honda et al. [12] employed a linear

combination of B-Splines to represent arbitrarily shaped fibers. Other works, including [8, 13], selected

Bézier curves to model the fiber paths. The above fiber paths can be easily read by the fiber placement

machine. However, the definition of appropriate basis paths and control points is not straightforward,

limiting the feasibility of these methods [7].

Gürdal and Olmedo [14, 15] were the first to introduce a parameterization scheme to describe fibers

which orientation varied linearly along the x or y direction. Later, Tatting and Gürdal [16] generalize the

reference path formulation so that the fiber angle, θ(x′), can vary linearly along an arbitrary axis, x′, as

expressed in Equation 2.1.

θ(x′) = φ+ (T1 − T0)
|x′|
d

+ T0 (2.1)

where T0 and T1 are the fiber angles at the beginning and the end of the characteristic length d. The

angle φ defines the orientation of the x′−y′ coordinate system with respect to the x−y global coordinate

system. These three magnitudes are sufficient to define a linearly varying ply. The compact notation that

has been adopted by convention is of the form φ 〈T0, T1〉. Figure 2.7 schematized the terms of Equation

2.1. Note that the angles are considered positive in a counter-clock wise direction.

Figure 2.7: Reference path of linear angle variation fibers, reproduced from [17]

By using the relation dy′/dx′ = tan (θ − φ) and performing the integration with respect to x′, the

reference fiber path y′ is expressed in Equation 2.2.

y′ (x′) =


d

T1−T0

{
−ln [cosT0] + ln

[
cos
(
T0 + (T0 − T1) x′

d

)]}
, for − d ≤ x′ ≤ 0

d
T0−T1

{
−ln [cosT0] + ln

[
cos
(
T0 + (T1 − T0) x′

d

)]}
, for 0 ≤ x′ ≤ d

(2.2)

where

x′ = xcosφ+ ysinφ (2.3)
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More recently, Gürdal et al. [18] developed another parametrization to describe curvilinear fibers.

The definition of the fiber path was based on circular arcs, using the same parameters as the formulation

of the linear angle variation: the fiber angles at the start and end, T0 and T1, of the characteristic length

d. With this formulation, the manufacturing constraint of AFP machines in terms of the curvature can be

directly imposed by restricting the curvature value of each arc of the fiber path. Figure 2.8 schematizes

a fiber path defined by circular arc variation in which each segment has the same radius, i.e., the same

curvature.

Figure 2.8: Fiber reference path defined by using circular arc variation, reproduced from [18]

Since the curvature is a signed quantity, previous to calculating its value, it was necessary to determine

on which side of the arc it was located. The curvature, κ (x), was then obtained by Equation 2.4.

κ (x) =
(−1)

k
(sinT1 − sinT0)

d
, k = floor

[x
d

]
(2.4)

The fiber angle was calculated with Equation 2.5. Note that it is a linear variation of the sine but

not of the angle itself.

sinθ (x) =

sinT0 + (sinT1 − sinT0)
(
x
d − k

)
, k even

sinT1 + (sinT0 − sinT1)
(
x
d − k

)
, k odd

 , k = floor
[x
d

]
(2.5)

Other researches proposed alternative definitions for fiber angle variation along a single axis, including

parabolically shaped fiber [19] or cubic polynomial fibers [13]. Honda et al. [20] introduced a cubic

polynomial surface, f (x, y), to represent curved fibers using Equation 2.6.

f (x, y) = c00 + c10x+ c01y + c20x
2 + c11xy + c02y

2 + c30x
3 + c21x

2y + c12xy
2 + c03y

3 (2.6)

The fiber paths were the projections of the surface contour lines on the horizontal plane, as illustrated in

Figure 2.9. Different surface shapes were described by varying the values of the cij polynomial coefficients.
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The fiber angle θ was defined as the tangential direction of the contour lines and calculated with Equation

2.7.

θ = tan−1

(
−∂f/∂x
∂f/∂y

)
, when ∂f/∂y = 0, θ = 90◦ (2.7)

Figure 2.9: Cubic polynomial surface and its projection on the horizontal plane representing the fiber

paths, reproduced from [20]

Authors [21, 22] presented a formulation for the nonlinear variation of the fiber angle along x and

y directions. The definition of the fiber angle was based on Lobatto-Legendre polynomials in which

the coefficients were the design variables. Wu et al. [23] proposed an alternative definition of the

nonlinear distribution of fiber angles on an x-y plane using Lagrangian polynomials. A set of M × N

reference points was selected in the plate domain. A double series function of (M − 1) by (N − 1) order

polynomials was used to interpolate the nonlinear fiber angle distribution. The benefit of employing

Lagrangian polynomials was that the coefficients of the polynomial were the fiber angle at the reference

points. The nonlinear distribution of the fiber orientation , θ (x, y), was expressed as in Equation 2.8.

Note that Equation 2.8 is simplified to the definition of linear variation if the fiber angle varies only in

the x-direction and two reference points are used.

θ (x, y) =

M−1∑
m=0

N−1∑
n=0

Tmn ·
∏
m6=i

(
x− xi
xm − xi

)
·
∏
n 6=j

(
y − yi
yn − yi

)
(2.8)

The reference points (xm, yn) could be randomly chosen. The selection would influence the optimiza-

tion process. Generally, a uniform distribution of reference points was preferred, as illustrated in Figure

2.10.

Blom et al. [24] employed a streamline analogy for the construction of fiber paths. Each streamline

represented the center line of the fiber course. The solution of the stream function and consequently,

the location of the streamlines depended on the boundary conditions. Additional considerations on the

physics of the problem were necessary. Later, Niu et al. [25] presented a method for path planning of

variable stiffness laminates based on the potential flow field theory. The flow field function to characterize

the fiber path contained a uniform linear flow field and several vortex fields. Two plies were considered:

one ply was based on the stream function and the other on the potential function of the flow field. Since

potential flow theory states that the cocurrent and equipotential lines passing through any point in the
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Figure 2.10: Nonlinear distribution of fiber angle using Lagrangian polynomials with M × N reference

points, reproduced from [23]

flow field are orthogonal, the fiber paths of the laminate were orthogonal at each intersection, improving

its properties.

Lamination parameters have also been employed to analyze variable stiffness composites (see, for

instance, [7, 26–28]). Tsai et al. [29, 30] demonstrated that the ABD stiffness matrix can be fully

defined by twelve lamination parameters (in the most general case) and the total laminate thickness. A

symmetrical laminate requires only eight parameters and a symmetric balanced laminate four. Lamination

parameters are trigonometric functions of the ply orientation. The functions are interrelated, so it is

necessary to set a feasible region for the lamination parameters. The advantage of using the lamination

parameters as design variables to define the local stiffness properties is that no explicit knowledge of the

final stacking sequence is required. This allows to model any laminate with a minimum number of design

variables, regardless of the number of layers. However, a postprocessing step is necessary to convert the

optimal distribution of lamination parameters into a fiber angle distribution and then into a continuous

fiber paths for manufacturing.

Considering that the objective of this thesis is to optimize the buckling behavior of composite panels

with curvilinear fibers, a literature review has been carried out to identify the most commonly adopted

approach. Linear variation of the fiber orientation offers a compact form to describe curvilinear fibers.

Only two fiber angles are required, thus reducing the number of design variables. This parameterization

is characterized by its simplicity, an extensive background in the analysis, design and manufacture of tow-

steered composite materials and accurate results. It is therefore not surprising that the linear variation

of fiber orientation has been widely used to analyze the buckling response of variable stiffness laminates

[6, 14, 16, 31–34]. Consequently, the linear variation of the fiber angle is the approach utilized in this

work.
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2.4 Manufacturing-induced defects in VS laminates

Shifted method is used to manufacture variable-stiffness laminates. First, the AFP machine deposits

the reference course. The distance between the course top and bottom boundaries changes along the

horizontal since the fiber path is curvilinear. Figure 2.11 shows a reference curvilinear course in which

the vertical distance, D, has the maximum value at the plate edges and the minimum at the center.

Wcourse indicates the width of the course, which is constant here.

Figure 2.11: A curvilinear reference course

The AFP head then moves in the vertical direction with a constant value to lay down the next course.

If the course width remains constant, large areas of overlap will occur between the two courses, as it can

be seen in Figure 2.12a.

Therefore, the course width should vary continuously. This variation is actually discrete, as the AFP

can only cut finite tow widths. Small areas of defects are then generated, as depicted in Figure 2.12b.

Note that this can be achieved thanks to the AFP capability of cutting each tow independently.

(a) Overlap area (b) Gaps generated

Figure 2.12: Intersection of two curvilinear courses
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Two techniques can be employed to cut the tows: one-sided tow drop or both-sided tow drop. The

former implies that one course boundary, either the top or the bottom one, is cut and the other remains

smooth. The latter modifies both course boundaries. One-sided tow drop strategy has been adopted as

it results in fewer defects within the laminate [35].

Depending when a tow is cut, gaps or overlaps will be generated. A gap is a small wedge-shaped

without fibers which, after curing, will be filled with resin. An overlap occurs when a small jagged patch

of the composite tow lies on top of the adjacent composite course. If the AFP machine drops a tow as

soon as one of its edges reaches the boundary of the adjoining course, a gap is formed. Conversely, if

the tow is cut when the second edge touches the boundary course, an overlap is created. 0% coverage

strategy means that all defects generated are gaps while 100% coverage involves that all defects are

overlaps. It is also possible to have intermediate scenarios. The 100% coverage strategy has been shown

to provide increased structural performance, however, the thickness of the laminate is not constant. Many

aeronautical applications require a smooth surface to maintain aerodynamics, which will not be possible

to manufacture with this technique [36]. Therefore, in this work, 0% coverage or complete gap strategy

has been chosen.

The study of the influence of defects in variable-stiffness laminates has attracted the interest of many

authors. A.Blom et al. [37] presented a method to localize gap areas within tow-steered layers. To

implement these defect areas in a finite element model was first determined whether or not the element

lied in the tow-drop area. Elements in the gap areas were modeled with resin material properties.

Otherwise, regular composite material properties were assigned. Thus, the element size was small enough

to capture the tow-drop area. Studies were carried out on the influence of gaps on the strength and

stiffness of the laminate. It was concluded that a larger gap area led to lower strength and stiffness.

Fayazbakhsh et al. [36] introduced a novel method, called defect layer method, to characterize the

influence of defects created in a variable stiffness laminate. The location of gaps or overlaps was first

obtained using MATLAB subroutines. Another MATLAB subroutine received that information as an

input as well as that of the mesh to calculate the area percentage of a defect in each element. This

area percentage was used to modify the characteristics of the nondefect composite layer. If the defect

produced was a gap, the area percentage scaled the elastic properties. If the defect was an overlap, the

area percentage scaled the thickness. The modified properties were computed for each element of each

layer of the laminate. Next, a finite element analysis was performed to calculate the in-plane stiffness

and buckling load of composite panels with embedded defects. Results showed that gaps degraded the

structural behaviour while overlaps improved it.

V.Mishra et al. [38] proposed a methodology to study the effect of gaps on the stiffness and buckling

load of the laminates. The method was called smearing method. The novelty of their approach was the

estimation of the gap volume fraction in a ply without explicitly modeling the defects, reducing compu-

tational cost. The gap volume fraction was calculated using the gradient of the fiber angle distribution.

Results showed that the stiffness of the laminate was within 5% error comparing to the defect layer

method and on the conservative side. However, the buckling load was over-predicted because the stress

concentration was not captured as well as in the defect layer method .
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T.Brooks and J.Martins [39] developed a mathematical formulation to provide a relationship between

the gap/overlap propagation rate in a tow-steered composite ply with the divergence of a 2D vector

field. The streamlines of the vector field represented the tow paths of the ply. The relationship between

divergence and defect growth can be described locally taking a small control volume. If the divergence

had a positive value, the density of tow paths entering the control volume was greater than the density

of tow paths exiting. This implied a gap formation. Likewise, if the divergence had a negative value, the

entering tow paths’ density was less than the existing tow paths’ density, indicating an overlap formation.

In the case of zero divergence, tow paths were parallel and no defects were formed. The amount of gaps

and overlaps created in the ply was implemented in the optimization framework by constraining the

magnitude of the divergence. Although the gap/overlap rate of growth was restricted in the optimization

process, its effect on the local stiffness of the panel was not considered.

Since the aim of this thesis is to optimize the buckling performance of variable-stiffness panels, the

method for modeling laminates with embedded defects should provide reliable results as well as compu-

tational time efficiency. The approach performed by Fayazbakhsh et al. [36] is the one considered to

meet all the above criteria. The element size is smaller than that of A.Blom et al. [37], but sufficient to

obtain more accurate results than V.Mishra et al. [38] in the buckling load. The influence of defects in

the laminate is taken into account in the finite element analysis and is not limited to the optimization

process as T.Brooks and J.Martins [39] do.

2.5 Curvilinearly Grid-Stiffened panels

Curvilinearly grid-stiffened panels provide a larger design space than the traditional orthogrids or iso-

grids panels with straight stiffeners. Tailoring the stiffener location and shape can lead to substantial

improvements in the buckling performance.

Different approaches have been reported for modeling curvilinearly grid-stiffened panels. Several

authors, including [31, 33, 40, 41], used the linear variation of the angle to define the stiffener path.

The definition was the same as that formulated by Gürdal [14] to describe the curvilinear fibers in

variable stiffness panels. The stiffener path was determined by the orientation values at the center

and sides of the panel. The orientation angle was chosen to vary along the x-direction. The stiffener

reference path was shifted vertically and mirrored about the y-axis to construct a grid-stiffened panel.

The stiffness distribution was, therefore, influenced by the variation of the angle on the x-axis and the

distance between the stiffeners on the y-axis. Generally, equidistant stiffeners were employed, although

non-uniformly distributed stiffeners were also proposed to widen the design space. Figure 2.13 illustrates

an example of a grid-stiffened panel defined by the linear variation of the angle.

Kapania and his co-authors’ researches have employed NURBS or third-order B-Splines to describe

the reference path of curvilinear stiffeners (see for instance [34, 42, 43]). In most of the works, three points

were chosen to shape the curve to not further increase the number of design variables. The start and

end points were assumed to be on the panel boundary. These points influenced the stiffener placement.

A perimeter parameter, which varied from 0 to 1, was used instead of the physical coordinates to reduce
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Figure 2.13: A curvilinearly grid-stiffened panel with the stiffener path defined by the linear variation of

the angle, reproduced from [31]

the number of design variables. The third point was located in the perpendicular direction of the straight

line joining the start and end point. A curvature parameter was defined to determine the position of the

control point and, thus, the stiffener shape. Three design variables were needed to define one curvilinear

stiffener. A scheme of this geometry parametrization for the stiffener path is shown in Figure 2.14.

Figure 2.14: Geometry parameterization for the stiffener path using NURBS, reproduced from [42]

NURBS curves have the convex hull property which ensures that the curve lies within the region of the

control points. However, since NURBS only pass through the start and end points and not through the

control points, an additional step is necessary to check if the stiffener is inside the panel. This also means

that it is difficult to set the upper and lower bounds of the curvature parameter for the optimization

problem.

Other authors such as [44, 45] parametrized the stiffener geometry using Bézier curves. Three control

points were employed to define the curvilinear path. The start and end points were fixed at the panel

edges, which required two design variables to define their location. The control point was defined by its

x-y coordinates, setting the two remaining design variables to define the stiffener shape. Bézier curves,

like NURBS, do not pass through all control points. Hence, additional calculations as well as extra

attention to choose the appropriate bounds for the design variables were necessary to ensure that the
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stiffener lied within the panel boundary.

In the present thesis, the stiffeners are modeled using the spline tool in Abaqus. Therefore, the

approach adopted by [34, 42–45] which employs NURBS or Bézier curves to model the stiffener, is easier

to implement than the approach taken by [31, 33, 40, 41] which describes the stiffener path using the

analytical formula of linear angle variation. In addition, the stiffener paths in the latter approach are

slightly biased toward the horizontal direction over the vertical direction because the angle variation is

defined along the x-direction. In contrast, stiffeners modeled by the spline parameterization can flexibly

stretch from the left to right edges or from the top to bottom edges of the panel [34]. The geometry

parameterization with NURBS curves is modified as Abaqus interpolates the points using a natural

cubic spline. This spline passes through all control points, which facilitates the stiffener being inside the

panel and the choice of appropriate bounds for the design variables. Section 3.4.1 explains in detail the

geometric parametrization utilised in this thesis to model the stiffener layout.

2.6 Linear Buckling Analysis

Buckling is a stability behaviour to which slender structural components (e.g., long columns or thin

plates) under loads are susceptible. When a structure subjected to a gradually increasing load reaches a

critical level, it suddenly changes shape and is said to have buckled. The buckling critical load marks the

limits between possible configurations for the structure. The transition from a reference configuration

(pre-buckling) to another different configuration (post-buckling) is at the bifurcation point. The latter

configuration usually has a much lower stiffness leading to collapse, but some structures can continue to

support loads even after buckling in a stable manner. Pre-buckling behaviour is commonly linearized,

whereas post-buckling presents non-linearlities. Figure 2.15 schematizes the force-displacement curve

that represents the buckling behaviour of the structures.

The buckling analysis of VS laminates reinforced with curvilinear stiffeners presents a high level

of complexity due to the inherent geometry of the panel. The Finite Element approach can provide

meaningful and accurate results regardless of the complexities in geometry, material properties, boundary

conditions and loading [46]. Hence, finite-element procedures have been widely adopted to study the

buckling response of curvilinear fiber composite panels (see for instance [16, 31, 34, 42]).

In the present thesis, the linear buckling analysis is performed by the FEA commercial software

Abaqus. Abaqus can estimate the critical buckling load by linearized eigenvalue extraction. This method

is particularly useful for stiff structures. Stiff structures are characterized by carrying their design loads

primarily by axial or membrane action, rather than by bending action. Their response usually involves

very little deformation prior to buckling (almost linear pre-buckling response). When the critical load is

reached, the structure bends suddenly and exhibits a much lower stiffness (post-buckling state) [47].

In the eigenvalue buckling problem, the loads for which the stiffness matrix of the model becomes

singular are sought, so that the problem has nontrivial solutions. The buckling loads are calculated

relative to the base state of the structure. The base state can include preloads (“dead” loads), PN . The

preloads are often zero in classical eigenvalue buckling problems. In the present study, the eigenvalue
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Figure 2.15: Load-displacement curve of buckling behaviour

buckling procedure is the first step in the analysis, thus preloads are not included.

The eigenvalue buckling problem requires first to define an incremental loading pattern, QN . The

QN loading will be scaled by the load multipliers (eigenvalues), so its magnitude is not relevant. A static

perturbation analysis is then performed to determine the incremental stresses, ∆σ, due to QN . The

incremental stresses are utilized to build the stiffness matrix KMN
∆ due to QN . Next, Abaqus forms the

stiffness matrix KMN
0 corresponding to the base state geometry. The eigenvalue problem expressed in

Equation 2.9 can now be solved.

(
KMN

0 + λiK
MN
∆

)
vMi = 0 (2.9)

where λi are the eigenvalues and vMi the associated eigenvectors. M and N indicate the degrees of

freedom of the whole model; and i indicates the ith buckling mode.

In the present analysis, only the lowest (first) eigenvalue, λ1 = λ, is requested, which is normally the

one of the most interest. The solver selected to extract the eigenvalue is the Subspace iteration method

as it is particularly suited for the calculation of few eigenmodes (less than 20) of large finite element

systems.

The critical buckling load is finally obtained by multiplying λ to the applied loads QN . The buckling

mode shape, vM , although it is a normalized vector and does not represent the actual magnitude of

deformation, can be useful to represent it.
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2.7 Buckling Optimization of Composite Panels with Curvilinear

Fibers

The optimization of the buckling response of tow steered panels and/or curvilinearly grid-stiffened panels

has been the subject of attention by several authors. Designing the optimum stacking sequence or the

optimum stiffener layout and size to maximize the buckling performance often results in many local

optima [43, 48]. In addition, the sensitivity information of the problem is not always easy to compute.

Hence, global optimization techniques are required.

Genetic Algorithm (GA) is the most widely adopted for the optimization of this type of panels due

to their robustness in finding a global optimum. Some works that are worthy of note are the following.

Wu et al. [23] performed an optimization for the maximum buckling load of Variable Angle Tow plates.

The VAT plates were described by a nonlinear variation of the fiber orientation in which the fiber angles

at the reference points constituted the design variables. The design problem was non-convex and a

Genetic Algorithm was selected as the solver for the optimization. Tatting et al. [16] developed an in-

house software based on Genetic Algorithm to maximize the buckling load of tow-steered laminates. The

laminates were characterized using the linear variation of fiber angle, so the parameters of the curvilinear

fiber path within each ply were chosen as design variables.

Liu et al. [40] maximized the buckling load of an aluminium curvilinearly grid-stiffened panel. The

stiffener layout was defined by a piecewise linear variation of the angle, taken from the parametrization

of the curvilinear composite fibers. In their work, Multi Island Genetic Algorithm (MIGA) was employed

to optimize the grid panel. MIGA differs from standard Genetic Algorithms in that the entire population

is divided into several subpopulations, called islands. In each island, the GA standard conducts the

optimization. Every few generations, individuals from each island will be randomly chosen to migrate to

other islands to enhance the diversity of individuals.

Hao et al. [49] proposed a bi-level optimization framework for improving the buckling load of variable

stiffness panels with cut-outs. In their study, the optimization was split into two small-set problems. In

the first level, the optimization was performed for a constant stiffness panel, i.e., with straight fibers. The

result was a quasi-optimum design that was used as the basis for the second level. In the second level,

the fiber paths were curvilinear and defined with a flow field function. Curvature constraint was imposed

here. MIGA was utilized to find the fiber angles for maximizing the buckling load at both optimization

levels.

Other stochastic algorithm that has been used as an optimizer is Simulated Annealing (SA). The

name and inspiration for SA comes from the process of annealing metals. The technique consists of

heating the material and then slowly lowering the temperature to reduce the defects, minimizing the

energy of the system. In general, SA algorithm adopts an iterative movement according to the variable

temperature parameter, which imitates the annealing transaction of metals [50]. For instance, A.Ahmad

[51] used global Simulated-Annealing optimizer to determine the optimal fiber paths within each ply of

the laminate for maximum buckling load.
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Particle Swarm Optimization (PSO) has been another alternative algorithm for the optimization of

the design of variable stiffness panels. PSO is a population-based optimization technique that is inspired

by the social behaviour of large groups in nature, such as such as bee swarms or fish schools. The system

is initialized with a population of particles (potential solutions) moving through the search space. The

new location of each particle is determined by a velocity term, which reflects the attraction of both its

best local position found and the best global positions encountered by other particles. Singh et al. [34]

presented a PSO parallel processing-based optimization framework for designing tow-steered composite

laminates with metallic curvilinear stiffeners. The objective was to find the optimum laminate stacking

sequence and the optimum stiffener placement and shape for maximizing the buckling load. A structural

mass constraint was also implemented. In their work, Penalty Method was used to convert the constrained

optimization problem into an unconstrained optimization problem.

Most design problems of variable stiffness panels to optimize buckling are parameterized by fiber ori-

entation angles, which often results in nonconvex problems and difficult to obtain sensitivity information,

and so stochastic methods are required. Another approach, mentioned in Section 2.3, to characterize VS

panels is using the lamination parameters. Lamination parameters allow the local stiffness properties

to be defined using a finite set of convex and continuous design variables, well suited to gradient-based

algorithms as reported by IJsselmuiden et al. [7], who performed a buckling load optimization for VS

panels described with these parameters. Wu et al. [52] also used lamination parameters to conduct a

buckling optimization of VAT plates. In their work, a two-level optimization framework was proposed.

In the first step, a gradient-based algorithm called the Globally Convergent Method of Moving Asymp-

totes (GCMMA) was adopted to find the optimal lamination parameters for the maximum buckling load.

At the second step, the fiber orientation angle distributions were retrieved from the lamination parame-

ters via a genetic algorithm. The use of lamination parameters guided the design process to determine

the best possible laminate configuration in the second step.

Another work within gradient-based optimization that is worth highlighting is that carried out by

Wang et al. [33]. In their study, a curvilinearly grid-stiffened panel was optimized to improve the

structural buckling resistance. The skin fibers were straight and the curvilinear stiffeners were represented

by the linear variation of the angle. The stiffeners were not explicitly modeled in the finite element

calculations with the aim of reducing the computational cost. Instead, an equivalent unstiffened model

with a fixed mesh was employed to calculate the buckling load. The equivalent material properties were

obtained by homogenization techniques and changed with the curvilinear path of the stiffener in the

optimization. Taking advantage of the fixed mesh, it was possible to use a gradient-based optimization

algorithm, specifically the Method of Moving Asymptotes (MMA). The sensitivities of the structural

responses were calculated by the finite difference method.

In the present thesis, the Genetic Algorithm (GA) is selected to perform the optimization. As men-

tioned above, composite panels with curvilinear fibers and grid stiffeners may have local minima. In

addition, the sensitivity information is not accessible in the present optimization framework. The above

stated impedes the application of gradient-based algorithms and global search methods are required even

though they are not as computationally efficient. The parameterization chosen for curvilinear skin fibers
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and stiffeners involves a low number of design variables. Therefore, direct search methods are affordable

in terms of computational time. Among stochastic methods, genetic algorithm is the most popular due to

its robustness and ease of implementation. Section 4.3 explains in more detail the GA and its operators.
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Chapter 3

Numerical Modeling

This chapter describes how composite panels with curvilinear fibers and grid stiffeners have been modeled.

Section 3.1 outlines the workflow of the tasks performed in the Finite Element Module. The modeling of

the variable stiffness laminates and the manufacturing-induced gaps are described in Sections 3.2 and 3.3,

respectively. The modeling of curvilinear stiffeners is given in Section 3.4. Finally, the mesh convergence

study is presented in Section 3.5.

3.1 FE Module

In the present thesis, variable angle tow laminates are modeled, i.e., laminates with curved fibers. This is

done by assigning a local stacking sequence to each element of the mesh. Thousands of elements may be

employed which makes the process infeasible to set up "manually". In addition, during the optimization

process, the design variables are changed and so the geometry of the panel. A simulation of the panel

model is performed as many times as the parameters vary. Hence, an automated process to create the

FE model, run the FE analysis, and extract the results is essential for optimization.

The Abaqus Scripting Interface can effectively automate the workflow. Abaqus scripting interface

scripts are Python scripts that enable to create and modify a model, submit an analysis and read the

results in a compact form [47]. The model geometry, material properties, loads, boundary conditions and

more can be easily modified by scripting.

A Python script has been developed that Abaqus runs to generate the FE model, conduct the analysis

and process the results, and that MATLAB can interact with. Figure 3.1 shows the workflow of the tasks

performed by the FE module. Hereafter, a brief explanation of the sequential stages to build the FE

model and extract the FE analysis output is presented.

First, the input data are provided. The inputs are the plate dimensions, the stiffener thickness and

height, the material properties of the composite, the laminate definition (number of layers and their

thickness), and the value of the design variables that come from the optimization module.

The sketches of the plate and stiffeners are generated with the input geometry. The materials and if

necessary, other properties are next created. After the plate and stiffeners are assembled. The interaction

25



Figure 3.1: Workflow of the FE module

between the two instances is defined with a tie constraint. Plate and stiffeners are then meshed separately.

The step stage specifies the type of analysis. In this case, a linear buckling analysis is selected. The

boundary conditions and loads are then applied to the plate. The stages indicated so far correspond to

the creation of the FE model.

Next, a job is created with the model and Abaqus performs the FE analysis. The results from the

linear buckling analysis are contained in the output database (.odb) file. The requested output is the first

eigenvalue (the buckling factor). The Python file is scripted to read the odb file, extract the buckling

factor and write it to a text file. Here, the Abaqus module ends and the text file is read by MATLAB.

This is necessary since the buckling factor will be used in the evaluation of the objective function of the

optimization process, explained in Chapter 4.

3.2 Modeling of Variable Stiffness Laminate

The VS laminates considered in the present thesis are formed by plies in which the fiber orientation

varies along the x-direction. As discussed in Section 2.3, the linear variation of the fiber angle is the

adopted approach. Henceforward, the origin of the coordinate system is fixed at the center of the panel.

The characteristic length is considered to be half the width of the panel and designated by a. The two

fiber orientation angles T0 and T1 are the major design variables, while φ is usually stipulated as 0 or

90 degrees for a rectangular panel [16]. The φ angle is set to 0 so the superscript ′ is removed from the

formulation. After these statements, the linear variation of the fiber angle is described by Equation 3.1.
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Figure 3.2 schematized the terms of Equation 3.1. The reference fiber path is given in Equation 3.2.

θ(x) = (T1 − T0)
|x|
a

+ T0 (3.1)

y =


a

T1−T0

{
−ln [cosT0] + ln

[
cos
(
T0 + (T0 − T1) x

a

)]}
, for − a ≤ x ≤ 0

a
T0−T1

{
−ln [cosT0] + ln

[
cos
(
T0 + (T1 − T0) x

a

)]}
, for 0 ≤ x ≤ a

(3.2)

Figure 3.2: Reference path defined by the the linear variation of the fiber angle

The reference path is shifted vertically to create the remaining paths. Thus, the change in the

fiber angle occurs only along the x-axis. To account for the variation of the fiber angle, the ply can

be discretized into small parts. In this case, the plate is the part to be featured with the tow steered

laminate. Therefore, the plate is meshed with a suitable number of elements. Abaqus S4R shell element

is used.

S4R element is defined as a 4-node, quadrilateral, stress-displacement shell element with reduced

integration and a large-strain formulation. These elements allow transverse shear deformation. It is

included in the group of general-purpose shell elements and can model both thin and thick shells. It

provides robust and accurate solutions to most applications [47].

Once the plate is meshed, the aim is to calculate the fiber angle within each element. For this

purpose, a sequence of operations is carried out as outlined in Figure 3.3. The element connectivity is

first requested and the node coordinates of the element are obtained. Using the nodal coordinates, the

centroid of each element is calculated. At the centroid, the fiber angle is computed by using Equation 3.1.

Since Equation 3.1 depends on T0 and T1, the variables that characterize a ply, a fiber angle is obtained

for each different ply in the laminate. Note that each fiber orientation angle obtained is constant within

an element.

The local stacking sequence is then built and assigned to the element. As a result, there are as

many composite sections as there are elements. In this way, a variable stiffness composite panel with an

arbitrary ply configuration can be modeled.
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Figure 3.3: Steps for assigning the local fiber angle to the mesh element

Figure 3.4a illustrates the fiber paths for a 〈20, 50〉 ply. Figure 3.4b shows how the fiber paths of

the ply are discretized in the Finite Element Model (FEM). The straight lines represent the fiber angle

computed at the centroid of each element.

(a) Continuous fiber paths (b) Fiber angle within element

Figure 3.4: Modeling of tow steered 〈20, 50〉 ply

3.2.1 Verification study of VS laminates

The case study presented by Waldhart [6] is employed here to validate the present Python script for

modeling VS composite laminates. In Waldhart’s work, the buckling response of constant and variable

stiffness laminates was investigated. The Ritz method was used to calculate the critical buckling load.
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A square panel of dimensions 20 in× 20 in subjected to uniaxial compression in x-direction was stud-

ied. The transverse edges were free to expand. All edges were simply supported, i.e, the out-of-plane

displacement was restrained. The in-plane displacement in the y-direction of the lower left corner was

set to zero, v (−10,−10) = 0, to avoid the vertical translation of the model. Figure 3.5 shows the loading

and boundary conditions applied to the panel.

Figure 3.5: Load and boundary conditions applied to test case for VS modeling

The laminates consisted of 36 plies with a thickness of t = 0.0055 in. The material properties were as

follows: E1 = 21.0 Msi, E2 = 1.40 Msi, G12 = 0.80 Msi and ν12 = 0.34.

Constant and variable stiffness laminates were analyzed. For the modeling of CS laminates, the fiber

angles were made equal, T0 = T1. In the VS laminate, the fiber orientation changed along the x-direction

and, thus, Equation 3.1 and the methodology described above were employed.

The critical buckling loads reported by Waldhart using the Ritz method and those obtained by the

present FE model for CS and VS laminates are given in Table 3.1. The percent error in all cases is less

than 1%. Therefore, the present code to model variable stiffness composite laminates is verified.

Table 3.1: Comparison between the buckling loads of CS and VS laminates reported by Waldhart and

those obtained by the present model

Buckling Load [lbs/in]

[0]18s [90]18s [0± 〈15, 60〉]9s

Waldhart [6] -426.7 -240.9 -692.2

Present Model -425.0 -239.6 -690.4

Percent error [%] 0.4 0.5 0.3

3.3 Modeling of Manufacturing-induced Gaps

When manufacturing a VS laminate by the AFP machine, defects are generated in the laminate. These

manufacturing-induced defects should be accounted for at the design phase. As stated in Section 2.4,

Fayazbakhsh et al. [36] used a constant curvature path to define the reference fiber path. This path
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differs from the definition employed in this thesis: the linear variation of the fiber angle. The approach

introduced by Fayazbakhsh et al. has been modified to model the induced gaps when the definition of

linear variation of the fiber angle is considered. References [36] and [53] are used as a basis for developing

one’s own code. The process followed to model laminates with embedded gaps is detailed below.

The code has two modules. The first module consists of MATLAB functions to obtain the location

of the gaps in the laminate. This is necessary to compute the gap area within each element of the mesh.

The material properties are then modified according to the gap area for each layer and each element.

This information is passed to the second module. The second module is a Python script to build the

FEM of the composite laminate.

As mentioned above, linear variation of the fiber orientation is used to generate the geometry of a

tow-steered layer. Equation 3.1 gives the variation of the fiber angle along x-direction and Equation 3.2,

the corresponding reference path. The tow width, tw, and the number of tows, nt, are then selected to

construct the reference course. When the AFP machine deposits the course, its head is perpendicular to

the local fiber angle. This means that each point along the AFP head has the same fiber orientation as

the one corresponding to the reference path. Thus, the points that form each tow of the course can be

calculated by Equation 3.3.

x = x∗ − i · twsinθ∗

y = y∗ + i · twcosθ∗
(3.3)

where the superscript ∗ is used to denote the points in the reference path and i is an index which range

decreases by 1 from nt/2 to −nt/2. Figure 3.6 shows the reference course. The reference path (i = 0)

and a point belonging to it (x∗, y∗) are colored in red. The blue lines represent the edges of the remaining

tows and the blue dots the corresponding points. The point on the top course boundary (i = nt/2) that

is on the same perpendicular as the point of the reference path is indicated. Both points have the same

fiber local orientation, θ∗.

Figure 3.6: Reference course of a tow steered ply

It should be noted that the reference path must be extrapolated further from the plate edges, so that

the reference course completely covers the plate. Figure 3.7 shows the reference course in which the part
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coloured in green corresponds to the points extrapolated from the reference path.

Figure 3.7: Extrapolated reference course

The next step is to compute the shift distance, i.e., the minimum vertical distance between the

reference course top and bottom boundaries. The reference trajectory is antisymmetric, so it is sufficient

to calculate the vertical distance for positive values. The shift distance is calculated with Equation 3.4.

The extrapolated values of the reference path are not considered.

ds = min

(
nttw
cosθ∗

)
(3.4)

The AFP machine will move vertically with the shift distance to lay down the next course (the shifted

course). The points of the shifted course are calculated by Equation 3.5.

xs = x∗ − i · twsinθ∗

ys = y∗ + i · twcosθ∗ + ds
(3.5)

The intersections between the outer top edge of the reference course and the tows of the shifted course

are next located. Figure 3.8 shows the intersection points between the shifted course and the reference

course. A perpendicular line is then drawn from each intersection point up to the next corresponding

tow edge. This reproduces the cut of a tow made by the AFP machine.

A polygon defined by 2D vertices is employed to generate the geometry of the gaps. The vertices

to be linked are the intersection point , its corresponding perpendicular point and the points belonging

to the tow edge of the shifted course and the reference outer edge. Hence, the gaps produced by the

intersection of the reference course and the shifted course can be stored in an array. Figure 3.9a shows

the gaps generated due to that intersection.

The reference course will intersect the top outer edge of the course shifted in the negative y-direction.

Thus, the distance between two sets of gaps is the shift distance. The gap set is translated vertically to

generate the defects across the entire ply. The gaps across the entire ply are shown in Figure 3.9b

It is important to highlight that depending on the values of the fiber angle at the center, T0, and at

the edge, T1, of the plate, the way gaps are generated is slightly different. This is due to the position at
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Figure 3.8: Intersection points between the shifted course and the reference course

(a) Gaps due to one intersection (b) Gaps generated across the entire layer

Figure 3.9: Gaps distribution

which the shift distance is obtained. In that position, the bottom tow of the shifted course is tangent to

the reference course. In the others positions, intersections could occur.

Although the shift distance is calculated indistinctly from the values of T0 and T1, three different

cases have been observed. When T0 > T1 and they have the same sign, the shift distance is obtained at

the edge of the plate. If T0 < T1 and both are either positive or negative values, the shift distance is

at the center. In the last case, when T0 and T1 have opposite signs, regardless of whether one is larger

or smaller, the shift distance is somewhere between the center and the edge of the plate. Consequently,

the way gaps are modeled varies depending on T0 and T1. Figure 3.10 indicates how the shifted course

overlaps the reference course for the three cases mentioned above. The red asterisk marks the position

where the shift distance has been computed. It also shows the gaps generated after the intersection of

both courses. The variation in the shape of the gaps can be seen for the different cases.

The gap formation depends, in addition to the fiber angles T0 and T1, on the manufacturing parame-

ters: number of tows, nt, and the tow width, tw. For example, to manufacture the 〈60, 30〉 ply a course of
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(a) Courses of 〈40, 5〉 ply (b) Courses 〈20, 50〉 ply (c) Courses of 〈−10, 30〉 ply

(d) Gaps of 〈40, 5〉 ply (e) Gaps of 〈20, 50〉 ply (f) Gaps of 〈−10, 30〉 ply

Figure 3.10: Intersection of two coursed and gap distribution based on the conditions of T0 and T1.

T0 > T1 & same sign (a,d); T0 < T1 & same sign (b,e); T0 T1 opposite sign (e,f).

1.016× 10−1 m width is employed. This course can be formed by 8 tows with a width of 12.7× 10−3 m, 16

tows of 6.35× 10−3 m and 32 tows with a width of 3.175× 10−3 m. One can observe in Figure 3.11 that

the amount of gaps generated in the ply of the first configuration is larger than the third one. In fact, the

area of gaps with respect to the total ply area is 8.5% for the 8 tows - 12.7× 10−3 m width configuration,

4.1% for the 16 tows - 6.35× 10−3 m width configuration and 2% for 32 tows - 3.175× 10−3 m width

configuration. Therefore, a larger number of tows with a smaller width results in a lower gap area and

the laminate properties will be less affected.

The situation when T0 = T1 corresponds to straight fiber laminates. It is considered as an ideal layer

without gaps. Hence, the calculation of the gap area is avoided and the value is set to zero.

Once the gap distribution of the ply has been generated, the next step is to intersect that gap

distribution with the skin mesh, as shown in Figure 3.12. This step is necessary to compute the value

of gap area for each element of the mesh. The gap area fraction, defined as the value of the gap area in

each element divided by the area of the mesh element, is used to modify the material properties. The

gaps are resin rich areas, so a higher value of gap fraction means impoverishing the material properties

of that element.

Fayazbakhsh et al.[36] presented a graph in which the elastic properties E1, E2 and G12 were plotted

versus the gap area in percentage. It can be shown that the polynomial functions depicted in the graph

correspond to the ’modified’ rule of mixtures. The conventional rule of mixture estimates the composite
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(a) 8 tows of 12.7× 10−3 m wide (b) 16 tows of 6.35× 10−3 m wide (c) 32 tows of 3.175× 10−3 m wide

Figure 3.11: Gap formation in the 〈60, 30〉 ply based on the number of tows in a course and the tow width

Figure 3.12: Intersection between the mesh plate and the gap distribution

material properties based on the weighted contribution of the fiber and matrix. Here, the constituents

are the non-defective composite and matrix representing the gaps. The longitudinal elastic modulus, E1,

the transverse modulus, E2, and the in-plane shear modulus, G12, can be calculated using Equations 3.6,

3.7 and 3.8, respectively.

E1 = AcE1c +AmEm (3.6)

E2 =
E2cEm

AmE2c +AcEm
(3.7)

G12 =
G12cGm

AmG12c +AcGm
(3.8)

where the subscript c represent the non-defective composite and the subscript m the matrix or gaps. The

composite area fraction, Ac, and the gap area fraction, Am, are equivalent to the volume fraction since

the thickness is the same in the layer with or without gaps. Obviously, Ac = 1−Am.

Fayazbakhsh et al. [36] did not introduce the Poisson’s ratio and the out-of-plane shear modulus.

These properties as suggested by [54] can be obtained also by the ’modified’ rule of mixture. To calculate
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the Poisson’s ratio , ν12, and the out-of-plane shear modulus, G23, Equations 3.9 and 3.10 can be used.

ν12 = Acν12c +Amνm (3.9)

G23 = AcG23c +AmGm (3.10)

The material properties for each element are calculated according to Equations 3.6 - 3.10. Figure 3.13

illustrates the resulting scaled material properties for each element according to its gap area fraction.

Figure 3.13: Scaled material properties according to gap area

Note that depending on the fiber angles T0 and T1, the gap formation varies. This implies that the

gap areas and the corresponding material properties are calculated for each different ply of the laminate.

The scaled material properties for each element are used then to build the FE model, creating a

material for each layer and for each element. Comparing Figures 3.12 and 3.13, one can observe that

the scaled materials follow the gap distribution. This allows the effect of gaps in the VS laminate to be

considered without explicitly describing their geometry in the FE model.

3.3.1 Verification study of Gap modeling

The case study presented by Fayazbakhsh et al. [36] was reproduced to validate the gap module developed.

A rectangular panel with dimensions 0.254m × 0.4064m is considered. It was subject to axial compression

in the negative y-direction. All edges were simply supported, i.e, no displacement out-of-plane was

allowed. In addition, vertical in-plane displacement of the upper border was constrained. Figure 3.14

shows the load and boundary conditions applied.

0% coverage or full gap strategy was adopted to manufacture the variable stiffness panel. The material

properties of the system carbon epoxy Cytec® G40-800/5276-1 are shown in Table 3.2. The laminate

consisted of 16 plies, each 1.59× 10−4 m thick. The number of tows in a course was 8 and the tow width

3.175× 10−3 m.
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Figure 3.14: Load and boundary conditions applied to test case for gap modeling

Table 3.2: Material properties of carbon epoxy Cytec® G40-800/5276-1

Composite Resin

E1 [GPa] 143.0 3.7

E2 [GPa] 9.1 3.7

G [GPa] 4.8 1.4

ν12 0.3 0.3

The authors chose two variable stiffness panels to study the influence of the gaps on the buckling load.

They were named design A and design B. It must be noted that the authors defined the reference fiber

path using a constant curvature path. It was a simplification of the formulation presented in Section 2.3

because only a circular arc defined the fiber path. In this thesis, a linear variation of the fiber angle is

employed. Therefore, it is necessary to make an equivalence between the parameters that characterize

the constant curvature path and the linear variation path.

The fiber angle at the center of the plate, T0, and the curvature, k, are the parameters that defines

the constant curvature path. The notation adopted for this fiber path is (T0, k). The fiber angle, ϕ,

varies along the path according to Equation 3.11.

sinϕ = sinT0 + k |x| (3.11)

where x is the distance measured from the plate center. It is then trivial to obtain the fiber angle at the

edge of the plate, T1. Note that the authors took the y-direction as a reference for measuring the fiber

angles, while in this thesis the reference is the x-direction. The angles are complementary.

Table 3.3 shows the laminate configuration for design A and design B defined with both constant

curvature and linear variation parameters. Table 3.3 also indicates a constant stiffness quasi-isotropic

laminate. It was used as a baseline to normalize the design A and design B buckling loads.

To ensure that the equivalent parameters for the fiber trajectory are correct, FE analyses are first

performed for laminates A and B without gaps. The buckling loads resulting from the analyses of both

36



Table 3.3: Laminate configuration for baseline and designs A and B reported by Fayazbakhsh [36] and

the equivalents utilized in this thesis

Design Layup

Baseline [45/0/− 45/90]2s

A-constant curvature [±(43, 0.48)/± (44,−1.57)/± (35,−1.57)/± (38,−1.57)]s

A-linear variation [±〈47, 42〉 /± 〈46, 60〉 /± 〈55, 68〉 /± 〈52, 65〉]s

B-constant curvature [±(43, 0.48)/± (48,−1.57)/± (30,−1.57)/± (26,−1.57)]s

B-linear variation [±〈47, 42〉 /± 〈42, 57〉 /± 〈60, 72〉 /± 〈64, 76〉]s

linear variation and constant curvature fiber paths are shown in Table 3.4. The table also provides the

percent error between the present model and Fayazbakhsh model. The percent error is due to the fact

that the fiber angle along the path for constant curvature is slightly higher than for the linear variation.

In any case, the error is less than one percent, so it can be said that the equivalence between angles has

been calculated accurately.

Table 3.4: Comparison between the normalized buckling loads for laminates without gaps reported by

Fayazbakhsh[36] and those obtained by the present model

Design A Design B

Fayazbakhsh[36] 1.37 1.31

Present model 1.37 1.32

Percent error <1% <1%

The results of the FE analyses for the laminates with embedded gaps are shown in Table 3.5. Both

models experience a reduction in the buckling load due to the incorporation of gaps. Therefore, the gaps

have a substantial impact on the structural performance of the laminate. In this case, the percent error

between the two models is higher. The discrepancy is because the choice of fiber path influences the gap

area percentage.

Table 3.5: Comparison between the normalized buckling loads for laminates with embedded gaps reported

by Fayazbakhsh[36] and those obtained by the present model

Design A Design B

Fayazbakhsh[36] 1.20 1.15

Present model 1.25 1.20

Percent error 4.5% 4.6%
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The average gap area percentage for the laminate is then obtained. It is calculated as the sum of the

gap area in each ply divided by the total laminate area. Table 3.6 shows the average gap area percentage

for both models and both designs. It is clear that there is a difference in the value of gap area. Laminates

generated with a constant curvature fibre path exhibit a larger gap area than those with linear variation.

Figure 3.15 shows the gap distribution of +(44,−1.57) ply of the design A reported by Fayazbakhsh[36]

and its equivalent of linear variation fiber path. It can be seen that the geometry of the constant curvature

path involves more number of tow-drops, increasing the gap area in the laminate. Hence, it is reasonable

that the linear variation laminates have a slightly higher buckling load as the gap area is smaller. The

error is still less than 5%, so it is considered that the model developed captures correctly the effects of

the gaps.

Table 3.6: Comparison between the average gap area percentage reported by Fayazbakhsh[36] and that

obtained by the present model

Design A Design B

Fayazbakhsh [36] 12.4% 12.3%

Present model 8.3% 8.4%

(a) +(44,−1.57) ply (b) + 〈40, 60〉 ply

Figure 3.15: Comparison between the gap distribution reported by Fayazbakhsh [36] and the equivalent

of the present model

3.4 Modeling of Curvilinearly Grid-Stiffened Panels

3.4.1 Geometry parametrization of Curvilinear Stiffeners

As discussed in Section 2.5, the approach presented by [34, 42, 43] is modified to parameterize the stiffener

geometry. Three points are used to determine the stiffener shape by means of a cubic spline. The start
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and end points, A and B, are assumed to be located at the plate edges. They are parametrized by the

plate perimeters, εA and εB . The perimeter parameter ε is defined on the plate boundary and varies from

0 to 1, where 1 is the whole plate perimeter. The placement of the stiffener on the plate is then controlled

by the perimeter parameters. The control point, C, is assumed to be in the perpendicular direction to

the midpoint D of the straight line A-B. It is parametrized by the curvature parameter α. The curvature

parameter is the normalized distance measured on the perpendicular line from the midpoint to the control

point. Therefore, the stiffener geometry would be parameterized by three design variables: εA, εB and

α. A scheme of the geometry parametrization explained above is shown in Figure 3.16.

Figure 3.16: Geometry parametrization of a curvilinear stiffener

A total of four stiffeners are considered attached to the plate. This means that the number of design

variables would be twelve. These design variables would be in addition to the design variables for the

plate curvilinear fibres. Twelve design variables provide a wide range of possible stiffener layouts, however,

they involve a high computational cost in the optimization process. Therefore, the following assumptions

are necessary to reduce the number of design variables for the stiffener layout:

1. The start point, A, is located at the bottom edge of the plate.

2. The end point, B, is placed at the plate upper edge on the same vertical as the start point.

3. The four stiffeners are symmetrically placed on the plate.

The first and second assumptions mean that the stiffener placement is controlled by one perimeter

parameter, ε, and not two as before. The third assumption implies that the geometric parameterization

of one stiffener is sufficient for the entire layout. Consequently, the stiffener layout is governed by two

design variables: ε and α. Figure 3.17 illustrates the stiffener layout that is considered in this thesis.

The stiffeners are modeled in Abaqus using the spline tool. This tool requires the coordinates of the

three points. Therefore, it is necessary to convert the parametrization to x-y coordinates. Table 3.7

indicates the relationship between the value of the perimeter parameter, ε, and the x-y coordinates on

the boundary of the square plate of a half-side. These equations are used to calculate the coordinates of

the start and end point of the stiffeners.
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Figure 3.17: Stiffener layout employed in the present model

Table 3.7: Relationship between the perimeter parameter, ε, and the x-y coordinates on the boundary of

the square plate of a half-side

ε x y

[0, 0.25] a− 8aε −a

[0.25, 0.5] −a −3a+ 8aε

[0.5, 0.75] −5a+ 8aε a

[0.75, 1] a 7a− 8aε

The coordinates of the the control points are trivial to calculate. For a vertically oriented stiffener,

the y-coordinate is zero and the x-coordinate is α multiplied by a if the stiffener is on the right side. If

the stiffener is on the left side, multiply by −α. For a horizontally oriented stiffener, the x-coordinate is

zero and the y-coordinate is α multiplied by a if the stiffener is on the upper side. If the stiffener is on

the lower side, multiply by −α.

It should be noted that, instead of choosing this parameterization approach, the stiffeners could be

modeled directly by the coordinates of the points. However, modeling a 3-point stiffener in the most

general form involves 6 coordinates, while only 3 parameters (εA, εB , α) are required to characterize it.

Therefore, the parameterization explained here needs a smaller number of design variables to define the

stiffener layout. And although assumptions were made to reduce the stiffener layout two parameters,

the script has been coded in a general way, so it can also model 3-parameter stiffeners if considered. In

addition, the difference in the computational time between the two approaches is negligible.

With this approach, the number of design variables is decreased and the choice of appropriated bounds

for the design variables is easier. It also facilitates to control that the stiffeners lie inside the panel.
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3.4.2 Stiffener Cross-Section

Once the stiffener path is parameterized, its cross section is defined. The stiffeners would be manufactured

with an AFP machine by successively placing one tow on top of another. This results in a rectangular

stiffener cross-section. Therefore, two dimensions are required to describe the cross-section: the stiffener

thickness, ts, and the stiffener height, hs. The stiffener depth ratio is defined as hs/ts. The influence

of the stiffener depth ratio on the panel buckling load and mode shape was studied by W.Zhao and

R.Kapania [42]. In their work, the stiffness thickness was fixed while the stiffenes height was varied.

Numerical results showed that the buckling load increased significantly as the stiffener depth ratio

increased from 0 to 8. The stiffener height enhances the panel transverse stiffness and, therefore, a higher

buckling load can be reached. Here, both the plate and stiffeners buckle out-of-plane resulting in a global

buckling mode.

For stiffener depth ratios between 8 and 12, the buckling load did not increase with the stiffener

height and remained nearly constant. In this case, when the stiffener height exceeds the optimal value,

the transverse stiffness at the plate nodes along the stiffener line becomes very large and the stiffeners

can be considered as a simply supported boundary condition. Thus, the stiffeners act as ‘panel breakers’

and the plate buckles locally between the stiffeners.

Beyond a stiffener depth ratio of 12, the buckling load decreased with the stiffener height. There is

almost no panel buckling of the panel, instead the stiffener itself buckles.

In the present model, the stiffener thickness is set equal to thickness of the plate, tp. The stiffener

depth ratio is fixed to hs/ts = 5, thus global buckling or plate local buckling behaviours are expected.

Stiffener blade buckling is not considered.

The stiffeners are attached eccentrically to the plate. The stiffener eccentricity is defined in Equation

3.12 as the the offset between the stiffener centroid and the panel middle plane [42].

e =
1

2
(hs + tp) (3.12)

Figure 3.18 schematizes the cross-sectional view of the panel showing the thickness, height and eccen-

tricity of the stiffeners, as well as the plate thickness and the thickness of each ply of the laminate. Note

that in the present thesis the stiffener laminate is assumed to be perpendicular to the plate midplane as

can also be seen in Figure 3.18.

Figure 3.18: Scheme of the panel cross section
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3.4.3 Modeling Stiffeners by Beam elements

The stiffeners are idealized by beam elements, specifically Abaqus B31 element. B31 element is a 2-node

linear beam Timoshenko type. Timoshenko beams allow for transverse shear deformation [47].

The beam element in Abaqus does not support a composite laminate definition. However, a beam can

be assigned a section with an orthotropic material and an orientation. The beam cross section is defined

as a rectangular profile of ts by hs, the dimensions to define the stiffener blade. Since the beam element

accepts orthotropic properties, the material used for the stiffener is the same as for the plate.

The key aspect here is to set the strong material direction coincident with the longitudinal direction

of the stiffener. This simulates that the fibers are aligned with the local orientation of the beam, i.e, the

fibers follow the stiffener path. Thus, the stiffeners can be modeled with a zero angle laminate. The zero

angle fiber ply in the stiffener is shown to provide a larger bending stiffness to the plate, enhancing the

structural stability of the design [42]. Figure 3.19 shows the local directions for the material properties

of the stiffeners.

Figure 3.19: Local material orientation for the the stiffeners

3.4.4 Tie Constraint

Abaqus’ built-in tie constraint has been used to attach the stiffeners to the plate. The tie constraint ties

two separate surfaces together so that there is no relative motion between them [47]. Its major advantage

is that it allows fusing together a pair of regions with dissimilar meshes, as it is the case here. Therefore,

it is not necessary for the stiffener nodes to coincide with the plate nodes, which reduces the complexity

of the setup.

In the tie constraint, one surface is designated as the master surface and the other surface as the slave

surface. The plate has been chosen to be the master surface and the set of stiffeners is the slave surface.

Abaqus forms constraints between the slave nodes and the master nodes by generating tie coefficients.

The tie coefficients are used to interpolate quantities from the master nodes to the point where the slave

node projects onto the master surface.

A position tolerance criterion is used to determine whether or not the slave nodes are constrained

to the the master surface. This criterion is based on the distance between the slave nodes and the
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master surface, i.e, slave nodes that are within the set distance will be tied to the master and slave

nodes that do not meet this criterion will not be constrained. As mentioned above, the stiffeners are

attached eccentrically to the plate. Recall also that the stiffeners are modeled by beam elements and the

plate by shell elements. The centroid of the beam and the shell midsurface are then at a distance of e

(stiffener eccentricity defined in Equation 3.12). Therefore, to constraint all slave nodes to the master,

the position tolerance distance has been set to the value of e. Figure 3.20 shows the offset e between

the slave nodes (corresponding to the centroid of the beam) and the master nodes (corresponding to the

reference midsurface of the shell).

Figure 3.20: Offset between the beam nodes and shell nodes

3.4.5 Verification study of Curvilinearly Grid-Stiffened Panels

Zhao et al. [55] developed a finite element approach to study the vibration and buckling behaviour of

a curvilinearly grid-stiffened panel. The buckling load results are employed here to validate the code

for modeling curvilinear stiffeners, in this case using Abaqus. A simply supported square panel with

dimensions 800 mm × 800 mm subjected to in-plane biaxial loads was considered. The panel thickness

was set to tp = 8 mm and the stiffener width was the same as the panel thickness, ts = tp. Different

stiffener heights, hs, were established to investigate the effect of the stiffener depth ratio , hs/ts, on the

buckling response of the grid panel. Figure 3.21 shows the loading and boundary conditions applied to

the panel and indicates the dimensions of the cross-section of the panel.

The panel and stiffeners were made of composite material, specifically T300/5208 graphite-epoxy

composite. The material properties are as follows: E1 = 132.38 GPa, E2 = E3 = 10.76 GPa, G12 = G13 =

5.65 GPa, G23 = 3.38 GPa, ν12 = ν13 = 0.24 , ν23 = 0.49 and ρ = 1800 kg/m3.

The layup for the panel consisted of eight layers in a symmetric cross-ply configuration: [(0/90)2]
s
.

The composite panel has constant stiffness , i.e. the fibers are straight. To model straight fibers, T0 = T1

has been set in the code. Note that the variable stiffness composite panels have been validated with

the case study presented in Section 3.2.1. Therefore, it has been proceeded to validate the curvilinear

composite stiffeners.

The stiffener laminate was perpendicular to the panel midplane and also had eight layers. The strong

material direction was considered to coincide with the longitudinal direction of the stiffeners, so an angle
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(a) Load and boundary conditions (b) Cross-section of the panel

Figure 3.21: Test case for curvilinear stiffeners modeling

of zero degrees was applied to all layers.

Two symmetrical stiffeners around the y-axis were eccentrically attached to the panel. The stiffener

location was defined by the perimeter parameter ε and the stiffener shape by the curvature parameter

α. The definition of these parameters is slightly different between the approach taken by Zhao et al. [55]

(see Figure 2.14) and the one adopted in this thesis (see Figure 3.16). The values of parameters with the

approach of this thesis are ε = 0.1112 and α = 0.25.

The plate was modeled by shell elements and the stiffeners by beam elements. The number of elements

utilized for meshing the plate was 144 and for each stiffener was 15. Linear buckling analysis were then

performed, modifying the stiffener depth ratio. The buckling loads were normalized with respect to the

buckling load of the unstiffened cross-ply laminate. The buckling load reported by Zhao et al. [55] for

the baseline panel had a value of 56.1 N/mm, the same value as that obtained by Abaqus.

The normalized buckling loads for three different cases of stiffener depth ratio, hs/ts, are shown in

Table 3.8. It also indicates the percent error between the normalized buckling loads reported by Zhao et

al. [55] and those resulting from the present model. The percent error is less than 2%. Therefore, the

present code for modeling curvilinear composite stiffeners is validated.

Table 3.8: Comparison between the normalized buckling loads reported by Zhao et al. [55] and those

obtained by the present model

hs/ts = 0.1 hs/ts = 2.5 hs/ts = 5

Zhao et al. [55] 1.01 3.90 7.30

Present model 1.02 3.84 7.22

Percent error 0.5% 1.5% 1.2%
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3.5 Mesh Convergence

A mesh convergence study should be performed to determine the minimum number of elements that

will guarantee adequate Finite Element Analysis (FEA) results and a reasonable computation time. The

mesh is said to be converged when further mesh refinement produces a negligible change in the solution.

Here, the element size is iteratively decreased until the buckling load provided by the FEA tends towards

a unique value.

The convergence study is conducted for a simply supported composite panel subjected to biaxial

compression. The dimensions of the panel are 1m×1m. The laminate for both the plate and the stiffener

consists of four layers, each with a thickness of tply = 1.27 × 10−4m. Thus, the thickness of the plate

and the stiffeners are the same and equal to tp = ts = 5.08 × 10−4m. The height of the stiffeners is

set to hs = 2.54 × 10−3m. The material properties for both the plate and stiffeners are indicated in

Table 5.2. The design variables that define the optimization problem
(
T 1

0 , T
1
1 , T

2
0 , T

2
1 , ε, α

)
have been

arbitrarily chosen for the mesh convergence study. The sole condition was that the curvature constraint

was satisfied. The stacking sequence for the plate laminate is set to [〈30, 60〉 / 〈−50,−25〉]s. The stiffener

location and curvature are fixed to ε = 0.1 and α = 0.5.

The plate and the stiffeners are meshed separately. Therefore, a mesh convergence is first conducted

only for the plate to determine the size of the plate element. Next, the mesh of the plate is fixed and the

convergence study for the stiffener element size is performed. In addition, since the optimization is carried

out for panels with and without the effect of gaps, convergence studies are presented for both scenarios.

Note that square shell elements are used to model the plate and beam elements for the stiffeners.

Successive FEA simulations are carried out by reducing the element size until mesh convergence is

reached. To determine which element size will provide reliable results with a reasonable computational

time, the percent error with respect to the buckling load of the minimum element size considered is

calculated. The minimum element size is assumed to provide the actual buckling load.

The percent error is defined as the difference between the buckling load corresponding to an element

size minus the actual buckling load divided by the actual buckling load and multiplied by 100 (see

Equation 3.13).

Percent error % =
Buckling load−Actual buckling load

Actual buckling load
· 100 (3.13)

Results for the plate mesh convergence without gaps are given in Table 3.9. The convergence is

achieved from an element size of 0.04 m onwards since the percent error is less than 0.5%. The element

size equal to 0.03125 m has been chosen to model the plate, which corresponds to a total of 1024 elements.

Table 3.9: Convergence study for the plate without gaps

Element Size [m] 0.2 0.125 0.1 0.0625 0.05 0.04 0.03125 0.025 0.02 0.015625 0.0125 0.01

Buckling load [N/m] 53.252 50.384 49.760 49.088 48.932 48.832 48.756 48.716 48.688 48.668 48.656 48.644

Percent error % 9.473 3.577 2.294 0.913 0.592 0.386 0.230 0.148 0.091 0.049 0.025 -
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Having studied the mesh convergence for the plate without gaps, the element size for the stiffeners is

then determined. Table 3.10 indicates the stiffener element size, the corresponding buckling load of the

panel (plate + stiffeners), and the percent error. The size of the elements selected has been 0.045 m, which

in most cases corresponds to 24 elements per stiffener, i.e., a total of 96 elements for the four stiffeners.

The curvature of the stiffener changes in the optimization process, which means that, depending on the

curvature value, the number of elements to model the stiffener may change slightly.

Table 3.10: Convergence study for stiffeners with fixed mesh plate without gaps

Element Size [m] 0.09 0.08 0.06 0.045 0.035 0.03

Buckling load [N/m] 127.628 127.484 127.224 127.204 127.184 127.164

Percent error % 0.365 0.252 0.047 0.032 0.016 -

The same procedure has been followed to study the mesh converge for the case that considers gaps.

Results for the plate mesh and the stiffener mesh are provided in Tables 3.11 and 3.12. The plate element

size and the stiffener element size chosen are the same as in the case without gaps, since the Defect Layer

Method allows the gaps to be located independently of the number of elements [35]. Hence, the size of

elements in the FE model is only dictated by the convergence of the buckling load.

Table 3.11: Convergence study for the plate with gaps

Element Size [m] 0.2 0.125 0.1 0.0625 0.05 0.04 0.03125 0.025 0.02 0.015625 0.0125 0.01

Buckling load [N/m] 52.068 49.256 48.652 47.976 47.828 47.748 47.676 47.644 47.620 47.608 47.604 47.600

Percent error % 9.387 3.479 2.210 0.790 0.479 0.311 0.160 0.092 0.042 0.017 0.008 -

Table 3.12: Convergence study for stiffeners with fixed mesh plate with gaps

Element Size [m] 0.09 0.08 0.06 0.045 0.035 0.03

Buckling load [N/m] 126.420 126.288 126.024 126.012 125.992 125.972

Percent error % 0.356 0.251 0.041 0.032 0.016 -

Note that the element sizes selected here are also used for panels with other laminates, boundary

conditions, or load cases.
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Chapter 4

Optimization Framework

In this chapter, the definition of the optimization problem is presented. Section 4.1 indicates the chosen

objective function, the design variables and manufacturing constraints. These constraints in terms of

curvature for the skin and stiffener fibers are detailed in Section 4.2. Section 4.3 provides the theoretical

basis of Genetic Algorithms and specifies the genetic parameters and functions selected. Finally, Section

4.4 explains the methodology followed to integrate the finite element module into the optimization module

4.1 Problem Statement

GA is employed as the optimizer in this thesis. An optimization problem is defined by an objective

function, f , which is maximized (or minimized) with respect to the design variables, x, and is often

subject to constraints, g.

In this work, the objective of the optimization is to maximize the buckling load of composite panels

with curvilinear fibers and grid stiffeners. To this end, the objective function to be minimized is the

inverse of the normalized buckling factor, BF . It has been chosen to minimize the objective function

since the GA available in MATLAB does not support maximization. The Buckling Factor (BF) is defined

as the ratio of the buckling load and the applied load. The buckling factor is normalized to the buckling

factor obtained in the first evaluation of the objective function, BF1 (see Equation 4.1). The BF has

been normalized so that the value of the objective function is of a similar order of magnitude to that of

the design variables.

BF =
BF

BF1
(4.1)

The design variables of the problem can be divided into two sets: those of the skin fibers and those

of the stiffener layout. The skin fibers follow a curvilinear path in which the orientation varies according

to the x-direction. To define the path of the skin fibers according to Equation 3.1, two fiber angles and

a characteristic length are needed. The present work considers the plate dimensions fixed and the fiber

angles as the design variables. Therefore, there will be two design variables for each i different ply of

the laminate: T i
0 and T i

1. Two different plies are considered, resulting in four design variables for the

skin laminate: T 1
0 , T 1

1 , T 2
0 , T 2

1 . The stiffener layout is determined by the ε location parameter and the
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α shape parameter, which constitute the other two design variables. Note the thickness and height of

the stiffeners are fixed in the optimization. Hence, a total of six design variables define the problem. A

more detailed description on how the plate fibers and the stiffener layout are modeled can be found in

the previous sections 3.2 and 3.4.1, respectively.

Manufacturing constraints in terms of maximum curvature allowable by the AFP machine are imposed

for both skin and stiffener fibers. The number of curvature constrains will be equal to the number of

i different plies of the skin laminate plus the curvature constraint for the stiffener layout. Section 4.2

explains how the curvature of the skin and stiffener fibers is computed.

The optimization formulation for the design problem can be expressed as:

Minimize f =
1

BF

w.r.t. x =
[
T i

0, T
i
1, ε, α

]
, (4.2)

subject to gi =

∣∣∣κimax,f

∣∣∣
κAFP

− 1 ≤ 0 for i = 1, 2, ...,m,

gi+1 =
|κmax,s|
κAFP

− 1 ≤ 0

The range of the design variables has been chosen so that their order of magnitude is similar. The

range is indicated in Table 4.1. Note that the fiber angles, T i
0 and T i

1, will be multiplied by 90 and ε and

α will be converted to x,y coordinates when the FE model is built.

Table 4.1: Range of the design variables

T i
0 T i

0 ε α

Lower bound -1 -1 0 -1

Upper bound 1 1 0.25 1

It is recalled that ε controls the stiffener placement on the plate. The assumptions made in 3.4.1 for

the geometry parametrization of the stiffener layout mean that the reference stiffener is constrained to

be placed at the plate bottom edge, so the range of ε can vary from 0 to 0.25. The design variable α

governs the curvature by means of the stiffener control point coordinates. The range of α is from -1 to 1,

which in the FEM model results in the x-coordinates to vary between −a and a, thus covering the whole

plate width. It also ensures that the stiffener does not surpass the limits of the plate.

4.2 Manufacturing Constraints

The manufacturing constraint imposed in the design of variable-stiffness panels is the maximum curvature

allowable by AFP machines. This constraint is also called the minimum turning radius of the machine.

Both terms, maximum curvature or minimum turning radius, are equivalent as they are the inverse of

each other (see Equation 4.3).

κmax =
1

Rmin
(4.3)
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The maximum curvature depends, among other factors, on the tow width. A wider tow means

increasing the compression of the fibers along the inside of the curve. Therefore, a larger tow width

implies a higher value of the minimum turning radius (or a lower maximum curvature). According to [4],

the common minimum turning radius for an AFP machine that uses a 32 tow course with 3.175× 10−3 m

wide tows (as it is the case) is 0.635 m. Hence, the maximum curvature of the AFP machine is fixed to

κAFP =1.57 m−1.

The curvature constraint is imposed on both the skin and the stiffeners as they are made of curvilinear

fibers. Since the trajectory of the fibers is 2D, the definition of the curvature for a planar function is

employed. The curvature at a point of a function, y(x), is given in terms of the first and second derivatives

of y(x) by Equation 4.4.

κ =
f ′′(x)

(1 + (f ′(x))2)3/2
(4.4)

Equation 4.4 requires an analytical function to describe the trajectory of the fibers. In the case of

plate fibers is trivial as f(x) represents the fiber path defined by the linear variation of the fiber angle.

However, the stiffeners are modeled directly in Abaqus, which makes it more difficult to find such function.

Here below, it is explained how to implement the curvature constraint in the optimization framework,

first for the skin fibers and then for the stiffener fibers.

4.2.1 Skin Fibers Curvature

The layers of the skin would be manufactured by the shifted method. In the shifted method, the fiber

paths have identical orientation as the reference path. This means that the curvature constraint for the

whole ply is reduced to calculate the curvature for the reference path. In addition, the reference path is

antisymmetric with respect to the y-axis, so the curvature can be calculated only for positive values of x.

As mentioned above, f(x) stands for the fiber path y(x) defined in Equation 3.2. Equation 4.4 requires

the expression of the first and second derivatives. They can be calculated as indicated in Equations 4.5

and 4.6.
dy

dx
= tanθ (4.5)

d2y

dx2
=

d

dx
(tanθ) =

1

cos2θ

dθ

dx
=

1

cos2θ

(T1 − T0)

a
(4.6)

The curvature can then be obtained in terms of T1, T0, θ(x) and a, as shown in Equation 4.7.

κf =
(T1 − T0) /a

cos2θ(1 + tan2θ)3/2
(4.7)

If the trigonometric relationship 4.8 is considered,

1 + tan2θ =
1

cos2θ
(4.8)

the expression for the curvature of the fiber path is simplified as:

κf =
T1 − T0

a
cosθ (4.9)

Equation 4.9 is employed to evaluate the curvature of the reference path at each positive x-position.

The x-positions are the coordinates of the center of each element of the mesh plate.
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Once the curvature of each point has been calculated, the maximum in absolute value is obtained.

The absolute value is used since the curvature is a signed quantity. The maximum curvature of the fiber

path, κimax,f , is then compared to the maximum curvature of the AFP machine, κAFP . The constraint

implemented is shown in Equation 4.10. Note that there will be as many curvature constraints as different

i layers of the laminate. ∣∣∣κimax,f

∣∣∣
κAFP

− 1 ≤ 0 (4.10)

The contour plot of the Figure 4.1 shows how the maximum fiber curvature changes, κmax,f , as a

function of the fiber angles T0 and T1. Thus, depending on the maximum curvature imposed in the

constraint, the feasible design space of T0 and T1 will vary. A restrictive value of the curvature allowed

by the AFP machine will result in a reduction of the fibre angle combination possibilities.

Figure 4.1: Feasible design space of T0 and T1 depending on curvature value

4.2.2 Stiffener Fibers Curvature

To evaluate the curvature of the stiffeners, an analytical function is first found. This function must be at

least second differentiable as it is required by Equation 4.4. The stiffeners are modeled using the spline

tool in Abaqus. Knowing how Abaqus/CAE draws the spline is the key to determine that function.

From Abaqus Documentation [47], one can read that the spline curve is calculated by Abaqus/CAE

using a cubic spline fit between all the points along the spline. Therefore, the curve shape is influenced

by the location of the points. The use of a cubic spline fit implies that the first and second derivatives

of the spline are continuous . In addition, it can be observed that the cubic spline becomes a straight

line at the start and end points. This condition is termed as a natural spline. Hence, the objective is to

obtain the cubic spline function given a number of data points. Once this function is determined, it is

possible to interpolate the value of an arbitrary point on the stiffener and compute its curvature. The

mathematical formulation to find the spline function is described hereunder.
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A cubic spline is a piece-wise third-order polynomial. There is then a different cubic polynomial for

each interval between data points or knots, as expressed in Equation 4.11.

fi,i+1 (x) = ai,i+1x
3 + bi,i+1x

2 + ci,i+1x+ di,i+1 (4.11)

where fi,i+1 (x) is the cubic polynomial that connect the knots i and i+ 1. Then for n data points, there

are n− 1 cubic polynomial and, consequently, 4(n− 1) unknown coefficients. The 4(n− 1) conditions to

solve the unknowns are:

1. The function values must be equal at the interior knots (2 (n− 1)− 2 conditions).

2. The first and last functions must pass the start and end knots (2 conditions).

3. The first derivatives at the interior knots must be equal (n− 2 conditions)

4. The second derivatives at the interior knots must be equal (n− 2 conditions)

5. The second derivatives at the start and end knots must be zero (2 conditions)

Figure 4.2 shows a cubic spline of n data points and n− 1 functions.

Figure 4.2: Cubic spline interpolation reproduced from [56]

Although the cubic spline could be obtained as indicated above, an alternative method has been

followed to gain computational efficiency. This method only requires to solve n − 2 equations. The

approach taken is based on references [56] and [57].

The first step of the method is to realize that if each pair of points is joined by a third-order polynomial,

the second derivative within each interval is a straight line. Equation 4.11 is differentiated twice and

expressed in Equation 4.12 by a linear Lagrange interpolating polynomial.

f ′′i,i+1 (x) = ki
x− xi+1

xi − xi+1
+ ki+1

x− xi
xi+1 − xi

(4.12)

where f ′′i,i+1 (x) is the second derivative at any point in the segment i, i + 1, ki and ki+1 are the second

derivative at knots i and i + 1, respectively. Equation 4.12 proves to be a straight line connecting the

second derivative at the first knot with the second derivative at the second knot.

The next step is to integrate Equation 4.12 in which two unknown constants will appear. The first

derivative, f ′i,i+1 (x) , and the function, fi,i+1 (x), are expressed in Equations 4.13 and 4.14, respectively.
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f ′i,i+1 (x) =
ki (x− xi+1)

2 − ki+1 (x− xi)2

2 (xi − xi+1)
+A−B (4.13)

fi,i+1 (x) =
ki (x− xi+1)

3 − ki+1 (x− xi)3

6 (xi − xi+1)
+A (x− xi+1)−B (x− xi) (4.14)

where A and B are constants of integration. Although these two terms could be written as the usual

form Cx+D, setting C = A−B and D = −Axi+1 +Bxi yields to a more convenient computation.

These constants of integration, A and B, can be obtained by applying the first condition listed before,

i.e., fi,i+1 (x) must be equal to fi,i+1 (xi) at xi and fi,i+1 (x) must be equal to fi,i+1 (xi+1) at xi+1. For

the shake of brevity, the terms fi,i+1 (x) and fi,i+1 (xi) are renamed as yi and yi+1 respectively. The

expressions for A and B can be found in Equations 4.15 and 4.16.

A =
yi

xi − xi+1
− ki

6
(xi − xi+1) (4.15)

B =
yi+1

xi − xi+1
− ki+1

6
(xi − xi+1) (4.16)

Substituting A and B, the function of the cubic spline results in Equation 4.17.

fi,i+1 (x) =
ki
6

[
(x− xi+1)

3

(xi − xi+1)
− (x− xi+1) (xi − xi+1)

]

− ki+1

6

[
(x− xi)3

(xi − xi+1)
− (x− xi) (xi − xi+1)

]

+
yi (x− xi+1)− yi+1 (x− xi)

(xi − xi+1)

(4.17)

Although it could seem that Equation 4.17 is much more complicated than the usual form of the cubic

polynomial (Equation 4.11), this new expression just involves two unknowns: the second derivatives at

the start knot, ki, and end knot, ki+1, of the segment.

The second derivatives at the interior knots can be calculated by the continuity of first derivatives:

f ′i−1,i (xi) = f ′i,i+1 (xi). This condition is applied in Equation 4.13 to all interior knots. It generates a

system of n− 2 equations with n unknowns second derivatives, as expressed by Equation 4.18.

ki−1 (xi−1 − xi) + 2ki (xi−1 − xi+1) + ki+1 (xi − xi+1) = 6

(
yi−1 − yi
xi−1 − xi

− yi − yi+1

xi − xi+1

)
(4.18)

The condition that the spline is natural implies that the second derivatives at the start and end knots

of the spline are set to zero: k1 = kn = 0. This reduces the unknowns to n − 2. Moreover, the system

of equations 4.18 is tridiagonal which is easy to solve by Lower–Upper (LU) decomposition. In LU

decomposition, a tridiagonal matrix is factored into a lower triangular matrix L and an upper triangular

matrix U, so that the product of the LU matrices gives the original matrix. LU decomposition is an

effective method for solving systems of linear equations [57].

The mathematical method explained is implemented to obtain the spline function that describes the

stiffener path. It is worth mentioning that this formulation is only valid when the points are to form a

function in the x-y plane and are ordered from smallest to largest. This implies that depending on how

the stiffener is modeled, the points must be converted to the x-y plane. The angle between the line joining
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the start and end point of the stiffener and the x-axis is calculated. If the angle is zero, the stiffener is

aligned with respect to the x-axis and no further operation is performed. If the angle is nonzero, the data

points are converted to points in the xy-plane by a rotation matrix.

In this work, three points are used to model the stiffener, so there are two segments and one interior

knot as shown in Figure 4.3. Following the formulation, the interpolated functions of the two segments

Figure 4.3: Spline functions of the stiffener

are determined. The curvature is calculated for 100 points of the stiffener. To know to which segment

each point belongs, the bisection method is applied. Finally, the maximum curvature of the stiffener,

κmax,s, is obtained and compared to the maximum curvature allowable by the AFP machine, κAFP . Note

that the four stiffeners are equal, so the values of the curvature are only calculated for one of them. The

constraint is shown in Equation 4.19.
|κmax,s|
κAFP

− 1 ≤ 0 (4.19)

4.3 Genetic Algorithm

Genetic algorithm is the optimizer adopted in the present thesis. The Abaqus module used to calculate

the buckling load (the objective function) acts like a black box towards MATLAB (the optimizer mod-

ule). Thus, the sensitive information of the problem is not accessible. In addition, the optimization of

VS laminates with curvilinear stiffeners usually exhibits local minima. Consequently, the global opti-

mization methods like GA are better options compared to gradient-based optimization methods. Several

optimization runs should be performed to ensure that the global optimum is found. Although the genetic

algorithm is time-consuming, the problem is defined with a reduced number of design variables, which

makes the optimization computation time affordable.

In this section, the basics of the genetic algorithm are first explained. Next, the penalty algorithm

used to evaluate the fitness score of the individual is described. The genetic operators are then specified.

Finally, the values of the genetic parameters chosen to perform the optimization problem are indicated. In

this thesis, the optimization framework is implemented in MATLAB, thus the parameters and functions

described here are those available in its library.

4.3.1 GA Fundamentals

Genetic algorithms are stochastic search methods that were first devised by John Holland [58] and his

collaborators in the mid-sixties. GA mimics the natural selection process of biologic evolution, following

the Darwinian principle of "the survival of the fittest". Simply put, individuals in a population compete
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for resources and the successful ones have more offspring than the others. The genes of the fittest parents

are propagated through the next generation, creating offspring that are likely to be superior to either

parent. As a result, the subsequent generation is better adapted to the environment. Each individual

represents a candidate solution: a possible panel design for the optimization problem. The individuals are

traditionally coded as a finite-length binary string (chromosome). The components of the string would

be the gene analogs.

The genetic algorithm starts by creating a random initial population. Each individual of the popula-

tion is evaluated to compute its fitness value. GA then generates a new population by means of three main

operators - selection, crossover, and mutation- giving more possibilities to reproduce the individuals with

better fitness scores. The population size is maintained constant throughout the process and, therefore,

the old population is replaced by the new one. Each new generation is expected to have better partial

solutions (fitter individuals) than the preceding generations. Several generations later, the population

evolves towards an optimal solution. GA ends the iterative process when the stopping criteria are met.

In this thesis, the stopping criteria are implemented as the maximum number of generations performed

by the algorithm and the average change in fitness value being less than or equal to a specified tolerance.

4.3.2 Penalty Method

The present optimization problem involves constraints related to the maximum curvature allowed by the

AFP machine. The constrained optimization problem is converted into an unconstrained problem by a

penalty function. The penalty algorithm is available in MATLAB GA library and based on K.Deb’s work

[59]. The method proposed by K.Deb uses a tournament selection operator with two solutions compared

at a time to ensure the following criteria:

i When two feasible solutions are compared, the one with better objective function value is chosen

ii When one feasible and one infeasible solutions are compared, the feasible solution is chosen

iii When two infeasible solutions are compared, the one with smaller constraint violation is chosen

Here, penalty parameters are not necessary because none of the three scenarios compare solutions that

require both objective function and constraint violation information at the same time. In addition, the

comparison of infeasible solutions in terms of constraint violation has a practical sense, since computing

the objective function of an infeasible design is a time-consuming task. The penalty function employed

in this method is expressed in Equation 4.20.

F (x) =

f (x) , if gi (x) ≤ 0, i = 1, 2, ...,m

fmax +
∑m

i=1 〈gi (x)〉 , otherwise
(4.20)

Therefore, the fitness score of a feasible individual is simply the value of its fitness function (usually

the objective function). Whereas if the individual is infeasible, the penalty function is the worst fitness

function value of the feasible individuals in the population, fmax, plus the sum of the constraint violations

of the infeasible individual. If there are no feasible individuals in the population, fmax is equal to zero.

Note that all m constraints are normalized to avoid any bias of a particular constraint.
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This constraint handling scheme without the need of a penalty parameter is possible because genetic

algorithms use a population of solutions in every iteration and a pair-wise comparison of solutions is

possible using the tournament selection operator [59]. This is a major advantage, as it avoids the difficulty

of setting the appropriate penalty parameters, which require extensive experimentation.

4.3.3 Genetic Operators

The GA utilizes individuals from the present population to create the offspring that will form the next

generation. First, the algorithm selects a set of individuals (parents) that will contribute their genes to

their offspring. The fittest individuals tend to be selected more frequently.

Several selection methods are available. Here, the tournament selection with size 2 has been chosen.

Tournament selection consists of running tournaments among a few individuals, in this case two, chosen

randomly from the population. The winner of each tournament (the fittest) is set to be a parent.

Once the parents have been selected, the genetic algorithm creates three categories of offspring for

the subsequent generation: elite children , crossover children, and mutation children.

Elite children are the fittest individuals of the current generation. The number of these individuals

that automatically passed on to the next generation can be specified. Therefore, the best designs will

remain unchanged. A high value of elite children means that they will govern the population and the

search can be less effective.

Crossover children are generated by exchanging information from two individuals in the current gen-

eration. It allows the algorithm to extract the best genes from different individuals and combine them

to hopefully create a superior offspring. There are various crossover functions that can be selected. The

crossover scattered is the one chosen for the present optimization. It creates a random binary vector and

selects the genes where the vector is a 1 from the first parent, and the genes where the vector is a 0 from

the second parent, and combines the genes to form the child [60]. Figure 4.4 shows an example of how

the scattered crossover operator works.

Figure 4.4: Crossover scattered

A mutation child is created by inserting random changes (mutations) to a single individual in the

current generation. Mutation provides diversity in the population, which increases the probability that

fitter individuals will be generated. It broadens the search space for the optimal solution, increasing
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both computational time and the reliability of the solution. It also prevents the GA from prematurely

converging to a local optimum.

In the present thesis, the following values of GA parameters have been chosen based on the author’s

experience as a compromise between the sufficient reliability of the optimal solution and a reasonable

calculation price. Regarding the population size, a large value does not achieve a sufficient mix of

individuals at a reasonable computational price, while in a small population there is not enough genetic

material to ensure a high diversity of individuals. It is clear that the population size should increase with

the problem size. In this regard, a population size at least ten times the number of design variables is

recommended [59]. Since the present optimization problem involves six design variables, a population size

of sixty individuals has been chosen. The stopping criterion in terms of maximum number of generations

has been set to 60 generations. Other parameters including the number of elite children and the crossover

fraction have been set to 3 and 0.6 , respectively.

4.4 Integration of Modules

The methodology followed to integrate the finite element module into the optimization module is explained

in this section. The present optimization framework has two modules: the MATLAB module and the

Abaqus module.

The MATLAB module performs the optimization. The maximum curvature of the skin and stiffener

fibers is computed in this module. The geometry of gaps, if considered, is also obtained here. The Abaqus

module executes the Python script in which the information to build the FE model, such as the plate

geometry, materials, boundary conditions, loads or mesh options is written. This Python script is coded

to model variable stiffness laminates with curvilinear stiffeners. Abaqus then conducts the linear buckling

analysis and provides the first eigenvalue, which is the buckling factor used in the objective function. The

interaction between the two modules is presented in the optimization flowchart of Figure 4.5. A brief

overview of the optimization framework is explained hereafter.

A random initial design of the panel is first set by MATLAB. MATLAB then checks whether or not

the design violates the curvature constraint. If the constraint is violated, a new design is generated. If it

is satisfied, MATLAB moves to the objective function. The function calls Abaqus directly if the gap effect

in the laminate is not considered. If so, the gap module is executed. Abaqus then receives the MATLAB

inputs that are the value of the design variables and the material properties. This information is used to

build the FEM of the panel. Abaqus performs the buckling linear analysis. The output is a text file in

which the first buckling eigenvalue is written. In the MATLAB module, the objective function reads the

text file and calculates the normalized buckling factor. The process is repeated until the convergence is

reached. The optimized panel design is then obtained.
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Figure 4.5: Flowchart of the optimization framework
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Chapter 5

Results

This chapter first introduces the case studies to be optimized. The geometry, laminate properties, bound-

ary conditions and load cases considered are described in Section 5.1. The results obtained from the

optimization are then presented and discussed. Section 5.2 focuses on the optimized design for the first

load case and Section 5.3 deals with the optimized panels considering the second load case.

5.1 Case Studies

In this work, a square composite panel of dimensions 2a × 2a is optimized. The value of a is set to

0.5 m. Two stacking sequences are considered for the plate laminate:
[〈
T 1

0 , T
1
1

〉
/
〈
T 2

0 , T
2
1

〉]
s
(laminate

A composed of 4 plies in total), and [±
〈
T 1

0 , T
1
1

〉
/ ±

〈
T 2

0 , T
2
1

〉
]2s (laminate B composed of 16 plies in

total). The superscript refers to the 2 different plies of the laminate. Each ply has a thickness, tply, of

1.27× 10−4 m, a typical value for a prepeg thermoset.

The thickness of the stiffener, ts, is equal to that of the plate, tp, i.e., both laminates have the

same number of plies. The stiffener height, hs, is five times the stiffener thickness. The strong material

direction is assumed to coincide with the longitudinal direction of the stiffener, which means an angle of

zero degrees for the plies of the stiffener laminate. The stiffener laminate is perpendicular to the plate

midplane. The stiffeners are eccentrically attached to the plate. Table 5.1 reports the values of the ply,

plate and stiffener thicknesses and stiffener heights for both laminates. Figure 5.1 schematizes the panel

and indicates its dimensions.

Table 5.1: Dimensions of the panel cross-section

Laminate tply [m] tp [m] ts [m] hs [m][〈
T 1

0 , T
1
1

〉
/
〈
T 2

0 , T
2
1

〉]
s

1.27× 10−4 5.08× 10−4 5.08× 10−4 2.54× 10−3

[±
〈
T 1

0 , T
1
1

〉
/±

〈
T 2

0 , T
2
1

〉
]2s 1.27× 10−4 2.032× 10−3 2.032× 10−3 1.016× 10−2

The parameters to define the tow course, which are the the tow width and the number of tows in

a course, are set to tw = 3.175× 10−3 m and nt = 32, respectively. These parameters affect the gap
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Figure 5.1: Scheme of the panel to be optimized

formation within each ply and limit the allowable curvature of the AFP machine to κAFP = 1.57 m−1.

The material properties of both the skin and the stiffeners correspond to an standard modulus graphite

plus epoxy resin material, commonly used in aeronautics. Representative values, taken from [55], are given

in Table 5.2. The material properties of a generic epoxy resin, employed to fill the gaps, are also indicated

in Table 5.2.

Table 5.2: Material properties

Graphite-Epoxi Epoxi

E1 132.38 GPa

Em 3.7 GPaE2 10.76 GPa

E3 10.76 GPa

ν12 0.24

νm 0.3ν13 0.24

ν23 0.49

G12 5.65 GPa

Gm 1.4 GPaG13 5.65 GPa

G23 3.38 GPa

When panels with gaps are optimized, Poisson’s ratios are assumed equal (ν12 = ν13 = ν23) because

a rule of mixture for ν23 has not been stated.

Boundary conditions and load cases influence substantially the buckling load and modal shape, thus

several case studies are optimized in this thesis. Certain boundary conditions and load cases have been

selected to represent what a wing panel of an aircraft may experience. Panel edges at x = −a, x = a would

simulate the ribs and panel edges at y = −a, y = a would simulate the spars. The different scenarios are

presented next.

The three different boundary conditions addressed in this thesis are:

• All plate edges are simply supported. This case is denoted by SSSS.
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• Two plate edges are simply supported at y = −a, y = a and the other two are clamped at x =

−a, x = a. This case is denoted by SSCC.

• All plate edges are clamped. This case is denoted by CCCC.

Here, for the simply supported boundary condition there is no out-of-plane displacement, i.e., w = 0.

The clamped boundary condition restricts, in addition to the out-of-plane displacement, the rotations

along the x-axis and y-axis, i.e., w = θx = θy = 0. In all cases, to avoid body solid rigid motion, the

bottom left corner and bottom right corner are constrained to v = 0 and u = v = 0, respectively.

The two load cases modeled in this thesis are as follows:

• Biaxial compressive load case.

• Biaxial compressive load plus in-plane shear load.

Therefore, a total of six combinations of boundary conditions and load cases are considered for the

optimization problem. These combinations are schematized in Figure 5.2. Note that the loads and

boundary conditions are applied at the edges of the midplane of the plate.

(a) Biaxial compression & SSSS (b) Biaxial compression & SSCC (c) Biaxial compression & CCCC

(d) Biaxial compression+Shear &

SSSS

(e) Biaxial compression+Shear &

SSCC

(f) Biaxial compression+Shear &

CCCC

Figure 5.2: Combinations of load cases and boundary conditions

The optimization results are compared to a constant stiffness composite panel with straight stiffeners.

61



The stacking sequence for the case of a 4 plies laminate is [±45/0/90] and for the 16 plies laminate is

[±45/0/90]2s. The straight stiffeners are placed equidistant from each other. It should be noted that for

a fairer comparison between the curvilinear fiber design and straight fiber design, the latter should also

be optimized. However, due to time constraints, the straight fiber designs described above are used.

Hereafter, the results of the optimization are presented and discussed, first for the biaxial compression

load case and then for the biaxial compression plus in-plane shear load case.

5.2 Biaxial compression load case

In this section, the results of the optimized ideal panels, i.e., without gaps, are first analyzed. Next,

the optimized panels considering the gap effect are presented. Four case studies have been optimized for

panels subjected to biaxial compressive load: the first one with laminate A (4 plies) and SSSS boundary

conditions, the other three with laminate B (16 plies) and boundary conditions of SSSS; SSCC; CCCC.

Table 5.3 reports the buckling load obtained with the straight fiber design for this four scenarios. These

buckling loads will be used to calculate the percent improvement over curvilinear fiber panels.

Table 5.3: Buckling load for the straight fiber design panel subjected to biaxial compression load

Laminate
Boundary

Conditions

Buckling Load

[N/m]

[±45/0/90] SSSS 96

[±45/0/90]2s

SSSS 17260

SSCC 36080

CCCC 40160

5.2.1 Results of ideal panel optimization

Table 5.4 indicates the results of the optimization for the four cases: the value of the design variables,

the maximum curvature of the fibers of ply 1 (κ1), ply 2 (κ2), and stiffeners (κs), the critical buckling

load and the improvement with respect to straight fiber design. The configuration for ply 1, ply 2, the

stiffener layout, and the first buckling mode for each of the four case studies are shown in Figure 5.3.

The optimized panel with laminate A (4 plies) subjected to biaxial compression and SSSS boundary

conditions is first analyzed. The fiber angles of ply 1 and ply 2 are almost the same in absolute value. The

fiber angles of ply 1 have a positive sign while the fiber angles of ply 2 have a negative sign, thus forming

a quasi-balanced laminate for the plate. The maximum curvature of the fiber paths for both plies and for

the stiffeners is the maximum curvature imposed as a constraint. This reveals that the curvature of the

AFP machine acts as an active constraint preventing the design of more curved fiber panels that could

give a higher buckling load. The resulting buckling load has a value of 150 N/m. The panel buckles in

a global manner. The improvement compared to the straight analogue is 57%, showing that in this case
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Table 5.4: Optimization results of ideal panels subjected to a biaxial compression load

Total

plies

Boundary

Conditions
T 1

0 (◦) T 1
1 (◦) T 2

0 (◦) T 2
1 (◦) ε α

Max Curvature[
m−1

] Buckling

Load [N/m]

Improvement

(%)

4 SSSS 14.2 60.9 -11.6 -57.8 0.110 0.387

κ1 = 1.57

150 57κ2 = 1.57

κs = 1.57

16 SSSS 13.9 59.5 18.5 66.2 0.0987 0.475

κ1 = 1.54

24210 40κ2 = 1.57

κs = 1.57

16 SSCC 27.5 56 29.3 20.4 0.159 -0.337

κ1 = 0.876

41360 15κ2 = 0.289

κs = 0.377

16 CCCC 50.2 38.9 -62.1 -21.6 0.177 -0.193

κ1 = 0.305

49770 24κ2 = 1.30

κs = 1.32

the possibility of tailoring the stiffness by means of curvilinear fibers substantially enhances the buckling

performance.

The optimization results of the panel with laminate B (16 plies) under biaxial compression and SSSS

have some similarity with the results obtained from the previous case. The values of the fiber angles of

ply 1 and ply 2 are nearly equal in absolute value to those of the laminate A. The placement and shape

of the stiffeners are also analogous to the previous case. The maximum curvature of ply 1 fibers does not

reach the maximum allowed, but is very close to it. The maximum curvature for fiber paths of ply 2 and

stiffeners is the maximum imposed curvature. Therefore, the optimized panel implies exploiting the tow

steering capability to the fullest allowable, as was also the case with the previous panel. These similarities

were to be expected since the boundary conditions and the load case were the same. The buckling load

obtained is 24 210 N/m. A value much higher than in the case of the laminate A, since the total number

of plies not only involves the thickness of the laminate but also the dimensions of the stiffeners, enhancing

the load-bearing capacity of the panel. The buckling mode is also global. The improvement with respect

to the straight fiber panel is 40%.

The next case optimized has been the panel with laminate B subjected to biaxial compression under

SSCC. A different behavior is encountered. The fibers of ply 1 exhibit a significant curvature, but far

from the maximum allowed. The maximum curvature of the ply 2 fibers and of the stiffeners has a modest

value. The two clamped edges (SSCC) imply a significant increase in buckling load and a change in the

buckling mode shape with respect to the SSSS case. Now the panel buckles locally with the buckle peaks

at the top and bottom edges and not in the center. The buckling load has a value of 41 360 N/m. The

improvement over the straight fiber configuration is 15%. In this case, the tow steering capability has

not revealed a major advantage for the panel buckling performance.

The last case optimized for the biaxial compression load is the panel with laminate B under CCCC.
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Figure 5.3: Optimized ideal panels subjected to biaxial compression

Although the fibers of ply 1 do not present a high curvature, the fibers of ply 2 are considerably curved.

The stiffeners curve significantly towards the center of the panel. The maximum permitted curvature is

not reached in any of the cases. The four clamped edges lead to a high buckling load. The resulted buckling

load for the optimum panel is 49 770 N/m and the plate buckles in a local manner. The improvement

with respect to the straight fiber design is 24%.

5.2.2 Results of the panel optimization considering gap effect

Table 5.5 reports the results of the panel optimization considering the gap effect. It also indicates the

average gap area encountered for a ply of the laminate. It is calculated as the sum of the gap area in

each ply divided by the total laminate area. Figure 5.4 illustrates the plies configuration, stiffener layout

and the first buckling mode.

The results of the optimization for panels considering the gap effect have a certain similarity with

respect to those obtained with ideal panels. The laminate A (4 plies) subjected to the SSSS boundary

condition presents high values of curvature near or at the limit of the maximum curvature for both skin

and stiffener fibers. The gaps formed in the VS laminate deteriorate the buckling performance, however,
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Table 5.5: Optimization results of panels considering gap effect, subjected to biaxial compression load

Total

plies

Boundary

Conditions
T 1

0 (◦) T 1
1 (◦) T 2

0 (◦) T 2
1 (◦) ε α

Max Curvature[
m−1

] Gap Area

(%)

Buckling

Load [N/m]

Improvement

(%)

4 SSSS 15.4 60.7 -9 -54.6 0.138 -0.364

κ1 = 1.51

2.03 145 51κ2 = 1.55

κs = 1.57

16 SSSS 15.6 57.4 -15.6 -62.2 0.104 0.433

κ1 = 1.40

2.07 24190 40κ2 = 1.55

κs = 1.57

16 SSCC 34 23.6 -20 -50.4 0.160 -0.280

κ1 = 0.333

1.76 41010 14κ2 = 0.990

κs = 0.018

16 CCCC 55.2 21 -38.8 -56.6 0.183 -0.197

κ1 = 1.11

1.86 49360 23κ2 = 0.481

κs = 1.57

the average gap area for the optimized panels is not much higher than 2%, so the critical load does not

decrease significantly. The buckling load has a value of 145 N/m. The first buckling mode shape is of

global nature. The improvement over the straight fiber panel is 51%.

Regarding to the laminate B (16 plies) under SSSS boundary condition, similar results are obtained.

The skin fibers are of high curvature, close to the maximum allowed. The stiffeners reach the maximum

curvature. The average gap area is 2.07%. The buckling load is 24 190 N/m and the panel buckles globally.

The improvement achieved is 40%.

A different pattern is found for the SSCC boundary condition. In this case, the skin fibers show

considerable curvature, but do not approach the maximum. The average gap area is 1.76%, which is

lower than in cases where the skin fibers reach the maximum curvature. The stiffeners are of very low

curvature. The buckling load is 41 010 N/m and the plate buckles locally. The improvement obtained

is 14%, mainly caused by the skin fibers, since the stiffener layout is almost equal to the straight fiber

configuration.

In the last boundary condition (CCCC), the skin fibers are significantly curved but not to the max-

imum allowed. The average gap area is 1.86%. The stiffeners are the ones that reach the maximum

curvature. The buckling load is 49 360 N/m. The panel buckles in a local manner with peaks on the top

and bottom edges. The improvement obtained is 23%.

5.3 Biaxial compression plus Shear load case

For this load case, only laminate B (16 plies) has been optimized. The same boundary conditions

have been addressed: SSSS, SSCC and CCCC. First, the results of the optimization of ideal panels are

introduced. Then, the optimized panels considering the gap effect are presented. The buckling load of the

straight fiber design subjected to biaxial compression plus in-plane shear for each boundary conditions is
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Figure 5.4: Optimized panels considering gap effect, subjected to biaxial compression

indicated in Table 5.6.

5.3.1 Results of ideal panel optimization

The results of the optimization of ideal panels subjected to biaxial compression plus in-plane shear are

given in Table 5.7. The configuration of ply 1 and ply 2, the stiffener layout, and the first buckling mode

are illustrated in Figure 5.5.

The ideal panel with laminate B (16 plies) subjected to biaxial compression plus shear load under

SSSS boundary conditions is the first discussed. The fiber paths of ply 1 present a considerable curvature.

The fiber paths of ply 2 and of the stiffener reach the maximum curvature allowable. When the boundary

condition is SSSS, it appears that the preferred design panels are those that take full advantage the

capability to curve the composite fibers. The resulting buckling load has a value of 41 000 N/m. The

buckling shape is of global nature. The improvement with respect to the straight fiber counterpart is

27%.

In the case of SSCC boundary condition, the fibers of the plate laminate exhibit significant curvature;
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Table 5.6: Buckling load for the straight fiber design panel subjected to biaxial compression plus shear

load

Laminate
Boundary

Conditions

Buckling Load

[N/m]

[±45/0/90]2s

SSSS 32300

SSCC 61610

CCCC 70360

Table 5.7: Optimization results of ideal panels subjected to biaxial compression plus shear load

Total

plies

Boundary

Conditions
T 1
0 (◦) T 1

1 (◦) T 2
0 (◦) T 2

1 (◦) ε α
Max Curvature[

m−1
] Buckling

Load [N/m]

Improvement

(%)

16 SSSS 20.2 55.0 17.3 63.1 0.100 0.464

κ1 = 1.13

41000 27κ2 = 1.51

κs = 1.57

16 SSCC 37.9 11.2 16.1 63.0 0.169 -0.311

κ1 = 0.913

69050 12κ2 = 1.56

κs = 0.249

16 CCCC 36.2 23.9 20.3 68.7 0.0976 0.353

κ1 = 0.390

85620 22κ2 = 1.57

κs = 0.790

the fibers of ply 2 actually reach the curvature limit. By contrast, the value of the maximum curvature of

the stiffeners is low and the layout is close to the straight fiber design. The buckling load is 69 050 N/m

and the panel buckles globally. An improvement of 12% is obtained mainly due to the skin fibers.

In the last optimized case, all edges clamped boundary condition (CCCC), the fiber paths of ply 1

show a modest curvature, while the fiber paths of ply 2 adopt the maximum imposed curvature. The

stiffener layout has a moderate curvature and does not reach the maximum allowable. The resulting

buckling load is 85 620 N/m and there is local buckling of the plate. The improvement achieved over the

straight fiber configuration is 22%.

5.3.2 Results of panel optimization considering gap effect

Table 5.8 reports the optimization results of panels with embedded gaps subjected to biaxial compression

plus in-plane shear. Figure 5.6 shows corresponding plies configurations, stiffener layout and bucking

mode shape.

The case of SSSS boundary condition involves again high values of curvature close or at the maximum

allowed for the skin fibers and the stiffeners. The average gap area is 2.08%. The buckling load obtained is

40 870 N/m and the panel buckles globally. The improvement with respect to the straight fiber counterpart

is 26%.

Optimization results for the boundary condition (SSCC) indicate that the skin fibers are greatly
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Figure 5.5: Optimized ideal panels subjected to biaxial compression plus shear

curved but a quasi-straight configuration for the stiffeners. The average gap area has a value of 1.97%.

The buckling load achieved is 69 010 N/m. The improvement over the straight fiber design is 12%. This

modest value is mainly due to the configuration of the skin fibers, since the optimized design of the

stiffener layout has resulted to be very similar to that of the straight fiber panel.

For the CCCC boundary condition case, the fibers of the skin are considerably curved. The average

gap area is 2.26%, the highest value of all optimized cases. It is because the high value of T 1
0 = 72.7◦ in

ply 1 leads to increased gap formation. Regarding to the stiffener layout, it shows a moderate curvature.

The buckling load has a value of 81 450 N/m and the plate buckles locally. The improvement achieved

over the straight fiber design is 16%.

5.4 Discussion of Results

The results yielded by the optimization of ideal panels and the optimization of panels with gaps have

some similarity. In both scenarios, the values of the fiber angles, T0 and T1, are in the range from 10

to 70 (in absolute value). The difference between the fiber angles is about 40 degrees, which implies a

considerable curvature of the skin fibers. That configuration of T0 and T1 and the chosen manufacturing

parameters for the course (32 tows of 3.175× 10−3 m wide) results in the average gap area not exceeding

2.3% for any optimized ply. Therefore, although the inclusion of gaps certainly worsens the bearing

capacity of the panel, these optimized laminates with a low gap area do not suffer a significant decrease
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Table 5.8: Optimization results of panels considering gap effect, subjected to biaxial compression plus

shear load

Total

plies

Boundary

Conditions
T 1
0 (◦) T 1

1 (◦) T 2
0 (◦) T 2

1 (◦) ε α
Max Curvature[

m−1
] Gap Area

(%)

Buckling

Load [N/m]

Improvement

(%)

16 SSSS 15.9 61 -13.6 -60.2 0.0949 0.488

κ1 = 1.50

2.08 40870 26κ2 = 1.57

κs = 1.47

16 SSCC 42.4 10.4 16.8 62.4 0.161 -0.295

κ1 = 1.09

1.97 69010 12κ2 = 1.51

κs = 0.052

16 CCCC 72.7 36.2 26.3 64.2 0.099 0.322

κ1 = 1.01

2.26 81450 16κ2 = 1.17

κs = 0.665

in the buckling critical load. Curvilinear fibers that induce gaps are preferred to straight fibers that do

not cause those gaps. Note that designs with straight fibers are allowed in the optimization. For all cases,

an improvement is achieved with respect to the straight fiber design.

As for the grid layout, the stiffeners are generally located in intermediate positions neither near the

center nor near the edges of the panel. The stiffener curvature depends on which boundary condition

is optimized. Since stiffeners are not considered to induce gaps, the resulting layouts are similar for

both scenarios: ideal laminates and laminates with embedded gaps. This repeatability indicates that the

Genetic Algorithm finds the optimum design for the stiffeners.

It has been demonstrated that the boundary conditions substantially influence on the panel buckling

performance. Panels under SSSS boundary condition exhibit high curvature for both the skin and stiffener

fibers, reaching in most cases the maximum allowed. Here, the curved fibers provide more efficient load

paths than the straight fiber counterparts. Thus, the capability to tailor the stiffness variation is fully

exploited, enhancing the buckling response of the panel. For the SSSS boundary condition, the greatest

improvement over the straight fiber design has been achieved. The optimized panels considering the gap

effect show a 51% improvement for biaxial compression and 26% improvement for biaxial compression

plus in-plane shear.

For panels under SSCC boundary condition, the results of the optimization show that the skin fibers

are significantly curved but the stiffeners are of very low curvature. The resulting optimized stiffener

layout is similar to the straight stiffener design. In this case, curvilinear stiffeners have not demonstrated

a major advantage in panel buckling behavior, as the design of quasi-straight stiffeners is preferred.

Therefore, the improvement achieved over the straight fiber configuration is mainly due to the curvilinear

fibers of the skin. The improvement for panels with embedded gaps is 14% for biaxial compression and

12% for biaxial compression plus in-plane shear. These improvement values are the lowest achieved among

the boundary condition cases studied.

The optimized panels under CCCC boundary condition present moderate values of curvature for both

skin and stiffener fibers, in some cases reaching the maximum allowable value. The improvement of panels

with gaps compared to the straight fiber design for the biaxial compression loading case is 23% and for
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Figure 5.6: Optimized panels considering gap effect, subjected to biaxial compression plus shear

biaxial compression plus in-plane shear is 16%. It is an intermediate case between the SSSS and SSCC

boundary conditions.
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Chapter 6

Conclusions

The achievements and the conclusions drawn in this thesis are discussed in Section 6.1. Section 6.2

presents several aspects that may be of interest for future research.

6.1 Conclusions

In this thesis, a framework has been developed to optimize the buckling performance of variable stiffness

panels with curvilinear stiffeners.

First, variable-stiffness laminates were modeled. To that end, the curvilinear fiber paths were described

by the linear variation of the fiber angle. The fiber orientation was set to vary in the horizontal direction.

This approach requires only two parameters to characterize the fiber path: the fiber angle at the center and

at the side of the panel. A complete ply was constructed by shifting consecutive courses, identical to the

reference course, in the vertical direction. That is, the shifted method was employed. The manufacturing

aspects of the AFP machine were considered in the modeling phase of VS laminates. The maximum

curvature allowed by the AFP machine was imposed on the skin fiber paths to avoid wrinkling. The

effect of the manufacturing-induced gaps was incorporated by first locating the gaps present in the VS

laminates. Then the material properties were scaled according to the gap area.

A curvilinear grid-stiffened layout was also designed. The curvilinear stiffeners were modeled by a

cubic spline. Four symmetrical stiffeners eccentrically attached to the plate were considered. The stiffener

layout was defined by two parameters. One parameter controlled the stiffener location on the plate and

the other the stiffener curvature. The composite fibers followed the curvilinear path of the stiffener,

forming a zero-angle laminate. The maximum curvature allowed by the AFP machine also constrained

the in-plane curvature of the stiffener paths.

The optimization was performed by Genetic Algorithm. GA was chosen as the optimizer to avoid

the calculation of the derivatives of the objective function and constraints and to not converge to a

local minimum. The panels were defined by a reduced number of design variables which made the

computational time affordable. Optimal designs for VS laminates with curvilinear stiffeners were obtained

for different loading cases and boundary conditions. Two load cases were addressed: a biaxial compression
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and biaxial compression plus in-plane shear. Three boundary conditions were considered: all edges of

the plate simply supported (SSSS), two edges simply supported and two edges clamped (SSCC), and all

edged clamped (CCCC). A constant stiffness quasi-isotropic laminate with equidistant straight stiffeners

was used as a basis for comparison.

Regarding the skin laminate, there was a chance that the skin laminates were composed of straight

fibers, however, all optimized laminates presented fibers with curvature. Curvilinear fibers produced more

efficient load paths than the straight fibers, enhancing the bearing capability of the skin. The curvature of

the skin fibers was dependant on the boundary condition studied. Panels under SSSS boundary condition

showed highly curved skin fibers, reaching or being close to the maximum allowable value. Panels under

SSCC and CCCC boundary conditions presented lower, but still significant, curvature values for the skin

fibers.

It was observed that the manufacturing-induced gaps in VS laminates worsened the buckling per-

formance of the panel. Since the optimized panels presented a low gap area, the buckling load did not

excessively decrease compared to the ideal panels. Curvilinear skin fibers that induce gaps were preferred

to straight fibers that do not cause those gaps.

As for the grid layout, the stiffeners were placed in intermediate positions, neither towards the center

of the panel nor towards the edges. The stiffener curvature also changed according to which boundary

condition was optimized. The curvature of the stiffeners reached the maximum allowed when the pan-

els were optimized under SSSS boundary condition. For the SSCC boundary condition, quasi-straight

stiffeners were preferred. In this case, curved stiffeners did not demonstrate a major advantage in panel

buckling behavior. The optimized stiffeners under CCCC boundary conditions showed a considerable

curvature.

It was shown that tailoring the stiffness variation by using curvilinear fibers can improve the buckling

performance of the panel. The improvement in the buckling load compared to the straight fiber design

depended on the load case and boundary conditions. Panels under SSSS boundary conditions showed

the highest improvement: a 51% for biaxial compression and 26% for biaxial compression plus in-plane

shear. In the case of the SSCC boundary condition, the improvement achieved was the lowest: a 14%

for biaxial compression and 12% for biaxial compression plus in-plane shear. The SSCC boundary con-

dition presented intermediate values of improvement: a 23% for biaxial compression and 16% for biaxial

compression plus in-plane shear

The optimization framework developed has proven to be an efficient tool to design composite panels

with curvilinear fibers and curvilinear stiffeners It can help the designer to evaluate in which scenarios

these panels provide the greatest benefit.

6.2 Future Work

The optimized case studies present an overview of the possible benefits of VS panels reinforced with

curvilinear stiffeners. However, there are several aspects that remain to be addressed in the future.

To qualitatively assess in which situations these panels will perform better than straight fiber designs,
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various load cases and boundary conditions, as well as other dimensions of the skin and stiffeners, should

be studied.

The design space could be expanded by optimizing the thickness and height of the stiffeners or defining

different stiffener layouts. Various reference paths for the skin fibers could be implemented to fully explore

the tailoring capability of curvilinear fibers. Other laminate stacking sequences can be optimized, for

example, with more different plies or removing the symmetry and balance conditions.

For the sake of model simplicity, the panels optimized in the present thesis are assumed to be flat.

However, the panels could be modeled with a slight curvature to more closely resemble the wing and

fuselage skins of the aircraft. In this regard, panels with a hole could be investigated to simulate the

fuselage skin window.

The optimization performed seeks to maximize the buckling load but is easily adaptable to other

objective functions. Other design objectives and constraints may be panel mass, fundamental frequency,

deformations, ply failure, interlaminar stress, etc. In addition, parallel processing could be used to

conduct various finite element analyses, accelerating the optimization runtime.

The number of tows in a course, the tow width and the coverage percentage affect the gap and/or

overlap distribution in VS layers. Studies varying these manufacturing parameters could be carried out

to investigate their effect on the panel buckling performance.

Post-buckling behavior and experimental validation of composite panels with curvilinear fibers and

curvilinear stiffeners could be other fields of future research.
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