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Abstract

Deep Learning (DL) methods for pathology segmentation and classification have gained undeniable

relevance in the radiology department. Their promising potential must be balanced with the risks of

misclassifications in unseen data. Evaluating robustness with an adequate set of metrics is a crucial

step that is usually done suboptimal in the current practices.

In this thesis, we propose a comprehensive evaluation framework that specifically addresses these

limitations and jointly assesses the performance of DL models at an image (classification) and lesion

(segmentation) levels. Besides analyzing network behaviours across tasks, our method gives a measure

of robustness by 1) evaluating the impact of acquisition parameters on performance and 2) applying the

framework to an external dataset. The experimental analysis is conducted for two DL solutions, Apollo

and nnU-Net, trained on the same data.

Results show that algorithms are heavily hampered by unintended data bias. In particular, we obtain

lower performances for poorly represented pathologies in the training set and verify that the algorithms

struggle to predict from out-of-distribution data, i.e. acquired with a different sequence or in a different

direction. Conversely, more discriminative features are learnt for predominant classes and on prevalent

sequence types or orientations. Our experiments also suggest that robustness can be improved by

identifying key design decisions in the algorithm pipeline formulation.

By raising awareness on the importance of external validations and by providing alternatives to the

current evaluation frameworks, we give a further step towards the seamless integration of DL technolo-

gies in medical settings.
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Resumo

Os métodos de Aprendizagem Profunda (DL) têm ganho uma inegável relevância em radiologia, pelo

papel preponderante que desempenham na segmentação e classificação de patologias. O seu poten-

cial deve ser contrabalançado pelos riscos de classificações erradas em dados não vistos. Avaliar a

robustez de um algoritmo com um conjunto adequado de métricas é um passo crucial que é tendencial-

mente ignorado na maior parte dos trabalhos.

Nesta tese, propomos um método de avaliação abrangente que aborda estas limitações e avalia con-

juntamente o desempenho de modelos DL ao nı́vel da imagem (classificação) e da lesão (segmentação).

Para além de analizar o comportamento para uma dada tarefa, o método inclui uma medida de robustez

ao 1) avaliar o impacto de parâmetros de aquisição no desempenho e 2) avaliar num conjunto de dados

externo. A análise experimental é realizada para Apollo e nnU-Net treinadas no mesmo conjunto de

dados.

Os resultados mostram que algoritmos são fortemente prejudicados pela existência de um enviesa-

mento involuntário de dados. Obtemos desempenhos inferiores para patologias sub-representadas no

conjunto de treino e verificamos que os algoritmos têm dificuldade em funcionar com dados adquiridos

com uma sequência ou orientação diferente. Inversamente, são aprendidas caracterı́sticas mais dis-

criminatórias para classes e tipos de sequência ou orientações prevalecentes. A análise experimental

também sugere que a robustez pode ser melhorada através da identificação de decisões chave quanto

à formulação do algoritmo.

Ao sensibilizar para a importância de validações externas e fornecer alternativas aos métodos de

avaliação actuais, pretendemos agilizar a integração de tecnologias DL em ambientes hospitalares.

Palavras Chave

Aprendizagem Profunda (DL); Robustez; Enviesamento Involuntário dos Dados ; Alterações na Distribuição

dos Dados; Imagem por Ressonância Magnética.
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UI user interface

WHO World Health Organization

2D two dimensional

3D three dimensional
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Biomedical engineering is an interdisciplinary field that arose from the fusion between biology and

technology. A clear manifestation of that fusion can be found in deep learning (DL), particularly in

convolutional neural network (CNN). CNN are one of the greatest applications of transferring biological

concepts to automated networks. They have been derived from cat vision system 1 and were firstly inte-

grated in the Neocognitron 2 ( [3]). With the increase in computational efficiency, the availability of large

amount of data, and the fact that societies are moving towards process automation , DL has been evolv-

ing from the Neocognitron to more advanced and complex neural network architectures. This increase

in complexity has extended the landscape of possible DL applications. In Radiology, DL has gained un-

deniable relevance [4]: from image processing to segmentation, DL is expected to play an essential role

in the digital health revolution [5]. In that context, Cerebriu [1] developed Apollo, a DL software that aims

at providing faster diagnosis and improving the efficiency of hospital workflows. Cerebriu is a med-tech

start-up based in Copenhagen with worldwide partners in Denmark, Israel, the United States, France,

Germany, and Japan. Their in-house software Apollo is at the core of this master thesis and is currently

under clinical validation.

Chapter 1 gives a foretaste of the clinical and scientific relevance of this work developed at Cere-

briu in collaboration with Instituto Superior Tecnico (IST). This chapter starts by motivating the problem

addressed in this thesis from a general (Section 1.1) to a more specific (Section 1.2) Apollo-based per-

spective. The remaining sections are dedicated to the approach description and the thesis organization.

1.1 Motivation

According to European Union, between 2013 and 2018, the use of medical equipment, specially

computed tomography (CT) and magnetic resonance imaging (MRI), has been rising (Figure 1.1) [6].

Among the countries that have reported larger increases, Denmark saw its numbers of CT and MRI

scans being multiplied by approximately 1.3 and 1.44 respectively. In turn, Portugal registered an in-

crement of 50% in the number of CT scans and of 96% in the number of MRI scans. Higher number

of scans imposes an increased of the radiologists workload [5] and may compromise workflows, quality

of care and disease management [7] due to the fatigue and shortage of medical staff. As an example,

in 2010, it was shown that, in a eight hour shift, a radiologist was asked to interpret one scan (MRI or

CT) every 3-4 seconds [7]. This is all the most unfortunate knowing that 60% of the acquired scans

are unnecessary [1]. With the development of technology and the increased computational power, DL

appears as a promising solution to overcome the aforementioned issues.

1David Hubel and Torsten Wiesel contributions, 1964
2Kunihiko Fukushima, 1980 [2]
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Figure 1.1: Number of (Top.) CT and (Bottom.) MRI scans per 100 000 inhabitants between 2013 (orange) and
2018 (blue) across European countries.
Denmark and Portugal, referred in the discussion, are highlighted in red and grey, respectively.
This figure was extracted from [6].
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Its underlying potential does not only arise from its capacity to handle massive amounts of data and

alleviate the radiologist workload, but also from its ability to discover relationships between scan features

and patho-physiological attributes that may not be included in the radiologists lexicon [5,8].

From a patient perspective, the added value of integrating DL is particularly evident in strokes, hem-

orrhages and tumors managements, as discussed below. Strokes affect 15 million patients worldwide

each year [9]. They are currently responsible for more than 4.5 millions deaths and, by 2030, this

number is expected to reach 7.8 million [9]. Additionally, more than 30% of the patients suffer from per-

manent disabilities and the subsequent rehabilitation contributes to the increase of healthcare costs [9].

Therefore, by 2030, with the predicted increase of the disease incidence, strokes will become a cumber-

some burden for healthcare systems, from a human and economical aspects [9]. Innovative approaches

and guidelines should prioritize, at first, ischemic stroke management as 87% of strokes have an is-

chemic nature 3. Ischemic strokes have a time-dependent nature and treatment selection (thrombolysis

or mechanical thrombectomy) depends on a correct estimation of the onset and detection of potential

hemorrhages at the infarction site [9]. Current delivery of stroke care, selection of reperfusion treatment,

and triage for resource-intensive stroke units have failed to provide a satisfactory patient outcome and

efficient use of the hospital resources [9]. New procedures should seek to provide faster estimates of

the infarction onset and more accurate evidences of hemorrhages findings at the infarction site to enable

a more rapid and trustworthy treatment delineation [11]. Therefore, DL algorithms that simultaneously

automate the detection of strokes and hemorrhages could be a great support for fast radiology decision

and relieve the burden of infarctions in clinical settings.

Similarly to ischemic strokes, managing hemorrhages also requires early and accurate diagnosis. Within

the first three hours of onset, the hematoma is growing at a fast rate and the damaged area is expand-

ing [12]. However, diagnosis of intra-cerebral hemorrhages is not straightforward. Depending on its

age and location, hemorrhages may appear differently on scans [13]. Hence, DL could contribute to

reduce misdetections of specific sub-types of hemorrhages. This is specially relevant for subarachnoid

hemorrhage (SAH) for which the high variability in their MRI intensities, the blooming effect produced

by adjacent bones, or the dilution of blood with cerebrospinal fluid (CSF) jeopardize its diagnosis and

increase the misdetection rate [14–16].

Regarding tumors, current MRI protocols rely on gadolinium-based contrast agents (GBCAs) for diag-

nosis and monitoring of brain cancer. Vascular network growth is key for tumors proliferation allowing for

adequate oxygen and nutrients supply. The generated vasculature is structurally and functionally abnor-

mal, build on leaky and immature blood vessels [17]. Hence, the injected venous contrast accumulates

at the pathological site and, based on GBCAs paramagnetic properties, tumors will appear hypo-intense

in T2 or hyper-intense in T1 scans [18]. However, some concerns have been raised on the potential

3Data drawn from the American Stroke Association https://www.stroke.org/en/about-stroke/types-of-stroke [10]
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harm of GBCAs related with its deposition in brain tissues and with the risks of nephrogenic systemic

fibrosis in patients with renal failure [19] 4. Therefore, DL could be a viable answer for contrast reduction,

enabling the diagnosis without requiring contrast administration to accurately identify the pathology [20].

Even if DL shows clear advantages in supporting healthcare providers, some ethical and medico-

legal concerns have been raised [4]. Automating a human-based process is far from being trivial. When

it is difficult to discriminate between benign and malignant scenario, doctors are known to over-diagnose

malignancy for patient safety. However, this behaviour decreases accuracy and is not always replicated

in DL systems [4]. In addition, for healthcare providers, learning is an iterative process, while for DL

algorithms parameters are only updated during training. As a result, while doctors are able to cautiously

adapt to out-of-distribution data (rare pathological conditions, data acquired with a different scanner, or

demographic shift), DL models are hampered by their training and validation data. As a result, variability

in disease patterns and in their translation into MRI features may not be understood by the models

that become unable to generalize to other scanners, acquisition parameters, populations, or pathology

characteristics [4]. Under these assumptions, what would happen if the network fails in identifying a

lesion and is responsible for the patient death?

Hence, it is important to assess DL clinical value, safety, and benefit quantification before promoting

digitization and automation of healthcare processes [4]. This is a necessary step to bring the technology

into clinic and take advantages from its benefits. Fortunately, there is a growing awareness in the sci-

entific community of such topics. Recently, Radiology published guidelines to critically appraise current

medical DL research from a quality and safety perspective [21]. Similarly, Challen et al [4] compiled

quality assessment questions to support research and development in DL for clinical applications [4].

Some key considerations are listed below:

• Are the results of the algorithm compared with radiology experts?

• When there are high impact negative outcomes, how does the algorithm adjust its behaviour?

• Are the evaluation metrics comprehensive of the algorithm function?

• Is an external test set used for final statistical reporting?

• Have multi-vendor images or different acquisition protocols been used to evaluate the algorithm?

• Has the system been tested in diverse locations, disease progressions, and populations?

• How is the system going to be monitored and maintained over time to adjust for distributional drift?

Trying to answer some of these questions with the creation of an adequate evaluation framework and

finding ways to demonstrate clinical value is the core objective of this thesis. From our test-bed algorithm

Apollo, we hope to warn researchers of the intrinsic training set dependencies of their models and to

inspire more comprehensive evaluation behaviours.

4Mechanisms, relevance and potential harm of gadolinium deposition in brain tissues is a fertile field of research. Clinical
evidences are needed to balance GBCAs use in clinical settings [19]
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1.2 Problem Formulation

Transferring DL concepts to the radiology department for infarcts, tumors or hemorrhages seg-

mentation and classification shows undeniable benefits. Cerebriu understood the vast potential of DL in

radiology from both hospital and patient perspectives and created Apollo to provide decision support at

key stages of the diagnostic process [1]. In this section, information on the imaging techniques and the

pathologies selected by Cerebriu is given, along with the main challenges encountered by the company

in that specific context.

1.2.1 MRI Niche Market

While Cerebriu decided to focus on the MRI market, CT remains the current gold standard for the

diagnosis of most brain pathologies [22]. CT popularity is evidenced in Figure 1.2 with the availability

of CT versus MRI scans in European healthcare centers. Except for Germany, discrepancies in the

number of CT and MRI scans are striking and Denmark is no exception in that regard. The country

shows a number of MRI scans that is about half the number of CT scans.

To understand the different standpoints on the adoption of CT or MRI, Figure 1.3 identifies the key

advantages of each modality. On one hand, CT is associated with lower scanning costs and faster

acquisition times. It is sufficient to exclude many neurological disorder. On the other hand, MRI is a more

versatile technique. By selecting an adequate sequence, higher contrast can be created to differentiate

specific brain tissues. Moreover, while CT measures the attenuation of X rays by surrounding tissues [23]
5, MRI signal arises on the interaction of hydrogen with three types of magnetic fields: B0, B1, and linear

gradient fieldsG [24] 6. Figure 1.4 and the following paragraphs discuss the role played by each magnetic

field type.

• External magnetic field B0: Hydrogen spins are oriented randomly, resulting in a null net macro-

scopic magnetic moment M [24]. When an external field B0 is applied in the longitudinal direction

z, spins start precessing at a Larmor frequency wL (with wL = γ ×B0) and the potential energy E

of a magnetic moment −→µ in the presence of
−→
B = B0

−→z is expressed in (1.1):

E = −→µ .
−→
B = −µzB0 = −γ~IzB0, (1.1)

where Iz = ± 1
2 . Two energy states arise with ∆E = γ~B0 [24]. Via Zeeman interaction, the

spin magnetic moment vector −→µ acquires two possible configurations: a parallel direction (with

5Attenuation is defined by the atomic number and physical density of the tissue [13].
6MRI phenomenon requires an odd number of protons or odd number of neutrons to present a spin angular momentum S and

a subsequent magnetic dipole moment −→µ whom magnitude is given by µ = γ.S (where γ is the gyromagnetic ratio). Signal arises
from a macroscopic magnetic moment M =

∑
N
−→µN , manipulated with static, time-dependent or, spatially-dependent magnetic

fields. Hydrogen 1H, with a single proton, by its abundance in the human body under the form of water, is the most sensitive atom
to be studied [24].
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Figure 1.2: As a note, these figures are not exclusive for brain imaging.
Denmark, as being the current Cerebriu market, is highlighted in red and Portugal in grey.
This figure is extracted from [25].

Figure 1.3: (Left.) CT versus (Right.) MRI advantages regarding the following attributes: brain imaging quality,
logistics, patient safety and, costs and availability.(Left.) CT versus (Right.) MRI advantages regarding
the following attributes: brain imaging quality, logistics, patient safety and, costs and availability.
This figure encompasses information drawn from [22,24,26].
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Figure 1.4: MRI basics. Interaction of hydrogen with the three magnetic fields:
(Top.) B0 spin polarization effect, resulting in a positive equilibrium nuclear magnetization M0 along z
direction.
(Middle.) B1 spin excitation and relaxation processes (along the longitudinal and transverse directions).
θ refers to the flip angle, i.e, the amount of rotation of M0 during application of B1 .
(Bottom.) linear gradient fields G for spatial encoding in the x, y, and z directions.
Figure adapted from [27] and [28].

Iz = 1
2 ) or anti-parallel direction (with Iz = − 1

2 ). The lower energy state (with Iz = 1
2 ) is more

populated but thermal energy is sufficient to allow some migrations to the higher energy level. As

a consequence, a positive equilibrium nuclear magnetization M0 arises in the z direction (Figure

1.4 - Top) [24].

• radio frequency (RF) pulse B1: A radio-frequency field, tuned to the Larmor frequency wL, is

applied in the transverse xy plane to initiate the resonance and excite the spins out of equilibrium.

It make the lower energy spins move to higher energy states. B1 rotates M0 by an angle θ (flip

angle) to the transverse plane with θ = B1.t.γ, with t the duration and B1 the magnitude of the RF

pulse application (cf Figure 1.4 - Middle) [24].
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When B1 is switch off, relaxation to equilibrium occurs as a result of two distinct mechanisms. On

one hand, the longitudinal relaxation arises from fluctuations at Larmor frequency and molecular

vibrations, releasing energy and causing the return to equilibrium along the z-axis at a rate T1

[24]. On the other hand, transverse relaxation results from fluctuations at Larmor frequency and

dephasing (rotations and fluctuations at random frequencies), causing the return to equilibrium

along the xy-axis at a rate T2. Additional mechanisms for loss of spin coherence also occur due

to B0 inhomogeneities. B0 imperfections, externally applied gradient fields, and intrinsic sample

susceptibility difference. These mechanisms increase phase dispersion and fasten the return to

equilibrium at a rate T2∗ with T2∗ < T2. A refocusing pulse of 180 °at half of the time window

between excitation and signal acquisition can be applied to cancel these contributions [24].

From Faraday’s law of induction, changes of magnetization in the transverse plane can be per-

ceived by an RF receiver coil. The generated time signal (free induction decay (FID)) is recorded

and processed to reconstruct an MRI image [24]. Excitation and readout are defined by two crucial

time variables: repetition time (TR) and echo time (TE). While TR accounts for the time between

two consecutive excitations (RF pulses), TE is the time between the excitation and the read-out of

the FID signal [24,27].

• Gradient Fields G: Gradient Fields G are essential to achieve spatial localization of MRI sig-

nals and recreate the two dimensional (2D) or three dimensional (3D) images. When a spatially

dependent magnetic field G is applied, the total magnetic field in the −→r direction is given by:

B(−→r ) = B0 +
−→
G.−→r . The frequency of the spins is, then ω(−→r ) = γB−→r = ω0 + γ

−→
G.−→r and the

phase dispersion is obtained with ∆φ(−→r , t) = γ
−→
G.−→r t [27].

As illustrated in Figure 1.4 (Bottom), three different linear gradient are applied for slice selection

(z axis), frequency encoding (x axis), and phase encoding (y axis) [24, 27]. Designing the MRI

sequence and selecting an adequate strength and duration for the gradient are key factors that

influence image resolution [27].

Regarding the versatility of the technique, by selecting adequate pulse sequence parameters (flip

angle θ, TR, and TE) and taking into account the sample physical characteristics (proton density, T1,

and T2), particular contrasts can be obtained, enhancing different brain tissues and textures [24, 27].

To make its predictions, Apollo combines the information of three common MRI sequences: diffusion

weigthed imaging (DWI), fluid attenuated inversion recovery (FLAIR), and gradient echo sequences:

• Diffusion Weighted Imaging DWI: DWI is a T2-weighted image, where the T2 signal is attenuated

based on the Brownian motion of the protons in the brain. The true diffusion coefficient of each

brain volume is approximated by an apparent diffusion coefficient (ADC), computed considering

free water motion in the brain.

Taking the direction of measurement x as an example, the basic concept of this sequence is to
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apply spatially varying gradient Gx along x and to reverse this gradient −Gx at TE
2 . If a refocusing

pulse is applied, then the gradient is applied in the same direction Gx (Figure 1.5). A ”no motion/-

coherent motion” scenario translates a null phase shift ∆φ = 0 as the second gradient undoes the

effect of the first spatially varying gradient. A ”incoherent motion” scenario translates a non null

phase shift ∆φ 6= 0, as the second gradient is only be able to refocus the phase dispersion caused

by the first gradient, but not the phase dispersion caused by motion [29].

Therefore, voxels with higher diffusion (i.e accentuated protons motion) present a larger dephasing

∆φ and a faster transverse magnetization relaxation rate, appearing hypointense in the image [29].

Conversely, voxels with restricted diffusion appear hyperintense.

• Fluid Attenuation Inversion Recovery FLAIR: FLAIR is a T2-weighted image, where signal can-

celling is applied to a specific tissue. The basic concept of this sequence is to apply an inversion

pulse of 180°(Mz → −Mz) and excite when the longitudinal magnetization Mzi = 0 for a cer-

tain tissue i (Figure 1.6 - null point) during relaxation. Therefore, it cancels the contribution of

that tissue in the image. Usually, the selected tissue is the cerebrospinal fluid (CSF), allowing

for an increased lesion-to-background contrast and enhanced visualization of brain parenchyma

abnormalities. Lesions appear hyperintense compared to regular T2-weighted sequences [24].

• Gradient echo sequences: T2 * gradient echo (T2 * GRE), susceptibility weigthed imaging (SWI),

and susceptibility weighted angiography (SWAN) are T2*-weighted images, where the T2* signal

is attenuated based on hemoglobin and its degradation products magnetic susceptibility. The

aforementioned sequences are mostly used to characterize brain hemorrhage based on the para-

magnetic properties of deoxyhemoglobin, methemoglobin, and hemosiderin versus diamagnetic

properties of oxyhemoglobin. Due to their magnetic susceptibility, deoxyhemoglobin and methe-

moglobin (paramagnetic) and hemosiderin (superparamagnetic) generate a susceptibility differ-

ence between blood vessels and surrounding tissues, accentuating the aforementioned T2* effect.

As a result, transverse relaxation is achieved faster and tissues are identifiable by their hypointen-

sity in the image [30].

The major difference between these gradient echo sequences is that T2 * GRE is a 2D technique

while the remaining two are 3D (Figure 1.7). Patented by different MRI vendors, the aforemen-

tioned 3D techniques present some distinctive characteristics in the sequence design and the

post-processing of the acquired image 7.

1.2.2 Pathological Context

The pathologies targeted by Cerebriu are infarcts, tumors, and hemorrhages. Cerebriu adopted

terminology for ischemic strokes is infarcts and will be kept for all the remaining chapters of the thesis.
7SWI relies on the acquisition of one echo at a specific TE and use additional phase information in the post-processing step.

SWAN is a multi-echo sequence and exploit only the magnitude information [14].
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Figure 1.5: DWI - (A.) sequence design (adapted from [29] and [27]) and (B.) DWI scan example.
Diffusion gradients are applied to capture diffusion. A ”coherent motion” versus ”incoherent motion”
scenarios with their respective phase shift φ are depicted in the figure.

Figure 1.6: FLAIR- (A.) FLAIR sequence design (adapted from [27]) and (B.) FLAIR scan example.
A clear cancellation of CSF signal can be appraised in the figure.

Figure 1.7: Comparison between (Left.) SWAN (3D) and (Right.) T2 * GRE (2D).
The latter technique shows faster acquisition times against worse image resolution. Hemorrhages are
highlighted with a blue square.
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Ischemic strokes account for 87 % of all strokes diagnosis [10]. The remaining 13% are hemorrhagic

strokes, where the blood supply is partially suspended by the rupture of the vessels due to uncontrolled

hypertension or underlying blood-vessel abnormalities ( cerebral aneurysms, arterio-venous malforma-

tions) [9]. Hemorrhagic strokes are considered as hemorrhage in Cerebriu pathology formulation. Dif-

ferences in these pathological mechanisms are illustrated in Figure 1.8.

Figure 1.8: Comparison between (Left.) ischemic stroke (considered as infarcts in Cerebriu nomenclature) and
(Right.) hemorrhagic stroke (considered as hemorrhages in Cerebriu nomenclature). While infarcts
occur by a thrombotic or embolic occlusion of the cerebral artery, reducing the flow of oxygen and
nutrients to brain tissues, hemorrhages are originated by a rupture of blood vessels in the brain.
Figure adapted from [31].

• Infarcts - Ischemic Strokes: An ischemic stroke is induced by a thrombotic or embolic occlusion

of a cerebral artery. The resulting interruption of blood supply to the brain reduces the flow of

oxygen and nutrients to the tissues at the infarction site. Ischemia gives rise to a hypoxia scenario

and necrotic tissue appears at the core of the lesion. In the surroundings of this non salvageable

area, there is a hypo-perfused region (i.e penumbra) that is supplied during infarction by a col-

lateral blood flow. The penumbra is the target of stroke treatment and the portion of potentially

salvageable ischemic tissue is estimated under two parameters: the patient collateral blood flow

and the infarction onset [11].

Blood supply can be restored by thrombolytic therapy or by mechanical thrombectomy to remove

the clot of the artery. Treatment selection relies on the estimation of the infarct onset and on

the detection of hemorrhages in the surrounding of the lesion. For an onset between zero to six

hours and in the absence of hemorrhages, thrombolytic therapy is prescribed [9]. Therefore, an

efficient estimation of the age of the infarct is essential for a correct disease management. The

discrimination of the temporal evolution of ischemic strokes encompasses hyper-acute, acute, sub-

acute, and chronic stages but their time delineation varies in the literature [32].

Figure 1.9 shows the current modalities used in infarct diagnosis. CT is the gold standard for infarct

detection. However, MRI has been shown to outperform CT in detecting micro-bleeds and subtle
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Figure 1.9: CT versus MRI for stroke, penumbra, and occlusion diagnosis. Figure adapted from [35].

hemorrhages and in reducing the ionization dose. Additionally, by allowing a better delineation of

the infarct core and ischemic penumbra, MRI seems to be a more powerful technique for stroke

triaging [33] 8. Among the possible sequences acquired in a MRI scanner, DWI and the subsequent

ADC map are the most sensitive methods for detecting ischemia at early stages [11]. Changes in

the energy metabolisms engenders a loss of ionic gradients and a net transfer of water from the

extra to the intra-cellular compartment. The excessive accumulation of water molecules in intra-

cellular compartment and the consequent reduced extracellular volume are depicted by DWI as

a reduction in water diffusion. New techniques combining DWI with perfusion weighted imaging

(PWI) are being developed [34], built on the hypothesis that DWI reflects the non salvageable

infarct area while PWI reflects the overall hypo-perfused lesion (infarct + penumbra) [11].

MRI techniques other than DWI are also attracting interest to support the decision-making process

and onset estimation. FLAIR can help identifying infarcts within the first three hours of symptom

onset. If not hyperintense on FLAIR images, infarct has more than 90% probability of being imaged

within the first 3 hours of symptom onset while hyper intensity translates a three to eight hours

scenario after onset [11]. Hemorrhages at infarction site can also be detected by SWI, SWAN, or

T2 * GRE based on its sensitivity to blood magnetic properties [11].

• Tumors: A tumor consists of a mass of abnormal tissue that arises from preexisting body cells.

It is characterized by an independent and uncontrollable growth with no associated function. The

hyperplasia can be accompanied by anaplasia [36]. Tumors can be divided between benign and

malignant. While cells of a benign tumor are normal in shape, size and structure, cells of a malig-

8New protocols are emerging to bridge the existing gaps of CT imaging for stroke detection. It includes non-contrast CT
for hemorrhages exclusion, perfusion CT for penumbra estimation, and CT-angiography for intracranial thrombus and vascular
narrowing identification. These new protocols will not be discussed in the present work, as most of the hospitals do not incorporate
them in the routine procedures [9].
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nant tumors are usually different from their surrounding tissue. They loose their initial function by

reaching a less differentiate state and show higher growth and spread rate. Besides its degree of

malignity, tumors can be classified according to their composition and the relative proportion of its

solid, cystic, necrotic, hemorrhagic, edema, or protein-rich components [37]. An example of tumor

classification according to its constituents can be appraised in Figure 1.10.

Figure 1.10: Tumors classification according to their composition. Solid tumor (red), cystic tumor (orange), edema
tumor (yellow) and hemorrhagic tumor (purple) are identified in (Left.) DWI, (Middle) FLAIR, and
(Right.) SWAN scans. Hemorrhagic tumor is only visible in SWAN modality. Other tumor components
(necrotic and protein-rich) are not represented in the Figure.
The slices across modalities are the same and the patient is extracted from MedAll dataset [1].

The current recommendations for a standardized brain tumor imaging protocol lean on MRI se-

quences and contrast administration [38]. The minimum recommended sequences includes pre

and post-contrast of T1-weighted images, pre-contrast T2 FLAIR and DWI, and post-contrast T2-

weighted spin-echo [38].

• Intracerebral Hemorrhages: Intracerebral hemorrhages can have a traumatic or non-traumatic

origin. Non traumatic intracerebral hemorrhages are caused by a rupture of blood vessels in the

brain [39]. In the absence of vascular malformation, hemorrhagic conversion of an ischemic stroke,

intracranial tumor, or coagulopathy, the hemorrhage is referred as primary intracerebral hemor-

rhage. Primary hemorrhages are predominant, mostly induced by hypertensive arteriosclerosis

and cerebral amyloid angiopathy [40]. The release of blood in the extra-vascular space induces

a mechanical disruption of the neurons and glia, followed by mechanical deformation causing oli-

goemia, neurotransmitter release, mitochondrial dysfunction, and membrane depolarisation. Un-

der the new pathological condition, coagulation and hemoglobin breakdown products activate the

microglia that induces a disruption of the brain blood barrier (BBB) and the apoptosis of neurons

and glia [39].
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Brain hemorrhages can be subdivided according to its location in intra-axial (intraparenchymal

and intraventricular) and extra-axial (subdural, epidural, and subarachnoid), as shown in Figure

1.11 [41, 42] . Epidural and subdural hemorrhages are distinguished by their morphology and

topography.

Apart from the spatial sub-division, hemorrhages can be characterized as a function of time.

Hyper-acute, acute, early sub-acute, late sub-acute, and chronic stages are usually identified in

the literature [41]. The extra-axial sub-types share similar characteristics on MRI and CT scans

with intraparenchymal hemorrhages with slower progression across stages [13, 16]. An extra dis-

crimination between venous and arterial hemorrhages should also be made due to the different

oxygen content that may influence the transition between hemoglobin states and, consequently,

the diagnosis of the pathology [13].

Figure 1.11: SWAN of different hemorrhage sub-types: (Left.) Intra parenchymal hemorrhages, (Middle.) Extra/-
sub dural hemorrhages, and (Right.) SAH. Intraventricular hemorrhages are not discriminated in
Cerebriu annotation protocol

Diagnosis of intracranial hemorrhages is based on CT [39] and MRI [33]. The appearance of hem-

orrhages on both imaging techniques parallels the temporal evolution of the disease [41]. While

CT depicts hemorrhages as a high-attenuation mass within the brain tissues, MRI has proven to

be more accurate when it comes to estimate the stage of the hemorrhage and to detect early hem-

orrhagic conditions [13, 33]. Although CT attenuation varies linearly with protein content (mainly

hemoglobin) and hematocrit measurement , some artifacts surrounding the skull can mimic hem-

orrhage and lead to misclassification and inadequate patient management [13]. MRI, via the in-

troduction of blood-sensitive gradient echo sequences, is able to trace the sequential evolution

of an hemorrhage by revealing relevant features of hemoglobin transformation and subsequent

changes in its magnetic properties within the hematoma [33]. Given the age of an hematoma, the

hemoglobin undergoes a transformation from intra-cellular oxygenated hemoglobin to deoxyhe-

moglobin and hemosiderin, associated with different oxidation state of its constitutive iron atoms.
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While oxyhemoglobin is diamagnetic, deoxyhemoglobin and methemoglobin are weakly paramag-

netic and hemosiderin is superparamagnetic [43], creating changes in signal intensity. By being

sensitive to hemosiderin, MRI has the ability to not only detect acute and chronic hematomas but

also old and clinically silent cerebral microbleeds [42]. In addition to changes in magnetic proper-

ties of hemoglobin, the compartmentalization observed in hemorrhages is a necessary condition

to create a local field inhomogeneity and trigger spin dephasing and signal loss captured by MRI

images [43].

Table 1.1 summarizes the three main disease classes and their corresponding sub-types, as pre-

sented in the previous paragraphs.

Table 1.1: (Left.) Labels - pathologies correspondence used in Annotation Protocol.
(Right.) Labels - pathologies correspondence used in Apollo Cerebriu training and inferences.

1.2.3 Scientific Challenges

From the general issues addressed in Section 1.1, some need particular attention when it comes to

deal with the aforementioned pathologies and imaging techniques.
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Challenges of automating a human-based process may arise from the broad landscape of patho-

physiological attributes of a determined disease [13, 37]. Based on Cerebriu experience, tumor is the

most demanding pathology to annotate, as it may be characterized by various heterogeneous histolog-

ical sub-regions and by broad imaging phenotypes [37]. As shown in Figure 1.10, shapes, textures,

and intensities vary across tumor types and sub-regions, depending on the underlying biological prop-

erties (solid, edema, cystic, necrotic...) [37]. In-house annotators highlighted that the elaborating and

up-dating a tumor annotation protocol has been a cumbersome process. Therefore, transferring the

aforementioned non trivial human knowledge into neural network features is expected to be challenging.

Large amount of data distributed across classes is needed to guarantee that pathology attributes are

being learnt correctly by the network during the training phase.

Unfortunately, the design of a high-performance algorithm is not just a question of automating a

correct delineation of the relevant pathology characteristics. DL solutions for MRI segmentation and

classification also have to be robust to distributional shifts of the radiomic attributes [4,5,44,45]. This is

all the most relevant facing the diversity of radiology platforms, the heterogeneity of processes, formats,

and protocols, the variability of intra and inter-site scanner manufacturers, models and versions [46].

One pathology may appear differently depending on the acquisition scanner, protocol, and modality. As

presented in Figure 1.7, SWAN and T2 * GRE have different signal intensities and image resolutions.

Figure 1.12 supports this idea by highlighting the disparity observed in histograms of images acquired by

different scanners and modalities (T1 versus T2 weighted images). A direct assessment on two datasets

used at Cerebriu shows the relative intensities between pathologies and background differences, origi-

nated by different scanners (Figure 1.13). Having an out-of-distribution image may lead to an erroneous

output and have undesired consequences for the patient outcome or hospital workflows [4]. Again, large

amount of data is needed to guarantee the ability of an algorithm to generalize across institutions and

scanning attributes.

Taking the aforementioned issues into account, the elaboration of an algorithm for segmentation

and detection of brain diseases based on MRI highly relies on the amount, quality, and diversity of the

data used during training and validation. Data availability, curation, and distribution across classes are

essential steps that are intrinsically associated with the algorithm performance [4,47,48]. Nevertheless,

in medical settings, the access to medical data is limited and DL-based companies are calling for new

procedures that facilitate data sharing and discourage the exclusivity of partnership between developers

and institutions [48].

1.3 Objectives and Contributions

The present works aims at designing a comprehensive framework for assessing the performance of

DL medical segmentation and classification algorithms.
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Figure 1.12: Image slices ((Top) and their respective histograms of intensities (Bottom). Scans are acquired with
different scanners ((Left) T1 and (Right) T2 weighted images). The differences observed in the his-
tograms can be easily identified, reinforcing the idea of high variability between images with different
acquisition parameters.
Figure drawn from [45].

Figure 1.13: Example of infarct from ((Left) SUNY dataset acquired with a 1.5 T Siemens scanner and from (Right)
MedAll dataset acquire with a 1.5 T GE Healthcare scanner. The relative intensity difference between
background and foreground classes depends on the clinical sites, scanners and acquisition parame-
ters.

The proposed method is expected to evaluate the robustness of the DL models response to distri-

butional shifts. It is meant to measure the level of agnosticism to the training data and to cover the

generalisation ability of an algorithm across hospitals and different MRI hardware parameters. This

is a necessary step to bring DL technology from the lab to the clinical practice, tackling the already

mentioned concerns of clinicians with respect to its reliability and liability.

Performance will be addressed under three perspectives and statistical validation is provided accord-

ingly:
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• Performance across pathologies - Gives a deeper understanding of the pathological contexts for

which more discriminative features were learnt by DL algorithms. This evaluation could help their

integration in meaningful clinical workflows and protocols.

• Performance across acquisition parameters - Gives a deeper understanding of the MRI acqui-

sition parameters that allow a better performance of DL algorithms at the clinical sites. It can also

be interpreted as a measure of robustness.

• Performance across datasets - Gives a deeper understanding of DL algorithms generalization

ability. Generalization is defined as the ability to perform well on previously unobserved inputs [3].

It is a preliminary step to ensure their safety at new clinical sites before its implementation.

The conceptual objective of this work is to sensitize DL researchers on conducting an accurate and

comprehensive evaluation of their networks and to warn them on the impact of data bias and distri-

butional drifts. The evaluation framework is validated experimentally in two algorithms: Apollo [1] (the

test-bed algorithm that motivated this project) and nnU-Net [49] (the current state-of-the-art DL approach

for medical image segmentation).

1.4 Thesis Outline
The remaining chapters are organized as follows. Chapter 2 analyzes how DL can be integrated

into clinical pratice and contribute to the modernization of the radiology department. It highlights its

potential to optimize hospital resources, implement more efficient workflows, and achieve better patient

outcomes. It also identifies the major concerns that hamper the adoption of DL solutions in real clinical

settings. Chapter 3 works as an introduction to the two DL algorithms under analysis and describes

the step-by-step procedure undertaken for their evaluation. Chapter 4 provides a detailed analysis of

the performance of Apollo and a comparison with nnU-Net is made is parallel. Chapter 5 concludes

the thesis, highlighting the importance of assessing the response to distributional shifts in the evaluation

guidelines and pointing out directions for future improvements on evaluation methods. A final note on the

expected outcome of Cerebriu in danish hospitals and its extrapolation to portuguese clinical settings is

also provided.
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The goal of Chapter 2 is to discuss how DL can integrate the routine clinical pratice and contribute

to the modernization of the radiology department. Specifically, Chapter 2 provides an overview of DL

models applied to disease segmentation and classification of MRI data. Since DL is a family of machine

learning (ML) methods, the chapter starts with a brief introduction to ML theoretical concepts. Then, a

state of the art analysis is conducted, covering the current research trends, the market situation, and the

major barriers for a seamless hospital integration.

2.1 Deep Learning Basics for Clinical Applications

The present section is dedicated to general ML concepts that are progressively refined to DL con-

cepts. It aims at giving the necessary tools to understand the research and market orientations dis-

cussed in Section 2.2.

A comprehensive definition of ML was given by Mitchell [3] :

“A computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P, improves

with experience E.”

This definition will serve as a scaffold to introduce and develop the important concepts highlighted in

bold. The following subsections address each concept sequentially and succinctly.

2.1.1 The Learning Experience E

The learning experience of an algorithm can follow different learning paradigms: supervised learn-

ing, unsupervised learning, or reinforcement learning. Between supervised and unsupervised learning

lay different semi-supervised learning experiences, depending on their relative proportion of supervised

versus unsupervised learning. For medical application, current algorithms mainly rely on supervised

learning [50], where the algorithm has access to a dataset containing labelled examples during the

training and validation steps. In that case, based on observations made on examples of a random vector

x and its corresponding label y, the algorithm tries to estimate p(y|x), learning to predict y from x [3].

In order to achieve state-of-the-art performances and face data scarcity, the learning step is usually

paired with data augmentation [51] 1. Augmentation is a key concept when it comes to train a segmen-

tation network in biomedical applications since 1) it is an efficient and pragmatic method to simulate

structural and textural changes of anatomical architectures; 2) invariance and robustness to tissue de-

formation can be learnt by the network; and 3) satisfactory training results are achieved without relying

on large training corpora [52].

1Data augmentation is a strategy that consists of creating additional data from the already acquired set. Different techniques
can be applied from noise addition, flips, rotations, intensity variations to more complex non-rigid deformations
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2.1.2 The Type of Task T

The growing role of ML in different domains and a better understanding of principles that underlie

intelligence brought forward a diversity of tasks that could be executed by algorithms. Automating pro-

cesses such as pathologies segmentations and classifications have not only become an attractive field

of research but is also starting to be part of the radiologists routine [50]. They are seen as key tasks for

pathology diagnosis and evaluation (volume, disease sub-types, location).

A Classification task is based on specifying the output category y ∈ 1, ..., k of the corresponding

input x by estimating the mapping function f : IRn → 1, ..., k and computing y = f(x) [3]. A Segmen-

tation task is a pixel-wise or voxel-wise classification task. Segmentation clusters image regions into

groups that share the same class, assigning a label to each pixel or voxel x of the input image X [49].

Therefore, the algorithm output share the same dimensions as the input and the assigned categories

are tightly correlated in space due to image continuity [3]. Accounting for 70% of international medical

image analysis competitions, this type of task is an essential ingredient when it comes to clinical applica-

tions [49]. Segmentation task at a lesion level is usually combined with classification at an image level.

Hence, higher emphasis will be given to segmentation, as it is a pixel-wise classification that determines

the final image classification in Apollo pipeline.

Each type of task requires a specific model. Traditionally, ML-based image segmentation approaches

are designed to perform a segmentation task, using hand-crafted features that were previously extracted

from raw data (Figure 2.1 - Left). Hence, the selected features and class labels work both as an input

for the classifier to determine the function f such that y = f(x). Defining the number and the type of

features or selecting the optimal type of classifier is a challenging and time-consuming process, since

it is mainly performed by trial and error [50]. Therefore, ML solutions (support vector machine (SVM),

decision trees, or Bayes classifiers) are less suitable when it comes to automate the segmentation of

complex diseases that show a broad spectrum of features.

DL-models [53] emerged as a solution by merging feature extraction, selection, and classification

into one problem that is optimized during training (Figure 2.1 - Right). It has been proving its superiority

with higher quality segmentation and classification accuracy [50]. Different DL building blocks have been

proposed to compose more complex and powerful algorithms. From multi layer perceptron (MLP) to the

U-Net, an overview across DL solutions landscape for medical segmentation is provided in the following

paragraphs and schematic architectures of MLP, CNN and fully convolutional neural network (FCN) are

presented in Figure 2.2.

• MLP: The MLP architecture (Figure 2.2 - Top) is built upon multiple units, organized in layers,

where the number of layers gives the depth of the network. Each unit i is connected to a unit j of
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Figure 2.1: (Left.) ML framework for image classification and segmentation and (Right.) DL framework for image
classification and segmentation.
With the high dimensions of medical images (3D), ML cannot compete against DL when it comes to
pixel-wise classification. Its trial-and-error process for feature extraction and selection is extremely time-
consuming and requires medical expertise.
This figure was adapted from [50].

the next layer through a weight wij and the output of unit j is given by zj according to (2.1):

zj = g(w0j +
∑

i∈previouslayers

wijzi), (2.1)

where g is an activation function continuous and differentiable and zi the output of unit i [54]. Ap-

plying g enables the MLP to extract more complex information from the data and create nonlinear

mappings between input and output [55]. During the training, weights ω are optimized to produce

the best approximation of the mapping function f given by y = f(x) [3].

The model is described by a direct acyclic graph [3]. The term feed-forward network is drawn from

the fact that information is propagated through one single direction, from the input to the output.

The term neural network arises from the fact that two MLP units from consecutive layers simulate

mathematically a connection between two neurons of the brain.

The reason why MLP are not suitable for image segmentation is that they are computationally

expensive to train. Having connections between all units i of layer I and all units j of layer J , each

one defined by its own weight wij make them extremely inefficient for large dimensions inputs and

outputs [20].
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Figure 2.2: (Top.) MLP, (Middle.) CNN, and (Bottom.) FCN schematic architectures. This Figure was adapted
from [*] [50], [**] [54], [***] [56] and [****] [57].
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• CNN: The CNN [53] was introduced by LeCun, Bengio and Hinton (Figure 2.2 - Middle). CNN draw

their strengths from the convolution operation from which arise useful properties that enable CNN

to achieve a highly efficient representation of the input data without suffering from MLP restrictions

and drawbacks [3]. The aforementioned properties (sparse connections, parameter sharing, and

equivariant representation to translation) are presented in Figure 2.3 along with the differences

between MLP and CNN.

Figure 2.3: (Left.) MLP and (Right.) CNN approaches with respect to sparse connections, parameter sharing and
equivariant representation to translation. The present figure exposes the advantages of CNN frame-
work: it reduces the number of parameters to be learnt during the training, the computational burden
and presents an efficient approach for image classification. This figure was adapted from [*] [3] and
[**] [58].

Sparse connections and parameter sharing are essential ingredients when it comes to decrease

the number of parameters w to be learnt and stored while achieving highly efficient representation

of the input data. While in a MLP, all units i of layer I are connected all units j of layer J , sparse

connections create a local receptive field connectivity framework, reducing the connections be-

tween units of consecutive layers. As the correlation between pixels decreases when the distance

between them increases, sparse connections do not deteriorate the quality of segmentation [59].

While in a MLP, each weight wij is used exactly once in the output layer computation, parameter

sharing authorizes the network to share the weights through all the units of the same layer. Sparse

connection and parameter sharing are then combined with equivariant representation to transla-

tion that allows the network to be insensitive to translations. Therefore, CNN are viable alternative

to MLP to process large input dimensions.

CNN architectural design comprises a convolutional layers, non-linear activation layers, pooling

layers, and a final fully connected layer:
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- Convolutional layers use convolution of the input image with a determined filter to extract feature

maps.

- Activation layers answer the need of introducing non-linearity into neural networks to allow for

nonlinear mappings representation between input and output [55]. Among the non-linear activation

layers, rectified linear unit (ReLU) and Leaky ReLU 2 are known to increase training speed by

reducing second order effects and producing large and consistent gradients.

- Pooling layers enhance the computational efficiency by downsampling the obtained feature map

and reducing the size of the input fed into the next layer. By reporting a summary statistic for

clusters of neighbour pixels, pooling layers also prevent overfitting.

- The final fully connected layer and its respective activation function computes the output.

The loss of spatial information with the increase in the network depth may decrease CNN perfor-

mance for segmentation tasks. Hence, to perform segmentation with a CNN, a patch-wise classifi-

cation is usually adopted, where the CNN classifies the center pixel of the patch. The image is fully

covered by sliding the patch throughout all the pixels. Therefore, while CNN are the gold standard

for classification tasks, they become less efficient when it comes to image segmentation [50].

• FCN: The FCN [60] was proposed by Long and Shelhamer to overcome the loss of spatial infor-

mation noticed in CNN. The architecture of a FCN is portrayed as the combination of an encoder,

that ensure feature extraction and dimension reduction, and a decoder, that performs semantic

segmentation [50]. This architecture enables the network to learn relevant features ( size- , shape-

, texture- related) and to combine the aforementioned contextual information with a precise spatial

location. It consists of replacing the final fully connected layer by a succession of deconvolutional

layers. Via up-sampling of the low-resolution feature maps and bi-linear interpolation, the original

dimension is restored and a segmentation map of the input image is created. Nevertheless, this

up-sampling operation limits the resolution of the segmentation map and produces unsatisfactory

and coarse results. To refine spatial location, Long and Shelhamer introduced skip connections

that combine coarse information of higher layers with fine information of lower layers (Figure 2.2 -

Bottom). It allows to recover fine-grained spatial information that is potentially lost in the pooling

and downsampling layers.

Among FCN architectures, emphasis is given to U-Net, one of the most commonly adopted ar-

chitectures for medical image segmentation [51]. Its name arises from its symmetric U-shaped

architecture, as shown in Figure 2.4. All U-Nets operate with a very common configuration of two

convolutional blocks per layer. Each block consists of a 3x3 unpadded convolution, followed by

batch normalization and a ReLU non-linearity [52]. Combining context (encoder) with location (de-

2ReLU uses the activation function g(z) = max {− 0, z} based on the principle that not all the neurons/units are activated
simultaneously. On examples where the activation is zero, the training via gradient based methods is compromised. Therefore,
Leaky ReLU was introduced, with a negative slope of 0.01 for z ∈ [−∞, 0[ to answer the aforementioned issue [3].
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Figure 2.4: General U-Net architecture. The U shape is visible: encoder (contextual information) and decoder
(spatial location) are identified.
Blue boxes - multi-channels feature maps. The number of channels (z) is mentioned on the top of the
box and in-plane dimensions (x-y) on the lower left edge of the box.
White boxes - copied feature maps.
Figure adapted from [52].

coder) is enabled by incorporating the aforementioned blocks with downsampling and upsampling

operations, respectively. In the contracting path, each block is followed by a downsampling step,

computed with 2x2 max pooling operation. In the expansive path, each block is preceded by an

upsampling step, performed by a 2x2 up-convolution and a concatenation with the correspondingly

cropped feature map from the contracting path [52]. This last step takes up the idea of skip con-

nections implemented by Long and Shelhamer, apart from the fact that information of the encoder

is added via a concatenation operator and not via element-wise addition. This guarantees that

better segmentations are produced and the learning process is refined.

U-net is the building block upon which Apollo and nnU-Net models are built. Their respective

specificities will be detailed in Chapter 3.

2.1.3 The Performance Measure P

Assessing the performance can be conducted during the validation step, to monitor hyper-parameter

choices and select the optimal solution, and during the testing step, to judge the generalization ability of

the model when evaluated on an unseen dataset [61]. In this work, performance analysis falls into the

latter category and is defined as being an objective, indirect and empirical evaluation of an algorithm [43].

Unsupervised evaluations, for which no ground truth is provided, are not reported nor discussed.

Over the past years, there has been an evolution in metrics, adopted in the evaluation frame-
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works [43]. Selecting the right metric requires a deep understanding of the algorithm specific appli-

cations and the context for which it is designed. Regarding segmentation, the evaluation of an algorithm

can be conducted at different levels (pixel-wise, lesion-wise, image-wise) and the evaluation framework

needs to be designed accordingly. Based on its application, one could privilege the number of seg-

ments, its area or volume , its alignment with ground truth, or its density [62]. Additionally, for segmen-

tation tasks, an equilibrium has to be found between over and under-estimating lesions. Generally, for

medical applications, it is common to maximize recall, guaranteeing no lesions is being missed during

segmentation, on the cost of precision [62].

It is also important to take into consideration class unbalance or outliers. As a matter of fact, medical

data suffers from class unbalance at an image and lesion levels. Most of the available cases correspond

to healthy patients, and within the unhealthy patients, the pathological segments are small compared

with the background. Higher accuracy for the dominating class will overshadow the lower accuracy

associated with the other class, thus providing biased results. Moreover, medical data is mainly noisy

(partial volume effect), of low resolution, and presents artifacts. Therefore, metrics sensitive to outliers

should be avoided [62].

Figure 2.5 summarizes the adequate evaluation metrics for pathology segmentation with respect to

the previously mentioned features. The metrics were reduced to area and alignment measures and are

computed based on the confusion matrix (Figure 2.6), defined at pixel, lesion, or image level.

2.2 State of the Art

This section provides an overview of the current trends in supervised DL models applied to medical

image segmentation, and discusses the main challenges of transferring these approaches to the clinical

setting. The main purpose of this section is to draw a bridge between the theoretical and the empirical

settings. Understanding how the theoretical knowledge is applied in practice and what hampers the

transition from research to clinic is essential to justify the experimental path described in Chapter 3.

2.2.1 DL at the Core of Healthcare (R)evolution

DL applications in clinical settings have been flourishing over the past years and state-of-the-arts

for medical segmentation are being updated regularly [20]. A review conducted by [64] shows that

innovations in model architecture accounts for 36 % of the contributions of the recent medical image

segmentation papers. The remaining contributions do not exceed 18 % and include optimization of

loss function, weak supervision, multi-task models, and data augmentation methods. Regarding the

current trends in model architecture, the encoder-decoder architecture with skip connections (i.e U-Net

based networks) has been given a position of honour with respect to medical segmentation. The top 15
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Figure 2.5: (Top.) spatial overlap and (Bottom.) spatial distance based metrics for medical segmentation eval-
uation. Metrics were selected according to the specific application and the relevance of the following
features: recall, precision, alignment and segment size, contours delimitation, and general shape and
alignment. Metrics sensitive to class imbalance are also mentioned, as most of the medical dataset
suffers from unequal class repartition.
X is the predicted lesion segmented and Y is its correspondent ground truth. TP (True Positive), TN
(True Negative), FN (False Negative), and FP (False Positive) are drawn from the confusion matrix
(Figure 2.6).
This figure was designed based on [62] and [63].
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Figure 2.6: Confusion matrix for a binary classification problem where p stands for a positive and n for negative
case. The matrix compares the ground truth y with its respective prediction ŷ. For a positive ground
truth, the model can either predict a TP (True Positive) or FP (False Positive) case. In turn, a negative
ground truth can result in a TN (True Negative) or FN (False Negative) prediction.
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DL-based segmentation methods of 2019 KiTs Challenge [65] 3 are a clear evidence of U-Net based

models’ superiority. Current research encompasses optimizing the amount of data being transferred

through skip connections, modifying the upsampling operation from the lower resolution input feature

maps, or adapting the U-Net like encoder-decoder skeleton 4 [64]. The two models used in this work fall

in the latter category, as detailedly explained in Sections 3.1 and 3.2, respectively.

An outstanding observation when addressing architectural modifications is that performance is not

always correlated with innovative architectural designs and complex architectural modifications [49].

Achieving state-of-the-art mostly relies on design choices made during network configuration, where the

pipeline fingerprint is designed and parameters are selected. Therefore, identical architectures seem to

cover the entire range of evaluation scores (KiTs Challenge) [65]. Nevertheless, network configuration

and architectural extensions are not universal across domains and modalities [49]. Method configuration

requires dedicate adaptation to each dataset. This supplementary step is even more important than in-

novative architectural modifications. The aforementioned observation constitute the core and foundation

of Isensee et al. framework [49], the current status quo in medical segmentation tasks. A simple U-Net

is tuned for each dataset, based on heuristic rules applied to extracted data fingerprints [49].

Another key aspect regarding the network architecture is the number of channels. Current algorithms

tend to rely on multi-modalities. This scenario allows the network to aggregate more contextual informa-

tion from different image modalities of the same subject. Hence, it yields a higher quality segmentation

and predictive accuracy [66]. Unfortunately, accessing different modalities is sometimes cumbersome

as it increases acquisition time, costs, and may affect the hospital workflow [67]. Additional image regis-

tration is usually required to provide accurate location of the combined information [66]. Modalities used

to feed an algorithm developed for the diagnosis of a pathology have to be in line with the protocols used

in hospitals. Besides guaranteeing that the modality is suitable for detecting that pathology, it confirms

that the algorithm is answering a valid clinical problem. Moreover, it ensure that data are more likely to

be available for training. As highlighted in Chapter 1, CT can be used in a broad range of pathology

diagnosis, making it the preferred modality for DL applications. However, due to its versatility, MRI has

been recently rising in popularity [50]. In a single MRI session, it is possible to acquire several modal-

ities, through an adequate selection of the scanner parameters within the same ”scanning session”.

Numerous challenges for pathological segmentation with multi-modal MRI scans have been flourishing,

underlying the potential of this technique 5.

3KiTs stands for Kidney and Kidney Tumor Segmentation. The Challenge is hosted by the Medical Image Computing and
Computer Assisted Intervention (MICCAI) society.

4This can be performed by adding of residual connection or attention blocks, cascading , ensembling , or combining adversarial
networks with U-Net based networks [64].

5Ischemic Stroke Lesion Segmentation (ISLES) for sub-acute ischemic stroke lesions segmentation and acute stroke clinical
outcome; BraTS for glioma segmentation, prediction of patients survival rates, and uncertainty evaluation of the prediction maps;
the RSNA intracranial hemorrhage detection for diagnosis and classification of intracranial hemorrhages sub-types.
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2.2.2 The Challenges of the Research-to-Clinic Transition

While automated medical segmentation is an active field of research, few solutions are commer-

cialized or in a pilot phase at clinical sites. Several Conformité Européenne (CE)- or Food and Drugs

Administration (FDA)-approved artificial intelligence (AI) solutions have been put forward in the last few

years for brain pathologies segmentation. Most of them use CT, usually targeting strokes and hemor-

rhages. A brief selection of companies leading the DL Radiology Revolution for infarcts, tumors and

hemorrhages detection using MRI and CT was conducted and presented in Table 2.1. Integrating ML

algorithms in clinical workflow is hampered by the lack of: 1) standardization in hospital ecosystems,

2) explainability, 3) generalization assessment, and 4) evaluation guidelines.

The success of DL models does not solely rely on its accuracy. It also depends on the performance

and impact of the DL solution in real clinical settings. The diversity of radiology platforms, the hetero-

geneity of processes, formats, and protocols, the variability of intra and inter-site scanner manufacturers

make the integration of DL challenging in hospital workflows [46]. Prospective studies evaluating the AI

solutions in real clinical settings are slowly being adopted by research groups and companies [68]. They

are designed to give insights on how the algorithm responds in situ and multiply the metrics used to as-

sess clinical effectiveness. Nevertheless, a standardization of the frameworks and the implementation

of incentives for culture change in routine clinical pratice are still missing for a seamless integration of AI

in medical ecosystems [48].

Moreover, most of DL solutions are black-box algorithms, capable of drawing hidden relations and

faster conclusions than radiologists. From their intrinsic nature, DL solutions have low degree of explain-

ability and the system predictions can only be judged as correct based on the final outcome [4]. The

decision-making process or prediction confidence is not usually monitored. Therefore, the reliability of

their predictions has been questioned [50] and the liability aspect potentially harnesses the integration

of DL into existing clinical workflow [47].

Concerns have also been raised on the ability of the algorithm to generalize to different clinical sites

and to be widespread in clinical settings (Section 1.2.3). In current practice, and due to the scarsity

of medical data, most of the evaluation processes are not sufficiently broad. A study on performance

evaluation of AI algorithms for medical classification shows that only 6% of the 516 reviewed solutions

performed external validation, and so far, there is limited research demonstrating the generalizability of

these algorithms to widespread clinical practice [48]. Moreover, when performed, the external evaluation

is unsuitable for biases detection as the selected dataset present significant overlaps with the ones used

for training and validating the models [65]. However, the inherent dependence of the network to the

training set and the unintended data bias during the optimization step should be taken more seriously.

Training data may not accurately represent the entire population introducing a selection bias based on

demographic or acquisition parameters [4]. In [69], a systematic evaluation of the effect of scanner pa-
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Table 2.1: Landscape of DL-based companies towards radiology modernization. Pathological context, modalities,
ML framework, main clinical outcomes, clearance information and penetration stage in the market are
highlighted. Clinical outcomes are similar and comprise faster and more accurate clinical solutions.
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rameters ( manufacturer, magnetic field strength, and slice thickness) on ten extracted features for breast

cancer detection demonstrated that 58.22% of the features were affected by the scanner manufacturer,

50.47% by the slice thickness and 38.94% by the field strength. Other types of bias include curation bias

(selection of optimal training data, high-quality images) and negative dataset bias (over-representation of

positive cases) [4]. A striking example of this phenomenon was the study led by Google Health, assess-

ing the impact of a DL algorithm to detect diabetic retinopathy in real clinical setting [68]. Eleven clinics

in Thailand were chosen for the experiment, observing the performance on-site. Consequences of data

curation were drastically assessed: trained with high-quality scans, the algorithm responded poorly to

the pictures taken by the nurses, rejecting more than one fifth of the images. Instead of achieving the

desired outcome, the solution increased frustration and worsened the workflow [68]. All these source

of bias contribute for the distributional shift, responsible for a out-of-distribution prediction. Therefore,

external evaluation is recommended.

Finally, it is important to adopt adequate evaluation frameworks with appropriate and diversified met-

rics, intended to cover all requirements needed to be integrated in clinical routine. Nevertheless, the

literature review conducted in the present work and presented in Figure 2.7 shows that limited metrics

are usually used to evaluate the impact of the algorithm in clinical settings. In medical segmentation

tasks, Sørensen Dice coefficient (defined in Figure 2.5) accounts for 40 % of the metrics computed to

assess the algorithm performance. Another phenomenon observed during the literature review is that

clinically relevant metrics are tendentiously neglected. As an example, Badea et al [70] only use accu-

racy (accuracy = TN+TP
FN+FP+TP+TN ) to evaluate a model that performs a pixel-wise classification of the

degree of dermal burns (normal vs burn) on color and infrared images. However, computing accuracy

of normal versus burn segments can be misleading. Normal segments (classified as true negative (TN)

or false positive (FP)) are larger when compared with burn segments (classified as true positive (TP)

or false negative (FN)). Hence, a high accuracy value is not necessarily correlated with good segmen-

tation of burn areas: high TN can overshadow low TP. Dice coefficient or F1 measure could be more

appropriated.

Therefore, a more complete evaluation framework with a deeper understanding of the performance

across metadata properties or pathologies is required to convince stakeholders to adopt and trust DL

approaches. Targeting challenges 3) and 4), our key objective is to bring awareness on those issues, to

inspire better practices, and provide alternatives to the current evaluation framework of DL models.
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Figure 2.7: Commonly used evaluation metrics for segmentation of tissue types or pathologies in medical images.
Dice accounts for 40% of the metrics currently used in medical image analysis.
Data drawn from: [50], [67], [71], [72], [73], [74], [51], [75], [76].

35



3
Materials and Methods

Contents

3.1 Apollo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 nnU-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Post-processing of Predictions and Ground Truth Binary Masks . . . . . . . . . . . . 46
3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

36



Chapter 3 describes our approach that jointly assesses the performance of DL algorithms for clas-

sification and segmentation tasks. Through accurate and adequate metrics, the analysis encompasses

performance across pathologies, performance as a function of MRI acquisition parameters, and perfor-

mance on unseen data. Given the context of this internship, performance evaluation is intended to give

a deeper understanding of Apollo [1] across pathologies, acquisition parameters, and sites. However,

to show that the framework is not limited to Cerebriu’s test-bed algorithm, the evaluation pathway is

extended to the state-of-the-art in biomedical segmentation nnU-Net [49].

This chapter starts by explaining the in-house Apollo software architecture and its clinical application.

Then, a brief description of nnU-Net, regarding its architecture and training specificities, is given in

Section 3.2. Finally, relevant information about the dataset, adopted post-processing methodologies,

and metrics chosen for evaluation are addressed in the remaining sections.

3.1 Apollo
The present section describes the two components of our test-bed algorithm Apollo [1]. The DL

component, that performs segmentation and classification on MRI scans, and the software component

(user interface (UI)) are covered in Section 3.1.1 and Section 3.1.2, respectively. Information about

Apollo training scheme can be found in Appendix A.1.

3.1.1 Apollo Architecture

Apollo is built upon a standard U-Net architecture. In the present case, Cerebriu has opted for a

symmetric network topology with a four block depth architecture 1. Apollo is composed by three U-

Nets, each of them fed with the three 3D MRI sequences described in Section 1.2.1: DWI, FLAIR and

T2 * GRE, SWAN, or SWI images. Each network computes a multi label semantic classification and

predictions are made on the entire image. Therefore, the expected output is one segmentation map per

label/class per network. Four classes are considered: class 1 - infarcts (label 1 (L1)), class 2 - tumors

(label 2 (L2)), class 3 - hemorrhages (label 3 (L3)), class 0 being considered as background. Post-

processing techniques are then applied to project each segmentation map back to its native modality

space 2. As a result, the final prediction of Apollo, for a specific label is a majority voting between the

three predictions of the disease, aligned in its native space, originated by the three different networks.

In other words, for label k, the prediction ŷ follows equation (3.1):

ŷk = mode
{
ŷ

1
k , ŷ

2
k , ŷ

3
k

}
(3.1)

1Block composition is described in Section 2.1. The only difference with respect to block composition is that instance normal-
ization is performed instead of batch normalization.

2Each pathology has a respective space of prediction, mirroring the clinical pratice for diagnosis: DWI, FLAIR and
SWI/SWAN/T2 * GRE spaces are used to predicts infarcts, tumors and hemorrhages, respectively. Therefore, the native modality
space of an infarct would be the DWI space.
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Figure 3.1: Apollo inferences process.

where y
j
k with j = 1, 2, 3 is the prediction originated by a network j for label k. A visual explanation of

the aforementioned inference procedure can be appreciate in Figure 3.1.

In clinical settings, the three networks run in parallel and the final predicted maps (after ensembling) are

expected two minutes after the end of the acquisition step, depending on the scanner and the acquisition

protocol. Based on these maps , if at least one lesion of a specific class has been segmented, the patient

is automatically classified with the same label.

3.1.2 Apollo’s Software: User Interface and Key Features

Apollo application in radiology department can be narrowed down to three relevant features, shown

in Figure 3.2:

• Smart Protocol: Providing protocol decision support during image acquisition, the main objective

of this feature is to reduce MRI scan time and unnecessary acquisition. This translates into 1)

an improved use of resources (adequate selection of MRI sequences to acquire/ reduction of

reexaminations) and 2) a higher quality patient care (reduction of scanning time / prevention of

contrast administration). The suggested sequences are based on clinical findings and can be

manually configured, according to the hospital protocol.

• Triage Advisory: Granting triage decision support during image acquisition, the main objective

of this feature is to improve quality care by automatically selecting patients that require urgent

review by the radiologist . This results in 1) optimized patient flow, 2) improved use of clinical

resources, and 3) avoidance of unnecessary admissions . Triage relies on clinical findings and
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the prioritization is set by the hospital according to its respective classification criteria. Triage is

updated real time while patients are in the scanning room.

• Image Reporter: Allowing the visualization of regions of interest during scan and later in picture

archiving and communication (PAC), the main objective of this feature is to verify pathology and

accelerate reporting. This results in 1) decreased reliance on specialist radiology services and 2)

an improved support to junior medical staff in the diagnostic process.

3.2 nnU-Net

nnU-Net is an open-source network developed by Fabian Isensee et.al. in 2019 [77]. The pro-

posed framework was able to outperform the most specialized DL pipelines in 19 public international

competitions, setting the new state of the art in 33 out of the 53 tasks [49].

3.2.1 nn-UNet Architecture

nnU-Net stands for “no new net”. The network does not draw its strengths from an improved archi-

tecture, a more efficient training scheme or a more appropriate loss function. Its novelty, highlighted in

Figure 3.3, resides on its ability to handle a wide disparity of structures and image properties, propos-

ing a tailor-made network without any user intervention. Pre-processing, architecture design, training

scheme and post-processing are automatically configured. It by-passes the traditional iterative trial and

error and reduces the need of expertise in the ML field when it comes to network design. In addition,

nnU-Net data efficiency is all the more appreciable for medical applications. Having extracted its en-

coding design choices from a large and diverse data pool, nnU-Net ’s performance is not deteriorated by

data scarcity.

The network design is interpreted in terms of a data fingerprint and a pipeline fingerprint. Data

fingerprints compile the properties of a specific dataset. Pipeline fingerprints summarize the design

choices of a segmentation network and are divided into three groups: blueprint (data-independent,

already predefined), inferred (data dependent), and empirical parameters (optimized during training).

Network optimization and adequacy to the respective dataset rely on heuristic rules, operating on the

data fingerprints, to compute the inferred pipeline fingerprints. These are key decisions required to

transfer a basic architecture to the actual dataset and segmentation tasks. Blueprint parameters are

then combined to identify a high quality pipeline fingerprint for the studied dataset. Three configurations

can be chosen for the design of the neural network: a 2D U-Net, a 3D U-Net (full resolution), and a 3D U-

Net cascade that creates a refinement on a first low resolution network. Optimal configuration and post-

processing choices are assessed post-training, setting the configuration of the empirical parameters

(Figure 3.3). Detailed information about fingerprints can be found in Appendix A.2.
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Figure 3.2: Apollo key features [1].
(Top.) Smart Protocol. In the figure, protocol A is advised based on clinical findings inferred on DWI
and FLAIR images.
(Middle.) Triage Advisor. In the figure, a color code (low - green, middle - orange, high - red) can be
seen on the patient list, according to the prioritizing code set by the Hospital.
(Bottom.) Image reporter. In the figure, an infarct can be appreciated in the DWI image.

Following the already described U-Net architecture, the depth is configured by determining the num-

ber of downsampling operations along each axis depending on the patch size and voxel spacing. In

the present case, the depth of the network is set to six blocks. Block composition is slightly different

from the standard U-Net: ReLU is replaced by Leaky ReLU, batch normalization by instance normal-

ization, maxpooling by stride convolution, and the upsampling with a 2x2 convolution by transposed

convolution [49].
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Figure 3.3: Manual and proposed automated configurations of DL method.
a) Current practice of configuring a DL method for biomedical segmentation: iterative trial and error
process. In training and validation steps, hyper-parameters, network architectures and topologies are
manually set. This procedure is, often, time consuming, and requires accute expertise in the ML field.
The optimal architecture usually needs a re-optimization for each new dataset (new modalities, new
pathologies...).
b) Proposed automated configuration by nnU-Net : Automated DL solution adapted to the dataset.
A tailor-made network, fitting the present dataset, specially designed for its image properties, labels
and segmentation tasks, is obtained, without manual intervention, based on the identification of robust
design decisions and explicitly models key interdependencies.
Image and descriptions are adapted from [49].

Inferences are achieved with a sliding window with the same patch size as used during training 3.

Adjacent predictions overlap by half the size of a patch; voxels located at central window positions have

higher weights in the softmax aggregation.

Table 3.1 summarizes Apollo and nnU-Net pipelines and aforementioned design choices.

3.2.2 nnU-Net Training Specificities

Since the network has to be fed with exactly the same dataset used in Apollo training, we only

trained the 3D nnU-Net configuration for fairer and unbiased comparisons 4. As an additional support to

this decision, 3D U-Net was also found to be the best performing method in [49].

To mimic Apollo, three 3D U-Net networks were trained. As in Apollo, each network has to per-

form five segmentation tasks: infarcts, tumors, hemorrhages and background. The multi label semantic

segmentations originated by each network are then combined by majority voting to obtain the final seg-

mentation maps, exactly as shown for Apollo in Figure 3.1.

3Similarly to Apollo, nnU-Net prioritizes large patch sizes, under a given GPU memory constraint, over the batch size.
43D U-Net cascade was not considered as not suitable for the training dataset. Cascade is only triggered for datasets where the

patch size of the 3D full resolution U-Net covers less than 12.5% of the median image shape, reducing the possibility to aggregate
sufficient contextual information for optimal training [49].
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Table 3.1: Comparative analysis of Apollo and nnU-Net pipelines

Apollo nnU-Net

Modification to the U-Net architecture
Normalization Instance Normalization Instance Normalization
Activation Function ReLU Leaky ReLU
Downsampling Max pooling Stride Convolution
Upsampling Upsampling Transposed Convolution
Depth 4 blocks 6 blocks

Training Schedule
Epochs 250 1000

(iterating over 500 minibatches) (1 epoch iterating over 250 minibatches)
Patch Size [160,176,160] [128 128 128]
Batch Size 2 2

Back propagation
Algorithm Adam Optimization Stochastic Gradient Descent

Nesterov Momentum (µ = 0.99)
Learning Rate η = 0.0001 η = 0.01

Early Stopping Yes -

Loss Function Dice Loss Cross-entropy and Dice Loss
(excluding the background)

Deep supervision - Yes - Loss Function is optimized
for the 4 last blocks of the decoder

Image pre-processing Z-scoring Intensity Normalization Z-scoring Intensity Normalization
Oversampling Foreground Regions Oversampling Foreground Regions

Data Augmentation Rotation ; Translations; Intensity Variation; Rotation ; Translations; Intensity Variation
Random Cropping (Gaussian Blur and Gaussian Noise)

Gamma correction;
Mirroring ;
Scaling;
Low Resolution Simulation;

Predictions On the entire image With a Gaussian sliding window
overlap: half of the patch size

3.3 Data

The present section is devoted to the data used in the project. It is intended to describe the datasets

used in the experiments and to give further information on their MRI acquisition parameters, extracted

from the image header.

Infarcts, tumors, and hemorrhages are referred as L1, L2, and L3.

3.3.1 Dataset Information

The data on which are based our experiments and analysis come from three hospitals: OUH

(Odense University Hospital - Odense, Denmark), MedAll (MedAll Diagnostics - Chennai, India), and

SUNY (Suny Upstate University Hospital - New York, United States). Data was curated and annotated

before use: one patient can have a multiple labels. Training and validation steps were conducted in

853 and 214 patients, respectively, withdrawn from OUH and MedAll datasets 5. No information regard-

ing the scanner manufacturer was recovered from the training data. In turn, performance evaluation is

conducted in two datasets:

5Training data: 94.26 % MedAll and 5.74 % OUH; Validation data: 94.39 % MedAll and 5.61 % OUH.
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• an in-house dataset - 195 MedAll patients, selected among the validation set (i.e 91.12% of the

validation set), with 36 % of normal cases. 58.97 % of the scans were acquired with a 1.5 T GE

Healthcare scanner 6.

• an external dataset - 62 SUNY patients, with no healthy patients. Data was acquired with 1.5 T

scanners from different providers (50.00 % Philips, 46.77 % Siemens, and 3.23 % GE Healthcare).

The aforementioned datasets are characterized in Table 3.2 and Figure 3.4. Table 3.2 shows the

repartition of patients between classes and describe some lesion attributes, its number, and size. Figure

3.4 presents the spectrum of disease sub-types across datasets (including a comparison with the training

set).

Table 3.2: Group description: distribution of infarcts (L1), tumors (L2) and hemorrhages (L3) lesions across in-
house and external datasets. Nlesions and Alesions refer to the mean number of lesion and the mean
lesion size in voxels.

As previously mentioned, the in-house dataset comes from the validation set and shares similar

characteristics with the training set (same clinical sites). In contrast, the external dataset is composed

of unseen data, acquired with different scanning parameters. Therefore, performance is expected to be

optimistic for the in-house evaluation while a slight drop is predicted for the external evaluation.

3.3.2 MRI Acquisition Parameters

Data can be found in a DICOM or neuroimaging informatics technology initiative (NIFTI) format
7. Following the header description, relevant MRI acquisition parameters are identified in the in-house

dataset, as listed below:

• Scanner type: The scanner vendor.

6When digital imaging and communications in medicine (DICOM) format is not available, no information on scanner manufac-
turer and on B0 can be recovered.

7While DICOM format allows access to a more complete set of MRI acquisition parameters, NIFTI format lacks information
about TR, B0, scanner vendor, and flip angle.
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Figure 3.4: Percentage of labels sub-types in the training set (white), in-house testing set (coloured ), and external
testing set (coloured with dashed line). The percentage of disease k in the dataset j are given by
Pk,j =

Npk,j

Npj
, where Npk,j is the number of patient presenting the disease k in the dataset j and Npj

is the total number of patients in the dataset j.

• The Magnetic field strength B0 (in Tesla).

• Acquisition parameters: TR and TE in seconds; flip angle θ in (°).
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Figure 3.5: Distribution of the acquisition parameters in (Left.) the training set, (Middle.) the in-house set, and
(Right.) the external set.(a.)FLAIR distribution: Axial, Coronal, and Sagittal ;(b.)T2 * GRE, SWI,
andSWAN distribution.

• Sequence type and orientation: The type of sequences acquired and its orientation in space

(axial, coronal or sagittal).

• Voxel dimension: Voxel size in the 3D space: x, y and z (in mm). It gives an estimation of the

image resolution and the impact of partial volume effect in the analysis.

As explained in section 3.1, Apollo requires a DWI, FLAIR and SWI, SWAN, or T2 * GRE to make infer-

ences on the data provided. Therefore, for each patient belonging to the datasets only the acquisition

parameters of the aforementioned sequences are considered.

The evaluation contemplates how Apollo and nnU-Net perform in detecting and localizing tumors,

infarcts, and hemorrhages and how this performance is affected by MRI acquisition parameters. For a

matter of conciseness, this analysis is exclusive to the in-house dataset. The selected clinical param-

eters are the type of sequences and orientation (T2 * GRE, SWI, or SWAN and axial, coronal, or

sagittal), as described in Appendix B. Figure 3.5 shows the distribution of Axial, Sagittal, and Coronal
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FLAIR (a) and the distribution of T2 * GRE, SWI, and SWAN (b), in the training, in-house, and external

datasets. All the DWI were acquired with Axial orientation.

Regarding sequence orientation, Sagittal FLAIR is not considered in the analysis: along with the

fact that it is a 3D acquisition while the other two FLAIR acquisitions are 2D, it is poorly represented

in the training and testing sets. In Axial FLAIR versus Coronal FLAIR, due to the testing set imbal-

ance, performance comparisons are only performed for infarct predictions. Infarcts patients are better

distributed between sequence orientations in the in-house and training dataset. The same cannot be

said for hemorrhages and tumor patients: Coronal FLAIR only includes 17.65 and 16.67 % of the tumor

and hemorrhages patients , i.e three and four patients, respectively.

Regarding the type of sequences, SWI and SWAN are encompassed in the same group 8. In T2 *

GRE and SWAN/SWI, performance comparisons only considers hemorrhage predictions. It is believed

that these sequences have a higher contribution, compared with DWI or FLAIR, when it comes to hem-

orrhage predictions [41, 78] 9. Training and testing sets are also balanced across sequence types for

L3.

The compared groups are characterized in Table 3.3 and Figure 3.6.

Table 3.3: Group Descriptions: (a.)FLAIR distribution: Axial versus Coronal ;(b.)T2 * GRE versus SWI /SWAN.
Nlesions and Alesions refer to the mean number of lesion and the mean lesion size in voxels.

3.4 Post-processing of Predictions and Ground Truth Binary Masks
Post-processing on prediction and ground truth binary masks has to be performed after Apollo and

nnU-Net inferences. Post processing methods are based on morphological dilation with a determined

coefficient Ndilation and filtering of lesion areas below a certain threshold AHP . Dilation is performed

after filtering. Ndilation and AHP are defined for Apollo using the in-house dataset and are kept through-

out all the analysis. Dilation and filtering are expected to help increase the fairness of the evaluation

8Only four patients show a SWI in the in-house dataset.
9Infarcts and tumor diagnosis rely only on SWI, SWAN or T2 * GRE to gather additional information about surrounding hemor-

rhages according to Cerebriu annotators.
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Figure 3.6: Sub-labels distribution. The percentage of disease k in the subset j are given by Pk,j =
Npk,j

Npj
, where

Npk,j is the number of patient presenting the disease k in the subset j and Npj is the total number of
patients in the subset j.
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and to reflect the real performance of Apollo. Dilation allows overlapping of spatially close lesions on

both prediction and ground truth whereas filtering removes noisy voxels on prediction and ground truth.

Motivation for dilation and filtering can be found in Figures 3.8 and 3.7, respectively.

It is important to bear in mind that post-processing methods have to be undertaken carefully: param-

eters have to be calibrated rigorously to avoid the production of misleading or distorted results. A visual

inference of the dilation and filtering iterative experiment can be seen in Figure 3.9.

Figure 3.7: Example of hemorrhage inferences with (Left.) no filtering and (Right.) AHP = 10 . Ground truth was
annotated in the SWI space.
The left prediction mask accounts as a FP image in the confusion matrix due to the noisy voxels of size
inferior to 10 voxels; the right prediction mask accounts as a TN image. Small predictions in masks
should be removed to reflect a fairer performance evaluation.

Figure 3.8: Example of hemorrhage inferences with (Left.) no dilation and (Right.) Ndilation = 5 . Ground truth
was annotated in the SWI space.
Prediction and ground truth do not overlap, even though a lesion was predicted by the software. Dilation
enables lesions to be considered TP if only a slight deviation from ground truth location is noticed.
Performing a mathematical dilation of binary masks could reflect a fairer performance evaluation.
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Figure 3.9: 3D hemorrhage ground truth and prediction masks on the original SWI image. (Left.) Masks are dilated
1, 5, 10 and 25 times, represented by the variable Ndilation and (Right.) lesions with a size inferior to
HHP are filtered.

3.4.1 Filtering of Small Lesion Areas

Filtering of small lesion areas in ground truth and prediction binary masks is also undertaken. Areas

under a defined threshold, referred as AHP are set to zero. Different AHP of 5, 10 , 25 , 50 , 100 voxels

are tested alternatively. Ground truth and predictions are filtered simultaneously: small areas are found

in both segmentations (Table 3.4).

The optimal thresholding size is set taking into consideration the general performance along with

its credibility. Moreover, as True Positive (TP) lesions show higher mean and median size than False

Positive (FP) and False Negative (FN) lesions, filtering procedure is anticipated to be beneficial (Table.

3.5). As FP sizes are greater, across labels, than FN sizes, a more significant decrease in FN lesions is

expected. Box plots of lesion size distribution across labels are depicted in Appendix C.1 (Figure C.1).

It should be mentioned that filtering is not part of product design pipeline nor considered in a clinical

setting. Ideally, Apollo should detected lesions under any threshold area. However, in the in-house

dataset, annotations were conducted in a way that pathologies are sometimes represented by isolated

one-voxel lesions. Therefore, filtering appears as a good compromise to counterbalance this issue.

Table 3.4: Ground truth versus predicted lesions sizes in voxels. Mean and median per label are given. As noticed,
median size are relatively small, indicating the presence of small areas annotated and predicted.

Lesion sizes (voxels)
mean median

ground truth prediction ground truth prediction
L1 613.47 457.91 26.00 22.50
L2 6776.38 2223.66 4.00 21.00
L3 1926.63 1636.82 13.00 30.50
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Table 3.5: TP versus FP and FN lesion sizes in voxels. Mean and median per label are given. As noticed, mean
and median of TP lesions is higher than FP and FN. As a note, TP lesions are drawn from predicted
segmentations.

Lesions size (voxels)
mean median

TP FP FN TP FP FN
L1 619 231 15 25 15 9
L2 15570 783 109 166 19 4
L3 2584 745 136 33 24 9

3.4.2 Dilation of Lesion Areas and Bounding Box Experiment

An iterative multi-dimensional binary dilation, defined by a coefficient Ndilation is performed 1, 5, 10

and 25 times for ground truths and predictions . A 3D cubic structural element is generated to perform

dilation uniformly in 3D space and applied to the ground truth and predicted segmentation maps. It

allows for close lesions to be grouped into a single one.

The optimal number of dilation iteration is set taking into consideration the general performance along

with its credibility. In that context, evaluation is expected to be more flexible, regarding spatial location of

corresponding lesions in predicted and ground truth maps.

Comparison between dilation with optimal coefficient and bounding boxes is also made. Bounding

boxes are drawn around each lesion, followed by a 5 times morphological dilation and closing. The

experiment is conducted as a response to the high number of predicted lesions compared to ground

truth (for L1 and L2). This discrepancy could be explained by an abnormal behavior of the network

that tends to split a ground truth lesion in several prediction lesions (Appendix C.3, Figure C.4). In

this context, bounding boxes are expected to revert this situation in a more efficient way than a simple

dilation. A visual inference of the aforementioned comparison can be found in Appendix C.3, Figure C.5.

3.5 Implementation

The present section highlights the metrics selected for evaluation (Section 3.5.1) and the steps

followed in the statistical validation (Section 3.5.2). Hardware and software information are specified at

the end of this section.

Performance is assessed for three classes (L1,L2, and L3) and the evaluation framework is validated

on Apollo and nnU-Net.

3.5.1 Evaluation Metrics

Defining the correct metrics for performance evaluation implies considering the intentions and ob-

jectives of the software in the radiology department, as detailed in Section. 3.1. Metrics referred in the

following section are mathematically described in Figure 2.5.
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Under the designed evaluation framework, the multi-class problem is transformed into a binary prob-

lem where each label is analysed independently. A joint analysis, at an image (classification) and lesion

(segmentation) levels, is conducted. At an image level, confusion matrix ( Figure 2.6), sensitivity

in % , and specificity in % are selected. At a lesion level, confusion matrix (without TN lesions, as

considered non-existent), recall in %, and precision in % are preferred 10

In this work, the confusion matrix at a lesion level is calculated with Dice coefficient. Results at an

image level are built upon lesion level outcomes.

Means of Sørensen Dice coefficient and Hausdorff distance per image in mm are also computed

to have a spatial score between predictions and ground truth. The Hausdorff distance is implemented

in 3D across all predicted lesions and correspondent ground truths for a specific label. The Hausdorff

distances obtained across individual lesions are then averaged. Hausdorff distance is deeply affected by

outliers. However, the filtering post-processing of predictions and ground truths is expected to minimize

this effect.

Across metrics, higher scores are preferred with the exception of Hausdorff distance for which a

smaller distance indicates a higher quality segmentation [63].

An additional experiment is also undertaken in the in-house dataset to understand the common

errors of the model for a given ground truth lesion. It consists of a multi-class analysis that assesses

if the network is making confusions between labels. The experiment is based on the assumption that

tumors, hemorrhage and infarcts cannot be physiologically present at the same location of the brain.

Conducted on the existing ground truth images, presenting at least one lesion, results are displayed

under the form of a confusion matrix. A similar experiment is also made at the image level.

3.5.2 Statistical Validation

The statistical validation of the evaluation procedure encompasses the computation of confidence

intervals (CI) for the selected metrics and hypothesis testing.

• Confidence Intervals

In statistic inference, parameters of interest of a population θ are estimated via its computed value

(i.e statistics θ̂) on the observed sample. The most commonly employed method of estimation is via CI.

In probabilistic terms, the computed CI refers to the interval in which the true value of the parameter θ is

expected to fall with a probability of α.

In this work, CI are computed for all metrics with the bias corrected and accelerated (BCa) bootstrap-

ping method [79] 11 and α = 0.95. A total of B = 10000 resampling with replacement are made from

10Recall and sensitivity correspond to the same metric. The two different nomenclature is adopted to differentiate between
lesion and image levels of analysis.

11According to Efron and Tibshirani, BCa were specially designed to achieve a reasonable performance across a broader range
of statistics and distributions, drawing smaller interval length and guaranteeing a higher algorithm numerical stability [80].
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the empirical probability distribution of the data under analysis, as suggested in [80]. For convergence

purposes, the sample size (i.e the number of patients) is set to the original sample size of the dataset.

As the original sample size is larger than 30, bootstrapping results are expected to be reliable [80].

• Hypothesis testing

Results are also validated statistically for all metrics to ensure non-randomness via hypothesis test-

ing. The alternative hypothesis is non-directional and tests are two-tailed. Significance level is set to

0.05: the null hypothesis is rejected when ρ < 0.05. For each analysis, a minimum of ten patients is

required and parametric and its correspondent nonparametric tests are computed simultaneously 12.

Statistical tests are conducted on two groups at the time, as discussed below. A group represents a

sample (i.e a set of patients) drawn from a population. The number of groups and its characteristics

(dependent/independent) determine the correct parametric and non-parametric tests to select.

Regarding comparisons between nnU-Net and Apollo, the selected groups are dependent: tests

were paired via specific patient scans, allowing for an implicit normalization for all the non-paired factors.

As a consequence, a pairwise t-test and its homologous Wilcoxon signed-rank test are selected for sta-

tistical validation [25] (Test 17 and 18) 13. Regarding comparisons between MRI acquisition parameters

and comparisons between datasets, groups are independent. A t-test for two independent samples and

its peer nonparametric Wilcoxon rank-sum test are considered to be appropriated [25] (Test 11 and 12).

3.5.3 Hardware and Software Specifications

Experiments were conducted in a Linux virtual machine, Ubuntu SMP, with a x86 64 processor. The

required central processing unit (CPU) is an Intel(R) Xeon(R) CPU E5-2690 v4, with a capacity of 3.5

GHz, a width of 64 bits, a clock of 100MHz, and a size of 2.6GHz. The graphics processing unit (GPU)

is a NVIDIA Tesla P40 with a memory of 22919 MiB.

nnU-Net is trained using one GPU (along with a strong CPU) and Pytorch (version 1.6). nnU-Net

and Apollo evaluation and post-processing scripts are run on Python, version 3 [82]. Specific libraries

are enumerated below:

• Nibabel (used to read and work with NIFTI files)
12The distinction depends on the assumptions made by the tests. Parametric tests assumes normal distribution of the data

and variance homogeneity between groups, while the homologous nonparametric tests do not require normal distributions. When
these assumptions are met, parametric tests provide more powerful results, being associated with lower Type II error rate (false
null hypothesis retention). However, on small number of samples, the assumptions of a parametric tests are more likely to
be violated and parametric tests may lead to erroneous results, inflating the likelihood of committing a Type I error (true null
hypothesis rejection). Therefore, it is prudent to compute both parametric and nonparametric, even if, in this work, parametric and
nonparametric tests usually lead to convergent conclusions. In the few noticed cases, in agreement with [25], the parametric test
was rejecting the null hypothesis, while the nonparametric test was found to be not significant.

13According to [81], when comparing two machine learning algorithms with a paired t-test, the minimum number of data sets
to guarantee normal distribution should be, at least, 30. Therefore, Wilcoxon signed-rank test should be privileged, as the only
assumption made on the distribution is on the symmetry of the difference scores distribution about the median of the population
of difference scores.
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• PyDICOM (used to read and work with DICOM files)

• Nilearn (used for plotting purposes)

• Medpy (used for Hausdorff distance implementation - medpy.metric.binary.hd )

• Skimage (used for computations)

• Scipy (used for dilation experiments)

• Pingouin, bootstrap stat and Scikit posthocs (used for statistical assessment)

• Pandas (used to store the results and organize the patients database)

Visual Inferences are made using software Mango [83].
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Chapter 4 presents the experimental results. Even though the analysis is centered in Apollo, re-

sults are compared with nnU-Net, the current status quo for biomedical segmentation. Performance

is analyzed from three perspectives: performance across pathologies (Section 4.2), performance as a

function of clinical parameter (Section 4.3), and ability to generalize to an independent dataset (Section

4.4). As mentioned in Chapter 3, the latter is computed on the external dataset, while the remaining are

assessed on the in-house dataset.

This chapter starts by evaluating the impact of the post-processing operations, described in Section

4.1. The optimal parameters, extracted from post-processing experiments, are kept for the remainder of

the chapter.

Discussion of the results is made in parallel with their exposition. Pathologies under analysis are

infarcts, tumors and hemorrhages, referred as L1, L2, and L3, respectively.

4.1 Apollo Post-processing Results

The present section details the selection criteria for the post-processing parameters: the number of

times the dilation operation is performed Ndilation and the cut-off area under which lesions are high-pass

filtered AHP . Dilation and filtering were undertaken independently and their optimal parameters were

selected based on the network performance at an image and lesion levels, counterbalanced with the

plausibility and realism of the results. Over-performance due to an unreasonable high Ndilation or AHP

was taken into account.

Regarding filtering post-processing experiments: five experiments were conducted with AHP <

5, 10, 25, 50, 100. As ground truth and predictions are filtered simultaneously, consequences on the con-

fusion matrix at a lesion level and Dice coefficient are hard to predict and may vary across labels.

It depends on each individual lesion size and, for TP lesions, it also relies on the relative sizes be-

tween predictions and ground truths. Therefore, behaviours of recall and precision (and consequently

of sensitivity and specificity) cannot be extracted as directly as dilation results (Appendix C.1). The only

meaningful observation at a lesion level is the overall decrease of the FN lesions (Figure 4.1) which is in

line with Section 3.4.

At an image level, the evolution of sensitivity and specificity scores can be seen in Figure 4.2. Starting

with L1, higher sensitivity is achieved for AHP under or equal to 10, while specificity rises when AHP

increments. For L2, sensitivity remains constant, while higher specificities are obtained as the filtering

cut-off area expands. For L3, sensitivity shows a decrease from AHP > 25 , while specificity slightly

increases over the filtering experiment. Larger percentual changes between filtering thresholds in speci-

ficity are seen for L1, L2 and L3 at an AHP of 50, 100 and 10, respectively. Again, putting the filtering

experiments under the light of reality and credibility, thresholds over 25 were discarded (i.e AHP > 25),
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as being too indulgent for the algorithm evaluation. Therefore, the aforementioned analysis highlights

two candidates for optimal filtering: AHP = 10 and AHP = 25 . However, since sensitivity is preferred

over specificity and sensitivity for L1 decreases in the interval AHP ∈]10; 25] , optimal filtering parameter

AHP was set to 10.

Figure 4.1: Apollo performance at a lesion level: FN lesions across labels as a function of the cut-off area under
which lesions are high-pass filtered AHP .

Figure 4.2: Apollo performance at an image level: (Left.) sensitivity and (Right.) specificity in % as a function of
the cut-off area under which lesions are high-pass filtered AHP .

Regarding dilation post-processing experiments, five different experiments were performed with

Ndilation = 0, 1, 5, 10, 25. Dilation was applied to both predicted and ground truth lesions. Results are

reported in Figures 4.3, 4.4, and 4.5. Since ground truth and predicted lesions become larger, expand-

ing their overlapping region, Dice coefficient increases with the number of dilation iterations (Figure 4.3).

With the increase of Dice coefficient, the number of TP lesions goes up, while the number of FN and

FP lesions goes down (Appendix C.2). The aforementioned results have a direct impact on recall and
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Figure 4.3: Dice Coefficient as a function of the number of dilation iterations Ndilation. L1 (infarct), L2 (tumors) and
L3 (hemorrhages) are represented in blue, yellow and pink, respectively. Dice increases with dilation
for all labels.

precision, given in Figure. 4.4. Both metrics increase across dilation iterations and labels with recall

showing higher percentual changes than precision. L1, L2 and L3 recall and L1, L2 precision shows

higher percentual changes when 5 times dilation are computed.

Nevertheless, changes at a lesion level do not reflect any changes at an image level: sensitivity and

specificity remain constant across dilation iteration for L1 and L2. L3 shows an increase in sensitivity

from 10 dilation iterations (Figure. 4.5). As a consequence, one could select 10 as the optimal dilation

iteration number. A visual inspection deemed the results above 5 dilation iterations to be unrealistic.

Therefore, 5 was considered as good compromise between the increase in performance and the visual

truthworthiness of the results.

Figure 4.4: Apollo performance at a lesion level: (Left.) recall and (Right.) precision in % as a function of the
number of dilation iterations Ndilation.

Regarding the use of Bounding Boxes, poorer results are achieved when compared to the 5 times

dilation (Appendix C.3) . The high number of predictions compared to ground truth annotations was not

related with the network splitting one ground truth in several predictions, but with the high number of FP

lesions. Therefore, it justifies why bounding boxes do not show any improvement in performance.
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Figure 4.5: Apollo performance at an image level: (Left.) sensitivity and (Right.) specificity in % as a function of
the number of dilation iterations Ndilation.

Figure 4.6 and Table 4.1 summarize the scores of the post-processing. The success of post-

processing is clearly observed at lesion level (L2 recall), even though the impact at an image level

is reduced. Only a slight improvement in specificity is noticed, as a direct results of filtering. Sensitiv-

ity remains constant. Taking the aforementioned into account, post-processing with Ndilation = 5 and

AHP = 10 is also performed in all the experiments of Chapter 4, and except for nnU-Net L1 sensitivity,

an improvement in performance is confirmed across experiments. In addition, by also post-processing

the ground truth images, the description of the datasets made in Table 3.2 becomes slightly inaccurate

for L2 and L3. For the latter classes, a decrease in the number of lesions and number of lesions per

patient is noticeable in both in-house and external datasets. A drop of 69 % in L2 in-house, of 58 % in

L2 external, and of 75 % in L3 external is reported in the number of ground truth lesions.

Table 4.1: Post-processing results versus no post-processing.

L1 L2 L3

Raw Post
processed Raw Post

processed Raw Post
processed

sensitivity (%) 94.34 94.34 82.35 82.35 83.33 83.33
specificity (%) 82.07 84.14 70.17 71.27 87.36 88.51

mean Dice Coefficient 0.468 0.560 0.139 0.167 0.188 0.272
mean Hausdorff Distance (mm) 8.13 27.09 38.58 39.14 33.53 52.23

recall (%) 69.59 82.71 28.15 87.18 31.51 50.64
precision (%) 58.53 63.58 9.74 13.18 48.51 60.31
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Figure 4.6: Post-Processing results: no post-processing (dark green); dilation (light green); filtering (grey) and
dilation and filtering combination (pink).
A) Metrics at an image level: (Left.) sensitivity and (Right.) specificity in %.
B) Metrics at a lesion level: (Left.) recall and (Right.) precision in %.

4.2 Performance across Pathologies
The core of this section is the evaluation of Apollo performance across pathologies. This perspective

of performance is all the more relevant when analyzing a med-tech software with a multi-class segmen-

tation purpose. The aforementioned analysis enables hospitals to select the pathologies for which Apollo

should be part of the clinical routine.

4.2.1 Apollo

Apollo performance is summarized Table 4.2, while Figure 4.7 displays the confusion matrix at an

image and lesion levels, providing complementary information to the metrics presented in Table 4.2.

Table 4.2: Apollo evaluation for the in-house dataset across pathologies - at an image (sensitivity, specificity, Dice
coefficient and Hausdorff distance) and lesion (recall and precision) levels.CI, computed via bootstrap,
are presented [α;β]. Results are obtained after post-processing. Values may slightly differ from Table 4.1
as three patients were removed from the analysis after post-processing. Higher values of performance
are highlighted in bold.

L1 L2 L3
sensitivity (%) 94.00 [83.33 ; 98.21] 82.35 [54.55 ; 95.24] 83.33 [60.87 ; 95.00]
specificity (%) 84.14 [77.34:89.40] 72.47 [65.32 ; 78.49] 90.06 [84.77 ; 93.85]

mean Dice Coefficient 0.544 [0.442 ; 0.638] 0.175 [0.102 ; 0.272] 0.291 [0.193 ; 0.404]
mean Hausdorff Distance (mm) 25.67 [18.74 ; 34.75] 39.14 [22.61 ; 60.63] 52.23 [37.29 ; 70.33]

recall (%) 80.67 [65.85 ; 90.84] 87.18 [79.45 ; 97.22] 50.64 [27.33 ; 77.62]
precision (%) 60.38 [44.63 ; 73.61] 14.23 [6.34 ; 29.02] 64.23 [45.79 ; 80.37]
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Figure 4.7: Confusion matrix for Apollo in the in-house dataset: (Left.) lesion level and (Right.) image level.

Apollo achieves better performances for L1 than for L2 and L3 and its confusion matrix shows a

higher number of TP lesions than FP and FN lesions. It allows L1 to have a more homogeneous be-

haviour towards recall and precision. While L3 presents a low recall score related with the high number

of FN lesions, L2 is characterized by a low precision score explained by the extremely high number of

FP lesions. At an image level, discrepancies between L1 and L3 are less pronounced. The high number

of FN lesions seems to have a smaller impact in the classification at an image level and sensitivity for

L3 is satisfactory. The same cannot be said about L2, for which the high number of FP lesions seems

to deeply affect its specificity. Framing this into a clinical context, an infarct patient is more likely to be

detected while healthy patients are more likely to be reported as having a tumor.

In terms of the segmentations, L1 presents higher Dice coefficient and lower Hausdorff distance.

Infarct segmentations and contours seem to be more similar with their respective ground-truth. Low

Dice coefficients are observed for L2 and L3 due to the high number of FP and FN lesions, respectively.

L3 is also characterized by a wider Hausdorff distance, 1.93 and 1.33 times larger than L1 and L2

respective distances.

Confidence Intervals (CI) were also computed for each parameter of interest θ. From Table. 4.2, CI

appear to be unexpectedly broad and the network scores are highly inconsistent. The high variability of

the data can be explained by the small sample size (195 patients). As CI are computed via resampling

with replacement, depending on the patients selected in each bootstrap, results can vary drastically.

The lesion level is more affected than the image level, and among the metrics, sensitivity for L1 and

specificity across labels show higher consistency along bootstraps.

A large disparity is observed in performance across labels. Therefore, an interesting question that

arises from these findings is : why does Apollo perform better for L1 than for L2 and L3?
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A trivial assumption is to explain divergence across labels in terms of their pathophysiological dif-

ferences. As an example, the high number of FN for hemorrhages could be explained by its intrinsic

nature. In general, hemorrhages are characterized by a relatively high amount of spread lesions (shown

in Figure 4.8). Therefore, it becomes difficult for the network to detect and segment each of these lesions

individually. Among hemorrhages, some sub-types are also more difficult to pick up by the network from

their own characteristics. This is the case of SAH: 100% of the acute SAH are missed by Apollo.

Figure 4.8: Number and size of lesions across labels. (a) Distribution of the number of annotated lesions per image
across labels. Mean is displayed under the respective boxplot. Mean and median number of ground
truth lesions is higher for L3.(b) Example of a segmentation mask for a (Top.) L3 and (Bottom.) L2
patient. Hemorrhages are characterized by higher number of spread lesions across the brain volume.

However, the aforementioned factor cannot explain by itself all the differences observed across

pathologies. The higher scores obtained for L1 seem to also stem from the training scheme, most

specifically, from the data distribution and class formulation. From Table 3.2, it is possible to observe

that 25.67% of the pathologies present in the training set are infarcts, versus 11.37% tumors and 9.96%

hemorrhages. Therefore, hemorrhage features, for instance, had less opportunity to be learnt and ex-

tracted correctly by the network, being a possible explanation to the high number of FN lesions for this

label. Diving with more details into the FN lesions corroborates this hypothesis. Poorly represented

sub-types in the training set are correlated with higher percentage of missed detections. One example

is epidural/subdural chronic hemorrhages: accounting for 0.35% of the training set (from Figure 3.4), 80

% of the lesions present in the in-house dataset are missed 1.

Besides unbalanced class distributions, divergence in performance can also arise from grouping

sub-types into three major classes. While infarcts can be divided in sub-acute, acute, and hyper-acute,

tumors and hemorrhages show a wider sub-type range (Figure 1.1). Each sub-class is described by

1The aforementioned findings are not exclusive to the L3 class. Among the other classes, cystic tumors or hyper-acute infarcts
also follow the same pattern.
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its own texture, size, and shape, originating a broader landscape of features that needs to be learnt

by the algorithm. This makes the classification task more difficult based on this extended diversity. As

mentioned in Section 1.2.3, L2 is the most problematic class: its large MRI features lexicon, highlighted

in Figure 1.10, seems to have direct consequences in the network performance. As an example, edema

tumors seem to share more FLAIR and DWI features with vasogenic edemas than with other tumor

sub-types (Figure 4.9). Therefore, it is not surprising that 17.15 % lesions predicted as tumor were

annotated as edemas. Similar behaviours are noticed between hemorrhagic tumors and hemorrhages.

The network usually detects the hemorrhagic part of the tumor 2 and classifies it as L3 instead of L2.

Figure 4.9: Comparison between edema tumors, vasogenic edemas, and solid tumors on (Middle.) FLAIR and
(Right.) images. (Left.) Ground truth segmentation for spatial location of pathological areas. Tumor
and vasogenic edemas have the same intensity characteristics in FLAIR and DWI without belonging to
the same class while solid tumors and edema tumor are both annotated as tumors and do not present
the same DWI signal intensity. The high variability in MRI features for L2 may explain the high number
of FP observed for this class.

2Hemorrhagic characteristics mainly rely on T2 * GRE or SWAN/SWI hypo-intensity. It is thought to be the main reference for
Apollo to detect hemorrhage.
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Another relevant aspects was to determine if the network was confusing labels, i.e if it assigns a

wrong label to an annotated lesion. A multi-label analysis was conducted, at a lesion level, and its out-

put presented in Table 4.3 (Left) as a confusion matrix. As expected, most lesions are correctly identified

(except for L3 that suffers from FN predictions). Confusion between labels is not the main source of FN

detections: when missing a lesion, the prediction is usually background. Again, L3 is the label that

Apollo struggles to associate to the right class. It is clear that the network confounds the various labels,

mainly L3. However, do these lesion-wise misclassifications have consequences on the image output?

Taking the aforementioned experiments to the image level, a multi-label analysis was conducted and its

results presented in Table 4.3 (Right) as a confusion matrix. While for L1 the confusions made with L2

and L3 at a lesion level have no direct impact on the image classification, this is not the case for L2

and L3. However, putting into perspective, even if the percentage of confusions seems high, the actual

number of images is low.

Table 4.3: Multi-class analysis - (Left.) lesion level and (Right.) image level. Confusion matrix in percentage (%).
For each ground truth (GT) lesion/image of label i , prediction is assessed and, according to its label
type j, lesion is accounted in the matrix M(i, j). In green, the percentage of TP lesions/patients are
highlighted.

PREDICTIONS
L0 L1 L2 L3

L1 15.91 82.58 0.76 0.76
L2 8.11 5.41 86.49 0GT
L3 47.41 2.96 8.15 41.48

PREDICTIONS
L0 L1 L2 L3

L1 6.00 94.00 0.00 0.00
L2 5.88 11.76 82.35 0.00GT
L3 8.33 4.17 8.33 83.33

4.2.2 Comparison of Apollo and nnU-Net

Results of the test-bed algorithm are now analyzed from the perspective of nnU-Net performance.

In that sense, metrics were averaged across labels for the two networks to provide a higher level anal-

ysis. Results are presented in Table 4.4 and Figure 4.10. Supplementary material on the behaviour of

nnU-Net across pathologies is provided in Appendix D.2. Reference to Appendix will be made during

the analysis to support our findings and draw our conclusions.

Table 4.4: Apollo (blue) and nnU-Net (brown) evaluation across pathologies for the in-house dataset. Results are
obtained after post-processing. Metrics are averaged across labels. Higher values of performance are
highlighted in bold.

Apollo nnU-Net
sensitivity (%) 86.40 91.16
specificity (%) 81.89 91.40

mean Dice Coefficient 0.303 0.440
mean Hausdorff Distance (mm) 37.44 38.84

recall (%) 70.88 66.14
precision (%) 38.07 60.77
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Figure 4.10: Confusion matrix in the in-house dataset for Apollo (blue) and nnU-Net (brown) at (Left.) lesion level
and (Right.) image level.

On the in-house dataset, nnU-Net reaches surprisingly high scores, when compared with Apollo.

Apart from recall, nnU-Net outperforms Apollo in the remaining metrics, specially when it comes to

precision. Nevertheless, statistical significance was only reached for specificity, L1 Hausdorff distance,

and L1 precision.

Additionally, the average performance does not reflect behaviours across labels. What seems to be

a general improvement is far from being homogeneous along classes, specially at a lesion level. At

a lesion level, while L1 shows a decrease in the number of FP and FN and increase of TP, resulting

in an improve recall and precision, the same cannot be said for L2 and L3. For L2, nnU-Net tends to

under-predict lesions while Apollo tends to over-predict (see Figure 4.11). For L3, the decrease in FN

and FP lesions does not compensate the decrease of TP lesions, leading to lower recall and precision

scores. In that sense, nnU-Net managed to solve the FP issue of L2 but struggled in answering the FN

issue of L3.

At an image level, discrepancies in performance between networks mostly arise from L2 and L3 classes,

while similar behaviours are noticed for L1. It is interesting to report that the lower performance noticed in

L3 has no direct consequences in its sensitivity, which shows an increase of 15 %. In turn, the decrease

in the number of L2 FP lesions enabled nnU-Net to increase its specificity score by 25 %. These results

are supported by the confusion matrix (Figure 4.10 - Right) that shows a general increase of TP and TN

and a decrease of FP and FN. It seems that nnU-Net managed to learn more discriminative features

across classes, independently of their low representation on the training data and broad landscapes

of features. By condensing domain knowledge into a set of heuristic rules, nnU-Net by-passes the

aforementioned L3 FN and L2 FP issues (Section 4.2.1).

In terms of segmentation, the quality of the predictions is especially improved for L3 (higher Dice

coefficient combined with a lower Hausdorff distance). Overall, Dice scores are higher for nnU-Net

across labels, while Hausdorff distance is only lower for hemorrhages.
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Figure 4.11: Predictions for L2 (tumors) ground truth (shown on the (Left) for Apollo (Middle) and nnU-Net (Right)
on the in-house dataset. FP lesions are reported in yellow and FN lesions in red. nnU-Net tends to
under-predict while Apollo presents non-sense L2 predictions.

Another interesting observation comes from analyzing the ground-truth labels of FP and FN lesions.

Regarding FP lesions, most predictions arise from background for L3 in both networks. However, when

this is not the case, similar behaviours where FP are associated with tumor hemorrhagic are reported.

Differences are found for L2: while, for nnU-Net, FP are associated with edemas, gliosis, and chronic

infarct, in Apollo they are mainly random 3.

Regarding FN lesions, similar patterns are seen for both algorithms. Misclassifications are mainly

reported in poorly represented sub-types in the training set. nnU-Net and Apollo struggle with hy-

per acute infarcts, cystic tumor, epidural/subdural late sub-acute hemorrhages, and epidural/subdural

chronic hemorrhages. nnU-Net handles better SAH, epidural/subdural hyper-acute hemorrhages, intra-

parenchymal acute and chronic hemorrhages, and hyper-acute infarcts. In turn, nnU-Net has a higher

FN rate regarding solid tumor.

nnU-Net also seems to be less prone to confusing labels at both image and lesion levels.

4.3 Performance as a Function of Sequence Type and Orientation

This section is dedicated to the analysis of the performance of Apollo and nnU-Net as a function of

acquisition parameters, i.e sequence types and orientations. The experiments allow for a better under-

standing of the optimal use of the networks in clinical settings. However, they can be taken to a higher

level and express a potential measure of generalization ability to the selected acquisition parameters.

As mentioned in Section 3.5.2, for Axial versus Coronal FLAIR (experiment 1), comparisons were only

3When not random, FP lesions share the same ground truth class detailed for nnU-Net.
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performed for L1 patients. In turn, for T2 * GRE and SWAN/SWI (experiment 2), comparisons were per-

formed for L3 patients. Since the sample sizes observed in both groups are relatively small to achieve

a meaningful statistical analysis, no conclusions were drawn from statistical tests 4 nor from confidence

intervals (CI). For the purposes of consistency and uniformity, CI are kept when presenting the results.

Extremely broad CI are obtained, especially for sensitivity, recall, and precision scores. Performance is

far from being uniform, and highly depends on the patients selected from the distribution.

Confusion matrices for the two experiments conducted in the two neural networks are shown in

Figure 4.12.

4.3.1 Apollo

The results for Axial vs Coronal FLAIR, supporting the confusion matrices, are shown in Table

4.5. As in Section 4.2, confidence intervals (CI) were also computed for each parameter of interest θ.

However, in the present case, respective datasets are sub-divisions of the entire dataset.

Table 4.5: Apollo evaluation for infarct prediction in the in-house dataset as a function of sequence orientation:
Axial FLAIR versus Coronal FLAIR. Evaluation is performed at an image (sensitivity, specificity, Dice
coefficient and Hausdorff distance) and lesion (recall and precision) levels. Dice score is given for the
entire dataset. CI, computed via bootstrap, are presented [α;β]. Higher values of performance are
highlighted in bold.

AXIAL FLAIR C0R0NAL FLAIR
sensitivity (%) 100.00 [ - ; - ] 91.30 [69.23 ; 100.00]
specificity (%) 75.68 [64.93 ; 84.62] 92.06 [78.05 ; 92.77]

mean Dice Coefficient 0.482 [0.348 ; 0.612] 0.651 [0.487 ; 0.786]
mean Hausdorff Distance (mm) 19.34 [11.95 ; 29.21] 33.21 [20.69 ; 49.53]

recall (%) 91.84 [69.05 ; 100.00] 77.78 [54.90 ; 91.94]
precision (%) 47.37 [28.57 ; 66.67] 79.03 [55.56 ; 91.84]

From Figure 4.12, higher number of FP and FN lesions are seen for Axial and Coronal FLAIR,

respectively. It seems that Axial FLAIR tends to over-predict lesions while Coronal FLAIR tends to under-

predict them. Direct consequences can be observed in recall and precision scores and in sensitivity and

specificity scores. In term of quality of segmentations, higher mean Dice is achieved by Coronal FLAIR,

while lower Hausdorff distance is reported for Axial FLAIR. However, this is explained by the high number

of FP lesions, noticed in Axial FLAIR 5. When a patient has an infarct, Axial orientation seems to lead to

higher quality segmentations, combining higher Dice scores with lower Hausdorff distances.

By the fact that higher sensitivity and recall score are achieved with Axial FLAIR, Apollo robustness

4With the exception of specificity, none of the metrics in Apollo FLAIR experiment were statistically significant (ρ value > 0.05)
for both independent T-test and Mann–Whitney U test and large ρ value were obtained for the sensitivity score (0.153 for nonpara-
metric and 0.162 for parametric) and recall (0.104 for non parametric and 0.114 for parametric). In the Apollo SWAN/SWI/T2 * GRE
experiment, for some metrics, not enough values (less than 10) were reported and the evaluation could not be performed. Signifi-
cance was only reached for Hausdorff distance. Similar results were achieved with nnU-Net (with one additional significant metric,
i.e precision, in the FLAIR experiment). Meaningful results are expected with a higher pool of patients.

5When removing the healthy patients from the dataset (and consequently, removing a high proportion of the FP lesions), higher
mean Dice is seen for Axial FLAIR
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Figure 4.12: Confusion matrices for experiments 1 (Axial FLAIR in dark and Coronal FLAIR in grey) and 2
(T2 * GRE in dark and SWAN/SWI in grey) for (Top) Apollo and (Bottom) nnU-Net.
In Axial FLAIR tends to over-predict while Coronal FLAIR tends to under-predict lesions. Direct con-
sequences can be seen at the image level.
Better lesion level performance is achieved by T2 * GRE. In nnU-Net, better image level performance
is also reported, while in Apollo, higher sensitivity score is reached for SWAN/SWI.
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in terms of sequence orientation should be questioned. Apollo does not seem agnostic to the sequence

orientation for infarct predictions. We hypothesize that this difference in performance lies in the training

set composition and in intrinsic imaging properties. On one hand, the training dataset includes 1.4 times

more infarct patients with Axial orientation. On the other hand, acquiring DWI and FLAIR in the same

direction should improve the aggregation of contextual information coming from different inputs.

In medical applications and in this particular case, the trade-off between sensitivity and specificity

should always lean towards sensitivity by reducing the rate of undetected pathologies. Therefore, Apollo

should be used with Axial FLAIR for infarct detections, since its higher sensitivity would translated a

higher degree of quality care given to the patients. However, clinicians must be aware that in these

conditions, Apollo would also induce an increment in hospital costs due to increased admissions rate

(from its lower specificity). A trade-off must be achieved to counterbalance these two sides.

In the second experiment, we have decided to focus on the disparities in performance between

T2*GRE and SWAN/SWI for hemorrhages detection and the results can be found in Table 4.6.

Table 4.6: Apollo evaluation for hemorrhages prediction in the in-house dataset as a function of sequence type:
T2 * GRE versus SWAN + SWI.CI, computed via bootstrap, are presented [α;β]. VHigher values of
performance are highlighted in bold.

T2 GRE SWI + SWAN
sensitivity (%) 70.00 [28.57 ; 92.31] 92.86 [57.14 ; 100.00]
specificity (%) 92.50 [84.15 ; 96.47] 87.91 [79.06;93.41]

mean Dice Coefficient 0.307 [0.140 ; 0.515] 0.281 [0.163 ; 0.421]
mean Hausdorff Distance (mm) 28.16 [16.73 ; 47.50] 65.20 [45.33 ; 87.40]

recall (%) 63.04 [31.58 ; 89.19] 45.45 [18.75 ; 74.03]
precision (%) 78.36 [45.00 ; 95.00] 58.14 [36.27 ; 79.12]

From Figure 4.12, higher numbers of FP and FN lesions are seen for SWAN/SWI, translating into

lower precision and recall. Interestingly, in this case, worse performance at a lesion level is not corre-

lated with worse performance at an image level, and SWAN/SWI reaches higher sensitivity for a similar

specificity when compared to T2 * GRE. Analyzing the quality of segmentations, similar mean Dice are

seen for both sequence types. However, in terms of Hausdorff distance, lower mean is achieved by

T2 * GRE. Therefore, in terms of segmentation, higher quality tends to be associated with T2 * GRE. By

outperforming SWAN/SWI in terms of quality of segmentation and lesion level metrics, T2 * GRE seems

to produce more discriminative features that facilitate Apollo predictions of hemorrhages 6. Once more,

considering the discrepancies between SWAN/SWI and T2 * GRE, Apollo does not seem agnostic to

the type of sequence.

In clinical settings, SWAN/SWI acquisitions seem to be more beneficial for hemorrhage detections.

As explained in Section 3.1, the detection of one lesion in the segmentation maps is enough to cor-
6This could also arise from the training set composition in which 53 % of the hemorrhage patients are encompassed in the

T2 * GRE group.
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rectly classify the patient and alert the radiologists. Despite a lower performance for the segmenta-

tion tasks, SWAN/SWI reaches a higher sensitivity score. Therefore, it avoids wrong prioritization and

negative patient outcomes. The lower sensitivity noticed for T2 * GRE is not exclusive to automated

processes. Radiologists (Cerebriu annotators) refer SWAN/SWI as being more sensitive in detecting

micro-hemorrhages due to the fact that it is a 3D acquisition technique with a higher out-of-plane reso-

lution.

4.3.2 Comparison of Apollo and nnU-Net

Again, a comparison between Apollo and nnU-Net in terms of performance as a function of se-

quence type and acquisition is performed. Results are reported in Figures 4.12 (Bottom). The response

of nnU-Net facing different acquisition parameters can easily be perceived from the confusion matrices.

As a result, metrics will not be presented.

Regarding Axial versus Coronal FLAIR, similar behaviours are noticed across networks in both

confusion matrices and evaluation metrics. As in Apollo, nnU-Net tends to over-predict with Axial FLAIR

and under-predict with Coronal FLAIR.

Regarding T2 * GRE and SWAN/SWI, feeding nnU-Net with T2 * GRE for hemorrhages prediction

leads to better results across all metrics. Again, T2 * GRE seems to be more beneficial for feature

extraction and lesion segmentation. However, while similar behaviours are reported at a lesion level, the

networks diverge at an image level. In nnU-Net, T2 * GRE tends to over-predict and SWAN/SWI under-

predict patients with hemorrhages. Surprisingly, and against clinicians preferences, T2 * GRE classifies

a higher number of TP patients with hemorrhages.

As a final observation, by achieving satisfactory results across groups at an image level and in

terms of segmentation quality, nnU-Net seems more robust facing differences in sequence types and

orientations. While in Apollo, T2 * GRE sensitivity for hemorrhage prediction or Axial FLAIR specificity

for infarct prediction are below 80 %, nnU-Net shows decent scores, independently of the MRI settings.

4.4 Generalization Ability

The present section assesses the robustness of Apollo and nnU-Net by evaluating them in an ex-

ternal dataset with unseen MRI acquisitions parameters. Results for Apollo and nnU-Net are described

in Table 4.7. Confusions matrices in Figure 4.13 and 4.14 are also exposed in the same order to bring

additional insights. Metrics are discriminated per label in Appendix D.1 and D.2.

4.4.1 Apollo
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Table 4.7: (Left.) Apollo and (Right.) nnU-Net evaluation in the in-house (grey) and external (purple) datasets. Re-
sults are reported after post-processing that lead to a general increase in performance for both networks.
Metrics are averaged across labels. Higher values of performance are highlighted in bold.

in-house external
sensitivity (%) 86.40 72.25
specificity (%) 81.89 13.44

Dice Score 0.303 0.141
Hausdorff (mm) 37.44 53.90

recall (%) 70.88 83.36
precision (%) 38.07 18.28

in-house external
sensitivity (%) 91.16 61.95
specificity (%) 91.40 67.60

Dice Score 0.440 0.234
Hausdorff (mm) 38.84 53.01

recall (%) 66.14 68.98
precision (%) 60.77 30.62

Figure 4.13: Confusion matrix for Apollo in the in-house (grey) and external (purple) datasets. Results are shown
for the (Left.) lesion level and (Right.) image level.

Figure 4.14: Confusion matrix for nnU-Net in the in-house (grey) and external (purple) datasets. Results are shown
for the (Left.) lesion level and (Right.) image level.

The experimental findings corroborate the hypothesis defined in Section 3.3 on the expected degra-

dation in performance for unseen data. Apollo makes noisy predictions and has troubles in distinguishing

pathology versus background. FP are predominant in the confusion matrix at a lesion level. While in pre-
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vious experiments L2 was the only label exhibiting this issue, FP lesions have now spread to all classes

in the new dataset. It affects the precision score, especially for L1 and L3 . By over-predicting lesions

on the external dataset, L3 transferred its FN issue to a FP problem and increased its recall score. At

an image level, FP lesions have a major impact in the confusion matrix. When taking the proportion

of FP classifications among all the patients of the datasets, it reaches 70% and 60% for the L2 and L3

classes. Similarly, the proportion of TN patients has also suffered a decrease: it has been divided by 19

for L1 and 5 for L2 and L3. This has a cumbersome impact on the specificity and the average score has

dropped 84 % between datasets. L1 is the most affected class.

In terms of segmentation quality, poorer performance is also noticed in unseen data: the average

Dice score is halved and Hausdorff distance is increased when translating from in-house to external set.

In particular, L2 Dice score has reached an extremely low value.

Statistical significance was reached for specificity, L1 and L3 precision and Dice score, and L1 Haus-

dorff distance. Therefore, results highlight the dependency of Apollo to the characteristics of the training

set, and this, across labels.

4.4.2 Comparison of Apollo and nnU-Net

A poorer performance is also seen for nnU-Net when facing unseen data. However, unlike Apollo,

the effect is less widespread across labels and L2 suffers a higher drop in its scores. These findings are

supported by the confusion matrix at a lesion level where the increase in FP (across labels) is paired

with a severe decrease in TP (L2). This affects both precision and recall that show a decrease of 73 %

and 34 %, respectively. Like in Apollo, L3 recall increases in the external dataset, but it is not reflected

in the average due to L2 score. This behaviour towards L2 is also reported at an image level. nnU-Net

seems to struggle more than Apollo in maintaining its average sensitivity score. However, the higher

loss in sensitivity for nnU-Net is easily perceived as being again a L2 issue, and not a general tendency

across class.

In terms of the segmentation quality across datasets, nnU-Net and Apollo react similarly to unseen

data. In particular, L2 Dice coefficient and L3 Hausdorff distance are the more affected scores.

Ignoring L2, nnU-Net managed to better regulate the relative numbers of FP and TP lesions, main-

taining precision to decent levels. In a similar fashion, nnU-Net handled smoothly the decrease of TN

and the increase of FP patients. These findings justify how nnU-Net is able to preserve a satisfactory

specificity. Instead of a 84 % decrease, a slight drop of 26 % is registered.

The statistical analysis corroborates the aforementioned findings and validates the poorer perfor-

mance for L2 across metrics for nnU-Net, with the exception of the Hausdorff distance. L1 and L3

specificity and L3 Dice also present a ρ < 0.05.
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Figure 4.15: Confusion matrix in the external dataset for Apollo (blue) and nnU-Net (brown) at (Left.) lesion level
and (Right.) image level.

It is also relevant to perform a comparison between the two networks in the external dataset. Con-

fusion matrices are presented in Figure 4.15. An overlap is noticed between the FP and FN patients

across labels of the two networks: except for L2 FP, all the misclassified patients by nnU-Net were also

misclassified by Apollo. In general, nnU-Net seems to be more resilient when facing unseen data. De-

spite performance deterioration and ignoring L2 sensitivity, recall, and precision, the remaining scores

obtained in the external dataset are still acceptable and outperform Apollo. nnU-Net is able to by-pass

the poor scores in specificity and precision, observed in Apollo, and preserve sensitivity and Dice co-

efficients for L1 and L3 to relatively high values. The differences observed are statistically validated for

specificity across labels and Dice, Hausdorff, and precision for L1 and L3 7. It is also interesting to note

that nnU-Net has the tendency to under-predict lesions and Apollo to over-predict them. An example of

L2 predictions is presented in Figure 4.16 to support these findings.

The last topic that still needs to be addressed concerns the possible reasons behind the decrease in

performance observed for both networks in the external set. From Figures 3.4 and 3.5, we hypothesize

that the reasons behind the observed discrepancies across datasets lie on the fact that DL solutions are

predicting on out-of-distribution data:

• Shifts in class distribution - training/external:

Shifts in class distribution between the external and the training sets is one possible assumption to jus-

tify the drop in performance noticed for unseen data. Labels that had less opportunity to be learnt and

extracted correctly by the network are present in higher proportions in the external set, impacting its

performance in a more pronounced manner. As an example, the analysis conducted in the in-house

7L2 discrepancies across networks could not be statistically confirmed, as the number of paired patients the analysis did not
reach 10.
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Figure 4.16: Predictions of L2 (tumors) for Apollo (Middle) and nnU-Net (Right) on the external dataset. Ground
truth is shown on the (Left). FP lesions are reported in yellow and FN lesions in red. L2 predictions
are embedded with FP for Apollo, while nnU-Net struggles in detecting lesions.

dataset revealed that Apollo and nnU-Net struggled in detecting hyper acute infarcts and this was justi-

fied by their low occurrence in the training set. By including six times more hyper acute infarcts than the

in-house dataset, the external dataset is more susceptible to suffer from FN classifications. The fact that

the highest percentage of FN lesions in L1 falls in the hyper acute class corroborates our assumptions.

This effect can also be appraised in the L3 predictions. Apollo struggled in predicting intraparenchy-

mal acute, intraparenchymal chronic hemorrhages, and epidural/subdural chronic hemorrhages that are

represented in higher proportions in the external set.

• Shifts in class distribution - in-house/external:

Shifts in class distribution between the external and the in-house sets can also exacerbate the impact of

some labels in the overall performance. If a poorly represented label in the in-house set is misdetected,

its effect is overshadowed by the performance of more prevalent labels. However, if in the external

dataset, this label is present in a higher proportion, its impact will have a higher weight on the overall

performance. This effect is prevalent for nnU-Net tumor predictions and may explain the behaviour of

the network towards that class. In the in-house experiments, our findings reported that nnU-Net was

missing a high percentage of solid tumors that are more prevalent in the external dataset. In addition,

among the tumors predicted by nnU-Net, FP lesions mostly arise from chronic infarcts and edemas that

are in higher proportions in the external dataset. Similar behaviours can be noticed for nnU-Net and

L3 predictions: in the external dataset, FP lesions are related with hemorrhagic transformation of infarct

that are not represented in the in-house dataset.
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• Shifts in MRI parameters:

Out-of-distribution data can also emerge from differences in the scanners and acquisition parameters.

This type of distributional shift seems to deeply affect the L3 class. While 80 % of the hemorrhage pa-

tients in the external set present a SWI scan, they only represent 1.23% of the training set. Transferring

the discriminative features learnt on T2 * GRE (Section 4.3) to SWI images is far from being trivial and

may explain the behaviours of DL solutions when predicting on previously unseen data. Similar shifts

are also noticed, in a lower measure, for L2 predictions on FLAIR acquisitions. Algorithms trained with

most of the tumors annotated in the Axial orientation have to predict on the Coronal orientation in the

external dataset. Therefore, it is understandable why higher percentages of misclassification (FP and

FN) are found for Coronal FLAIR scans.
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Chapter 5 outlines the main findings of the conducted experiments and suggests possible extensions

and future research directions.

5.1 Summary of Findings

This thesis introduces a complete evaluation framework for DL algorithms performing lesion seg-

mentation and image classification on MRI images. Our heuristic approach is built upon a deep under-

standing of its clinical application. By presenting a broad panorama of metrics and steps, along with

a strong statistical analysis, experiments have given a comprehensive perception of the strengths and

weaknesses of the models across segmentation and classification tasks. In particular, using evaluation

metrics such as Hausdorff distance has lead to a better assessment of segmentation quality and border

delineation. Including CI computations in the analysis enables to sense how consistent the results are.

Nevertheless, the major contribution of our framework is the assessment of distributional shifts in the al-

gorithm performance. By evaluating performance across acquisition parameters and, at a bigger scale,

across different datasets, our method gives insights on how networks are hampered by their training

data and its respective MRI parameters.

By extensively addressing the generalization ability, our analysis evidences the impact of unintended

data bias on the performance of DL models. In both datasets and across experiments, lower perfor-

mances were reported for sub-label types and MRI acquisition parameters poorly represented in the

training data. This is even more evident on the external and unseen test set. The reason behind this

phenomenon is that models are opportunists. Algorithms tend to learn over-represented pathologies

that better solve the optimization problem of the learning step and struggle to predict on data acquired

with different acquisition parameters. Findings reinforce the importance of conducting an external evalu-

ation to assess robustness across clinical sites. Crucially, by-passing this step may result in sub-optimal

performances and misclassifications, preventing a seamless integration of DL solutions in hospitals. To

address these limitations, recent guidelines published by Radiology [21] and by Challen et al. [4] help

radiologists in gauging models from a quality and safety perspectives.

Another key aspect in the design of our evaluation framework is the comparison of a DL algorithm with

the status quo in biomedical segmentation, nnU-Net. From a DL perspective, it is impressive how nnU-

Net is able to condense domain knowledge and identify robust design decision to adapt to Cerebriu data

and tasks. Trained with one-fold cross-validation instead of the recommended five, nnU-Net outperforms

Apollo that was specially designed towards that data and tasks. nnU-Net has shown higher homogeneity

in performance across tasks and seems more robust towards different sequence types and orientations.

Except for tumors, satisfactory results were obtained on unseen data, highlighting a higher generalization

ability. We hypothesize that the reason behind nnU-Net better performance on unseen data lies in its

pipeline formulation and key design choices. This observation is in line with Isensee et al. [49] that
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justifies the state-of-the-art performance of nnU-Net as a direct result of ”the distillation of knowledge

from a large data pool into a set of robust design choices ” made to automate its configuration and

promote its agnosticism to tasks or datasets. We expect divergence in performance to arise from the

following design choices (Table 3.1):

• nnU-Net was optimized on a more comprehensive loss function. While Apollo only considers Dice

(with background), nnU-Net combines Dice (without background) and Cross entropy. Removing

the background in the loss computation may be beneficial as it penalizes errors on smaller areas

such as lesions, reaching a better segmentation output. Cross entropy, in turn, allows for a faster

convergence of the gradient in early steps of training.

• By making the network more robust to variations in the training data, higher segmentation quality

can also arise from the extensive and complex data augmentation procedures undertaken by nnU-

Net.

• nnU-Net was trained with deep supervision: the total loss function is computed with all but the two

lowest resolution in the decoder. It may help decrease the percentage of FP lesions in tumors.

• Apollo was trained with early stopping while it was not the case for nnU-Net. A longer training

allows the algorithm to extract better discriminative features and enables a finer tuning of lower

prevalence class. Removing early stopping in Apollo may reduce the percentage of FN lesions in

hemorrhages.

However, this superiority in performance comes with the cost of being more demanding in terms of

computational memory and requiring extremely long training times. While Apollo trains one fold in three

days, nnU-Net takes more than one week and a half.

5.2 Limitations and Future Work

This section comprises the limitations encountered in this work and explores potential directions of

future work.

While our framework has shown its potentials in evaluating DL algorithms , validating in a larger pool

of patients would further improve the quality and convergence of our findings. From finding hospitals

willing to share clinical data to generating ground truth segmentation maps, having data ready for training

and evaluation was a cumbersome and time-consuming process. Data scarcity currently hampers the

selection of additional MRI acquisition parameters and jeopardizes the statistical validation of the results.

Besides data availability, the information of the headers was far from being homogeneous across

datasets and data formats. Compared to DICOM, NIFTI format lacked information on several MRI

acquisition parameters. In addition, when the information was available, a large discrepancy in how

headers were filled was noticed. This is a direct result of the high DICOM flexibility, also noticed in [46].
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By allowing radiologists to manually enter the Series Description without any standardized guidelines,

storing the type of sequence and its orientation involved a case-to-case confirmation by visual inferences

to obtained an uniform database.

Finally, another minor limitation was the availability of only one GPU, making the training task of

nnU-Net a timely process with a ratio of one week and a half per fold.

A simple task that deserves attention in the immediate future is to perform an external evaluation

in a larger pool of patients in order to achieve meaningful statistical validation and assess the impact

of additional MRI acquisition parameters in the network performance. In particular, understanding how

sequence type and orientation influences the performance in the external dataset would complement

the analysis conducted in the in-house dataset.

Another interesting line of thought would be to include this framework in Cerebriu evaluation routine

and to add additional human-centered and clinically relevant metrics. It would enable a more accurate

monitoring of the network performance across the different software up-dates or clinical sites during pilot

studies and would guarantee a comprehensive overview of its impact in real settings.

Moreover, even if our approach can serve as an accurate baseline to evaluate DL solutions, it was

specially designed for Apollo. We believe that our framework can serve as a good starting point to further

extend to other types of imaging techniques and tasks.

5.3 Final Considerations

This section is meant to give insights on how Apollo is expected to create value in danish and

portuguese hospitals.

5.3.1 Apollo in Danish Hospitals

In early 2021, Cerebriu decided to refine its scope and shifted from infarcts, tumors, and hemor-

rhages predictions to an infarct-specific scenario. Under this new clinical setting, Apollo main applica-

tion is to automate infarcts detection (rule-in and rule-out) in MRI scans. It is meant to guarantee faster

treatment decision when infarct is detected or to provide a more confident rule-out.

Apollo is still to be implemented in danish clinical settings, therefore data to evaluate the socio-

economic outcomes for the radiology department is scarce. Some institutions, as Herlev Hospital, are

incorporating the software in their scanning protocol and initiating retrospective trials. In collaboration

with the latter hospital, a study case was conducted within Cerebriu, under specific assumptions. Cur-

rently, Herlev Hospital only includes MRI in its stroke management protocol from 08h00 to 20h00, based

on workforce requirements. Using Apollo in the scanning room could extend the schedule from 08h00
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to 00h00 and allow for extra 1 070 potential stroke patients to undergo an MRI scan per year and ben-

efit from a better disease management. From the Herlev’s representative feedback, patients arriving in

these extra four hours undergo a CT and are kept in the hospital until 08h00 the next day to perform

a MRI. Moreover, it is assessed that approximately 60% of the hospitalizations arise from preventive

measures. Therefore, under these assumptions, 1 070 CT scans and 60% of the admissions could be

avoided during the extended hours in one year. Following the reimbursement policies of Denmark, these

would contribute in a yearly cost reduction of 2 148 025 DKK and 5 326 717 DKK, respectively. There-

fore, the total benefits of using Apollo would result in more than 7 000 000 DKK per year 1. Financial

return is also expected within the first year.

5.3.2 Cerebriu Penetration in the Portuguese Market

According to the Stroke Alliance for Europe (SAFE) report [84] (2015), 15 208 strokes and 5 297

strokes are reported yearly, in Portugal and Denmark. Incidences are estimated at 75.4 in Portugal ver-

sus 56.5 in Denmark per 100 000 inhabitants. Mortality rates are also higher in Portugal where strokes

are responsible of 67.9 deaths versus 44.9 in Denmark per 100 000 inhabitants. The aforementioned

figures justifies the implementation of faster and more efficient stroke management protocol in Portugal.

Unfortunately, Apollo implementation does not solely rely on stroke incidence or mortality rates. It

also requires hospitals to include MRI in their stroke management protocol. Criteria for market selection

and penetration are based on MRI scanners availability and integration in stroke management protocol.

As the internship is a partnership between IST and Cerebriu, it is relevant to evaluate the viability of

implementing Apollo in Portugal and stipulate a potential integration scenario.

In Portugal, the difference in medical equipment availability is abysmal between MRI and CT scans.

Per 100 000 inhabitants, the country holds four times more CT scans than MRI units [6] 2. Moreover,

the current stroke management follows the ”Via Verde AVC” protocol [85]. The protocol guidelines for

imaging techniques corroborate with the recommendation of World Health Organization (WHO) [86] and

mention a CT and angio-CT. MRI is only prescribed in case of inconclusive CT diagnosis. In view of the

low MRI availability and the CT-based stroke protocol, the transfer of Apollo technology to portuguese

clinics is limited.

1This figure does not take into account costs related with implementation, utilization and staff training.
2According to [6], Portugal possesses 272 CT scans versus 94 MRI scanners.
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[56] R. Ñanculef, P. Radeva, and S. Balocco, “Training Convolutional Nets to Detect Calcified Plaque in

IVUS Sequences,” in Intravascular Ultrasound, S. Balocco, Ed. Elsevier, 2020, ch. 9, pp. 141–158.

[Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128188330000096

84

https://arxiv.org/abs/1805.10170
https://doi.org/10.1007/s10278-019-00308-x Using
http://dx.doi.org/10.3390/diagnostics10040231
https://doi.org/10.1016/j.jacr.2019.04.014
http://dx.doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1016/j.imu.2020.100297
http://dx.doi.org/10.1038/nature14539
https://www.sciencedirect.com/science/article/pii/B9780128188330000096


[57] S. Li. Simple introduction about hourglass-like model. Accessed 15-April-2021. [Online]. Available:

https://medium.com/@sunnerli/simple-introduction-about-hourglass-like-model-11ee7c30138

[58] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow, “Harmonic networks:

Deep translation and rotation equivariance,” 2017, arXiv:1612.04642 [cs.CV]. [Online]. Available:

http://arxiv.org/abs/1612.04642

[59] R. E. Turner, “Representational learning in sensory cortices : connecting receptive fields to natural

scene statistics,” Gatsby Computational Neuroscience Unit, London, Tech. Rep., 2013. [Online].

Available: http://www.gatsby.ucl.ac.uk/∼turner/teaching/4g3/2013/stats-recep-field.pdf

[60] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,”

PAMI, vol. 39, no. 4, pp. 640–651, 2017. [Online]. Available: http://dx.doi.org/10.1109/TPAMI.2016.

2572683

[61] F. Renard, S. Guedria, N. D. Palma, and N. Vuillerme, “Variability and Reproducibility in Deep

Learning for Medical Image Segmentation,” Sci. Rep, vol. 10, pp. 1–16, 2020. [Online]. Available:

https://doi.org/10.1038/s41598-020-69920-0

[62] A. A. Taha and A. Hanbury, “Metrics for evaluating 3d medical image segmentation :

analysis, selection, and tool,” BMC Medical Imaging, vol. 15, no. 29, 2015. [Online]. Available:

http://dx.doi.org/10.1186/s12880-015-0068-x

[63] W. Bai, M. Sinclair, G. Tarroni, O. Oktay, M. Rajchl, G. Vaillant, A. Lee, N. Aung, E. Lukaschuk,

M. Sanghvi, F. Zemrak, K. Fung, J. Paiva, and V. Carapella, “Automated cardiovascular magnetic

resonance image analysis with fully convolutional networks,” JCMR, vol. 20, no. 65, 2018. [Online].

Available: https://doi.org/10.1186/s12968-018-0471-x

[64] S. A. Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, and G. Hamarneh, “Deep semantic

segmentation of natural and medical images : a review,” Artif. Intell. Rev., vol. 54, pp. 137–178,

2020. [Online]. Available: https://doi.org/10.1007/s10462-020-09854-1

[65] N. Heller, F. Isensee, K. H. Maier-hein, X. Hou, C. Xie, F. Li, Y. Nan, G. Mu, Z. Lin, M. Han,

G. Yao, Y. Gao, Y. Zhang, Y. Wang, and F. Hou, “The state of the art in kidney and kidney

tumor segmentation in contrast-enhanced CT imaging: Results of the kits19 challenge,” 2020,

arXiv:1912.01054 [eess.IV]. [Online]. Available: https://arxiv.org/abs/1912.01054

[66] Y. Kabir, M. Dojat, B. Scherrer, F. Forbes, and C. Garbay, “Multimodal MRI segmentation of

ischemic stroke lesions,” in 29th Conf Proc IEEE Eng Med Biol Soc. IEEEXplore, 2007, pp.

1595–1598. [Online]. Available: http://dx.doi.org/10.1109/IEMBS.2007.4352610

85

https://medium.com/@sunnerli/simple-introduction-about-hourglass-like-model-11ee7c30138
http://arxiv.org/abs/1612.04642
http://www.gatsby.ucl.ac.uk/~turner/teaching/4g3/2013/stats-recep-field.pdf
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://dx.doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1038/s41598-020-69920-0
http://dx.doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12968-018-0471-x
https://doi.org/10.1007/s10462-020-09854-1
https://arxiv.org/abs/1912.01054
http://dx.doi.org/10.1109/IEMBS.2007.4352610


[67] L. Chen, P. Bentley, and D. Rueckert, “Fully automatic acute ischemic lesion segmentation in

dwi using convolutional neural networks,” NeuroImage Clin, vol. 15, pp. 633–643, 2017. [Online].

Available: http://dx.doi.org/10.1016/j.nicl.2017.06.016

[68] E. Beede, A. Iurchenko, L. Wilcox, and L. M. Vardoulakis, “A Human-Centered Evaluation of

a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy,” in

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. New

York, NY, USA: Association for Computing Machinery, 2020, pp. 1–12. [Online]. Available:

https://doi.org/10.1145/3313831.3376718

[69] A. Saha, X. Yu, D. Sahoo, and M. A. Maciej, “Effects of MRI scanner parameters on

breast cancer radiomics,” Expert Syst. Appl, vol. 87, pp. 384–391, 2018. [Online]. Available:

https://doi.org/10.1016/j.eswa.2017.06.029

[70] M.-S. Badea, I.-I. Felea, L. M. Florea, and C. Vertan, “The Use of Deep Learning in Image

Segmentation , Classification and Detection,” 2016, arXiv:1605.09612 [cs.CV]. [Online]. Available:

http://arxiv.org/abs/1605.09612

[71] D. Pustina, H. B. Coslett, P. E. Turkeltaub, N. Tustison, M. F. Schwartz, and B. Avants, “Automated

segmentation of chronic stroke lesions using linda: Lesion identification with neighborhood

data analysis.” Hum. Brain Mapp., vol. 37, no. 4, pp. 1405–1421, 2016. [Online]. Available:

http://dx.doi.org/10.1002/hbm.23110

[72] A. Myronenko, “3D MRI brain tumor segmentation using autoencoder regularization,” 2018,

arXiv:1810.11654 [cs.CV]. [Online]. Available: http://arxiv.org/abs/1810.11654

[73] M. Hssayeni, M. Al-Janabi, A. Salman, H. Al-khafaji, Z. Yahya, and B. Ghoraani, “Intracranial

hemorrhage segmentation using a deep convolutional model,” Data, vol. 5, p. 14, 2020. [Online].

Available: http://dx.doi.org/10.3390/data5010014

[74] P. D. Chang, E. Kuoy, J. Grinband, B. D. Weinberg, M. Thompson, R. Homo, J. Chen, H. Abcede,

M. Shafie, L. Sugrue, C. G. Filippi, M.-Y. Su, W. Yu, C. Hess, and D. Chow, “Hybrid 3D/2D

convolutional neural network for hemorrhage evaluation on head CT,” AJNR, vol. 39, no. 9, pp.

1609–1616, 2018. [Online]. Available: http://dx.doi.org/10.3174/ajnr.A5742

[75] Z. Jiang, C. Ding, M. Liu, and D. Tao, “Two-stage cascaded u-net : 1st place solution to brats chal-

lenge 2019 segmentation task,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic

Brain Injuries. BrainLes 2019. Springer, 2020, pp. 231–241.

86

http://dx.doi.org/10.1016/j.nicl.2017.06.016
https://doi.org/10.1145/3313831.3376718
https://doi.org/10.1016/j.eswa.2017.06.029
http://arxiv.org/abs/1605.09612
http://dx.doi.org/10.1002/hbm.23110
http://arxiv.org/abs/1810.11654
http://dx.doi.org/10.3390/data5010014
http://dx.doi.org/10.3174/ajnr.A5742


[76] K. Kamnitsas, W. Bai, E. Ferrante, S. Mcdonagh, and M. Sinclair, “Ensembles of multiple models

and architectures for robust brain tumour segmentation,” 2017, arXiv:1711.01468 [cs.CV]. [Online].

Available: http://arxiv.org/abs/1711.01468

[77] F. Isensee. (2020) nnU-Net. Accessed 28-December-2020. [Online]. Available: https://github.com/

MIC-DKFZ/nnUNet

[78] J. S. Whang, M. Kolber, D. K. Powell, and E. Libfeld, “Diffusion-weighted signal patterns of

intracranial haemorrhage,” Clinical Radiology, vol. 70, no. 8, pp. 909–916, 2015. [Online]. Available:

http://dx.doi.org/10.1016/j.crad.2015.04.006

[79] B. Efron and R. Tibshirani, “Bootstrap Methods for Standard Errors, Confidence Intervals, and

Other Measures of Statistical Accuracy,” Statistical Science, vol. 1, no. 1, pp. 54–75, 1986.

[Online]. Available: https://doi.org/10.1214/ss/1177013815

[80] M.-t. Puth and M. Neuh, “On the variety of methods for calculating confidence intervals

by bootstrapping,” J Animal Ecology, vol. 84, pp. 892–897, 2015. [Online]. Available:

http://dx.doi.org/10.1111/1365-2656.12382

[81] J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” Journal of Machine

Learning Research, vol. 7, pp. 1–30, 2006.

[82] Python Software Foundation, “Python.” [Online]. Available: https://www.python.org/download/

releases/3.0/

[83] J. L. Lancaster and M. J. Martinez, “Mango.” [Online]. Available: http://rii.uthscsa.edu/mango/

[84] Stroke Alliance for Europe. Data Comparison - The Burden of Stroke in Europe Report. Accessed

08-May-2021. [Online]. Available: https://strokeeurope.eu/data-comparison/
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A
ML Methods / Hardware and Software

Information

Appendix A brings some additional information on training specificities of Apollo (Section A.1) and

nnU-Net (Section A.2).

Apollo and nnU-Net were trained with the same data, 853 patients for training and 214 for valida-

tion. For each patient, three types of anisotropic images were required: DWI, FLAIR, SWI, SWAN, or

T2 * GRE. A linear resampling of the MRI and annotated images was undertaken prior to the training to

a 1x1x1 mm3 space. Four classes are specified: label 0 (L0) (background), L1 (infarcts), L2 (tumors)

and L3 (hemorrhages). Chronic infarcts (class 4) were included in the training process but excluded

from the testing process.
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A.1 Apollo

Apollo was trained and weights were obtained prior to the start of the internship. Each network took

a total of three days to train. Relevant training material is reported in the current section, for curiosity,

but choices regarding the training schedule do not fall into this thesis framework.

Apollo is an ensemble of three U-Nets, working in different reference modality spaces. The entire

3D image was fed into the each U-Net, after an intensity z-scoring normalization, allowing for more

contextual information and higher segmentation performance. Patch size was set to [160,176,160].

Large patch sizes implies decreasing the batch size to 2 which results in noisier gradients during back

propagation [49]. Each network was trained for 250 epochs (with early stopping), each epoch iterating

over 500 minibatches. Weights were initialized randomly. Adam Optimization was implemented with a

dice loss and an initial learning rate of 0.0001. Data augmentation was also undertaken 1.

A.2 nn-UNet

Nn-UNet [49] pipeline configuration is illustrated in Figure A.1. Like Apollo, our nnU-Net is the

ensemble of three U-Nets, working in different reference modality spaces.

Regarding the data fingerprints, each network is trained with the exactly same datasets and same

labels used in Apollo (Section 3.3).

Regarding the pipeline fingerprints, some training parameters are predefined (blueprints in blue)

and do not depend on the training set. Independently of the dataset, each U-Net is trained for 1000

epochs; one epoch iterating over 250 minibatches. Stochastic gradient descent with Nesterov momen-

tum (µ = 0.99) and an initial learning rate of 0.01 is used for learning network weights. nnU-Net is trained

with deep supervision: for the last four blocks of the decoder, a downsampled segmentation map is cre-

ated and used for loss computation. The training objective is to minimize the weighted sum of all losses

Lx, resulting in (A.1):

L = ω1L1 + ω2L2 + ω3L3 + ω4L4. (A.1)

Higher weights are given to the losses computed with the higher resolution maps. Each Lx is the sum of

cross-entropy (including the background) and Dice loss (excluding the background). Empirically, com-

bining the dice loss with a cross-entropy loss improves training stability and segmentation accuracy.

Data augmentation is also completed stochastically during training 2. Furthermore, to avoid ignoring

rare classes, oversampling foreground regions is also applied.

The empirical parameters (in yellow) are set after the training of each U-Net and require multiple con-

1Linear deformations (rotation and translations), non-linear deformations, intensity variation or random cropping to the available
training images and random switching of diffusive channels, were implemented.

2Rotation, translation, scaling, low resolution simulation, Gaussian blur, Gaussian noise, intensity variation (brightness, con-
trast), simulation of low resolution, gamma correction, mirroring were undertaken.
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figurations to be trained on a five-fold cross-validation. In our case, to mimic Apollo, only the 3D full

resolution with one-fold cross-validation was trained, and empirical parameters could not be evaluated.

Hence, only the inferred parameters (in green) are specific to our data and need to be specified. In the

present case, patch size was set to [128 128 128] and batch size to 2. Moreover, as in Apollo pipeline,

a pre-processing step is usually performed to decrease the dependencies on voxel spacing and image

contrast. As the data fed into the networks had already been resampled to a 1x1x1 mm space, no re-

sampling was undertaken by nnU-Net, according to the heuristic rules on resampling strategies. Hence,

only intensity z-scoring normalization and one-hot encoding conversion of the annotated images were

conducted.

Figure A.1: Proposed automated method configuration for deep learning-based biomedical image segmentation.
Given a new segmentation task, dataset properties are extracted in the form of a dataset fingerprint.
A set of heuristic rules models parameters interdependencies and operates on this fingerprints to infer
the data-dependent rule based parameters (or inferred fingerprints) (green) of the pipeline. These are
complemented by the fixed parameters (or blueprint fingerprints) (blue) which are predefined and do
not required adaptation. Up to three configurations are trained in a 5-fold cross-validation. Finally, nnU-
Net automatically performs empirical selection of the optimal ensemble of these models and determines
whether post-processing is required (empirical parameters) (yellow).
The image and descriptions are excerpted from [49].
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B
Acquisition Parameters

Appendix B is devoted to the selection of the acquisition parameters for whom impact on perfor-

mance will be assessed. Selection is performed under two criteria that maximize the number of patients

per groups 1 and enable a representative analysis :

• Selected parameters should be described in both DICOM (58.97 % of the in-house dataset) and

NIFTI (41.03 % of the in-house dataset) headers.

• Selected parameters should be distributed evenly across groups.

1A group is one sub-division of the selected acquisition parameter pool of values. As an example, taking B0 as selected
parameter, groups could be drawn as follow: group 1 (1.5 T ) and group 2 (3.0 T ).
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Groups are presented in Figure B.1 for each acquisition parameter and the selection process is

described below:

• B0 and scanner manufacturer do not comply with any of the two criteria. One unique group can

be drawn from these parameter and no information is given for the NIFTI format.

• TR, TE, and flip angle do not respect the first criterion. In addition, their dispersion depends on the

sequence type, and within each sequence type, the range of values is not broad enough to draw

meaningful groups. From Figure B.1, TE presents a wider dispersion. However, this dispersion is

not evenly distributed: 62.2% of the values are equal to 7.7 ms and 33.33% to 19 ms.

• An interesting parameter is the voxel dimension. For each acquisition technique, the higher res-

olution does not show relevant disparities (Figure B.1). In turn, the lower resolution plane presents

a larger deviation. Nevertheless, intervals are hard to draw, as not homogeneously distributed,

and prevent to continue with voxel dimension in the analysis. For instance, SWI condenses 62.3%

of the values in zdim = 4 mm and T2 * GRE presents 60.5 % of the values in zdim = 6.5 mm.

• The unique suitable parameter that satisfies our criteria of selection is Sequence type and orien-

tation. Its distribution in the in-house dataset can be find in Figure 3.5 and groups are described

in Section 3.3.2.

Figure B.1: Dispersion of MRI acquisition parameters in the in-house dataset.
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C
Post-processing Results

Appendix C focuses on the post-processing experiments: filtering (Section C.1), dilation (Section

C.2), and bounding boxes (Section C.3). The main purpose of this section is to support Sections 3.4 and

4.1, giving additional motivation and presenting supplementary results, not shown in the main corpus.
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C.1 Filtering
Considering filtering as an additional step of our evaluation pipeline is motivated in Figure C.1. From the

filtering experiment described in Section 3.4.1, lesion level metrics (recall and precision) are shown in

Figure C.2 across the filtering thresholds AHP .

Figure C.1: Boxplots of lesion size distributions across labels.
A) ground truth versus predicted lesion sizes. Filtering is needed in both annotations and predictions:
the median size (red line) of annotated and predicted lesions is low.
B) TP (light green) versus FP (dark green) and FN (dark pink) lesion sizes. Filtering is expected to
affect more significantly FP and FN lesions. Mean and median lesion sizes for these categories is
lower than TP mean and median lesion sizes.

Figure C.2: Apollo (Left.) recall and (Right) precision in % as a function AHP in the in-house dataset.
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C.2 Dilation
The confusion matrix at a lesion level for the dilation experiment (described in Section 3.4.2) is

shown in Figure C.3.

Figure C.3: Confusion matrix at a lesion level across Ndilation.

C.3 Bounding Boxes
Bounding boxes experiments arose from the discrepancy between the number of predicted and

ground truth lesions (Figure C.4). Higher predicted lesions could have been explained by the network

splitting one ground truth lesion in several predictions. This hypothesis was latter rejected: for each

annotation, only one lesion was segmented by the network, and this is verified across labels. The

observed discrepancy is due to the high number of FP lesions, predominant for L2 (as referred in Section

4.2). Bounding boxes were created as described in Section 3.4 and the results are compared to the raw

data and 5 times dilation performances. A visual inference of lesions across the three different analysis

is presented in Figure C.5 and results are shown in Figure C.6.

At an image level, sensitivity and specificity are not influenced by dilation nor by the use of bounding

boxes (Section 4.1). However, at a lesion level, recall and precision show an improvement across labels

when using dilation and bounding boxes. Nevertheless, bounding boxes are associated with lower recall

(except for L3) and lower precision across pathologies. Therefore, the use of bounding boxes in our

evaluation framework was rejected.

95



Figure C.4: Number of lesions per label: predicted Lesions (light grey) versus ground truth lesions (dark). Except
for L3, higher number of lesions are predicted compared to ground truth.

Figure C.5: Comparison of post-processing versus no post-processing for hemorrhage predictions.
(Top.) without any post-processing; (Middle.) with 5 times dilation; (Bottom.) with bounding boxes
creation, 5 times dilation and morphological closing.

Figure C.6: Bounding boxes performance at a lesion level.
(Left.) Recall and (Right.) precision in % across labels for no dilation experiment (grey), dilation 5
times experiment (dark green), and bounding boxes experiment (light green). Bounding Boxes are
relevant only for L3 in terms of recall, as it shows a sharper decrease of FN lesions, compared to the
other two methods. L3 is characterized by its smaller and dispersed ground truth annotations.
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D
Apollo-nnU-Net: Additional findings

Appendix D gives further information on Apollo (Section D.1) and nnU-Net (Section D.1) respective

performances. Results are shown after post-processing and CI (computed via bootstrap) are referred

as [α;β].
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D.1 Apollo
Apollo evaluation in the external dataset is reported in Table D.1. Poor performance is seen across

labels and metrics. In particular, specificity and precision are extremely low, and Apollo seems to over-

predict lesions for all classes. Large CI highlight once again the inconsistency of the results.

Table D.1: Apollo evaluation across pathologies for the external datasets.

L1 L2 L3
sensitivity (%) 85.71 [70.27 ; 94.44] 60.00 [22.22 ; 87.5] 73.33 [42.86 ; 92.31]
specificity (%) 7.41 [0.00 ; 23.81] 15.38 [7.27 ; 26.92] 21.28 [10.87 ; 34.69]

mean Dice Coefficient 0.281 [0.193 ; 0.380] 0.076 [0.030 ; 0.158] 0.132 [0.067 ; 0.226]
mean Hausdorff Distance (mm) 40.11 [30.36 ; 52.97] 42.34 [33.69 ; 47.83] 92.20 [48.90 ; 186.29]

recall (%) 79.19 [67.28; 88.16] 81.82 [42.86 ; 96.55] 89.39 [70.59 ; 98.09]
precision (%) 23.6 [14.14 ; 37.21] 9.41 [3.53 ; 18.97] 27.51 [10.87 ; 53.73]

D.2 nnUNet
nnU-Net evaluation in the in-house and external datasets are reported in Table D.2 - Top and Table

D.2 - Bottom, respectively. In the in-house dataset, nnU-Net shows a more homogeneous performance

across labels, and results are improved when compared with Apollo. Nevertheless, similar standard

deviations are recorded in the metric distributions in both networks, showing that performance is highly

dependent on the data pool selected for bootstrap. In the external dataset, nnU-Net manage to keep

acceptable scores for sensitivity, specificity, recall, and precision in L1 and L3. It mainly struggles with

L2 and seems to miss the ground-truth lesions. By including a smaller number of patients, the external

dataset presents even broader CI than the in-house dataset.

Table D.2: nnU-Net evaluation across pathologies for the (Top.) In-house and (Bottom.) external datasets.

L1 L2 L3
sensitivity (%) 96.00 [86.36 ; 100.00] 82.35 [56.25 ; 95.23] 95.83 [76.47 ; 100.00]
specificity (%) 89.66 [83.67;93.89] 91.01 [85.96 ; 94.48] 93.57 [88.82 ; 96.53]

mean Dice Coefficient 0.626 [0.553 ; 0.718] 0.273 [0.154 ; 0.423] 0.500 [0.361 ; 0.632]
mean Hausdorff Distance (mm) 27.39 [20.31; 36.30] 48.43 [29.03 ; 67.70] 44.16 [30.10 ; 61.29]

recall (%) 87.39 [77.48 ; 93.33] 72.73 [56.25 ; 87.50] 45.53 [22.97 ; 68.29]
precision (%) 72.22 [49.19 ; 83.33] 51.06 [29.78 ; 73.58] 60.87 [42.50 ; 75.36]

L1 L2 L3
sensitivity (%) 91.43 [76.67 ; 97.37] 30.00 [8.33 ; 63.64] 86.67 [57.14 ; 100.00]
specificity (%) 70.37 [50.00 ; 85.71] 71,15 [57.41 ; 82.14] 61.10 [46.67 ; 74.51]

mean Dice Coefficient 0.496 [0.371 ; 0.615] 0.098 [0.026 ; 0.253] 0.263 [0.144 ; 0.410]
mean Hausdorff Distance (mm) 39.58 [29.52; 51.97] 46.59 [44.33 ; 45.27] 80.78 [40.23 ; 165.75]

recall (%) 81.62 [71.53 ; 88.43] 47.83 [0.00 ; 84.21] 84.06 [60.61 ; 96.05]
precision (%) 52.86 [35.19 ; 69.68] 13.58 [2.27 ; 38.95] 40.00 [17.73 ; 63.93]
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