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Abstract

Deep Learning (DL) methods for pathology segmentation and classification have gained undeniable
relevance in the radiology department. Their promising potential must be balanced with the risks of
misclassifications in unseen data. Evaluating robustness with an adequate set of metrics is a crucial step
that is usually done sub-optimal in the current practices.

Here, we propose a comprehensive framework that specifically addresses these limitations and jointly
assesses the performance of DL models at an image (classification) and lesion (segmentation) levels.
Besides analyzing network behaviours across tasks, our method gives a measure of robustness by 1)
evaluating the impact of acquisition parameters on performance and 2) applying the framework to an
external dataset. The experimental analysis is conducted for two DL solutions, Apollo and nnU-Net,
trained on the same data.

Results show that algorithms are heavily hampered by data curation. In particular, we obtain lower
performances for poorly represented pathologies in the training set and verify that the algorithms struggle
to predict from out-of-distribution data, i.e. acquired with a different sequence or in a different direction.
Conversely, more discriminative features are learnt for predominant classes and on prevalent sequence
types or orientations. Experiments also suggest that robustness can be improved by identifying key design
decisions in the algorithm pipeline formulation.

By raising awareness on the importance of external validations and by providing alternatives to the
current evaluation frameworks, we give a further step towards the seamless integration of DL technologies
in medical settings.
Keywords: Deep Learning; Robustness; Unintended Data Bias ; Distributional Shifts; Magnetic Reso-
nance Imaging.

1. Introduction

According to the European Union, the use of
Computed Tomography (CT) and Magnetic Reso-
nance Imaging (MRI) has been rising [1], and ra-
diologists are asked to interpret one scan every
3-4 seconds [2]. Accurate diagnosis and fast dis-
ease management are compromised by the high
inter- and intra-clinicians variability and fatigue of
medical staff [3, 2]. This is all the most unfortu-
nate knowing that 60% of the acquired sequences
are unnecessary [4]. By addressing these issues,
deep learning (DL) has been garnering special at-
tention in Radiology and is expected to play an es-
sential role in the digital health revolution [5, 6].
Its underlying potential does not only arise from
its capacity to handle massive amounts of data
and alleviate the workload of radiologists, but also
from its ability to discover relationships between
scan features and patho-physiological attributes
that may not be included in the radiologists lex-

icon [6, 7]. Promising outcomes encompass a
better resources allocation (adequate triaging, no
unnecessary admissions and reexaminations), an
optimized hospital workflow, and higher quality of
care (faster decisions, more confident diagnosis,
and less invasive approaches) [4]. This is spe-
cially relevant for ischemic stroke that have a time-
dependent nature and treatment selection (throm-
bolysis or mechanical thrombectomy) based on a
correct estimation of the onset and detection of po-
tential hemorrhages at the infarction site [8].

However, even if DL shows clear advantages
in supporting healthcare providers, automating
a human-based process is far from being triv-
ial. Predicting diseases characterized by a broad
landscape of patho-physiological attributes can
be challenging. Figure 1 illustrates this idea by
segmenting the different sub-types of tumors de-
scribed in [9]. In that context and to avoid wrong
predictions, it is important to guarantee that each
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Figure 1: Tumors classification according to their composition.
Solid tumor (red), cystic tumor (orange), tumor edema (yellow)
and hemorrhagic tumor (purple) are identified in (Left.) DWI,
(Middle) FLAIR, and (Right.) SWAN scans. Hemorrhagic tu-
mor is only visible in SWAN modality. Shapes, textures, and
intensities vary across tumor sub-types, depending on the un-
derlying biological properties

Figure 2: Example of an infarct acquired with ((Left) a 1.5 T
Siemens scanner and (Right) a 1.5 T GE Healthcare scanner.
The relative intensity difference between background and fore-
ground classes depends on the scanner and its acquisition pa-
rameters.

pathology attributes is being learnt correctly by
the network during the training. Challenges also
arise from making predictions for out-of-distribution
data (rare pathological conditions, data acquired
with a different scanner, or demographic shift).
Pathologies may appear differently according to
the scanner acquisition parameters (Figure 2) and
these differences may not be understood by the
algorithms. As a result, they may not be able
to generalize to other scanners, acquisition pa-
rameters, populations, or pathology characteristics
[5, 10, 11, 6]. Other types of unintended data bias
can arise from data curation (selection of optimal
training data, high-quality images) and from the
over-representation of positive cases [5]. Address-
ing these limitations is crucial to bring the tech-
nology into clinic and is all the most relevant fac-
ing the diversity of radiology platforms, the hetero-
geneity of processes, formats, and protocols, the
variability of intra and inter-site scanner manufac-
turers, models and versions [12, 10, 13]. DL al-
gorithms need to be prepared to predict on pre-
viously unseen samples. However, since learning
only happens during training, the quality of the pre-
dictions and generalization ability highly depend on

the data attributes provided during training and val-
idation phases [5].

Under these assumptions, some ethical and
medico-legal concerns have been raised in case of
mispredictions. Hence, it is important to assess DL
clinical value, safety, and benefits before promot-
ing the digitization and automation of healthcare
processes [5]. In current practice, and due to the
scarsity of medical data, most of the evaluation
processes are not sufficiently broad. This is
reported in [14] where only 6% of the 516 reviewed
AI-based solutions performed external validation.
In addition, evaluation frameworks are often not
supported by a diversified and comprehensive
set of metrics. Unfortunately, selected metrics
do not always cover all the requirements for the
integration of an algorithm in clinics [15].

Objectives In this work, we outline a new path of
evaluation by designing a comprehensive frame-
work for assessing the performance of DL medical
segmentation and classification algorithms. Perfor-
mance will be addressed under three perspectives:

• Performance across pathologies - Gives a
deeper understanding of the pathological con-
texts for which more discriminative features
were learnt by DL algorithms. This evaluation
could help their integration in meaningful clini-
cal workflows and protocols.

• Performance across MRI acquisition param-
eters - Gives a deeper understanding of the
MRI parameters that allow a better perfor-
mance of DL algorithms at clinical sites. It can
also be interpreted as a measure of robust-
ness. In this work, MRI parameters include the
type of sequence and the type of orientation.

• Performance across datasets - Gives a deeper
understanding of DL algorithms generalization
ability. It is a preliminary step to ensure their
safety at new clinical sites before their imple-
mentation.

2. DL Solutions for Medical Segmentation and Clas-
sification
Among DL architectures, U-Net [16] is one of the

most commonly adopted for medical image seg-
mentation [17, 18]. Its name arises from its sym-
metric U-shaped architecture, as shown in Figure
3. It consists of a combination of an encoder, that
ensures feature extraction and dimension reduc-
tion, and a decoder, that performs semantic seg-
mentation [19]. This architecture enables the net-
work to learn relevant features ( size- , shape-
, texture- related) and to combine the aforemen-
tioned contextual information with a precise spatial
location. Skip connections (in grey in the Figure)
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Figure 3: General U-Net architecture. The U shape is visible:
encoder (contextual information) and decoder (spatial location)
are identified. Blue boxes represent the multi-channels feature
maps; White boxes represent the copied feature maps. Figure
is adapted from [16].

guarantee that better segmentations are produced
by recovering fine-grained spatial information that
is potentially lost in the pooling and downsampling
layers.

In order to face data scarcity and achieve state-
of-the-art performance, U-Nets and DL networks in
general are usually paired with data augmentation
[17]. It is all the most appreciable in medical ap-
plications since 1) it is an efficient and pragmatic
method to simulate structural and textural changes
of anatomical architectures; 2) invariance and ro-
bustness to tissue deformation can be learnt by
the network; and 3) satisfactory training results are
achieved without relying on extensive training cor-
pus [16].

More complex variations can be obtained, built
upon the standard U-Net architecture, by adapt-
ing the U-Net like encoder-decoder skeleton and
its convolutional building blocks, modifying the loss
function, or following more sophisticated data aug-
mentation techniques [20]. Two examples are de-
scribed in Section 2.1 and Section 2.2 and com-
pared in Table 1. They will be used as experimental
frameworks for validating our approach.

2.1. Apollo
Apollo [4] is a DL solution developed by Cere-

briu, a danish med-tech company based in Copen-
hagen. It is currently under clinical validation in
hospitals across Denmark. Its architecture con-
sists in ensembling three U-Nets, working in differ-
ent reference modality spaces. Each network com-
putes a multi label semantic classification and one
segmentation map per task is predicted. These
maps are combined by majority voting, after being
projected in a pre-defined native space.

Apollo is currently designed to segment infarct,

Figure 4: Apollo inferences process for infarcts, tumors, and
hemorrhages segmentation. The segmentation maps predicted
by the 3 U-Nets, working in different reference modality spaces
(DWI, FLAIR, and T2*GRE, SWAN, or SWI) are combined by
majority voting to create the final output.

tumors, and hemorrhages. Its implementation at
clinical sites requires the following sequences : a
diffusion weighted imaging (DWI), a fluid attenu-
ated inversion recovery (FLAIR) and a T2 * gra-
dient echo (T2* GRE), a susceptibility-weighted
angiography (SWAN), or a susceptibility-weighted
imaging (SWI)). Its main objective is to grant triage
decision support to radiologists. From the segmen-
tation maps obtained as described in Figure 4), if
at least one lesion of a specific class has been seg-
mented, the patient is automatically classified with
the same label. Based on the prioritization proto-
col set by the hospital, Apollo automatically selects
the patients that require urgent review by the radi-
ologist.

2.2. nnU-Net
An outstanding observation when address-

ing architectural modifications reveals that perfor-
mance is not always correlated with innovative ar-
chitectural designs and sophisticated modifications
[21]. Achieving state-of-the-art mostly relies on
choices made during network configuration, where
the pipeline fingerprint is designed and parameters
are selected.

From these findings, the ”no new net”, i.e nnU-
Net [22], was created. The network does not
draw its strengths from an improved architecture,
a more efficient training scheme or a more ap-
propriate loss function. Its novelty resides on
its ability to handle a wide disparity of structures
and image properties, proposing a tailor-made net-
work without any user intervention. The design
choices of a segmentation network are divided
into three groups: blueprint (data-independent, al-
ready predefined, identified as robust common
configurations), inferred (data dependent, selected
based on heuristics rules), and empirical parame-
ters (optimized during training). Having extracted
its encoding design choices from large and diverse

3



Table 1: Comparative analysis of Apollo and nnU-Net pipelines

Apollo nnU-Net

Modification to the U-Net architecture
Normalization Instance Normalization Instance Normalization
Activation Function ReLU Leaky ReLU
Downsampling Max pooling Stride Convolution
Upsampling Upsampling Transposed Convolution
Depth 4 blocks 6 blocks

Training Schedule
Epochs 250 1000

(iterating over 500 minibatches) (1 epoch iterating over 250 minibatches)
Patch Size [160,176,160] [128 128 128]
Batch Size 2 2

Back propagation
Algorithm Adam Optimization Stochastic Gradient Descent

Nesterov Momentum (µ = 0.99)
Learning Rate η = 0.0001 η = 0.01

Early Stopping Yes -

Loss Function Dice Loss Cross-entropy and Dice Loss
(excluding the background)

Deep supervision - Yes - Loss Function is optimized
for the 4 last blocks of the decoder

Image pre-processing Z-scoring Intensity Normalization Z-scoring Intensity Normalization
Oversampling Foreground Regions Oversampling Foreground Regions

Data Augmentation Rotation ; Translations; Intensity Variation; Rotation ; Translations; Intensity Variation
Random Cropping (Gaussian Blur and Gaussian Noise)

Gamma correction;
Mirroring ;
Scaling;
Low Resolution Simulation;

Predictions On the entire image With a Gaussian sliding window
overlap: half of the patch size

data pool, performance is not deteriorated by data
scarcity, making nnU-Net data efficient and a solid
baseline for biomedical segmentations.

3. Materials and Methods

We introduce a complete evaluation framework
for DL solutions (Section 3.1), built upon a deep un-
derstanding of their clinical applications. By jointly
assessing the performance at the image and lesion
levels, it is intended to cover segmentation and
classification outcomes simultaneously. In order to
validate our approach experimentally, experiments
are conducted on the two previously described al-
gorithms, Apollo and nnU-Net and exposed in Sec-
tion 3.2.

3.1. Evaluation Framework

The following metrics are selected considering
the intentions and objectives of the two networks
in the radiology department. They are computed
based on the calculation of a confusion matrix.
Components are abbreviated as followed: True
Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). At an image level,
confusion matrix, sensitivity (1) in % , and
specificity (2) in % are computed, with higher
relevance granted to sensitivity:

sensitivity =
TP

TP + FN
× 100, (1)

specificity =
TN

TN + FP
× 100. (2)

At a lesion level, confusion matrix (without TN le-
sions, as considered non-existent), recall (i.e sen-
sitivity 1) (1) in %, and precision (3) in % are pre-
ferred.

precision =
TP

TP + FP
× 100 (3)

Mean of Sørensen Dice coefficient (4) and Haus-
dorff distance (5) in mm are also estimated to ad-
dress the quality of the segmentation in terms of
overlap and contours delineation [23]:

DSC = 2× X ∩ Y
X ∪ Y

, (4)

dH(X,Y ) = max
{
A,A

}
, (5)

where X and Y are the ground truth and seg-
mentation maps, A = maxx∈Xminy∈Y d(x, y), and
A = maxy∈Yminx∈Xd(x, y)

1Different nomenclatures are used to distinguish between
image and lesion levels.
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The confusion matrix at a lesion level is esti-
mated through the Dice score. Results at an image
level are built upon lesion level outcomes.

The aforementioned metrics are supported by
the estimation of their confidence intervals (CI),
computed with the bias-corrected and accelerated
bootstrapping method [24, 25] and α = 0.95. A to-
tal of B = 10000 resampling with replacement of
the size of the original sample are made from the
empirical probability distribution of the data under
analysis [25]. As the original sample size is larger
than 30, bootstrapping results are expected to be
reliable [25].

3.2. Implementation
The evaluation framework is validated exper-

imentally in two supervised learning algorithms,
Apollo and nnU-Net. The evaluation encompasses
three pathologies (infarcts, tumors, and hemor-
rhages), predicted on the MRI sequences required
by Apollo. The evaluation framework is applied to
each class individually, transforming a multi-task
problem into a binary problem. The impact of the
sequence type (SWI, SWAN, or T2 * GRE) is ad-
dressed for hemorrhage predictions and of the se-
quence orientation (Axial or Coronal FLAIR) for in-
farct predictions. Robustness is assessed by com-
paring performance in an in-house and external
datasets.

Experiments are run on Python, version 3 [26]
in a Linux virtual Machine, Ubuntu SMP, with a
x86 64 processor.

Apollo was trained prior to the experiments. To
mimic Apollo, three 3D nnU-Net [22] are trained
on the same dataset with one fold cross-validation
using one GPU (NVIDIA Tesla P40 - memory
22919 MiB) along with a strong CPU (Intel(R)
Xeon(R) - size 2.6 GHz and capacity 3.5 GHz)
and Pytorch (version 1.6). Predicted maps are
obtained as detailed in Figure 4.

Datasets Data was curated and annotated for the
use of Cerebriu. Networks were trained on MedAll
(MedAll Diagnostics - Chennai, India) and OUH
(Odense University Hospital - Odense, Denmark)
data. The training set is composed by 25.67% in-
farct patients, 11.37% tumor patients, and 9.95%
hemorrhage patients. The remainders are healthy
patients. Performance evaluation is conducted on
two datasets:

• an in-house dataset - 195 MedAll patients,
selected among the validation set (i.e 91.12%
of the validation set). The in-house set is
composed by 25.64% infarct patients, 8.72%
tumor patients, and 12.31% hemorrhage pa-
tients.

• an external dataset - 62 SUNY (Suny Up-

state University Hospital - New York, United
States) patients. The external set is composed
by 58.06% infarct patients, 19.35% tumor pa-
tients, and 24.19% hemorrhage patients.

Figure 5 presents the spectrum of classes
sub-types, while Figure 6 shows the distribution of
the relevant MRI parameters across datasets .

Post Processing Post-processing on prediction
and ground truth binary masks is performed after
Apollo and nnU-Net inferences. Post processing
methods are based on morphological dilation with
a determined coefficient Ndilation and filtering
of lesion areas below a certain threshold AHP .
Ndilation = 5 and AHP = 10 are defined for Apollo
using the in-house dataset and are kept through-
out all the analysis. Calibration is rigorously
undertaken to avoid the production of misleading
or distorted results. Our analysis reveals that
dilation and filtering helped increasing the fairness
of the evaluation by allowing overlapping of spa-
tially close lesions and removing noisy voxels on
prediction and ground truth, respectively. Dilation
is performed after filtering.

4. Results
Infarcts, tumors, and hemorrhages are referred as
L1, L2, and L3.

Performance across Pathologies
Apollo performs differently across pathologies: Ta-
ble 2 shows how Apollo addresses each task.
When applying the model for L1 detection and seg-
mentation, better performances are achieved and a
higher trade-off between sensitivity/specificity and
recall/precision is reached. In terms of quality of
segmentation, infarcts area and contours are bet-
ter captured by the network. The network seems to
suffer from L3 FN and L2 FP lesions in its predic-
tions. In particular, the noisy segmentation maps
observed for L2 deeply affects its specificity and
healthy patients are more likely to be reported as
having a tumor than an infarct or a hemorrhage.
Differences in performance arise from unintended
data bias: A trivial assumption is to explain diver-
gence across labels in terms of their pathophys-
iological differences. By being characterized by a
relatively high amount of spread lesions, L3 lesions
are more difficult to detect and segment individ-
ually. Additionally, some hemorrhages sub-types
are hard to segment manually and this has reper-
cussions when automating the process. A clear
example is subarachnoid hemorrhages (SAH) that
are not detected by Apollo and for which the high
variability in MRI intensities, the blooming effect
produced by adjacent bones, or the dilution of
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Figure 5: Percentage of classes sub-types in the training set (white), in-house testing set (coloured ), and external testing set
(coloured with dashed line).The percentage of disease k in the dataset j are given by Pk,j =

Npk,j

Npj
, where Npk,j is the number

of patient presenting the disease k in the dataset j and Npj is the total number of patients in the dataset j. Infarct, tumor, and
hemorrhage sub-types appear in light blue, yellow, and pink, respectively.

Figure 6: Distribution of the acquisition parameters in (Left.) the training set, (Middle.) the in-house set, and (Right.) the external
set. (a.)FLAIR distribution: Axial, Coronal, and Sagittal ;(b.)T2 * GRE, SWI, and SWAN distribution.
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Table 2: Apollo evaluation for the in-house dataset across pathologies, at an image (sensitivity, specificity, Dice coefficient and
Hausdorff distance) and lesion (recall and precision) levels. CI, computed via bootstrap, are presented [α;β].

L1 L2 L3
sensitivity (%) 94.00 [83.33 ; 98.21] 82.35 [54.55 ; 95.24] 83.33 [60.87 ; 95.00]
specificity (%) 84.14 [77.34:89.40] 72.47 [65.32 ; 78.49] 90.06 [84.77 ; 93.85]

mean Dice Coefficient 0.544 [0.442 ; 0.638] 0.175 [0.102 ; 0.272] 0.291 [0.193 ; 0.404]
mean Hausdorff Distance (mm) 25.67 [18.74 ; 34.75] 39.14 [22.61 ; 60.63] 52.23 [37.29 ; 70.33]

recall (%) 80.67 [65.85 ; 90.84] 87.18 [79.45 ; 97.22] 50.64 [27.33 ; 77.62]
precision (%) 60.38 [44.63 ; 73.61] 14.23 [6.34 ; 29.02] 64.23 [45.79 ; 80.37]

Table 3: nnU-Net evaluation across pathologies.
L1 L2 L3

sensitivity (%) 96.00 [86.36 ; 100.00] 82.35 [56.25 ; 95.23] 95.83 [76.47 ; 100.00]
specificity (%) 89.66 [83.67;93.89] 91.01 [85.96 ; 94.48] 93.57 [88.82 ; 96.53]

mean Dice Coefficient 0.626 [0.553 ; 0.718] 0.273 [0.154 ; 0.423] 0.500 [0.361 ; 0.632]
mean Hausdorff Distance (mm) 27.39 [20.31; 36.30] 48.43 [29.03 ; 67.70] 44.16 [30.10 ; 61.29]

recall (%) 87.39 [77.48 ; 93.33] 72.73 [56.25 ; 87.50] 45.53 [22.97 ; 68.29]
precision (%) 72.22 [49.19 ; 83.33] 51.06 [29.78 ; 73.58] 60.87 [42.50 ; 75.36]

blood with cerebrospinal fluid (CSF) is known to
jeopardize its diagnosis [27].
However, the aforementioned factor cannot ex-
plain by itself all the differences observed across
pathologies. The higher scores obtained for L1
seem to stem from the training data distribution that
accounts for 25.67 % infarcts versus 11.37 % tu-
mors and 9.95 % hemorrhages. Conversely, poorly
represented sub-types in the training set are cor-
related with higher percentages of missed detec-
tions, by having less opportunity to be learnt and
extracted correctly by the network. Our analysis re-
veals that Apollo struggles in detecting hyper acute
infarcts, cystic tumor, epidural/subdural late sub-
acute hemorrhages, and epidural/subdural chronic
hemorrhages.

Besides unbalanced class distributions, di-
vergence in performance could also come from
grouping sub-types into three major classes. While
infarcts can be divided in sub-acute, acute, and hy-
per acute, tumors and hemorrhages show a wider
sub-types range. Each sub-class is described by
its own texture, size, and shape that originates a
broader landscape of features, that needs to be
learnt by the algorithm (Figure 1). This makes
the classification task more difficult based on this
extended diversity and could explain the high
percentage of FP affecting L2 performance.

nnU-Net has a more homogeneous behaviour
across pathologies: From Table 3, nnU-Net
reaches an outstanding performance when com-
pared with Apollo, and this behaviour is seen
across pathologies. In particular, an increase of
15 % and 25 % are seen in L3 sensitivity and
L2 specificity, while L2 precision is multiplied
by 3.59. One one hand, it seems that nnU-Net
managed to learn more discriminative features

across classes. On the other hand, it seems that
nnU-Net is less dependent on the low represen-
tation of pathologies in the training data. While
misclassifications are mainly seen for the same
sub-classes as Apollo, nnU-Net handles better
SAH, epidural/subdural hyper-acute hemorrhages,
intraparenchymal acute and chronic hemorrhages,
and hyper-acute infarcts.

Consistency in performance is not verified: Con-
fidence intervals (CI) appear to be unexpectedly
broad and both networks score are highly in-
consistent. The high variability of the data can
be explained by the small sample size and their
computation is deeply affected by the patients
selected in each bootstrap.

Robustness across different sequence types or
orientations
Recall and sensitivity are improved with Axial
FLAIR: From Figure 7, by producing a higher
recall and sensitivity, Apollo and nnU-Net seem
to better perform when fed Axial FLAIR. Possible
explanations could lean on the fact that the training
set includes 1.4 more L1 patients with Axial FLAIR
and on the hypothesis that better contextual
information can be aggregated when inputs share
the same low-dimensional direction.

T2*GRE leads to higher quality L3 segmentations:
Apollo and nnU-Net converge to better segmenta-
tion maps with T2*GRE scans. Higher Dice scores,
recall, and precision and lower Hausdorff distances
are obtained with T2*GRE. In particular, higher
discrepancies are noticed for nnU-Net recall that
is halved when fed with SWI/SWAN and Apollo
Hausdorff distance that rises from 28.16 to 65 mm.
We hypothesize that the higher lesion performance
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Figure 7: Confusion matrix for L1 prediction in percentage the in-house dataset for Apollo and nnU-Net. Comparisons between
Axial FLAIR (dark) and Coronal FLAIR (light grey) are performed at (Left.) lesion level and(Right.) image level.

Table 4: (Left.) Apollo and (Right.) nnU-Net evaluation in the in-house (grey) and external (purple) datasets. Results are reported
after post-processing that lead to a general increase in performance for both networks. Metrics are averaged across labels.

in-house external
sensitivity (%) 86.40 72.25
specificity (%) 81.89 13.44

Dice Score 0.303 0.141
Hausdorff (mm) 37.44 53.90

recall (%) 70.88 83.36
precision (%) 38.07 18.28

in-house external
sensitivity (%) 91.16 61.95
specificity (%) 91.40 67.60

Dice Score 0.440 0.234
Hausdorff (mm) 38.84 53.01

recall (%) 66.14 68.98
precision (%) 60.77 30.62

with T2*GRE lies on the image characteristics that
seem to produce more discriminative features, fa-
cilitating L3 predictions, and on the higher percent-
age of T2*GRE among hemorrhage patients on the
training set.

nnU-Net outperforms Apollo in terms of general-
ization ability towards the input sequences: By
achieving satisfactory results across groups at an
image level and in terms of segmentation quality,
nnU-Net seems more robust facing differences in
sequence types and orientations. While in Apollo,
T2*GRE sensitivity for L3 prediction or Axial FLAIR
specificity for L1 prediction are below 80 %, nnU-
Net shows decent scores, independently of the
MRI parameters considered in the experiments.

Robustness on an external dataset
External validation is required to have reliable in-
sights in models performance: From Table 4,
Apollo and nnU-Net report a drop in performance
between the in-house and the external dataset.
Apollo makes noisy predictions and has troubles in
distinguishing pathology versus background. This
has a cumbersome impact on the specificity with a
drop of 84 % between datasets. nnU-Net manages
to better handle unseen data and reduces the FP
predictions. The average results shown in the table
do not reflect the fact that L2, by suffering a larger

decrease in performance, overshadows L1 and L3
satisfactory scores. This is particularly relevant in
the sensitivity: while L2 reports a score of 30%, L1
and L3 scores reach 91.12 % and 86.67%, respec-
tively. Similar behaviours are noticed across all the
metric board.

Unintended data bias hampers the generalization
ability of DL models: From Figure 5 and Fig-
ure 6, we hypothesize that the reasons behind
the observed discrepancies across datasets lie on
the fact that DL solutions are predicting on out-
of-distribution data. On one hand, the external
dataset reveals evident shifts in class distribution
when compared the training datasets. Labels that
had less opportunity to be learnt and extracted cor-
rectly by the network are present in higher pro-
portions in the external set, impacting its perfor-
mance in a more pronounced manner. This is
the case of hyper acute infarcts and chronic intra-
parenchymal hemorrhages. Moreover, behaviours
across datasets can also arise from the different
compositions between in-house and external data
pool. From the analysis conducted in the in-house
dataset, among the tumors predicted by nnU-Net,
FP lesions mostly arise from chronic infarcts and
edemas. These labels are in higher proportions in
the external dataset and can partially explain the
struggle of nnU-Net with L2 predictions.
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On the other hand, out-of-distribution data can
emerge from differences in the scanners and ac-
quisition parameters. While 80 % of the L3 patients
in the external set present a SWI scan, they repre-
sent 1.23% of the training set. Transferring the dis-
criminative features learnt on SWAN and T2* GRE
to SWI images is far from being trivial and may ex-
plain the behaviours of DL solution when predicting
on previously unseen data. Similar shifts are also
noticed, in a lower measure, for L2 predictions on
FLAIR acquisitions.

5. Conclusions

We introduce a complete evaluation framework for
DL algorithms performing lesion segmentation and
image classification on MRI images. Built upon
a deep understanding of their clinical application,
it conducts a joint analysis at an image (clas-
sification) and lesion (segmentation) level, sup-
ported by a broad panorama of metrics and steps.
The strong performance of our heuristic approach
arises by giving a comprehensive perception of the
strengths and weaknesses of the models across
pathologies and datasets, which was previously
neglected in other works.

By extensively addressing the generalization
ability, our analysis evidences that DL models are
not agnostic to data and their performances are
highly affected by unintended data bias present
in the training set. The reason behind this phe-
nomenon is that models are opportunists. Algo-
rithms tend to learn over-represented pathologies
that better solve the optimization problem of the
learning step and struggle to predict on data ac-
quired with different acquisition parameters. Find-
ings reinforce the importance of performing an ex-
ternal evaluation to assess robustness across clin-
ical sites. Crucially, this observation may result in
sub-optimal performances and misclassifications,
hampering the seamless integration of DL solu-
tions at hospitals. To address these limitations, re-
cent guidelines published by Radiology [28] and by
Challen et al. [5] help radiologists in gauging DL
models from a quality and safety perspective.

Our comparison between Apollo and nnU-Net
reveals that nnU-Net is more robust to unseen
data. We hypothesize that the reason behind nnU-
Net ’s better performance on unseen data lies in its
pipeline formulation and key design choices. This
observation is in line with Isensee et al. [21] that
justifies the state-of-the-art performance of nnU-
Net as a direct result of ”the distillation of knowl-
edge from a large data pool” made to automate its
configuration to any task and dataset. From Table
1, we expected divergence in performance to arise
from the more sophisticated optimization function,
the deep supervision process, complex data aug-

mentation techniques, and the rejection of early
stopping. These key choices seem to enable nnU-
Net to learn more discriminative features, result-
ing in a more homogeneous performance across
pathologies and a more resilient behaviour across
datasets.

While our framework has shown its potentials in
evaluating DL algorithms , validating in a larger
pool of patients would further improve the quality
of our findings. Data scarcity currently prevents the
selection of additional MRI acquisition parameters
and jeopardizes the statistical validation of the re-
sults. Practical limitations encompass finding hos-
pitals willing to share clinical data and generating
ground truth segmentation maps through manual
annotation.
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