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Abstract—With the manufacturing cost reduction and the
improvements in robustness, control, and autonomy, Drones are
now widely available for professional and personal use. With all
this technology various applications such as delivery, surveillance,
aerial inspections, and many more where UAVs can be employed,
navigation is one aspect in common in all of them and usually
requires specialized handling. However, automatic navigation for
drones is still an underdeveloped topic with many challenges.

To address this problem and help laypeople with their drone
tasks, this work focuses on an automatic navigation sub-problem,
the automatic trajectory planning. We created a high-level tool
to automatically plan low-altitude trajectories, from a start to an
end location, verifying several geographical and legal constraints,
called DroneOpenTool. This tool automates the geographical
information gathering from the flight location surroundings,
plans a near-optimal solution given start and goal locations, flying
restrictions, and resolution, and outputs a flyable trajectory to
be uploaded into a drone control system. To evaluate our tool,
we tested the performance of each part of our system, closely
compared both our planning approaches in various scenarios,
and related its outputs’ efficiency with terrestrial solutions.

Although we did not perform practical experiments, we believe
our tool’s outputs are strictly shaped to apply to real-world
drone missions and achieve the expected approximate safe and
optimized navigation outcomes. Base on the demonstrated results,
we can state that the taken approach is viable within the initial
expectations, yet far from a stable performance required by a
reliable drone mission control system — at least under the followed
design.

Index Terms—drone planning, open geographical data, usabil-
ity

I. INTRODUCTION

Throughout the years, drones registered a substantial re-
duction in manufacturing costs as well as an enhancement
of drone’s control systems, which ultimately expanded the
applicability of drones to numerous scenarios [1]. According
to recent market research [2]], there are more than 110 000
commercial drones registered with the US, more than double
compared to 2016. Drone delivery is one application that is
gathering great interest by organizations, such as Amazon [J3]],
Post DHL [4], and Google [5].

Activities where a drone is assigned to fly autonomously,
such as patrolling areas, terrain recognition, and delivery and
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transportation of goods, are good examples of tasks that
require careful route planning [6]]. Moreover, even a simple
scenario where the drone is not flying autonomously but loses
signal, most of the modern commercial drones have a “return
home” function. In this case, the drone goes from the point
where it lost connection to the took-off point, in a straight
line, without considering obstacle avoidance [7]], or other legal
requirements.

With some knowledge of the environment, route planning
could not only warrant an extra layer of safety, preventing
many aerial collisions with tall buildings when flying in an
urban area but also enhance the performance of a drone.
Thus, optimization aspects could improve trajectory selection
according to the remaining energy of the drone or desired
speed, for example, benefiting the overall range of activity of
the drone.

In this paper, we introduce a new high-level planning system
to make it easy to use drones in the real world setting. Our
system requires the user to select start, goal position, and a
set of constraints, and then it automatically plans a trajectory
that verifies those constraints. We are specially interested in
constraints that are geographical features such as: buildings,
lakes, or large differences in height. Such problems arise to
verify legal constraints, e.g. avoid airports, avoid zones with
high-density of people such as schools of open-air stadiums,
for safety, e.g. avoid lakes or forests, among other use cases.
To make an automatic system the user just provides the
type of geographical features to avoid and the system used
open-geographic data — in our case OpenStreetMaps [8]] —
to compute the path. Our system enables the use of drones
by a larger group of people to perform applications where
autonomous flight away from the line of sight is needed.
Applications such a medicine delivery, last mile deliveries,
and others, can be made more accessible for smaller industries.
We evaluate our system in several locations, including urban
and non-urban areas, with different geographical constraints —
buildings, lakes. We study the impact of different parameters
in the time complexity of the overall system, and on the quality
of each plan.

The remainder of the document is organized as follows:
Section II presents an overview of the existing literature on
drone navigation and path planning; Section III describes the



proposed strategy; Section IV presents a few examples and the
respective results; lastly, thoughts and conclusion are provided
in section V.

II. RELATED WORK

In the section, we present work related to drone path plan-
ning from a user point of view using geographical information.
We also briefly discuss legal requirements for drone trajectory.

QGroundControl [9]] is an open-source tool that offers a di-
verse range of utilities for full flight mission control for drones.
The ability to upload flight plans to be performed by a drone
enables software to accomplish drone autonomous flights.
Due to its applications with drone technologies, this tool has
allowed several recent developments and studies around the
drone’s subject. Despite being a general drone control tool,
it mostly requires user input to define the plans, as well as
obstacles. Despite being a general drone control tool, it mostly
requires user input to define the plans, as well as obstacles. The
system we propose to develop will similarly control drone’s
navigation through defined waypoints, however, it will aim to
determine all the path’s trajectory automatically between the
start and goal objective points.

VT Nguyen et al. [7] used real-world data to reconstruct
a virtual reality environment for a drone simulator, with
the purpose of training operators to pilot drones in realistic
scenarios. In the paper, they use OpenStreetMaps [8] to gather
buildings data such as latitude, longitude, and building height
to be able to model both the virtual map and the building’s
structure. Similarly, as we consider having buildings as one
of the principal types of restrictions, we will gather the
same open-access information, as well as other geographic
obstacles, to aid our planner in drawing the best and safest
path for a drone, not for a virtual built training environment
but the real-world.

The drone routing problem is typically addressed in surveil-
lance applications. Examples include single-vehicle routing
problem for covering an area with a set of target locations
described in [[10] and the multiple-vehicles system that can
self-organize and cooperate to ensure spatial and temporal
coverage of specific targets over time in [[11]. Although also
addressed in [12], the authors call it coverage routing problems
(CRP), sharing the same constraint of limited battery capacity,
and where the aim is to minimize the consumption of energy
of the drone. These works give a great notion of drones’
capabilities and limitations. However, do not address the
problem of providing an easy interface for people to program
point-to-point navigation with geographical constraint, but are
instead considering just the autonomy aspects.

Xia et al. in [13] demonstrated, through simulation, the
applicability of the A* algorithm in UAV flights. The paper
presents us with a modern warfare theme and aims to improve
the low altitude penetration effectiveness of UAVs used in
combat. As reported, the authors built a model of the terrain
complex surface, using a smoothing surface algorithm, and
apply the A* algorithm to plan and avoid threat factors of
flying above a detectable altitude in a martial context. The

achieved results are similar to the ones we expect to deliver
with the proposed path planner module. Alternatively, we
will use geographic data to infer the mission’s environment
in search of restrictive obstacles instead, not considering the
altitude or terrain elevation.

Furthermore, in [[14], the authors analyze how a drone can
navigate through high-density urban areas with the support
of several sensors extra GPS, due to degraded signal or
unavailable sensor data in such areas. The paper presents a
detailed explanation of how each data sensor can help in
this type of environment, providing useful knowledge for our
project.

Considering the legal aspects of autonomous drone flight,
different countries have different laws [ﬂ As an example
we consider Portugal. There are unrestricted zones where
drones are allowed to fly, below an height of 120 meters,
and with a teleoperation in the line-of-sight. Restricted areas
include operating close to Military, Diplomatic, and Security
Forces facilities, accident areas with in-course protection and
rescue operations, natural parks, and several more. Even
in the unrestricted areas there are several situations where
an authorization is needed. These include: Night flights; -
Flying above 120 meters of the surface; - Overflight people
concentrations; - Operation of remotely piloted aircraft system
with a maximum operational mass higher than 25 kg; - Fights
within a 1 km radius of heliports. We see that any company
wanting to provide a service based on autonomous drone flight
needs a system that is able to plan not just safe and efficient
paths but also paths that are legal.

III. SYSTEM DESCRIPTION

This section presents our system in full. We start by showing
how to gather the required geographical information, then we
show how to convert this information in a datastructure that
can be used in planning, we then introduce and online and an
offline version of our planning system.

A. Geographical Information

A practical system to use drones needs access to reliable
and easy to use geographical system allowing to plan safe,
efficient, and legal paths. Any Geographic Information System
(GIS) [15] can contain different types of data, from objects,
such as roads and infrastructures, to more abstract details, such
as population-related information (e.g., population-levels). At
a basic level, GIS act like a simple map. Nevertheless, in
each information layer, you can get various insights and data
visualization solutions for different purposes. Thus, a GIS
allows the exploration of sophisticated spatial questions than
we cannot answer with a traditional map [15[]. However, the
data present in a GIS is usually too dense for a single task or
application to digest, and hence, it’s necessary to filter out the
relevant features by selecting a group of conditions that suit
the problem at hand. Features in GIS layers can be queried
by selecting criteria that satisfy a particular condition. For

Ifor a comprehensive list refer to |ttps:/www.drone-made.com/drone-laws
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example, if you are trying to map all technology stores in a
particular city, you would perform a query with the following
keywords: building, technology, store, business.

OpenStreetMap (OSM) [8]] is a user-generated mapping
project that emerged from the need for an open-access sys-
tem where anybody could get free and reliable geographic
information. This GIS allows us to query large amounts of
data through a structured language, Overpass QL, that can be
easily composed in a friendly Python API, overpy.

In our case, we query for any restriction we want to avoid
during the drone’s navigation, for example, buildings, and
store all the geographic coordinates that compose the queried
objects. The following code shows how we request a list of
”building” through the API.

def collect_Buildings_data(squared_area):
api = overpy.Overpass ()
query = 777
[out:json][timeout:25];
(way[” building ”]( squared_area ); >;
relation[” building ”]( squared_area );

>>’.)’.

out body;

try: result = api.query(query);
except: print(”’Query._failed ...”);

return result;

From the previous example, the function returns a structured
collection of nodes, ways, and relations. Each of these data
structures represents a group of the previous one, meaning
nodes are the base data structure that represents a single coor-
dinate point, followed by ways, grouping a set of nodes, and
lastly, relations that represent groups of ways. In our example,
the buildings, as obstacles, are represented as follows:

<overpy .Way 1d=842430498 nodes=[5514836838
5514836839, 5514836832, 5514836833,
7859071891, 7859071892, 5514836838]>

Here we can observe the structure of this data, having an ID
as a reference and a list of the nodes that compose the Way.
The other data structures have similar compositions, making
it convenient to handle and search for the objects we need to
identify possible obstacles on the drone’s trajectories.

B. GIS Data Processing

Hereafter, we generate a set of possible geographical po-
sitions for a possible region relying on Pyproj [[16], an in-
terface to PROJ that transforms geospatial coordinates from
one coordinate reference system (CRS) to another, including
cartographic projections and geodetic transformations [[17].

Starting from the take-off point and ending on the goal
point, we fill an area with equidistant points between these
positions, as illustrated in Fig.[2} Then, we verify which points,
corresponding to geographical locations, are obstacles. This
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Fig. 1: Illustration of the PNPoly Algorithm functioning.

task is a complex process as the GIS does not directly provide
this information but a list of obstacles’ corners points.

The function we use is an adaptation of the PNPoly from W.
Randolph Franklin [18]], a method based on the Jordan Curve
Theorem [19]. This method runs a semi-infinite horizontal ray
out from the test point, counting how many edges it crosses.
At each crossing (starting in outside state), the ray switches
between inside and outside, as depicted in Fig. [I} Thus, we
can distinguish if any point is suitable for our trajectories, as
we can say if they are inside any given restricted area.

C. Graph Creation

We can now use the obstacle information obtained previ-
ously to create a graph describing the area of operation.
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Fig. 2: Pinpoints’ of a small resolution grid for obstacle
detection, with start point on #43 (green), goal point on #56
(purple), and the detected points in grey.

Using the collected data we build a graph to plan trajecto-
ries. In this procedure, we create a grid-graph with the same
dimensions as the rectangular collection of points, and we
transform all the point coordinates to the nodes. Hereafter,
the edges between neighbor nodes, corresponding to adjacent
points in the previously geographic grid, are set to the cor-
responding distance between them. We make sure diagonal
nodes are also considered neighbors. Additionally, if chosen
the offline search method, the edges’ weights of the restricted
nodes, e.g. obstacles, are updated to a high value.

D. Safety Margin

To be able to create a more secure path for the drone,
we introduced the concept of margin to the algorithm. Once
it finds a point that is an obstacle or restriction, it updates



the weight of the edges from the point’s neighbors to itself,
increasing the cost as the closer the spots surrounding the real
constraints are. Thus, making the algorithm choose a path that
respects a safety margin around the obstacles.

(b) Ilustration of the obstacle
and safety margin layer.

(a) Ilustration of the obstacle’s
information.

Fig. 3: Illustration of the coded information onto the Grid
Graph data structure.

E. Trajectory Planning

Assuming the data is rightfully structured, we can now
do our planning. We provide two different methods for the
planning stage. An offline approach, where we fully compute
the graph for a given area before planning, giving it the benefit
to be reused multiple times, and an online approach, where the
obstacles are only detected (and included in the graph) while
planning.

Our goal is not to develop a new planning algorithm but
to provide a complete and intuitive system to help people in
their drone flight plans. Therefore, for both alternatives, we
rely on the A* algorithm for planning. The well-known A* is
an efficient path planning algorithm that can run very fast if
provided with good heuristics.

1) Offline approach:

a) Graph creation: We take all the obstacle data, mark
the points within obstacles, and, after the translation to the
graph, we do a weight update to its edges from the regular
distance weight. We apply to the edges of the obstacle nodes
the value of 10 000 units. This obstacle weight is high enough
for the algorithm not to choose a path traversing these nodes.
Afterward, the following neighbor nodes edge’s are updated
as well, with a decreasing portion of this value from one half
for the closest neighbor, one third for the second, and so forth,
following the formula: obstacle weight/margin level.

b) Planning: As all the weights are already on the graph,
we do a one-pass execution of A* with a heuristic based on
the euclidean distance to the target.

2) Online approach:

a) Graph creation and adaptation: In this alternative,
the process is similar to the offline approach. After the
calculation of the set of pinpoints grid, we translate it to a grid
graph updating the adjacent nodes. In contrast to the previous
method, we do not use the obstacles information in the graph
creation. Instead, we let the planning algorithm to perform and
complete the necessary obstacles information.
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(b) Mlustrated planning algo-
rithm’s result.

(a) Highlighted restrictions on
the mission’s area.

Fig. 4: Offline Approach Example.

b) Planning: For this method, when the path planning
algorithm chooses a trajectory, we check if it crosses any
restrictions, for example, overflies buildings. When it happens,
we identify each point and apply the edges weight’s update
using the same function from offline method, thus, filtering
the found obstacles on the graph for further path planning
searches until it finds a non-obstructed path.

(a) Base-map of the Graph’s
location.

(b) Illustrated planning algo-
rithm’s navigable solution.

Fig. 5: Online Approach Example.

FE. Optimization Steps

After trajectory planning, the system treats the planner’s
output trajectory to remove excessive information and smooth
rough edges originated by the planning algorithm.

a) Trajectory Cleaning: The number of geographic
points in a trajectory is related to the problem’s resolution,
meaning that higher resolution problems generally result in
a more accurate path hence higher node count. Trajectory
cleaning then becomes valuable through eliminating excessive
information on path sections where, for example, the UAV is
supposed to fly in a straight line. The method takes the vector
orientation from the previous and the next node to evaluate
if the geographic point in question is co-linear. Thus, if the
geographic point belongs to a trajectory’s straight-line section,
it’s removed as an excess of information to optimize the overall
output’s simplicity.

b) Path Smoothing: The purpose of path smoothing is
to remove abrupt changes in the planned trajectory. As the
number of possible adjacent nodes is limited, the planning
algorithm (A*) decides to move to the next best position.
Therefore, it can make trajectories that contain several sharp
angles to move in one specific direction due to the displace-
ment of the adjacent cells.



G. Web Interface

With the vast usability objective in mind, as our system’s
complementation, we designed a simple interactive demonstra-
tion in the form of a web interface for the tool. Such an inter-
face allows for sampletesting trajectories with fast and visual
feedback to prove our system’s utility and deployability.We
deployed a web app that integrates the software with a pleasant
interface composed of: a visualmap, a parameterization panel,
and a details section. Users can choose the values for mission
parameters and set the type of restrictions to avoid, as shown
in Fig. [6 to tune the system in their best interest and needs.

DroneOpenTool

A tool to plan your drone mission

Start-Goal

Fig. 6: DroneOpenTool full-featured web app.

Although the online web app is just a demonstration of
our system capabilities, it aims to provide the essential user-
friendly features of an automatic trajectory planning system.
Hence, the interface draws the trajectory on the graphical map
and shows all its details for the users to quickly evaluate before
uploading it to a drone navigation control system.

IV. RESULTS

In this section, we present our results. We considered
buildings as the main obstacles, even if other obstacles could
be considered. Our choice was based partially on legal re-
quirements that do not allow drones to travel on top of
concentrations of people, so schools/offices are to be avoided.
Also, drone use in crowded places has the highest risks so, we
concentrate there. We evaluate the availability of reliable infor-
mation in OpenStreetMaps, analyze how different parameters
influence trajectories’ complexity, and compare results from
the two distinct planning methods.

Our approach is drone agnostic, but we considered as a ref-
erence a drone that can be used for many different applications
by laypeople. A drone that is easy to control, cheap has enough
payload for some delivery tasks. One such example is drones
from the DIJI series that can have a payload of up to 1 kg,
an accuracy of around 1.5 meters, and 27-minute autonomy.
These allow tasks such as photo capture, inspection, small
package delivery, or urgent medicine delivery. Considering
control range and speed, we can consider these drones use for
tasks in a radius of 3.5km, the reach contemplated throughout
our experiments.

A. Plans: Resolution

We start by studying the resolution needed for finding good
paths. Fig. [/| shows two paths around our campus. The drone
starts on the pinned location on the left (Start), and must travel
to the pinned location on the right (End). We consider either a
grid of a high resolution of 2, (solid line) or a low resolution
of 38 meters (dashed line). Two meters might seem excessive
considering the dynamics of a drone but our results show why
this might be needed. Although very similar as a flight plan,

Fig. 7: Path from IST Tagus to Locationl, distance between
way-points 38 meters (dashed path) and 2 meters (solid path).
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Fig. 8: Closeup of the final part of the path from IST Tagus
to Locationl, distance between way-points 38 meters (dashed
path) and 2 meters (solid path).

in terms of avoiding obstacles there are relevant differences.
In the final part of the path, there are a few buildings that are
ignored when the resolution is too low. In the closeup figures,
in Fig. [8] we can observe that in the dashed example there
is not enough resolution for the algorithm to detect buildings
on its path, at each point of the grid there are no obstacles,
so the path planning system just ignores the building. On the
other hand, with a high resolution, we managing to detect the
multiple buildings on the path.

Our first conclusion is that the resolution should be defined
not by the dynamics of the drone, but on the smallest obstacles
that we can encounter.

B. Plans: Safety Margin

Looking again at Fig. [8] even for the high resolution path,
we can see another problem. Although avoiding perfectly the
obstacles and finding the shortest path, the path resolution was
so high that the algorithm planned its best trajectory very close
to the obstacles, leaving no margin at all. Considering the error
in GPS, wind gusts, and hanging obstacles, it would be better
to consider a safety margin around obstacles.

Fig. 0] shows two trajectories obtained with different mar-
gins. Note that the margins are relative to the resolution, i.e.
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Fig. 9: Path from IST Tagus to Location2, distance between
way-points: 1 meter with margin to buildings of 5 meters
(dotted path); 2 meters with margin to buildings of 10 meters

(dashed path); and, 5 meters with margin to buildings of 20
meters (solid path);.
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the margin cannot be smaller than the grid size. Starting with
a high-resolution path (dotted line), we can observe a highly
detailed path with a barely perceptible safety margin, thus,
representing a dangerous scenario. The dashed line represents
a version with decreased resolution of the same plan, meaning
a greater distance between neighbor nodes. Hence, the margin
becomes perceptible without setting a greater level of margin.

Additionally we use a smaller resolution once again and
increased margin (solid line), and achieve a satisfying level of
margin with a visible safe distance to the obstacles, without
losing any valuable information about the geographical posi-
tion of the restrictions.

C. Online vs Offline

The previous examples considered that a graph represen-
tation all the area is created before the path planning. As
discussed before, we might not need to detect obstacles away
from the shortest path and create the full graph. We now study
the impact of doing an online graph creation on the plans
created.

The difference between the examples presented in Fig.
lies in the construction of the graph. In the online method
(dashed line), the weights of the margin and obstacle update
dynamically when the algorithm comes across them in plan-
ning, whereas in the offline method (solid line), the weights
are updated statically in the creation of the graph. Thus,
the online approach uses only the necessary geographical
points to compute the path to the goal, minimizing the graph
construction and the overall complexity of the task, conceding
a fraction of that time in the planning procedure.

There is a little nuance that comes as a disadvantage for the
online version. In online method, we can observe some parts of
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Fig. 10: Closeup of the final part of the path from IST Tagus
to Locationl, distance between way-points from 2 with margin
to buildings of 10 meters with dynamic updates (dashed path)
and static updates (solid path) to the graph edges.
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the trajectory that go close to the buildings, not respecting the
safety margin. The root of this problem is that the algorithm
chose a path that does not intersect any restriction, and hence
the point’s neighbors weights did not update accordingly. This
problem is non-existent in the case of offline construction of

the graph. The computational cost is analyzed later in the
document.

D. Arbitrary Restraints

The previous examples all considered buildings as restric-
tions, thereby in this short section, we wrapped a compilation
of different obstacles. For the demonstration’s sake, we pass
some other types of restraints to the system to ensure the
arbitrarity of the system’s restriction avoidance. In Fig. [T1]
we perform different path planning missions avoiding the
respective geographic restraints imposed.

N 3 e | rT s mE T
(a) Water Spots & Build- (b) Military & Residential
ings.

Areas.

“““

(c) Woods & Buildings.

(d) Airport & Buildings.

Fig. 11: Variety of pertinent drone pathing restraints.

For instance, we threw some multiple-restriction mission
problems to understand the system’s behavior, and not only
deviates from all restraints but does it without any considerable
interference or performance issues between each.



E. Output Optimization

Regarding the optimization algorithms appliance, there’s
a considerable reduction in the output trajectory size when
applying the Trajectory Cleaning, Sec. [[lI-FFOa] and a notable
change in the trajectory path when utilizing Path Smoothing,

Sec. as shown in Fig. [T2] and Fig. [I3] respectively.

@

(a) Planner’s output path. (b) Optimized output.

Fig. 12: Trajectory cleaning result visual representation.

(b) After smoothing process.

(a) Before smoothing process.

Fig. 13: Smoothing method appliance result.

We found that applying path smoothing after the trajectory
cleaning is reliably better when using both methods to mini-
mize information loss and increased performance. Depending
on the resolution used, the output’s size reduction can go
from 40% to 85% upon applying the trajectory cleaning
method. Moreover, although the results after utilizing the
Path Smoothing technique are very orientation-specific, they
improve the outputs immensely by reducing the most on the
trajectories’ ‘noise’.

F. Computational Complexity

In this section, we study the computational complexity of
our system. As in many applications we might want to run the
system very frequently, or even in an embedded system, we
need to be able to solve the path planning problem in a short
amount of time. We considered several system aspects, such
as the amount of node usage, individual process times, and
total run-time, to compare and state the different approaches
in a series of test cases in two distinct scenarios, presented in
Fig. [[4]

In Fig. [T3] we present two significant aspects of our trajec-
tory complexity analysis: total number of points in the grid (or
nodes in the graph), and number of nodes that are considered
by the planner. In the offline cases all nodes are considered

(a) Locationl - Area around
IST Taguspark, Porto Salvo -
Lisbon, as low obstacle density
area.

(b) Location2 - Area around
IST Alameda, Lisbon city cen-
ter, as high obstacle density
area.

Fig. 14: Complexity testing scenarios.

to detect obstacles and margin, in the online case only nodes
that are in the search path are considered. One of the principal
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(a) Low obstacle density test mission (IST-TagusPark).
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(b) High obstacle density test mission (IST-Alameda).

Fig. 15: Complexity comparison between the amount of nodes
treated and marked as obstacles in online and offline methods.

insights of this result is that we can observe a considerable
difference in the number of obstacle nodes handled by the
algorithm in both methods (Online and Offline).

This difference in the size of the graph that is considered
have a strong impact on the computational time. We make
such study in Fig. [T where we also make it explicit the time
taken by each step of our system. First observation is that the
total time difference between online and offline is very strong,
with the online system being much faster.

More interesting is to observe that the relative times between



the different approaches also change. In the Offline approach
(top nine lines of Fig. [I6), the process that takes the most
time is detecting and applying the obstacles in the graph, in
the Online approach (bottom nine lines of Fig. [I6), the most
time expensive process is path planning. Subsequently, we
see what is the impact of changing resolution and the safety
marging. We can also tell that by increasing the margin from 3
to 5 neighboors in the graph, the amount of time to construct
the graph on the offline method raises significantly. Although
barely visible, the amount of time to collect data from the APIs
is constant due to the area and restrictions being the same
across all the experiments. Also, the marking of restricted
points in the online method is negligible due to its functioning.

Location1: Individual Process Stages Time

0:00:00  0:14:24  0:28:48 04312 0:57:36 11200 12624 1:40:48

u Creating Grid  Collecting OSM Data Marking Restricted Points

u Constructing Graph w Path Planning W Optimizing Path

(a) Low obstacle density test mission (IST-TagusPark).

Location2: Individual Process Stages Time

0:00:00 0:14:24 0:28:48 0:43:12 0:57:36 1:12:00 1:26:24 1:40:48 1:55:12 2:09:36 2:24:00
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 Constructing Graph w Path Planning m Optimizing path

(b) Low obstacle density test mission (ST-TagusPark).

Fig. 16: Complexity comparison between each individual
process stage’s time for trajectory planing.

Additionally, to demonstrate the time complexity over ob-
jective distance, we computed a series of drone missions with
varying distance length between start and goal positions, from
1 km up to 3.5 km, as demonstrated in Fig[T7} and using 6
meters resolution and 20 meters of margin. The calculated
results were taken in the same area, meaning similar obstacle
distribution throughout the path. We can see for the typical
range of a drone we can make a full offline graph in less
than 6 minutes, if we run multiple missions, or if only one
mission is needed, and online methods solves it in less than
one minute.
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(a) Low obstacle density area.

Location2: Computation Time By Distance
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Fig. 17: Computation time of different distance missions.

V. CONCLUSIONS & FUTURE WORK

This paper proposed a high-level tool E| to democratize
the use of drones by laypeople in new applications requiring
autonomous flight beyond the line of sight with legal and
geographical restrictions.

We validate our system in several use cases of path plan-
ning considering obstacles such as buildings, lakes and flight
exclusion zones. Our tool can achieve safe trajectories around
the most threatening obstacles to drones while having viable
path decisions.

We tested the different parameters of our approach, namely
resolution and margin, the planner method, and the different
types of restrictions in distinct scenarios, to analyze their
properties and results. The computational complexity is man-
ageable and, in a matter of seconds, we can gather the GIS
information, process it, compute a graph, and plan trajectories
that are a few kilometers long. The two different approaches,
each focusing on various use cases for the tool, vary in their
data handling method, howbeit the path’s computation. In the
case of a user who desires to plan multiple missions in the
same region, for example, providing a drone delivery service
for a storefront store, an offline approach is a perfect solution
only aching from a more prolonged initial computation. For
the studied cases, the offline method can have significant time

2The described tool is available, and it’s open for use and inspection https:
//github.com/AndrCarvalho/DroneOpenTool


https://github.com/AndrCarvalho/DroneOpenTool
https://github.com/AndrCarvalho/DroneOpenTool

profit after 20+ trajectories. Alternatively, if a user only needs
a viable path for a simple drone mission, then an online
approach is faster we no delayed results.

As improvements and future works, we suggest the use of
the 3D property of the drone’s environment to enhance the
trajectory planning, and consequently, its navigation. Subse-
quently, one could apply a more detailed energy model, which
considers drone dynamics to plan and predict more efficient
trajectories around discrepant terrain.

Further, concerning the performance of the grid-based em-
ployed approach, one could consider different obstacle fil-
tration strategies. Additionally, options outside of grid-based
search could be tested and compared, such as Visibility Graph
searches, given that we already have the obstacle topology.

Lastly, addressing the following development of akin works
with a mechanical tuning perspective, adjusting drone specific
variables to more properly test these types of tools’ results
and analyze the UAV’s response on physical navigation
missions.
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