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Resumo

No nosso Sistema Solar existe o que chamamos de corpos menores, que são objetos com pequenas

massas e formas anômalas que apresentam uma gravidade fraca e irregular, trazendo uma camada

extra de complexidade ao tentar estimar as trajetórias ao seu redor. O objetivo desta tese é desenvolver

um solucionador para um Problema de Valor Limite de Dois Pontos (TPBVP), que pode ser aplicado a

corpos menores. O trabalho realizado aqui será baseado num pacote de software existente denominado

Small Body Navigation Analysis Tool (SBNav), desenvolvido pela GMV. Esta ferramenta permitiu a

propagação de trajetórias precisas perto de corpos menores, limitada a um Problema de Valor Inicial

(IVP). Portanto, o SBNav foi adaptado para incorporar um algoritmo hı́brido, uma combinação do Método

de Nelder-Mead e um Algoritmo Genético. Finalmente, a ferramenta desenvolvida foi implementada

com sucesso num caso de estudo, o sistema Marte-Phobos (Missão Phobos-SR).

Palavras-chave: Corpo Menor, Problema de Valor Limite de Dois Pontos, Método de Nelder-

Mead, Algoritmo Genético, Missão Phobos-SR
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Abstract

In our Solar System there is what we call small bodies, which are objects with small masses and

anomalous shapes that present a weak and irregular gravity, bringing an extra layer of complexity when

trying to estimate trajectories around them. The objective of this thesis is to develop a solver for a

Two-Point Boundary Value Problem (TPBVP), which can be applied to small bodies. The work done

here will be based upon an existing software suite called Small Body Navigation Analysis Tool (SBNav),

developed by GMV. This tool allowed for the propagation of accurate trajectories near small bodies,

limited to a Initial Value Problem (IVP). Ergo, SBNav was adapted to incorporate a hybrid algorithm,

a combination of the Nelder-Mead Method and a Genetic Algorithm. Finally, the developed tool was

successfully implemented on a case study, the Mars-Phobos system (Phobos-SR Mission).

Keywords: Small Body, Two-Point Boundary Value Problem, Nelder-Mead Method, Genetic

Algorithm, Phobos-SR Mission
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Chapter 1

Introduction

1.1 Motivation and Objectives

In our Solar System there are a multitude of astronomical objects with different characteristics and

classifications. One type is what we call small bodies, which are objects with small masses and anoma-

lous shapes that present a weak and irregular gravity. This brings an extra layer of complexity when trying

to estimate trajectories around them and therefore, we need to develop different tools and methodologies

to address this subject, given that the current methods used are not suitable.

The objective is to develop a solver for a Two-Point Boundary Value Problem (TPBVP) setting, in other

words, to allow an user to specify both a start (P0) and target end point (PT ) in space and the tool will

be able to calculate the required velocity (VS) in a predefined time interval (∆t) to reach the destination

provided (Figure 1.1). On account of all the complexities regarding small bodies, classical methods such

as Lambert’s Problem are not applicable to this problem, hence a new approach is required.

Figure 1.1: Overview of the TPBVP solver.

This thesis will be built upon an existing software suite called Small Body Navigation Analysis Tool

(SBNav), which was developed under the project Fast Mission Operations Platform for Small Body GNC

(FASTMOPS) by GMV, sponsored by the European Space Agency (ESA). This software is meant to

perform a thorough navigation analysis around small bodies, with a focus on the system Spacecraft-

Phobos. Among other functions, it allows solving Initial Value Problem (IVP) scenarios around objects

with complex force fields, which is the basis for the TPBVP tool to be developed.
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The SBNav tool allows for an user to provide as input a starting point in space (P0), an initial velocity

(V0) and a time interval (∆t) and as output provides the trajectory and final location (PF ) that, for ex-

ample, a spacecraft would accomplish on the proximity of a small body under the conditions provided

(Figure 1.2). This is an over simplification of the features that SBNav offers but this will be addressed

more in depth in a future chapter.

Figure 1.2: Overview of the IVP solver from SBNav.

The case study for this problem is a mission to the Mars-Phobos system since it presents all the

complex specifications that make a small body a challenge and which is why it was also used for the

original SBNav. I must also state that the tool must be applicable for any small body in the Solar System,

hence it needs to be a generic TPBVP solver, adding to the complexity of the problem.

As previously stated, small bodies present a vast array of inherent complexities that are caused by

multiple factors: even the highest detailed images of these bodies’ surface structure present a complex

problem with many unknowns; their irregular shape which makes us dependent on approximated models

for its density and consequently, its gravitational potential; a unique spin state which affects motion of

other neighboring objects; planetary gravitational perturbations from other celestial bodies; perturbation

from solar radiation; outgassing pressure in the case of comets. In other words, each system/scenario

is unique and presents its own challenges [1]. These complexities and challenges are considered nav-

igational constraints on approach trajectories for small bodies, considering their direct contribution and

effect on the course of a spacecraft and its navigation.

When looking at the specific system of Mars-Phobos we will be dealing with, based on ESA re-

quirements for FASTMOPS [2]: an approximated model for its shape and density and hence for its

gravitational field; multiple gravitational perturbations from Mars, Phobos, Deimos (Mars’ other moon),

Jupiter, Saturn, the Sun; an estimate of Mars position in relation to Phobos; solar radiation. There are

many difficulties from an orbital mechanics point of view and there are still limitations to the software

suite that will be used that are still not accounted for and will be addressed further on.

The calculation of the necessary velocity to travel between two points in space in a defined time

interval is the main objective of this thesis, but there is a secondary objective of determining collision-

free trajectories with the tool developed. These are approach trajectories which guarantee that when

the spacecraft reaches the target location (PT ) and continues on its current course, it would not result

on a crash onto the nearest body. This type of approaches avoid the most direct path between the two

defined points, requiring longer transfer durations.

2



Collision-free trajectories are useful from the point of view of Ground Operations, since communica-

tion with the spacecraft is not guaranteed at all times, hence placing a spacecraft in a trajectory that will

not result into a collision and mission failure is advantageous. Specifically, in a scenario that a space-

craft reaches the target location (PT ), where it would start the descent and final approach to the body’s

surface, Ground Operations command control is released to on-board autonomy, but if final approach is

aborted, then the spacecraft can safely continue on the current course, allowing for the necessary cor-

rective actions to be performed later on. This type of scenarios are considered operational constraints on

approach trajectories for small bodies, since the closer a spacecraft gets to the body’s surface, the more

unpredictable the region is and inputs from Ground Operations are further limited by communication

speeds. Establishing collision-free trajectories are a containment for said operational constraints.

The determination of collision-free trajectories are not a boundary of the TPBVP tool/solver devel-

oped. In other words, the tool and its algorithm are not designed to find this type of trajectories in a

closed-loop. These approaches are determined by the user by taking advantage of the ability to solve

TPBVP and adjusting its inputs accordingly. However, the tool’s ability of finding collision-free trajectories

is testimony to its capabilities, considering the longer transfer durations required, which in turn subject

the spacecraft to complex force fields for longer, increasing the difficulty of the problem. These matters

will be made clear over the length of this thesis, after the complexities of the problem are made more

apparent and afterwards, when examples for different trajectories and scenarios are displayed for the

case-study selected.

1.2 State of the Art

The classical method for solving TPBVP and determining orbits around astronomical objects is the

Lambert’s Problem, but its major constraint is that one of the bodies must present an infinitesimal mass

compared to the others, making it a two-body problem, which is a subject well known and studied.

In the case of small bodies, the gravity field is small and highly irregular which makes any orbit

around it extremely susceptible to external perturbations. There are various literature works that study

the subject, some from a more generic point of view encompassing all its varied challenges [1] while

others focus on a specific one. There are works on asteroids and their different properties [3], others

focus on gravity behavior under certain body shapes [4] or on how perturbations can be quantified and

applied to the laws of motion [5]. One can also find numerous examples of studies more aimed towards

specific missions or scenarios, for instance the asteroids Eros [6] or Itokawa [7], the moons Europa [8]

or Phobos [9], and a binary asteroid system [10].
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At the time of this thesis, there is no general method to solve the n-body problem, hence methods

are developed in a case-by-case basis depending on particular characteristics of each individual astro-

nomical object in study. GMV made extensive studies of the use of Quasi Satellite Orbit (QSO) on the

Mars-Phobos system to place a spacecraft in a stable orbit of a small body [2]. For this case, while

the spacecraft is orbiting Mars, the Phobos’ gravitational pull prevents the spacecraft from drifting away,

thus resulting in a ellipse-like path around Phobos (Figure 5.2). This type of orbit is sufficiently stable to

allow for many months of operation in the vicinity of the moon. However, this approach is used for longer

periods of motion as opposed to the short transfer trajectories that we face during TPBVP scenarios.

This application of QSO is also supported by others works [11] but not applicable or in the scope of this

thesis.

There are two main obstacles in this work: the physics behind orbital dynamics around a small

body and the mathematical challenge of an non-linear three-dimensional boundary problem. GMV has

addressed the problem of orbital dynamics when they developed the trajectory propagator present on

the SBNav tool as an IVP solver, thus this thesis will focus on the mathematical problem of the TPBVP

when based on the aforementioned IVP of SBNav.

1.3 The Tool

The software that will be serving as basis for this thesis and to achieve the set objective is SBNav. It

was built upon another software suite called Interplanetary Navigation Analysis Tool (INTNAV) which was

developed by GMV, as the name implies, for interplanetary navigation and deals with different dynamics

and environment models as those required by the FASTMOPS project.

As a consequence of the complexity inherent to navigation around small bodies, a new tool was

required. This tool would focus on the proximity of a spacecraft to a body of irregular shape and gravity

field, and also help determine the impact of operational performance aspects and the hand-over from

ground command to on-board autonomy.

The end result of SBNav is a generalist software suite that can be used or adapted to be applicable

to any small body of the Solar System [2] but limited to IVP scenarios where from a starting point the

tool is able to propagate the trajectory of a spacecraft in a defined time interval.
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1.4 Thesis Outline

In the next chapter there is an overview of the SBNav features and its architecture with a focus on the

trajectory calculation component. It is a more general perspective of the tool and its overall requirements.

Then, will proceed to review the possible methods to solve boundary value problems ranging from

the more classical approaches to more complex and mathematically challenging solutions applicable to

non-linear problems.

Subsequently, detailed information of the developed tool and algorithm is presented, showing how the

tool is able to achieve the objective of this thesis. An overview of its architecture and different modules

is provided, explaining how multiple approaches are used and combined to achieve the end result.

The developed tool is then applied to the Phobos-Mars system on different mission scenarios, esti-

mating, when possible, any collision-free trajectories for said scenarios.

Finally, the discussion of the results obtained and the usability of the TPBVP tool created as the

generalist utility that is designed to be.
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Chapter 2

SBNav

2.1 Software Overview

A tool for navigation analysis requires a combination of multiple functionalities such as trajectory

planning, models for different measurement systems, statistical estimation method and guidance laws for

computing maneuvers. In order to achieve this, the SBNav software suite was broken into the following

subsystems:

• Trajectory Prediction

The capability of performing trajectory prediction based on the solution of equations of motion for

the spacecraft. The product of this propagation is the spacecraft state vector and the partial deriva-

tive of this state vector with respect to the state at the initial epoch and any dynamic parameter

affecting the spacecraft [12].

The modules that allow for the functionality of this subsystem were developed in the language

Fortran 77 which will also be a requirement/limitation for the TPBVP module to be developed.

This will be the subsystem over which this work will be build upon and adapted to achieve the set

objectives, hence it will be the one given more focus on this chapter. The remainder subsystems

will only be briefly mentioned for a better overview of the tool and its complexity.

• Measurement Generation

Models for different measurements considering all relevant parameters that contribute to the sta-

tistical errors of the model accuracy [12].

• Parameter Estimation

A statistical method that provides parameter estimation and covariance analysis. A covariance

analysis where the statistical random and systematic errors are properly accounted for, be it as

estimated of or considered parameters [12].
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• Guidance

Trajectory control maneuver guidance laws for computing the trim maneuvers required to correct

the trajectory and to achieve some given conditions at a point of the trajectory. Statistical estimation

of maneuvers and associated execution errors [12].

• Human-Computer Interface

To provide the user an interface to manage the definition and execution of a navigation strategy to

be tested (to input date, execute commands and generate numerical and graphical output quanti-

ties required for mission analysis) [12]. This interface will also be used to run the new feature of

TPBVP solving for the tool and it is based on the Matlab language.

• Software Manager and Sequencer

In charge of managing and sequencing the execution of the different subsystems which are com-

manded by the user [12]. That is to say, provide a bridge between the Matlab interface/modules

and the Fortran components.

• Results Exploitation

To process the numerical data generated by the previous subsystem in a suitable way as required

[12].

2.2 Requirements

In this section, there will be a focus on the trajectory definition and propagation requirements appli-

cable to the TPBVP tool developed, given that the general requirements of the SBNav, as a full software

suite, are outside the scope of this thesis.

2.2.1 Coordinate Systems

SBNav uses several types of reference frames; we highlight here those of particular relevance for

our scenario: inertial, MEE2000, centered at either Mars or Phobos; body-fixed, centered at Mars;

and synodic, a modification of the typical three-body problem reference frame. The latter is defined

specifically for SBNav and it is the one used internally by the software for the spacecraft propagation

[12].

Body-Fixed Coordinate System

Non-inertial (rotating with the given body). The fundamental plane is the equatorial plane of the given

celestial body at the given epoch. The X-axis points along the prime meridian, the Z-axis points to the

north pole and the Y-axis completes the right-handed system [12].
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Synodic Coordinate System

In the Mars-Phobos case the primary body is Mars and Phobos is the secondary. The origin is the

center of mass of the secondary body. The X-axis points in the direction of the center of mass of Mars,

and the Z-axis in the direction of the orbital angular momentum vector, and the Y-axis completes the

right-handed orthogonal reference frame. This system can be better observed in Figure 5.2 in a later

chapter. The ephemerides and rotations of Phobos to assemble this reference frame follow the inputs

provided by the user [12].

Inertial System

The inertial system used in SBNav is the Mean Earth equatorial barycentric system of J2000.0

(MEE2000). The direction of the coordinate axis is defined such that the XY plane coincides with the

predicted mean Earth equator plane and the X-axis points towards the predicted mean vernal equinox

at the epoch J2000.0 (noon of January 1st of the year 2000) [12].

2.2.2 Ephemerides and Rotational Elements

For Phobos and Mars, the rotational elements in MEE2000 shall follow NASA’s Navigation and An-

cillary Information Facility (NAIF) [13]. The user shall have the option to overwrite this data [12].

The celestial bodies’ ephemeris will be loaded directly from files that can be modified/created by the

user. The file will possess the Chebyshev coefficients of a body’s trajectory divided into as many arcs

as the user wishes [12].

2.2.3 Integration of the Equations of Motion

The software shall have the capability of performing trajectory prediction based on the solution of

the equations of motion of the space vehicle (mass point model) with given initial conditions or final

conditions [12].

Numerical integration

The numerical integration of the equations of motion is performed in a rectangular coordinate sys-

tem. A fixed step size, 8th-order propagation method (Runge-Kutta) is used for the integration of the

differential equations [12].
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Dynamic model

Dynamic model options can be selected for each phase of the trajectory. The following sources of

perturbing acceleration are considered:

• N-point masses perturbation model: acceleration due to the central body and the third body effects

[12].

• Non-spherical gravitational effects: acceleration due to the non-spherical characteristic of the grav-

itational potential, expressed in terms of zonal and tesseral harmonics expansion. The model

includes non-spherical gravitational effects of both the primary and secondary bodies [12].

• Solar radiation pressure: the force acting on a vehicle surface due to the solar radiation pressure

is proportional to the effective area normal to the incident radiation and to a reflection coefficient

and is inversely proportional to the square of the distance from the Sun. Solar eclipses caused by

the primary’s and secondary’s shadows are considered [12].

Gravitational Models

The gravitational models indicated below are used for the integration of the equations of motion.

• Phobos

A quadruple field gravitational harmonics (J2 and C22) model shall be considered – the default

coefficients are user-configurable and the field can be up to a 50x50 field. The standard values

are a 2x2 field that follows from NASA’s Navigation and Ancillary Information Facility (NAIF) [12].

• Mars

NASA’s Navigation and Ancillary Information Facility (NAIF) model shall be used, reduced to de-

gree 10 for Mars zonal harmonics and degree and order 10 for tesseral harmonics. Coefficients

are user-configurable and the field can be up to a 50x50 field [12].

• Other Celestial Bodies

For the remaining objects, the point mass models from NASA’s Navigation and Ancillary Informa-

tion Facility (NAIF) are considered. The user shall have the possibility to overwrite these values

[12].

2.2.4 Trajectory Definition

The following indications are valid for the original SBNav (IVP tool only) for scenarios defined as

an Initial Value Problem (IVP), the different inputs required by the user for the TPBVP module will be

addressed in 4. Segmentation of trajectories shall be possible by starting a project with other project’s

final conditions but this feature is outside the scope.
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Initial Value Problem

• Initial State - It is possible to compute the trajectory by propagation of the equations of motion,

from an initial state (forward propagation) or final state (backwards propagation). The following

options are available for initial state definition:

– Direct input;

– State and time at the end of another project;

– State and time at the end of another project + direct input dV.

• Reference Frame - Initial state vector can be input in either Inertial, Synodic, Body-Fixed Refer-

ence Frame, or Orbital Elements.

• Stop conditions - The system has the capability to stop the integration of the spacecraft motion:

– At a defined date. The user can define a date (with several format options) in which to stop

the propagation;

– After a defined time has passed;

– At xz-semi-plane crossing on the positive or negative x-semi-axis side after n revolutions

around the secondary have been completed. The user must define the number of revolutions

to be completed before the trajectory is to be stopped at the semi-plane crossing;

– At yz-semi-plane crossing on the positive or negative y-semi-axis side after n revolutions

around the secondary have been completed. The user must define the number of revolutions

to be completed before the trajectory is to be stopped at the semi-plane crossing;

– At xy-plane on upwards or downwards crossing after n revolutions around the secondary have

been completed. The user must define the number of revolutions to be completed before the

trajectory is to be stopped at the plane crossing.
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Chapter 3

Boundary Value Problem

Literature Review and Approaches

3.1 Two Point Boundary Value Problem

This chapter will present each approach used to create a TPBVP solver following the same order they

were researched, method by method, section by section, and explain why certain option were favored

while others were discarded.

Mathematically speaking, when a problem presents boundary conditions which are defined at differ-

ent values of the independent variable this creates a boundary value problem. In other words, when

boundary conditions are specified at more than one point, typically, some of the conditions will be spec-

ified at a starting point P0 and the remainder at a final/target point PT . [14]

Considering all the difficulties inherent to estimating orbits around small bodies, we also know that

we will be working with a highly unstable environment from the point of view of astrodynamics, which

translates into a non-linear multidimensional boundary value problem mathematically and this will be the

problem for which a solution must be devised.

3.1.1 Lambert’s Problem

Lambert’s problem is the classic solution to the boundary value problem for interplanetary travel,

where one of the bodies is infinitesimally smaller and the other two can be taken as two point masses,

hence it can be approximated into a two-body problem. Currently, the method is still well regarded [15],

but unfortunately it is not applicable to our scenario, an N-body problem. However, it can be used for an

initial guess of the TPBVP solver developed. As a result of experimentation with different trial scenarios,

it is found that Lambert’s problem provides an acceptable initial guess which can facilitate convergence

for short transfer trajectories between two established points in the TPBVP, which are not exposed to the

highly irregular gravitational field for long.
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3.2 Quasi-Newton Methods

As it has been stated previously, SBNav presents an IVP solver, which was tested and validated by

GMV via the FASTMOPS project, for the problem of small bodies [16] which will be adapted into a TPBVP

solver, this is classically called a shooting method in the field of numerical analysis [14, 17] and involves

finding the IVP solution that will satisfy the boundary conditions. In other words, one tries multiple IVP

solutions trying to find the one that will fulfill the set boundary conditions, which mathematically translates

into finding a root for the function F (.) which represents the difference between the desired boundary

value and the one obtained by the IVP. If applying this concept to our sample problem, we have

F (V0) = f(P0, V0,∆t)− PT (3.1)

where P0 is the starting location for the spacecraft; PT is the target location for the spacecraft; ∆t is

the transfer time from P0 to PT ; V0 is a starting velocity for the spacecraft at P0; and f(P0, V0,∆t) is the

function representing the IVP tool of SBNav.

Now that we defined the Equation 3.1, we need to find a root-finding method that can find a V0 that will

satisfy F (V 0) = 0, which takes us to the classic iterative method of Newton’s Method [14]. This method

relies on the derivative of the shooting function f(p, v, t) to estimate the next iteration when starting from

an initial guess V0. Since the problem at hand is multidimensional the result would be a Jacobian matrix,

that because of the non-linearity of the problem at hand, presents us with an ill-conditioned matrix that

invalidates this method completely or discourages one from attempting it. Other variations of the method

were analyzed [18, 19], but were also limited by the same reason or by the presence of multiple local

minima which are also particular for our case study. This new issue will be better addressed further on,

since at the moment the ill-conditioned Jacobian is the main obstacle.

Based on [14] it was decided to avoid the classical Newton-Method and continue on to the family

of the Quasi-Newton methods, since these are designed for problems where the Jacobian or Hessian

matrices are unavailable or require extensive computing power to be calculated at each iteration, which

seems to fit with the current obstacle of an ill-conditioned Jacobian when selecting a valid root-finding

method. From this family, a very robust and powerful method is the Broyden’s Method [14] which is

mentioned in multiple works regarding Quasi-Newton methods applied to nonlinear systems [20–26],

thus it takes us to the next section.

3.2.1 Broyden’s Method

From the Quasi-Newton group of methods available, there is one subgroup called secant methods

which obtain an approximate Jacobian by applying the secant method [14, 27] in one dimension, which

is a variation of Newton’s Method [14]. The first and best of these methods [14] seems to be Broy-

den’s Method [28] which the literature seems to agree into being a valid option for multidimensional and

nonlinear systems [14, 29–33], hence the TPBVP tool started development with this as the root-finding

method.
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Unfortunately, the strength of this method is also its weakness, granted that it can converge faster with

less cost, computationally speaking, compared to similar methods, it is still dependent and limited by an

approximated Jacobian and its properties. For instance, if it becomes singular or nearly singular or the

problem is ill-conditioned, then this method becomes incapable of converging. For our specific problem,

we are trying to find the three-dimensional velocity vector which allows the spacecraft to reach the

desired target location, but the Z component of this vector is in different orders of magnitude compared

with the other ones, which makes it ill-conditioned and consequently, will cause the Jacobian to be

nearly-singular, invalidating the method completely.

The limitation of the method is a known quantity and there have been some strategies that were

developed to mitigate or bypass this factor of facing a singular or nearly-singular Jacobian [14], such as

starting from the identity matrix as initial Jacobian for the iteration process, supposedly neutralizing the

problem that the Z component causes. However, it was observed after multiple tries, that the iterative

process would get blocked sooner or later by a nearly-singular Jacobian, which would be generated by

the mathematical nature of the problem.

More attempts to try bypassing the issue of an ill-conditioned Jacobian could have been attempted,

but while reviewing more of the literature it was also clearer that a root-finding method based in Newton’s

Method or its variations which are designed to converge based on the derivative of the problem do not

behave well in solution spaces with multiple local minima for they would get stuck trying to converge

into one indefinitely with no safeguard that would allow it to jump out of this area and look for a new

minima. With this conclusion and the introduction of the idea of local minima we are taken into the field

of minimization or maximization of functions, also called optimization mathematics.

3.3 Optimization Mathematics

In the minimization or maximization of functions the idea is similar as in root-finding methods. For in

this methodology, one has a function with N independent variables for which the correct values of the

latter need to be determined in order to achieve a maximum or a minimum. The terminology is slightly

different and the concept of local vs global minima is also introduced. If a value is found that represents

the absolute highest or lowest value of the function in its domain then this would be called a global

extremum (maximum or minimum point), while other points that are found to be the highest or lowest

value in a finite space of the function’s range are called local extremum.

Our function to be minimized was already defined on Equation 3.1 and as was previously mentioned,

our function’s particular physics problem of motion around small bodies presents the characteristic of

numerous local minima in its range, which increase in number for longer transfer trajectories, causing

longer periods where the spacecraft is subject to an unstable area from the perspective of orbital dy-

namics. For our case study, there is no need to find a global extremum, considering these are extremely

hard to find [14], therefore local minima near zero will be acceptable (exact specification for near zero

will be defined later on Chapter 5), unfortunately these minima are also rare.
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According to [14], there are two main methods applicable to a multidimensional case that do not

need the function’s gradient: Nelder-Mead Simplex Method [34] and Powell’s Method. Since it takes

time to adapt SBNav and the TPBVP tool to include a new method and there was a time constraint in

having access to GMV tools and documentation, it was decided to select one of these two to continue.

The Nelder-Mead Method was chosen due to being extremely robust, although at a cost of also being

extremely slow for higher dimension problems [14]. Nevertheless, considering our problem’s moderate

dimension and the fact that Fortran, a very powerful programming language [35], is used for the comput-

ing process, it is not expected that the known weaknesses of this method will manifest for our particular

problem.

3.3.1 Nelder-Mead Simplex Method

A simplex is the geometrical figure consisting, inN dimensions, ofN+1 points or vertices and all their

interconnecting line segments and polygonal faces [14], which for our problem of three dimensions would

be a tetrahedron. To generate this geometrical form, one would take the initial guess of the problem as

P0 (it can assume any of the vertices’ positions) and from there, generate the other N points/vertices

based on

Pi = P0 + ∆Sei (3.2)

where the ei’s are N unit vectors and ∆S is a constant/factor that represents the problem’s characteristic

length scale, which will affect how spread apart are the points and how each new point and iteration will

be generated, in other words, it will affect how further away one goes on each iteration starting from the

initial guess, depending on the type of operation [36].

The Nelder-Mead Method will then evaluate the function at each of the N + 1 points and replace the

worst one with different set of operations. Below is a quote regarding the iterative process from [14],

seeing that from all the literature, it presents the best explanation for the process that the method follows:

”The downhill simplex method now takes a series of steps, most steps just moving the

point of the simplex where the function is largest (“highest point”) through the opposite face

of the simplex to a lower point. These steps are called reflections, and they are constructed

to conserve the volume of the simplex (and hence maintain its nondegeneracy). When it can

do so, the method expands the simplex in one or another direction to take larger steps. When

it reaches a “valley floor,” the method contracts itself in the transverse direction and tries to

ooze down the valley. If there is a situation where the simplex is trying to “pass through the

eye of a needle,” it contracts itself in all directions, pulling itself in around its lowest (best)

point.” [37]
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For our specific problem, the method will be considering as its termination criteria the difference

stated in Equation 3.1, taking into account an acceptable tolerance (to be specified by the user) for

which the spacecraft can be deemed close enough to the target point, guaranteeing a near zero result.

That is to say, the objective is for a spacecraft to reach the target coordinates PT , though in practice there

is a margin of error inherent to such scenario, which the simplex method tries to minimize. Namely, the

goal is to reach an end position P that is in an acceptable range, to be defined by the user, of the target

PT . The first version of the function for simplex generation (GENPLEX1) was developed to adopt a factor

∆S input by the user, although it assumes a user’s prior knowledge of the mathematical problem and/or

of Nelder-Mead Method.

After integrating the method into the tool, it was the first time that convergence was reached, specifi-

cally the first occurrence of the tool finding a velocity VS that guarantees the spacecraft will reach PT in

the defined ∆t. This solution was found quite fast I must add (one to two minutes), however when test-

ing the method versus scenarios with longer and longer transfer trajectories it started showing a higher

sensibility to the initial guess provided. For cases where the initial guess would be highly inaccurate

(which most of them are), the method would keep sinking into multiple local minima neighborhoods and

would never converge, or if fortunate, it would converge after thirty minutes or more, if enough iterations

were allowed.

To better understand the irregular and complex solution space that the problem presents, a number

of 3D figures were plotted of the latter (Figure 3.1 to Figure 3.4). These plots are based on an IVP tool

fully developed in Matlab by GMV (for the purpose of this thesis, it shall be named GMVPropagator ),

further adapted to incorporate a TPBVP solver. However, this tool’s IVP solver is based on a propagator

of the 4th-order propagation method (Runge-Kutta) with simple approaches for the remainder pertur-

bations/complexities. These approaches were established by GMV to be sufficient for the purpose of

plots and other illustrative objectives, though not acceptable for the more rigorous standards of FAST-

MOPS (Chapter 2). Finally, note that this GMVPropagator has a much lower precision than SBNav and

is considerably slower.

The GMVPropagator can solve TPBVPs based on the Matlab function fminsearch, which is the

equivalent of the Nelder-Mead Method. This tool is used as a substitute of the more robust and faster

SBNav as a result of the latter’s limitations. SBNav Matlab and Fortran symbiosis architecture limits its

adaptability, hence it is only designed to output one solution of the problem. Therefore, GMVPropagator

is used for the purpose of plots and simple representations of the problem characteristics. Particularly,

the representation of a solution space of possible velocities that a spacecraft can assume and the re-

sulting achieved position. For the purpose of a 3D representation of a 4D problem, the VZ component

was locked and replaced by F (V ) on the Z-axis. The following plots, Figures 3.1 to 3.4, are focused

around a known solution VS for a specific scenario, which can be found at the center of the XY-plane.

There, valleys of local minima are observable in the neighborhood of the solution VS , causing the Nelder-

Mead Method to keep attempting to converge indefinitely into said minima, not allowing for guaranteed

convergence into VS .
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Figure 3.1: Zoomed in solution space surrounding VS for Scenario 5, Subsection 5.3.5.

Figure 3.2: Zoomed out solution space surrounding VS for Scenario 5, Subsection 5.3.5.

From the examples of Figure 3.1 to Figure 3.4, the highly irregular solution space is discernible, even

when locking the VZ component, thus making the observed space a somewhat optimistic version of

its real complexity. Ergo, the circumstances led to a search for some type of safeguard or alternative

implementation of the method, where some of the literature provided possible workarounds [38–43]. The

most promising one would be making the factor ∆S an adaptive one, that could react in a way to the

convergence of the problem on each iteration, making the iteration itself adaptive to the current simplex

and solution environment.

The second version of the function for simplex generation (GENPLEX2) was developed to alter V0 by

a fixed interval and select the best four variations, producing a simplex (Subsection 4.3.8). Unfortunately,

this modification of the method is not guaranteed to work with any scenario or problem. It would probably

be possible to implement this change for the problem of Mars-Phobos system and its dynamic, but this

would go against the concept of a generic TPBVP tool.
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Figure 3.3: Zoomed in solution space surrounding VS for Scenario 6, Subsection 5.3.6.

Figure 3.4: Zoomed out solution space surrounding VS for Scenario 6, Subsection 5.3.6.

Faced with the current obstacle, a different approach was taken, which involved running the Nelder-

Mead Method (via GENPLEX2 - Subsection 4.3.8) and observing each iteration individually and under-

stand how it behaved with longer trajectories. Considering there were some solutions available for longer

trajectories (obtained by longer iterations and knowledge of the problem at hand), these solutions were

observed and specific safeguards to guarantee convergence were implemented (addressed in detail in

Chapter 4). After a considerable amount of time and multiple modifications, the tool was working with a

much higher degree of efficiency, though now showing multiple similarities to a genetic algorithm.
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3.4 Genetic Algorithm

A genetic algorithm is a heuristic which is shared among multiple fields of science [44–46]. Although

it might be defined with different terminology, depending on a specific field, there is nevertheless a

general definition. A genetic algorithm is an approach based on biological evolution, in a way that relies

on biologically inspired operators to generate solutions for optimization or search problems. These

operators are commonly known as selection, crossover and mutation.

The process that the algorithm follows is relatively simple, starting from a group of individuals, also

known as generation, which suffers a mutation and/or crossover of certain properties, followed by a

selection of certain individuals that will create a new generation. This iterative process can continue

indefinitely until a generation is found holding the desired solution.

The possible representation of what a mutation, crossover or selection entails varies greatly between

different cases. For the work developed in this thesis, one can see a generation as different vectors

representing velocities (individuals); mutation as changing one component of each vector by a certain

amount; crossover as exchanging different components between vectors; selection as choosing from

the generated velocities the ones that provide the best result. This is not to be taken as an exact

representation of the developed genetic algorithm, but as an example focused in our specific case.

From the previous Subsection 3.3.1, a hybrid algorithm including the Nelder-Mead Method and some

characteristics of a genetic algorithm was created. The latter had mutation and selection operators,

but not crossover. Based on literature [47, 48], the crossover operator was implemented to provide

more genetic diversity to each generation. Note that the genetic algorithm created was fully developed

during the course of this thesis, hence its operators are particular to this work. The operations of muta-

tion/selection/crossover were established based on a heuristics born from experience with the problem

and analysis of the solution space and simplex convergence behavior. The finalized hybrid algorithm

relies on the genetic algorithm to filter out the majority of undesired local minima and start towards the

solution of the problem via an optimized simplex (GENPLEX3); when close to the latter, will then use the

Nelder-Mead Method for a faster convergence, making use of a more efficient computational approach.

The detailed architecture of such tool and how the genetic algorithm is defined will be addressed on the

next chapter.
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Chapter 4

TPBVP Module Specification

4.1 Hybrid Algorithm

In this section is presented the basic concept of the hybrid algorithm developed, based on the pre-

vious chapter. As per Figure 4.1, the following process is followed: an initial guess V0 is given; based

on how good or bad the initial guess is, a class is defined, which will affect the order of mutation of the

genetic algorithm; the genetic algorithm is defined by three phases (blue boxes on Figure 4.1 - M stands

for Mutation, S for Selection and C for Crossover), where all three components of the velocity vector are

altered, X in Phase 1, Y in Phase 2 and Z in Phase 3, generating new guesses/individuals; from the new

individuals, the best four are selected, generating a simplex SF ; this simplex is then submitted to the

Nelder-Mead Method; if the Simplex Method converges than the algorithm has successfully achieved

its goal; otherwise, the local minima, for which the Simplex Method got stuck and unable to converge,

is taken and replaces the original initial guess V0, starting an iterative process. The following sections

will focus on the implementation of this concept into the SBNav tool and a more detailed overview of the

module architecture.

Figure 4.1: Basic overview of the hybrid algorithm developed.
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4.2 User Input

The SBNav inputs can be broken down into three categories: scenario characteristics, with the

possible options listed in Section 2.2 and then detailed for our specific scenario in Section 5.2; TPBVP

inputs; and lastly, the advanced inputs (identifiable by the -AI add-on), found in different sections of

the tool with specific purposes - editing them is not recommended. The present section will focus on

the inputs regarding the boundary value problem itself. Next, the possible options will be listed and

described. An overview can be found on Table 4.1.

Table 4.1: User input options regarding TPBVP tool.

TPBVP User Input Options Detailed On

Initial Guess

Lambert’s Problem Solver Subsection 4.3.1

Sphere of Guesses Subsection 4.3.1

User Input Subsection 4.3.1

Generate Simplex

GENPLEX1 Section 4.2

GENPLEX2 Subsection 4.3.8

GENPLEX3 Subsection 4.3.3 to 4.3.5

Initial State Initial state vector Section 4.2

Target State Target state vector Section 4.2

Initial State Reference Frame Synodic Reference Frame Section 2.2.1

Stopping Conditions Stop after a given time Section 4.2

Transfer Duration Time from Initial to Target state Section 4.2

Error Tolerance Minimum tolerance accepted Section 4.2

Initial Guess

The user can choose from three options to obtain V0: Lambert’s Problem solver, shown to be some-

what a good estimate for short transfers (∆t < 6 h for Mars-Phobos system); sphere of guesses, where

the best estimate is chosen from multiple guess samples; user input. Detailed description on Subsec-

tion 4.3.1.
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Generate Simplex

Once more the user can choose from three options, now to generate the simplex SF which will

be used by the Nelder-Mead Method: GENPLEX1, simplex generated based on user provided factor

OFACT(-AI) (∆S = OFACT), not the recommended option since it depends highly on a good V0; GEN-

PLEX2, simplex generated based on altering V0 by a fixed interval and select the best four variations

(detailed description found on Subsection 4.3.8), not suggested as the core simplex generator, although

is used in certain sections of the TPBVP solver; GENPLEX3, simplex generated based on adaptive fac-

tor ∆S (detailed description found on Subsection 4.3.3, 4.3.4 and 4.3.5), the recommended option with

the most robust approach.

Initial State

User must provide a vector P0(1x6), where P0(1,1:3)[km] are the spacecraft’s initial position coor-

dinates on the chosen reference frame in the Initial State Reference Frame option. The remaining

components P0(1,4:6)[km/s] can be used to give a V0 input by the user, if so chosen in Initial Guess

option, otherwise they will be ignored by the tool.

Target State

User must provide a vector PT (1x6), where PT (1,1:3)[km] are the spacecraft’s target position coordi-

nates on the chosen reference frame in Initial State Reference Frame option. The remaining components

P0(1,4:6)[km/s] are ignored by the tool, their existence is only justified by having uniform sized vectors

during the tool’s operations.

Initial State Reference Frame

The only available option for the user as a reference frame is the Synodic option, detailed in Sec-

tion 2.2.1.

Stopping Conditions

The only available option for the user as a stopping condition is after a user specified ∆t [Days] in

Transfer Duration option, the spacecraft must reach PT .

Transfer Duration

Option where the user must define a time ∆t [Days] for the spacecraft to go from initial position P0 to

target position PT .

Error Tolerance

The user must specify a minimum tolerance TLMIN [km] where F (V ) ≤ TLMIN ≈ 0. The default

value is one millimeter (0.000001 km).
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4.3 Module Architecture

This section will focus on the overall module architecture, detailing each of its segments and pro-

cesses independently. These segments, or steps, are defined by a blue box on the architecture overview

on Figure 4.2, also marked with a [.]. Strictly speaking, the module will start from an initial guess V0 and

from there try to converge into a solution to the problem VS . To elaborate on this, the process starts

from a initial guess V0, then proceeds into the GENPLEX3 phases: in phase 1, the VX component goes

through mutation and selection; in phase 2, the VY component goes through mutation, selection and

crossover; lastly, in phase 3, the VZ component goes through mutation, selection and crossover. After

gathering the best candidates from the three phases, four are selected to generate a simplex SF , which

is then submitted to the Nelder-Mead Method. If the method converges into a problem solution VS then

the algorithm is successful, otherwise will instead produce a local minima VF . From failed convergence,

V0 is then updated with the previously obtained VF , starting a new iteration. There can only be four

iterations of the process described by default, after which will be considered an algorithm failure. The

user can choose to modify it, by editing the input variable NRSTR(-AI) into another integer greater than

zero, by default is set to 5 (0 < number of iterations < NRSTR).

Note two unique features of this architecture. The first, regarding the event where the initial estimate

V0 is considered good enough to skip GENPLEX3’s phases, taking advantage of GENPLEX2’s faster

approach to generate the simplex SF . The second, about the tool’s ability of reversing the order by which

the X-Y-Z components are mutated in GENPLEX3’s phases, when enabling a specific flag IMUTA(-AI).

For IMUTA = 13, the process takes the path described in the previous paragraph: Phase 1 alters

VX , Phase 2 alters VY and Phase 3 alters VZ . For IMUTA = 31, the process takes the inverted path:

Phase 1 alters VZ , Phase 2 alters VY and Phase 3 alters VX . This particular feature was useful during

the development stages of the tool, since it allowed to study a possible advantage, by allowing VX to

suffer a greater range of mutations if it came last. In the end, this aspect proved to be ineffective with no

obvious gains, hence it is not used or mentioned in the remainder of this work.

Considering simplex properties, there are two variables: HPLEX(-AI) and NIMAX(-AI). HPLEX de-

fines the acceptable interval range for which the solution F (SF ) can fluctuate, while NIMAX specifies the

maximum amount of iterations that the Nelder-Mead Method can execute. If either is modified to pos-

sess a reduced range/value, it can possibly make simplex convergence faster. However, the tool is highly

efficient and such gain has shown to be irrelevant. By default, NIMAX = 1000 and HPLEX = [0 1000]

[km].

Lastly, two variables were created that address the calculation of collision-free trajectories, previously

mentioned on Section 1.3. The latter are ISAFE(-AI) and TSAFE(-AI). The first, ISAFE, is a flag to

enable the tool (ISAFE = 1) to verify if a converged solution VS provides a collision-free trajectory. This

check is performed through maintaining the propagation of the spacecraft’s trajectory after it reaches

PT , extending it by a TSAFE amount of time. By default TSAFE = 3 [Days].
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Figure 4.2: Basic overview of the TPBVP module.
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4.3.1 Initial Guess

Based on the users input, this segment can take three possible paths. This section will focus on

the option Sphere of Guesses, based on the fact that the remaining options have been addressed pre-

viously and/or are self-explanatory. This option relies on choosing the best guess from a generated

sample group, being the recommended option for the user. Note that, User Input Guess can be given

in either spherical (ISPHI = 1) or Cartesian (ISPHI = 0) coordinates (Figure 4.3), defined by the

ISPHI(-AI) flag. For the generation of the sample group, a certain amount of advanced inputs are re-

quired: XGEN1(-AI), XGEN2(-AI) and XGEN3(-AI). They have the following default values in a spherical

coordinate system:

XGEN1 =
[
0.001 0.02 20

]

XGEN2 =
[
0 360 20

]

XGEN3 =
[
−90 90 20

]

Note: XGEN1/2/3 can be given in either ei-

ther spherical (ISPHC = 1) or Cartesian

(ISPHC = 0) coordinates, defined by the

ISPHC(-AI) flag, same as ISPHI flag, but for

advanced inputs.
Figure 4.3: Spherical coordinate system.

Looking at XGEN1, its first and second components define the interval for which the velocity module

|V | in a spherical coordinate system (Figure 4.3) can vary. The third component defines the number of el-

ements that can be evenly arranged in the previous interval, thus we have the sample [0.001:0.001:0.02]

[km/s]. The next two parameters follow the same logic, XGEN2 regarding the azimuth angle θ, while

XGEN3 refers to the polar angle ϕ. To summarize, we have then two new sample groups: one defined

by XGEN2, [0:18:360] [°]; another defined by XGEN3, [-90:9:90] [°]. Finally, there are three sample

groups, each with 20 elements, that when joined to allow for all possible combinations between them,

generates a sphere of guesses of 8000 elements (20x20x20). From these elements, the best is selected

to be the initial guess V0. Note that going forward, when mentioning a best vector (V) or a matrix (M),

it refers to the vector with the lower F(V), while in the case of a matrix, represents the one with lowest

F(M) average.

The user can opt for a custom XGEN1/2/3 by enabling the flag ICUST(-AI), where ICUST = 1

requires a new set of XGEN1/2/3 vectors, whilst ICUST = 0 is the default and favored option. The

overall flow of this segment is represented on Figure 4.4. It outputs a guess V0 and its F (V0) into the

next segment, Define Class (Subsection 4.3.2).
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Figure 4.4: Diagram for [1] Initial Guess segment.

Going forward, when a velocity vector V or a matrix M are generated, the corresponding F(V) and

F(M) are always calculated, allowing for comparison and analysis of the results. This rule is applicable for

all the individuals produced during the mutation/selection/crossover operations of the genetic algorithm.

4.3.2 Define Class

This segment is mainly responsible for checking how accurate is the initial guess V0 via comparing

F (V0) against a predefined set of intervals. There are a total of five interval ranges, specified by the

limits set on the variable XCLASS(-AI)(1x5). The number of classes is fixed (NCLASS = 1 : 5), but

the interval limits can be changed if the user desires it. However, default values are provided that have

been tested and proven to be efficient. The process of attribution of a class adopts the following logic,

considering the default XCLASS = [10 20 50 100 200] [km]:

F (V0) ≤ XCLASS(2) −→ NCLASS = 1

XCLASS(2) < F (V0) ≤ XCLASS(3) −→ NCLASS = 2

XCLASS(3) < F (V0) ≤ XCLASS(4) −→ NCLASS = 3

XCLASS(4) < F (V0) ≤ XCLASS(5) −→ NCLASS = 4

XCLASS(5) < F (V0) −→ NCLASS = 5

There is a particular situation where, on the condition of being the first iteration of the TPBVP module,

if F (V0) ≤ XCLASS(1), the decision is made to bypass most of the module into a later segment. This

segment is the Generate Segment (Subsection 4.3.8). Nonetheless, this is a rare occurrence, in a more

likely scenario NCLASS will be updated and output towards the next segment, GENPLEX3 - Phase 1

(Subsection 4.3.3). The class determined here is used later on to influence the mutation operation. An

overview of this segment can be found on Figure 4.5.
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Figure 4.5: Diagram for [2] Define Class segment.

4.3.3 GENPLEX3 - Phase 1

This segment represents the beginning of the genetic algorithm integrated in this tool. The process

starts by mutating the initial guess V0 first component, thus creating the matrix XT(12x3). The mutation

of any velocity vector V follows the equation

VMutated(i) = V (i)± [
√
nn=1:6 × FACTii=1,2,3(NCLASS)× V (i)] (4.1)

where i is the vector component, n is a constant that can assume the values in the interval [1:1:6] and

lastly, FACTi is a vector (1x5) that expresses a mutation factor based on the NCLASS determined

in a previous segment. Equation 4.1 was developed based on extensive tests and different mutation

strategies, for which the present approach was found to be the best candidate. This method, called

quadratic factorization, showed a good degree of mutation of an individual, providing an acceptable jump

out of a local minima area and at the same time, keeping close to the desired solution neighborhood.

In view of Equation 4.1, there is the plus side of the mutation and the minus side, each taking six

different n values. Consequently, the outcome based on Equation 4.1 is a matrix XT1(12x3):

V0
Mutation−−−−−→ XT1 =



V0(1) = V0(1) + [
√

6× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

V0(1) = V0(1) + [
√

5× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

V0(1) = V0(1) + [
√

4× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

V0(1) = V0(1) + [
√

3× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

V0(1) = V0(1) + [
√

2× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

V0(1) = V0(1) + [
√

1× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

V0(1) = V0(1)− [
√

1× FACT1(NCLASS)× V0(1)] V0(2) V0(3)

. . . V0(2) V0(3)

V0(1) = V0(1)− [
√

6× FACT1(NCLASS)× V0(1)] V0(2) V0(3)



(4.2)
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Moving forward, when mentioning the plus side of a matrix, it refers to the rows (1:6) for a (12x3)

matrix. The minus side, refers to the remaining (7:12) rows. Also, the variable FACTi is generated for

each component/phase of GENPLEX3 in the same fashion, based on a variable XFACT(-AI). However,

XFACT also suffers adjustments made by another variable XPLUS(-AI), depending on each iteration N

of the tool. Refer to Equation 4.3 to 4.8.

N = 1, 2, 3, 4 : FACTi(1) = XFACT (i)× (1 +XPLUS) (4.3)

N = 2
∧
i = 1 : FACT1(1) = XFACT (1)× (1 + 2×XPLUS) (4.4)

N = 3
∧
i = 2 : FACT2(1) = XFACT (2)× (1 + 3×XPLUS) (4.5)

N = 4
∧
i = 3 : FACT3(1) = XFACT (3)× (1 + 4×XPLUS) (4.6)

FACTi =
[
FACTi(1) FACTi(1)× 2 FACTi(2)× 2 FACTi(3)× 2 FACTi(4)× 2

]
(4.7)

FACT1 =
[
FACT1(1) FACT1(1)× 2 FACT1(2)× 2 FACT1(3)× 2 FACT1(4)× 2

]
(4.8)

The variable XFACT(1x3) can be altered by the user, although not recommended. The default val-

ues are XFACT = [0.025 0.5 0.25] and XPLUS = 0.25. The previous values are given in spherical

coordinates (Figure 4.3), enabled by the flag ISPHC (ISPHC = 1 for spherical coordinates). In short,

XFACT(1) refers to either the VX component or |V |; XFACT(2) refers to the VY component or the azimuth

angle θ; and XFACT(3) refers to the component VZ or the polar angle ϕ.

Next, after the mutation operation, the selection process begins. The matrix XT is divided into the

plus and minus sides and the worst individual (individual with the highest F(.)) from each side is re-

moved, generating two XA (5X3) matrices. From the five individuals, the four that present the best

standard deviation of F(.) are selected into a (4x3) matrix. Finally, the two (4x3) matrices are joined,

generating the final generation V1. Based on the best individual of V1, a new NCLASS is defined, as per

the process shown on Subsection 4.3.2. Figure 4.6 shows the mutation and selection steps, whereas

Figure 4.7 provides an overview of the entire segment. Figure 4.7 can be found on a more eligible size

on Appendix A Figure A.1.

Figure 4.6: Diagram for mutation and selection steps of [3] GENPLEX3 - Phase 1 segment.
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Figure 4.7: Diagram for [3] GENPLEX3 - Phase 1 segment.

Take note that the crossover operation is not performed in this segment, considering the limited ge-

netic diversity. In other words, the generation created in this segment is too small to present a meaningful

gain by suffering a crossover of its properties.

4.3.4 GENPLEX3 - Phase 2

Phase 2 shares multiple similarities with Phase 1. In summary, it is Phase 1 applied to the second

component of each individual multiplied by eight. The same process that V0 underwent in the previous

sections is followed for each of V1’s eight individuals, besides two modifications: modified selection and

addition of crossover.

Regarding the selection process, for from Step 3 of Figure 4.6, this phase’s process slightly changes.

Rather than joining both (4x3) matrices, it instead chooses the best one (best F(V) average), after which

it selects the best individual from the latter. The new flow of the selection operation can be observed

in Figure 4.8. The mutation of the second component still follows Equation 4.1, now for each of of V1’s

individuals:

VMutated(2) = V1(2)± [
√
nn=1:6 × FACT2(NCLASS)× V1(2)] (4.9)
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Figure 4.8: Diagram for [4] GENPLEX3 - Phase 2 segment.

In this segment, crossover is first introduced. Taking the result of mutation and selection, a matrix

(8x3), this operation follows a simple rule to double the amount of individuals: it takes an individual’s

mutated component and transfers it to the next row’s individual (4.10). Take into consideration that all

the remaining elements of the (8x3) matrix are different, consequently all the new individuals will be

unique. Applying this crossover operation to this phase’s mutated component, produces the final (16x3)

matrix as the second generation V2.

(8x3)
Crossover−−−−−−→ (16x3) =



· V (1, 2) ·
...

...
...

· V (8, 2) ·

· V (9, 2) = V (8, 2) ·

· V (10, 2) = V (1, 2) ·

· V (11, 2) = V (2, 2) ·
...

...
...

· V (15, 2) = V (6, 2) ·

· V (16, 2) = V (7, 2) ·



(4.10)

Finally, a new NCLASS is established and we can continue to Phase 3, Subsection 4.3.5. Figure 4.9

provides an overview of the entire segment. Figure 4.9 can be found on a more eligible size on Ap-

pendix A Figure A.2.
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Figure 4.9: Diagram for [4] GENPLEX3 - Phase 2 segment.

4.3.5 GENPLEX3 - Phase 3

This phase shares all the same operations as Phase 2, now applied to sixteen individuals. Mutation

(Equation 4.11) now produces a (192x3) generation, selection defines a (16x3) matrix which crossover

turns into a (32x3). Finally, all the products of each phase are joined into a final VT (56x3) matrix.

Figure 4.10 provides an overview of the entire segment (Appendix A Figure A.3).

VMutated(3) = V2(3)± [
√
nn=1:6 × FACT3(NCLASS)× V2(3)] (4.11)

Figure 4.10: Diagram for [5] GENPLEX3 - Phase 3 segment.
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4.3.6 Global Selection

In this segment, the four best individuals of VT are selected, which generates the final simplex SF

that can be submitted to the Nelder-Mead Method.

4.3.7 Nelder-Mead Method

In the present segment, the process takes a simplex SF and tries to converge into a solution VS by

the use of the Nelder-Mead Method, described in detail in Subsection 3.3.1. If convergence succeeds,

then the algorithm has finished its task, output VS , otherwise it means that it converged into a local

minima VF .

4.3.8 Simplex Generation

This segment is responsible for generating a simplex based on the developed GENPLEX2 function.

This version alters a vector V by a fixed interval (-20:2:20)[%] on each component, hence is a linear

variation of said vector. From this step, a (20x3) matrix is created, with twenty new candidates, from

which the best four are selected to create a simplex SF . Figure 4.11 shows an overview of the described

process.

Figure 4.11: Diagram for [8] Simplex Generation / GENPLEX2 segment.
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4.3.9 V0 Update

This segment only applies in the event that the Nelder-Mead Method fails to converge into a solution

VS , instead getting stuck in a local minima VF . In that event, then a new iteration of the tool is required,

starting by updating the initial guess of the new iteration with the local minima VF found.
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4.4 Module Advanced Overview

This section is just a brief summary of the information established in the previous sections and

subsections. In Table 4.2 are listed all the advanced input (AI) variables that the user can alter, although

not recommended. Figure 4.12 has a more detailed overview of the TPBVP module when compared to

Figure 4.2.

Table 4.2: Advanced input options overview.

AI Option Short Description Type Detailed On

ISPHI Flag to enable either spherical or Cartesian options. Binary Section 4.2

OFACT Factor ∆S to generate a simplex. Float Section 4.2

NRSTR Maximum number of iterations for TPBVP algorithm. Integer Section 4.3

IMUTA Order by which vector components are mutated. Integer Section 4.3

HPLEX Interval for which F (SF ) may vary. Vector Section 4.3

NIMAX Maximum number of iterations for Nelder-Mead Method. Integer Section 4.3

ISAFE Flag to enable check for a collision-free trajectory. Binary Section 4.3

TSAFE Time interval accepted for a collision-free trajectory. Float Section 4.3

ISPHC Same as ISPHI, but for advanced inputs. Binary Section 4.2

ICUST Flag to enable custom sphere of guesses. Binary Subsection 4.3.1

XGEN1 Interval range for VX/|V | of an initial guess.

XGEN2 Interval range for VY /θ of an initial guess. Vector Subsection 4.3.1

XGEN3 Interval range for VZ/ϕ of an initial guess.

XCLASS Defines the interval range for each class. Vector Subsection 4.3.2

XPLUS Factor to adjust the mutation factor XFACT. Float Subsection 4.3.3

XFACT Defines the mutation factor for each velocity component. Vector Subsection 4.3.3

As a final note, must point out that the created hybrid algorithm was designed by aiming for a greater

range of genetic diversity. The ever changing mutation factors, the classes that determine how aggres-

sive the next mutation will be, the crossover based only in interchanging elements, all these different

approaches are intended to generate new individuals in very diverse ways. A myriad of combinations

was tested and by analyzing each generation for different scenarios, the current process was found to

be competent in finding a solution VS when other known methods failed.
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Figure 4.12: Advanced overview of the TPBVP module.
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Chapter 5

Phobos-SR Mission

5.1 Mission Overview

The joint ESA-Roscosmos Phobos Sample Return mission (Phobos-SR) was a candidate of the Mars

Robotic Exploration Preparation (MREP) Programme [16]. Its main objective is to acquire and return a

sample from the Mars’ moon Phobos, after a scientific characterization phase of the moon and of the

landing site. On Figure 5.1 we have the mission overview, from which this chapter will focus on phase

(5) Phobos Close Proximity Operations. Specifically, on the approach trajectories from an established

orbit to the gate position, where the spacecraft would start phase (6) Descent and Landing and Surface

Operations.

The Phobos-SR mission is the case study for the developed TPBVP tool. In the following sections,

the hybrid algorithm is used to calculate velocities that can achieve a number of distinct trajectories,

under the assumptions set by GMV for the purpose of this work. All other subjects regarding each

phase or details specific to the mission are outside the scope of this chapter and thesis.

Figure 5.1: Phobos-SR mission overview.
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5.2 Assumptions

The following assumptions regarding the orbital dynamics and its complexities were established by

ESA and GMV for the purpose of the FASTMOPS project [2]. The requirements referring to collision-

free trajectories were specifically set for this thesis by GMV alone. The next subsections will address the

specified assumptions on a matter-of-fact basis, since they were set independently from this work and

are just meant to provide the reader with some background information to the case study at hand.

This case study’s subject is a boundary value problem under a three-body problem scenario. The

bodies would be a spacecraft, Mars (primary body) and its moon Phobos (secondary body), under

a Synodic reference frame. Figure 5.2 represents an example of said reference system, while also

displaying a QSO orbit [11]. The approach trajectory to be calculated is departing from a QSO orbit in

this mission scenario, although such QSO orbit is not defined or taken into account by the tool/algorithm,

considering it has no influence on the TPBVP solver.

Figure 5.2: Synodic coordinate system observed on a QSO scenario [16].

The approach trajectory is assumed to suffer perturbations from solar radiation, multiple third bodies

and a non-spherical gravity from the primary and secondary bodies. Constraints are also defined for the

mission scenario: specifically the minimum and maximum altitudes from the secondary body, to prevent

crashing into the latter or departing the area of operations; a position error tolerance, to determine if

the spacecraft arrived at the target location; finally, the amount of time the spacecraft can be left under

an uncorrected course, while not crashing into Phobos, qualifying it as a collision-free trajectory. On

Table 5.1 are listed all the assumptions and considerations taken for the scenarios that will be tested in

this chapter.
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Table 5.1: Assumptions overview for the Phobos-SR Mission.

Assumptions for Phobos-SR Mission

Problem Statement Input

Type of Problem Boundary Value Problem

Primary Body Mars

Secondary Body Phobos

Coordinate System Synodic Reference Frame

Initial Epoch [MJD 2000] 2025: 9:21 13:06:31:7 (9395.5462)

Initial Mass [kg] 1500

Perturbations Considered

Atmospheric Drag No

Solar Radiation Yes

Reflective Coefficient: 1.5

Cross Sectional Area [m2]: 5.0

Third Body Yes

Third Bodies: Deimos; Mars; Sun; Earth; Jupiter; Saturn

Non-Spherical Gravity Yes

Number of Zonals (Secondary): 2

Number of Zonals (Primary): 10

Number of Tesserals (Secondary): 2

Number of Tesserals (Primary): 10

Secondary Ellipsoid Semi-Axes [km] [ 13.05 11.10 9.30 ]

Tolerances

Maximum Altitude to Secondary [km] 1000

Minimum Altitude to Secondary [km] 5

Acceptable Position Error [km] 0.000001

Acceptable Duration for Collision-Free status [Day(s)] 3
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5.3 Results

The scenarios presented in this section are representative of the possible range of approach trajec-

tories that can be determined via the developed TPBVP tool. These all share the same assumptions

presented on Table 5.1, diverging only on initial position, target position and trajectory duration. Note

that in the following scenario inputs, when initial guess is marked as (U), it represents User Input, (S)

means Sphere of Guesses and (L) means Lambert’s Problem. Also, all solutions provided were obtained

under default AI values. The plots presented in the following sections use X0 as P0 and XF as PT , as

well the figure’s unchanged title of ”... QSO ...”, these are a limitation from the original SBNav.

Take into consideration that GMV’s primary request was regarding the type of scenarios obtained/tested,

for these should focus on diversity among the trajectories. Secondary to the requirement of applying the

tool to different approach paths, was doing so while favoring the adoption of collision-free trajectories.

In other words, the main focus was finding diverse scenarios to apply the developed tool, with the wel-

come addition of presenting themselves as collision-free. No other requisite was established besides

the diversity of results. Hence for example, there is no investigation into trajectories with lower velocity

to reach a certain gate while maintaining a collision-free characteristic.

The mission scenarios (initial and target locations) are also defined according to GMV’s standards,

which are based upon the original test cases used for FASTMOPS [16]. The results presented are based

on departure from a stable orbit further away from Phobos (75 ∼ 100 km) to a gate position closer to

Phobos (20 ∼ 50 km) where a spacecraft would start descent procedures. The ideal test scenario is

departure from a position 75 km from the center of Phobos in the negative Y-axis of the defined Synodic

reference frame, to an altitude of ∼20 km from Phobos center. The target location at ∼20 km of Phobos

can be either in positive or negative side of X or Y axis, thus different cases will be presented. The value

of 50 km for target position is used for initial test cases where trajectories are less susceptible to Phobos

irregular gravity, hence being easier to estimate and stabler.

The following subsections are arranged by the level of complexity required to obtain/determine them.

From Subsection 5.3.1 to 5.3.3, we have trajectories further away from Phobos, which allows for an

acceptable initial guess via Lambert’s Problem. Next, the majority of the results are obtained by user

input, from experience with the mission scenario and its environment. This heuristic was necessary to

obtain the more exotic type of trajectories.

40



5.3.1 Scenario 1

Table 5.2: Scenario 1 summary.

Input Output

Initial Position P0 [km] (0, -100.0, 0) Initial Velocity VX [km/s] -0.01080271

Target Position PT [km] (-50.0, 0, 0) Initial Velocity VY [km/s] -0.00108816

Trajectory Duration ∆t [Day(s)] 2 / 24 Initial Velocity VZ [km/s] -0.00000540

Initial Guess V0 [km/s] (L) Time to Convergence [s] 24

Collision-Free Trajectory Yes Simplex Iterations 186

Figure 5.3: Scenario 1 XY-plane and 3D view.

Figure 5.4: Scenario 1 XY-plane and 3D view, three days after reaching PT .
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5.3.2 Scenario 2

Table 5.3: Scenario 2 summary.

Input Output

Initial Position P0 [km] (0, -100.0, 0) Initial Velocity VX [km/s] -0.00776879

Target Position PT [km] (0, 50.0, 0) Initial Velocity VY [km/s] -0.00151588

Trajectory Duration ∆t [Day(s)] 4 / 24 Initial Velocity VZ [km/s] 0.00012144

Initial Guess V0 [km/s] (L) Time to Convergence [s] 50

Collision-Free Trajectory No Simplex Iterations 271

Figure 5.5: Scenario 2 XY-plane and 3D view.

Figure 5.6: Scenario 2 XY-plane and 3D view, three days after reaching PT .
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5.3.3 Scenario 3

Table 5.4: Scenario 3 summary.

Input Output

Initial Position P0 [km] (0, -100.0, 0) Initial Velocity VX [km/s] -0.01376686

Target Position PT [km] (50.0, 0, 0) Initial Velocity VY [km/s] -0.00093636

Trajectory Duration ∆t [Day(s)] 6 / 24 Initial Velocity VZ [km/s] 0.00003518

Initial Guess V0 [km/s] (L) Time to Convergence [s] 287

Collision-Free Trajectory Yes Simplex Iterations 1442

Figure 5.7: Scenario 3 XY-plane and 3D view.

Figure 5.8: Scenario 3 XY-plane and 3D view, three days after reaching PT .
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5.3.4 Scenario 4

Table 5.5: Scenario 4 summary.

Input Output

Initial Position P0 [km] (0, -100.0, 0) Initial Velocity VX [km/s] 0.00503333

Target Position PT [km] (0, -20.0, 0) Initial Velocity VY [km/s] -0.00179442

Trajectory Duration ∆t [Day(s)] 7 / 24 Initial Velocity VZ [km/s] -0.00009215

Initial Guess V0 [km/s] (S) Time to Convergence [s] 586

Collision-Free Trajectory Yes Simplex Iterations 1397

Figure 5.9: Scenario 4 XY-plane and 3D view.

Figure 5.10: Scenario 4 XY-plane and 3D view, three days after reaching PT .
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5.3.5 Scenario 5

Table 5.6: Scenario 5 summary.

Input Output

Initial Position P0 [km] (0, -75.0, 0) Initial Velocity VX [km/s] -0.00853550

Target Position PT [km] (0, 21.1, 0) Initial Velocity VY [km/s] -0.00219707

Trajectory Duration ∆t [Day(s)] 7 / 24 Initial Velocity VZ [km/s] -0.00010377

Initial Guess V0 [km/s] (U) (-0.003, 0, 0) Time to Convergence [s] 257

Collision-Free Trajectory Yes Simplex Iterations 1243

Figure 5.11: Scenario 1 XY-plane and 3D view.

Figure 5.12: Scenario 1 XY-plane and 3D view, three days after reaching PT .
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5.3.6 Scenario 6

Table 5.7: Scenario 6 summary.

Input Output

Initial Position P0 [km] (0, -75.0, 0) Initial Velocity VX [km/s] 0.00169723

Target Position PT [km] (0, 20.0, 0) Initial Velocity VY [km/s] -0.00311805

Trajectory Duration ∆t [Day(s)] 7 / 24 Initial Velocity VZ [km/s] 0.00011270

Initial Guess V0 [km/s] (U) (0.0007, -0.0035, 0) Time to Convergence [s] 132

Collision-Free Trajectory Yes Simplex Iterations 707

Figure 5.13: Scenario 1 XY-plane and 3D view.

Figure 5.14: Scenario 1 XY-plane and 3D view, three days after reaching PT .
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5.3.7 Scenario 7

Table 5.8: Scenario 7 summary.

Input Output

Initial Position P0 [km] (0, 100.0, 0) Initial Velocity VX [km/s] 0.01003698

Target Position PT [km] (0, -20.0, 0) Initial Velocity VY [km/s] 0.00128617

Trajectory Duration ∆t [Day(s)] 12.6 / 24 Initial Velocity VZ [km/s] 0.00011656

Initial Guess V0 [km/s] (U) (0.003, 0, 0) Time to Convergence [s] 174

Collision-Free Trajectory Yes Simplex Iterations 1261

Figure 5.15: Scenario 7 XY-plane and 3D view.

Figure 5.16: Scenario 7 XY-plane and 3D view, three days after reaching PT .
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5.3.8 Scenario 8

Table 5.9: Scenario 8 summary.

Input Output

Initial Position P0 [km] (0, -100.0, 0) Initial Velocity VX [km/s] -0.00433855

Target Position PT [km] (0, 20.0, 0) Initial Velocity VY [km/s] -0.00682030

Trajectory Duration ∆t [Day(s)] 6.4 / 24 Initial Velocity VZ [km/s] 0.00002138

Initial Guess V0 [km/s] (U) (0.0007, -0.0035, 0) Time to Convergence [s] 123

Collision-Free Trajectory Yes Simplex Iterations 752

Figure 5.17: Scenario 8 XY-plane and 3D view.

Figure 5.18: Scenario 8 XY-plane and 3D view, three days after reaching PT .
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5.4 Discussion of Results

In the first scenarios, Scenario 1 to Scenario 3, the tool was able to converge fairly quickly with the

use of Lambert’s Problem estimate. However, it can be observed that the amount of iterations required

increases with the transfer duration. This is also true for other cases, but Lambert’s Problem showed to

be only advantageous for short transfers and only when those presented a target location further away

from the secondary body, Phobos. Note that these scenarios display a gate position (target position) at

a coordinate 50 km away from the center of Phobos, versus the 20 km option used by the remaining

tests. Also important to note that from all the scenarios, only those traveling to a higher gate position

(Scenario 1 and Scenario 3), are able to recover to a QSO as collision-free trajectory. The others all

move away from Phobos.

Multiple attempts were made to determine a collision-free trajectory from 75 km (negative Y-axis) to

the X-axis (positive or negative), but unsuccessfully. The trajectories obtained were similar to Scenario

1 and Scenario 3, hence were not presented here as separate scenarios. Observing Scenario 4 to

Scenario 8, there is a distinct form that the trajectory path presents to achieve a collision-free trajectory,

which entails performing a kind of knot to avoid a collision path. This type of trajectory seems unattain-

able for a target position on the X-axis, since from numerous trials it was observed that the spacecraft

would be pulled strongly towards Phobos, even if attempted a longer transfer for a broader trajectory

arch as in Scenario 7. Various attempts were required to obtain the data here displayed, since exhaus-

tive test of different transfer times and target positions had to be investigated, until different trajectory

types were obtained.

From Scenario 4 onwards it can be concluded that a gate closer to Phobos requires a more precise

approach to each scenario. With enough time and familiarity with the problem at hand it was possible

to determine different trajectories. Seven out of the eight cases presented possess the collision-free

trajectory quality, thus showing how effective the tool is at finding this particular type of path. Although

collision-free trajectories were not found for negative Y-axis to X-axis, the tool provided a means to

perform this verification, providing information if such path would be possible. The aim of this section

was to establish multiple test cases where it showed the tool’s ability to find a solution for even the more

unusual problem statement, which it has.
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Chapter 6

Conclusions

6.1 Achievements

The main achievement of this work is the fulfillment of both the primary and secondary objectives

set for this thesis by GMV. The development of the TPBVP tool followed multiple paths, taking into

consideration a variety of approaches under distinct methodologies. The techniques used were able to

cope with the difficulties of the problem. This tool proved to be successful at finding the desired solution

in a highly unstable environment.

The secondary objective of being able to find collision-free trajectories under different scenarios and

constrains, was a complete success. However, it required an heuristic approach which was developed

while engaging the specific system of Mars-Phobos.

The final product of this thesis is a tool designed to be adaptable and generic, for future implemen-

tation within other software suites. The software was developed with multiple inputs, thus providing an

advanced user with more knowledge of a specific problem to take full advantage of SBNav and its new

TPBVP module.

6.2 Future Work

At the time of this thesis development, GMV was using SBNav for a new case study, the paired Didy-

mos asteroids. The opportunity to apply the TPBVP tool to a new scenario would give more opportunities

to analyze its generic ability to solve TPBVP.

Finally, the more interesting path to take this work forward would be to remove one of the boundaries

of the TPBVP: the trajectory transfer duration. Such problem would add the transfer time as one of

the variables to be optimized. If looking through Nelder-Mead Method, it would create a simplex of five

dimensions, adding more complexity to the problem. However, defining a new convergence/termination

criteria for the simplex method would be the real challenge, since it is now defined by different types of

variables. Alas, the basic architecture of SBNav and the original targets of the FASTMOPS project limits

this option.
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[47] T. P. Llanos, E. D. Sotto, J. P. Muñoz, and P. Rogata. Genetic algorithms in the generation of an

initial guess for the optimisation of ascent trajectory with an hybrid method. In 5th International

Conference on Space Launchers, ResearchGate. GMV S.A., November 2003.

55



[48] P. Rogata, E. D. Sotto, M. Graziano, and F. Graziani. Guess values for interplanetary transfer

through genetic algorithms. Advances in the Astronautical Sciences, 114, January 2003.

56



Appendix A

Figures

In the following pages one can found figures found along this thesis that might need a higher dimen-

sion to be eligible.
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Figure A.1: Diagram for [3] GENPLEX3 - Phase 1 segment.
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Figure A.2: Diagram for [4] GENPLEX3 - Phase 2 segment.
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Figure A.3: Diagram for [5] GENPLEX3 - Phase 3 segment.
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