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Abstract

In the recent years the wind industry has seen one of fastest-growing technological development in
the energy sector, playing a massive role in the energy transition. Wind turbines operate in a very
unsteady environment, therefore experiencing variable effects (i.e. sudden change in wind speed). This
can result in large oscillations of the loads on the turbine blades and tower, consequently affecting the
performance of such systems. The purpose of this work is the aerodynamic study under steady and
unsteady inflow conditions of a wind turbine designed for the New MEXICO experiment using the
three-dimensional panel method developed at Instituto Superior Técnico (IST), PROPAN. First, an
extensive numerical study under steady inflow conditions is performed to obtain a well-defined turbine
grid to be utilised as input for the dynamic simulations. Two undisturbed wind velocities, 10.05 m/s
(TSR = 10) and 15.06 m/s (TSR = 6.7), are considered. When comparing the simulated results with
the New MEXICO experimental data, a good agreement is generally found. Second, the dynamic blade
pitch variation and its effect on the blade loads at TSR = 10 are described. Two different methods to
create the wake geometry were applied, with the main difference of yielding a wake geometry either
partially or fully aligned to the incoming wind flow. The forces predicted with both wake geometries
are comparable to the experimental ones when achieving the steady state solution. On the other hand,
the force undershoot and overshoot occurring after the pitch modification can not be captured properly.
Keywords: Wind Turbine, Panel Method, Dynamic Inflow, MEXICO.

1. Introduction

The implementation of energy systems running on
renewable sources, together with the introduction
of strong and courageous governmental energy poli-
cies, is fundamental to tackle climate change and
achieve the global emissions reduction goals signed
in the Paris Agreement. Wind industry has seen
one of fastest-growing technological development in
the energy sector, passing from an average of 1 MW
turbines installed at the beginning of this century
to the recent production of turbines with a rated
capacity up to 15 MW.

Aerodynamic load is part of the decisive effects
that wind turbine must consider. It directly affects
the structural design of a wind turbine blade, the
design of the generator set and the design of con-
trol system [1]. Therefore, performance forecasting
is fundamental when designing a wind turbine and
its accuracy plays a central role in the economic fea-
sibility of wind farm projects. Since wind turbine
operate in a very unsteady environment, dynamic
inflow has a large importance. This phenomenon
happens when a sudden change in pitch angle, ro-

tor speed or wind speed occurs. Because of this,
the wake behind the turbine, and consequently the
induction and the resulting effective velocity in the
rotor plane will achieve steady state conditions only
after a certain delay. The effects of this behaviour
in the wake have a large practical importance, not
only in view of the higher dynamic loads experi-
enced by the turbine but also because of its impact
on the aerodynamic damping characteristics and in
particular in the design of pitch control algorithms
[2].

Most of the present wind turbine design codes are
based on Blade Element Momentum (BEM) theory
which can be considered as a combination of the
Blade Element Theory and the Momentum The-
ory [3]. Beside its simplicity, BEM is derived from
stationary conditions while wind turbines operate
at a very unsteady environment. A more sophisti-
cated but still computationally efficient approach to
account for the complex flow phenomena on wind
turbine rotors can be found in the lifting-line (LL)
theory [4]. This method offers several advantages
over BEM, such as a more accurate relationship be-
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tween the induction velocities and the radial circula-
tion distribution. On the other hand, it relies on the
unrealistic assumption of having a rigid wake, lim-
iting its accuracy when compared to experimental
data [5]. A more powerful tool is found in compu-
tational fluid dynamics (CFD), which yields a more
consistent and physically realistic flow field around
a wind turbine than BEM and LL (see for exam-
ple [6, 7, 8]). The main CFD approach utilised by
the wind industry relies on the Reynolds Averaged
Navier-Stokes (RANS) equations, which are a time-
averaged version of the exact Navier-Stokes equa-
tions. Finally, another alternative is represented by
Boundary Element Methods, also known as Panel
methods, which have been developed for decades to
perform calculation of incompressible potential flow
of propellers and lifting-bodies.

The purpose of this work is the aerodynamic
study under steady and unsteady inflow conditions
of a wind turbine designed for the New MEX-
ICO experiment using the three-dimensional panel
method developed at Instituto Superior Técnico
(IST), PROPAN [9]. The results obtained by
PROPAN are compared with the New MEXICO
data under steady and dynamic inflow conditions
at specific wind and rotational speeds, in order to
assess the current potentiality of the panel method
in terms of steady and dynamic load forecasts and
lay the foundations for further improvements and
developments.

2. Mathematical formulation
2.1. Potential flow problem
Let us consider the rotor of a horizontal axis wind
turbine with radius R and K blades symmetrically
placed around the rotational axis, rotating with
constant angular velocity Ω in an incompressible
fluid extending to infinity in all directions. We
introduce an inertial earth-fixed Cartesian coordi-
nate system (x0, y0, z0) and a Cartesian coordinate
system (x, y, z) rotating with the turbine rotor, as
shown in Figure 1. The x and x0 axes coincide

Figure 1: Coordinate system of the turbine.

with the turbine rotation axis, y0 and z0 are at the
turbine plane, with y0 pointing upwards. The y

axis is coincident with the turbine reference line,
passing through the reference point at the root sec-
tion of the k = 1 blade, which represents the key
blade, and z completes the right-hand system. It
is worth adding the cylindrical coordinate systems
(x0, r0, θ0) and (x, r, θ), with

y0 = r0 cos θ0, z0 = r0 sin θ0, y = r cos θ, z = r sin θ
(1)

The relation between the two coordinate systems
for a rotating right-handed rotor is

x0 = x, r0 = r, θ0 = θ − Ωt (2)

where Ω = |~Ω| and t is the time variable. The key
blade reference line coincides with the y0 axis at
t = 0.

In the Cartesian reference system (x0, y0, z0) the
inflow is assumed to be steady, with the velocity
~U(x0, y0, z0), while in the reference frame rotating
with the turbine, the relative velocity field is time
dependent and defined as

~V∞(x, r, θ, t) = ~U(x, r, θ − Ωt)− ~Ω× ~x (3)

with ~x = (x, y, z).
The fluid flow is assumed to be inviscid and in-

compressible. The flow field velocity ~V (x, y, z, t)
can be described as

~V (x, y, z, t) = ~V∞(x, y, z, t) +∇φ(x, y, z, t) (4)

where ∇φ(x, y, z, t) represents the gradient of
a scalar perturbation potential equivalent to
the irrotational velocity perturbation ~v(x, y, z, t).
The potential satisfies the Laplace equation
∇2φ(x, y, z, t) = 0.

The boundary of domain can be divided into two
surfaces SB and SH, representing the blade and hub,
respectively. The perturbation potential needs to
satisfy the following boundary conditions:

∇φ→ 0, if r →∞ and x 6= +∞ (5)

and a Neumann boundary condition

∂φ

∂n
≡ ~n · ∇φ = −~n · ~V∞ on SB and SH (6)

where ∂/∂n denotes differentiation along the nor-
mal and ~n is the unit vector normal to the surface
directed outward from the surfaces.

When considering circulation around the blades,
vortex sheets are shed from the trailing edge of each
blade. There are two boundary conditions applying
on the wake surface SW : the normal component
of the fluid velocity is continuous and equal to the
normal velocity of the sheet

~Vw · ~n = ~V + · ~n = ~V − · ~n on SW , (7)
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and the pressure is continuous across the vortex
wake

p+ = p− on SW , (8)

where ~V is the fluid velocity, ~Vw the velocity of the
points on the wake surface SW , p is the static pres-
sure and the indices + and − denote the the upper
side and lower side of the vortex sheet. The unit
vector normal to the vortex sheet is defined pointing
from the lower − to the upper + side of the sheet.
In order to define uniquely the circulation around
the blade, the following Kutta condition must be
imposed at the blade trailing edge

|∇φ| <∞ (9)

2.2. Integral equation of a potential flow
Let us assume φ̄ = 0 for the interior region to SB
and SH, with φ̄ denoting the potential in the inte-
rior region to S = SB ∪ SH. Applying Green’s sec-
ond identity, the perturbation potential at a point
p on the body surface can be expressed as

2πφ (p, t)−
∫∫
SB∪SH

[
G (p, q)

∂φ

∂nq
− φ (q, t)

∂G

∂nq

]
dS =

∫∫
SW

∆φ (q, t)
∂G

∂nq
dS

(10)

where G(p, q) = −1/R(p, q), with R(p, q) being the
distance between the field point p and the point q
on the boundary S. Since ∂φ/∂nQ on the surfaces
SB and SH is known from the Neumann boundary
condition on the body surface (Equation (6)), the
Equation (10) is a Fredholm integral equation of
the second kind in the dipole distribution µ(q, t) =
−φ(q, t) on the surfaces SB and SH. The Kutta
condition, Equation (9), yields the additional rela-
tionship between the dipole strength in the ∆φ (q, t)
wake and the surface dipole strength at the blade
trailing edge.

2.3. Wake boundary conditions
The two boundary conditions on the wake are ex-
pressed by Equation (7) and Equation (8). The
former implies that the vortex sheet moves with the
fluid. If Sw(~x, t) denotes the equation of the vortex
sheet surface SW , then

∂Sw
∂t

+ ~V + · ∇Sw =
∂Sw
∂t

+ ~V − · ∇Sw = 0 (11)

Outside of the vortex sheet the Bernoulli equation
for incompressible potential flow is

∂φ

∂t
+
p

ρ
+

1

2
|~V |2 =

p∞
ρ

+
1

2
|~V∞|2 (12)

where p∞ is the pressure of the undisturbed inflow
and ρ the fluid density. Applying consecutively the

Bernoulli equation at a given point on each side of
the vortex sheet and subtracting:

∆p

ρ
= −∂(∆φ)

∂t
− 1

2

(∣∣∣~V +
∣∣∣2 − ∣∣∣~V −∣∣∣2) (13)

where ∆p = p+ − p− and ∆φ = φ+ − φ− are the
pressure and potential jumps across the sheet, re-
spectively. From the boundary condition, Equation
(8), the pressure-jump is zero, thus

∂(∆φ)

∂t
= −1

2

(∣∣∣~V +
∣∣∣2 − ∣∣∣~V −∣∣∣2) (14)

and knowing that∣∣∣~V +
∣∣∣2 − ∣∣∣~V −∣∣∣2 =

(
~V + + ~V −

)
·
(
~V + − ~V −

)
, (15)

it is possible to simplify Equation (12) as

∂(∆φ)

∂t
+ ~Vm ·∆~V = 0 (16)

where ~Vm = 1
2 (~V + + ~V −) denotes the mean velocity

and ∆~V = ~V +− ~V − represents the velocity discon-
tinuity on the wake surface. Using Equation (7), the
velocity discontinuity may be written as the surface
gradient of the potential discontinuity,

∂(∆φ)

∂t
+ ~Vm · ∇S(∆φ) = 0 (17)

where ∇S = −~n× (~n×∇) denotes the surface gra-
dient. Equation (17) shows that the potential-jump
remains constant following a fluid particle moving
on the wake with the velocity ~Vm.

In the general case, the instantaneous location
of the wake has to be derived from Equation (11)
and the dipole strength from Equation (17), which
requires following the motion of the vortex sheet SW
in the unsteady flow velocity field. In this work a
considerable simplification is introduced assuming a
constant Vm equal to the undisturbed time averaged
axisymmetric inflow. In the cylindrical coordinate
system (x, r, θ),

~Vm =
(
Ū(r), 0,Ωr

)
(18)

where Ū(r) is the zero harmonic of the axial inflow
at the given radius, and Equation (17) becomes

∂(∆φ)

∂t
+ Ω

∂(∆φ)

∂θ
= 0 (19)

The solution of Equation (19) is of the form
∆φ(r, θ, t) = ∆φ(r, t∗) with t∗ = t∗(θ, t) being
a characteristic convection time. If we consider
θ = θte at t = 0, where te stands for ”trailing edge”,
we obtain

∆φ(r, θ, t) = ∆φ

(
r, t− θ − θte

Ω

)
(20)
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Only the tangential induced velocity is neglected in
the convection of vortices. The initial condition in
the wake is

∆φ(r, θ, 0) = ∆φte (r, 0) = −Γ (r, 0) (21)

with Γ being the flow circulation for a circuit around
the blade intersecting the wake at the blade trailing
edge.

It is necessary to clarify that Equation (18) im-
plies that the wake is aligned to the mean flow ve-
locity field, which is not the actual case of this work
where an empirical rigid wake is considered. How-
ever, Equation (19) is still used to compute the wake
dipole strength.

2.4. Calculation of Velocity, Pressure and Forces
From the potential solution on the surface the co-
variant surface velocity components are calculated
by means of a second order differentiation scheme
of the potential relative to the arc lengths on the
body surface grid. The pressure on the surface is
obtained from the Bernoulli Equation (12). The
pressure coefficient can be defined as

Cp =
p− p∞
1/2ρV 2

∞
, (22)

with V∞ = |~V∞|. The components of the inviscid
force acting on the blades are obtained by integra-
tion of the pressure distribution on the blade sur-
face.

3. Panel method
3.1. Integral equation discretisation
The numerical solution of the integral equation (10)
is obtained using a low-order panel method in the
time domain at the time steps n = t/∆t, where
∆t is the constant time step. The body surfaces
SB ∪ SH and the wake surface SW are discretised in
quadrilateral panels having a hyperboloidal-shaped
surface. The integrals over SB and SH are approx-
imated by the summation of the integrals on the
panels discretising the surfaces, assuming a con-
stant strength of the dipole and source distributions
on each panel. On the wake surface SW piecewise
linear or constant dipole distributions are assumed,
depending on the specific location of the panel.

Let µkj (n) = −φkj (n) be the values at time step n

of the dipole strength of the panel Skj on the surface

of the kth blade-hub sector, with k = 1, . . . ,K, j =
1, . . . , N , and N being the number of panels on each
blade-hub sector; let µkml(n) = −∆φkml(n) be the
values at time step n of the dipole strengths of the
boundary between the panel Skm,l−1 and the panel

Skml of the kth wake sector, with m = 1, . . . , NR,
l = 1, . . . , NW , NR being the number of panels
along the spanwise direction and NW the number of
panels along the streamwise direction of the wake;

let σkj (n) be the source strength of the panel Skj on

the surface of the kth blade-hub sector. If, at each
time step n, Equation (10) is satisfied on the centre
points Pi, i = 1, . . . , NP of the NP = N ×K pan-
els on the surface of the K blade-hub sectors, the
so-called collocation points, it is possible to obtain
a system of algebraic equations in the form

K∑
k=1

N∑
j=1

(
δij −Dk

ij

)
φkj (n)−

K∑
k=1

NR∑
m=1

NW∑
l=1

W k
iml∆φ

k
ml(n)

=

K∑
k=1

N∑
j=1

Skijσ
k
j (n), i = 1, . . . , NP ,

(23)

in which δij is the Kronecker delta, Dk
ij and Skij are

the influence coefficients and W k
iml is a wake influ-

ence coefficient which may be written as a linear
combination of elementary integrals of the dipole
type. This coefficients are calculated analytically
following the formulation of Morino and Kuo [10].
The source strength σkk(n) is determined from the
boundary condition, Equation (6), as

σkk(n) = −~nkj · ~V∞(rkj , θ
k
j , n∆t) (24)

with ~nkj denotes the unit vector at the control point

(xkj , r
k
j , θ

k
j ) of the kth blade. In order to reduce the

dimension of the system of equations, the boundary
condition is only applied at the key blade k = 1,
therefore the contributions of the other blades are
assumed to be known when solving for the key
blade.

In the general case of a non-uniform axial inflow
field, the solution in the rotating frame is periodic in
time with a period, in general, equal to the time of a
turbine revolution. We introduce the angular time
step ∆θ = Ω∆t. The total number of time steps is
Nt = Nrev ×Nθ, where Nrev is the number of revo-
lutions for the time integration and Nθ = 2π/∆θ is
the total number of angular steps per revolution.

3.2. Calculation of Forces

The axial force T and the torque Q on the rotor are
obtained by integration of the pressure distribution
on the blade surfaces. Let (nx, ny, nz) be the Carte-
sian components of the outward unit normal ~n. The
Thrust T can be expressed as

T =

∫∫
SB

pnxdS, (25)

and the Torque Q as

Q =

∫∫
SB

p (nyz − nzy) dS. (26)
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3.3. Wake models
In this thesis two wake models are utilised, a rigid
wake and an aligned wake. The former is charac-
terised by a fixed geometry where the vortex lines
are empirically prescribed, while the latter com-
prehends an iterative alignment based on the pitch
modification on the wake vortices. For both models,
the contraction or expansion of the wake geometry
is not allowed.

In the rigid model the wake generation is based
upon empirical knowledge which allows to spec-
ify the geometry of the wake surface. The dipole
strength at the wake surface can be related to the
potential discontinuity at the blade trailing edge by
the application of the so-called Morino Kutta con-
dition [10], written in the form

∆φ = φ+ − φ−, (27)

in which φ+ and φ− are the values of the potentials
at the trailing edge, respectively on the upper and
lower sides of the blade.

In the wake alignment model the corner points
of the blade wake grid panels are displaced with
the mean fluid velocity. At the (h + 1)th iteration,
the geometry in cylindrical coordinates of the wake
strip i + 1 can be determined by using an Euler
scheme [11]:

x
(h+1)
i+1 = x

(h)
i + Vx

(
x

(h)
i , r

(h)
i , θ

(h)
i

)
∆t,

r
(h+1)
i+1 = r

(h)
i + Vr

(
x

(h)
i , r

(h)
i , θ

(h)
i

)
∆t,

θ
(h+1)
i+1 = θ

(h)
i +

Vθ

(
x

(h)
i , r

(h)
i , θ

(h)
i

)
∆t

r
(h)
i

,

(28)

where Vx, Vr and Vθ are the components of the
mean vortex sheet velocity along the axial, radial,
and circumferential directions, respectively, and ∆t
is the time step for the Euler vortex convection
scheme. The velocity components are calculated
from the integral equation of the velocity, derived
from Equation (23).

3.4. Viscous effects
In order to consider the viscous effects, it is possi-
ble to apply quasi-steady corrections to the invis-
cid axial force and power calculated with the panel
method [12]. Figure 2 shows the velocity triangle.
The viscous forces on the turbine blades are cal-
culated using the concept of section lift and drag
force that can be derived from two-dimensional lift
and drag data. In particular, the inflow angle βi is
linked to the inviscid thrust Ti and torque Qi by
the relation

tanβi =
dQi
rdTi

(29)

and the angle of attack can be derived as α = βi−ψ,
where ψ is the pitch angle. The angle of attack is

Figure 2: Blade velocity triangle [13].

key to extract experimental data of the lift and drag
coefficient, CL and CD respectively.

The viscous thrust Tv and torque Qv are then
expressed as

dTv = (Lv cosβi +D sinβi)dr, (30)

dQv = (Lv sinβi −D cosβi)dr (31)

where the viscous lift Lv is given as

Lv = Li
CLv

CLi

(32)

and the drag D as

D =
1

2
ρCDV

2c (33)

In Equation (33), the velocity V can be calculated
by the Kutta-Joukowski law in steady flow:

Li = ρV Γ (34)

In this work, the correction on the lift force
(Equation (32)) is neglected for simplicity, thus the
viscous thrust and torque (Equation (30) and (31))
become

dTv = (Li cosβi +D sinβi)dr, (35)

dQv = (Li sinβi −D cosβi)dr (36)

4. Results
4.1. Steady inflow
A detailed numerical study has been performed
with wind velocities of 10.05 m/s (TSR = 10)
and 15.06 m/s (TSR = 6.7) using the wake align-
ment model, in order to define the best blade, hub
and wake grids in terms of grid plot convergence,
smoothness of wake geometry (surface) and viscous
CP and CT . The parameters subject to this study
are wake length (xW ), radial (NR) and chordwise
(NC) number of panels along the blade, upstream
(Nhu) and downstream (Nhd) number of panels on
the hub. More in detail, the tests are performed
with xW = [4R, 6R, 8R, 10R, 12R, 14R], NR =
[30, 40, 50, 60, 70, 80], NC = [60, 70, 80, 90, 100],
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Nhu = [30, 35, 40] and Nhd = [45, 55, 65]. To evalu-
ate the convergence of the results, three quantities
have been analysed: the pressure distributions at
25%, 35%, 60%, 82% and 92% radial positions, the
dimensionless circulation ( Γ

ΩR2 ), the viscous power
and thrust coefficients CP and CT .

The optimal parameters resulted from this study
are shown in Table 1.

xW NR NC Nhu Nhd

TSR = 6.7 12R 80 80 30 45

TSR = 10 12R 80 90 30 45

Table 1: Numerical optimal grid parameters at
TSR = 6.7 and TSR = 10.

The calculated (Sim) and measured (Exp) pres-
sure profiles at TSR = 6.7 and TSR = 10 for some
radial positions are presented in Figure 3 and Fig-
ure 4, respectively. Clearly, the simulated pressure

(a) r/R = 25%

(b) r/R = 92%

Figure 3: Numerical pressure coefficient comparison
with experimental results at TSR = 6.7.

distribution matches outstandingly the experimen-
tal measurements at r/R = 92%. Indeed, the only
visible discrepancies are a greater suction peak pres-
sure at the leading edge (at TSR = 6.7) and a slight

underestimation along the pressure side of the blade
sections (at TSR = 10). On the other hand, the
same precision is not found for the remaining radial
positions.

(a) r/R = 25%

(b) r/R = 92%

Figure 4: Numerical pressure coefficient comparison
with experimental results at TSR = 10.

The largest mismatch can be seen for the pres-
sure profiles at r/R = 25%. For both TSRs the
predicted pressure is smaller on the suction and
pressure sides along the central region of the blade
section. One possible reason is that the blade wake
is truncated and does not connect with the hub sur-
face. Therefore, in the cylindrical part, no vorticity
is shed from the trailing edge. Overall, it is worth
noting that for r/R = 25% the experimental data
do not have reasonable values for some chordwise lo-
cations, especially where the pressure coefficient is
greater than 1, meaning that some sensors recorded
wrong measurements (e.g at x/c = 0.8). Finally,
the pressure distributions obtained with PROPAN
are qualitatively coherent with the ones outputted
by the CFD codes participating in the New MEX-
ICO project. Indeed, as concluded in the final New
MEXICO report [14] the experimental resolution of
the pressure sensors is insufficient, especially at the
lower inflow speeds, resulting in non-smooth mea-
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sured pressure plots.
Table 2 and Table 3 show the comparison of the

power and thrust coefficients between the simulated
results and the experimental data. A very small rel-
ative difference is recorded for the power coefficient
(∆CP ) - less than 1% - for both TSRs, while the
estimate of CT is far less precise. Indeed, although
a reasonably small ∆CT at TSR = 10, the thrust
on the blades is overestimated by more than 9% at
TSR = 6.7. The main probable cause of this be-
haviour lies in the underestimation of the pressure
levels at the suction side of the inner parts of the
blades, as described in the previous section, which
leads to higher load predictions. More in detail, this
trend is more pronounced on the pressure profiles
at TSR = 6.7, which justifies the lower precision
for this case.

CP CT |∆CP |[%] |∆CT |[%]

Exp 0.4358 0.7742 - -

Sim 0.4397 0.8458 0.9061 9.243

Table 2: Power and thrust coefficients compari-
son between simulated and experimental results at
TSR = 6.7.

CP CT |∆CP |[%] |∆CT |[%]

Exp 0.3153 1.019 - -

Sim 0.3166 1.041 0.4131 2.234

Table 3: Power and thrust coefficients compari-
son between simulated and experimental results at
TSR = 10.

4.2. Dynamic inflow
The study of the dynamic inflow conditions focusses
on a specific New MEXICO experimental set-up.
This is because wind velocity, rotational speed and
consequently TSR are almost identical to the axial
flow steady case with TSR = 10, allowing to utilise
the best grid geometry yielded by the steady inflow
numerical study. More specifically, the dynamic be-
haviour of the wind inflow is caused by a variation
of the blade pitch angle, which changes from −2.3◦

to 5.0◦ and eventually back to −2.3◦, thus it is pos-
sible to define three different stages throughout the
duration of the experiment, which is about 15 sec-
onds. In Figure 5 the experimental trend of the
blade pitch angle ψ is illustrated as an example to
visualise the distinction of the three stages. The
first stage is coincident with the axial flow steady
case, thus the results achieved from the optimal nu-
merical grid of the steady flow numerical tests are
considered constant for the whole timespan of this
stage. For the second and third stage, two different
geometries have been defined based on the aligned

Figure 5: Stages definition - the different stages are
separated by the dashed vertical lines.

wake model and the rigid wake model outlined pre-
viously (with the rigid wake model being used for
the unsteady calculations). The first method, ar-
bitrarily denominated IAW (Independent Aligned
Wake), consists of performing three steps:

1. Create a simple wake geometry modifying the
pitch distribution at the blade trailing edge ac-
cordingly to the stage pitch variation,

2. Run a steady simulation activating the wake
alignment model for each stage of the dynamic
inflow test,

3. Utilise the aligned wake outputted from the
simulation as the rigid wake input geometry
for the dynamic simulation.

The strength of this approach is to obtain an aligned
wake geometry consistent to the pitch variation,
while its weakness is to provoke an abrupt tran-
sition between the stages. Indeed, the perturbation
caused by the pitch modification does not propa-
gate with the same velocity over the wake, meaning
that the wake needs more time to adjust to the new
blade pitch configuration. Eventually, two distinct
aligned wake geometries have been created with this
method, one with respect to a blade pitch equal
to −2.3◦ (for Stage 1 and 3) and the other one to
ψ = 5.0◦ (for Stage 2).

The second method, denominated EAW (Em-
pirical Aligned Wake), rely on the wake geometry
utilised for Stage 1, therefore aligned to the incom-
ing wind flow with ψ = −2.3◦. It comprehends the
following actions:

1. Extract the wake radial pitch distributions at
some determined axial (streamwise) positions
from the previous stage,

2. Create a rigid wake geometry modifying the
pitch distribution at the blade trailing edge ac-
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cordingly to the stage pitch variation and spec-
ifying the quantities highlighted in point 1.

In this case the wake geometry is highly dependent
on the flow conditions occurring before the pitch
variation, since the wake is forced to be consistent
to the previous one except at the trailing edge. This
might help to better predict the behaviour in the
transition periods but lacks of accuracy due to the
non-alignment of the wake in relation to the local
flow. For every stage, the axial positions (in dimen-
sionless form) selected to extract the wake proper-
ties are x/R = [0.05, 0.10, 0.25, 0.50, 1.0].

The inviscid normal and tangential force coeffi-
cients Cn = Fn

1/2ρV 2
∞c and Ct = Ft

1/2ρV 2
∞c obtained

from the simulations are compared to the experi-
mental ones, Figure 6 and Figure 7. It is worth
mentioning that due to the large recorded oscilla-
tions, the measured data has been denoised through
the application of a moving average function.

Starting from analysing Stage 1 (in which the nu-
merical steady-flow wake geometry is used), a good
prediction of the results is calculated only for the Cn
at r/R = 92%. For the remaining blade sections,
the simulated Cn and Ct are consistently different
from the experimental data, especially towards the
blade root.

When the pitch is varied to the Stage 2 configura-
tion, the experiments show a clear undershoot in the
forces, which presents some oscillations leading to a
”double” negative peak. The same observation can
be drawn from the transient phase between Stage
2 and Stage 3: there is a distinct overshoot with
two positive peaks before stabilising to the equilib-
rium. This phenomenon do not happen in reality,
therefore it is believed to be due to a fault in the
pressure sensors, which might be affected by the
tower vibrations.

In Stage 2, the overall trends of the simulated
force coefficients are qualitatively consistent to the
experimental measurements, even though large dis-
crepancies occur in the transient time frame, where
unexpected peaks are seen. In particular, the trend
of the simulated normal force coefficients is simi-
lar to the experimental one, except for the radial
positions closer to the blade root where the EAW
method largely underestimates the forces at the
equilibrium. The IAW geometry yields the best
outcomes in terms of agreement with the experi-
mental results for every radial position but r/R =
60%, where the normal forces are slightly overesti-
mated.

The opposite tendency is observed for the tangen-
tial force coefficients: the EAW results are always
closer to the experimental data than the IAW ones.

Regarding Stage 3, clearly the predicted over-
shoot is extremely overestimated for both Cn and

(a) r/R = 25%

(b) r/R = 60%

(c) r/R = 92%

Figure 6: All stages normal forces coefficient com-
parison between experimental, IAW and EAW re-
sults for different radial positions.

Ct. The results obtained for the normal force coeffi-
cients suggest that, compared to Stage 2 where the
IAW geometry is the most accurate for every radial
position but one, the EAW method predicts Cn at
r/R = 25% with great precision and differs from the
experimental data with the same magnitude of the
EAW method at r/R = 60%. For the remaining
radial positions, the IAW geometry yields the best
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(a) r/R = 25%

(b) r/R = 60%

(c) r/R = 92%

Figure 7: All stages tangential forces coefficient
comparison between experimental, IAW and EAW
results for different radial positions.

outcomes, especially at r/R = 92%. On the other
hand, the EAW estimates are more precise for the
tangential forces, performing better than the IAW
geometry for three radial positions. In addition, it
can be seen that the EAW steady results are dif-
ferent from the Stage 1 results, indicating that the
initial and final wake geometries are not coincident.

Finally, the following main considerations can be

outlined:

• On the whole, the panel method predictions are
in reasonable agreement with the experimental
measurements, particularly when reaching the
steady solution, making the panel method a
reliable tool.

• From the comparison of the normal and tan-
gential forces along the blades, no specific wake
method is clearly the optimal one. The IAW
geometry has a greater accuracy than the EAW
one on the normal forces coefficient, while the
opposite trend is observed for the tangential
forces. However the EAW geometry is more
unstable in terms of numerical oscillations.

• Compared to the steady calculations, the time
required for running the dynamic simulations
(utilising one CPU) is considerably larger. For
instance, the computational time of the results
obtained for Stage 2 is around 140 hours, equal
to about 6 days, on a Xeon processor at 2.6GHz
with 125GB of RAM. If one takes into account
the duration of all the stages, then an aver-
age of 3.5 hours per rotor revolution can be
assessed.

• The main discrepancies between the simulated
and experimental results are seen in the tran-
sient time frames, especially in the one between
the second and third stage.

5. Conclusions

A thorough numerical study under steady inflow
conditions has been described, aiming at assess-
ing the best wake geometry and grid configura-
tion for two undisturbed wind velocities, 10.05 m/s
(TSR = 10) and 15.06 m/s (TSR = 6.7). A
wake alignment model was used for all the tests.
Convergence of the numerical results is achieved
with a longer wake length and greater grid refine-
ment along the radial and chordwise direction of the
blade, while no relevant differences are observed for
the hub. When comparing the simulated results
with the experimental data, a good agreement is
generally found. The predictions of the pressure
distribution are extremely accurate for the sections
closer to the blade tip, while small discrepancies are
seen towards the root. Power coefficients also match
precisely the experimental data for both TSRs, hav-
ing a relative error of less than 1%. However, the
same accuracy can not be reached for the thrust
coefficients, with the largest relative error (about
10%) happening at TSR = 6.7.

When passing to the dynamic simulations, the
numerical optimal grid obtained at TSR = 10 was
utilised, since only one dynamic case from the New
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MEXICO measurements was considered for valida-
tion purposes. The dynamic variation of the blade
pitch angle ψ has been simulated through the defi-
nition of three different stages, assuming an instan-
taneous behaviour. The first stage represents the
steady inflow condition studied in the numerical
tests. For the second and third stage, two differ-
ent methods to create the wake geometry were ap-
plied, with the main difference of yielding a wake
geometry partially or fully aligned to the incoming
wind flow. The experimental normal and tangential
forces experienced on blade at five specific sections
were compared to the simulated results. Overall,
the trends of the forces predicted with both wake
geometries are comparable to the experimental ones
when achieving the periodic solution. However, the
main limitation of PROPAN lies in the inaccurate
estimation of the force undershoot and overshoot
occurring in the first instances of Stage 2 and 3, re-
spectively. Additionally, high-frequency numerical
oscillations are witnessed, suggesting that further
analyses on the geometry and grid quality of the
turbine model must be done.
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