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Abstract

Understanding the conundrum of cooperative action in nature has been declared one of the century’s
grand challenges. Natural selection is themain engineof the evolutionof species andpromotes the survival
of the fittest, yet cooperative interactions prevail in living systems. Interactions between individuals, either
as dyadic or collective processes, are commonly modelled through the lens of game theory, based on
relative strategies payoffs. However, these interactions may not always be driven by a selfish agenda such
as fitness maximization or rational decision making. In this thesis, we analyze different strategy revision
rules that may take place in social systems resorting to the analysis of large-scale Markov processes. We
describe the cooperation dynamics emerging from the interplay of different strategy revision paradigms:
social learning (our baseline), conformity and counterfactual thinking. We show that conformity creates
bistable dynamics irrespectively of the various dilemmas we analyzed. This outcome is only altered
whenever one increases the heterogeneity levels of the population. Counterfactual thinking, in turn, while
fostering cooperation in the entire population, fails to promote cooperation among those that also learn
through counterfactual reasoning. Moreover, we show that, whereas a slight prevalence of individuals
resorting to counterfactual thinking is enough to modify the dynamical nature of each dilemma, a fair
amount of conformity-driven agents will be required to create an analogous impact.

Keywords: Emergence of cooperation, Evolutionary Game Theory, Conformity, Counterfactual Thinking

1. Introduction
In this world of selfish individuals, when should

one expect the emergence of cooperative action?
This problematic of has been widely studied and
yet it remains one of the biggest mysteries about
animal behaviour [1]. In fact, the understanding of
cooperative behavior in societies has been declared
as one of the grand scientific challenges of the 21st
century and has been intriguing the scientific com-
munity in various areas such as sociology, biology,
mathematics, physics and others [2, 3].
In the animal world, natural selection has been

introduced and popularized as one of the funda-
mental key mechanisms of evolution, along with
genetic mutation. From a Darwinist perspective,
the survival of individuals is highly dependent on
their adaptability to the demands of the environ-
ment and it may be understood as a competitive
process, within a certain community, where the
most successful individuals and the best suited to
their surroundings tend to dominate. Thereby, the
fact that natural selection favors the fittest indi-
viduals implies an innate selfishness that greatly
challenge the concept of cooperation. In other

words, from a Darwinist point of view, coopera-
tion is costly, and, as weird as it may sound to us,
humans, this means that cooperation is unnatural
and rather odd than rational [4, 5]. Sowe now come
across with this paradox: natural selection, which
promotes the survival of the fittest, is the main en-
gine of the evolution of species, yet we verify that
cooperative interactions prevail in most living sys-
tems [6]. How can we then explain the emergence
of cooperation?

Classical Game Theory was developed exten-
sively in the 1950s, originally for application in
economics and social science, but later in the 70s
a group of biologists started to recognize how sim-
ilar the games that have been studied were to the
interactions between agents within a certain com-
munity. TheEvolutionaryGameTheory (EGT)was
then born when John Maynard Smith and George
Price laid its foundations, providing a powerful
theoretical framework to model Darwinian com-
petition [7], known as social learning (SL). Tradi-
tionally, interactions have beenmodeled in terms of
one-shot, symmetric two-person dilemmas of Co-
operation [8], however many real-life interactions
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Games NSG NSH CRD

� � � � � �

1 ≤ : < " − 2
" 0 −2 0 1(1 − A) − 21 1(1 − A)

" ≤ : 1 − 2
: 1 :�2

# − 2 :�2
# 1 − 21 1

Table 1: Payoff values for the N-person snowdrift game (NSG), the N-person Stag-Hunt game (NSH)
and the Collective-risk dilemma (CRD).

involve individual’s collective action, in groups
composed of more than two agents, which brings a
much more rich and complex dynamics to the sys-
tem. This type of interactions are best described in
the framework of #-person games [9, 10, 11], such
as the #-person Snowdrift game (NSG), the #-
person Stag-Hunt (NSH), the Public Good Games
(PGG) and the Collective Risk Dilemma (CRD).
Regardless of the model, under the simplest co-

operation dynamics, interacting agents may adopt
one of two pure strategies: cooperation (�) or de-
fection (�). While cooperative individuals con-
tribute to the collective welfare at a personal cost,
2, in order to provide a certain benefit, 1, to an-
other individual (where we imply 1 > 2), defectors
choose not to contribute. In the case of collective
action, it is common that no benefit is produced un-
less its costs are shared by a minimum amount of
cooperators [9], which we will define as the thresh-
old 1 ≤ " ≤ # , with # the groups size. The fi-
nal outcomes, or payoffs, for each strategy are now
dependent on the social interaction rules, that dif-
fer on the metaphor used to describe each game.
Specifically for #-person games above mentioned,
the payoff values Π(, with ( ∈ {�, �}, may be or-
ganized, for both � and �, according to Table 1.

In EGT, the payoff individuals obtain from all in-
teractions is translated onto individual fitness as an
average payoff, that is characteristic for each strat-
egy. In a biological context, one may see fitness as
a quantification of the reproduction success: the
more successful individuals are, the more they can
spread their strategy, which will then increase its
frequency in the population [8]. In some cases,
researchers assume populations to be infinite [12],
which, although simpler, neglects the stochastic ef-
fects characteristic of all evolutionary and social
processes. Instead, here we focus on finite and
well-mixed populations, that is, finite populations
in which every individual has the same probability
of interaction with one another in the population.
Moreover, we will consider the presence of a small
mutation rate �, to avoid the absorbing property
of the monomorphic states, that is, states where all
individuals follow the same strategy.
Whereas in the 2-person framework fitness may

be achieved directly from the payoff values, in col-
lective action one must take a more complex for-
mulation to define it [13]. Specifically, in a well-
mixed and finite population with size /, engaged
in groups sized # , the fitness of strategies � and
�, respectively, 5� and 5� , may be given by the hy-
pergeometric distributions, for a certain number :
of cooperators, as follows:

5� (:) =
(
/ − 1
# − 1

)−1 #−1∑
9=0

(
: − 1
9

) (
/ − :

# − 9 − 1

)
Π� (9 + 1) (1)

5�(:) =
(
/ − 1
# − 1

)−1 #−1∑
9=0

(
:

9

) (
/ − : − 1
# − 9 − 1

)
Π�(9) (2)

The evolutionary dynamics of games are com-
monly studied through replicator equations [12],
which provides a convenient view for the evolu-
tionary process, although assuming infinite pop-
ulations and a deterministic dynamic process [14].
The growth of the fraction of cooperators, G, in time
may be given by a first order differential equation,
the so-called replicator equation, as [12]:

¤G = G(1 − G)( 5� − 5�) ≡ 6(G) (3)

where the designation 6(G) refers to the gradient
of selection, as it indicates the most likely outcome
of evolution under SL [11, 13, 15]. When moving
to finite populations, however, the description of
the evolutionary dynamics of the propagation of
strategiesmust now take into account the stochastic
effects.

To study this deterministic propagation of strate-
gies, methods of statistical physics may be applied,
where a comprehensiveunderstandingof statistical
physics of humancooperation is given [5, 15, 16, 17].
In fact, to analyze an evolutionary process, one can
adopt the Fermi function distribution from statisti-
cal mechanics [15], that may be described accord-
ing to the imitation process: a certain individual
� interacting with another player �, respectively
adopting strategies (� and (�, with (� ≠ (�, will
revise and replace its strategy by its opponent strat-
egy with a certain probability given by:

?(�→(� (:) ≡
1

1 + 4−�( 5(� (:)− 5(� (:))
(4)
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where �, which in physics corresponds to an in-
verse temperature, controls the intensity of selec-
tion [16, 18, 19], and : is the number of coopera-
tors. Notice that, by taking �(! � 1, the process
described is reduced to the frequency-dependent
Moran process under weak selection [14].
As we enter in a discrete domain, the description

of the system’s evolutionary dynamics is nowgiven
according to the formalismof theMarkovProcesses
[16]. In specific, we take a stochastic birth–death
process in which, for a population sized /, we will
have / + 1 states, as each state represents the num-
ber of cooperators :. Making use of the switch-
ing probability in equation 4, one may compute
the transition probabilities, fully characterizing the
transition matrix T that describes such a Markov
chain, which is tri-diagonal in this specific case.
The transition probabilities, i.e., the probabilities to
increase ()+) or decrease ()−) the number of coop-
erators, in the population of size /, is given by:

)±(:) = :

/

/ − :
/ − 1

[
1 + 4∓�( 5� (:)− 5� (:))

]−1 (5)

From this, we may finally compute the most
likely direction of the evolutionary process, in
terms of the gradient of selection �, as:

�(G) ≡ )+(G) − )−(G) (6)

which, in the limit of large /, is equivalent to the
replicator equation 3 for infinite populations.
From the transition matrix T , we may also com-

pute the stationary distribution, B̄, which basically
defines the fraction of time the system spends on
each state, or in other words, defines the probabil-
ity of finding the system at a certain state : at any
time. It may be obtained simply by computing the
left eigenvector of the transition matrix with eigen-
value 1, that is, it must satisfy B̄ = T B̄.

These two quantities will be of foremost impor-
tance in the studyof population’s dynamics, as they
allow us to predict themost likely outcomes of evo-
lution, in this case under selection. To evaluate
and analyze these predictions, we may either cal-
culate the expected fraction of cooperators, simply
as ��� =

∑/
:=0 : · B̄(:), or the overall probability of

achieving success, in the formof the group achieve-
ment, defined as �� =

∑/
:=0 B̄(:) · 0�(:), where we

take the multivariate hypergeometric sampling to
compute 0�, the (average) fraction of groups that
overcome the threshold of " contributors. Notice,
however, that the ��� analysis may be escorted
by misleading conclusions, namely for coordina-
tion dynamics, as it does not take into account the
overall shape of the stationary distribution.

2. Mathematical Framework

Until now, most of population dynamics in
Evolutionary Game Theory had its mathematical
framework based on social learning. However, be-
sides the pursuit of highest payoffs in evolutionary
social dilemmas is risky, individual’s interactions
are not always driven by a selfish agenda such as fit-
ness maximization [20]. In this theme of updating
rules, some different learning rules have already
been analyzed, such as conformity (C) [20, 21] and
counterfactual thinking (CT) [22]. For further us-
age,wewill define the set of available learning rules
as ℒ (in this case we will have ℒ = {(!, �, �)}).

As some individuals might not opt to imitate
those with higher fitness, they may ignore the rel-
ative payoffs of the game and focus on choosing
the most common strategy among their partners.
Intuitively, conformists players tend to minimize
their risk while ensuring they still receive some
kind of payoff, not much lower than the average.
To take into account well-mixed populations, one
can very elegantly define a framework for confor-
mity by simplymaking a pairwise comparisonwith
the previously defined SL dynamics. In fact, the
imitation process may be obtained as before, but
instead of fitness-dependent, it is now frequency-
dependent, as follows:

?
[�]
(�→(� (:) ≡

1

1 + 4−�
[�](G(/−1)

(�
(:)−G(/−1)

(�
(:))

(7)

where we explicitly define �[�] ≠ �(≡ �[(!]) as the
intensity of conformity. Here, G(/−1)

(
represents the

fraction of players following strategy (, in a popu-
lation with / − 1 individuals.

Making use of this new switching probabilities,
the conformity transition probabilities, again by
analogy to equations 5, may be written as:

)
[�]
± (:) =

:

/

/ − :
/ − 1

[
1 + 4∓�[�](G�−G� )

]−1
(8)

whichwill define a novel gradient of selection, now
specific for conformity:

�[�](:) ≡ )[�]+ (:) − )[�]− (:) (9)

Notice that herewe changed thenotation from)±

to)[!]± , as these probabilities are nowdependent on
different learning rules ! ∈ ℒ.
Counterfactual thinking is a human cognitive

ability where individuals capture the process of
reasoning about hypothetical past events, specifi-
cally what would have happened if those events
occurred, hence taking into account the next player
moves. Therefore, the counterfactual thinker may
be already considered a Theory ofMind (ToM) first
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degree agent, differently from a social learner or a
conformist, that stand at the lower level of ToM. In
its simplest form, CTmay be modelled as an initial
form of myopic best response rule at the popula-
tion level, by considering the fitness of the agent
in a system configuration that did not, but could
have occurred [22]. From a pairwise comparison to
the SL framework, the switching probability may
be now defined as:

?
[�)]
(�→(� (:) ≡

1

1 + 4−�
[�)]( 5 ′

(�
(:)− 5 ′

(�
(:))

(10)

where �[�)] stands for the intensity of counter-
factual thinking. The probability increases non-
linearly with the different between the fitness the
individual would have had if it had chosen strategy
(�, designated as 5 ′

(�
(:), and the fitness it actually

got by playing (�, designated as 5 ′
(�
(:).

Differently from SL or C, the revision process
does not occur through imitation, rather not requir-
ing an interaction between agents. In this reason-
ing, and making use of the new switching proba-
bility, wemay define the transition probabilities for
CT may be obtain as follows:

)[�)]− (:) = :

/

[
1 + 4−�[�)]( 5� (:−1)− 5� (:))

]−1
(11)

)
[�)]
+ (:) = / − :

/

[
1 + 4−�[�)]( 5� (:+1)− 5� (:))

]−1
(12)

which will define the deterministic gradient of se-
lection for counterfactual thinking:

�[�)](:) ≡ )[�)]+ (:) − )[�)]− (:) (13)

Notice that, differently from other learning rules,
these transition probabilities do not have a second
fraction of individuals term, hence a relative higher
order of magnitude is expected for CT.
Having established the foundations for each the

different rules in particular, we now ought to find
a formulation that set all these learning rules to-
gether. In real-world populations, all individuals,
regardless of their way to reason, may belong to
the same community, either mixed with different-
heuristic individuals, that is, in an homogeneous
population, or displayed in separated communi-
ties, that is, in an heterogeneous population. Each
of these organization typeswill unlock awhole new
populations dynamic, from which very interesting
insights may be taken.

3. Homogeneous Populations

Let us start by assuming that individuals are
equivalent as theymay resort to any of the available
heuristics to their strategies. Theymay resort to dif-
ferent learning rules, yet all share the same prob-
abilities of using each, and hence the equivalent

characteristic between them. In this case, popula-
tionsmay be addressed as homogeneous. Formally
speaking, this is the same as redefine the system’s
gradient of selection to take into account all the
different learning rules as:

�(:) =
∑
!∈ℒ

�[!]�[!](:) (14)

where �[!] stands for the probability that each in-
dividual, at each time-step, adopts ! ∈ ℒ.

We notice that the well-mixed property of the
population is not violated, as expected when ho-
mogeneously mixing different learning rules in a
population. From this point on, we may now eval-
uate the dynamics of different populations config-
uration under different scenarios.

We consider a well-mixed population of
conformity-driven agents under a social learning
environment, that is, having ℒ = {(!, �}. As both
these learning rules are associated with dynamic
revision processes, and assuming a similar magni-
tude for both switching probabilities, it wouldn’t be
unreasonable to expect similar orders ofmagnitude
for the values of both �[(!] and �[�]. Very roughly,
this means the conformity impact on the overall
population dynamics is dimensionally equivalent
to the social learning’s impact, hence one expects to
verify progressively stronger effects of conformity
as we increase its probability on the population.

To analyze the conformity effects, we start by
building a pure SL population (�[�] = 0) and we
progressively increase the value of the probabil-
ity of conformity until reaching a pure conformity
population (�[�] = 1.0). For each step, we compute
the gradient of selection, as an explicit function of
the fraction of cooperators G, and analyze the sys-
tem’s dynamics. Recall that, in this setup, we as-
sume a constant fixed value for �[�], characteristic
of the population, and therefore the � variations
with the probability of conformity should not be
considered as part of the population’s evolution.
An example of a study of this kind can be found in
Figure 1.

Analyzing the conformity overall impact, re-
sults match the expectations: the variations on the
system’s dynamics progressively increase with in-
creasing probability of conformity, and hence the
effects of conformity apparently become more vis-
ible for larger �[�]. This result suggests that, dif-
ferently to CT, it is required a considerable preva-
lence of conformity-driven agents to substantially
change the social game dynamics, as the confor-
mity gradient is dimensionally equivalent to the
social learning gradient.

Regarding the modifications itself, conformity
may completely change the gradient of selection,
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Figure 1: Gradient of selection of a NSG with (#, ", 1, 2) =
(10, 5, 1, 0.2), having ℒ = {(!, �}, for a homogeneously well-
mixed population sized / = 50, with � = 1

/ and �[(!] = �[�] =
1.0. It is presented in a relative terms.

depending on the original SL evolutionary dynam-
ics. In the example above shown, increasing the
number of conformity-driven individuals will pro-
gressively twist the original NSG co-existence dy-
namic onto a strong coordination dynamic, charac-
terized by two stable fix points, on the monomor-
phic states of the system, and a single unstable fix
point at exactly G = 0.5, which, in turn, is charac-
teristic of the pure conformity dynamic. Attending
to the conformity formulation, as it is not explicitly
dependent on the game’s configuration, we may
admit this insight to be generalized, meaning that,
irrespective of the SL dynamics, conformity will
always promote a coordination dynamics, an ef-
fect that is more intense the more conformists we
have in the population. Even though this dynamic
strongly depends on the intensity of C, in its for-
mal definition, conformity promotes a coordina-
tion dynamic, hence configurations with a value
of �[�] that promotes co-existence will lose their
physical meaning. As that, we are more prone to
assume that conformity always promotes coordina-
tion, notwithstanding the social game’s dynamics.
Interestingly, either the group achievement and

the ��� progressively move towards the internal
fix point, a result that is, again, independent on
the social game’s configuration. However, if in the
pure SL dynamic we have �� < 0.5, we could ex-
pect conformity to be beneficial in the overall co-
operation dynamics, whereas, if we have �� > 0.5,
conformity would generally become prejudicial to
the cooperation dynamics. This insight may sug-
gest that, although the pure-conformity dynamic
is very unique and independent on social game,
the effects on cooperation optimization may have

either a positive or a negative impact regarding co-
operation maximization, depending whether the
SL dynamics provides, or not, a worst scenario in
terms of cooperation, when compared to the pure
conformity coordination dynamics.

Contrary to conformity, counterfactual reasoning
is characterized by a static revision process rather
than a dynamic one. As a consequence, CT comes
with a much larger impact on the overall gradient
of selection for homogeneous populations, when
compared to the SL case. This means that a small
prevalence of CT individuals, that is, a small value
of �[�)], is enough to drastically change the pop-
ulation’s dynamics, specifically towards highly co-
operative standards, a result that was previously
seen in [22]. To control and balance these effects,
when analyzing thepopulation’s dynamics, wewill
assume �[(!] > �[�)], significantly increasing the
overall strength of SL in order to balance the gra-
dient of selection for both learning rules.

Proceeding as before, to analyze the CT ef-
fects, we start by building a pure SL population
(�[�)] = 0) and we progressively increase the value
of the probability of CT until reaching a pure CT
population (�[�)] = 1.0), and for each step we com-
pute the gradient of selection. An example of this
type of study may be found below in Figure 2.

Figure 2: Gradient of selection of a NSH with (#, ", �, 2) =
(10, 5, 9.5, 0.2), havingℒ = {(!, �)}, for a homogeneouslywell-
mixed population sized / = 50, with � = 1

/ , �
[(!] = 5.0 and

�[�)] = 1.0. It is presented in a relative terms.

In opposition to conformity, and meeting the ex-
pectations, a small prevalence of CT-driven agents
is enough to aggressively modify the population’s
dynamics, specifically being responsible for push-
ing the entire population to highly cooperative
standards, as one may infer from both �� and ���.
However, although a small incidence CT individu-
als is beneficial in terms of cooperation, after reach-
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ing themaximumvalue for ��, increasing �[�)]will
progressively prejudice the cooperative standards.
Thereforewemaycomplement the conclusionspre-
viously taken in [22] by stating that a small preva-
lence of CT-driven individuals does in fact pro-
mote highly cooperative standards, but only until a
certain point, from which adding more CT agents
becomes a disadvantage.
Counterfactual thinking, in its pure form, and

specifically for the NSH, seems to foster a co-
existence dynamic, which, while still dependent
on the game’s configuration, is generalizable for
other games. However, according to [22], in col-
lective action problems, and specifically for NSH,
one should expect counterfactual reasoning to pro-
mote coordination dynamics. Although it appears
to be a contradiction, one must be aware of the de-
pendency on the intensity of CT: in the same way
as for conformity, while for relatively lower val-
ues of �[�)] individuals resorting to CT promote a
co-existence dynamic, for higher intensities a coor-
dination dynamic is favoured. This result is generic
for any dynamic and should be taken into consid-
eration when performing studies of this kind.

4. Heterogeneous Populations

When a population is organized in multiple
smaller communities of same-heuristic individu-
als, a different approach shall be taken. Follow-
ing a framework similar to the one presented in
[23], we will divide our population according to
each individual’s learning rule, that is fixed and
unchangeable, treating each sub-population inde-
pendently, however always considering all interac-
tions between different sub-populations are possi-
ble. The impact between individuals from differ-
ent sub-populations will be weighted by the ho-
mophily, 0 ≤ ℎ ≤ 1, that may be defined as follows:
when ℎ = 0 anyone in the population may influ-
ence and be influenced by anyone else, while when
having ℎ = 1 individuals are restricted to influ-
ence (and be influenced) by those of the same sub-
population. One may notice that the first case is
equivalent to assume the population is well-mixed,
while the latter case highlights the definition of het-
erogeneous populations. In this sense, homophily
may be seen as a measure of the level of hetero-
geneity, from an well-mixed arrangement (ℎ = 0),
to a pure heterogeneous one (ℎ = 1).
This new framework requires its ownproper def-

inition, as the previously presented formulation
(in section 2) is very limited. In this study, we
will focus on analyzing the dynamics, first having
ℒ = {(!, �}, and secondly with ℒ = {(!, �)}.
Starting with the first case, we consider a pop-

ulation of / = /[(!] + /[�] individuals, with /[(!]
social learners and /[�] conformists. Individuals
resorting to each learning rule are given an initial
endowment, 1[(!] for SL and 1[�] forC, that will re-
main fixed, and play the #-person game in study,
thus engaging in groups sized # . Each type of co-
operators will contribute for the public good with
2[(!] = 2 · 1[(!] and 2[�] = 2 · 1[�], respectively for
SL and C. Having this new more complex formu-
lation, the payoffs for each game must be updated,
however always respecting each game’s descrip-
tion. For the NSG and the CRD, the new payoffs
may be defined as follows:

• NSG, with (#, ", 1̄, 1[(!] , 1[�] , 2):

Π
[(!]
�
(i) = Π�(i) −

2[(!]

8
[(!]
�
+ 8[�]

�

Θ − 2
[(!]

"
(1 − Θ) (15)

Π
[(!]
�
(i) = 1[(!]Θ (16)

• CRD, with (#, ", 1̄, 1[(!] , 1[�] , 2, A):

Π
[(!]
�
(i) = Π�(i) − 2[(!] (17)

Π
[(!]
�
(i) = 1[(!](Θ + (1 − A)(1 − Θ)) (18)

where i = {8[(!]
�

, 8
[�]
�
}, with 8[!]

�
the number of co-

operators with ! ∈ ℒ. Moreover, here we have Θ ≡
Θ(2[(!]8[(!]

�
+ 2[�]8[�]

�
− 21̄") as the Heaviside func-

tion, where Θ(:) = 1 whenever : ≥ 0 and Θ(:) = 0
otherwise, and where /1̄ = /[(!]1[(!] + /[�]1[�] is
the average endowment.

In opposition to SL, conformity does not rely on
fitness in the individual’s strategic decision, rather
depending in the number of individuals follow-
ing each strategy. In this sense, one may generally

define Π[�]
�

=
8
[�]
�
+8[(!]

�

/−1 and Π[�]
�

=
8
[�]
�
+8[(!]

�

/−1 , where
8
[!]
�
= /[!] − 8[!]

�
, for ! ∈ ℒ.

As conformity populations are not engaged in
groups of size # , the conformity fitnesses are re-
duced to their respective payoffs. As that, we just
have to computeSLfitnesses, which comenaturally
by using themultivariate hypergeometric sampling
without replacement, which according to [23], may
be formulated as shown in the equations below:

5
[(!]
�
(i) =

(
/ − 1
# − 1

)−1 #−1∑
9[(!]=0

#−1−9[(!]∑
9[�]=0

(
8[(!] − 1
9[(!]

) (
8[�]

9[�]

) (
/ − 8[(!] − 8[�]

# − 1 − 9[(!] − 9[�]

)
Π
[(!]
�
(9[(!] + 1, 9[�]) (19)

5
[(!]
�
(i) =

(
/ − 1
# − 1

)−1 #−1∑
9[(!]=0

#−1−9[(!]∑
9[�]=0

(
8[(!]

9[(!]

) (
8[�]

9[�]

) (
/ − 1 − 8[(!] − 8[�]
# − 1 − 9[(!] − 9[�]

)
Π
[(!]
�
(9[(!] , 9[�]) (20)
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)
[(!]
�→�\�→�(i) ≡ )

[(!]
∓ (i) =

8
[(!]
�\�
/


8
[(!]
�\� + (1 − ℎ)8

[�]
�\�

/[(!] − 1 + (1 − ℎ)/[�]

(
1 + 4�

[(!]( 5 [(!]
�\� (i)− 5

[(!]
�\� (i))

−1
) (21)

)
[�]
�→�\�→�(i) ≡ )

[�]
∓ (i) =

8
[�]
�\�
/


8
[�]
�\� + (1 − ℎ)8

[�]
�\�

/[�] − 1 + (1 − ℎ)/[(!]

(
1 + 4�

[�]( 5 [�]
�\� (i)− 5

[�]
�\� (i))

−1
) (22)

Assuming an asynchronous updating process in
the evolutionary dynamics, from these fitnesses we
may compute all the required transition probabili-
ties, as shown in the equations 21 and 23.
From these transition equations, we may com-

pute the transition matrix, now adapted to a multi-
dimensional space. To do so, we index all the
possible states with an integer number, for which
conversion we define a bĳective function + such
that ? = +(i) and @ = +(i′), and, consequently,
i = +−1(?) and i′ = +−1(@). Afterwards, we may
write the transition matrix as T@? = )i→i′ , where
)i→i′ is the corresponding transition probability
from configuration i to i′. Having computed T ,
one may finally obtain the stationary distribution
following the usual procedure, and to the obtained
vector it is applied the inverse of + so one may fi-
nally obtain the stationary distribution directly as
a function of i, as B̄ ≡ B̄(i) [24].

Lastly, also from the transition probabilities, we
may generally define the 2-dimensional heteroge-
neous gradient of selection for social learning and
conformity as follows:

∇(i) = {�[(!](i), �[�](i)} (23)
In this new setup, the group achievement must

also be updated as follows:

��(i) =
/[(!]∑
9[(!]=0

/[�]∑
9[�]=0

0�(j) · B̄(j) (24)

with j = { 9[(!] , 9[�]}.
Having all this quantities, have now conditions

to proceed with the evaluation of the gradient of
selection. We start by investigating the effects of
homophily in evolutionary dynamics for popula-
tions with an equal amount of social learners and
conformists, that is, having /[(!] = /[�]. A study
of this kind is presented in Figure 3, specifically
performed for the NSG.
Firstly, we notice that, having null homophily,

one can recover, in some way, the typical homoge-
neous conformity dynamics, characterized by the
existence of three fix points, two of them being
stable on both the monomorphic states, while the
other is unstable at the center. This insight comes
more clear if we take into consideration the sym-
metry of the dynamics, which in this case may be
considered practically symmetrical.

Attending to the stationary distribution, the
stable equilibrium relative to the cooperation
monomorphic state is clearly much stronger than
the other one, as the system spends much more
time in the first case. Moreover, the population
dynamics is not much sensitive to most lower ho-
mophily values, when, even having ℎ = 0.6, the
dynamic is practically the same as for ℎ = 0. How-
ever, as homophily increases, we will eventually
reach a threshold fromwhich the system dynamics
strongly changes, especially when ℎ is maximum.
In this case, the cooperation monomorphic fixed
point has slightly moved to lower 8[(!]

�
, while the

other twofixpoints have nowdisappeared. This re-
sult may suggest that an increase of the homophily
may lead to a new dynamics where the only most
probable outcome, after a sufficient amount of
time, is the configuration which, in this particu-
lar case, promotes highly cooperative standards,
specifically representing a �-dominance dynamic.
Even though the group achievement is lower than
in the other cases with lower ℎ, which could indi-
cate a worst performance in terms of cooperation
optimization, we no longer have the tendency to
move towards the defection monomorphic state,
having only one strong attraction point.

Regarding the group achievement, we notice the
relations between group achievement and the ho-
mophily are not linear. For instance, from the avail-
able results for the NSG, we infer a very light in-
crease of �� from ℎ = 0 to ℎ = 0.6, whereas for the
homophilic setup the group achievement reaches
its lowest value. We are, then, led to suggest that
the group achievement goes, not only as a function
of the game’s configuration, as we saw previously
on homogeneous populations, but also as a func-
tion of the homophily, that is, �� ≡ ��(E, ℎ) with E
the set of variables that identify each game.

Contrary to conformity, even in homogeneous
populations, counterfactual thinking has shown
to be a very interesting and complex learning
rule, being able to either foster coordination or co-
existence, depending on �[�)], hence becoming a
very flexible heuristic.

Moving to the second case, like before, we start
bybuilding apopulation sub-dividedonto two sub-
populations, one of social learners and the other
constituted by counterfactual thinkers, thus having
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Figure 3: Gradient of selection of a NSG, with (#, ", 1[(!] , 1[�] , 2) = (10, 5, 1, 1, 0.1), having ℒ = {(!, �}, for a heterogeneous
population sized / = 100, with /[(!] = /[�] = 50, � = 1

/ , �
[(!] = �[�] = 1.0. We show that an increasing the heterogeneity levels

progressively corrupts the conformity bistability onto a �-dominance dynamic.

ℒ = {(!, �)}. Following the same reasoning as for
conformity, we consider our population has a size
of / = /[(!] + /[�)] individuals, from where /[(!]
are social learners and /[�)] follow CT, that will
play a given #-person game. Individuals resorting
to either SL or CT are given an initial endowment
1[(!] and 1[�)], respectively, and, being cooperators,
they are compelled to contribute, proportionally
to their respective endowments, with 2[(!] = 2 ·
1[(!] and 2[�)] = 2 · 1[�)]. Having counterfactual
thinking based on fitness, the payoffs relative to
SL for each the #-person games (equations 15-18)
remain unchanged, only substituting [�] by [�)]
in the learning rules.
From these payoffs, we again may compute the

fitnesses for SL, but again substituting [�] by [�)]
on equations 19 and 20. In turn, for CT, the fitness
may be obtained in the same was as previously but
swapping [(!]with [�)], however now taking into
consideration the CT formulation:

5
[�)]
�
(i) =

{
5
[(!]
�
(8[(!]
�

, 8
[�)]
�
) � → �

5
[(!]
�
(8[(!]
�

, 8
[�)]
�
+ 1) � → �

(25)

5
[�)]
�
(i) =

{
5
[(!]
�
(8[(!]
�

, 8
[�)]
�
− 1) � → �

5
[(!]
�
(8[(!]
�

, 8
[�)]
�
) � → �

(26)

Having this, and again considering an asyn-
chronous updating process in the evolutionary dy-
namics, we may compute the required transition
probabilities. For SL, we may retake equation 21,
but substitute [�] by [�)], and for CT, attending
to its static updating process, we may have:

)
[�)]
∓ (i) =

8
[�)]
�\�
/

{(
1 + 4�

[�)]( 5 [�)]
�\� (i)− 5

[�)]
�\� (i))

−1
)}

(27)

From the definition above we may already ob-
serve the CT dynamic is not explicitly dependent
on the homophily. Let us keep this in mind for the
remaining analysis.

Similarly as before, from these transition proba-
bilities, we may generally define the 2-dimensional
heterogeneous gradient of selection for social learn-
ing and counterfactual thinking again by replacing
[�] by [�)] on equation 23.

In addition to the previously defined group
achievement, it will also be important to com-
pute the ���, however, having different sub-
populations, one may compute it specifically for
each sub-population, which can be done for any
learning rule ! ∈ ℒ as follows:

���! =
8
[!]
�

/[!]
· B̄ (28)

Attending to previous studies, as in [22], when
having homogeneous populations, one would ex-
pect that a small prevalence of individuals resort-
ing to CT strongly favours cooperation. In this
sense, and before proceeding with our investiga-
tion on the effects of homophily in the evolution-
ary dynamics, it would be interesting to evaluate
the overall cooperative performance of the dynam-
ics of populations when varying the different sub-
populations sizes. To do so, for a population with
fixed size / = /[(!] + /[�)], we vary the sub-
populations size proportion (/[(!]//[�)]) and for
each value we may compute all the previously de-
scribed cooperation evaluation tools. An example
of this study, for the CRD, is shown on Figure 4.

For the lower risk, notice that all quantities, with
exception to the ����) , progressively increase to-
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Figure 4: �� , ���, ���(! and ����) versus the proportion be-
tween the sizes of the different sub-populations. For all the cases
we have / = 100, � = 1

/ , ℎ = 0.9 and �[(!] = �[�)] = 5, hav-
ing ℒ = {(!, �)} for the CRD with (#, ", 1[(!] , 1[�)] , 2, A) =
(10, 5, 1, 1, 0.01, A), where A = {0.2, 1.0}. We show that, while
responsible for fostering the population dynamics towards high
cooperative standards, �) does not concerned about improving
its own cooperation performance.

wards theirmaximumvalue aswe increase the pro-
portion until reaching /[(!]//[�)] = 90/10. Sur-
prisingly, it is exactly at this point where we find
the minimum value for the ����) , which reveals
a very exciting result: counterfactual reasoning,
while responsible for fostering the population dy-
namics towards muchmore cooperative standards,
does not concerned about improving the cooper-
ation standards of the ones of its kind. Further-
more, these results go along with the previously
obtained insights for homogeneous populations,
where we saw that after increasing the prevalence
of CT agents, after reaching a critical point, when
�� is maximum, progressively leads to a decrease
of the group achievement.
This previous insight may also be inferred from

the analysis on on the effects of homophily in the
population dynamics. Contrary to the homoge-
neous case, we will not focus on balancing the dif-
ferent learning rules through their respective inten-
sities, as we intend to see how they react in their
true form. An example of this investigation, specif-
ically for the CRD, is presented in Figure 5.
The results suggest that increasing the ho-

mophily does not significantly affects the overall
population dynamics. Attending to the definitions
for the transition probabilities forCT, this result go
as expected, not only because counterfactual think-
ing has amuch stronger dynamics, when compared

to SL, but also it is independent on the homophily.
As a consequence, the only changes on∇(i)with in-
creasing homophily will come from the differences
on the G-component, relative to �[(!].
Even though the overall dynamics in terms of the

gradient of selection does not significantly change,
the system internal equilibria does change with the
homophily, and, with that, the stationary distribu-
tion. Specifically, increasing the levels of hetero-
geneity progressively pushes the stationary distri-
bution, along with the stable fix point, towards the
SL edge of 8[(!]

�
≈ /[(!]. This means that, even

though we do not have any improve on the cooper-
ative dynamics ofCT, the presence ofCT’s, in a full
homophilic scenario, nudges specifically the entire
sub-population of SL towards extremely high co-
operative standards, matching the previous results
from Figure 4.

5. Conclusions

The conformity’s dynamics, alike we saw for ho-
mogeneous populations, is very specific and easily
identifiable, generally not depending on the social
game involved. In its pure form, it is character-
ized by the coordination dynamic, with two stable
equilibria, for each the monomorphic states, and
one unstable internal fix point. When moving to
heterogeneous populations, however, homophily
shows itself as able to corrupt the overall expected
conformity dynamics, being able to either promote
a �-dominance or a �-dominance dynamics, de-
pending on the social game involved. Moreover, it
is to be noted that, to reach such dynamics, it will
be necessary a fair amount of conformity-driven
agents to significantly modify the social learning
dynamics, as the conformity gradient is dimension-
ally equivalent to the social learning gradient.

Counterfactual thinking, in turn, shows to be
very versatile, as it may either promote a co-
existence or a coordination dynamics, depending
on thevalues of its intensity. Moreover,CT is highly
dependent on the game’s configuration, although
generally acting in favor of maximizing coopera-
tion. In fact, and contrary to conformity, a small
prevalence of CT-driven individuals is enough
to foster highly cooperative standards, although
only until a certain critical point, where the group
achievement is maximum, and from which adding
more CT agents becomes progressively more dis-
advantageous for cooperative action.

When introducing heterogeneity in the popu-
lation, and to complement the previous insights,
we may specify that CT individuals, while re-
sponsible for fostering the population dynamics
towards much more cooperative standards, does
not concerned about improving the co-operation
standards of the ones of its kind. Moreover, in con-
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Figure 5: Gradient of selection of a NSG, with (#, ", 1[(!] , 1[�)] , 2) = (10, 5, 1, 1, 0.1), having ℬ = {(!, �)}, for a heterogeneous
population sized / = 100, with /[(!] = /[�)] = 50, � = 1

/ , �
[(!] = �[�)] = 1.0. We show that an increase on the heterogeneity

levels leads to an cooperative enhancement among social learners, while among counterfactual thinkers this is not necessarily true.

trary to conformity’s framework, higher heteroge-
neous levels generally promote higher cooperative
outcomes, or, in the other hand, well-mixed popu-
lations lead to worst performance in terms of coop-
eration maximization.
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