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Abstract—Dynamic Bayesian Networks are probabilistic
graphical models used to predict the evolution of stochastic
processes. These models can be trained from multivariate time
series data to uncover interesting temporal relationships between
measured variables. However, optimal training algorithms are
computationally prohibitive, inspiring the development of
heuristic techniques. This dissertation introduces sDBN, an
alternative training algorithm with better computational
complexity. The proposed method handles both stationary and
non-stationary models and is flexible to a specified Markov
lag. Empirical results show that the algorithm achieves great
network identification, accomplishing up to perfect F1 scores
in ariticial datasets with a considerable number of dimensions.
Using simulated data, sDBN beats state-of-the-art dynamic
Bayesian network training algorithms both in terms of structure
quality and training time. Tests in benchmark public datasets
show that sDBN is also competitive in time-series classification.
Using Ankylosing Spondylitis patient data from Reuma.pt, a
national rheumatological registry, the new method recovers
intelligible models and successfully predicts disease progression.

Keywords: multivariate time series, dynamic Bayesian networks,
structure learning, high-dimensional data, data mining

I. INTRODUCTION

DATA science has become, over the last few years,
ubiquitous in society. Data is currently being collected

everywhere due to the digitalization of society. Using concepts
from statistics and computer science, this field of study has
exponentially increased in popularity in the last decade. Under
this subject, two distinct areas can be identified: machine
learning and data mining. Machine learning studies a set of
techniques that allow for computers to learn some task. On
the other hand, data mining aims to extract patterns from data
and help in decision making. The focus is not on performing
a task, but instead on analyzing the data and getting insights.

One type of datasets are multivariate time series (MTS),
representing how a set of multiple variables evolves over
time. MTS datasets frequently arise in several contexts like
meteorology, robotics, economics and finance, and electronic
health records. The increase in the availability of this type of
data justifies the growing interest in data mining techniques
for the analysis of time series.

Dynamic Bayesian networks (DBNs) are a class of math-
ematical models that can be used for the analysis of time-
series. They are a probabilistic graphical model (PGM) and
therefore can be easily schematized using a graph and pro-
vide interpretable information on the relationships between
measured variables. This is especially important in medical
applications, where decisions should follow a well-defined

rationale instead of simply being outputs of black-box type
models. Additionally, these models are flexible and allow the
computation of complex probability queries through inference
algorithms. Another advantage of these kinds of mathematical
models is the possibility of fine-tuning using domain expert
knowledge. DBNs can also be trained automatically from
data, but exact optimization algorithms are computationally
expensive. To counteract this, the training typically includes
the use of state-of-the-art heuristic methods to restrict the
search space.

Recent work on discrete Bayesian network (BN) training
leverage generalized linear models (GLMs) as an approximate
parametrization to discrete probability tables. GLMs are also
the heart of some deep neural networks, and the recent
advances in this field provide a sophisticated computational
framework that can leverage modern hardware to accelerate
the training procedure meaningfully. Training BNs approxi-
mating them as a collection of GLMs profits from these novel
techniques and are mandatory in high-dimensional contexts.

Although plenty of literature is found on identifying static
models, extending these techniques to include temporal in-
formation is still unexplored. Therefore, this article focuses
on developing alternative heuristic methods for training DBNs
leveraging GLMs, allowing the possibility of training of these
kinds of models using high-dimensional MTS, i.e., time-
series with several measured variables per timestep with few
observations.

This document is organized as follows. Section II estab-
lishes a theoretical background, providing a brief overview of
generalized linear models, and introducing three probabilistic
graphical models: Bayesian networks, dynamic Bayesian net-
works and Bayesian multinets. Section III exposes the new
method and provides details of the developed implementation.
Section IV reports empirical results that validate the algorithm
using synthetic datasets, real benchmark time series and data
from Portugal’s national registry of Ankylosing Spondylitis
patients. Section V presents some conclusions.

II. BACKGROUND

A. Generalized Linear Models

A generalized linear model [1] is a model with parameters
β = (β0, β1, . . . , βn) that relates the response variable y
with the features X = (1, x1, . . . , xn), via a linear mapping
Z = XTβ, a linking function g(Z) and an assumption on
the distribution of the response variables y ∼ Ψ(θ), where
Ψ is a distribution of the exponential family with parameter
θ = g(Z). With Ψ(θ) = N (θ, σ2) and g(Z) = Z, the
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GLM specializes to linear regression. Different choices of
distribution and link function lead to different, well-known
models.

These models are estimated from observational data using a
procedure called maximum likelihood estimation (MLE) [2].
This consists of solving the optimization problem given by

maximize
β

M∏
i=1

P (y(i) | β,X(i)),

i.e., the likelihood that the model with a given set of pa-
rameters β generates D. Typically, instead of minimizing the
likelihood directly, the equivalent problem of minimizing the
log-likelihood is often considered.

Let Ψ(θ) = Bernoulli(θ) and the link function be the lo-
gistic function. This generalized linear model is called logistic
regression, and it is used to predict the outcome of a binary
response variable from a set of features. The characteristic
probability mass function of logistic regression is given by

P (y = k | X,β) =

(
exp(X>β)

1 + exp(X>β)

)k (
1

1 + exp(X>β)

)1−k

,

(1)
where k ∈ {0, 1}.

Multinomial Logistic Regression extends logistic regression
to handle the prediction of categorical distributed random
variables, allowing the response variables to take r possible
categories. Therefore, Ψ(θ) is set to be the categorical dis-
tribution. The link function has to specify every parameter
independently. The probability mass function for multinomial
logistic regression is obtained directly from the categorical
distribution

P (y = k | X,β1, . . . ,βr) =
exp(X>βk)∑r
i=1 exp(X>βi)

, (2)

where k ∈ {1, . . . , r} and βi ∈ Rn+1 are the model
parameters associated with category i.

Choosing a new beta β′ = β+α1 lead to exactly the same
probability distribution. Due to this, when identifying these
models from data, a model parameter is usually constrained
to a given value, effectively eliminating this ambiguity.

Maximum Likelihood Estimation, although effective, is
prone to overfit the model to the observed data. In order to fix
this issue, typically, regularization techniques are used, adding
a new term to the cost function achieving a smaller model
variance at the cost of adding some bias to the prediction.

Regression using the least absolute shrinkage and selection
operator (LASSO) [3] consists of imposing an `1-norm con-
straint on the model parameters ||β||1 ≤ t. Like Ridge, the
parameter set is typically obtained by solving the equivalent
unconstrained optimization problem given by

minimize
β

− 1

M
`(β | D) + λ||β||1, (3)

where ` is the log-likelihood function.
LASSO is a special case of regularization methods using `q-

norms because it yields a sparse parameter vector, i.e., some
irrelevant or redundant parameters are set exactly to 0. This

property is desirable because it applies feature selection while
training the model, remaining a convex optimization problem.

Group LASSO [4] is a regularization technique used to
obtain sparse solutions where predictors are grouped, and a
group is either considered to explain the response variable or
discarded, setting all the features in the group to zero. Let the
model parameters β be split in J groups of coefficients. These
groups may have different lengths.

Let γ ∈ Rn be an arbitrary vector of dimension n ≥ 1 and
K be a symmetric positive definite matrix of dimension d×d.
Consider the norm

||γ||K =
√
γ>Kγ.

Sparse group regularization is applied by solving the uncon-
strained optimization problem given by

minimize
β

− 1

M
`(β | D) + λ

J∑
i=1

||βj ||Ki
, (4)

where K1, . . . ,KJ are positive definite matrices of the appro-
priate dimension to be applied with the norm of the group.
Typical values for the Ki matrices are identity matrices,
transforming the regularization term in the sum of simple `2-
norms for each group.

B. Bayesian networks

A Bayesian network is a representation of a joint probability
distribution over a set of random variables using a directed
graph [5]. It can be defined as a triple B = (X, G,θ), where
X = (X1, X2, . . . , Xn) is a vector of random variables, G =
(X, E) is a directed acyclic graph (DAG) which nodes are
random variables, and the edges encode dependencies between
them and θ is a set of parameters that quantify the conditional
probability tables (CPDs) of the network.

Let pa(Xi) denote the parent nodes of the random variable
Xi as defined in G. The joint probability distribution is then
defined by the network B as

PB(X1, X2, . . . , Xn) =

n∏
i=1

PB(Xi | pa(Xi)). (5)

The structure G of the Bayesian network uniquely defines
the joint probability over all random variables. However, how
each conditional probability distribution (CPD) is computed
remains open. Discrete Bayesian networks assume a categor-
ical distribution and use tables to parameterize the CPDs,
defining θ = {θijk}, where i ∈ {1, . . . , n}, j ∈ {1, . . . , qi}
and k ∈ {1, . . . , ri}. The parameters θijk are defined by

θijk = PB(Xi = xik | pa(Xi) = wij), (6)

and specify the probability of Xi assuming the value xik, given
a parent configuration wij . Accordingly, qi is the number of
different configurations for the parents of Xi, and ri is the
number of different values that Xi takes in the dataset. This
way, the parameters have to be specified for every possible
case, and there is no formula defined to obtain them.

There are two steps in learning a Bayesian network – learn-
ing the structure of the G graph and learning the parameters
set θ.
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The parameters can be estimated using a maximum likeli-
hood estimation (MLE) approach, and are given by

θ̂ijk =
Nijk∑ri
k=1Nijk

=
Nijk
Nij

, (7)

where Nijk is the number of times a configuration of Xi = xik
and pa(Xi) = wij appears in the dataset, and Nij is the
number of times a configuration of pa(Xi) = wij appears in
the dataset, disregarding the value of the RV Xi itself.

Regarding structure learning, there are three main categories
of algorithms – constraint based, score based and hybrid.

The first methods try to estimate the conditional indepen-
dence between random variables from data using statistical
hypothesis testing. The PC algorithm [6] is considered state-
of-the-art in this technique.

The second category, which is more used, relies on a score
function that evaluates the fit of a structure to the data used.
The strategy for training is to search for the best structure,
given a particular score, from the space of all possible struc-
tures, therefore solving the optimization problem

maximize
G

φ(G | D)

subject to G is a DAG,
(8)

where φ is a scoring function, G is the structure of the network,
and D is a dataset with observations of the process to model.
The constraint imposes that the problem is non-convex and
this is an NP-hard problem [7].

Hybrid methods combine these methodologies and usually
work by restricting the search space based on a measure of
independence between nodes.

To solve the optimization problem in Eq. (8), a score
and a heuristic search procedure must be defined. A basic
score metric that can be considered is the log-likelihood (LL).
Estimating the parameters using their MLE estimation as
shown in Eq. (7), the likelihood of the structure can be used as
a comparison measure. The log-likelihood score of a structure
G for a given dataset D is defined as

φLL(G,D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk
Nij

. (9)

A common problem using the log-likelihood score is over-
fitting since it usually returns a graph with all the nodes
connected that explains the given data exceptionally well but
fails to generalized to unseen data. This is unwanted behavior,
and therefore a new score that penalizes complex network
structures was introduced based on model selection criteria.
The minimum descriptor length (MDL) [8] metric is defined
by

φMDL(G,D) = φLL(G,D)− 1

2
|B| logM , (10)

where |B| is the number of elements in the set θ and is given
by

|B| =
n∑
i=1

(ri − 1)qi. (11)

One common way to conduct the searching procedure is to
use greedy hill-climbing. Starting with an empty structure (a

graph with no edges), each iteration executes the operation
leading to the best scoring function increment. Typically,
three operations are considered possible: edge addition, edge
removal, or edge reversal. Naturally, since the interest is
finding an acyclic graph, operations that would result in a cycle
are not allowed. The algorithm stops when no edge addition
results in a positive increment.

More recently, `1-norm based optimization was applied to
structure learning in an attempt to obtain sparse Gaussian
Bayesian networks [9]. Gu et al. [10] extend this approach
to general discrete Bayesian networks.

C. Dynamic Bayesian networks

Dynamic Bayesian Networks are an extension of Bayesian
networks used to model temporal processes. Like Bayesian
networks, these probabilistic graphical models define a joint
probability distribution over a set of random variables. How-
ever, these variables are assumed to change over time due to
an underlying process and are observed in several discrete time
instants.

They are defined by a pair D = (B0, B→) [11]. Let
X(t) = (X1(t), X2(t), . . . , Xn(t)) denote a vector of the
random variables at time t ∈ [0, T ], also known as a slice.
B0 is a Bayesian network defined over X(0), called the
prior network. B→ is another Bayesian network defined over
X(0 : T ) = X(0)∪X(1)∪ . . .∪X(T ), called the transition
network. In the transition network, it is always true that,

P (Xi(t) |X(0 : T )) = P (Xi(t) |X(0 : t)), (12)

i.e., a random variable realization must not be dependent on
future realizations.

The underlying stochastic process is said to be Markovian if
future values of the random variables only depend on a fixed
number of previous timesteps, i.e.,

P (X(t+ 1) |X(0 : t+ 1)) =

P (X(t+ 1) |X[ t− (υ − 1) : t+ 1 ]),
(13)

where υ is the Markov lag.
A random process is said to be stationary if P (X(t) |X(0 :

t)) is the same for all t. This assumption allows extrapolating
the probability distribution of future timesteps by “unrolling”
the network, repeating the same structure for future timesteps.

Similar to Bayesian networks, the network parameters are
easily learned once a network structure has been found.
Therefore, the hard part is to find the structure that best
explains the data.

In general, DBNs structure learning is as hard as in BNs,
because acyclicity has to be ensured in the intra-slice con-
nections. Inter-slice connections can’t generate cycles due to
the constraint in Eq. (12). Monteiro et al. [12] introduce a
polynomial-time algorithm for DBNs (tDBN) was achieved,
restricting the intra-slice connections to a tree (just one parent)
and admitting only a fixed number of parents from previous
slices.
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D. Bayesian multinets

Let P (X1, . . . , XN ) be a probability distribution and
H1, . . . , ..., Hk be a collection of mutually disjoint sets of
realization of the random variables in P . A Bayesian multinet
is a set of k Bayesian networks, where each network Bi is
a comprehensive local network associated with Hi, i.e., a
Bayesian network of P (X1, . . . , XN | Hi) [13]. This multinet
allows the definition of a joint probability distribution

P (X1, . . . , XN ) =
∑
i∈B

PBi(X1, . . . , XN | Hi)P (Hi), (14)

where B = {i, . . . , k : Hi ⊆ X}, X = {X1, . . . , XN}.
Bayesian multinets can be used to perform classification of

given data [14]. Let C be the class random variable of some
realization, and X1, . . . , XN be N random variables that cor-
respond to the feature variables used in the classification. To
classify the observation, the probability P (C | X1, . . . , XN )
must be computed, and the class is the realization of C that
has the highest probability.

To achieve this with Bayesian multinets, in a supervised
learning context, a Bayesian network must be learned for each
class, using a training dataset. The dataset must be split by
class, and for each group, automatic techniques for learning
Bayesian networks can be used to learn a network over the
features X1, . . . , XN . According to Eq. (14), the multinet
defines the joint distribution

P (C = ci, X1, . . . , XN ) = P (C = ci)PBi(X1, . . . , XN ),

where Bi is the Bayesian network learned for class ci. This
distribution may then be used to compute each class probabil-
ity. For a dataset with k classes,

P (C = ci | X1, . . . , XN ) =
P (C = ci, X1, . . . , XN )∑k
l=1 P (C = cl, X1, . . . , XN )

.

(15)
Summing up, classification using a learned Bayesian multi-

net is done by computing the joint probability assuming each
class is true and choosing the class that has the highest
probability.

III. IMPLEMENTATION

Extending the work of Schmidt et al. [9] and Gu et al. [10]
to include temporal information, this thesis proposes a three-
step method for training DBNs called sDBN. First, edge
penalization weights are estimated by fitting an unregularized
multinomial logistic loss to the dataset, as suggested by the
adaptative lasso method. Then, a sparse skeleton, a set of
possible edges for our network, is estimated from our dataset,
penalizing every possible edge using the weights computed in
the previous step. Finally, a resulting network is obtained by
directing the skeleton using greedy hill-climbing, complying
with the temporal restrictions. In the first two steps of the train-
ing pipeline, a parametrization based on multinomial logistic
regression is used to reduce the dimension of the parameter
set and enable gradient based optimization with regularization,
promoting sparse structures and enabling training in high-
dimensional contexts.

A. Network Parametrization
Let B = (X, G,β) be a discrete Bayesian network, where

X = (X1, . . . , Xn) is a vector of discrete random variables, G
is any given DAG and β is a set of parameters. It is assumed
that a discrete random variable Xj can take a value in the
set {0, . . . , rj − 1}. In order to increase the logistic model
flexibility, each random variable Xj is encoded by a set of rj−
1 dummy variables that can take only two possible levels and
work in an one-hot enconding configuration. For convenience,
let di = ri − 1.

Let Xj denote a random variable that belongs to our
network. Let βjli ∈ Rdi denote the vector of parameters
associated with the influence of the value of Xi in the level
l of Xj . If the multinomial logistic regression is used to
parameterize the probability distribution of this node then

P (Xj = l | pa(Xj)) =
exp(x̄>βjl·)∑rj

m=1 exp(x̄>βjm·)
, (16)

where x̄ = [ 1 x ]
> ∈ Rc+1 is an augmented evidence

vector and βjl· = [ βjl0
> βjl1

> ··· βjln
> ]
> ∈ Rc+1 is the

parameter vector associated with level l of Xj . To address the
identifiability issues of the parameters, as discussed for regular
multinomial logistic regression, it is enforced βj 0 0 = 0.

Let βj·i = [ βj0i
> βj1i

> ··· βjdji
> ]
> ∈ Rrjdi , be the

vector of parameters of the edge Xi → Xj . Analyzing the
multinomial approximation, observe that

Xi /∈ pa(Xj)⇔ βj·i = 0, (17)

from the conditional of the probability in Eq. (16). This
equivalence allows determining a sparse graphical structure
from the set of parameters if many are set exactly to zero.

In the context of dynamic Bayesian networks, the dataset
used in training has a value for every random variable in each
timestep. In non-stationary networks, the number of timesteps
in the transition network is equal to the number of measured
timesteps in the dataset. That does not happen in stationary
networks. Stationary networks imply that edges are kept the
same across timesteps. In practice, this is achieved by training
just one timestep and then repeating the edges for every
timestep needed for modeling, unrolling the network. The
original dataset with measurements across all timesteps must
be collapsed down to accommodate the needs for stationary
network training without loss of information.

Each timestep has a collection of its own parameters β(t).
The parameter notation from the Bayesian network approxima-
tion can be applied directly to DBNs. Then, βjl·(t) ∈ RcT+1

is the vector of coefficients associated with the level l of the
random variable Xj(t). Accordingly, and in DBNs introducing
a way to identify inter-temporal edges, βj·i(τ, t) denotes the
parameters associated with the edge Xi(τ)→ Xj(t).

For training of non-stationary networks, the evidence vector
can be thought of as a collection of static evidence vectors for
each timestep, i.e.,

x = (x(0), . . . ,x(T ))

= (x0,1(0), . . . , xn,rn−1(0), . . . , x0,1(T ), . . . , xn,rn−1(T )).

To preserve temporal causality (Eq. (12)), the parameter
vector βjl·(t) has to be restricted in such a way that forbids
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parents from future timesteps. Plus, edges disrespecting the
Markov lag should also be disregarded. To fulfill its imposed
constraints, the vector is forced to be zero everywhere except
when specifying an edge from an allowed parent (in this case,
it is allowed to be freely optimized). Thus,

βjl·(t) = (βjl0(t), 0, . . . ,βjl1(t− υ, t), . . . ,βjln(t− υ, t),
. . . ,βjl1(t, t), . . . ,βjln(t, t), . . . , 0),

(18)
where υ is the Markov lag of the network.

In the specific case of stationary dynamic Bayesian net-
works, the transition model is assumed to be always the same.
To train these kinds of models, it is only needed to determine
the intra-temporal edges of one timestep and edges going
into that timestep from every possible past instant according
to the specified lag. Random variables from other timesteps
are added as nodes to the transition network, allowing the
formation of inter-temporal edges, but they only act as a
stub, are not trained, and are not considered actual network
nodes. A valid dynamic Bayesian network is only obtained
when unrolling the transition network (joined with the prior
network).

The dataset has to be collapsed in such a way that results
in υ + 1 timesteps, and all the information that may lead to
an inclusion of an edge remains present. Let D be a M × c T
matrix obtained by stacking all evidence vectors of the input
dataset, i.e.,

D =

 x(0)

...
x(M)

 =

 x(0)(0) · · · x(0)(T )
...

...
...

x(M)(0) · · · x(M)(T )

 .

The associated collapsed dataset with lag υ, D† is a M(T−
υ + 1)× c(υ + 1) matrix constructed as

D† =



x(0)(0) x(0)(1) · · · x(0)(υ)
x(0)(1) x(0)(2) · · · x(0)(υ + 1)

...
...

...
...

x(0)(T − υ) x(0)(T − υ + 1) · · · x(0)(T )
x(1)(0) x(1)(1) · · · x(1)(υ)

...
...

...
...

x(M)(T − υ) x(M)(T − υ + 1) · · · x(M)(T ).


Therefore, the new evidence vector used in the training of the
stationary network can be thought of simply as

x† = (x0,1(0), . . . , xn,rn−1(0), . . . , x0,1(υ), . . . , xn,rn−1(υ)).

Note that the timesteps inside the parenthesis correspond to the
collapsed dataset pseudo-timesteps and not the original input
dataset.

Every parameter vector is forced to zero, except the ones
associated with the last timestep. Those are the only ones that
need to be optimized and may take any value except, naturally,
the parameter associated with the edge to itself, which is set
to zero. Therefore,

βjl·(t) =

{
0 , if t 6= υ

(βjl0(t), . . . ,βjln(t, t)) , if t = υ.
(19)

B. Loss Function

Foremost, our loss is desired to be decomposable, i.e.,
it can be separated into a sum of components for each
random variable that only depends on it and its parents. This
decomposition implies that the training of the prior network
can be done separately from the transition network since
no node in the prior network can admit a parent from the
transition network due to the restriction in Eq. (12). In fact,
if our score is decomposable and the acyclicity constraint on
the structure is dropped, the parent set for each node can be
estimated independently. A negative log-likelihood score has
this property.

Secondly, for this method to be applicable to high-
dimensional data and to suit better “real” networks arguably
with a small number of edges, a sparse structure is preferred.
To achieve this, a group lasso regularization term should be
applied to the parameters related to every possible edge of the
structure, both intra-temporal and inter-temporal, respecting
the temporal causality and Markov lag.

Combining them both, regularizing the log-likelihood score
with a group lasso penalty, a loss function can be constructed,
summing the cost for each timestep, resulting in

f =

T∑
t=0

− 1

M
`(β(t)) +

∑
τ∈W (t)

n∑
j=1

n∑
i=1

λij(τ, t)‖βj·i(τ, t)‖

 ,

(20)
where `(β(t)) is a shorthand notation to represent the log-
likelihood of a set of parameters associated to the timestep t,
M is the size of the dataset, λij(τ, t) are the regularization
weights, associated with the edge Xi(τ)→ Xj(t) and W (t) =
{τ ∈ N0 : t−υ ≤ τ ≤ t} is a set of previous timesteps within
the specified Markov lag υ.

The regularization weights are obtained using the strategy
of the so-called adaptative LASSO [15], and constitutes the
first step of the proposed pipeline. First, an unregularized
optimization problem

minimize
β̃(t)

− 1

M
`(β̃(t)), (21)

is solved for each timestep to find the set of relevant param-
eters β̃(t). Then, these parameters are used to compute the
adaptative regularization weights using the expression

λij(τ, t) = λ
1

‖β̃j·i(τ, t)‖γ
,

where λ and γ are hyper-parameters.

C. Optimization Method

To find a skeleton to the network, a parameter set β needs to
be estimated by minimizing the loss function. To achieve this,
a coordinate descent algorithm was employed following Gu et
al. [10]. This algorithm was chosen because of its simplicity,
facilitating the development of new software, and its recog-
nized use in this context, for example, in the sparsebn R
package. Since the proposed loss is decomposable, every node
may be independently optimized.
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The coordinate descent algorithm method consists of opti-
mizing the cost function along one dimension, keeping all the
others constant, and iterating throughout the dimensions until
convergence to a solution point is attained. Some coordinates
are forced to be zero due to the constraints imposed by the
DBN. Since these restrictions are always applied only to a
single coordinate, the algorithm can simply set those to zero
and skip their optimization, never moving in directions that
may cause illegal structures. In fact, it is as if the multinomial
parametrization never depended on those coordinates. They are
only on the vector due to notation convenience and to keep
the parametrization general. These effectively speeds up the
training process, as many coordinates can be skipped.

D. Directing the skeleton

Solutions to the minimization of the function in Eq. (20)
define a skeleton for our prior and transition network through
the equivalence in Eq. (17), but in order for it to define a
Bayesian network structure, it has to be a directed acyclic
graph. To obtain one, and following the suggestion from the
MMHC algorithm, a greedy hill-climbing searching procedure
is conducted, starting with an empty structure, but instead of
checking every possible edge addition, reversal, and deletion
on each iteration, it checks only in the set of allowed edges. In
addition, in the transition network, constraining the structures
to DBNs and imposing the temporal causality further decreases
the allowed actions on each iteration. These constraints reduce
the complexity of greedy hill-climbing substantially, especially
in high dimensional contexts. Algorithm 1 summarizes this
method to direct the skeleton, being a slightly modified version
of traditional hill-climbing.

E. Implementation Details

A C++ implementation of the proposed method was de-
veloped and is available as open-source software on github.
com/JBSants/sDBN. The stopping criterion used was based on
the best improvement of all the coordinates. If no coordinate
changes more than ε = 10−4, then it is determined that
the algorithm has converged. The unregularized problem in
Eq. (21) is solved using liblbfgs, a C implementation of
the Limited-memory BFGS algorithm [16]. A parallel version
using the message passing interface (MPI) was developed
using the OpenMPI library. The implementation offers Intel®

MKL acceleration.

IV. RESULTS

A. Synthetic Datasets

Transition networks were trained using data sampled from
known, randomly generated, stationary dynamic Bayesian net-
works. The resulting transition structures were compared to the
true one. True positive edges appear in the estimated network
and correspond to correct edges in the original network. False
positive edges show in the resulting network but are not part
of the original structure. False negative (FN) edges take part
in the ground truth network but were not identified by the
algorithm. Although direct comparison is possible and seen

Algorithm 1 DBN restricted greedy hill-climbing
Input: A temporal dataset D and a set of allowed edges E
Output: A restricted local optimal structure for a DBN G

1: loop
2: S∗ ← −∞
3: for all timestep t ∈ [0, T ] do
4: for all timestep τ such that t− υ ≤ τ ≤ t do
5: for all addition or removal, resulting in a DAG, of

edge Xi(τ)→ Xj(t) in E do
6: G′ ← result of applying operation to G
7: if φLL(G′)− φLL(G) > S∗ then
8: S∗ ← φLL(G′)− φLL(G)
9: G∗ ← G′

10: end if
11: end for
12: end for
13: for all reversal, resulting in a DAG, of every edge

Xi(t)→ Xj(t) in E do
14: G′ ← result of applying operation to G
15: if φLL(G′)− φLL(G) > S∗ then
16: S∗ ← φLL(G′)− φLL(G)
17: G∗ ← G′

18: end if
19: end for
20: end for
21: if S∗ < 0 then
22: break
23: end if
24: G← G∗

25: end loop

in the literature, the algorithm may output a network that is
different from the original structure but still indistinguishable
from an observational standpoint, i.e., both networks have
the same score. To mitigate this issue, the edges of the
original network are labeled as reversible or unreversible [7].
Reversible edges that appear reversed on the estimated network
are still counted as true positives.

A total of 12 transition networks with a Markov lag of 1
were generated for 20, 50, and 300 nodes per timestep, four
networks for each size with an increasingly larger number
of v-structures. Training datasets were sampled with 1000
observations for each network, and test datasets were sampled
with 250 observations. All nodes were considered to have
three possible discrete states. A path of 80 stationary transition
networks was requested with a Markov lag of 1. The path
follows a geometric grid of λ values, chosen to originate a
significant variation on the outputted networks scores. The
backtracking algorithm parameters were set to α0 = 1, η = 0.5
and δ = 0.1, typical values found in the literature.

Aditionally, the performance metrics were compared be-
tween the proposed algorithm and the tDBN algorithm. Three
different structure of stationary networks types were sampled
and used: tree structures with inter-temporal edges restricted
to a maximum of 1, 2, and 3 parents from previous timesteps;
inter-temporal only structures with random parents also re-

github.com/JBSants/sDBN
github.com/JBSants/sDBN
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stricted to a maximum of 1, 2, and 3 parents; random structures
with a fixed number of v-structures similar to those used in the
other experiments. All structures were generated with Markov
lag 1. For each structure type, the algorithms were run five
times using different original networks. sDBN was used to
train a path of 80 networks following a geometric grid of
λ values. tDBN was run using the log-likelihood score and
limited to 2 parents from the previous timesteps, except for
runs using structures with three parents from the previous
timesteps.

Regarding the first experiment, Fig. 1 plots the F1 and
φLL scores for each obtained network in the geometric grid
of λ values. By observing the F1 evolution over the grid of
λ values, it can be established that trained networks follow
comparable trends. For higher regularization, the score starts
very low. These networks are characterized by high precision
values, but the F1 score is very low due to the low recall.
This means that the recovered edges are, in fact, present in
the original network, but only a small portion of the original
network is recovered. Progressing on the grid, the score attains
a maximum on the optimal λ value and then begins to drop.
This drop is explained by drastically lower precision values.
This means that the algorithm starts to select edges that are
not present in the original network, evidencing insufficient
regularization. The results suggest that the sDBN algorithm
can correctly recover transition structures with high accuracy.
The best F1 score tends to decrease as network complexity
increases. The majority of tested structures scored a F1 score
greater than 0.90.

The log-likelihood score on the test dataset follows the same
tendency as the F1 score. The λ value with maximum log-
likelihood does not coincide with the one for maximum F1,
and almost always scored strictly lower relative to the best
retrieved F1. Nevertheless, the maximum log-likelihood still
serves as a valid approximation to the optimal λ, with the
majority of networks scoring a F1 higher than 0.90 using this
criterion. On the tested structures, 9 out of 12 runs present a
likelihood estimated network with F1 within 5% of the best.
This suggests that cross-validation may be used to estimate
the optimal λ.

Table I compares precision, recall, F1 and ellapsed time
between the sDBN and the tDBN algorithms. All experiments
were run on an Intel® Xeon® E3-1220 v3 @ 3.10GHz quad-
core CPU running Ubuntu Server. The sDBN algorithm was
run with Intel® MKL acceleration enabled. The tDBN algo-
rithm was run using OpenJDK version 11.0.11.

The results show that sDBN beats tDBN + LL on structure
recovery. These experiments statistically reject the hypothesis
(Wilcoxon test [17], p = 1 × 10−12) that both algorithms
perfom equally well in terms of the F1 metric. Therefore, it
is fair to extrapolate that, on the tested structure types, sDBN
performs better than tDBN.

Consistently sDBN outperforms tDBN considerably in terms
of running time. Even for n = 50, sDBN outputs the entire
path of 80 networks in under 30 minutes. On the other hand,
tDBN takes more than 4 hours to train a single network.
sDBN has weaker assumptions, better theoretical com-

plexity, lower practical running time and can achieve good
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Fig. 1. Evolution of the performance metrics F1, φLL and φMDL evaluated
along a resulting path of 80 networks using a geometric grid of λ values.
Generated networks have 20 (a), 50 (b) and 300 (c) nodes per timestep.

structure identification. Unfortunately, it has the additional
overhead of optimal λ estimation, if domain knowledge is not
available.

B. MTS benchmark datasets

To test the performance of this learning procedure on real
data, a classification task was performed on a collection of
public multivariate time-series from the UCI Machine Learn-
ing Repository [18] and the UCR Time Series Classification
Archive [19].

Each dataset was split into train and test datasets using
stratified cross-validation with five folds. For each dataset, a
DBN multinet was trained and then used for prediction on
a test dataset. The DBNs were trained considering a Markov
lag of 1 and a stationary process. In the directing process,
nodes were restricted to have a maximum of 3 parents. The
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TABLE I
PRECISION, RECALL, F1 SCORE AND ELAPSED TIME t FOR VARIOUS TYPES OF NETWORKS COMPARING THE SDBN AND TDBN ALGORITHM

sDBN tDBN + LL
Type Pre Rec F1 t / s Pre Rec F1 t / s

Complete Tree + Inter-temporal (n = 20)
p = 1 97.5 (3.2) 93.3 (3.1) 95.3 (1.8) 147.5 (14.0) 66.1 (0.0) 100 (0.0) 79.6 (0.0) 264.6 (4.2)
p = 2 96.0 (3.2) 89.6 (6.3) 92.6 (4.2) 138.6 (14.1) 82.7 (4.3) 100 (0.0) 90.5 (2.6) 264.7 (5.4)
p = 3 93.6 (4.2) 87.6 (4.7) 90.5 (3.9) 113.3 (15.5) 73.4 (6.5) 100 (0.0) 84.5 (4.4) 4338.8 (78.4)

Complete Tree + Inter-temporal (n = 50)
p = 1 95.8 (2.2) 96.2 (3.0) 96.0 (1.6) 952.7 (64.4) 66.4 (0.0) 100 (0.0) 79.8 (0.0) 16474.4 (161.2)
p = 2 91.6 (2.6) 91.7 (2.4) 91.6 (2.1) 862.0 (56.6) 81.3 (3.3) 100 (0.0) 89.7 (2.0) 16502.0 (58.0)
p = 3 89.7 (2.5) 82.9 (2.6) 86.1 (1.7) 775.7 (51.3) 88.1 (3.2) 90.8 (1.6) 89.3 (1.3) 16517.8 (53.3)

Inter-temporal only (n = 20)
p = 1 100 (0.0) 100 (0.0) 100 (0.0) 168.4 (15.1) 33.9 (0.0) 100 (0.0) 50.6 (0.0) 254.8 (4.7)
p = 2 99.4 (1.2) 100 (0.0) 99.7 (0.6) 148.4 (17.7) 49.8 (1.7) 100 (0.0) 66.5 (1.5) 261.0 (4.3)
p = 3 98.4 (2.1) 99.5 (1.1) 98.9 (1.3) 132.2 (10.1) 45.3 (2.2) 100 (0.0) 62.3 (2.1) 4273.6 (61.7)

Inter-temporal only (n = 50)
p = 1 100 (0.0) 100 (0.0) 100 (0.0) 1293.5 (80.2) 33.6 (0.0) 100 (0.0) 50.3 (0.0) 16286.2 (51.0)
p = 2 96.4 (5.3) 98.7 (1.4) 97.5 (3.4) 1043.5 (178.9) 51.5 (2.5) 100 (0.0) 68.0 (2.2) 16332.9 (72.9)
p = 3 98.0 (1.0) 97.6 (1.4) 97.8 (0.9) 854.1 (96.3) 53.8 (3.0) 86.4 (1.0) 66.3 (2.3) 16616.2 (425.6)

Variable v-structures (n = 20)
v = (2, 3) 97.2 (3.9) 100 (0.0) 98.6 (2.1) 172.8 (21.6) 41.7 (1.4) 98.5 (1.9) 58.6 (1.2) 265.3 (3.3)
v = (4, 6) 99.4 (1.2) 98.8 (1.5) 99.1 (0.8) 150.4 (15.0) 50.8 (0.0) 92.6 (1.4) 65.6 (0.4) 261.5 (8.3)
v = (5, 10) 98.9 (1.3) 96.7 (1.0) 97.8 (1.0) 151.4 (20.0) 58.0 (1.3) 94.6 (3.4) 71.9 (1.1) 261.6 (2.9)

TABLE II
AVERAGE PERFORMANCE METRICS ON MTS BENCHMARK DATASETS

Dataset
sDBN tDBN + MDL

Acc F1 Acc F1

ArabicDigits 78.1 78.2 75.5 75.6
CharacterTrajectories 85.8 84.2 86.3 85.1

ECG 76.5 74.7 75.0 72.3
JapaneseVowels 86.7 86.7 89.1 88.8

Libras 63.9 62.2 62.2 60.1
NetFlow 81.9 75.9 84.4 78.4
UWave 92.3 92.3 92.7 92.7
Wafer 89.8 63.5 90.5 64.5

predicted class is predicted computing the joint query for each
network and considering the class associated with the highest
probability (see Eq. (15)). To select the best λ value, a cross-
validation procedure with 10 folds was used in the training
data. Using each fold as a test dataset, a path of 80 networks
was trained, and then the φLL score was maximized for each
network.

Table II reports the average performance metrics on the test
dataset, comparing sDBN and tDBN with MDL. Using sDBN,
ECG, NetFlow and Wafer scored an average AUC metric,
resulting from the integration of each single ROC curve and
posterior averaging, of 0.836, 0.852 and 0.854, respectively.
On the other hand, tDBN scored 0.812, 0.870 and 0.887,
respectively.

On 5 out of 8 datasets, tDBN shows better performance than
sDBN. Still, on all datasets, the proposed method performs
within 3% of the accuracy of the state-of-the-art method. AUC
scores are also similar, but with advantage for tDBN + MDL,
scoring higher in 2 out of 3 datasets.

Poor sDBN performance can be associated with difficulty
to select the optimal λ value. The benchmark datasets do
not have a large number of observations, which can result in
an unsatisfactory cross-validation estimate. This is consistent

with results in synthetic datasets, as the best network in the
path scored in the test dataset often did not coincide with the
optimal one. Also, in these experiments, each network that
belongs to the multinet classifier was trained using the same
geometric grid. However, different classes datasets may have
different optimal λ values, and therefore the request grid may
not be suitable for every class, which can contribute to reduced
classification performance.

Overall results show very competitive accuracies. Although
tDBN wins most cases, both in terms of accuracy and F1 score,
the winning margins are not large. According to the Wilcoxon
statistical test, the available results are not sufficient to reject
the null hypothesis that the two classifiers have different mean
accuracy (p=0.898). The results validate the use of sDBN
algorithm in real data as it still can output better classifiers
when faced with a state-of-the-art DBN training algorithm.

C. Rheumatological health records dataset

Ankylosing Spondylitis (AS) is a condition considered to be
a rheumatological disease [20]. This disease is characterized
by inflammation in skeleton joints and can lead to total fusion
of the axial skeleton and consequent loss of spinal mobility.
Reuma.pt or the Rheumatic Diseases Portuguese Register,

is a database of rheumatological patients health records in Por-
tugal created by the Portuguese Society of Rheumatology[21].
To evaluate the sDBN performance on real data, a subset of
records from the Reuma.pt AS dataset was cleaned and
pre-processed. Table III summarizes the kept features and
their associated discretization scheme. Data discretization was
largely based on the proposed categories by Martins [22].

Provided data had to be cleaned as it is subject to filling
errors and missing values. Missing values were filled using
simple filling methods. For each patient, values from previous
appointments were first forward carried to later appointments.
After that, a backfill method was used to carry back observed
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TABLE III
SUMMARY OF THE FEATURES OF REUMA.PT

Feature name Description

BASDAI A metric to assess disease activity based on a
patient answered questionnaire.

BASDAI Q1-Q6 Questionnaire filled for evaluating the BASDAI
index.

BASFI A metric to assess the level of a patient disability
based on a self answered questionnaire.

BASFI Q1-Q10 Questionnaire filled for evaluating the BASFI
index.

PCR C-reactive protein (CRP) / mg/L.
VS Erythrocyte sedimentation rate (ESR) / mm/hour.

TemCorticActivo Whether the patient is medicated with
corticosteroids.

ArtTumefactas Number of swelled articulations.
ArtDolorosas Number of painful articulations.
EVAMedico VAS from the physician prespective.
EVADoente VAS from the patient prespective.

ASDAS A composite index, computed using the C-reactive
protein value, applied to evaluate disease activity.

ASDASvs A composite index, computed using the ESR value,
applied to evaluate disease activity.

NEW BioActivo Biological agent currently used for treatment.

values to previous appointments. Subjects were also filtered
by the number of appointments, discarding patients with less
than four and more than 80 observations. Additionally, patients
were filtered by applied treatment. Appointments in which
the biological agent was changed were dropped, as well as
subsequent medical evaluations. Treatment plans were the
patient started with no treatment using biological agents, but
then one was applied are kept.

Stationary DBNs with Markov lag of 1 were trained using
the rheumatological dataset. The dataset used has a variable
number of appointments per patient. Therefore, stationary
DBNs are better for this data as only transitions are used to
train the networks. The best lambda value according to each
score was obtained using 10 fold cross-validation. Each cross-
validation run used a path of 80 networks with a geometric grid
of λ values with arbitrarily chosen limits to obtain a reasonable
amount of edges. The λ with the best average MDL score was
selected.

Fig. 2 shows the results. The network has a high prevalence
of identity edges, i.e., edges originating in the same node but
on the previous timestep. This is expected as the value of a
particular clinical variable should influence its condition in the
next medical consultation.

The algorithm identified clusters of nodes around the BAS-
DAI and BASFI indices. These nodes correspond to the
individual questions on each questionnaire. This proves the
algorithm’s ability to find good relationships between variables
as the indices are determined using the individual questions,
leading to an evident relationship. This also shows that result-
ing networks have intra-temporal v-structures, which are not
allowed by the tDBN algorithm and is a clear advantage of
the proposed algorithm.

The same happens for the ASDAS, and ASDAS-ESR in-
dices as the corresponding clinical indicators applied in the
calculation (CRP and ESR, respectively) are tied to both
indices. ASDAS is also associated with the VAS level from the
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Fig. 2. Transition network trained with data from the Reuma.pt dataset
considering only patients that were treated by a single or none biological
agent.

patient perspective and Q2 from the BASDAI questionnaire. In
fact, these two variables also have a considerable influence on
ASDAS [23], corroborating that the algorithm outputs a good
structure. These results are not consistent with Martins [22]
as, in most networks, a relationship is found between ASDAS
and VAS from the doctor’s perspective instead. Since ASDAS
is calculated with the patient perspective, the shown results
are more reasonable.

No network included a relationship with corticosteroids
use. Martins [22] also found that corticosteroids use is very
disconnected from the considered features. This suggests that
the use of these drugs does not influence disease progression.
In fact, the use of steroids can provide pain relief, but it has
not been proved to be effective with AS [20].

For a quantitative study, a classification task was designed
aiming to predict the treatment outcome. To this end, station-
ary DBN were trained on a transition dataset between two
consecutive appointments. For comparison purposes, networks
were trained with the tDBN algorithm. A class variable was
designed discretizing the ASDAS as a binary feature – low
or high disease activity – being 3.5 the threshold between the
two.

To predict treatment outcome, the resulting network was
queried for the probability of the class variable in the latter
timestep using evidence only for the first timestep. The pre-
dicted class is the node level with the highest MAP probability,
given the evidence.

Table IV shows performance metrics for the trained clas-
sifiers. All classification algorithms accurately predicted the
disease activity in the medical consultation, with average
accuracies greater than 80%. Given that a balanced binary
dataset was used, this shows that these classifiers can be
helpful in aiding clinical decisions.
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TABLE IV
AVERAGE CLASSIFIER PERFORMANCE ON THE REUMA.PT DATASET

Algorithm Accuracy F1 score AUC

sDBN + LL 0.875 (0.048) 0.877 (0.050) 0.913 (0.039)
sDBN + MDL 0.838 (0.151) 0.856 (0.105) 0.846 (0.125)

tDBN + LL 0.873 (0.050) 0.876 (0.050) 0.920 (0.036)
tDBN + MDL 0.882 (0.065) 0.885 (0.064) 0.923 (0.037)

In this particular classification task, tDBN with MDL is the
best classifier. Not only has greater accuracy, but it also has no
additional overhead of discovering the optimal λ. Also, it was
trained admitting only one parent from the previous timestep,
the fastest configuration possible. Therefore, sDBN does not
prove itself useful in this context, as the dimensionality is still
tractable to be trained by other methods with better results.
The lower performance of sDBN can be linked to difficulty
in choosing the optimal λ. Additional studies have to be done
to determine if increasing the number of folds on the cross-
validation step to find the optimal network can lead to a better
result. These results in medical datasets are consistent with the
results found with multinet classification on MTS benchmark
datasets.

V. CONCLUSIONS

The proposed method achieves great structure identification
in low and high-dimensional contexts. This work reports
excellent results in DBNs with up to 300 nodes per timestep
in artificial datasets, dimensions simply unattainable by state-
of-the-art techniques like tDBN in a reasonable time. The
new algorithm also identified suitable transition networks
on rheumatological data that uncover known relationships
between dataset features. These structures are full of intra-
temporal v-structures that optimal tree algorithms can’t re-
cover.

The validation results in this document are by no means
extensive. These experiments focused on training stationary
networks with Markov lag 1, so additional work can be done
to test the algorithm for networks with different configurations.
Also, non-stationary network training is possible, but it is
not tested. Finding public high-dimensional temporal datasets
proved to be a challenge. Therefore, further studies to assess
the performance of the algorithm in these kinds of datasets are
needed.

The proposed algorithm conducts a full optimization proce-
dure on the multinomial logistic parametrization, but only the
support of the parameter vector is considered when directing
the network. It should be possible to improve the method by
stopping the optimization if the active set did not change in a
certain number of iterations.
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