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Abstract—Recent discoveries made by genome-wide association
studies (GWAS) have been crucial to understanding the associa-
tion between genes and diseases. Until today, thousands of SNPs
have been associated with diseases and contributed to a better
understating of disease genetics. Interactions between genes are
often referred to as Epistasis, and their detection consists of one of
the biggest statistical challenges in genetic epidemiology. Epistasis
detection has been revealed to be a complex phenomenon that can
not be solved by traditional statistical methods. In recent years,
due to their ability to non exhaustively extract information from
the data, the emerging field of deep learning has been applied
in genomic prediction. However, the black-box nature of deep
learning networks remains one of the biggest drawbacks of these
approaches. In this dissertation, a new framework to interpret the
information extracted from deep learning algorithms is presented
and tested under different epistatic scenarios. A relevance score
is assigned to each SNP using sensitivity analysis. From the
results on datasets with and without marginal effects, an accuracy
threshold from which networks can be interpreted is established.
For MLPs and CNNs with accuracy over 0.5482 and 0.5478,
their results can be trusted and interpreted. To conclude, the
findings are tested on a real Breast Cancer dataset and compared
with a recent study that performed an exhaustive analysis
on the same dataset. The results identify SNPs ”rs2010204”,
”rs1007590”, ”rs660049”, ”rs0504248” and ”rs500760”, which
belong to interactions of order two three and four, among the
Top 30% most relevant SNPs.

Index Terms—epistasis detection, genome-wide association
study, deep learning, model interpretability, sensitivity analysis,
higher-order interactions

I. INTRODUCTION

Genes are the basic unit of heredity and act as a guide to
synthesize proteins. A gene is a sequence of nucleotide pairs
that together code a protein, still, many genes do not code
any protein, often referred to as non-coding DNA. The total
number of genes in an organism is known as the genome. The
genome is coded into several long sequences of DNA named
Chromosomes. Locus, plural Loci, is the specific region of a
chromosome where a particular gene is encoded.

Genes can suffer small changes (mutations) in their se-
quence of nucleotides, leading to different versions of the
synthesised protein. These different variants of a gene are
known as alleles. Alleles influence the expressed phenotypes
and are the reason why every individual is unique. When
creating a new individual, each parent provides a copy of an
allele to their descendent. Therefore, for each locus, every
individual has two alleles provided by each parent.

At an inter-loci level, alleles interact with each other mean-
ing that the expression of an allele might be oppressed by
the other corresponding allele. This concept is referred to as
allele dominance, with the allele being expressed named as
dominant and the allele being oppressed named as recessive.
Considering a dominant allele A and a recessive allele a, each
gene there can have three possible genotypes: homozygous
major allele (AA, both parents provide a dominant allele),
heterozygous allele (Aa or aA, each parent provides a different
type of allele) and homozygous minor allele (aa, both parents
provide a recessive allele).

SNPs are the most common genetic variant in the human
genome. In [1], a study describing common human genetic
variants, identified over 88 million variants, out of which 84.7
million were classified as single nucleotide polymorphisms.

An SNP is a substitution of a single nucleotide in a certain
stretch of the DNA. For example, the nucleotide thymine can
be replaced by the nucleotide cytosine in a certain location of
the genome. Most of these genetic differences do not affect the
health or development of an individual, however, some SNPs
have proven to be an important genetic marker in predicting
the human response to certain drugs or the susceptibility of
developing a certain type of disease.

The identification of genetic markers which can be associ-
ated with a disease phenotype has become an important field
of research in genetic epidemiology. These studies are often
referred to as GWAS and have gained a lot of popularity in
recent years [2]. GWAS are case-control studies that identify
SNPs that influence a particular phenotype. Each SNP is
evaluated individually regarding their association with the
phenotype. However, complex diseases are often caused by
multiple interacting SNPs, each with a small effect per SNP.
Thus, when analysing complex diseases, interactions between
SNPs must also be considered. These interactions between
SNPs are denoted as epistasis and detecting them has become
a significant area of research in human genetics [3].

When considering epistatic interactions the concept such as
marginal effects needs to be clarified. An SNP is said to have
marginal effects if it directly interacts with the phenotype.
Hence, SNP interactions displaying marginal effects (ME) are
interactions whose SNPs directly interact with the phenotype.
However, there are some cases where each individual SNP has
no effect on the phenotype but their combination has a strong
effect. These combinations are SNP interactions displaying no
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marginal effects (NME).
A wide variety of methods, from traditional statistical

methods to more complex machine learning and artificial
intelligence methods, have been proposed to detect gene-gene
interactions. The epistasis detection problem has revealed to
be a complex problem with a heavy computational burden
associated that current computers cannot handle efficiently [3].

II. BACKGROUND: EPISTASIS

To understand how statistical methods can be applied for
epistasis detection, it is essential to clarify how the biological
concepts of epistasis are mapped into computers.

Mathematically, SNP sequences are represented as two
numerical matrices (Figure 1): one representing the SNP data
and the other the labelling data [4]. Individuals are represented
as samples. For the SNP data, a row represents the genotypes
of a sample and each column an SNP. Genotypes are coded
as 0, 1, or 2, corresponding to homozygous major allele,
heterozygous allele or homozygous minor allele, respectively.
The label matrix is a column listing the binary phenotypes
of each sample, where samples having the phenotype are
classified as 1 (cases), and samples not having that phenotype
are classified as 0 (controls).

Fig. 1. Mathematical matrices used to represent genomic data.

Also, it is necessary to understand the concepts of Minor
Allele Frequency (MAF) and heritability (h2). MAF represents
the frequency at which the recessive allele occurs in a popu-
lation. Heritability is the proportion of observable differences
between individuals caused by genetic differences. It quantifies
how much the variation of a trait can be assigned to genetic
factors [5]. According to [6], heritability can be obtained by:

h2 =

∑
i(P (D|gi)− P (D))2P (gi)

P (D)(1− p(D)))
(1)

P (D) =
∑
i

P (D|gi)P (gi) (2)

where P (D|gi) is the probability of expressing the phe-
notype having the genotype gi, P (gi) is the probability of
having genotype gi and P (D) is the probability of expressing
a phenotype in a population, also called disease prevalence
(equation 2).

When creating datasets, generators like GAMETES [5] and
Toxo [6] use the heritability and MAF parameters to express
epistatic relations between genes.

In response to the challenge of finding gene interactions
related to a phenotype, exhaustive search methods started to
emerge. These methods analyze all possible combinations of

SNPs to determine the most accurate solution, thus avoiding
the final result being a sub-optimal solution. Despite being
able to detect epistasis, these approaches are only efficient
in handling two, at maximum three order SNP interactions.
Since each SNP can have three genotype configurations (0, 1
or 2), the number of possible genotype combinations I on an
interaction of order k is given by I = 3k. Thus, increasing
the order of the interaction k causes the number of genotype
combinations I to grow exponentially, making exhaustive
search algorithms to be not computationally feasible.

To make higher-order epistasis detection computationally
possible, other non-exhaustive approaches using Machine
Learning (ML) and Artificial Intelligence (AI) methods were
developed. These methods are more advanced than traditional
statistical methods and can detect SNP interactions that are
related to the phenotype. There is a wide variety of methods
and only some of them were mentioned in this Thesis. Random
Forest (RF), Support Vector Machines (SVM) and Ant Colony
Optimization (ACO) were considered.

RF methods are promising algorithms able to capture vari-
able importance and rank SNPs according to their relevance
in predicting the phenotype. Additionally, SVM approaches
proved to be able to handle high dimensional data and did
not overfit. However, the ability to only detect pairwise
interactions and in the presence of marginal effects makes
the application of these approaches limited. ACO methods
are search algorithms good for exploring and exploiting high
dimensional search spaces. Their simplicity and efficiency in
handling high dimensional data made them popular in recent
years. Still, the absence of a good activation function to
classify SNPs as interacting or not remains one of the main
drawbacks of these approaches.

Several other approaches using and adapting ML and AI
approached have been released. Additionally, several review
papers discussing in more detail the different approaches,
as well as, their advantages and disadvantages, have been
published [3], [4], [7]–[12].

A. Deep Learning (DL)

From the non-exhaustive methods, approaches using DL
networks for epistasis detection started to appear. These mod-
els can learn relevant internal features from high dimensional
and complex datasets and have improved the state-of-the-
art methods in areas related to speech recognition, image
recognition, and genomics [13].

1) Multilayer Perceptron (MLP): MLP also called fully
connected feed-forward networks, are one of the most popular
methods in deep learning. Uppo et al. [14]–[16], trained a
deep feedforward network to identify SNP interactions in
high-dimensional data. This method exhaustively analyses
higher-order interactions (from one-locus to ten-locus SNP
interactions) on a sporadic breast cancer dataset [17]. Besides,
a logistic regression filter is initially used to select a set of
candidate SNPs. Results revealed the top 20 highly ranked
interacting SNPs. Moreover, in this study, the accuracy of
deep learning is compared with previously developed machine
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learning approaches (RF, SVM, NN) and revealed better accu-
racy results. Still, the authors conclude that the performance
of MLP models needs to be tested in the presence of noisy
data.

Montaez et al. [18] used unsupervised learning algorithms
to preselect a set of possible interacting SNPs on an obesity
dataset. Further, an MLP is trained with the selected SNPs to
evaluate if the selection was correctly made.

Additionally, Bellot et al. [19] preselected a set of possible
interacting SNPs based on single-marker regression analysis
and trained a set of different MLP architectures. The study
compared the predictive performance of MLPs with CNNs
and Bayesian linear regressors, concluding that Deep Learning
networks have great potential when dealing with genomic
prediction. Still, further investigation must be performed for
DL to overcome current linear models.

2) Convolutional neural networks (CNNs): CNNs are also
one of the most commonly used architectures from the state-
of-the-art papers. CNN networks are a variant of MLPs
proposed to solve complex problems such as text, image and
speech recognition [13] and had been recently applied in
epistasis detection.

Bellot et al. [19] preselected a set of possible interacting
SNPs based on single-marker regression analysis and trained
a set of different CNN architectures. The study compared the
predictive performance of CNNs with MLPs and Bayesian
linear regressors. Besides concluding that DL Algorithms
show great potential in genomic prediction, the potential of
CNN architectures with small 1D kernels (width of 2 or 3)
is highlighted, declaring that these should be investigated in
future works.

Uppo et al. [20], performed a similar analysis to [14]–
[16] but instead of using an MLP, used a CNN. The results
concluded that CNNs show high potential however further
investigation must be performed.

Additionally, Salesi et al. [21] applied a selection of feature
filtering methods to identify the most important SNPs. Once
the most important features have been selected, a CNN is
trained and tuned to make accurate predictions on the phe-
notype. The accuracy of the network is used as a performance
measure for the filtering method. The study concludes that
applying feature selection methods improves the performance
of the DL models..

B. Deep Learning and Epistasis Detection

Deep Learning methods have proven to be valuable ap-
proaches due to their ability to extract information from
the dataset and make accurate predictions on the phenotype.
Despite the great potential of these methods, the lack of inter-
pretability remains one of the major drawbacks of these ap-
proaches. A study on the state-of-the-art approaches applying
DL models [14]–[16], [18]–[21] revealed that these methods
are still treated as black-box predictive models. Accuracy is
used to evaluate if epistatic interactions are being detected
but the actual information extracted by the model is never
interpreted.

To overcome the black-box nature of DL networks, model
interpretation algorithms can be applied. Despite showing
great potential in image recognition and other DL tasks [22],
no evidence was found that these methods had been applied in
epistasis detection. Model interpretation algorithms can assign
a relevance score to each input based on their impact when
making predictions on output, meaning that a relevance score
could be assigned to each input SNP based on their impact
when making predictions on the phenotype. If the network is
correctly trained, the interacting SNPs will have the highest
relevance and can be selected for further analysis. Hence, there
is a gap in the literature regarding network interpretability in
epistasis detection that must be filled since these algorithms
consist of promising approaches and have demonstrated their
value in other DL areas [23].

III. METHODOLOGY: INTERPRETABILITY OF DEEP
LEARNING MODELS

A methodology for interpreting DL models and detect the
interacting SNPs is presented. Sensitivity analysis is intro-
duced as a method for interpreting predictions and ranking
SNPs according to their relevance when making predictions
for a single sample. Further, this analysis is extended from in-
dividual samples to the entire dataset, to ensure SNP relevance
is measured across all samples. If the networks are correctly
trained, the interacting SNPs will have the highest relevance
among all the input SNPs

A. Explaining Predictions: Sensitivity Analysis

Explaining DNN decisions represents an important step for
interpreting DL algorithms. It allows asking the model, for a
given sample, why the network classified it as belonging to a
certain class.

When explaining predictions, a common approach is to
consider a sample as a collection of features and assign a
score to each. This score represents how relevant this feature
is when the network is making predictions [22]. Relevance
values are further represented as heatmaps, which allows visual
identification of the most relevant features.

Relevance scores are calculated using sensitivity analysis.
Sensitivity analysis is based on the model locally evaluated
gradient, which is a measure of variation. Sensitivity can be
defined as

Ri(x) =

(
∂f(x)

∂xi

)2

(3)

where x represents a sample, f(x) is a function describing
the network, xi the feature i of sample x and Ri the relevance
value of feature i. Thus, if x is the input layer, the relevance
of each input feature can be determined by calculating the
gradients of the output with respect to each input feature xi.

In the context of epistasis detection, samples are patients
and features the SNP values with the corresponding genotype
values. This type of sensitivity analysis allows asking the
question ”What were the input SNPs which caused this patient
genotype to be classified as a case?” or in more deep learning
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language, ”What were the input features which caused this
sample to be classified as positive?”. The pseudo-code of the
algorithm used to perform sensitivity analysis in individual
samples is presented in Algorithm 1. The output consists of a
vector with each SNP and the corresponding relevance value.

Algorithm 1: Sensitivity analysis for one sample
input : A trained network model M and an input sample x with N

SNPs
Casts x to a tensor of type float32
Initiate tf.GradientTape()
Make a prediction M(x)
Use GradientTape() to get the gradients of the output with respect to

the input
Calculate sensitivity
output: Vector of size N with relevance values for each SNP

B. Epistasis Detection Algorithm

The main goal of epistasis detection consists in finding the
interacting SNPs in a population, thus sensitivity analysis must
be performed in the entire population and not in a single
sample.

When evaluating an epistasis detection dataset, the same
features are considered for each sample, meaning that for
each patient the same SNPs are considered. Therefore, the
sensitivity analysis between different samples calculates the
relevance values for the same input SNPs but different patients.
This is an advantage when compared to other deep learning
tasks such as image recognition. In image recognition, each
sample is a different image with different input features
(pixels). The evaluation of the network predictions must be
performed individually for each sample [22].

Sensitivity analysis can be performed across different sam-
ples and the results added. This method allows calculating SNP
relevance across the entire dataset and determines which SNPs
are interacting and causing the expression of a phenotype in a
population. According to the previous definition and Equation
3, SNP relevance can be defined as:

Ri(x) =

S∑
j=0

(
∂f(x)

∂xij

)2

(4)

where S represents the set of samples where SNP relevance
is measured.

The next step consists of defining the set of samples to per-
form sensitivity analysis. To understand how these samples are
selected it is important to know the concept of true positives
(TPs). TPs are samples having the disease (cases) which the
model was able to correctly predict as cases in the testing
stage. These samples are selected for sensitivity analysis since
are the ones considered to have relevant information worth
interpreting.

The cross-validation algorithm is used when training the
network. This technique ensures that the test set used to eval-
uate the network performance covers all the dataset samples.
Thus, in each iteration of the cross-validation algorithm, the

relevance of the TP samples is calculated. Therefore, it is
possible to obtain the interacting SNPs using:

Ri(x) =

C∑
k=0

S∑
j=0

(
∂f(x)

∂xji

)2

(5)

where C represents all the interactions of the cross-
validation algorithm. Once sensitivity analysis is performed
for the entire population, SNPs are sorted in increasing order
according to their relevance. The SNPs with the highest
relevance will have the highest index. The objective of the
method consists of having the interacting SNPs with the
highest index on the sorted relevance vector. The pseudo-code
to detect epistasis in a population is presented in Algorithm 2.

Algorithm 2: Epistasis detection using sensitivity anal-
ysis

input : An epistatic dataset with N SNPs
Vectors Accuracy, F1 score, Precison, Recall, AUC initialized
Vector R of size N to store relevance values initialized
for train data, test data in Cross Validation do

Create DL Model
Train model on train data
Evaluate performance measures on test data
Append Accuracy, F1 score, Precision, Recall and AUC to the

corresponding vectors
r = Calculate Sensitivity Analysis for test data
Sums R = R+ r

end
Calculate mean of Accuracy, F1 score, Precison, Recall,
AUC.

R final = Order indexes (SNPs) increasingly R.
output: R final, a vector of size N with the sorted indexes of R.

C. Interpretability Metric
A new performance measure is defined to classify networks

in terms of interpretability. When evaluating the interpretabil-
ity of DL on simulated datasets, the interacting SNPs are
known, allowing the definition of interpretability (I) as:

I =
min∀k∈K(pk)

N
(6)

where K represents the set of interacting SNPs, pk the
position of the interacting SNPs in the sorted relevance vector
and N the number of input SNPs.

Since the main goal of the proposed methodology consists
of finding all the interacting SNPs, only the minimum position
across all interacting SNPs is considered. If an interaction of
order k is considered, maximum interpretability is reached
if the top k SNPs with the highest relevance, correspond to
the interacting SNPs. Thus, the higher the position of the
interacting SNPs in the sorted relevance vector the higher the
interpretability. This way, the higher the minimum position
across all interacting SNPs, the higher the interpretability
value will be. Moreover, finding interacting SNPs in the
presence of more input SNPs is harder, since there is a larger
amount of noise. Thus, dividing by the number of input SNPs
considers this factor and penalizes bigger errors with less
amount of input SNPs.
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IV. EXPERIMENTAL RESULTS

To validate the previously proposed methodology on net-
work interpretation and SNPs detection, MLP and CNN
networks were evaluated under a wide variety of epistasis
scenarios.

A. Datasets and Initial Setup

For generating the datasets, the GAMETES [5] generator
and the Toxo [6] library were used. Two separate types
of datasets were generated, ones displaying marginal effects
(ME) and others with the absence of marginal effects (NME).
For NME datasets, pairwise and higher-order datasets were
generated, both using the additive, multiplicative, xor and
threshold. The number of samples was set to 4000, with 2000
cases and 2000 controls, and the number of features in the
datasets was set to 1000 SNPs. Also, the MAF of the non-
interacting SNPs was set to a fixed range of [0.05, 0.5].

The values used for MAF were [0.05, 0.1, 0.2, 0.3, 0.4],
similar to the ones used in [14]–[16], [24] but with more de-
tailed intervals. For each MAF value, datasets with heritability
of [0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4] were generated. This
way, the impact of MAF and heritability on interpretability
could be evaluated.

When training neural networks a set of parameters must
be defined before the training starts. In all experiments, the
number of epochs was set to 1000, with a batch size of 32
samples. For early stopping the patience was set to 50 epochs,
meaning that if the validation accuracy does not improve in
the following 50 samples, the training stops.

All the experiments were conducted on the same system.
The CPU was an i9-10980XE, with 128 GB of RAM and
the GPU was an Nvidia TITAN RTX. All the networks were
implemented using python 3.7.3 and Tensorflow 2.4.0. The
training was performed on the GPU, using CUDA version
11.0.

B. Multilayer Perceptron (MLP)

1) Initial Search Space: Hyperparameter optimization is
an important step in DL. The grid search method was used
to exhaustively search for all possible combinations in a
predefined search space. Since grid search is an exhaustive
method, it was necessary to define a good search space with
an efficient range of parameters. To ensure that a correct
range of parameters was selected, only the most relevant
state-of-the-art architectures were considered. Thus, only the
architectures from studies [14]–[16], [19] were considered.
The initial search space is presented in Table I.

2) Tests on NME Datasets: When dealing with non-
exhaustive methods for SNP detection, it is more difficult to
detect the interacting genes on an NME than on a ME dataset
[5]. Thus, a detailed evaluation of the impact each hyperpa-
rameter has on the model interpretability was performed on
NME datasets. This type of analysis allowed classifying model
architectures in terms of interpretability performance while
also reducing the initial search space. The first hyperparameter
to be analysed was the number of inputs. Increasing the

TABLE I
SEARCH SPACE TO EVALUATE MLP INTERPRETABILITY.

Architeture Hyperparater Range
Inputs [50,100,500,1000]

No Layers [1,2,3,5]
No Neurons [32,64]

MLP Activation Function [Elu, Tanh, Softplus]
Dropout Ratio 0.03
Learning Rate 1× 10−3

number of SNPs means that the number of noisy SNPs in the
input increased, which made it more difficult for the networks
to make accurate predictions.

Fig. 2. MLP relation between interpretability and other performance measures
on NME datasets with 50 input SNPs.

It was crucial to understand the relationship between other
performance measures and interpretability since the latter
cannot be calculated if the interacting SNPs are unknown.
From the graph in Figure 2 correspondent to 50 input SNPs,
a threshold relation between interpretability and some per-
formance measures like accuracy, precision and AUC was
observed.The same relation could be observed in models with
100 input SNPs. Networks having performance values above
these defined thresholds had always maximum interpretability.
The definition of these thresholds was crucial to understand if
models could be trusted or not. When the number of inputs
was increased to 500 and 1000 input SNPs, no threshold
relation was observed between any performance measure and
interpretability, meaning that no trustworthy networks were
trained.

The threshold value from which maximum interpretability
for every network was reached is presented in Table II. From
the total networks tested (180), the percentage of networks
whose performance values were above the defined threshold
were also presented. From Table II it was concluded that
accuracy and AUC had the same relation with interpretability
since the percentage of networks with performance values
above the presented thresholds was, in both accuracy and
AUC, 43% for 50 inputs and 29% with 100 inputs. Precision
revealed to have a worse relationship with interpretability since
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the number of trustworthy networks is smaller (31% for 50
inputs and 23% with 100 inputs). From Table II the drop
in performance associated with the increase of input SNPs
was also confirmed since the number of trustworthy networks
decreased across all performance measures.

TABLE II
MLP THRESHOLD VALUES FOR EACH PERFORMANCE MEASURE TO

ACHIEVE MAXIMUM INTERPRETABILITY.

No Inputs Performance Measure Threshold Value Max. Interpretability (%)
50 Accuracy 0.5425 43
50 Precision 0.5760 31
50 AUC 0.5386 43
100 Accuracy 0.5355 29
100 Precision 0.5570 23
100 AUC 0.5356 29

Additionally, an analysis of the activation functions and the
number of layers hyperparameters was performed. Accuracy
and interpretability were used to evaluate the different archi-
tectures since these have proven to be related and the results
from networks having 500 and 1000 input SNPs were excluded
since the models did not fit the training data.

Density curves representing the distribution of networks
hyperparameters according to their interpretability value were
plotted. It was concluded that the use of the softplus acti-
vation function and a reduced number of hidden layers was
associated with networks with lower interpretability values.
Thus, softplus and single-layer networks were removed from
the search space. The pruned search space to evaluate the
remaining datasets is represented in Table III.

TABLE III
SEARCH SPACE TO EVALUATE MLP INTERPRETABILITY.

Architeture Hyperparater Range
Inputs [50,100,500,1000]

No Layers [2,3,5]
No Neurons [32,64]

MLP Activation Function [Elu, Tanh]
Dropout Ratio 0.03
Learning Rate 1× 10−3

3) Tests on ME datasets: When compared to the NME
datasets, ME datasets tend to be easier for non-exhaustive
algorithms to detect interactions [5]. In these datasets, in-
dividual SNPs had information about the phenotypes, thus
actual interactions did not need to be detected. Since the
difficulty of detecting the interacting SNPs was lower on NME
datasets, it was not necessary to perform a detailed analysis
on hyperparameter performance as in ME datasets. Network
architectures working on NME datasets would also work on
ME datasets, due to their reduced complexity.

Tests on ME datasets were performed using the previously
pruned search space from Table III. As expected, MLPs
revealed less difficulty in detecting the interacting SNPs in
the presence of marginal effects. The number of inputs did not
have an impact on network performance and these were able to

detect the interacting SNPs on four different epistasis models.
Despite the drop in performance on higher-order datasets, the
networks were still able to detect the interacting SNPs on
different models and input values.

4) MAF and Heritability: A detailed analysis of MLP
interpretability under different MAFs and heritability (h2)
values was performed.

From the box plot summarizing MLP performance in Figure
3, it was observed that an increase in heritability caused an
improvement in network performance. All networks achieved
maximum interpretability with h2 = 0.3 and h2 = 0.4, which
was expected since by increasing heritability the amount of
genetic information in the dataset increased and networks had
less difficulty extracting it. On the other hand, for datasets
having lower heritability values (h2 = 0.01 and h2 = 0.05
), the networks did not fit the dataset at any MAF and most
networks had low interpretability values. No conclusions could
be derived from MAF.

Fig. 3. MLP boxplot analysis on the impact of MAF and heritability on
interpretablity.

C. Convolutional Neural Networks (CNN)

1) Initial Search Space: From the state-of-the-art works,
the most significant ones were selected and the used network
architectures considered. Grid search is applied to exhaustively
search for the best network architecture. The considered works
to define the initial search space were [19], [21].

When defining a search space for CNN networks, the
number of hyperparameters to be considered was higher when
compared to MLP architectures. If all hyperparameters were
considered, a total number of 1152 architectures should have
been tested for each dataset. This would make grid search
very computationally demanding, thus, a different strategy
was defined. Initially, the number of input SNPs was fixed
to 50 input SNPs, reducing the number of tested architectures
per dataset to 288. The impact of each hyperparameter was
analysed and the search space was reduced.The initial search
space is presented in Table IV.

2) Tets on NME datasets: The strategy used to evaluate
MLP interpretability was also applied in CNN networks,
meaning that NME datasets were used to analyse hyperpa-
rameter performance in terms of interpretability and to reduce
the initial search space.

To understand the relation between interpretability and the
other performance measures, scatter plots in Figure 4 are
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TABLE IV
SEARCH SPACE TO EVALUATE CNN INTERPRETABILITY.

Architecture Hyperparameter Range
Inputs [50]

No Convolutional Layers [1,2]
No Filters [16,32,64]

Kernel Size [1,2,3]
CNN No Classifier Layers [32,64]

No Classifier Neurons [2,3]
Activation Function [Linear, Elu, Softplus, Relu]

Dropout Ratio 0.01
Learning Rate 1× 10−3

presented. As observed with the MLP architectures, Accuracy
and AUC had a clear relation with interpretability, meaning
that from a certain accuracy and AUC threshold, all networks
show high interpretability values. For accuracy and AUC, the
observed threshold values were 0.5425 and 0.5372 respectively
with 27% of trustworthy networks for both performance
measures. Precision, sensitivity and F1 score performance
measures did not show any relation with interpretability. There
was no precision, sensitivity or F1 score threshold from above
which networks displayed maximum interpretability values.

Fig. 4. CNN relation between interpretability and other performance measures
on NME datasets with 50 input SNPs.

Further, an analysis of the activation function, number
of classifier layers, number of convolutions and kernel size
was performed. Accuracy and interpretability were used to
evaluate the different architectures since these have proven
to be related. Density curves were plotted to evaluate the
architectures that were most frequently associated with lower
interpretability values.

CNNs having Softplus and Linear activation functions and
higher kernel sizes of three revealed to be more frequent in
networks having low interpretability values. The number of
classification layers proved not to have an impact on model
interpretability, thus it was fixed to size three. Based on
the previous conclusions, the Softplus and Linear activation
functions were removed. Additionally, the kernel size of three
was also removed. The new search space is presented in Table

V. Regarding the better performance of smaller kernel sizes,
in [19] it was concluded that smaller kernel sizes have better
performance in epistasis detection.

TABLE V
SEARCH SPACE TO EVALUATE CNN INTERPRETABILITY.

Architecture Hyperparameter Range
Inputs [50,100,500,1000]

No Convolutional Layers [1,2]
No Filters [16,32,64]

Kernel Size [1,2]
CNN No Classifier Neurons [32,64]

No Classifier Layers [3]
Activation Function [Elu, Relu]

Dropout Ratio 0.01
Learning Rate 1× 10−3

Once the search space was reduced, the remaining input
values of 100, 500 and 1000 input SNPs were tested. Increas-
ing the number of inputs raises the difficulty of the tested
dataset since the more noisy SNPs are added. The thresh-
old values from which maximum interpretability for every
network was reached are presented in Table VI. Also, from
the total networks tested (480), the percentage of networks
whose performance values were above the defined threshold
(trustworthy) are also presented. Similar to MLP architectures,
increasing the number of SNPs caused architectures to have
a significant drop in performance. The number of trustworthy
networks reduced from 47% to 11% and further to 6% with
the increase of the number of inputs from 100 to 500 and 1000
SNPs.

Additionally, in CNN networks, the threshold relation be-
tween accuracy and interpretability was visible across 500 and
1000 input SNPs. Despite the reduced number of networks
able to have maximum interpretability, this might suggest that
CNNs are better at handling noisy datasets when compared to
MLPs.

TABLE VI
CNN THRESHOLD VALUES FOR EACH PERFORMANCE MEASURE TO

ACHIEVE MAXIMUM INTERPRETABILITY.

No Inputs Performance Measure Threshold Value Max. Interpretability (%)
100 Accuracy 0.536 47
100 AUC 0.5337 47
500 Accuracy 0.5357 12
500 AUC 0.5317 13
1000 Accuracy 0.5425 6
1000 AUC 0.5366 6

3) Tests on ME Datasets: Tests on ME datasets were per-
formed using the previously pruned search space from Table
VI. As expected and observed in MLP architectures, CNNs
had less difficulty detecting interacting SNPs in the presence
of marginal effects. Networks were able to achieve high
interpretability values, on both pairwise and high-order inter-
actions, under different models and number of input SNPs.
Despite the drop in performance on higher-order datasets, the
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networks were still able to detect the interacting SNPs on
different models and input values.

4) MAF and Heritability: First, an analysis of the impact
heritability (h2) was performed. Datasets having higher heri-
tabilities have more information, thus it is easier for networks
to fit the datasets.

Similar to the MLP networks, for datasets having low
heritability values (h2 = 0.01 and h2 = 0.05), networks could
not be trusted. No threshold relation between accuracy and
interpretability was observed, meaning that no accuracy value
from above which all networks had maximum heritability
was found. With the increase of interpretability, network
performance started getting better. For h2 ≥ 0.1, in almost all
datasets the accuracy threshold was observed (for MAF = 0.2
and h2 = 0.1 is not), meaning that there was a minimum
accuracy from which networks could be trusted. Also, the plot
from Figure 5, confirmed the better performance of networks
for h2 ≥ 0.1.

Fig. 5. MLP boxplot analysis on the impact of MAF and heritability on
interpretablity.

D. Accuracy Threshold

In a real case scenario dataset, it is not possible to calcu-
late interpretability since the interacting SNPs are unknown.
Accuracy, F1 score, PrecisIon, Sensitivity and AUC are per-
formance measures that can be calculated on datasets whose
interacting SNPs are unknown. Hence, it was necessary to
establish a relation between these measures and interpretabil-
ity. This way, networks could be classified as trustworthy, or
not, and sensitivity analysis could be performed to detect the
interacting SNPs.

In the experimental analysis on MLP and CNN archi-
tectures, it was observed that interpretability was related to
accuracy. In most cases, a threshold relation could be estab-
lished between the two, meaning that there was an accuracy
value from above which networks had always maximum
interpretability. In that case, sensitivity analysis could be
performed and the SNPs identified as most relevant considered
as epistatic.

To detect the accuracy threshold value, for each MLP and
CNN networks, the pruned search spaces in Table III and Table
V were considered. The results on ME and NME datasets were
grouped and analysed.

In Figure 6 the results for the MLP architectures are
presented. It was observed that values with accuracies above

0.5478 had achieved maximum interpretability across all tested
scenarios. The results for the CNN architectures are presented
in Figure 7. The accuracy threshold for CNN networks was
0.54325. This means that any network with accuracy above
0.5482 achieved maximum or close to maximum interpretabil-
ity values.

This was an important step in epistasis detection since it
allowed the classification of networks as being trustworthy or
not based on a performance measure that can be calculated
on networks applied to a real genomic dataset. This way,
using the defined search space for MLP (Table III) and CNN
(V), if a network achieved an accuracy value over the defined
thresholds (for MLP, an accuracy of 0.5478 and for CNN, an
accuracy of 0.5482), networks could be interpreted and their
decisions trusted.

Fig. 6. MLP accuracy threshold from which interpretability values increase.

Fig. 7. CNN accuracy threshold from which interpretability values increase.

V. APPLICATION ON A REAL DATASET

In this section, MLPs and CNNs were applied in a real
Breast Cancer Dataset [25] to evaluate if trustworthy networks
were trained and if sensitivity analysis captured the interacting
SNPs.

The considered Breast Cancer dataset has a total of 10000
samples, with 5000 cases and 5000 controls, with each sample
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having 23 SNPs. The defined search spaces in Tables III and
Tables V for MLP and CNN architectures were trained to fit
the provided dataset. The networks whose accuracy was able
to pass the threshold defined in the previous Section IV-D were
interpreted and the most relevant SNPs analysed.

To validate the results, a previous study on the same Breast
Cancer dataset is considered [25]. In [26] an exhaustive search
algorithm was used to test all possible SNP combinations
and detect the interacting SNPs. Interactions of order two
(”rs2010204” ”rs1007590”), three (”rs2010204” ”rs1007590”
”rs660049”) and four (”rs2010204” ”rs0504248” ”rs660049”
”rs500760”) were found by the exhaustive search procedure.
Thus, these interactions were considered and compared with
the results obtained by MLP and CNN architectures.

First, the results were analysed on the MLP networks. No
networks were able to overcome the defined threshold of
0.5478 defined in the previous Section IV-D, meaning that
the trained networks could not be trusted.

Next CNN networks were considered. One network was
able to reach the threshold value of 0.5482, meaning that this
network could be trusted. In Figure 8 the plot displaying each
SNP and the correspondent relevance is presented. The SNPs
were sorted according to their relevance value. It was observed
that interactions of order two had been successfully detected
since SNPs ”rs2010204” and ”rs1007590” were considered
the most relevant. Additionally, when considering interactions
of order three which also include SNPs ”rs2010204” and
”rs1007590”, SNP ”rs660049” was considered the seventh
most relevant among all the input SNPs. Also, for interac-
tions of order four which include SNPs ”rs2010204” and
”rs660049”, SNP ”rs500760” was identified as the third most
relevant and SNP ”rs0504248” as the fifth most relevant.

The results are very encouraging since the trained models
were able to identify SNPs of different interaction orders as
being among the most relevant. The CNN networks were
able to correctly detect pairwise interactions as the two most
relevant SNPs. Also, the interacting SNPs from orders three
and four are all included in the top 7 most relevant SNPs.
These seven most relevant SNPs represent the Top 30% across
all the input SNPs. Thus, the method of sensitivity successfully
captured interacting SNPs as relevant SNPs which highlighting
the possibility of using this framework as a filtering method.

From the results, it was observed that if trained models
achieve accuracy values over the defined thresholds, these
could be interpreted. The test on a real Breast Cancer dataset
confirmed the high potential of network interpretation methods
to detected relevant SNPs or select them for further analysis.

VI. CONCLUSIONS

The main objective of this dissertation was to provide an
analysis of network interpretability in epistasis detection. From
the literature review in epistasis detection approaches, it was
observed that deep learning methods were still treated as
black-box predictive models, with accuracy being the only
performance measure to evaluate the presence of interactions
among the input SNPs. This way, the information extracted

Fig. 8. Relevance scores for each input SNP in Breast Cancer dataset. The
SNPs are ordered increasingly according to the relevance score obtained by
sensitivity analysis.

by the network during training was not interpreted and the
SNP interactions were not detected. Therefore, the field of
network interpretability was explored to better understand deep
learning models and their limitations regarding different epis-
tasis scenarios. To evaluate network interpretability and extract
information from network decisions, a new methodology was
defined. Sensitivity analysis was used to interpret network
decisions and assign each input SNP a relevance score. Once
the interacting SNPs were detected, networks were classified
using a new interpretability performance measure. The closest
the network was to identify the correct solution, the higher its
interpretability value was.

In real epistasis datasets, the interacting SNPs are unknown
and the interpretability performance measure cannot be cal-
culated. To allow the application of network interpretability
on real datasets an accuracy threshold from which CNNs and
MLPs could be trusted was detected. The results from ME and
NME datasets were analysed together to detect an accuracy
value from which networks achieve maximum interpretability.
The detected accuracy thresholds for both CNNs and MLPs
were 0.5478 and 0.5482 respectively. As a final step, MLP and
CNN architectures were trained to detect interacting SNPs on
a real Breast Cancer dataset. The method was able to identify
pairwise interactions since the two SNPs identified as most
relevant belonged to a pairwise interaction. For interactions of
orders three and four, the interacting SNPs were all on the top
seven of selected SNPs (Top 30%).

In this dissertation, the first steps on network interpretability
applied in epistasis detection were taken. Interpretability of
deep learning networks was tested under different scenarios
to evaluate its limitations. However, there is still some aspects
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of the developed framework that can be improved. Due to
the great number of networks to be tested (it is necessary
to define a search space with several networks), and the
number of datasets tested (several values for heritability and
MAF were evaluated), not all the desired tests were made.
A wider variety of datasets including more epistatic scenarios
could be included. Other epistasis models besides the Additive,
Multiplicative, Threshold and Xor can be considered. For
example, the use of the Color of Swine model, which is
also very used in the literature, could be considered [24]. In
this dissertation, the number of samples and the case-control
ratio is fixed. These datasets hyperparameters can have a great
impact on model performance and should be evaluated.

Additionally, an analysis of other model interpretation al-
gorithms can be performed and compared. In [22], [23], other
methods besides sensitivity analysis applied in other DL areas
are suggested. Evaluating the performance of these algorithms
could be the solution to extract the full potential of model
interpretation methods in epistasis detection.
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