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Abstract—Forest fires have become a recurring disaster world-
wide and, every year, thousands of hectares of forests are
devastated. The impacts on nature and society are disastrous.
To develop robust deep learning methods for fire and smoke
detection a large number of data and the related annotations
are required. However, the number of publicly available forest
fires datasets is very scarce. For this reason, this work proposes
an alternative system capable of detecting and localizing fire
and smoke in aerial images using only weakly-supervised deep
learning methods. A classification model was trained using only
image-level labels and, from there, the information from the
convolutional layers was extracted to create the first iteration of a
segmentation mask. Afterwards, by combining it with the colour
and spatial information of the original image, one can create
a segmentation mask that can correctly detect the fire/smoke
zones. The proposed method was tested and proven to be able to
accurately detect fire/smoke at the pixel-level despite never being
trained with any supervision at that level. Compared with other
fully-supervised methods, the results show that when considering
their heavy needs, the proposed weakly-supervised system can
strongly compete with them.

Index Terms—fire detection, smoke detection, convolutional
neural networks, weakly-supervised methods, deep learning

I. INTRODUCTION

Forest fires are a scourge that every year destroy thousands
of hectares of forest around the world. They have a series of
effects on both the burned area and the underlying areas. To
mitigate the dangers and minimize the impacts on people and
nature, there is the need to have systems capable of doing
effective prevention, early warning, and a clever firefight.

This work is included in the Firefront project1 which intends
to develop a system to help and support the firefighting teams.
This solution consists in creating a much efficient and fast
firefight by detecting and tracking fire fronts and their possible
reburns. The process would be carried out through the use
of aerial vehicles that are equipped with RGB and infrared
cameras and other sensors and communication systems.

A. Challenges

The detection of fire and smoke through an image-based
system poses a considerable challenge since neither fire nor
smoke has a well-defined shape and a constant colour. The
usual methods of locating/identifying objects using deep learn-
ing are trained on a large amount of fully annotated data,
which means that in each image of the dataset there must be

1http://www.firefront.pt/

an annotation of where each class is present in the image.
Though, the creation of such annotations is very expensive.

A possible alternative to this complex and time-consuming
process is the use of image-level annotations where instead of
having information about the class in each pixel, there is only
information about the presence of the class in the entire image.
Figure 1 illustrate the difference between the two labelling
methods. So, weakly supervised segmentation aims to create
segmentation masks at the pixel-level using only image-level
labels to train the models. This way, it is possible to create
a greater number of annotations in a short period of time.
However, this type of annotation has the cost of losing detail
in the annotation. It is then necessary to understand whether
the advantage of getting a greater number of annotations
outweighs the cost of losing detail in the annotations.

Fig. 1. Labelling methods

II. STATE OF THE ART

A. Weakly-Supervised Segmentation

Most of the weakly supervised segmentation approaches are
based on the Class Activation Mapping (CAM) method [1],
which will be detailed in Section III, since it will also be an
important component of this work. From this starting point,
various techniques can be used either to improve this approach
by making it more robust and accurate or integrating it with
other methods.

When doing a weakly-supervised segmentation the output
mask is obtained using the features in the image that the
classification model used to make the prediction [2]. Some-
times, these features will only contain the most relevant and
distinguishable parts of the object. On [3] they proposed to
use a Hide-and-Seek approach where they randomly occlude
patches in the training images so that each image can be used
for training multiple times but with none or different patches
occluded.
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A more complex alternative to the CAM is the Grad-CAM
proposed in [4]. The authors propose an approach to obtain
the object localization using the gradients of the predicted
class in the final convolutional layer and not only the layer
information. The method can be applied on a wide variety of
CNN without the need of performing any architectural changes
or re-training. For a sake of simplicity, in this work it will only
be used the simpler CAM method.

B. Fire And Smoke Detection

The need to create new and wiser methods of monitoring,
detecting and fighting fire has led to the development of recent
research. The detection part is the one that has powered the
largest amount of approaches, through the use of vision-based
systems [5] either terrestrial [6] or aerial [7] . Regarding the
type of techniques used, the approaches can be separated into
classic, that rely on typical computer vision techniques [8],
and deep learning methods [9] where the prediction is done
using the features that Artificial Neural Networks extract from
several examples of similar images.

1) Classic Methods: The big majority of works in fire
and smoke detection based on computer vision are based on
colour, spatial and temporal features. These characteristics
are very specific for fire compared to other objects [10].
However, the same does not happen with smoke since it can
get high similarities with other objects like clouds. Most of
the approaches follow a common pipeline, first find moving
pixels using background subtraction and then apply a colour
model to find fire regions [11]. The base approach is to create
a mathematical based model, defining a sub-space on a colour
space that represents all the fire-coloured pixels in the image
[12]. On this line, Wang et al. [13] proposed a method based
on a Gaussian model learned in the YCbCr colour space. The
major drawback of only colour based fire detection models
is the high false alarm rates since single-colour information
is insufficient in most cases so, on [14], the authors added
texture analysis to create Bowfire.

In a forest fire, the fixed cameras are placed on high altitude
spots from which they can cover large areas of forest terrain.
One example operating in Portugal is CICLOPE proposed in
[15]. The authors present a system of a surveillance system that
can perform remote monitoring and automatic fire and smoke
detection using background subtraction, feature matching and
colour analysis.

2) Deep Learning: All of the previous methods depend
heavily on the features delimited by the authors, which may
make them too specific for a certain situation as concluded
in [16]. On the other hand, methods using deep learning
methods, automatically learn which features are best for the
given problem. On [17] the authors do a comparative analysis
between colour-model based methods versus deep learning
methods. With a very simple deep learning method they can
obtain the best overall performance compared to all colour-
based models.

Still using surveillance cameras but now with deep learning
methods, the authors in [18] present a solution for real-world

surveillance scenarios using a computationally efficient CNN
based fire detection system. Q Zhang et al. [19] due to the
lack of forest fire smoke images, created a dataset where they
added two kinds of smoke, real smoke and simulative smoke,
into forest background. It was then used to train a CNN that
was later tested on real forest smoke images.

The lack of a good public accessible dataset for fire and
smoke makes it hard to develop a good deep learning tech-
nique. This problem is transversal and strongly highlighted by
the vast majority of authors [20].

With this into account, the number of weakly supervised
segmentation approaches has been growing lately.

In [21] the authors create a CNN in which they combine
the feature maps of the last convolutional into a single feature-
map. Then, using a sliding window on that layer they can
predict the presence of fire and smoke. Similarly, in [22], the
authors use a classification model to extract the information
from three selected feature maps of a convolutional layer and
create a mean activation map to later convert into segmentation
mask.

The scarcity of datasets in this area of work makes deep
learning methods quite limiting. Therefore, in this work, it is
proposed to overcome this problem using weakly supervised
supervised methods for fire and smoke segmentation. This
way, one can use the few existing datasets and complete
them with a large number of examples only annotated at
the image level. However, all the works in this area using
weakly supervised methods present a final detection with
little precision and lack of detail. This work overcomes such
limitation by combining weakly-supervised method with a
post-processing method, creating a segmentation mask with
great detail that closely resembles the shape of fire and smoke.

III. METHODOLOGY

The proposed approach intends to develop a system capable
of detecting and localizing areas of fire and smoke in images
using weakly supervised methods. The system is divided into
two similar systems, one for fire and one for smoke. Both
systems follow the same pipeline described in Figure 2 with
the only difference being the parameters used in the different
components.

The images will be taken from aerial vehicles equipped
with visual-based equipment and will then be transmitted to
the proposed system. Then, the image starts by being fed
to a classification model the presence of fire/smoke in the
whole image will be analyzed. If fire/smoke is detected then
it goes on to the next phase, otherwise, the system ends
here. The next phase consist in using the CAM method to
extract the information that the classification model used to
make the classification prediction and create a probabilistic
heatmap. In this heatmap, areas with higher probabilities
correspond regions where fire/smoke are likely to be present.
Then, a binarization is applied to the heatmap to create a
binary mask that can locate the fire/smoke location but cannot
correctly represent it in terms of its shape. Therefore, a post-
processing phase is then required. For that, the Conditional
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Random Fields (CRF) method is used which takes as input
the coarse and blob-like binary mask and the original image.
By combining both inputs and analyzing the spatial and colour
correlations, the method can create a segmentation mask at the
pixel level that represents the location of the fire/smoke as well
as its shape in a detailed way. In the following subsections
the methods used in each of the main blocks of the proposed
system will be describe in detail .

Fig. 2. Overall proposed approach

A. Classification Model

For the classification model, the choice was to use the
VGG network architecture proposed in [23] as a starting point.
The network is composed of 5 main blocks of convolutional
layers followed by a max-pooling layer and then has 3 fully-
connected layers. However, to apply the CAM algorithm,
which will be explained in the next subsection, it was neces-
sary to do some changes in the network. First, it is necessary to
remove all fully-connected layers since they disrupt the spatial
integrity maintained in the convolution layers. Next, a global
average pooling layer is added to calculate the spatial average
of each feature map in the last convolutional layer. In the end,
one final fully connected layer and Sigmoid activation function
is added. For the fire model, the 19 weight layer version -
VGG19 - was used while for the smoke model the 16-layer
version - VGG16 - was used.

B. Class Activation Mapping

The CAM algorithm proposed by [1] was used in order to
get the information from the classification model. It is based
on the idea that a classification CNN develops localization
capabilities, despite being trained only with image-level labels.
It is then necessary to understand which are the features of the
image that the model uses to classify it into the predicted class.

The idea of adding a global average pooling layer after
the convolutional layers is to summarize each feature map in
the last layer into a node. So, each node represents a feature
map that represents a region in the image. To perform the
classification, each node will be weighted according to the
relevance of the feature map it represents for the prediction.
A feature map can be weighted positively if the visual pattern
that it represents is relevant for the output or negatively if not.
So, one can make a weighted sum of each feature from the
last convolutional layer to produce a heatmap as:

Hc(x, y) =

N∑
i=1

wci fi(x, y). (1)

Where H represents the CAM heatmap with the predicted
location, wci is the weight of the activation of the ith feature
map f(x, y) for the predicted class c and N being the number
of feature maps. Figure 3 illustrates the summing process.

Fig. 3. Weighted feature map sum.

The heatmap will highlight the zones in the image that the
model has used for the prediction and thereby those are the
zones where the class is more probable to be present.

C. Conditional Random Fields

CRF can be used for segmentation tasks [24] either by
itself or in combination with other segmentation techniques
for example with deep learning neural networks [25]. When
by itself the CRF uses traditional hand-crafted features as a
prior and when conjugated with other techniques it relies on
them to provide the features and then act as post-processing.
In a post-processing situation, the image can be seen as a
graph where each pixel is perceived as a node and the nodes
are connected with edges ξ. Each node can have a finite set
of states corresponding to the possible classes and each state
has a unary cost ψu(xi) for each pixel. The pairwise cost
ψp(xi, xj) between nodes is determined by the spatial and
color distance within the two pixels i and j. The graph may
be built as a grid where only adjacent pixels are connected
to each other, or fully-connected, as in this case, where each
pixel is connected to all other pixels in the image. Finally,
the assignment of each pixel to label is treated as an energy
minimization problem where the energy corresponds to the
sum of the total unary and pairwise costs as in Equation (2).
It is an iterative process wherein at each inference step the
energy is progressively minimized.

The fully connected CRF uses neighbouring context to
predict the class of a pixel. In a fully connected situation every
pixel in an image can be used to determine the class of one
pixel and so, the energy function can be described as:

E(x) =
∑
i

ψu(xi) +
∑
i,j

ψp(xi, xj), (2)

where x represents the set of labels corresponding to each
pixel, i and j range from 1 to N , being N the size of the
image, ψu(xi) is the unary potential and ψp(xi, xj) is the
pairwise potential.

The unary potential sets a cost of assigning a label xi
to pixel i with a probability P (xi). The probability decides
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how much weight the unary mask should have in the energy
function E(x). The potential is then described as:

ψu(xi) = −log(P (xi)), (3)

where P (xi) is the pixel probability at pixel i.
The pairwise potential ψp(xi, xj) sets a cost to assign the

label to pixel i in pairs, i.e. the cost of pixel i will be according
to pixel j. It will analyze the neighbouring pixels to predict
the class for pixel i. This potential has the form of a linear
combination of Gaussian kernels as:

ψp(xi, xj) = µ(xi, xj)

K∑
m=1

w(m)k(m)(fi, fj)︸ ︷︷ ︸
k(fi,fj)

, (4)

where the term µ(xi, xj) is a label compatibility function
which is responsible for introducing a penalty for nearby pixels
that are assigned different labels: µ(xi, xj) = 1 if xi 6= xj .
Each k(m)(fi, fj) is a Gaussian kernel between the feature
vectors fi, for pixel i, and fj for pixel j. The w(m) acts as a
weight factor defining the importance of each Gaussian in the
linear combination.

For image segmentation the k(fi, fj) is a contrast-sensitive
two-kernel potentials as:

k(fi, fj) = w(1) exp

(
−|pi − pj |

2

2θ2α
− |Ii − Ij |

2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+

w(2) exp

(
−|pi − pj |

2

2θ2γ

)
︸ ︷︷ ︸
smoothness kernel

.

(5)

It consists of a weighted sum of a position and colour sensitive
double Gaussian with weight w(1) with a position-sensitive
single Gaussian with weight w(2). The first Gaussian is the
appearance kernel and it controls the degrees of nearness and
similarity with the idea that nearby pixels with similar colours
are likely to belong to the same class. The first term depends
on both pixel positions pi and pj and the scale of the Gaussian
is controlled by the spatial standard deviation θα. The larger
the standard deviation, the flatter the Gaussian and furthest
pixels will be taken into account. The second term depends
on both pixel colour intensities Ii and Ij and the scale of
the Gaussian is controlled by the colour standard deviation
θβ . As before, the larger the standard deviation, the flatter
the Gaussian and wider is the range of colours that will be
taken into account. The second Gaussian is the smoothness
kernel and it removes small isolated areas giving a sharper
boundary delimitation. It only depends on both pixel positions
and is controlled by the smoothness standard deviation θγ .
This standard deviation is a similar behaviour as the first one.

IV. EXPERIMENTS

To develop the proposed system it was necessary to do
some setup procedures to develop and optimize the methods
that compose the proposed system. Each of the following
subsections will describe them in detail.

A. Dataset

The first and most important step for computer vision and
deep learning approaches is the creation of a complex and
diverse dataset of images. Given that the number of publicly
available forest fires datasets is quite scarce, it was necessary
to create them. Therefore, two datasets were created, one with
annotations at the image-level to train, validate and test the
classification model and another with annotations at the pixel-
level to validate and test the segmentation approach.

1) Image-level dataset: As a starting point, for the fire
examples, the dataset of [26] was used considering that it
contains good examples of forest fires as well as controlled
fires. Additionally, it was augmented with negative examples
gathered manually from the web. For the smoke examples, the
data from [27] and from [28] was used as starting point and
it was then augment it with individual images gathered from
the web. In total, only 40% of dataset images were from free
available datasets and the remaining 60% were gathered by
hand which shows the scarcity of good and freely available
datasets The dataset composition is described in Table I.

TABLE I
DATASET COMPOSITION

# Images Class Percentage [%]
Positive 70Fire Negative 30
Positive 701807

Smoke Negative 30

2) Pixel-level dataset: This set is composed of images from
both classes and their ground truth at the pixel-level. For the
fire examples, the starting point was once again the dataset
of [26] since it also contains the ground truth masks of the
images. Regarding the smoke examples, the starting point was
[27], to which there had to be some post-processing to get
simple binary masks. Both datasets were augmented with an
internal dataset created by the team of the Firefront project.
In the end, the dataset is composed by 600 images of fire, 260
of smoke and the respective ground-truth masks.

B. Classification Stage

The classification stage is a crucial part of the proposed
approach, since it is the entry point of the proposed approach
and it will decide which image should be analyzed for segmen-
tation. So, the image will only move forward to the weakly
supervised segmentation and then to the post-processing stage
if it is classified as positive. Any image that is classified as
negative will be discarded. Therefore, it is necessary to have a
good classification phase to prevent any false positive or false
negative.
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When training the network with this dataset annotated at the
image-level, each image is telling the network that the class
for which it is labelled is present in the entire image. Thus,
the network will learn features of the entire image itself, and
not just the specific class. Considering an aerial image setting,
there will always be much more information in a single image
than just the class itself. Especially, in aerial images of fire
and smoke, there will be common co-occurring objects such
as vegetation, clouds, etc. So, it is harder for the network to
collect class-specific features.

Table II shows the model parameters that lead to the best
results, taking into account the classification results and visual
perception of the localization results.

TABLE II
MODELS PARAMETERS

Parameter Fire Model Smoke Model
Base Model VGG19 VGG16
Optimizer Adam Adam

Learning Rate 1e-05 1e-06
Loss Binary Crossentropy Binary Crossentropy

Batch size 32 32
Early Stopping patience = 10 patience = 10

Monitor Validation Loss Validation Loss

Figure 4 and Figure 5 show examples of correct classifica-
tion by the fire and smoke model respectively.

(a) Prob. = 1.0 (b) Prob. = 0.0

Fig. 4. Examples of images classification and their respective probability of
containing fire according to the Fire Model: (a) is a True Positive example
and (b) is a True Negative

(a) Prob. = 1.0 (b) Prob. = 0.0

Fig. 5. Examples of images classification and their respective probability
of containing smoke according to the Smoke Model: (a) is a True Positive
example and (b) is a True Negative

C. Weakly-Supervised Stage

So, to extract the location of fire and smoke from the
classification model the CAM algorithm was used. Therefore,

by summing representative features and subtracting unrepre-
sentative ones, it is possible to highlight the image regions
that the network used to predict the class. Consequently, these
are the image regions where fire/smoke is more probable to
be located. Figure 6 illustrates the overall CAM process for
the fire model. In the end, there is illustrated the final heatmap
for the input image.

For the fire case, and following what was proposed in
[29], all feature maps with negative associated weight were
discarded since these were being associated with fire zones
rather than background. That said, there will be no subtraction
of feature maps, only those with positive weights were used
for Equation (1), resulting:

Hc(x, y) =

n∑
i=1

wci fi(x, y), if wci > 0 (6)

For the smoke case, this is not verified, and the subtraction of
feature maps with negative weights is beneficial.

The final heatmap behaves as an object detector despite no
supervision on the location was provided. Figure 7 shows some
examples of the CAM heatmap for the fire and smoke model.
It can be seen that the heatmaps assign a high probability
in the correct location of fire and smoke and their respective
extent despite the model has never been trained for that task.

The following step consists on transforming the heatmaps
into a binary mask. So, the probabilistic heatmap is thresh-
olded according to its maximum values as:

θ = α max(H), (7)

where θ is the thresholding value, α is a real between 0 and 1
and H is the probabilistic heatmap. Every pixel in the heatmap
that has a probability superior to the threshold was set to 1
and below set to 0. For the fire model, the α was set to 0.5
while for the smoke one it was set to 0.2.

D. Post-Processing Stage

In order to address the lack of detail in the masks produced
by CAM, there was the need to do some post-processing. The
CRF with fully connected nodes [24] was used to transform
the binary masks created by CAM (with little detail), into
masks that could actually resemble the shapes with well-
defined boundaries much detail. To achieve this, the CRF
minimizes an energy function as in Equation (2). It is divided
in two potentials, the unary described by Equation (3) and the
pairwise described by Equation (4).

The unary potential (3) is responsible for assigning a cost to
each pixel, according to its probability in the CAM mask. As
the CRF takes information from all the pixels in the image, it
is needed a unary potential for the foreground as well as the
background and for that reason, every pixel in the CAM mask
that is not considered to be positive for fire/smoke is consid-
ered to be background. So, the two possible states for each
pixel are fire/smoke and background. The background mask
Mb(x, y) is the opposite of the foreground mask Mf (x, y)
as Mb(x, y) = 1 −Mf (x, y). In the foreground mask, every
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Fig. 6. Overall CAM approach for the fire model

(a) Fire Image (b) Fire heatmap (c) Fire Binary

(d) Smoke Image (e) Smoke heatmap (f) Smoke Binary

Fig. 7. CAM resulting heatmap before and after being converted into binary
for both fire and smoke.

positive pixel is set to 0.8 since CAM masks are not extremely
precise.

On the pairwise potential (5), the appearance kernel uses
the information of the pixel colour (RGB values) and the
distance to their neighbours to assign the cost of the pixel. It
is divided into two parts, one that is responsible to analyse the
degree of nearness controlled by the spatial standard deviation
θα and another that is responsible to analyse the degree of
similarity controlled by the colour standard deviation θβ . For
both fire and smoke, since CAM cannot correctly delimit their
boundaries, the θα should be set to a high value. Therefore,
each pixel is compared with a wide range of pixels around it,
allowing to create a segmentation of the whole area of the fire
or smoke. The second part is responsible to analyse the degree
of similarity controlled by the colour standard deviation θβ .
For fire and taking into account that fire has a very specific

and limited colour range, the θβ should be set to a low value.
Therefore, only pixels with very identical colour ranges are
considered to be in the same class. Regarding smoke, the
θβ cannot be as low as fire since smoke colours can range
a little more and are not so characteristic. The smoothness
kernel, uses pixel proximity to remove small isolated regions
and give the mask a much sharper boundary, controlled by
the smoothness standard deviation θγ . For both situations, the
value should be chosen to remove some miss-detected areas
and give the fire and smoke the correct boundary limits.

For both situations, a total of 5 inference steps are performed
to get the final mask. Table III list the best parameters achieved
to produce the final masks. Figure 8 illustrates an example of
the overall approach of the CRF using the best parameters for
smoke.

TABLE III
CRF BEST PARAMETERS

Parameter Fire Smoke
w(1) 10 8
θα 250 100
θβ 10 5
w(2) 5 5
θγ 20 10

Iterations 5 5

V. EXPERIMENTAL RESULTS

To validate and test the proposed system several experiments
were performed.

A. Comparison with fully-supervised methods.

In this experiment, are compared two fully supervised
segmentation methods (Method 1 and Method 2) and the
proposed one. For Method 1 is done an extensive comparison
on both fire and smoke segmentation while for Method 2 only
the metrics for the fire case. Both models were developed in-
house by members of the Firefront team using similar datasets.
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Fig. 8. Example of CRF approach for smoke.

• Method 1 [30] - Originally the system was composed
by three components. The first block analyzes the im-
age and scaled down to the size of the network input,
for detecting fire/smoke using a classification model
(SqueezeNet [31]). If the classification is positive the
scaled image is fed to a segmentation network, otherwise
the unscaled image divided in 4 patches and the same
process is repeated for each patch. When an image/patch
is classified as fire/smoke, it goes to the segmentation
network (U-Net [32]) to create a segmentation mask with
the regions of the image that contains fire/smoke. The
obtained masks are then stitched in the right places to
obtain the overall segmented image. The objective of
Method 1 is to be able to detect fire/smoke in high
resolution images even when the fire/smoke regions are
just a few pixels. However, because the proposed method
only uses images scaled to the network input size, the
comparison will be done using a simpler version of the
method without the recursive patch subdivision. This
network was trained with a dataset fully annotated at the
pixel level.

• Method 2 - The second method consists in a Deeplab v3+
network [33] applied to the fire detection and was also
trained with a dataset fully annotated at the pixel level.
For this second method we only had access to the metrics
values, we did not have access to the segmentation masks.

Both methods were tested using the Pixel-level dataset. In
order to compare them, the average mean intersection over
union (mIoU) was computed.

For fire, the performance is shown in Table IV. It can
be seen that both fully-supervised methods outperform the
proposed one. However, it must be taken into account the effort
that the authors had to put to create the strong supervision on
their training examples versus the effort of creating weakly
supervised supervision. So, it is natural that the performance of
fully-supervised methods is better than the weakly-supervised
ones. Despite the difference in mIoU, the proposed method
can also achieve considerably good results as it can be seen
on Figure 9. The fully-supervised masks were obtained using

Method 1 and the proposal masks are the output of the
proposal method. In Figure 9 is noticeable that the proposed
method achieves very good final segmentation mask. The
proposal masks can even better represent the small details
in the fire shape when compared with the fully-supervised
segmentation performed in the entire image. However, from
the standard deviation results in Table IV it is concluded that
the proposed method has a higher oscillation in the results
compared to Method 1. The proposed methods sometimes has
some discrepancies resulting in a degradation of the segmenta-
tion mask, while Method 1 is more coherent. In summary, the
proposed weakly-supervised method can highly compete with
the fully-supervised ones with good fire segmentation results
despite some small discrepancies.

TABLE IV
MODELS COMPARISON FIRE

Method Approach mIoU Standard Dev.
Method 1 fully-supervised 0.856 0.073
Method 2 fully-supervised 0.902 -
Proposed weakly-supervised 0.735 0.142

Fig. 9. Fire masks comparison between Method 1 and the proposed approach.

For smoke, the proposed approach will be only compared
with Method 1 as Method 2 was not trained to detect smoke.
The average mIoU results are shown in Table V. The results
show that the proposed method performs on par with the
fully-supervised one, achieving a similar values of mIoU and
standard deviation. As concluded before, the proposed method
can easily resemble the round and soft margins of the smoke
zones. Figure 10 represent some results where the proposed
method outperforms the fully-supervised one. Not only the
proposed mask can represent the outer shape of the smoke
but can also outline objects that are inside the smoke area.
The fully-supervised masks are more conservative without
much detailed margins. However, as expected, there are also
some not fully successful examples. These examples occur in
images with areas with very similar colours to smoke, like
clouds, or when it is not clear the separation with common
co-occurring objects and zones. In summary, the proposed
weakly-supervised method can perform almost as good as
a fully-supervised segmentation method, with the advantage
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that no pixel-level masks are needed which in the case of
smoke can be very ambiguous since smoke does not have
sharp boundaries and can sometimes be very dim.

TABLE V
MODELS COMPARISON SMOKE

Method Approach mIoU Stantard Dev.
Method 1 fully-supervised 0.771 0.157
Proposed weakly-supervised 0.760 0.149

Fig. 10. Smoke masks comparison between Method 1 and the proposed
approach.

The results have shown that even by only using annotations
at the image-level to train the proposed method, it is possible
to compete with methods that uses annotations at the pixel
level. The tedious and expensive process of creating pixel-level
labels is not completely reflected in the segmentation results,
especially for smoke, where the proposed method performs as
well. When considering the trade-off between segmentation
performance and the expensiveness of the creation of pixel-
level labels the proposed smoke segmentation method is the
clear winner, while the fire segmentation model also wins if
the task at hand tolerates some distortions in the segmentation
masks.

B. Assessing the Classification Model

This experiment will evaluate the performance of both
models regarding classification.

TABLE VI
CLASSIFICATION PERFORMANCE

Metric Fire Model Smoke model
Accuracy 0.854 0.911
Precision 0.834 0.937

Recall 0.901 0.907

From table VI, it can be observed that the fire classifier
does not have a very high accuracy nor precision value, but
it presents a good recall value. This means that the number
of FN is small, i.e., there are few predictions in which there
was indeed fire but the model did not predict it. This is a good
indicator in a real situation when one does not want to neglect
the presence of fire. On the other hand, the precision value is

lower, which means that there was a considerable number of
FP, i.e., there are images that effectively do not have fire but
are being classified as fire. The vast majority of these images
are smoke images without fire, which demonstrates once again
the high correlation between fire and smoke and the challenge
that is to separate both by using labels at the image level.
For the smoke situation, all the metrics are slightly higher.
Nevertheless, it is possible to perceive the same correlation
situation as in fire. In this case, the recall value is a little lower
than the precision value since the number of FN is higher
than the number of FP. In other words, there are more cases
where there was no smoke but the model predicted that there
was smoke than cases where there was smoke and the model
predicted that there was not.

The models’ overall classification performance is good even
though the smoke model is slightly superior to the fire one.
As expected, it is not easy for the network to correctly
extract the class-specific features which make fire and smoke
classification at the image-level quite challenging.

C. Evaluating the CRF influence

This experiment evaluates how the CRF affects the sys-
tem performance in the two phases of the pipeline: weakly
supervised segmentation (WSSegm.) and post-processing
(Post.Process.). The first stage is evaluated through the masks
obtained by CAM while the second stage is evaluated through
the masks obtained after the application of the CRF. It will
also be evaluated the trade-off between the use of the post-
processing stage and processing time. The results that follow
were obtained using the Pixel-level dataset.

Table VII illustrates the performance of the two stages for
both models in terms of the mIoU, the corresponding standard
deviation and the processing time.

TABLE VII
SEGMENTATION PERFORMANCE IN BOTH STAGES

Model Stage mIoU St.Dev. Proc.Time (s)

Fire WSSegm. 0.607 0.115 0.068
Post.Process. 0.735 0.142 0.228

Smoke WSSegm. 0.703 0.121 0.059
Post.Process. 0.760 0.149 0.229

Firstly, one must highlight the good performance of weakly
supervised segmentation (WSSegm) taking into account that
the model was only trained for image classification at the
image-level. It can be observed that the mIoU values for
the smoke case are higher than the fire values. This can be
explained by the fact that while the fire shape can be quite
detailed, smoke usually has a non-detailed shape, sometimes
resembling blobs. The processing time in this phase is consid-
erably low since CAM works with small mapping resolutions.

Secondly, after the application of the CRF, a great im-
provement in the mIoU is noticed. This improvement is much
more significant for the fire case since it is necessary to
add all the detail and sharpness of the fire shape. For fire,
the improvement is about 20% while for smoke it is almost
10%. There is a slight increase in standard deviations but it is
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Fig. 11. Comparison of the masks in the different stages for fire

Fig. 12. Comparison of the masks in the different stages for smoke.

not comparable to the improvements in mIoU. Regarding the
processing time, applying the 5 iterations of the CRF to each
image took an average computation time of 230ms for both
cases.

Figure 11 illustrates, for fire, some examples of the resulting
masks in both stages of the approach as well as the ground-
truth (GT) mask. At first, one can conclude that CAM can
correctly predict the location of fire, although the CAM masks
are quite coarse, in the form of blobs. Thus, when comparing
the CAM masks with the GT masks, the mIoU difference is
mostly due to lack of detail, rather than poor location. Then,
after applying the CRF, the improvements in terms of detail
and sharpness are highly notorious. The CRF can transform a
coarse and blob-like mask roughly indicating the location of
fire, into a mask very similar to the GT. The CRF takes great
advantage of the fact that the fire has a very representative
and limited colour space. The resulting masks are sometimes
even more detailed than masks created on GT.

Figure 12 illustrates, for the smoke case, some examples of
the resulting masks in both stages of the approach as well as
the GT masks. Considering that smoke does not have shape
as precise as fire, it is easier to get a better segmentation
mask using only CAM. This is also reflected in the mIoU
values in Table VII using only CAM, which are already
considerably good. However, it is still necessary to use CRF to
correctly delineate the smoke edges. This includes removing
areas where CAM masks give overlay between smoke and
other non-smoke areas, for example, fire. After applying the
CRF it turns out that the masks are much more detailed and
much more accurate. Similarly to what happened with the fire,
the masks after the application of the CRF can sometimes be
more detailed than the ones created by hand.

Despite all the aforementioned advantages, the CRF is still

totally dependent on the input CAM mask. So, when this mask
gives an unreasonable segmentation, it can sometimes happen
that the CRF converges to non-fire/non-smoke zones.

VI. CONCLUSIONS

Reaching the end of this work, it is time to draw some
conclusions on the study and work developed, and state some
proposals as future work to prevent failure cases and improve
the system.

The lack of data in this field, especially the scarce amount
of freely available datasets with annotations at the pixel-level
and the expensive and very subjective process of manually
creating those labels, has led to the creation of a system that
only relies on weakly-supervised methods. On the other hand,
the creation of labels at the image-level for these methods can
be almost effortless and makes the process of gathering new
images very easy. The system developed has shown to be able
to detect and segment fire and smoke zones in an accurate and
precise way only using weakly-supervised methods.

In particular, using the CAM method, it was proven that it is
possible to train a classification model only with image-level
labels and by extracting the features that the model uses for
the classification prediction, one can construct a slightly rough
heatmap highlighting the fire/smoke zones. Subsequently, by
using an energy minimization algorithm, the CRF, it was
possible to transform the rough heatmaps previously obtained
into a segmentation mask was much detail. The CRF merges
the binary mask obtained from the heatmap with the pixel
information on the original image to create a considerably
accurate segmentation mask of fire/smoke.

The proposed method makes use of the powerful capabilities
of CNN on image classification and their ability to model
patterns by finding representative class features. Ailed to this,
the method also uses the base of classic methods for fire/smoke
detection which is the very characteristic colour pattern.

The process of classifying and segmenting fire and smoke
zones is already a great challenge using fully-supervised meth-
ods based on deep learning since the shape that fire and smoke
zones take can be very irregular and sometimes very dim.
When using weakly-supervised this challenge is even greater
because it is then up to the network to understand which are the
class-specific features of fire and smoke in the entire image.
So, it was necessary to create a good and complex dataset
with several different examples. It was important to have
several examples of fire and smoke individually in order to not
correlate both of them. Also, it was important to have various
examples of negative images where none of them appears to
distinguish common co-occurring zones, for example, forests.

The overall results show that when taking into account
the heavy needs of a fully-supervised method, the proposed
weakly-supervised system can strongly compete with them in
terms of segmentation performance. For smoke, the proposed
methods even achieve identical performance.

Some limitations were noted using these methods. First,
it was noticed that as the model is performing classification
in the whole image and the input image size must be small
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for computational reasons, images with very small zones of
fire/smoke could not be detected. As a suggestion, the use of
methods with a sliding window could be beneficial. Second,
the several parameters in the post-processing stage are static
and were tuned in a more generalized way resulting in some
undesired situations. In future works, the tuning process may
be done using a learning process, similar to the classification
model, resulting in dynamic parameters that can adapt to each
image. Third, the system presents some small oscillations in
the performance results. In future studies, we suggest the use
of semi-supervised methods where it can be combined both
fully and weakly supervised methods. This way one could use
the few datasets available annotated at the pixel level with the
ease of gathering images to annotate at the image-level. By
combining both approaches it could be possible to develop a
more robust and very accurate method for the fire and smoke
segmentation.

With this work, we hope to represent a great contribution to
the Firefront project and help it to support the brave firefight
teams. We also hope that it will serve as motivation for future
works in this area since the problem of wildfires is still a
catastrophe that seriously affects human beings and our planet.
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