
Ambix: Rethinking Linux’s Page Management to Support
the new Intel Optane DC Persistent Memory

Miguel Soares Marques

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. João Pedro Faria Mendonça Barreto

Prof. Rodrigo Seromenho Miragaia Rodrigues

Examination Committee

Chairperson: Prof. Manuel Fernando Cabido Peres Lopes

Supervisor: Prof. João Pedro Faria Mendonça Barreto

Member of the Committee: Prof. Paolo Romano

June 2021

ii

Acknowledgments

First and foremost, I would like to express my deep gratitude to my thesis supervisors, professors João

Barreto and Rodrigo Rodrigues, and to professor José Carlos Monteiro, who provided invaluable guid-

ance and advice throughout my dissertation. To my family, who has always provided and supported me

throughout my academic journey. To my friends, who motivated me to continue and improve not only at

an academic but also at a personal level.

To each and every one of you – May this thesis make you proud – Thank you.

iii

iv

Abstract

Intel OptaneTM DC persistent memory module (DCPMM) is an emergent non-volatile memory (NVM)

technology that is promising due to its byte-addressability, high density, and similar performance to

DRAM.

Prior literature explores a new architectural paradigm, coined hybrid memory architecture (HMA),

which results of the configuration of NVM as a memory tier between DRAM and storage. HMAs have

the potential to improve applications by enabling them to place a larger working set in fast memory, and

thus reduce the need of evicting data to slow block-based storage. HMAs also mitigate the well-known

memory scalability problem, common in a plethora of large servers and supercomputers. These systems

cannot deploy more physical memory due to size, energy or cost limitations, all of which are alleviated

by NVM integration.

However, most NVM research explores its non-volatility as an enabler to faster data persistence,

neglecting the scalability benefit offered by NVM integration, in the HMA scenario. Conversely, existing

NVM research in the data placement field precedes the commercial availability of NVM, testing HMAs in

often-inaccurate simulation-based environments, inferring NVM’s performance from outdated technolo-

gies.

Our thesis proposes Ambix, the first published solution tested on a real system running DCPMM,

which decides page placement dynamically in a Linux system. We extensively discuss how different

memory policies and distributions affect throughput and energy consumption in a DRAM-DCPMM sys-

tem, leveraging the conclusions to guide Ambix ’s design. We show that Ambix has an up to 10x speedup

in HPC-dedicated benchmarks, compared to the default memory policy in Linux.

Keywords: Hybrid Memory Architecture, Persistent Memory, Intel Optane, Dynamic Placement.

v

Resumo

O módulo de memória persistente Intel Optane DC (DCPMM) é uma tecnologia NVM emergente que

é promissora devido à sua capacidade de ser endereçável ao byte, alta densidade, e desempenho

semelhante ao da DRAM.

Trabalhos nesta área exploram uma arquitetura de memória híbrida (HMA), que introduz a NVM

como uma camada de memória entre a DRAM e o armazenamento. Esta arquitetura tem o potencial de

melhorar o desempenho de aplicações, permitindo que seja colocado um maior número de dados em

memória, reduzindo assim a necessidade de despejar dados para o armazenamento. As HMAs também

atenuam o problema de escalabilidade da memória, comum em servidores e supercomputadores atuais.

Contudo, a maioria das publicações sobre NVM exploram o seu aspeto não volátil como um meio de

persistir dados mais rapidamente, não tendo em conta o benefício de escalabilidade que a integração

da NVM mostra oferecer, no cenário da arquitetura híbrida. Por outro lado, trabalhos na área de colo-

cação de dados precedem a comercialização da NVM, testando HMAs em ambientes de simulação

imprecisos, inferindo o desempenho da NVM com base em tecnologias desatualizadas.

Nesta dissertação propomos o Ambix, que será a primeira solução de placement dinâmico testada

num sistema real configurado com DCPMM. Discutimos extensivamente como diferentes políticas e

distribuições de memória afetam tanto o throughput como o consumo energético num sistema DRAM-

DCPMM, usando as conclusões na implementação do Ambix. Mostramos que o Ambix tem um speedup

de até 10x em benchmarks HPC, comparado com a política de memória default do Linux.

Palavras-chave: Arquitetura de Memória Híbrida, Memória Persistente, Intel Optane, Place-

ment Dinâmico.

vi

Contents

Acknowledgments . iii

Abstract . v

Resumo . vi

List of Tables . ix

List of Figures . ix

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Thesis Outline . 4

2 Background 5

2.1 Memory Management . 6

2.1.1 Locality of Reference Principles . 7

2.1.2 Memory Management Unit . 7

2.1.3 Page Replacement Algorithms . 10

2.1.4 Virtual Memory Management in Linux . 13

2.2 NUMA-Aware Mechanisms . 14

2.2.1 NUMA Architecture . 15

2.2.2 From Latency-centric to Contention-aware Data placement in NUMA 17

2.2.3 Linux NUMA Subsystem . 17

2.2.4 Contention-Aware Approaches . 20

2.3 Data Placement in HMAs . 22

2.3.1 Static Placement . 23

2.3.2 Dynamic Placement . 25

2.3.3 NUMA-Aware Solutions Compatibility . 30

2.3.4 Placement in DRAM-NVM Architectures . 30

3 Tailoring Placement to a DRAM-DCPMM Architecture 37

3.1 DCPMM Internals and Configuration . 37

3.2 Placement Guidelines for DRAM-DCPMM . 39

3.2.1 Experimental Methodology . 39

vii

3.2.2 Small Working Set Study – Balancing Approach 40

3.2.3 Large Working Set Study – Placement Policy . 43

3.2.4 Insights . 45

3.3 Discussion of Related Proposals . 46

4 Ambix 49

4.1 Goals . 49

4.2 Ambix in Theory . 50

4.3 Ambix in Practice . 52

4.3.1 Architecture . 52

4.3.2 SelMo . 53

4.3.3 Control . 58

4.4 Ambix’s Optimizations and Limitations . 61

5 Results 63

5.1 Goals . 63

5.2 Experimental Setup . 64

5.2.1 Hardware Configuration . 64

5.2.2 OS Configuration . 64

5.2.3 Ambix Configuration . 65

5.3 Experimental Baseline . 65

5.3.1 HMA-Aware Placement Solutions . 65

5.3.2 Default Configurations . 66

5.4 Workloads . 67

5.4.1 Pmbench . 67

5.4.2 GAP . 68

5.4.3 NPB . 68

5.5 Experimental Results . 69

5.5.1 Pmbench – Scalability Potential . 69

5.5.2 GAP – Sequential Pattern Performance . 73

5.5.3 NPB – Dynamic Configuration’s Performance in HPC applications 74

5.5.4 Summary . 77

6 Final Considerations 79

6.1 Conclusions . 79

6.2 Future Work . 80

Bibliography 81

viii

List of Tables

2.1 Comparison of NVM-aware related work. 34

3.1 Comparison of related work – Guideline fulfillment overview. 47

4.1 PageFind modes and goal. 54

5.1 NPB’s BT, FT, MG, and CG memory requirements. 69

5.2 NPB DRAM Hit Rate comparison. 74

ix

List of Figures

2.1 Linux’s page table layout. 8

2.2 Asymmetric NUMA system . 15

2.3 NUMA traffic imbalance . 19

2.4 Single tier heterogeneous memory architecture. 29

3.1 ADM and MemM DCPMM architectures within a socket. 38

3.2 IWB read-only throughput . 41

3.3 IWB write-only throughput . 41

3.4 IWB read-only energy . 41

3.5 IWB write-only energy . 42

3.6 PB plot. 2R1W, 32 threads . 44

3.7 Policy page allocation at 0.75x, 1x, and 1.5x workload size. 44

4.1 Ambix page classification. 51

4.2 Ambix architecture overview. 52

5.1 Pmbench plots. 70

5.2 GAP BFS plots . 73

5.3 NPB plots . 75

x

Chapter 1

Introduction

Memory scalability is an ever more relevant concern in the era of Exascale computing. Workloads run-

ning on Exascale supercomputers will most likely be characterized by a high degree of data complexity

and parallelism, as well as a growing demand for increased memory capacity [1, 2]. Dynamic random

access memory (DRAM) is the current de facto standard in a system’s memory and an integral part of

the current architecture. However, when considering scaling up the amount of DRAM in supercomput-

ers or large servers, multiple problems arise, from power limitations and cooling, to area constraints and

cost [3].

Non-volatile memory (NVM1) is an emerging class of memory that is able to mitigate these issues

[4]. It is byte-addressable, performs similarly to DRAM, and keeps its data on the event of a power loss,

akin to persistent disk or drive-based storage. Compared to DRAM, NVM does not require power to

refresh data periodically, therefore having a lower static energy consumption, is denser, and has a lower

cost per GB. These three advantages mitigate the three main problems of memory scalability: energy

use, area constraints and budget limitations, respectively. However, NVM has undesirable character-

istics: while latest NVM technologies perform only slightly worse compared to DRAM in read latency,

write latencies are at best ∼10x slower, under idle conditions; secondly, writes to NVM consume more

energy, counteracting its static energy advantages in write-intensive workloads; thirdly, NVM bandwidth

is inferior, which limits the amount of concurrent accesses to it; and lastly, while DRAM endurance could

be considered infinite, NVM can only endure a limited number of writes before failing.

Multiple NVM technologies were developed, varying in density, cost and performance [5]. Most no-

tably, phase-change memory (PCM) [6–10], spin-transfer torque RAM (STT-RAM) [11–13], ferroelectric

field-effect transistor (FeFET) [14, 15] and resistive random-access memory (RRAM) [16] have all been

previously studied as possible candidates for replacing or complementing DRAM.

Intel recently made commercially available a byte-addressable NVM named Intel’s Optane Data

Center Persistent Memory Module (DCPMM), based on 3D XPoint non-volatile memory technology.

Compared to contemporary block-based non-volatile memory technologies, DCPMM significantly nar-

rows down the performance gap to volatile memory, while improving in terms of density and endurance

1NVM has been given multiple nomenclatures in previous literature: non-volatile RAM (NVRAM), persistent memory (PM) and
storage-class memory (SCM) all relate to the study of persistent memory. We will use NVM when referring to persistent memory.

1

[17, 18]. DCPMMs are up to 4x denser than DRAM, ranging from 128 to 512GB, and are compatible

with DDR4 DIMM slots. Its price per GB is estimated to be significantly cheaper than that of current

gen DRAM, making it a viable option for replacing costly DRAM sticks with higher density non-volatile

ones. For the above reasons, the Aurora system, currently projected to be one of the first Exascale su-

percomputers in the US, will include both DRAM and DCPMM in order to overcome the aforementioned

memory scalability challenges at Exascale-level [19].

1.1 Motivation

When DCPMM is configured to extend main memory, applications are able to run larger data sets without

needing to swap or evict data to storage due to main memory limitations. However, due to its latency

and bandwidth limitations [18], allocating data to the appropriate memory tier is most relevant, as placing

intensive and especially write-intensive data in it can severely hinder an application’s performance.

DCPMM provides a novel mode of operation that configures DRAM as a cache, and DCPMM as the

sole memory tier. In this configuration, the most intensive data is cached in DRAM in a way seamless to

the programmer. Moreover, DCPMM also allows a more traditional configuration, where the system has

two separate memory tiers, for DRAM and DCPMM. This configuration increases total memory further,

as DRAM is directly accessible, and provides the system and user with the ability to decide where data

should be placed.

The latter configuration is known as an hybrid memory architecture (HMA)2, due to the heterogeneity

of memories in the system. Multiple solutions have been proposed in the past, which place or migrate

data to a memory tier based on its intensiveness and access pattern, taking into account the perfor-

mance differences provided in each available tier.

The commercial availability of large-scale NVM constitutes a notable opportunity to revisit previously

proposed techniques for data placement in hybrid DRAM-NVM systems and to devise new implemen-

tations that are tailored to the idiosyncrasies of the real NVM hardware. In this paper, we explore such

path to propose Ambix, a dynamic page placement for off-the-shelf Linux-based systems equipped with

DCPMM.

However, due to DCPMM’s recentness, there is no published real-world implementation of a data

placement algorithm that considers a DCPMM-equipped system. The existing studies are mostly the-

oretical or simulation-based, due to the memory’s limited availability. As far as we know, only a single

unpublished solution, which is being developed in parallel with this work, is tested on a real machine

running DCPMM [20]. We see this as an opportunity to contribute to the NVM research field, with the

first work on a data placement solution specifically designed with DCPMM’s characteristics in mind,

which leverages the increased memory scalability offered by DCPMM to improve relevant large data set

workloads, tested on a real NVM-equipped commodity system.

We may also compare HMAs to a non-uniform memory access (NUMA) architecture composed of

only DRAM. These architectures provide different access latencies depending on the memory accessed

2We use the term HMA to refer to architectures that use a multi-tiered memory configuration

2

by a CPU, similarly to how NVM provides a slower access latency when compared to DRAM. A plethora

of literature proposes data placement algorithms that consider same-memory NUMA systems. Further-

more, the current Linux kernel already has support for NUMA balancing, and can distribute a process’

pages, according to factors such as page intensiveness and memory distance to the computing node.

Nevertheless, previous NUMA-aware solutions, including Linux’s implementation, are unsuitable for

DCPMM and other NVM technologies, as they do not consider factors such as NVM’s higher write

asymmetry, lower bandwidth and active energy consumption, leading to suboptimal page distributions

in machines that are equipped with the emergent memory.

1.2 Objectives

The main goal of our work is to complement the existing Linux’s page management mechanisms with a

solution that considers an heterogeneous memory configuration, consisting of both DRAM and DCPMM.

We focus our efforts on a solution that requires minimal changes to the Linux kernel, and expands

existing page placement mechanisms in order to accommodate the integration of DCPMM. We show

that we are able to determine a performant page distribution dynamically, with low overhead.

The contributions of this thesis are summarized as follows:

• As a first contribution, we start by empirically studying some fundamental performance proper-

ties of DCPMM that are relevant to the design of dynamic page placement solutions. This allows

us to reach a set of design guidelines, from which we then build Ambix. It is worth noting that our

observations invalidate some key design choices of several previous proposals in literature.

• As a second contribution, we leverage the guidelines to design and implement a dynamic page

placement solution, Ambix, as a complement to the existing Linux page management mechanisms.

In a nutshell, Ambix considers the disparity in performance between DRAM and DCPMM, and

decides new page distributions that ultimately lead to a higher application throughput and lower

energy consumption. In order to achieve this, Ambix periodically identifies frequently modified

and referenced pages, which benefit the most from the fast, but limited, DRAM tier. As a result,

a larger portion of the workload’s accesses are fulfilled by the DRAM tier, while DCPMM serves

sporadically-read pages. We focus our efforts on a solution that requires minimal changes to the

Linux kernel, and expands existing page placement mechanisms in order to accommodate the

integration of DCPMM.

• As a third contribution, we evaluate Ambix, as well as relevant page placement alternatives, with

several benchmarks from the NAS Parallel Benchmark (NPB) [21, 22] and GAP suites [23, 24].

To the best of our knowledge, this is the most comprehensive experimental evaluation of dynamic

page placement solutions on a real system equipped with DCPMM memory. We show that Ambix

outperforms both solutions proposed in past literature and placement options that are currently

available in off-the-shelf DCPMM-equipped Linux systems, with an average speedup of 3.6x in

3

large footprint workloads, reaching a peak improvement of 10x, compared to the default memory

policy in Linux.

1.3 Thesis Outline

The remainder of this work is organized as follows:

• Chapter 2 provides an overview of Linux’s memory management subsystem, introducing key con-

cepts and data replacement algorithms proposed in the past, for single-socket, NUMA, and HMA

architectures.

• Chapter 3 describes how DCPMM is organized internally and configured, and presents a set of

guidelines derived from devised benchmarks, which define how data should be placed in DRAM-

DCPMM systems. It also discusses literature related to our work, based on the fulfillment of each

guideline.

• Chapter 4 starts by outlining the main goals attained by our proposed solution, Ambix, and then

describes its architecture and implementation.

• Chapter 5 details and discusses the evaluation of Ambix, comparing it to HMA-aware dynamic

placement solutions proposed in past literature, and placement options that are currently available

in off-the-shelf DCPMM-equipped Linux systems.

• Chapter 6 concludes the work, summarizing the main findings and discussing some directions for

future work.

4

Chapter 2

Background

As the world transitions to the era of Exascale computing, we see NVM as a technology that presents us

with an interesting proposition: "How can we capitalize on the improved scalability potential NVM offers,

while mitigating its disadvantages?".

We introduce four main architectural designs that result from the integration of NVM, and that could be

used to answer the proposition:

• Single memory tier with byte-addressable NVM, fully replacing DRAM. This configuration is seldom

implemented, as current NVM technologies cannot fully replace DRAM in practice due to their

limited endurance and higher read/write latencies.

• Single memory tier consisting of byte-addressable NVM and DRAM configured as last-level cache

(LLC). In this architecture, DRAM extends the CPU caches in order to provide faster access to a

larger set of pages, placed in the NVM. However, the DRAM cache is hardware-managed, and as

such, applications have no control over which pages reside in it at any given time.

• Single memory tier with DRAM, and NVM configured as fast block-based storage served over

either PCIe or NVMe. This architecture considers block-based NVM which, while still relevant as it

is much faster than previous storage devices, does not take advantage of the byte-addressability

NVM can offer.

• An HMA consisting of a multi-tiered memory architecture with DRAM and byte-addressable NVM

in a linear or separate address space. In this architecture, both levels can be directly accessed by

the programmer, making it the most attractive architecture for NVM-related work. As such, most

research related to our work focuses on this configuration.

Previous literature that focuses on the described DRAM-NVM HMAs is divided in two major areas.

The first area studies how systems can integrate a slower but larger level of memory for data place-

ment [20, 25–46]. This involves rethinking traditional memory management strategies to consider an

heterogeneous memory configuration [18, 47].

5

The second area leverages NVM’s non-volatility in order to implement faster durability techniques

for data objects. Literature in this area adapts traditional checkpointing algorithms and transactional

systems to consider the lower access latencies offered by NVM, when compared to storage [48, 49].

Our work is focused on the first area. We will start by describing how Linux manages memory at a

basic level in Section 2.1, and then advance to more complex NUMA- and HMA-aware data placement

algorithms in Sections 2.2 and 2.3, respectively. We provide a critical overview of previous work, high-

lighting why it is unsuitable to effectively support NVM-equipped HMAs, along with an historical evolution

of the memory management mechanisms provided by Linux, which we ultimately found to still be lacking

when considering NUMA and hybrid memory architectures, compared to the SotA in these areas.

2.1 Memory Management

In this section, we describe the memory management mechanisms implemented in current OSes. We

decide to focus on Linux, as it is the most widely-used OS for solutions related to our work. Moreover,

our algorithm is also designed with Linux’s mechanisms as its base.

Memory management is a critical part of an OS’ design. Main memory is a scarce resource, and

without memory management mechanisms processes: (i) compete for the available physical memory in

order to leverage its lower latencies, and (ii) need to be aware of where they could write in main memory,

since processes could inadvertently or maliciously write over other process’ data.

Linux divides a process’ address space in blocks, usually 4KB in size, called pages. It assigns each

process its own virtual address space, which allows processes to perceive available memory as an

exclusive, large, and contiguous structure, even though, in actuality, their data might physically reside in

different memories or in storage.

Linux implements demand paging. In demand paging, all of a process’ data is initially in storage.

When it tries to access a virtual address, the kernel tries to find the respective page in a structure, called

the page table. If it is not found, a page fault occurs, the page is placed in main memory, and the page

table is updated with the the page’s physical mapping.

Other paging mechanisms exist, such as anticipatory paging. In anticipatory paging, the OS esti-

mates which pages are likely to be referenced in the near future and places them in physical memory

before they are accessed. This technique reduces the amount of page faults at the cost of a greater

memory usage, as it might place pages in memory that are not accessed. Nevertheless, commodity

OSes default to demand paging, as it is seen as more performant in most use cases, due to its reduced

memory and computational overhead.

Since processes perceive available memory as a value much higher than the existing physical mem-

ory capacity, they can allocate more data than can physically fit in memory. As such, Linux provides a

special partition created in storage, called swap. The swap partition serves as a cache for pages recently

evicted from memory. When physical memory is depleted or near depletion, the OS selects pages that

are not currently in use and swaps them out to this partition.

Linux uses a parameter called swappinness, which defines at which rate and in which conditions the

6

kernel tries to evict pages from physical memory to swap (swapping). Higher values of swappinness

correlate to more aggressive swapping, meaning that the kernel swaps pages more eagerly. In contrast,

with a swappinness of 0, the kernel only swap pages when needed, i.e., when there is no available

space in main memory. Performing swapping eagerly is relevant due to a set of principles called locality

of reference.

2.1.1 Locality of Reference Principles

By default, the Linux kernel sets swappinness to a value higher than 0. This is done to swap out pages

eagerly, before physical memory is depleted. When a page that is in storage is accessed, the kernel

tries to place it in main memory. If physical memory does not have sufficient space, a page that the

kernel expects to not be accessed soon is reclaimed to make space for the new one. This introduces a

computational overhead compared to directly allocating the page when there is free space.

Eager swapping prevents the initial condition from happening, by evicting pages that are not ex-

pected to be accessed soon before memory is depleted, and therefore always allow new pages to find

free space in memory. Although this comes at the cost of not fully utilizing memory capacity, placing

the recently accessed page in memory is important, as processes tend to access the same memory

locations frequently over a short period of time. This principle is known as temporal locality.

Another important locality of reference principle is called spatial locality. The principle dictates that

an access to a virtual address is usually followed by accesses to addresses within its vicinity. This is

visible in many algorithms which perform common operations, such as array initialisations and iterations,

where accesses are either sequential or have a repetitive pattern.

The spatial locality principle applies in paging mechanisms, as an access to a virtual address causes

a full block of contiguous data, i.e., page, to be brought into physical memory. Moreover, anticipatory

paging mechanisms additionally bring pages within the accessed one’s vicinity, giving a greater rele-

vance to the principle.

2.1.2 Memory Management Unit

The memory management unit (MMU) is a memory controller chip, which is integrated into the CPU.

The MMU is responsible for translating virtual into physical addresses upon request by a running

thread. This is done by accessing an OS-maintained page table.

The MMU also stores and accesses an associative cache, known as the translation lookaside buffer

(TLB). The TLB improves translation overhead by storing the page table entries (PTEs) of recently

referenced pages.

Translation Lookaside Buffer

Before accessing the page table, the MMU tries to find a requested virtual address’ respective PTE in

the TLB. If the MMU is able to find the PTE, a TLB hit occurs, and the corresponding physical address

7

is sent back. Otherwise, a TLB miss occurs, which causes the MMU to iterate over the page table, and

add the found entry to the TLB.

Iterating over a page table involves traversing multiple entries, which can become prohibitively expen-

sive in memory-intensive scenarios. Due to the temporal locality principle, the TLB speeds up translation

greatly, since it is predicted that the virtual address was recently requested, and therefore its translation

is expected to be present in it.

Page Table

The page table contains entries which store virtual to physical address translations. Each PTE also

stores bits that provide information on page protection, and a present, dirty and reference bit, all of

which are maintained by the kernel. Since virtual addresses are not unique, page tables are exclusive

to a single process.

The present bit indicates if a page is currently in memory and has a valid mapping. If the present bit

is unset, the current information in the PTE is invalid, and as such its contents are ignored.

The dirty, or modified, bit is set on page modifications, and is used to indicate that a page was written

to since placed in memory. When page has its dirty bit set, storage contains an older value, and, as

such, the updated value must be written back before it is evicted.

The reference bit is set on page accesses. It is used to indicate that a page was accessed recently,

and used by multiple page replacement algorithms, namely the one operating in the Linux kernel, to

decide which pages to evict.

When an address translation is requested and a TLB miss occurs, the MMU iterates over the request-

ing process’ page table until it finds the mapping it is looking for. If it is unable to find a valid translation

in the page table, it raises an exception, known as a page fault, which is handled by the kernel.

Figure 2.1: Linux’s page table layout. [50]

Instead of creating a single page table containing a PTE for each possible virtual address, Linux

8

instead implements a multi-level structure, containing page directories, where the lowest-level directory

points to multiple page tables [51]. This is known as a multi-level page table.

Linux subdivides a virtual address into multiple parts, which yield offsets. The offsets are used to

navigate multiple structures, until the physical translation of a virtual address is found.

This mechanism is illustrated in Figure 2.1, which depicts a 4-level implementation. This implemen-

tation creates a hierarchical structure, where initially only the upper level table, known as the page global

directory (PGD), is allocated.

If the MMU raises a page fault, the kernel iterates over the offsets of the faulted page’s virtual address,

using each offset to locate the entry that contains the root of the next level directory. If the entry is empty,

the kernel allocates the lower level directory and fills it with the new directory’s root address. When it

reaches the last level, i.e., the page table, it then creates a PTE with the faulted page’s physical address.

Conversely, in a scenario where a thread requests a virtual address that has a valid translation, the

MMU is eventually able to find its respective PTE. Then, it uses the least significant bit offset of the

address to locate the requested data inside the physical page, and returns it to the requesting thread.

Since in multi-level page tables the lower levels are only mapped when a page is placed in memory,

the memory requirements are lower than in a single-level approach, when processes only use a part

of their virtual address range. This is a common scenario in 64-bit architectures, where each process

is able to allocate multiple terabytes of virtual memory (248 pages). However, this comes at the cost of

performing multiple memory accesses to find a requested translation.

Page Fault

Handling a page fault depends on why it was raised by the MMU, i.e., its cause.

Two main types of page faults exist:

• Major: A major, or hard, page fault results from referencing a page that is not currently in memory.

Major page faults are common when applying demand paging, and are especially frequent when a

process starts or tries to access new pages. When a major page fault occurs, the requested page

is fetched from backing storage into main memory, and the page table is updated with the new

information.

• Minor: A minor, or soft, page fault occurs when the requested page is in memory, yet the requesting

process has no valid mapping in its page table. Common scenarios for minor page faults are when

a process tries to access a page: from a loaded shared library, for which it does not currently

have a mapping; that is marked protected for the type of request performed; or that was recently

selected for being reclaimed but has not yet been cleared from memory. Since the page is already

present in memory, minor page faults are computationally cheaper to handle. In this scenario, the

page table is directly updated with the new mapping, without resorting to backing storage.

When a process tries to access an address outside of its virtual address space, or an unallocated

one, an invalid page fault occurs, since the page is not found neither in memory or in storage. In this

scenario, the kernel handles the page fault by raising a segmentation fault, which results in the offending

9

process’ termination. Invalid page faults are generally related to programmer errors, and as such, are

not common during normal execution.

2.1.3 Page Replacement Algorithms

Multiple page replacement algorithms have been proposed in past literature. They define which pages

should be swapped out when needed, with varying degrees of complexity. We will describe the main

algorithms proposed, as well as some variants that optimize them. All algorithms described in this

section are thought out for a non-HMA architecture, consisting of a DRAM memory and swap cache.

Bélády’s Algorithm

We mention Bélády’s algorithm [52], also known as OPT, as it provides the theoretical best page re-

placement policy.

When a page needs to be swapped out, the OS selects the page that would be accessed the farthest

from the current point in time. It cannot be implemented in general purpose OSes, as the algorithm

requires either predicting future accesses or being able to perform a static analysis of all processes

running in the system, therefore knowing beforehand which and when pages would be accessed.

Nevertheless, OPT can be used as a benchmark for other page replacement algorithms. If an algo-

rithm performs closely to OPT i.e., the theoretical best, then it is considered to be near-optimal.

Least Recently Used

LRU is a family of traditional placement algorithms. The most basic implementation of the algorithm

consists of a linked-list, or stack, that stores pages. In this implementation, a page access causes the

OS to promote the page entry to the front of the list. When a page needs to be evicted, the page at the

back of the list is selected, i.e., the least recently used page.

Optimized LRU implementations differ but usually rely on a logical clock implementation, incremented

at every page access. The clock value, sometimes called age, is kept for each page. Age stores the

logical clock at the last page access, meaning that pages with a lower age have not been accessed for

longer. The OS replaces the page with the lowest age from memory. This avoids reordering the list

at every page access, but still requires updating the page’s age at every page access, which is both

expensive to the CPU and requires special hardware routines that are able to intercept every access.

Furthermore, the age entry should be stored in multiple bits, to avoid clock overflow, which increases the

memory requirements of the algorithm. Although the pages selected by the algorithm are near optimal,

LRU implementations rely on intercepting every page access, which causes significant performance

degradation in current architectures. As such, commodity OSes, such as Linux, implement algorithms

which are approximated to LRU, but instead rely on periodically updating the pages’ information.

A modification to base LRU, named LRU-K [53] tracks the time of the last K accesses, and decides

to keep the most frequently accessed pages in memory, by estimating the reuse distance based on

the intervals between these times. The reuse distance is a metric that allows estimating the access

10

frequency of a page, where lower intervals between accesses correlate to pages with a lower reuse

distance, i.e., higher access frequency.

For example, for K=2, the algorithm has been shown to improve the base LRU strategy by deciding

to reclaim less frequently accessed pages with a more recent last reference time instead of the least

recently referenced page. For K > 2, the algorithm performs well for stable access patterns, when

compared to OPT. However, larger K values introduce additional tracking data, which leads to a greater

memory and computational requirements. Adding that to the fact that LRU-K still implements a logical

clock in order to track the pages’ age, where CLOCK or second-chance have been shown to incur less

overhead while performing near OPT, it is currently not implemented by any commodity OS.

First-in First-out

FIFO is a simple algorithm that places pages in a queue at first access. When a page needs to be

swapped out, the OS selects the page that was placed first in the queue, i.e., the oldest page. The

algorithm performs poorly in real-world scenarios, as a page hit does not promote a page to the top of

the queue. This means that the bottom page is always selected for replacement, even if it was accessed

more recently than newer pages.

FIFO is still used in scenarios where the hardware is limited, such as in older systems, but has since

been made less relevant by hardware improvements over the past decades. For example, past versions

of Windows implemented a FIFO variant in multiprocessor systems [54], due to its simplicity when trying

to maintain coherency in the TLB caches.

Second-chance

The Second-chance algorithm is a modified version of the FIFO algorithm. It improves FIFO by providing

a second-chance to the oldest page in the queue, that would otherwise be selected for replacement in

the traditional FIFO algorithm. Instead, when trying to select a page from the queue, it checks the

reference bit of the page. If the reference bit is set, the algorithm unsets the reference bit and places

it at the front of the queue, giving the page a second-chance. The algorithm proceeds to check the

reference bit of the next oldest page until it finds one with the bit unset, at which point it selects the page

for replacement.

For example, in a simple scenario where all pages have their reference bit set and no further ac-

cesses are performed, it will go through the queue once, ending up selecting the original oldest page,

as it will now have its reference bit unset.

Second-chance algorithms combine the queue mechanism presented in traditional FIFO with each

page’s reference bit, which performs well against OPT.

CLOCK

CLOCK [55] is a variant of the second-chance algorithm. Similarly to second-chance, it implements a

reference bit per page, which is set when the corresponding page is accessed.

11

When a page needs to be evicted from memory, CLOCK iterates over a circular list of pages and

unsets their reference bits until it encounters the first page with the reference bit unset. At this point, the

page is considered the least recently used and selected for eviction.

As CLOCK implements a circular list of pages, it has no need for reordering. Instead, CLOCK saves

the index of the page that was last selected for eviction and uses it as the start for the next eviction

operation.

Although CLOCK was first introduced over 40 years ago, it is still relevant and widely used today,

namely by Windows 10 [56] and the latest Linux kernel [56, 57].

CLOCK-Pro

Rik van Riel proposed a kernel patch to use an optimized version of CLOCK to manage OS-level page

placement [58], named CLOCK-Pro [59]. It implements reuse distance by only using the reference bit

of each page, an improvement over LRU-K. The reasoning behind the patch is that the implemented

LRU-approximation algorithm is inefficient for common data operations, such as array initialisations and

one-use operations, which set the accessed page’s reference bit and fill up physical memory with pages

that might not be used in the near future. LRU and the base variant of CLOCK operate under the

assumption that a page that was referenced recently will be referenced again in the near future, a

phenomenon called temporal locality. Instead, the reuse distance implemented by CLOCK-Pro is able

to detect which pages are more frequently accessed, and opt to keep them in memory in lieu of pages

that were either accessed only once or which second to last reference occurred longer ago.

The CLOCK-Pro[59] algorithm separates pages into 3 categories: hot pages, which are pages that

are frequently accessed; resident cold pages, which are pages that have not been accessed since the

algorithm changed their category from hot to cold; and non-resident cold pages, which are cold pages

that were previously resident but have since been evicted from memory.

Keeping non-resident pages in the circular list allows the algorithm to give a second-chance to pages

that have been recently evicted from memory, if they are accessed shortly after being reclaimed. Other-

wise, the algorithm eventually clears them from the list.

Also, marking pages as hot allows the implementation of the reuse distance. A page is only evicted

if it is cold and has its reference bit unset. As such, the algorithm must first alter a page’s category to

cold before deciding to finally evict it.

Not Frequently Used

The NFU algorithm tracks page accesses in a time frame. It periodically increments a per-page access

counter for every page accessed in the last interval. When a page must be replaced, the algorithm

selects the page with the lowest number of accesses.

NFU is not implemented in commodity OSes for two major reasons:

• Incrementing an access counter for each page access is both expensive to the CPU and requires

the system to have a special hardware counter for the effect, similarly to the logical clock imple-

12

mentation of LRU,. On the other hand, using a reference bit has been proven to provide a good

estimate of the optimal page for replacement, and it is already implemented in mainstream archi-

tectures.

• It is unable to estimate if a page was accessed recently, as it provides an absolute count of ac-

cesses since it was first placed in memory. This leads to poor performance. For example, if a page

is accessed many times in a short time frame and then never accessed again, newer active pages

with a lower access count will be preferred for replacement.

Aging

In order to mitigate the second issue of the NFU algorithm, the Aging algorithm was proposed, which

provides some information on the temporal access pattern of a page. It differs in implementation in how

the access counter is updated on page accesses. Instead of simply incrementing the counter, the Aging

algorithm first performs a shift left, which divides the counter by 2, after which it is then incremented to

reflect the new page access. The selection process is equivalent to the NFU algorithm.

Although Aging is able to solve the temporal problem of the NFU algorithm, it is still rather expensive

to the CPU and requires special hardware counters. As such, it is not frequently implemented in current

OSes.

Not Recently Used

The NRU algorithm uses the reference and dirty bits in order to select which pages to evict. It periodically

clears the reference bit of each page. When a page needs to be evicted, it selects the first page found

that has both its reference and dirty bits unset. Otherwise, it looks for less optimal pages, relaxing the

criterion each time no pages are found:

• Reference bit unset and dirty bit set

• Reference bit set and dirty bit unset

If no pages that meet the previous criteria were found, it randomly selects a page with both bits set.

2.1.4 Virtual Memory Management in Linux

Current Linux versions use an LRU-approximation page replacement algorithm in order to manage vir-

tual memory [56, 57]. Even though it is considered to be LRU-based, the algorithm provides multiple

improvements over the computational and architectural requirements of the LRU implementations, by

using the CLOCK algorithm to reduce the overhead of the mechanism and allow efficient page selection

without the need to intercept every access, like on the logical clock LRU implementation.

Linux divides pages in two lists, an active and an inactive list. The active list maintains pages that

are considered to be currently in use by one or more running processes, while the inactive list maintains

pages that have not been accessed recently, and as such are suitable for being reclaimed.

13

Linux keeps a balance between the length of the lists, called inactive_ratio. The ratio is set based

off of total available memory and represents the target proportion between the size of both lists. For

example, if the system has a total memory of 1GB, the ratio is 3:1, meaning that 25% of the pages

should be in the inactive list.

Whenever a page is first referenced, it is placed in the active list. When the ratio of the inactive list

falls below the configured threshold, the least recently used pages of the active list migrate to the inactive

list. This is achieved by iterating over the active list’s pages and checking if each page has been recently

referenced. If it has, the kernel maintains the corresponding page in the active list, therefore giving it

a second chance. Otherwise, it unmaps the page and demotes it to the inactive list. If a page placed

in the inactive list is accessed again, a minor page fault occurs, which causes the kernel to remap the

page and promote it to the active list.

If the current free memory falls below a threshold, based off the configured swappinness value, the

kernel launches a daemon, called kswapd. The daemon reclaims as many pages from the inactive list

as necessary until it restores the threshold, starting from the older ones, i.e., the pages at the bottom of

the list. These pages can either be swapped out, if the system has a configured swap cache or simply

evicted from main memory. The inactive list improves reclaim performance, as when memory needs to

be freed there already exists a subset of pages that have been demoted to this list, and therefore can be

freed from memory without the overhead of the CLOCK algorithm. If all pages in the inactive list have

been reclaimed but were insufficient to restore the threshold, the kernel then decides to directly reclaim

pages from the active list that have not been recently accessed, following the same criteria as in the

active to inactive list demotion.

2.2 NUMA-Aware Mechanisms

In this section, we describe the memory management mechanisms provided by Linux when a system

has multiple sockets and physically distributed memory (NUMA).

We choose to introduce and discuss the NUMA architecture, as it shows how a novel memory ar-

chitecture can impact an OS’ design. NUMA architectures were first proposed in the 90s, and are still

widely used today, most notably in servers and supercomputers dedicated to HPC.

NUMA provides fundamental improvements over the single-socket architecture, but relies on both

OS and hardware support in order to achieve its fullest potential. Its impact drove Linux, as well as the

majority of widely-used OSes, to extend their memory management mechanisms in order to consider the

possibility of a multi-socket system, where each socket’s CPU can directly communicate with all system

memory, with different latencies dependent on the accessed memory. Still to this date, solutions that

propose efficient memory management techniques specifically tailored to NUMA architectures are being

published. We consider this area to be one of the main inspirations to the data placement mechanisms

proposed in recent literature dedicated to HMAs.

Moreover, HMAs are a natural extension to NUMA architectures, with HMA-equipped systems main-

taining the same multi-socket and decentralized memory characteristics of NUMA, with the added com-

14

plexity of multiple memory technologies within each socket. Therefore, even though the concepts in-

troduced in this section were designed for NUMA architectures composed of identical memory, usually

populated with only DRAM, our overview in this section will serve as a base to introduce HMAs, later in

this chapter.

We will start this section by providing an overview of NUMA-related concept, and then introduce

important NUMA-aware data placement literature.

2.2.1 NUMA Architecture

Shared-memory multiprocessor systems are composed of multiple processors which share access to all

memory in the system [60]. In these systems, main memory can be organized in two configurations: (i)

centralized, which offers an uniform access latency to all CPUs, called uniform memory access (UMA);

and (ii) distributed, where each CPU is associated to a subset of the system’s memory, called non-

uniform memory access (NUMA).

The vast majority of current NUMA architectures are cache-coherent (ccNUMA). Cache coherency

in a NUMA system is achieved by implementing a write-invalidate cache coherence protocol, which

maintains a consistent view of memory addresses cached in multiple CPUs [61]. The following overview

of NUMA always assumes a ccNUMA architecture.

In NUMA architectures, although main memory is physically distributed, CPUs can still access all

memory in the system. In these systems, Linux implements a logical node view, where a node is

characterized by a CPU and the memory banks closest to it, usually configured as a node per socket.

As the name indicates, memory access latency can vary, depending on the location of the accessed

memory relative to the processor. If a CPU core accesses memory from within the same node, it is

defined as a local access. If the core instead accesses another node’s memory, the access is classified

as remote.

Communication between a CPU and memory remote to it is achieved via point-to-point interlinks,

such as Intel’s QuickPath Interconnect [62] or AMD’s HyperTransport [63], which allow inter-socket data

operations.

Figure 2.2: Asymmetric NUMA system [64].

15

Figure 2.2 shows the routing of the NUMA interlinks and their respective bandwidth in an 8-node sys-

tem. We can see that some buses are unidirectional (represented by the arrows), some are limited to

8-bit bandwidth and some even present different bandwidths depending on the direction of the connec-

tion. Furthermore, we see that some interlinks are shared between different node pairs. For example,

the bi-directional 16-bit bus between nodes 0 and 1 is also shared for requests to node 1 by nodes 2

and 6, and requests to node 0 by nodes 3 and 7.

Linux defines the latency difference between node pairs as distance. Distance values range from 10

to 255, where 10 is the base latency, which is the latency of a node’s local accesses, and 255 represents

that there is no connection between the node pair, i.e., the nodes do not have a bidirectional interlink

path between them. For a distance d, between 10 and 254, the access latency between the node pairs

is estimated to be d/10x higher than the latency of a local access. For example, if node 0 has a distance

of 20 to node 1, then accesses between the CPU of node 0 and the memory of node 1 are ∼2x slower

than accesses to its local memory. The distance values are hardcoded by default, and are provided by a

firmware-dependent structure in the Advanced Configuration and Power Interface (ACPI) called System

Locality Information Table (SLIT).

These values are not intended to provide an accurate measurement of a node’s latency difference to

another node. In fact, memory latency tools and benchmarks such as Intel’s Memory Latency Checker

(MLC) [65] often produce significantly different values than those given by the SLIT table. Nevertheless,

the default values provide an estimate of a remote memory’s performance and as such are used by both

Linux and NUMA-aware data placement algorithms when deciding where data should be placed in a

system.

Memory access latency is not only influenced by the distance between the CPU where a process is

running and the physical memory DIMM it accesses, but also due to the amount of accesses performed

simultaneously with the same interlinks, to DIMMs connected by the same memory channel, or to each

individual DIMM.

Memory channels connect physical memory to a memory controller, providing data flow between the

CPU and memory, in both directions. Each channel is responsible for a subset of the system’s memory.

While a memory controller can be associated to multiple memory channels, each memory DIMM can

only be associated to one memory channel.

When many accesses are performed in parallel, the channel’s data rate, or throughput, stops in-

creasing. This is due to data congestion on the channel that processes the data flow in both directions,

and leads to a drop in average access latency. Similarly, each DIMM and interlink has a maximum

throughput, and may become saturated when too many accesses are requested to it.

The hardware that limits throughput from increasing defines the memory bandwidth. Bandwidth is

also dependent on the access pattern of a tested workload. For example, MLC measures the sustained

memory bandwidth of different access patterns by injecting data into multiple system nodes, with the

goal of finding the distribution that maximizes throughput.

Modern motherboard designs often implement multiple memory channels, or buses. Adding more

memory channels result in an increased bandwidth between a CPU and its local memory. Multi-channel

16

architectures reduce each channel’s bandwidth stress, by allocating data evenly across channels. Fur-

thermore, data may also be evenly distributed across each individual DIMM, or memory bank, within

each channel. However, a more scalable solution is to schedule a process and its data to idle or un-

stressed remote nodes.

2.2.2 From Latency-centric to Contention-aware Data placement in NUMA

In the past, NUMA-aware data placement mechanisms for commodity OSes, such as Linux, relied on

minimizing the amount of remote accesses to determine where in a system a process should run and

have its data placed. This is known as a locality-based approach, since the goal is to maximize the

local access ratio of the running threads. In scenarios where multiple large footprint applications run in

parallel, these systems would schedule applications to different sockets in a way that a higher volume

of their data is accessed locally. This is due to the massive latency and bandwidth difference between

local and remote accesses in older systems. These systems benefit from maximizing the ratio of local

accesses for all applications, as they can serve data requests faster, even if the utilization of remote

nodes is lower in comparison.

Remote access latency has since been greatly improved. While in the 90s we could expect a remote

access to incur a latency overhead between 4 and 10x higher [66], modern NUMA systems reduce the

penalty to less than 30% [67, 68].

The faster remote access latencies lead to a shift in the what was perceived as the optimal data

placement strategy. Due to the reduced remote access overhead, other metrics, which were less sig-

nificant in comparison, e.g., channel, bank, and CPU load imbalance, became significant factors when

deciding where to place both data and threads in a system. Modern NUMA-aware data placement al-

gorithms perform these decisions not only taking into account the remote latency overhead, but also

metrics that relate to bus contention, such as MMU load imbalance, interconnect link usage, and other

bandwidth-related metrics, which have been shown to deteriorate the throughput of an application.

Recent literature defines contention in the memory channels and MMUs as one of the major bot-

tlenecks in performance [64, 67, 69]. As such, these solutions may intentionally place a subset of a

thread’s pages in nodes remote to it, as, despite these pages incurring a latency penalty compared to

local accesses, the new page distribution can ultimately improve total throughput if the thread’s local

memory is saturated.

These contention-aware mechanisms have been shown to greatly outperform locality-based mecha-

nisms in multi-threaded workloads which heavily share resources. Despite this fact, the current NUMA

mechanisms implemented in Linux still consider data locality as the primary factor when deciding page

and thread placement.

2.2.3 Linux NUMA Subsystem

Linux manages memory independently for each NUMA node, with the mechanisms described in Sec-

tion 2.1.4. When a node is near to depletion, kswapd evicts pages allocated in it, not affecting the other

17

nodes’ pages.

NUMA Memory Policy

Linux allows users to change the memory policy at different scopes: global, which defines the default

allocation policy for all running processes; process-level, which allows defining the policy for a single

process; and ranges of a process’ virtual memory, called virtual memory areas (VMAs). This can be

achieved by manually changing the kernel’s configuration, resorting to numactl ’s command-line interface,

or programmatically via the libnuma library [70].

By default, the global memory policy Linux follows for running applications is node local. The node

local policy prioritizes the allocation of a new page in the memory local to the requesting thread, as it

provides the lowest latency and highest bandwidth values in ideal conditions. The policy favors local

accesses, i.e., it is a locality-based approach, and tries to minimize the use of interconnection links. If

there is no space available, the policy defaults to allocating pages on the least-distant node with available

memory.

Other available memory policies are defined as follows:

• Interleave. The interleave policy distributes pages among all specified nodes evenly. The alloca-

tions are performed round-robin, meaning that the kernel alternates the allocation node at every

access, leading to an even distribution of the pages. Interleaving pages can outperform the node

local policy in scenarios where allocating all data to the local node causes significant contention

on a single memory controller. In this case, the added throughput of the unstressed remote nodes

can prove beneficial to the performance of the workload [67]. However, even though pages are

balanced across nodes, there is no guarantee that its accesses will be, as most workloads access

some pages more frequently than others. Moreover, the ideal page ratio is seldom even, and in

many workloads varying the percentage of pages allocated in each node outperforms the even

distribution [69].

• Bind and preferred. Both policies allocate data to the first specified node that has free space. The

bind policy restricts page allocation to the specified nodes, while the preferred policy allows allo-

cation to other nodes if no free memory is available in the specified ones. These policies are not

frequently used, as node local or interleave provide better performance in most scenarios. Never-

theless, they can be useful for debug or benchmarking tools, as they allow testing the performance

of different node configurations.

Figure 2.3 shows the traffic pattern of a multi-threaded execution of the streamcluster benchmark,

part of the PARSEC suite, which is a widely used suite for HPC performance measurements. It rep-

resents the ideal scenario for the interleave policy, where data requests, visualized in percentage, are

perfectly distributed across nodes. In this scenario, interleave outperforms the node local policy by a

factor greater than 2 [67]. The interleave policy is able to decrease the imbalance of the NUMA interlinks

substantially (seen by the thickness of the arrows), which improves overall performance considerably.

18

Figure 2.3: Traffic imbalance under node local (left) and interleave (right) policies for the PARSEC’s [71]
streamcluster benchmark [67].

However, node local has been shown to perform better for other workloads, including the majority of

the benchmarks in the PARSEC suite [67]. This means that the memory policy choice is not straight-

forward and that the user is left with the task of tuning the memory policy that performs best for certain

tasks, at the process or even VMA level.

AutoNUMA

The latest Linux kernels provide an automatic page and thread balancer, called AutoNUMA [72]. It

presents several optimizations on the memory policy-tuning approach, by managing both pages and

thread allocation automatically, without the need for user interaction.

The algorithm periodically scans every page table, clearing the present bits and setting a protection

bit (_PAGE_PROTNONE), which makes the MMU view the page as resident but not accessible, therefore

causing a minor page fault on the first subsequent access. When the page fault occurs, AutoNUMA

registers both the node of the accessing thread and the node where the page is currently placed, and

the page is marked as present again.

Two structures are kept: the first is a per-thread structure, which stores the nodes of the pages last

accessed by the thread. The second is a per-page structure which simply stores the node of the thread

that accessed it last.

The algorithm consists of two main mechanisms:

• The first mechanism observes the node access pattern of each thread. If a thread accesses a

remote node’s pages more frequently than the local ones, then the thread is scheduled to migrate

to that node. Since thread migration incurs significant CPU overhead, AutoNUMA only migrates a

thread when it predicts that placing the thread on the node where it performs the most accesses

will ultimately improve performance, due to the decrease in remote accesses.

• The second mechanism is related to page migration. If a remote node’s thread causes a page

fault, the accessed page is queued to migrate to that node. If another node accesses a queued

page before the routine migrates it, then the page is cleared from the queue.

For some applications, enabling AutoNUMA provides significant performance benefits without the

19

need for manual tuning [67, 69]. However, it performs worse when compared to contention-aware ap-

proaches, in workloads prone to high contention [67].

2.2.4 Contention-Aware Approaches

In this section we describe in describe two approaches which extend locality-based principle with met-

rics that are related to bus contention, although we identify other contention-aware solutions, such as

DINO [73] and N-MASS [74], as well as studies [75] [76] related to how contention affects a system’s

performance.

Carrefour [67] and AsymSched [64] detail the importance of contention management in modern

NUMA systems. AsymSched further improves contention management by consider the NUMA interlinks’

bandwidth asymmetry, which is common in modern systems.

Carrefour

Carrefour [67] manages traffic, i.e., movement of data in a NUMA machine, to improve the system and

its running applications overall performance when compared to approaches that only consider locality.

Locality still plays a role in the algorithm, as local accesses incur a lower idle access latency. However,

the algorithm’s capability of detecting channel imbalances allows it to prefer remote nodes in these

scenarios for placing or migrating data. Carrefour also schedules threads in a way that minimizes

contention.

The algorithm has 4 main mechanisms.

• Page Co-location: Similarly to the node local policy, the algorithm prefers local accesses by relo-

cating the pages to the node where they are most accessed.

• Page Interleaving: When the algorithm detects MMU imbalance, it distributes the pages across

multiple nodes, such that the accesses are physically distributed. This is achieved at the VMA-

level, which means that a process might only have part of its pages interleaved.

• Page Replication: In scenarios where there is sufficient memory available, the algorithm replicates

a process’ pages across several nodes. Replication not only improves latency, since a page’s

contents are accessible locally by threads running on different nodes, but also has the added

benefit of reducing interlink communications in read-intensive workloads. This comes at the cost

of maintaining data coherency, since writes performed to a local copy must be replicated to all the

nodes where it is replicated.

• Thread Clustering: The algorithm prefers scheduling threads that access the same data on the

same node. This is applied only if the grouped threads do not exacerbate contention, meaning the

selected thread configuration does not cause a significant MMU imbalance.

20

Carrefour is only enabled in memory-intensive scenarios, due to its sampling overhead. If memory

traffic surpasses the defined threshold, then the replication, interleave and co-location mechanisms are

also enabled based on the characteristics of the workload.

Replication is only enabled in read-intensive scenarios if sufficient memory is available. The replica-

tion decision is dynamic, meaning that if a system suddenly no longer meets the free memory criteria,

then replication is disabled.

Interleaving is applied whenever memory channel imbalance surpasses a defined threshold. If the

imbalance is low, then applications do not benefit from interleaving. However, interleaving can signifi-

cantly improve performance in applications that would otherwise cause high memory channel imbalance,

as seen by the default interleave policy in Linux [77].

The third and final decision is on whether on not to enable co-location. The mechanism is only

enabled when the average local access ratio is below a threshold. When active, pages that are accessed

exclusively from a single node are relocated to that node, therefore reducing the percentage of remote

accesses. Since thread clustering balances threads across nodes in a way that bus contention is not

prominent, co-location does not aggravate MMU imbalance.

With these mechanisms, Carrefour is able to adapt to different workloads dynamically, which elimi-

nates the need for fine-tuning an application’s NUMA policy, while improving performance greatly com-

pared to AutoNUMA or manual policy tuning.

AsymSched

AsymSched [64] further improves the contention-aware mechanisms implemented in Carrefour by also

considering how nodes are connected in a NUMA system. The NUMA interlinks in current and future

systems may be asymmetric, meaning that the communication between different node pairs provide

different bandwidth values. The asymmetric nature of these systems makes traditional thread scheduling

and contention-related metrics proposed in past literature suboptimal or insufficient for these systems.

The algorithm adapts to the asymmetric interlink configurations presented in Figure 2.2 by placing

communication intensive threads in well-connected nodes, and preferring placing their data locally or on

nodes connected with a high-bandwidth path. Interlink contention is also considered, as data requests

may require traversing interlinks shared with other remote threads.

Like Carrefour and previous contention-aware algorithms, AsymSched dynamically groups threads

into clusters. These clusters are composed of threads that heavily share data among them. A weight

value, given based on the amount of remote accesses is given to each cluster.

The algorithm then decides where to place each cluster, considering the maximum bandwidth that

the placement decision can provide and the connectedness of the nodes. The clusters with higher

weights are placed in well-connected nodes, leveraging the higher-bandwidth buses offered by them.

The selected placement is only applied if the migration overhead of the new placement is estimated

to be compensated by the performance benefits in the long run. This is achieved by projecting the time

it will take for the system to migrate the threads and their data to the new configuration and comparing

it to the total running time of the workload, at the point of the decision. If the ratio is below a defined

21

threshold then the new placement is put in effect, and the threads migrate to the new configuration.

After the threads are migrated, the algorithm begins migrating a subset of each cluster’s most inten-

sive pages to the nodes defined in the new configuration. If, after a defined time, most accesses are

still performed to nodes in the old configuration, then the algorithms performs a full memory migration,

which migrates the remaining pages according to the placement decision.

2.3 Data Placement in HMAs

In HMAs, similarly to multi-socket NUMA systems, defining where data should be placed is not trivial.

Each memory tier provides different characteristics, and can vary in terms of size, latency, bandwidth,

and energy consumption.

Placing an application’s data in the fastest tier has obvious benefits, such as a reduced average

access latency, and overall increased throughput, due to its lower latency and/or higher bandwidth. On

the other hand, less frequently accessed data may be better suited to a slower tier, when space is

scarce. Moreover, if the fastest tier’s bandwidth is saturated, distributing frequently accessed pages

between the other available tiers may increase aggregate memory throughput, even if they offer slower

latency. Bandwidth-aware placement can be achieved with mechanisms similar to those presented in

the contention-aware solutions, presented in Section 2.2.4.

In order to allocate data to the appropriate memory tier, a plethora of viable solutions exist. We divide

these solutions in two areas:

• Static placement: Approaches in this area profile an application’s data accesses based on their

access pattern, by executing one or more test runs. Then, a data distribution that maximizes a

chosen performance-related metric is decided, which can be manually or automatically applied to

the application, only then making it ready for an HMA-aware execution.

• Dynamic placement: Dynamic algorithms classify and migrate data between tiers online, i.e., dur-

ing execution, without a priori knowledge about an application or its access pattern.

While dynamic placement is most commonly decided at page-level [20, 25–39], static placement

solutions are usually implemented at object-level [40–46].

Existing HMA-aware solutions that are specifically designed for NVM-equipped systems, considering

their asymmetry, are still uncommon in current literature [25–32, 37, 39]. Most commonly, these solutions

also, or only, consider multi-channel DRAM (MCDRAM) [78], which is an on-package memory that fits

above DRAM in the HMA tier hierarchy. Compared to DRAM, MCDRAM offers a smaller capacity (up to

16GB) but an increased bandwidth (up to 4x). Most importantly, its latency is similar to that of DRAM,

with no read/write asymmetry.

Therefore, in trying to be as architecture-agnostic as possible, existing solutions that propose place-

ment in HMAs are seldom aware of NVM’s asymmetric read/write performance [33–35, 38, 40–46], as

they are tailored to function with any tier configuration, e.g., MCDRAM-DRAM-NVM [33]. Even though

we consider these solutions suboptimal for our chosen architecture, they present relevant mechanisms

22

that could be applied in asymmetry-aware solutions, where the majority identifies NVM as a possible

configured tier [33–35, 37, 38, 40, 41, 43, 45, 46].

In the following sections, we start by considering generic HMAs, and present a high-level discus-

sion about the common challenges and proposed mechanisms applied to all architectures composed

of multiple memory tiers. Since the focus of this thesis is on DRAM-NVM HMAs, we then narrow the

discussion to a more detailed survey of proposals for such HMAs, in Section 2.3.4.

2.3.1 Static Placement

Static placement solutions identify an application’s frequently accessed data objects and define where

each object should be placed, such that the application’s throughput is maximized.

These solutions start by identifying and separating the application’s data into multiple objects. Then,

the objects are profiled, and sorted according to their access frequency, or a similar memory-related

metric. Finally, the solution calculates where each object should be allocated, such that the decided

distribution maximizes a chosen metric, such as throughput or energy efficiency.

Object Identification

A simple approach for static solutions to identify and separate an application’s data into multiple object

groups is to manually modify allocation sites, e.g., malloc() calls, with similar calls to the solution’s

API. For example, Unimem [41] requires allocation site replacement. However, this leaves the develop-

ers with the laborious task of individually identifying and replacing every allocation-related instruction in

a possible huge code base.

Instead, more evolved approaches are able to identify the same allocation sites automatically, resort-

ing to: (i) a static compilation pass, or (ii) an instrumented run. The former approach (i) can be achieved

with the low level virtual machine (LLVM) compiler infrastructure [79], for instance, which enables solu-

tions to pinpoint allocation and deallocation instructions in an application’s source code. Membrain [42],

Olson et al. [43], and OAM [46] use LLVM to identify and associate memory references to data objects.

Solutions that identify objects through instrumented runs (ii) can use the PIN [80] framework, which is

able to intercept allocation and deallocation calls and associate them to regions, or objects. PIN-based

instrumentation is applied in the approaches proposed by Effler et al. [44], and X-Mem [45]. Servat

et al. [40], also apply (ii) but instead use an in-house instrumentation tool that automatically finds and

replaces allocation and deallocation instructions with their solution’s API calls.

In all methods, allocation sites are associated to a unique handler, such as a tag, which identifies

each allocated object group.

Object Profiling

Object profiling consists of characterizing an object, or object group, by quantifying: (i) the number of

accesses that it causes to physical memory, usually measured by the number of last-level cache (LLC)

23

misses; (ii) its maximum resident size; and optionally (iii) the time that takes for the object to be freed

after allocation, or lifetime.

We identify two main approaches to profiling: PIN-based instrumentation, and hardware-based sam-

pling.

Besides allowing allocation and deallocation call identification, PIN enables measuring (i-iii) and is

also leveraged in the same approaches that rely on allocation site identification via PIN [44, 45].

Solutions may also leverage hardware-based sampling mechanisms, such as Intel’s Processor-Event

Based Sampling (PEBS) [81], or AMD’s Instruction-based sampling (IBS) [82], both of which are widely

common in Intel and AMD CPUs, respectively. Similarly, these mechanisms can be used to capture all

three metrics and associate them to the objects identified via LLVM.

The main benefit of the PEBS/IBS approach as opposed to PIN is a reduced test run execution time,

at the cost of precision due to its sampling-based nature. For example, PIN instrumentation has been

shown to increase execution time by up to 40x in X-Mem [45], while PEBS has a negligible overhead

with lower sampling rates.

Placement Decision

After objects are profiled, the solution is left with a list of allocation sites (objects) that have an associated

LLC miss count, lifetime, and size. At this point, the solution must sort and decide which data to allocate

in each tier.

All identified solutions solve some variant of the classic 0/1 knapsack combinatorial optimization

problem [83]. Simply put, the problem presents a knapsack with a defined weight limit, that must be filled

with elements of varying weight and value. The goal of the problem is to insert a subset of elements that

maximize the knapsack’s aggregate value, without exceeding its weight limit.

Applied to the data placement scenario, we can consider the faster tier as the knapsack and the tier’s

size as its weight. Similarly, each object also has a defined weight, defined by its size.

However, when trying to quantify each object’s value, two main approaches exist:

• Density: Calculated from the object’s LLC misses divided by its size.

• Bandwidth: Divides an object’s LLC misses by its lifetime instead, i.e., time between allocation and

free calls, calculating its total bandwidth demand.

In both cases, the solution then calculates the best subset of objects to place in the faster tier.

Multi-Phase Profiling

One of the pitfalls of static placement strategies are their inability to react to workload changes. One way

to mitigate this is to divide an application’s execution into multiple phases, as proposed in [41, 44, 46].

These solutions profile and determine where data should be placed at each phase. This gives the

algorithms a dynamic-like nature, as an object’s value may change throughout the phases and cause

it to be migrated to a different tier. Migration is done at the start of each phase by leveraging OS

mechanisms [44], or with a helper thread [41, 46].

24

2.3.2 Dynamic Placement

Whilst the previous solutions decide where to place data by profiling the workload and identifying the

most cost-effective data at a global or per-phase level before execution, approaches in this section

make the same tier placement decision dynamically during execution, i.e., online [20, 25–39]. Dynamic

placement introduces new challenges, such as adapting to workload changes during runtime in a way

that maximizes throughput with minimal overhead, with little to no a priori knowledge about the workload.

Without prior profiling or allocation site identification, existing dynamic solutions are implemented at

a page-level granularity, and commonly leverage the long established page management mechanisms

in commodity OSes, described in Section 2.1.

In contrast to the identified static placement solutions, the majority of the identified dynamic place-

ment literature is designed with tier asymmetry in mind, and are specifically proposed for DRAM-NVM

architectures [20, 25–32, 37, 39].

Therefore, we continue this section by presenting a high-level overview of the mechanisms proposed

in the identified online placement literature, detailing how the solutions tackle the additional challenges

common to any HMA configuration, and later detail the NVM-focused solutions’ implementation, in the

following section.

Placement Overview

Page management policies for HMAs include, but are not limited to deciding where a new page should

be initially placed, and when to migrate or evict resident pages.

When a page is initialized and fetched from backing storage, solutions must decide where to insert

it. Pages recently placed in memory should be prioritized in the faster tier, due to a higher probability of

being heavily accessed in the near future, according to the temporal locality principle. However, as new

pages are inserted, the faster tier may become full.

Therefore, dynamic placement algorithms may keep a buffer of free space in the faster tier, demoting

pages eagerly when free space falls below a threshold [20]. This is applied in the Linux kernel’s active-

inactive lists mechanism, which not only pre-selects pages that it deems inactive, or cold, but also

demotes them eagerly.

Most commonly, HMA-aware solutions do not implement a buffer mechanism. Instead, when fast

memory is full, these solutions exchange a new page with a resident one, demoting the latter to a slower

tier [26–28, 32, 35, 36].

We also identify approaches that do not strictly follow the temporal locality principle. From these,

we identify four alternatives to initial placement: (i) follow the default allocation policy, placing pages in

the fastest tier with available space [31, 39]; (ii) knowing each tier’s maximum bandwidth for a certain

workload, distribute pages proportionally [38]; (iii) place the new page in a faster space-depleted tier

only if a cold page can be found [29, 30, 33, 34]; (iv) place pages directly in the slower tier and promote

them based on their access frequency [37].

In contrast to placement algorithms designed for the traditional DRAM-only architecture, approaches

25

for HMAs can choose to demote pages in a space-depleted faster tier to a slower tier, deciding not to

evict it to the swap partition while still freeing up space from the faster tier. Similarly, pages may also be

promoted, and thus HMA algorithms must define a migration policy.

In dynamic algorithms, pages can be chosen to migrate between tiers based on the fulfillment of one

or more criteria [20, 25–37, 39]. The proposed criteria varies in existing literature, but frequently relies

on measuring the absolute or temporal relevance of a page, based on its access pattern, where the

most frequently accessed pages are commonly prioritized for being promoted or kept in the fastest tier.

We elaborate on some existing page classification techniques in Section 2.3.2.

If all memory tiers in the HMA become full, algorithms must decide which pages to evict to secondary

storage. Most proposals only evict pages from the slowest tier [20, 25–31]. Still, proposals such as AC-

CLOCK [32] may also evict pages that currently reside in the fastest tier if their access pattern does not

justify retaining them in memory.

Page Classification

In this section, we present an overview of existing mechanisms proposed to classify pages We will

shortly discuss how these techniques are applied to steer data placement, although we leave implemen-

tation details to be comprehensively described in Section 2.3.4, which narrows the scope to DRAM-NVM

HMAs.

Prior literature presents two main page classification techniques:

• Access Tracking: Approaches that propose access tracking rely on intercepting a workload’s

accesses so as to order pages by their access frequency or trigger them to migrate after surpassing

some defined threshold. We divide access tracking methods into three subareas:

– Read/Write Tracking [20, 25–35].

– TLB Miss Interception [36, 37].

– LLC Miss Sampling [39].

• PTE Monitoring: Existing solutions may also leverage access-related PTE bits, such as the refer-

ence and dirty bits [25, 26, 29, 30, 32, 37].

These techniques are sometimes combined. For example, existing solutions use both read/write

access tracking and PTE bit information in order to classify pages [25, 26, 29, 30, 32]. Memos [37] also

leverages PTE bits, but instead compounds it with TLB miss information.

Solutions that exclusively implement access tracking are often based on the LRU algorithm [20, 27,

28, 31, 33–35]. In its traditional implementation, accesses to a page promote it to the top of the LRU

queue, and the pages at the bottom are evicted first. In HMAs however, multiple tiers exist, and thus,

the identified solutions propose per-tier LRU queues. In each LRU queue, pages that are placed closer

to the top are considered to be more ideal to either retain or promote to a faster tier, and therefore are

classified as more intensive than pages at the bottom.

26

Tracking R/W accesses to a page can be achieved with hardware modifications. Namely, DualStack

[31] proposes MMU changes, in which the chip keeps track of all requested page translations, associat-

ing each page to a read and a write access counters. The same purpose can also be achieved without

relying on modified hardware. For instance, one can intentionally cause minor page faults, which can

be done by clearing a page’s present bit in the PTE, flushing its entry from the TLB, and instrument the

page fault handler. A simple access tracking mechanism is applied in the kernel’s active-inactive lists,

in which an access to a page in the inactive list causes a page fault, and consequentially its reinsertion

into the active list.

A possible extension to this technique could lead to multiple consecutive access being intercepted.

Namely, if shortly after a tracked page that caused a page fault was marked invalid again, i.e., had

its present bit cleared, this would result in the following access being intercepted. However, this tech-

nique would suffer from lack of precision, since accesses during the window between a page’s fault and

subsequent invalidation would not be tracked, therefore causing the method to have a sampling-based

nature.

Another access tracking-based option to classify pages is to intercept TLB misses. TLB misses can

be used to estimate a page’s number of LLC misses, by determining the number of times the MMU failed

to find its translation in the TLB. Both Memos [37] and Thermostat [36] leverage BadgerTrap [84], which

instruments TLB misses online.

Salkhordeh et al. [39] present a third access tracking alternative, which leverages PEBS in order to

monitor page access frequency by collecting information on the number of LLC misses caused by each

page. Unlike the static solutions introduced in Section 2.3.1, the proposed solution profiles the workload

online, and therefore requires no prior test runs to steer placement.

An alternative, or complement, to access tracking is to leverage PTE information. For instance, the

per-page reference and dirty bits, which already exist in the PTEs of commodity systems, allow solutions

to have a binary classification on whether or not a page was recently accessed and/or modified. The

main benefit to this approach is that the bits are managed by the MMU, and therefore enable pages to

be classified at a lower overhead than access tracking.

Solutions that also, or exclusively leverage PTE information extend the traditional CLOCK algorithm

to consider a multi-tiered system [25, 26, 29, 30, 32, 37].

In order to have further information about a page’s access pattern, the algorithms proposed in [25,

26, 29, 30, 32] propose new per-page bits to be added. CLOCK-DWF [25] suggests a write access

counter, incremented when it finds a dirty page, and a counter which tracks the number of times a clean

page was kept in the faster tier. M-CLOCK [26] proposes a lazy bit, which prevents pages from being

promoted to a space-depleted tier when a write access is intercepted. AIMR [29] introduces the suggest

bit, set when a faster tier-resident dirty page is modified. CLOCK-HM [30], proposed by the same

authors as AIMR, re-implements the suggest bit, alongside with two other bits which characterize pages

based on past CLOCK iterations, which enables the algorithm to detect and store more information about

the pages’ access pattern and guide placement accordingly. AC-CLOCK [32] implements state-based

classification, which separates pages into four different intensity levels, ranging from very cold to very

27

hot, based on the number of read/write accesses between CLOCK iterations, therefore also requiring

additional PTE bits to be added and monitored.

We can speculate that solutions which are designed to intercept every or the majority of accesses

[20, 27–29, 32, 34, 35] would require hardware changes in order to be competitive with DualStack, or

with solutions that do not rely on access tracking. However, as these solutions are tested in a trace-

or simulation-driven environment, the details on how access tracking would be implemented in a real

system are not specified. CLOCK-DWF [25] and M-CLOCK [26] only apply access tracking for page

promotion, where M-CLOCK intercepts at most two write accesses to a page, and CLOCK-DWF defines

an access threshold which causes pages above the threshold to be promoted. Therefore, we consider

that these algorithms could be implemented without hardware changes with a lesser penalty to overhead,

without much loss to precision.

Intercepting TLB misses comes as a faster alternative, as the mechanism does not impact the normal

behavior of the TLB. However, since TLB hits are not measured, the mechanism only tracks some of

a workload’s accesses, with its precision being dependent on how ineffective the TLB is for a certain

workload. Although BadgerTrap could potentially track every TLB miss, doing so has a large overhead,

slowing down applications by up to 40x [84].

Therefore, solutions that apply BadgerTrap only use it to monitor subset of a workload’s pages.

Memos [37] instruments TLB misses for the slower tier-resident pages, in order to separate them into

hot and cold regions, and then leverages the PTE’s access bits, with a CLOCK-based algorithm, to

further distinguish the hot regions into read- and write-dominated. Thermostat [36] proposes to choose

sample pages, at equidistant intervals, and intercept TLB misses to them. The sampled pages’ TLB

miss information is then used to classify their own and their neighbor’s intensiveness.

The main benefits of applying an LLC Miss sampling approach vs. the aforementioned access R/W

tracking method are: (i) the possibility of achieving a solution without kernel or hardware modifications,

since it relies on existing hardware counters which information is available at user-level; (ii) having a

lower classification overhead, due to its sampling-based nature. However, the latter comes with the

downside of reduced precision, where if the sampling interval is set too low, the collected LLC miss

information might misrepresent the workload’s access pattern. When compared to TLB miss tracking,

the LLC-based approach has the benefit of being capable to additionally observe accesses that caused

a TLB hit, and therefore capture accesses to pages that frequently cause TLB hits.

Thrashing

Dynamic solutions may suffer from a problem known as thrashing. Thrashing results from cyclic migra-

tions when the faster memory tier is full and the solution tries to promote a page to it, causing a page to

be demoted.

CLOCK algorithms are usually more prone to thrashing, due to their binary page selection mecha-

nism. As CLOCK iterates over a circular list until it finds a suitable page to be replaced, it may end up

selecting a frequently accessed page on the second round, after clearing its bits on the first. However,

the demoted page will likely fulfill the promotion criteria in the next iteration, and thus trigger another

28

promotion-demotion cycle to occur, and so on, leading to an over-utilization of CPU resources for migra-

tion.

In order to mitigate thrashing, CLOCK-based solutions may decide to migrate data lazily [26], or re-

quire a less intensive page to be found in the faster tier, in solutions that implement access frequency

counters or other non-binary classification technique [25, 30, 32, 37]. Lazy migration consists of inten-

tionally retaining a page that meets the promotion criteria for one or more iterations, before deciding to

promote it to a space-depleted tier, which would cause CLOCK to choose a page to demote.

In contrast, LRU-based implementations inherently mitigate thrashing, as they are always imple-

mented with a non-binary classification scheme. Pages at the top of the LRU queue are, on principle,

more frequently accessed than pages at the bottom. Therefore, when a page must be replaced, the

algorithm chooses the page at the bottom of the queue, which is less likely to be accessed in the near

future.

Bandwidth-Aware Page Distribution

While the solutions described thus far try to maximize the fast memory utilization by placing the most

frequently accessed data in it until its capacity is depleted or near to depletion, we identify two solutions

which consider bandwidth as a metric to guide placement.

Figure 2.4: Single tier heterogeneous memory architecture [38].

Yu et al. [38] propose a solution that initially allocates data proportionally to each tier’s bandwidth,

tailored to a system with similar properties to an HMA. The authors propose that each socket is populated

with a single memory tier, and therefore each tier is local to a single CPU, and seen as a NUMA node.

Although the solution is designed for a DRAM-NVM system, it can be extended to consider any other

memory pair, e.g., MCDRAM-DRAM. We illustrate the proposed architecture in Figure 2.4.

For example, if the slower tier is estimated to be 5x slower, Yu et al. propose that for every 5

pages allocated in the faster tier, one should be placed in the slower one. A locality-based migration

mechanism is also proposed, which dynamically migrates pages to a different tier if the migration would

result in more accesses being fulfilled locally. However, in order to preserve the bandwidth-proportional

placement ratio, the method relies on keeping the number of migrations in each direction identical.

The main drawback of the solution is that it assumes a non-standard memory configuration, where

the CPU associated to the slower memory will have a lower memory bandwidth available as it will either:

(i) perform a local access, incurring the latency and throughput penalty of slower memory; or (ii) access

fast memory via the limited-bandwidth interlink that connects both NUMA nodes.

29

Memos [37] instead assumes the standard multi-tiered HMA configuration. The solution starts by

placing every page in the slower tier and then promotes the most intensive pages, as long as the migra-

tion results in a combined throughput gain. The number of pages to migrate is dynamic, and depends

on the effects of the previous migration on the tiers’ throughput. If, after a migration, the observed faster

tier throughput gain was less than in the previous cycle, Memos lowers the pages to migrate in the next

epoch. Moreover, if the faster tier’s throughput increased less than what the slower tier’s decreased,

the solution instead demotes intensive pages, therefore restoring the previous epoch’s distribution. The

solution eventually reaches a point where it stops migrating pages, assuming that it has reached an

optimal bandwidth-proportional page distribution.

Unlike the solution proposed by Yu et al., which defines a static BW-aware page distribution, Memos

targets the same goal observing how throughput reacts to a migration.

We will further discuss these solutions in the next section, hypothesizing how they would apply to a

DRAM-NVM HMA.

2.3.3 NUMA-Aware Solutions Compatibility

Besides the solution proposed by Yu et al., which by design always considers a multi-socket architecture,

Intel’s AutoNUMA patch [20] is also attuned to work with multiple sockets, each with a multi-tiered mem-

ory configuration. The solution extends the locality-based inter-socket approach of the base AutoNUMA

with mechanisms that adapt to systems equipped with DRAM-DCPMM HMAs.

We see an adaptability of similar contention-aware algorithms to this architecture. Namely, if we

define the NVM node as a memory extension to its local CPU and DRAM node, then contention-aware

algorithms could consider inter-socket communication with the base co-location, interleaving and other

contention-management mechanisms, extending the HMA data placement approach within the socket

with an inter-socket contention-aware solution.

2.3.4 Placement in DRAM-NVM Architectures

When considering HMAs that contain an NVM tier, read/write asymmetry is also a factor that should be

taken into consideration.

For example, in DRAM-DCPMM systems, the slower non-volatile tier is larger, but has asymmetric

latency and bandwidth values depending on the operation performed. Thus, in order to allow performant

placement decisions in these systems, the proposed solution must be able to classify and prioritize

frequently modified data in DRAM.

The identified static placement literature fails to consider asymmetry, although most assume NVM

as a possible configured tier. In contrast, the majority of the identified dynamic placement works not

only consider a DRAM-NVM architecture, but provide a design that is specifically designed for it, almost

always considering the system to be asymmetric.

DCPMM was recently introduced into the market as the first widely available NVM technology that

enables scaling the memory of existing systems past the capacity imposed by DRAM-only configura-

30

tions. However, as the majority of the dynamic literature precedes the commercial availability of NVM,

the proposed solutions are tested recurring to simulation- or emulation-based techniques, and often as-

sume inaccurate latency and throughput values. Furthermore, these values are based on theoretical

evaluations of PCM [6–10], which was regarded as the most likely candidate to overthrow DRAM-only

architectures before DCPMM was introduced.

This section will discuss dynamic placement techniques for DRAM-NVM HMAs. In the next chapter,

we will also conclude our overview of past literature with a discussion on how these solutions would

perform if applied to a DRAM-DCPMM system.

Asymmetry-aware Policies

Another approach to the aforementioned initial placement policies in DRAM-NVM HMAs is to allocate

data to DRAM on write operations but directly to NVM on read operations [25]. This allows write-

dominated pages to fit in DRAM more often, at the cost of placing read-intensive pages in the limited

latency/bandwidth NVM tier. In workloads that do not have a working set of write-intensive pages which

fully saturate or occupy DRAM, this leads to a suboptimal page distribution, that could be improved by

placing more read-dominated pages in the faster tier.

Instead, the more common approach is to always prefer DRAM allocation, and design a migration

mechanism that reacts to its lack of space, by demoting cold and read-dominated pages to the slower

tier, when a write-intensive candidate is found to promote. In order to achieve this, most algorithms

propose to extend CLOCK and LRU-based algorithms in order to further distinguish pages not only

based on their access frequency, but also access nature, between read- and write-dominated.

CLOCK Variants

Lee et al. propose M-CLOCK [26], a page-level approach thought out for a DRAM-NVM architec-

ture, which reduces the number of unnecessary migrations between NVM and DRAM, by introducing

a lazy migration scheme. The authors divide the algorithm into two components: Classification of Write-

intensive pages in DRAM, and Lazy Migration:

• The first component operates in the DRAM and consists of 2 pointers, iterating over a circular list

of pages. The pointers are similar to the one used in CLOCK, with the added functionality of also

considering each page’s dirty bit, which adds information on whether a page was written after the

last explicit cache flush. D-hand, one of the pointers, manages pages that were referenced and

written recently. These pages are ideally kept in DRAM as long as their write-intensive nature is

maintained. C-hand, the other pointer, considers all other pages, called candidate pages. When

the DRAM is full, the algorithm is initiated, and a candidate page is chosen for migration to the

NVM, or simply reclaimed by the MMU. A candidate page does not migrate to the NVM, and is

instead evicted, when it has both the reference and dirty bits unset, which indicates it has not been

accessed in a long time, and therefore its presence in memory is no longer useful.

31

• The second component operates in the NVM and decides, after a write operation, whether or not

the page written should migrate to DRAM. A new per-page bit is introduced in this component,

called the lazy bit. This bit is used to force a migration when the DRAM is full, and is set when the

algorithm chooses not to migrate a written page. The main purpose of the lazy bit is to prevent

thrashing.

With this approach, M-CLOCK is able to effectively reduce the number of NVM writes.

A similar adaptation of CLOCK, CLOCK-DWF [25], surfaced in the same time frame of M-CLOCK.

The algorithm tracks the total number of writes for each NVM-resident page in a software-level structure.

The structure is used to select pages above a write threshold to promote to DRAM.

Demotion in CLOCK-DWF tracks a per-page write counter, for pages in DRAM, which is incremented

when the algorithm iterates over a dirtied page. The authors define a write count threshold, above which

pages are considered to be intensive. Another counter (overlooked), tracks the number of times a page

was retained in its tier, and has a similar threshold, called expiration.

When the demotion algorithm iterates over a page, it checks its dirty bit. If the bit is set, it increments

the write counter, resets the dirty bit and overlooked counter, and retains the page in memory. Otherwise,

it checks if the page’s current write counter is above the write threshold, and additionally if its overlooked

counter is below the expiration threshold. If so, it increments the overlooked counter and decides to

retain the page. Otherwise, it chooses the page for demotion.

AC-CLOCK [32] tracks accesses to all pages. It presents a state-based implementation, which is

used to distinguish DRAM pages into four intensiveness levels (very cold (0) – very hot (3)). When it

iterates over these pages, it checks the number of read and write accesses that each page had since

the last iteration, and increases or lowers their state accordingly. When a page in NVM is modified, it

decides to promote it, and tries to find a DRAM page with a state of 0, retaining the page if no candidate

was found. If the same page is accessed a second time, the algorithm relaxes the goal state, and tries

to find a replacement in DRAM with a state of 2 or below.

AIMR [29] and CLOCK-HM [30], both devised by the same authors, combine CLOCK with an LRU of

recently evicted pages. If a page is evicted from main memory and then accessed again, the algorithms

check if the page is still in the LRU and was once write-intensive. If so, the page is always placed in

DRAM, forcing a demotion if needed. Otherwise, the algorithms instead try to find a suitable DRAM

page to be replaced, but may place the page in NVM if no candidate is found.

Memos [37] initially places every page in NVM and intercepts TLB misses to them, in order to identify

hot and cold regions. The authors propose a CLOCK mechanism for page promotion, which runs over

the hot regions’ pages, separating them into read- and write-dominated. The algorithm then promotes

pages, prioritizing the latter. When DRAM is full, a CLOCK algorithm is also used, which simply checks

the page’s reference bit, in order to identify cold pages. Memos improves the classification precision of

prior approaches by not only applying TLB miss interception in order to accurately portray an applica-

tion’s address space, but also by running multiple CLOCK iterations, which reduce the chance of a page

being promoted due to being modified shortly before the CLOCK iteration, without relying on access

tracking, similarly to the aforementioned approaches.

32

LRU Variants

Seok et al. developed a page-level algorithm [27, 28] based on LRU. The objective is similar to the

previous solutions: maximizing NVM endurance, which is achieved through minimizing the number of

writes to NVM. The solution integrates a module that predicts the read/write ratio for each page. The

module keeps track of each page’s weight (Wcur) at software-level. The weight is updated at every

page request based on the previous weight (Wprev) and the type of the request (RT). The request type

variable takes the value 1 if the operation is a write and −1 if it is a read. The weight is updated as

follows:

Wcur = α ∗Wprev + (1− α) ∗RT : α ∈ [0, 1]

The constant α can be changed in order to give more or less relevance to the previous weight, and

enables the module to adapt to workloads with different characteristics. The algorithm then chooses

where to place pages based on the page’s weight, setting a weight threshold, where pages above the

threshold (Wcur > threshold) are considered more likely to be written in the near future and therefore fit

for volatile memory and vice-versa.

DualStack [31] proposes two MMU-managed LRU lists, for each tier, using the reuse distance con-

cept from LIRS [85], which is an LRU-based cache replacement algorithm design for the traditional

architecture. Similarly to LIRS, the interval between accesses to a page is tracked, giving two possible

classifications to each page: Low Inter-reference Recency (LIR) or High Inter-reference Recency (HIR),

kept in one of the LRU lists for each tier. Moreover, another LRU list tracks the number of read and write

requests to a page.

The algorithm sets a read and a write threshold. For pages in DRAM, it chooses to demote LIR

pages that exceed the read threshold, as they are considered infrequently accessed (LIR) and read-

dominated. Each page’s read counter is reset whenever they are written to, therefore retaining them in

DRAM for longer.

Similarly, the algorithm chooses to promote NVM-resident HIR pages upon exceeding a write thresh-

old. Unlike the read counter for pages in DRAM, the write counter is not reset on a read operation.

Instead, if the NVM-resident page is above its read threshold, further read accesses decrement the

write counter, therefore choosing to retain the page in NVM for longer.

A patch for Linux’s AutoNUMA [20] is currently being developed in parallel with this work, and is

tested with real DCPMM. The algorithm is built on top of the thread and page migration techniques used

by the base version of AutoNUMA, extending it to also enable page migration between local DRAM and

DCPMM memories.

Promotion from DCPMM to DRAM is achieved by leveraging the existing page fault mechanisms

in AutoNUMA, to determine a page’s access frequency. The patch adapts the page tables’ scanning

routine to clear the pages’ present bit, therefore causing a page fault on the subsequent access, similarly

to the BadgerTrap [84] approach. When accessed, the algorithm calculates the time it took between the

clearing the present bit and the page fault. If the time is below a defined threshold, it considers the page

to be intensive, and therefore promotes it to DRAM. The threshold depends on the type of operation that

33

caused the page fault. If the page fault was caused by a write operation, then the threshold is multiplied

by a set number (defaults to 2), making it easier for write-intensive pages to be promoted to DRAM.

Demotion from DRAM to NVM is achieved by modifying Linux’s swapping routine, which is changed

to demote a page to DCPMM instead of directly swapping or reclaiming it. Demotion runs under the

basic Linux’s swapper thread, which triggers when free memory falls below a threshold.

TwoLRU [35] presents two different LRU lists, one for each tier, and always places new pages in

DRAM. The NVM LRU list tracks per-page read and write accesses, and the respective read and write

percentage. Pages with a higher write access count and percentage are ordered closer to the top of

the LRU, and are promoted when they exceed a threshold. Similarly, read accesses may also trigger

a promotion, but have an higher threshold, and therefore are less likely to promote than write-intensive

pages. The DRAM LRU promotes pages to the top of the LRU when accessed, either for a read or

write operation, and demotes pages at the bottom of the LRU list when a new page is allocated, or an

NVM-resident page is chosen to promote. This demotion mechanism is similar to the one proposed in

Memos, as it does not prioritize read over write-dominated pages.

Summary

Article
Design Assumptions Implementation Evaluation Modifications

HMA tiers Classification Algorithm Real System HW OS

CLOCK-DWF [25] DRAM-PCM CLOCK 7 7 3

M-CLOCK [26] DRAM-PCM CLOCK 7 7 3

AC-CLOCK [32] DRAM-PCM CLOCK 7 3 3

AIMR [29] DRAM-NVM CLOCK+LRU 7 3 3

CLOCK-HM [30] DRAM-PCM CLOCK+LRU 7 3 3

Seok et al. [27, 28] DRAM-PCM LRU 7 3 3

DualStack [31] DRAM-PCM LRU 7 3 3

HeteroOS [33] MCDRAM-DRAM-NVM LRU 7 3 3

UIMigrate [34] DRAM-PCM LRU 7 3 3

TwoLRU [35] DRAM-PCM LRU 7 3 3

AutoNUMA patch [20] DRAM-DCPMM LRU 3 7 3

Thermostat [36] DRAM-DCPMM TLB Misses 7 7 3

Memos [37] DRAM-NVM TLB Misses+CLOCK 7 7 3

Yu et al. [38] DRAM-PCM N/A (Locality-based) 7 7 7

Salkhordeh et al. [39] DRAM-PCM PEBS 7 7 7

Table 2.1: Comparison of NVM-aware related work.

Table 2.1 presents an overview of all identified dynamic placement literature that considers an NVM-

equipped HMA.

From the identified solutions, the vast majority consider PCM as the secondary tier, with some not

specifying the NVM tier technology (represented simply with NVM). Due to the lack of commercially

available NVM at the time, these solutions’ evaluation is conducted in a simulation- or trace-driven en-

vironment, either emulating a full DRAM-NVM system, or by introducing an artificial access delay to

a region of DRAM’s address space, considering it to present similar performance to a real NVM tier,

as proposed in Thermostat [36]. Even though Thermostat intends to simulate a DRAM-DCPMM sys-

34

tem, it fails to consider read/write asymmetry, setting a uniform access delay. In contrast, the currently

in-development AutoNUMA patch [20] is not only tailored to DCPMM, but has also presented some

experiments conducted on a real DCPMM-equipped system.

Many of the solutions discussed require significant HW and/or OS changes to be made to the system.

We consider that solutions which require tracking every or the majority of accesses [27–35] require

hardware modifications, even though the majority leaves the implementation details unspecified. An

alternative is to apply PEBS-based LLC miss sampling, as proposed in Salkhordeh et al. [39], which

comes with an overhead vs. precision trade-off, where lower sampling rates provide more accurate

results at the cost of more CPU/memory resources. Therefore, we consider that these solutions are not

viable candidates for being implemented in our DRAM-DCPMM system with current hardware. From

the remaining solutions [20, 25, 26, 36–39], only the BW-aware approach by Yu et al. and Salkhordeh’s

PEBS-based algorithm do not require significant changes to the kernel.

35

36

Chapter 3

Tailoring Placement to a

DRAM-DCPMM Architecture

In this chapter, we first describe how DCPMM is organized internally and configured within a system,

and then characterize its performance with different workload types in different physical and logical

configurations. We also present benchmarks that extensively evaluate a selected configuration. We use

these benchmarks in order to outline the optimal data placement strategy in DCPMM-equipped HMAs

through a set of guidelines.

We then compare related work based presented in Section 2.3.4 based on the fulfillment of these

guidelines, in a discussion section. The discussion section will hypothesize how the presented solutions,

proposed for older NVM technologies and/or with a inherently inaccurate simulation- or trace-driven

evaluation would perform when applied to a real system running DCPMM, such as ours.

3.1 DCPMM Internals and Configuration

DCPMM is delivered as DIMMs that are compatible with DDR4 sockets. The current capacity of DCPMM

modules range from 128GB to 512GB, which represents up to a 4x increase in per-module capacity

compared to DDR4 DRAM. Currently, DCPMM modules can be used with Intel’s Cascade Lake CPUs

with large memory support, either in single-socket or multi-socket machines.

In this setup, each CPU contains 2 integrated memory controllers (iMC), each supporting up to 3

memory channels. Each iMC uses the DDR-T protocol to communicate with DCPMM. Like DDR4, DDR-

T operates at cache-line granularity (usually 64B). Internally, each DCPMM module caches 256B blocks

(called XPLines), with an associated prefetcher. This cache also serves as a write-combining buffer for

adjacent stores. Due to the granularity mismatch between DDR4 and XPLines, random stores incur

in costly read-modify-write cycles. Similarly to SSDs, DCPMM uses logical addressing for minimizing

wear-leveling, leveraging an internal address indirection table.

Current systems with DCPMM are HMAs, where different DIMM configurations are possible, with

varying DRAM-DCPMM capacity ratios. However, these systems have several restrictions. Firstly, each

37

iMC needs to be populated with at least one DRAM module. Secondly, each memory channel can be

either served by DRAM only (up to 2 modules), DCPMM only (1 module) or, in some models, both

DCPMM and DRAM (1 module each).

DRAM

DCPMM
(ADM)

Memory

Swap Partition

Storage

Cache

CPU Caches
(L1-L3)

Faster

Larger

(a) ADM Configuration

Memory

Storage

DRAM (L4 Cache)

Cache

DCPMM
(MemM)

Swap Partition

CPU Caches
(L1-L3)

Faster

Larger

(b) MemM Configuration

Figure 3.1: ADM and MemM DCPMM architectures within a socket.

DCPMM can be configured in two modes: App Direct mode (ADM), and Memory mode (MemM),

both of which are illustrated in Figure 3.1.

In ADM, DCPMM can be seen as a natural extension of the address space, effectively increasing

the system’s available memory to the capacity of DRAM and DCPMM combined. In this configuration,

both DRAM and DCPMM are directly exposed to the OS as two distinct memory nodes. Each one can

be directly accessed through load and store operations. The DCPMM node does not have any CPUs

associated to it, therefore being considered remote to all running threads. However, the closest CPU’s

NUMA distance is always lower than that of "true" remote DRAM nodes. Thus, Linux views DCPMM

within a socket as the closest NUMA node after local DRAM, and prioritizes data allocation in it when

configured with the default node local policy.

ADM DCPMM can also be configured as a directly-mapped persistent storage medium, which can

be used to store files and user data, similarly to traditional storage. This latter configuration is referred

to as "Storage over App Direct Mode".

Throughout this work, we factor out the aspect of persistence guarantees, since our main focus is on

how to leverage this new layer of the memory hierarchy to improve system performance, and persistence

can be seen as an orthogonal issue. Therefore, we will be referring to the NUMA configuration when

discussing ADM DCPMM.

In MemM, the socket’s DRAM is configured as an internal last-level cache (LLC), which interposes

every access to the local DCPMM memory node. In this configuration, processes allocate pages di-

rectly to DCPMM, while the hardware manages which pages are cached in DRAM, seamlessly to the

programmer. This architecture presents the OS with an hardware-managed data placement algorithm,

38

where a single NUMA node, in the form of DCPMM, exists within each socket.

DCPMM and DRAM can populate the memory slots in different physical dispositions, observing the

limitations imposed at the iMC and memory channel levels. Prior studies evaluate the performance

impact of different DIMM configurations, and DCPMM modes [18, 47, 86–88].

Lenovo [87] shows that a 2-2-1 configuration consisting of 1 DRAM DIMM per channel, and an

additional DCPMM configured in MemM in the first and second channels outperforms a 2-1-1 (3x DRAM

and 1x MemM DCPMM in the first channel) configuration in AAL by as much as 40% in read-only

workloads and 50% in "2 reads 1 write" (2R1W) workloads, while only providing an additional persistent

DIMM.

Furthermore, studies found that DCPMM suffers an exponential increase in latency when saturated,

i.e., loaded latency, while DRAM is able to remain performant under full load [18, 86]. This is relevant for

data placement algorithms, as it is shown that DCPMM performs best in near idle conditions.

3.2 Placement Guidelines for DRAM-DCPMM

This provides multiple insights on how pages should be distributed in DRAM-DCPMM architectures. We

leverage these conclusions in order to guide Ambix’s design and implementation, and hypothesize how

the discussed NVM-aware literature would apply to systems equipped with this architecture.

We answer one main question: Given the idiosyncrasies of DCPMM, which page placement strategy

provides the best possible throughput and lowest energy consumption?

We devise two benchmarks, which test how different page placement strategies affect throughput

and energy consumption, evaluating workloads with: (i) a uniform access pattern and small working

sets, and (ii) non-uniform patterns with arbitrarily-large working sets.

3.2.1 Experimental Methodology

We populate a socket with a total of 32GB of DRAM and 256GB of DCPMM, in a 1-1 configuration

(i.e., each memory channel contains a single DRAM and DCPMM DIMMs), where only 2 out of the 3

available memory channels are used. The configured CPU is an Intel R© Xeon R© Gold 5218 CPU, running

at 2.30GHz, with 16 physical cores (32 threads).

Due to idle system resources, DRAM utilization is limited to 27GB, or ∼0.84x its effective size, in the

benchmarks we run.

Both benchmarks generate multi-threaded workloads that allocate a test array, and then iterate over

it for a fixed runtime, after which they output the number of accesses performed to the array per second

(throughput). The workloads have a sequential access pattern, where accesses have a large enough

stride between them, such that each page is referenced by a single access. The test array is also

parametrized to always have a large enough number of pages, i.e., size, causing each entry’s reuse

distance to be much larger than the LLC size. This leads to an accessed entry being evicted from

the cache before accessed again in the next iteration, therefore maximizing the percentage of memory

39

accesses.

Each thread continuously loops over a unique range of entries, i.e., no two threads ever access the

same entry. For example, in a N -threads scenario, the nth thread : n ∈ {0..N − 1} starts each array

iteration on the n ∗ stride entry, and then jumps to the 2 ∗ n ∗ stride entry, and so on, until it reaches the

end of the array, at which point it starts a new iteration. The stride is dependent on the page size, which

is set to 4KB in our system.

Since we intend to study page placement between memory tiers, we isolate the benchmarks to a

single NUMA socket. In order to achieve this, we use the numactl CLI, where we isolate the benchmark

threads to a single CPU node and restrict allocation to the local DRAM and DCPMM memory nodes.

When a test array entry is modified, it is cached (load) and eventually written back (store). Due

to the configured stride and large reuse distance, we can assume that every cached entry is evicted

before referenced again. Therefore, write-only workloads are denominated 1R1W, and two accesses

are counted when an array entry is modified.

Besides measuring throughput, we also leverage perf, in order to collect memory energy consump-

tion (excludes processing- and IO-related energy consumption) of the timed portion of the workload, i.e.,

without the allocation phase, in Joules, with the following command:

perf stat -e power/energy-ram/ [workload]

Although cold pages, i.e., pages that are initialized but seldom referenced, are common in real work-

loads, we do not consider these in our benchmarks, where all pages are equally intensive, varying

only between read- and write-dominated. We assume that cold pages should never be prioritized in

DRAM over intensive pages. This assumption is consistent with the design of current page or cache

replacement algorithms for DRAM-only architectures, in which cold pages are evicted first.

3.2.2 Small Working Set Study – Balancing Approach

In order to study the throughput and energy consumption effect of distributing pages over the DRAM and

DCPMM tiers, with and without DRAM bandwidth saturation, we devise the Interleave Weighted Bench-

mark (IWB). IWB tests if and by how much a workload’s throughput can be increased by distributing

pages between memory tiers when bandwidth saturation is detected.

The benchmark allocates a 24GB array of fixed size, which fully fits in DRAM. It is parameterized

with a varying number of threads (1-32), and page distribution, from all pages in DCPMM to all pages in

DRAM.

IWB is configured to allocate N% of pages DRAM, where N varies between 0 and 100. It first

allocates the full array in DRAM and then separates the array’s pages into 100 page groups, migrating

the last 100-N pages from each group to DCPMM. This is done with move_pages() , which is imported

from the libnuma library.

We benchmark two workloads: (i) Read-only (RO); and (ii) Write-only (WO).

In Figures 3.2 to 3.5 we present two throughput and two energy heat maps from the RO and WO

parametrizations of IWB, respectively.

40

Figure 3.2: IWB throughput heat map (M accesses/s). Read-only workload.

Figure 3.3: IWB throughput heat map (M accesses/s). Write-only workload.

Figure 3.4: IWB energy heat map (J/M accesses). Read-only workload.

41

Figure 3.5: IWB energy heat map (J/M accesses). Write-only workload.

In the throughput heat maps, each cell displays the average throughput, in million accesses per

second, of a given page distribution and memory access demand, represented by the percentage of

pages allocated in DRAM and number of running threads, respectively. The cells are colored in a

red to green gradient, where the green cells have the highest possible throughput in a given thread

configuration (column-wise). In the energy heat maps, the cells instead contain the average per-access

energy consumption of each distribution-demand pair, represented in Joules per million accesses, where

green cells contain the lowest possible values, which correlate to the highest energy efficiency.

In all heat maps, we highlight the best page distribution for a given access demand with thicker

borders, i.e., the greenest cells.

By design, IWB has a sequential access pattern, where all pages have an identical access frequency.

Therefore, the page distribution also represents the distribution of accesses for any given parametriza-

tion.

In the read-only workload throughput heat map (Figure 3.2), we observe both DRAM and DCPMM

saturation at around 8 threads. Before this point, allocating all pages in DRAM grants the best possible

throughput and energy efficiency. At 8 threads, the optimal throughput-wise distribution shifts towards

95%, and subsequently stabilizes around the 80% range when we further increase memory demand. In

this workload, the 32 thread configuration observes a 27% increase in throughput when 20% of pages

are allocated in DCPMM (80%), compared to all pages in DRAM (100%). As observed in the workload’s

energy heat map (Figure 3.4), the optimal energy-wise distribution stabilizes at around the 85% range,

with a 13% lower per-access energy consumption in the 32 thread configuration.

In the write-only workload throughput heat map (Figure 3.3), the same saturation point is observed

for DRAM, but DCPMM is saturated earlier, at 4 threads. In this case, we see the optimal throughput-

wise distribution stabilize at 90% after DRAM is saturated. However, the observed throughput gain in

the 32 thread configuration is much smaller, with only a 5% increase in the 90% vs. 100% distributions.

We attribute this smaller throughput difference to DCPMM’s lower write throughput. Similarly to what

was observed in the read-only workload, we see that the best energy-wise distribution stabilizes closer

42

to 100%, in the 95% range. In this scenario, the energy improvement compared to all pages in DRAM is

smaller, at around 2%.

By comparing throughput in the 0% and 100% distributions after each tier is saturated, we can also

observe DCPMM’s read/write asymmetry, compared to DRAM. In the all pages in DCPMM scenarios

(0%), at 8-32 threads, throughput is 62% lower on average in the write-intensive workload compared to

the read-only one. In comparison, the all pages in DRAM (100%) throughput drops by only 15%. We

find that these results are expected, as they confirm prior studies on DCPMM’s performance [18, 89].

3.2.3 Large Working Set Study – Placement Policy

The previous study assumed data sets with uniform access patterns, testing workloads with either all

read- or write-dominated pages. However, workloads frequently allocate pages which differ in read- and

write-dominance. In this scenario, if the working set is unable to fully fit in DRAM, some pages must be

placed in DCPMM.

In order to study which pages benefit the most out of being allocated in DRAM, we devise a policy

benchmark (PB) which tests different memory policies at varying array sizes, from workloads that fully

fit in DRAM, to workloads that are more than twice as large. For simplicity of presentation, PB does not

consider the optimal BW-aware ratios defined in IWB, and instead focuses on memory capacity as a

trigger for page placement.

PB allocates an array with two equally sized and intensive read- and write-dominated portions. We

assume the write-heavy portion to be 1R1W, and the read-intensive one to be 1R. Therefore, PB gener-

ates 2R1W workloads.

The benchmark is parameterized to allocate the array following one out of four defined memory

policies:

• Write first-touch (WrFT): Allocates as many pages as possible in DRAM, initializing the write-

intensive segment first. If any remaining pages exist, those are allocated in DCPMM.

• Read first-touch (RdFT): Same as above, but prioritizes read-intensive pages in DRAM.

• Interleave: Follows the default interleave policy, which performs round-robin allocations between

both DRAM and DCPMM nodes, leading to an even page distribution.

• DCPMM: Limits allocation to the DCPMM tier.

We parameterize PB with different array sizes, ranging from 0.5x-2.5x DRAM size, for each policy. A

PB run launches 32 threads, which fully utilize the local CPU’s available cores.

In Figure 3.6 we see multiple parameterizations of PB, with the four aforementioned memory policies,

at different workload sizes. The bars represent throughput, in million page accesses per second, and

are represented by the left axis. The lines present the per-access energy consumption, in Joules per

million accesses, and are associated to the right axis. The horizontal axis indicates the workload size

in comparison to DRAM size (recall that DRAM has around 84% effective capacity due to idle system

resources).

43

0.5 0.75 1 1.5 2 2.5
0

50

100

150

200

250

Workload Size (vs. DRAM Size)

Th
ro

ug
hp

ut
(M

ac
ce

ss
es

/s
)

0

0.5

1

1.5

Pe
r-

A
cc

es
s

E
ne

rg
y

C
on

su
m

pt
io

n
(J

/M
A

cc
es

se
s)

WrFT Throughput WrFT Energy
RdFT Throughput RdFT Energy

Interleave Throughput Interleave Energy
DCPMM Throughput DCPMM Energy

Figure 3.6: PB plot. 2R1W, 32 threads

DRAM

WrFT

RdFT

DCPMM

Interleave

Write-intensive Read-intensive System Resources

(a) 0.75x

DRAM

WrFT

RdFT

DCPMM

Interleave

Write-intensive Read-intensive System Resources

(b) 1x

DRAM

WrFT

RdFT

DCPMM

Interleave

Write-intensive Read-intensive System Resources

(c) 1.5x

Figure 3.7: Policy page allocation at 0.75x, 1x, and 1.5x workload size. DRAM-DCPMM relative capacity
not to scale.

44

The interleave and DCPMM policies serve as a baseline for the WrFT and RdFT policies, where the

interleave policy places both read and write intensive portions evenly, and the DCPMM policy defines

the worst throughput and energy efficiency values at each workload size.

As expected, the DCPMM policy throughput and per-access energy consumption results are constant

in all workload sizes. The same is true for the interleave policy up to the 1.5x DRAM (1.5x) workload

size. However, in the 2x and 2.5x scenarios, the interleave policy depletes DRAM space and therefore

allocates a larger percentage of pages in DCPMM, which negatively impacts both throughput and energy

efficiency.

In Figure 3.7 we describe how the WrFT, RdFT and interleave policies allocate pages at different

workload sizes (0.75x, 1x, and 1.5x). For simplicity of presentation, we simplify DRAM capacity to 24GB

(0.75x its capacity), and do not represent the tiers’ capacity to scale.

In the 0.5x, and 0.75x workloads, the full test array fits in DRAM. Since the WrFT and RdFT policies

prioritize DRAM allocation, they place the full array in DRAM (Figure 3.7a), and thus output the same

throughput and energy efficiency results. At 1x (Figure 3.7b), the test array is larger than the available

DRAM capacity, and we see a 68% throughput drop and a 177% increased energy consumption per

access in the RdFT policy. In contrast, the WrFT policy remains performant until the 2x size workload, at

which point the policy places as many pages from the write-intensive portion as the RdFT policy in the

1x workload. Both cases exhibit identical throughput and energy consumption even though the workload

is twice as big in the WrFT case.

The 1.5x workload (Figure 3.7c) showcases the scenario where the RdFT and WrFT policies fully

allocate each array portion to opposite tiers. In this parameterization, the WrFT policy’s throughput is

around 5x higher than the RdFT one, which indicates a 5x benefit in prioritizing a write-dominated over

a read-dominated page in DRAM.

Overall, prioritizing write-intensive page allocation in DRAM leads to the best throughput and energy

efficiency values at every workload size. If the workload is twice as large as DRAM’s effective capacity,

the interleave policy comes as a second best out of the four. Otherwise, any other policy which prioritizes

DRAM allocation over an even page distribution, such as RdFT, grants higher performance.

3.2.4 Insights

From both IWB and PB we can draw two main guidelines which we will leverage to steer page placement

in DRAM-DCPMM systems:

• Prioritize DRAM Allocation: Before DRAM capacity is full, every accessed page should be placed

in DRAM.

• Asymmetry-aware Migration: When DRAM is at capacity, cold pages should be prioritized and,

if still needed, read-intensive pages. Similarly, if write-intensive pages are detected in DCPMM,

these pages should be promoted to DRAM, and exchanged with cold or read-intensive pages, if

needed.

45

IWB additionally shows that, when DRAM bandwidth is saturated, the optimal throughput-wise ac-

cess distribution lies somewhere between 80 and 90%, with the energy-wise distributions being in the 85

to 95% range. We find that these results prove that a BW-aware component is superfluous in a dynamic

HMA-aware placement algorithm due to two main reasons.

Firstly, the main use case for a DRAM-DCPMM HMA is to allow the system to run larger footprint

workloads without resorting to remote memory or data eviction. Even in a very read-intensive workload,

where the ideal throughput-wise distribution would be around 80% in favor of DRAM, the working set

would have to be lower than 1.25x DRAM size in order for this distribution to be possible. For example,

if the workload was larger, all additional pages would need to be allocated in DCPMM, shifting the ratio

towards the slower tier. Conversely, at smaller or identical workload sizes, a DRAM-only configuration

would be able to fit the full workload in two DRAM DIMMs, while still having at least 0.75x free space in

the second DIMM, or 37.5% in both, assuming an unweighted interleave distribution.

Secondly, while IWB assumes a sequential-like access pattern where pages are equally intensive,

common workloads have the added complexity of accessing some pages more frequently than others,

with some being more read- or write-dominated. Moreover, it is also common for a workload’s access

pattern to change, leading to some pages which were (i) intensive, or (a) write-dominated; becoming (ii)

colder or (b) read-dominated, and vice versa. However, as dynamic solutions do not profile the workload

a priori, the access pattern is not well known, and therefore the appropriate balance should be found

via adaptive methods. Such a balancing mechanism would likely be implemented on a trial and error

approach, such as in Memos [37] (see Section 2.3.2), which requires both: (i) the access pattern to

remain stable after a migration, in order to correctly associate the resultant throughput difference to the

migration; and (ii) the future access pattern of the workload to compensate the migration cost.

Combining both motives, we find that the complexity added by implementing a BW-aware approach

would seldom be beneficial in systems which integrate DCPMM. Therefore, we will design Ambix without

a BW-aware component.

3.3 Discussion of Related Proposals

Table 3.1 extends the related work summary table in the last chapter (Table 2.1) with the fulfillment of

the guidelines set in Section 3.2. The information on the table allow us to hypothesize how the identified

solutions would perform on a real system equipped with a DRAM-DCPMM HMA.

The majority of solutions consider NVM asymmetry, and thus prioritize write-dominated pages in

DRAM. TwoLRU [35] and Memos [37] only design an asymmetry-aware mechanism for page promotion.

Similarly, the AutoNUMA patch designs a page fault mechanism for promotion, giving a higher priority to

write-dominated pages, but applies the base active-inactive list management implemented in the kernel

for demotion, which only considers page references.

Only a small subset of solutions fail to saturate DRAM capacity. Those that do not fulfill the guideline:

(i) allocate pages in NVM when their first-touch is caused by a read operation [25]; (ii) restrict initial

allocation to NVM [37]; or (iii) distribute pages proportionally to the tiers’ bandwidth [38].

46

Article

Design Assumptions Placement Strategy Implementation Evaluation Modifications

HMA tiers
Asymmetry-aware Migration

Prioritizes DRAM BW-Aware Classification Algorithm Real System HW OS
Promotion Demotion

CLOCK-DWF [25] DRAM-PCM 3 3 7 7 CLOCK 7 7 3

M-CLOCK [26] DRAM-PCM 3 3 3 7 CLOCK 7 7 3

AC-CLOCK [32] DRAM-PCM 3 3 3 7 CLOCK 7 3 3

AIMR [29] DRAM-NVM 3 3 3 7 CLOCK+LRU 7 3 3

CLOCK-HM [30] DRAM-PCM 3 3 3 7 CLOCK+LRU 7 3 3

Seok et al. [27, 28] DRAM-PCM 3 3 3 7 LRU 7 3 3

DualStack [31] DRAM-PCM 3 3 3 7 LRU 7 3 3

HeteroOS [33] MCDRAM-DRAM-NVM 7 7 3 7 LRU 7 3 3

UIMigrate [34] DRAM-PCM 7 7 3 7 LRU 7 3 3

TwoLRU [35] DRAM-PCM 3 7 3 7 LRU 7 3 3

AutoNUMA patch [20] DRAM-DCPMM 3 7 3 7 LRU 3 7 3

Thermostat [36] DRAM-DCPMM 7 7 3 7 TLB Misses 7 7 3

Memos [37] DRAM-NVM 3 7 7 3 TLB Misses+CLOCK 7 7 3

Yu et al. [38] DRAM-PCM N/A N/A 7 3 N/A 7 7 7

Salkhordeh et al. [39] DRAM-PCM 3 3 3 7 PEBS 7 7 7

Ambix DRAM-DCPMM 3 3 3 7 CLOCK+PCMon [90] 3 7 3

Table 3.1: Comparison of related work – Guideline fulfillment overview.

Despite our arguments against a BW-aware solution, we identify two proposed solutions – Memos

and Yu et al.’s – which consider bandwidth as a metric to guide placement.

Yu et al. [38] propose that pages should always be distributed based on the proportion between to

tiers’ maximum bandwidth. However, the solution fails to prioritize DRAM saturation in its initial place-

ment, as pages are always distributed according to the tiers’ bandwidth ratio. This solution would also be

incompatible with DRAM-DCPMM architectures, as current motherboards with DCPMM support require

at least one DRAM module per memory channel, whereas the authors assume a single memory tier per

socket.

On the other hand, Memos [37] is compatible with DRAM-DCPMM HMAs and presents an asymmetry-

and BW-aware promotion mechanism, which migrates pages until it no longer benefits throughput, priori-

tizing write-intensive pages. However, the solution initially places every page in NVM, and therefore does

not prioritize DRAM allocation. Moreover, the proposed demotion mechanism uses only the reference

bit in order to select which pages to migrate to NVM.

Our proposed solution, Ambix, will be the first solution to apply the observed guidelines on a real

system configured with a DRAM-DCPMM HMA. Ambix requires no hardware changes and only a single

line of code added to the kernel. Our main goal is to present a lightweight approach that is as competitive

as possible against OS modification-heavy or HW-dependent solutions.

In order to evaluate Ambix, we compare it to Memos and the AutoNUMA patch. Although Memos

does not prioritize DRAM saturation, its migration mechanism should give some insight on how a dy-

namic solution would perform when leveraging bandwidth information to guide placement decisions.

Furthermore, Memos considers DCPMM as a possible NVM tier. Moreover, we also add the AutoNUMA

patch [20] to the comparison, since it is proposed for our DRAM-DCPMM architecture, and its code is

readily available online, with promising results.

47

48

Chapter 4

Ambix

In this chapter, we describe Ambix, our dynamic page placement algorithm tailored to a DRAM-ADM

DCPMM architecture, as illustrated in Figure 3.1a. We start by summarizing our main goals, which

influenced our design and implementation decisions. Then, we provide a theoretical overview of the

mechanisms used in our solution, and discuss how we implemented them.

4.1 Goals

Linux’s LRU-approximation and base AutoNUMA algorithms perform placement decisions based only

on the frequency at which a page is accessed, not taking into account the nature of its accesses. As

such, some scenarios emerge, where these algorithms decide to keep read-intensive pages in the faster

tier, while evicting less intensive pages, which are modified more often. While this is not a concern in

systems populated with latency- and bandwidth-symmetric memories, it becomes relevant in DRAM-

DCPMM architectures.

A judicious data placement strategy for these HMAs should be able to leverage the increased mem-

ory size of the DCPMM tier, while minimizing writes to it. However, there is currently no mechanism in

the Linux kernel that allows write-mitigation to a specific tier, or NUMA node.

Thus, our main goal is to complement the page migration and classification mechanisms currently

existing in Linux with a dynamic placement algorithm that is able to classify pages based not only on the

frequency of their accesses but also on the accesses’ read/write dominance, and use the latter metric

to improve data placement in NVM-equipped systems. Moreover, the added metric should only require

hardware components that are widely available in commodity architectures, i.e., be as compatible as the

existing mechanisms.

We intend to implement the algorithm with as few changes as possible to the Linux kernel. The Au-

toNUMA patch [20], the only other implemented dynamic solution thought out for a multi-tiered DCPMM-

equipped system, relies on extensive kernel modifications in order to function. This introduce multiple

limitations we see as avoidable. Firstly, as it rewrites or extends large sections of a chosen kernel, con-

flicts in future kernel versions are unavoidable, as the memory management subsystem suffers changes

49

over time. Secondly, even if no conflicts are detected, the solution must be re-patched into every kernel.

This means that, if a user requires a specific driver or module introduced in or only compatible with a

certain kernel, it is up to the original developer or the user, through time-consuming reverse engineer-

ing, to patch the desired kernel. Moreover, if the kernel is patched poorly, the memory management

subsystem can be compromised, which can result in system instability or even lead to a full crash. In

order to mitigate this, Ambix must offload as many critical components from kernel-space as possible,

all the while not sacrificing competitive placement decisions compared to prior HMA-aware placement

solutions or DCPMM’s hardware-based caching implementation.

We also want to allow programmers to decide whether or not to use Ambix in a per-application basis,

rather than operating in the whole system. Furthermore, the solution should be able to adapt to changes

in the memory management subsystem, by retaining all of its functionalities, such as page swapping

or memory policy management. A situation arises in MemM hardware-based caching and global-scope

HMA-aware solutions, where a performance-critical application has some of its accesses met by the

slower tier due to a global lack of space in DRAM, which is shared among all running processes. By

letting users select which applications should benefit from our algorithm, one can manually override

tier allocation to DRAM via a process-scope bind memory policy or a similar alternative. However,

this comes at the implication of guaranteeing there is a buffer of free space in fast memory for such

scenarios. Thus, Ambix must implement a mechanism that foresees these situations.

4.2 Ambix in Theory

HMA systems consisting of DRAM and NVM require an algorithm that selects where to place each pro-

cess’ data, in order to maximize the potential offered by NVM-integration. Ambix considers a DCPMM-

equipped system, and leverages the increased memory size DCPMM offers when configured in ADM,

while mitigating its limitations related to latency and bandwidth.

We define two main decisions one needs to take before implementing a data placement algorithm for a

DCPMM-equipped system:

• At which scope and for which processes should data migration be performed.

• How to decide which data belongs in which tier.

Migration Scope

Since one of our main goals is to minimize changes to the Linux kernel, Ambix leverages the existing

migration and classification routines implemented in the Linux kernel, which are performed at page-level.

The algorithm manages page placement within a socket with two memory tiers. Thread balancing

and swapping can be optionally configured, working in parallel with Ambix, and may decide to move

pages in and out of the monitored socket in order to mitigate load imbalance or free up memory re-

sources. Thus, pages migrated to other unmonitored sockets or evicted to the swap partition are ex-

cluded from Ambix’s future placement decisions.

50

The solution must be explicitly bound to running applications in order for them to be affected by

our placement decisions. This decision contrasts with the global scope of the AutoNUMA patch and

DCPMM’s MemM, in which all processes in the system are affected by their placement decisions, as

discussed in Section 4.1.

Tier Migration and Page Classification

Cold Intensive

R
ea
d-
do

m
in
at
ed

W
ri
te
-d
om

in
at
ed

Accessed
Sporadically

No R/W
Separation

Accessed
Frequently

Rarely
Modified

Accessed
Frequently

Primarily
Modified

Preferred
in DRAM

Demoted
First

Figure 4.1: Ambix page classification.

Ambix follows the guidelines set in Section 3.2, namely: (i) Prioritize DRAM Allocation, and (ii)

Asymmetry-aware Migration.

In order to fulfill (i), Ambix is combined with Linux’s node local policy. Under the default node local

memory policy, a new page is placed in the closest node with available memory, therefore fully saturating

DRAM. Furthermore, we extend the guideline to follow the temporal locality principle, maximizing the

percentage of allocated pages in DRAM. In order to achieve this, Ambix eagerly demotes pages to the

slower tier when utilization surpasses a defined threshold. Inversely, when there DRAM has free space,

Ambix decides to send pages in the slower tier that are better suited to the faster one.

In order to select which pages to evict, the page replacement algorithm implemented in Linux classi-

fies pages into two categories: frequently referenced, or intensive, and cold. Similarly to prior dynamic

placement solutions for NVM HMAs, Ambix adds an additional axis to this classification by separating

pages between read and write-dominated, therefore enabling it to have an asymmetry-aware migration

mechanism (ii).

In Figure 4.1 we see the two classification axis used by Ambix, where intensive pages are preferred in

DRAM, while cold pages are demoted first when DRAM is full. Similarly, write-prone pages are preferred

in DRAM over read-prone ones, due to DCPMM’s write asymmetry.

Our implementation manipulates the page table entries’ reference and dirty (R/D) bits, for each bound

process. We decided to minimize page classification overhead as much as possible, relying only on

the binary nature of a PTE’s R/D bits, and its MMU-managed implementation to classify a page. An

51

alternative would be to devise a more costly weight- or age-based algorithm, which would need to rely

on PTE unmapping or similar mechanism as to induce minor page faults in order to quantify the access

frequency of a page. We see these alternatives as no less intrusive than PTE bit manipulation, but with

a greater overhead.

In order to manipulate these bits, we leverage a set of existing kernel-space routines related to page

table management. This is the only caveat that inhibits Ambix from being fully implemented in user

space.

4.3 Ambix in Practice

In this section, we start by outlining the architecture of our solution, specifying its components’ role and

interaction, and then provide a detailed overview of their individual behavior.

4.3.1 Architecture

Ambix Control

 User Application

bind/unbind

bind/
unbind

PCMon

send
pages

request
pages

read BW info

write BW info

Kernel Space

User Space

Bandwidth File

page
walk

Ambix
API

Linux KernelAmbix SelMo

Figure 4.2: Ambix architecture overview.

Figure 4.2 provides an overview of Ambix, presenting its components and how they interact. Our

solution consists of two main components: Control and the Page Selection Module (SelMo).

Control is an elevated process running in user-space, which is responsible for formulating and

putting into effect new placement decisions. In order to formulate new decisions, the component lever-

ages Processor Counter Monitor (PCMon) [90], which periodically outputs the current throughput per

node to a shared text file.

To use kernel-implemented mechanisms, Ambix integrates a kernel-space module, named SelMo.

The module selects pages belonging to bound processes, in order to carry out Control’s decisions.

52

Control is Ambix’s entry point, being responsible for binding and unbinding applications to our

solution. Although Ambix provides specific APIs for binding/unbinding user applications written in C,

C++, or Fortran, it supports virtually any target binary using alternative methods, such as user input via

Control or a provided C wrapper.

The dual-component implementation achieves a small footprint within the kernel, since all mecha-

nisms related to devising and effectuating new placement decisions are offloaded to the user-space

component.

4.3.2 SelMo

SelMo is the first component launched in Ambix. During its initialization, it creates a netlink socket,

which is used to establish bidirectional communication with Control.

Then, Control is launched, which starts by binding itself to SelMo. When Control formulates

a new placement decision, it sends a PageFind request to SelMo. The request gives the module

information about which and how many pages it needs to find. The module then sends back a list of

selected pages that best fit the request.

SelMo provides no direct user input, and only accepts defined request structures over the netlink

socket. Thus, both components work in a semi-closed loop, where no output related to page information

is sent to external processes.

Request

The request structure is defined in a shared header file that is imported by both Control and SelMo.

Control sends a request structure over netlink when it wants the module to perform an operation.

The structure has 3 fields:

• OP CODE: An integer that characterizes the type of request. There are 3 defined request types:

bind, unbind and PageFind.

• PID_N: Related to the OP code, an integer that may contain a PID for bind and unbind operations,

or the number of pages to find for PageFind requests.

• MODE: Only used for PageFind requests. Specifies which pages Control is requesting.

Bind/Unbind Request

When a process binds itself to Ambix, it communicates with Control, which then forwards the request

to SelMo with the process’ PID. At this point, future placement decisions affect the bound process’ page

distribution within the socket. A process may also decide to, prematurely or at the end of its execution,

unbind itself.

SelMo stores the bound processes’ information in an array of task_struct pointers, which are

defined and managed by the Linux kernel. The structure contains the PID of a process and a pointer

53

Mode Tier Scope Goal

DEMOTE DRAM Demote cold pages

PROMOTE DCPMM Promote pages

PROMOTE_INT DCPMM Promote only intensive pages

SWITCH Bidirectional Switch intensive with cold pages

DCPMM_CLEAR DCPMM Clear the R/D bits from all resident pages

Table 4.1: PageFind modes and goal.

that allows access to its page table, among other information. When a process ends, its task_struct

is freed by the kernel. Therefore, before any PageFind request, SelMo updates the array, removing all

entries from processes that are no longer running from it.

During a bind request, the module iterates over all tasks, using the kernel’s for_each_process()

macro in order to determine if the process to bind is valid and currently running in the system. If the

process is found, its respective task_struct pointer is added to the array.

During an unbind operation, SelMo iterates over the array until it finds a PID match, at which point it

removes the entry from the array.

PageFind

When Control devises a new placement decision, it sends a PageFind request to the module. The

request is characterized by the number of pages to find and the mode of the PageFind operation. The

mode influences both the page selection criteria and the memory tier from which the module will select

pages. In Table 4.1 we summarize the multiple modes, describing the tier from which they select pages,

and their respective goals.

When a PageFind request is received, the page selection phase begins. The phase iterates over

each bound process’ page table, in order to select pages according to the mode criteria.

When: (i) the number of requested pages exceeds the required amount set in the request; or (ii) the

process has iterated over all PTEs, the page selection phase ends. At this point, the last PTE’s address

and PID is stored and the page selection phase ends. Then, a reply-back phase begins, which prepares

a final page array to be sent back to Control.

For each tier, the module keeps two last address and PID pairs, which set the start of the next page

selection phase for that tier. Thus, PTEs that have not been inspected for longer are prioritized for

migration over recently seen ones. For instance, in a scenario where there is exactly one process bound

to SelMo, the last recorded address is greater than 0, and SelMo is unable to find the requested number

of suitable pages, then two iterations run: the first starts from the next valid address until the end of the

process’ address space, and a second one starts from the beginning of the page table until it reaches

the last recorded address.

Before sending any PageFind request that will promote pages, Control sends a DCPMM_CLEAR

PageFind to SelMo, which instructs the module to clear the R/D bits of all PTEs pointing to pages in

54

the DCPMM tier. Then, it waits for a configurable delay.

Delay

Delay affects the access frequency at which a page is considered intensive by SelMo. Pages that are

accessed or modified during the delay interval are considered read- or write-intensive, while all others

are classified as cold. A shorter delay leads to the promotion of only a smaller subset of frequently

accessed pages, while with a more relaxed delay, a wider range of pages can be selected.

In general, a higher delay is desirable for smaller workloads, when their working set fits in the upper

tier, as it leads to the promotion of sporadically accessed pages. On the other hand, a shorter delay

is better suited to workloads that frequently access a subset of pages which cannot completely fit in the

upper tier. In the latter scenario, promoting only the more intensive subset of the workload’s pages can

maximize the percentage of accesses served by DRAM, as sporadically accessed pages are kept in

DCPMM.

Page Table Iteration

Before iterating over a page table, Ambix acquires its lock, assuring that the kernel does not modify its

contents during the page selection phase.

Then, we iterate over the page table with the walk_page_range() routine, implemented in the

Linux kernel, which iterates over a range of a process’ page table.

The routine is exported from the kernel with the EXPORT_SYMBOL() macro. This is the only mod-

ification required to use Ambix and is critical in order for our solution to work, as it enables our solution

to access the page table of any process and manage the contents of its PTEs.

SelMo passes a PTE callback as an argument to the routine, so that it can observe and manipulate

each PTE’s R/D bits, The callback is invoked whenever a non-empty PTE is found. Through the callback,

the module is also able to obtain the NUMA node where the associated page frame resides and its virtual

address. Since we want to perform different operations depending on the goal of the find request, we

define multiple callbacks, one for each mode.

There are three groups of pages in all callbacks (except DCPMM_CLEAR, which simply has R/D bits

cleared):

• Priority: The priority group contains the best candidate pages that fulfill the PageFind request

criteria. Pages placed in this group are always sent back to Control.

• Backup: The backup group contains pages that meet the selection criteria, although are worse

suited than those in the priority group. Backup pages may be sent to Control if the priority pages

fail to meet the number of requested pages.

• Retain: The retain group contains pages that the algorithm decides to retain in their current mem-

ory tier, since they fail to meet the selection criteria.

55

The backup group is not needed in page replacement algorithms designed for traditional architec-

tures, since in their implementation the reference bit, or an analogous metric, is sufficient to classify

pages. However, after clearing the R/D bits, pages with only one bit set become indistinguishable from

pages with both bits unset. Thus, the former are detached into a backup group, and can be selected to

migrate when the priority pages are insufficient.

If the callback’s goal is to demote pages, then it clears the R/D bits of all pages that are not in the

priority group. If one such page is referenced thereafter, the memory management unit (MMU) sets its

PTE’s reference bit; and also its dirty bit, in the event of a store operation. In contrast, if the page is not

accessed until the next page table iteration, then it is suitable for demotion.

If, on the other hand, the callback’s goal is to promote pages, then PTEs are expected to have

both their R/D bits unset, since they have been recently cleared by the module. In this scenario, the

MMU may change the PTE’s R/D bits, so that the respective page is suitable for promotion over a next

page table iteration. Therefore, promotion callbacks do not directly manipulate these bits. Instead, the

algorithm deems a page in DCPMM read-intensive if only referenced during the delay window, and

write-intensive if modified.

Pages in the priority or backup groups are placed in two arrays. The arrays store entries that contain

the virtual address and PID of a page, both of which are required by Control in order to migrate the

page. The module also initializes two variables, which keep track of the number of priority and backup

pages found so far.

When the number of priority pages meets the required amount set in the PageFind request, or

the process has iterated over all PTEs, the page selection phase ends. In the latter scenario, the

module was unable to find a sufficient number of pages that meet the priority criteria. In this case, the

module proceeds to add the remaining entries from the backup array to the final array. If the pages from

the backup array still fail to meet the demanded value, the module sends an array with less than the

requested entries back to user-space, consisting of all selected priority and backup pages.

We will now describe how each callback manages PTEs, and how the priority and backup arrays are

populated with pages.

PageFind Callbacks

In Algorithm 1, we present the callback associated to a DEMOTE PageFind. Its goal is to find cold, or,

as a backup, read-intensive pages from DRAM.

The associated callback prioritizes pages that have their reference bit unset. As backup, pages

which have not been modified recently but are considered read-intensive may also be selected. This is

achieved by calling the pte_young() (line 6) and pte_dirty() (line 10) functions, defined in the

Linux kernel, which indicate if a PTE has its R and D bits set, respectively.

In order to obtain the NUMA node in which a page is allocated, two kernel functions are used. Firstly,

the PTE is converted to a page frame number (PFN), via the pte_to_pfn() function. Then, the

pfn_to_nid() function outputs the node where the page frame resides (line 4). The NUMA nodes

56

Algorithm 1: DEMOTE Callback
global_input: curr_pid, pages_array, bak_pages_array, pages_found, bak_pages_found,

pages_to_find, last_addr_dram
input : pte, address

1 if pages_found = pages_to_find then
2 last_addr_dram := address ;
3 return 1 ; // end pagewalk

4 if !pte_present(pte) or !pte_write(pte) or pfn_to_nid(pte_to_pfn(pte)) != DRAM then
// pte not present, write protected, or not in DRAM

5 return 0 ; // continue pagewalk

6 if !pte_young(pte) then
7 put address and curr_pid in pages_array;
8 increment pages_found;
9 return 0;

10 if !pte_dirty(pte) and bak_pages_found < (pages_to_find − pages_found) then
11 put address and curr_pid in bak_pages_array;
12 increment bak_pages_found;
13 old_pte := ptep_modify_prot_start(..., pte);

// clear R bit
14 old_pte := pte_mkold(old_pte);

// clear dirty (D) bit
15 old_pte := pte_mkclean(old_pte);
16 ptep_modify_prot_commit(..., old_pte, pte);
17 return 0;

specific to the DRAM and DCPMM tiers are statically defined in the shared header file, imported by both

of Ambix’s components.

Every observed page that does not meet the priority array criteria has its PTE’s R/D bits cleared by

the callback (lines 13-16). In order to achieve this, a temporary copy of the original PTE is created. Then,

its bits are cleared with the pte_mkold() and pte_mkclean() routines. Finally, the temporary PTE

is written over the original one, effectively changing its R/D bit information while keeping all other fields

intact.

When a PROMOTE PageFind is requested, the module selects pages to promote to DRAM. The

callback selects any page from DCPMM, with an emphasis on write-intensive pages, which are placed in

the priority array. In this callback, read-intensive pages are attributed the same priority as cold pages, as

the main goal of the operation is to maximize space utilization in DRAM. Unlike the DEMOTE PageFind

callback, it does not clear R/D bits from any pages, since it relies on the delay-based mechanism.

In scenarios where DRAM space is scarce, Control sends a PROMOTE_INT PageFind, which is

associated to a callback where only write or read-intensive pages are selected for promotion. In the

PROMOTE_INT PageFind, the module selects N pages that were recently modified or accessed to

promote to the faster tier. The associated callback places pages with both the reference and dirty bits

set in the priority array. The backup array is populated with read-intensive pages, which only have their

reference bit set.

The SWITCH PageFind differs from the previous variants, as the module is requested to find an

equal number of pages to swap between both tiers. In this mode, we perform two page table iterations.

The first one selects DCPMM-resident pages with the PROMOTE_INT callback. The module then looks

57

for the same number of pages in DRAM, using the DEMOTE callback. After both iterations, SelMo

reconstructs the page array, such that the number of pages selected from each tier are equal. Moreover,

the backup pages from a tier are only added to the array if it is matched with a page that is in the priority

array of the other tier. Hence, Ambix avoids switching equally intensive pages. At this point, a separator

is also added to the middle of the array, indicating Control to reverse the migration orientation for the

subsequent pages.

The DCPMM_CLEAR PageFind also differs from the previous, as no pages are selected or sent back

to Control. The callback precedes a find operation in DCPMM, and is used to tune the frequency at

which a page is considered write- or read-intensive.

Reply-back Phase

After a bind/unbind or a PageFind request, the module creates a response structure. The response

consists of an array of one or more structures, called addr_info. In the bind/unbind and DCPMM_CLEAR

PageFind, the array is composed of one entry, which contains information on the success of the

requested operation. In the other find operations, it additionally contains the virtual addresses and

PIDs of the pages selected during the corresponding pagewalk, and a separator entry in the SWITCH

PageFind.

The addr_info structure is defined as follows:

• addr: Contains the virtual address of a page.

• pid_retval: Contains the PID associated to the virtual address or the return value of the opera-

tion, if it is the last entry of the array.

The module then groups the array entries into multiple netlink packets, and sends them to Control.

4.3.3 Control

When Control starts, it tries to bind itself to the kernel module via the netlink protocol. If the bind is

successful, it launches 3 threads: the Socket thread, which manages incoming bind/unbind requests

from user processes; the Console thread, which processes console input; and the Placement thread,

which devises and puts into effect new placement decisions.

Socket Thread

The Socket thread manages incoming requests from running processes. We leverage a stream-

oriented Unix Domain Socket (UDS), which allows multiple processes to send bind and unbind requests

in parallel. The created endpoint exists as a file in the path where Control runs. Once the endpoint is

created, Control listens to it, expecting user requests.

The user request structure consists of two fields, which identify the type of request, which can either

be a bind or unbind operation, and the PID of the process to bind.

58

Control does not maintain a list of active PIDs. As such, when a request is received, a simple

sanity check is performed, which assures that the PID is within the valid range as defined in the Linux

kernel. If it is valid, a netlink request is created and sent to the kernel module.

In C/C++/Fortran applications, the preferred method of associating the compiled executable to Ambix

is to call the bind/unbind functions implemented in Ambix API, at the start and end of the execution,

respectively. However, in other languages, Ambix currently provides no direct way of communicating

with Control through the application. Instead, when launching a process, its PID may be passed as an

argument to a piped executable written in C, which sends a bind request to Control with the process’

PID. Similarly, when the process terminates, an unbind executable may be used.

Console Thread

The Console thread processes user input through command input. The defined commands allow users

to manually bind/unbind processes to Ambix, as well as run multiple debug commands. The bind and

unbind commands come as a third alternative to facilitate associating the process to Ambix.

The valid commands are:

• bind, unbind: Requires a PID argument. When the user inputs a bind/unbind command, Con-

trol creates and sends a netlink request to SelMo.

• send: Debug command which requires two arguments. The first argument specifies the migration

orientation, either to promote or demote pages. The second argument specifies the number of

pages to migrate. When the user inputs a valid send command, Control sends a find request to

the SelMo and migrates the pages selected by it to the new tier.

• switch: Debug command that performs a SWITCH PageFind. Requires a single argument that

specifies the number of pages to switch between the DRAM and DCPMM tiers.

• toggle: Also used for debug purposes. The command requires an argument which specifies

which Control component to toggle. The valid arguments are switch, which toggles page

switching, and thresh which toggles threshold balancing. If both components are disabled, Ambix

does not migrate pages.

• clear: Clears the console screen.

• exit: Ends all threads and exits Control.

Placement Thread

The placement thread is responsible for periodically monitoring current memory usage and bandwidth

values. Depending on the collected metrics, the thread devises a new placement decision, sends a find

request to SelMo and migrates the selected pages to their new tier.

In order to get the current memory allocation of each tier, Control leverages the libnuma library

[70], which provides per-node statistics on total node size and utilization. Bandwidth information is

59

obtained with PCMon, which we modify to output current per-node bandwidth information to a shared

file, at the same periodicity as the placement thread.

By design, DRAM has a statically defined maximum usage threshold below its actual size. Above

the threshold, Control considers that the tier is full or near to depletion. The resulting buffer should

be large enough to allow newly referenced pages to fit in the faster tier, while not provoking Ambix to

demote pages too eagerly, which could adversely impact the bound processes’ throughput.

Similarly, DCPMM has a write throughput threshold. If DCPMM’s current throughput is above the de-

fined threshold, Control considers that the tier contains a significant amount of write-intensive pages.

New placement decisions are devised in two components: Switch, and Threshold. Switch

triggers a new placement decision when the DCPMM’s write throughput exceeds a threshold. Then,

the Threshold component is activated, which devises a new placement decision that maximizes the

DRAM utilization, while keeping a buffer of free space for new pages.

We will now describe the placement components’ behavior and how the collected metrics are used

by them to devise new placement decisions.

Switch

The Switch component triggers only when DCPMM is above its write throughput threshold, indicating

that the tier contains write-intensive pages. Although the component’s primary goal is to promote write-

intensive pages to DRAM, it may also select read-intensive if it finds sufficient free space in the tier, or

cold pages that could be exchanged with the promoted ones.

When Switch is triggered, Control sends a PageFind request, the mode of which depends on the

following conditions:

• If the faster tier is below its utilization threshold, Control decides to promote as many intensive

pages as possible such that the faster tier’s threshold is not surpassed. In this scenario, it send a

PROMOTE_INT PageFind to the module, which prioritizes write-intensive pages.

• In contrast, if the faster tier is above its usage threshold, Control decides to switch as many

pages as possible between the tiers, by sending a SWITCH PageFind request to the module. In

this scenario, the current memory usage in both tiers is maintained, as SelMo selects an equal

number of pages from each tier, but minimizes DCPMM’s write throughput, as the demoted pages

either cold or read-intensive.

Threshold

The Threshold component triggers a placement decision when the DRAM is at capacity or under-

provisioned. Three different placement decisions are devised based on the observed metrics:

• If DRAM is above its maximum utilization threshold but there is space available in DCPMM, Con-

trol requests cold pages from the faster tier via a DEMOTE PageFind.

60

• If the Switch component is toggled off via the Console thread, and DRAM is below a minimum

usage threshold, a PROMOTE PageFind is requested to SelMo. In this scenario, the module may

select cold pages from the slower tier, in contrast to the PROMOTE_INT or SWITCH PageFinds

used by the Switch component, since the main goal of the decision is to maximize the faster tier’s

utilization.

• If both tiers are near to depletion, the current page allocation is maintained.

If, after a find request, SelMo sends back a non-empty array of selected pages, Control migrates

them to their new tier. This is achieved with the move_pages() syscall, which is implemented in the

Linux kernel and available to user-space applications.

4.4 Ambix’s Optimizations and Limitations

We minimize the number of system calls performed during Control’s migration phase, by grouping

pages from the same process into a single call. In the SWITCH PageFind scenario, an additional same-

goal optimization is implemented, where Control migrates as many pages as physically possible, i.e.,

until exhausting the destination tier’s available memory, before reversing the migration orientation.

Workloads with uniform access distributions, characterized by an equally small or large reuse interval

among their pages, might not benefit from Control’s Switch component. In the small reuse distance

scenario, Switch prevents cyclic migrations by choosing to retain an intensive page in the slower tier,

when it does not find a corresponding cold page from the faster tier. However, in workloads with large

reuse distances, or ephemeral accesses to their pages, SelMo chooses to promote recently accessed

pages and switch them with pages that, although have not been recently referenced, will be accessed

again sooner in the future. Graph searching algorithms, such as BFS or DFS, are prime examples of the

latter scenario, where a graph’s node is referenced, leading to the promotion of its associated pages to

the faster tier, although it will only be referenced again after iterating over multiple other nodes.

Thus, when binding processes with uniform or near-uniform access distributions, the Switch com-

ponent can be optionally toggled off via the Console thread. In this situation, some scenarios might

emerge, where faster tier space changes during the workload’s execution, as other non-bound processes

allocate pages to the tier, and thus cause Control to demote pages from its bound processes. Without

the Switch component, pages would not be promoted back to the upper tier as non-bound processes

free their memory. Thus, the Threshold component provides a branch that only triggers when Switch

is toggled off and the faster tier has available capacity, such that its utilization is maximized.

In both components, a defined variable dictates the maximum number of pages that can be requested

to SelMo. The variable can be set to a maximum of 2GB worth of pages, due to a packet and payload

limitation of the netlink socket. However, since migration throughput is primarily bottlenecked by the

NVM’s bandwidth, we find the netlink-imposed limit to be adequate for all workloads.

61

62

Chapter 5

Results

In this chapter, we present the experimental results we obtained while evaluating Ambix. We start by

enumerating our evaluation’s goals, then specify our experimental setup, baseline, and chosen work-

loads. Finally, we introduce and discuss the attained results.

5.1 Goals

Our main goal is to understand how Ambix performs in workloads with different characteristics, and

comparing it against: (i) HMA-aware dynamic placement solutions proposed in past literature, and (ii)

placement options that are currently available in off-the-shelf DCPMM-equipped Linux systems. We will

explore how a workload’s throughput is affected in each configuration, comparing workloads with varying

read/write ratios, locality, and access patterns.

In (i), we choose Intel’s AutoNUMA patch [20] and Memos [37], as we believe that these solutions are

closest to the state of the art in dynamic placement, and present mechanisms that could be implemented

with existing hardware.

In (ii), we consider: (a) DRAM and ADM DCPMM with the default node local NUMA policy, without

any dynamic placement solution applied; and (b) MemM DCPMM.1. The former represents a two-tiered

configuration with no tier migration, and the latter provides a hardware-managed caching algorithm,

which dynamically places and evicts intensive data to and from DRAM.

Additionally, our evaluation aims at addressing the following questions:

• What is the overhead of each solution when the workload does not benefit from having having its

pages distributed, such as in workloads with low footprint or that present a near-uniform access

pattern.

• How effective Ambix is in maximizing the percentage of total and write accesses to DRAM.

1We will abbreviate these configurations as ADM-default and MemM, respectively.

63

5.2 Experimental Setup

5.2.1 Hardware Configuration

We configure a Supermicro X11DDW-L motherboard with four 16GB DDR4 DRAM DIMMs and four

128GB DCPMMs. The motherboard has two sockets, each running a 16c/32t Intel R© Xeon R© Gold 5218

CPU, at a base frequency of 2.30 GHz. It has a total of six memory channels, each comprised of two

memory slots, totaling six slots and three memory channels per socket.

We populate two channels with one 16GB DRAM DIMM and one 128GB DCPMM each (1-1). This

achieves a total memory of 288GB per socket when DCPMM is configured in ADM and 256GB when

configured in MemM, since the DRAM modules are configured as a hardware-managed cache in the

latter scenario.

We find that our selected configuration, even if only utilizing two thirds of the available memory slots,

represents a good estimate of both the bandwidth and latency capabilities offered by the introduction of

DCPMM, when integrated into a memory-constrained system.

We configure each socket’s DCPMM in ADM, as a NUMA node, which is transparently granted a

distance smaller than remote DRAM, i.e., pages are prioritized in the local DCPMM node before being

allocated in remote memory. This configuration is applied in all scenarios except when testing the

hardware-based caching approach, where DCPMM is configured in MemM. However, when DCPMM is

configured in ADM, DRAM’s usable capacity is limited to ∼27GB due to idle system resources, similarly

to the system configuration in Section 3.2.

5.2.2 OS Configuration

Since DCPMM is a bleeding edge technology, getting new versions of drivers and memory management

libraries is paramount for our work. Therefore, we choose Debian, a widely used Linux distribution,

which allows us to easily modify and compile any chosen kernel.

All experiments except those with the AutoNUMA patch run on the v5.8.5 kernel.

We reconfigure some of the kernel’s components in order to focus our efforts on the study of DRAM-

DCPMM interaction. We choose to disable AutoNUMA balancing, and set the swappinness value to 0.

The former disables AutoNUMA’s thread scheduling and page migration between NUMA nodes, which

is active by default, while the latter limits swapping to a memory depleted scenario, effectively disabling

it for the workloads we run. Although Ambix was tested and works with Linux’s swapping mechanism,

we disable it in our experiments as it could introduce avoidable variables to our evaluation.

We run experiments with the AutoNUMA patch on a separate kernel (v5.5), since the patch makes

extensive and fundamental changes to Linux’s memory management subsystem. For this kernel, we

leave the AutoNUMA balancing and swappinness values to their default values. This is an essential

step, since otherwise AutoNUMA would not perform any migrations.

In all workloads we run, we limit CPU utilization to a single socket, via the numactl CLI, and also bind

it to the DRAM and DCPMM NUMA nodes within the CPU’s socket or simply to the DCPMM node in the

64

MemM scenario.

5.2.3 Ambix Configuration

As a prerequisite to using Ambix, we patch the v5.8.5 with a single line of code, which makes the

walk_page_range() routine callable from kernel-level modules.

We assume that, as traditional in dynamic solutions, no information about each bound workload is

known before runtime. Therefore, we configure Ambix identically for all workloads. Our chosen values

come from a prior study with multiple executions of a variety of benchmarks, from pmbench [91, 92] and

the Parsec [71] and NPB [21, 22] suites. We settled for values that provide the best possible throughput

gain in all scenarios.

The used variables are defined as follows:

• Control’s periodicity, i.e., the frequency at which the user-level component performs new place-

ment decisions, is set to 2 seconds.

• The DRAM target threshold variable is set to 0.95, therefore keeping at least 5% free space in

DRAM at all times, demoting pages if needed.

• The clear mechanism delay, used before selecting DCPMM-resident pages to promote, is set to

50ms.

• The Switch component is always activated, therefore having no need to set a target threshold for

DCPMM.

• DCPMM’s write throughput threshold (monitored by PCMon), after which Control reacts to the

presence of write-intensive pages in DCPMM is set to 50MB/s.

5.3 Experimental Baseline

This section presents further information about our chosen baselines, and gives some initial insights on

how we think they will perform when pitted against each other.

Ambix can be directly compared to the ADM-default, the AutoNUMA patch, and Memos configura-

tions, since we configured DCPMM identically. We can also extract some insight on whether or not

the MemM configuration improves system performance when compared to the former ADM-based page

placement solutions and, if so, rank it against the dynamic ones.

5.3.1 HMA-Aware Placement Solutions

Our solution is tested against Intel’s AutoNUMA patch, which is the only publicly available dynamic page

placement solution designed specifically for systems that integrate DCPMM. The patch relies on an ADM

65

configuration, where both DRAM and DCPMM are directly accessible and seen as NUMA nodes by the

system 2.

The authors provide multiple patched versions, available in a Git repository [93]. We choose the

tiering-0.4 version, which is the most up-to-date documented version currently, based on the v5.5 kernel.

We configure the kernel and run the post boot setup as proposed in the documentation, using the

recommended settings for performance experiments.

Additionally, we incorporate Memos into the comparison, as it presents a bandwidth-aware approach,

which starts by initially placing every page in NVM (see Section 2.3.2. Memos proposes a full-fledged

solution that has other focuses besides page placement, such as bank imbalance, alternative migration

techniques, and an in-house TLB miss profiler.

We decided to implement a simplified version, strictly focusing on the proposed placement algorithm,

relying on the mechanisms implemented in Ambix to classify pages, as the solution was unfortunately

not publicly available nor provided by the authors. Memos’ current parametrization is suited to low

footprint workloads, only migrating a maximum of 10,000 pages at each cycle, which correlates to 1MB/s.

Therefore, we change it to make it as competitive as possible with our chosen workloads, as some will

be multiple times larger than DRAM size (>27GB).

Firstly, we tighten Memos’ periodicity from 40s to 4s and, in order to fit in the new 4s period, lower the

number of required page classifications to a single one, sacrificing accuracy for performance. Secondly,

we increase the maximum number of pages that can be migrated in a given period to 10x its original

value, allowing 100,000 pages to be promoted. Both changes increase Memos’ migration rate-limit a

hundredfold, to 100MB/s 3.

We expect that Memos, even though it presents bandwidth- and asymmetry-aware placement mech-

anisms, will have poor performance in low footprint workloads, due to its initial placement policy. Further-

more, in all workloads, its throughput-dependent migration policy may become affected by a transition

to different phases of execution, where throughput may vary due to other factors besides the previous

migration, and thus trigger a suboptimal migration decision in the following cycle.

Since we implement Memos using Ambix’s user- and kernel-level modules we decide to leave the

DRAM threshold and delay to their default values.

5.3.2 Default Configurations

We benchmark dynamic placement solutions against the ADM-default and MemM configurations.

Although the former provides no dynamic placement decisions, we expect it to perform best in work-

loads with poor locality, as we expect migration or caching decisions to worsen performance when ap-

plied to random or uniformly-distributed access patterns, due to the classification and migration/caching

overhead.

We expect that the MemM configuration will be competitive against HMA-aware algorithms in high

locality and low footprint scenarios, as it can cache a workload’s entire intensive working set in DRAM,

2This configuration will be referred to as autonuma.
3We will refer to this plain version as memos.

66

and therefore have comparable performance to HMA-aware solutions. However, its performance should

fall off in workloads with higher footprint or asymmetric data accesses, as it not only does not distinguish

write- and read-dominated pages, but also always caches pages on accesses, which could lead to some

thrashing due to the promotion and soon-after demotion of sporadically-accessed pages.

5.4 Workloads

In order to present a comprehensive assessment of all configurations, we start our evaluation with the

pmbench synthetic benchmark [91, 92], which grants us a higher degree of control over the generated

workloads. We then move on to benchmarks from two well-known HPC-related suites, NAS Parallel

Benchmarks (NPB) [21, 22] and GAP [23, 24].

All chosen benchmarks are based on OpenMP (OMP) [94]. We configure the OMP_NUM_THREADS

environment variable to 32, therefore fully utilizing all available available cores in a single socket.

The next sections describe each of the benchmarks and applied parametrizations, as well as what

information we want to extract for each of them. In GAP and NPB, we used PCMon in order to determine

each workload’s read to write distribution.

5.4.1 Pmbench

We choose the pmbench micro-benchmark, which was originally designed to test paging performance

in systems equipped with non-volatile storage devices. We find that pmbench’s configuration options are

able to replicate common memory access patterns. Furthermore, it was also selected by the authors of

the AutoNUMA patch in their presented evaluation [20].

Pmbench allows us to benchmark workloads with varying degrees of locality, which are generated

based on a range of mathematical patterns. It also allows setting different workload sizes, and diversify

the percentage of read to write operations.

Before running the timed portion of the benchmark, pmbench allocates and initializes the full test

array sequentially. Thus, lower entries are placed first in DRAM in all configuration except memos and

MemM, which allocate the full array in DCPMM.

We parametrize pmbench with a Gaussian distribution, varying the standard deviation (σ) parameter.

Higher σ values generate workload patterns with less locality, akin to a uniform distribution, while lower

σ values generate a workload where most accesses are to the pages at the center of the array and the

extremities are rarely accessed.

Our chosen σ values are 12.5% and 25% of the array size, i.e., total number of allocated pages. As

traditional in a Gaussian distribution, 68% of accesses are within one σ from the middle point, or mean,

of the array, and 95% within two σ. This means that, for σ = 12.5%, 95% of all accesses are to 50% of the

pages, where these pages are located in the 25% to 75% range of the array. In contrast, for σ = 25%,

pages in the 0-25 and 75-100% range receive 38% of accesses, therefore generating a workload with

less locality.

67

The percentage of read to write operations is also tuned to different values: 20%, 50%, and 80%.

However, this configuration only affects the probability of a page access being a read or write operation,

and thus every page has a similar read/write-dominance

We also define different workload sizes ranging from 32 to 240 GB. The chosen range always allows

the workloads to always fit in a single socket.

Our chosen parametrization enables us to observe how DCPMM’s higher write latency affects overall

throughput, as well as compare the scalability of all dynamic configurations in scenarios with more or

less locality. However, it is unable to evaluate the asymmetry-aware mechanisms existing in memos,

autonuma, and ambix.

5.4.2 GAP

The Graph Algorithm Platform (GAP) benchmark suite emulates the behavior of graph-processing ap-

plications by presenting traverse- and compute-centric benchmarks which perform common operations

over a generated or inputted graph.

We choose the breadth-first search (BFS) benchmark from GAP v1.3, which traverses all nodes of

a fixed size graph. The benchmark is parametrized to generate graphs of 2n nodes, with n ∈ 27, 28, 29,

which result in a memory footprint of 35, 70 and 140GB, respectively, running for 50 iterations each. The

workloads have a good balance between read and write accesses (2R:1W).

Due to the nature of the BFS algorithm, we expect the workload to have an irregular access pattern,

where each node, and consequentially each page, is referenced a similar number of times, with no

pages being more read- or write-dominated than others. Despite being irregular, the workload has

sequential-like properties, as nodes at each depth are traversed in sequence.

Therefore, GAP BFS will give us insight on how each configuration performs when applied to a work-

load with a sequential access pattern, where pages have a similar read/write-dominance and access

frequency. Furthermore, we hypothesize that BFS will induce a lot of thrashing in the Ambix, memos,

autonuma and MemM configurations, as pages intensive at a certain point in time will not be referenced

throughout the remainder of the current iteration. Thus, GAP BFS will also give some insight on how

these configurations perform in a thrashing-heavy scenario.

5.4.3 NPB

The Numerical Aerodynamic Simulation (NAS) Parallel Benchmark suite presents multiple benchmarks

which mimic common access patterns in computational fluid dynamics applications, and was designed

to evaluate the performance of parallel supercomputers.

We choose 4 benchmarks from the OMP version of NPB v3.4.1, which present a good balance between

computational cost and memory bandwidth requirements, and have different read/write intensity:

• BT: Block tridiagonal matrix solver. Generates read-intensive workloads (3.5R:1W).

68

Benchmark Parametrization Memory Requirements (GB)

BT

small 28.4

medium 39.1

large 53.9

FT

small 20

medium 40

large 80

MG

small 26.5

medium 74.3

large 131

CG

small 18

medium 39.8

large 150

Table 5.1: NPB’s BT, FT, MG, and CG memory requirements.

• FT: Discrete Fast Fourier Transform algorithm over a three dimensional data set. Very write-

intensive (1.7R:1W).

• MG: Computes a multigrid algorithm over a sequence of meshes. Read-intensive (4R:1W).

• CG: Runs the conjugate gradient method on a system of linear equations. Very read-intensive

(>60R:1W).

Each benchmark presents up to 8 pre-defined problem sizes, where the largest require multiple

terabytes of memory. We instead choose to directly modify the parametrizations the benchmarks’ source

code, in order to tailor it to our system’s memory capacity and available processing power.

For each NPB benchmark, we evaluate small (∼0.8x DRAM size), medium (∼1.5x) and large (∼3.5x)

parametrizations, which we present in Table 5.1.

Unlike the previous, these benchmarks have write- and read-dominated pages, and have been pre-

viously used to evaluate the static solutions proposed in Servat et al.[40] and Unimem [41]. Therefore,

the benchmarks represent the most common use case for an asymmetry-aware solution, when applied

to a DRAM-DCPMM system.

5.5 Experimental Results

In this section, we present the experimental results obtained with all configurations. We will start by

presenting all results obtained with pmbench, GAP, and NPB, respectively. For each benchmark, we

compare the performance attained with each configuration, and talk over details specific to each bench-

mark. We then conclude the section by providing an overview of all configurations, specifying their

respective benefits and weaknesses.

5.5.1 Pmbench – Scalability Potential

Pmbench generates a report at the end of a benchmark, where it outputs the average access latency

(AAL) in microseconds per access, as well as the average clock cycles taken per access. We choose

69

the AAL metric for presenting and discussing the experimental data.

We will use the presented results to evaluate each configuration’s scalability potential, or lack thereof.

All selected workload sizes surpass DRAM size (27GB).

32 64 128 240
0

1

2

Workload Size (GB)

A
A

L
(µ
s/

ac
ce

ss
)

ADM-default
MemM
memos

autonuma
ambix

(a) σ = 12.5%, 20% Reads

32 64 128 240
0

1

2

3

Workload Size (GB)

(b) σ = 25%, 20% Reads

32 64 128 240
0

1

2

Workload Size (GB)

A
A

L
(µ
s/

ac
ce

ss
)

(c) σ = 12.5%, 50% Reads

32 64 128 240
0

1

2

Workload Size (GB)

(d) σ = 25%, 50% Reads

32 64 128 240
0

0.5

1

Workload Size (GB)

A
A

L
(µ
s/

ac
ce

ss
)

(e) σ = 12.5%, 80% Reads

32 64 128 240
0

0.5

1

Workload Size (GB)

(f) σ = 25%, 80% Reads

Figure 5.1: Pmbench plots. Varying workload size and locality, single socket, 32 threads.

In Figure 5.1, we can see the pmbench plots with varying sizes, σ, and read/write ratio.

70

ADM-default

In the ADM-default plots, we observe a logarithmic growth in AAL in all scenarios, settling around the

128GB range in the σ = 12.5% workloads, depicted in Figures 5.1a, 5.1c and 5.1e.

The ADM-default configuration initially places pages in the nearest node with free memory, and

maintains them in their original node for the duration of the workload. Since pmbench initializes the page

array before the workload runs, the lower entries of the array are placed in DRAM. This means that, in

the 32GB workloads, the configuration only allocates the last 5GB of the array’s pages in DCPMM. In

the 32GB σ = 12.5% workloads, the DCPMM-resident pages fall outside the 2σ range, and therefore are

seldom referenced.

For the 64GB σ = 12.5% workloads, 3GB of pages that were placed in DRAM fall within the σ range,

and therefore are frequently requested. However, for both the 128 and 240GB workloads almost 100%

of accesses are performed to pages placed in DCPMM, as the middle point of the array is allocated

far inside DCPMM, with all DRAM-resident falling outside of the 2σ range. These configurations output

similar AAL compared to each other, but worse compared to the 64GB parametrization.

In the 25% sigma scenario, the less localized nature of the workload makes it so that the percentage

of DRAM Hits is greater in the 128GB workloads compared to the 240GB, and as such performance

degrades further in the latter. Moreover, even in the 32GB parametrization, wherein the configuration

allocates only the last 5GB of pages in DCPMM, some accesses are performed to the tail ends of the

array (within 2σ). Therefore, compared to the 32GB σ = 12.5% workloads, AAL increases by an average

of 25% across all read/write distributions, with a peak increase of 30% in the write-intensive 20% reads

workload.

ADM-based Dynamic Solutions

In larger workload sizes, the autonuma and ambix solutions initially allocate the middle part of the array

in DCPMM, identically to the ADM-default configuration, but dynamically migrate them between tiers.

Moreover, the pages from the initial entries of the array, which are allocated in DRAM, will be infrequently

accessed, especially in the more localized workloads. Thus, as the workload size increases, these

configurations must exchange a larger amount of pages in order to improve the workload’s throughput.

This allows us to discuss and compare the scalability potential of both solutions.

In the 64-240GB σ = 12.5% workloads, we see an improvement in AAL in these configurations

compared to the static ADM-default. In this range, the ambix configuration improves AAL by 16%, while

autonuma improves by 18%. ambix outperforms autonuma in the 64GB workloads, by an average of

6.3%. However, is it outperformed by 12% in the 128GB workloads, with no performance difference in

the 240GB parametrizations.

In the 64-240GB σ = 25% workloads, both the autonuma and ambix configurations have a lesser

benefit compared to ADM-default, with an average improvement of 5 and 6%, respectively.

The memos configuration initially places every page in DCPMM, and migrates them based on the

previous migration’s throughput benefit. However, its implementation proves ineffective, as throughput is

71

affected not only by prior migrations but also due to access pattern changes, where the latter introduces

noise to Memos’ BW-aware mechanism, and causes suboptimal migration decisions.

In memos, the majority of accesses are fulfilled by DCPMM, as reflected by the identical AAL to

ADM-default in the 240GB σ = 12.5% workloads, which, as discussed, have almost all accesses fulfilled

by DCPMM. This conclusion is further supported by the observed DRAM and DCPMM throughput,

monitored with PCMon, at different stages of execution. Despite some fluctuations in the DRAM and

DCPMM respective throughputs due to some pages migrating between tiers, the aggregate throughput

did not improve throughout the workloads’ execution.

We conclude that the autonuma configuration scales better than ambix by a small margin in work-

loads with a footprint close to or above 128GB, but has no advantage in the 240GB parametrizations.

memos, on the other hand, is unable to improve system throughput with its current placement strategy,

and leaves the majority of all frequently accessed pages in DCPMM, therefore having a constant AAL in

all scenarios.

MemM

The MemM configuration dynamically caches intensive data in DRAM, replacing the least recently used

cache blocks when full. As such, in workloads that frequently access more pages than those that can

fit in the DRAM cache, the caching algorithm will frequently replace data, leading to an increase in data

movement costs associated with caching and evicting pages.

This phenomenon can be observed in all σ = 12.5% workloads. We see that AAL is similar in the 64

and 128GB parametrizations, but has a sharp increase in the 240GB compared to the 128GB workloads.

For the 64GB workloads, almost all accesses are performed to 32GB of pages (within 2σ), which allows

MemM to cache these pages and maintain them cached for the duration of the workload. For the 128GB

workloads, performance does not degrade, even though the same subset of pages only receives about

68% of accesses. Thus, the MemM configuration is able to remain performant even when the number

of frequently accessed pages surpasses DRAM size by 2x. However, in the 240GB parametrization,

MemM performance degrades by an average of 46% in all scenarios, in which the number of frequently

requested pages is about 4x larger than the DRAM cache’s size.

For the σ = 25% workloads, increasing size always degrades performance, as all pages of the array

are frequently accessed (within 2σ).

The hardware-based caching approach suffers in larger workload sizes, most notably in the lower

locality σ = 25% workloads, in which its frequent cache replacements cause AAL to degrade past the

static ADM-default configuration. Compared to autonuma and ambix, the configuration is only effective

in the write-intensive σ = 12.5% 128GB workload, where its more aggressive caching strategy, which

always decides to cache an accessed page, proves best among all configurations.

72

34.7 (s) 69.5 (m) 138 (l)
0

0.5

1

1.5

2

Workload Size (GB)

Ite
ra

tio
ns

pe
rs

ec
on

d
(it

/s
) ADM-default

MemM
memos

autonuma
ambix

Figure 5.2: GAP BFS (2R:1W) plots. Varying workload size, Single socket, 32 threads

5.5.2 GAP – Sequential Pattern Performance

In Figure 5.2 we present the plots of a small, medium, and large parametrizations of GAP BFS, where

the y axis represents throughput in iterations per second (it/s). All three parametrizations surpass DRAM

size, and therefore a subset of pages must be placed in DCPMM.

As aforementioned, the BFS algorithm iterates over a generated graph of varying size, where ac-

cesses shift sequentially through the array, with no locality. As such, DCPMM-resident pages that a

dynamic algorithm decides to promote do not compensate their migration cost in future accesses. More-

over, if DRAM is full and causes the algorithm to find cold pages to demote, these pages will usually be

accessed sooner in the future than the promoted pages. Therefore, this study compares the dynamic

solutions’ capability of reducing the total number of unnecessary migrations performed, i.e., thrashing,

where ADM-default, among the considered solutions, is expected to achieve the best throughput.

In the small parametrization, the MemM is best out of all dynamic configurations, with a throughput

6.8% lower than ADM-default, but falls off in the medium and large, where ambix (17% lower) and auton-

uma (10% lower) are best, respectively. On average, the MemM, autonuma and ambix configurations

decrease throughput similarly, by 17.8%, 16%, and 17.6%, respectively. The memos configuration, on

the other hand, lowers throughput by 87.5% in all three parametrizations.

Overall, the autonuma configuration provides the best sequential pattern performance out of all dy-

namic solutions, with ambix following closely behind by a 1.6% margin.

The AutoNUMA patch mitigates thrashing by measuring the time between a PTE’s protected bit

clear and subsequent access, relying on the mechanism existing in the base AutoNUMA algorithm. In

contrast, Ambix achieves thrashing mitigation by clearing the PTE’s R/D bits in DCPMM, shortly before

selecting which pages to promote, therefore choosing to only promote pages accessed since they had

their bits cleared. Ambix also enables programmers to proactively disable its Switch component, when

expecting to bind an application with low locality. In this scenario (not shown in Figure 5.2), the average

throughput in all three parametrizations drops by 2%, as opposed to the original 17.6%. We attribute this

throughput drop to the buffer of free DRAM space Ambix decides to keep, regardless of the use of the

73

Benchmark Parametrization
DRAM Hits % DRAM Writes %

ADM-default autonuma ambix ADM-default autonuma ambix

BT

small 100% 53% 100% 100% 35% 100%

medium 77% 42% 95% 55% 16% 95%

large 51% 36% 83% 26% 14% 92%

FT

small 100% 100% 100% 100% 100% 100%

medium 29% 78% 93% 24% 79% 94%

large 7% 82% 88% 5% 83% 89%

MG

small 100% 100% 98% 100% 100% 99%

medium 45% 44% 48% 43% 42% 49%

large 29% 28% 31% 28% 28% 30%

CG

small 100% 100% 100% 100% 100% 100%

medium 28% 72% 90% 95% 96% 91%

large 2% 54% 77% 31% 37% 50%

Average

small 100% 88% 100% 100% 84% 100%

medium 45% 59% 82% 54% 58% 82%

large 22% 50% 70% 23% 41% 65%

Table 5.2: NPB Benchmark’s DRAM total and write Hit Rate comparison.

Switch component. Similarly to what was observed in pmbench, Memos’ initial allocation in DCPMM

and bandwidth-aware migration proves suboptimal in GAP BFS, with the vast majority of accesses being

performed to DCPMM during the workload.

5.5.3 NPB – Dynamic Configuration’s Performance in HPC applications

We consider that the NPB benchmarks depict common use cases for a dynamic page placement algo-

rithm running in a HPC system populated with a DRAM-DCPMM HMA. Thus, we will evaluate all aspects

of each dynamic configuration, comparing their performance in relation to ADM-default.

We use the small parametrizations to evaluate overhead, as ADM-default places every page in

DRAM, which enables it to achieve the best throughput in all scenarios. In the larger parametrizations,

similarly to pmbench, the ADM-default configuration sets the baseline for improvement.

Figure 5.3 presents four graphs which contain the average throughput of the BT (fig. 5.3a), FT

(fig. 5.3b), MG (fig. 5.3c), and CG (fig. 5.3d) benchmarks, each with three different parametrizations,

ordered by footprint. Furthermore, we introduce a fifth graph, which shows the geometric mean of all

four chosen benchmarks, called NPBAVG (Figure 5.3e). We choose to represent the average as a

geometric mean due to the large throughput difference between the tested benchmarks, which would

consequentially give more relevance to read- or bandwidth-intensive workloads. In all graphs, the y axis

represents throughput in million operations per second (M Ops/s).

Table 5.2 contains the percentage of total memory accesses fulfilled by the DRAM tier (DRAM Hits

%), and from specifically write accesses (DRAM Writes %). The data in this table was generated in a

separate run with PCMon, which we set to measure read and write operations to each node. Note that

the collected values also include memory accesses due to page migration operations. The presented

data shows how effective the autonuma and ambix configurations are at minimizing all and especially

write accesses to DCPMM. We decide not to include memos into the table as it consistently performs

74

28.4 (s) 39.1 (m) 53.9 (l)
0

1

2

3

·104

Workload Size (GB)

Th
ro

ug
hp

ut
(M

O
ps

/s
)

(a) BT (3.5R:1W)

20 (s) 40 (m) 80 (l)
0

0.2

0.4

0.6

0.8

1

1.2

·104

Workload Size (GB)

(b) FT (1.7R:1W)

26.5 (s) 74.3 (m) 131 (l)
0

0.2

0.4

0.6

0.8

1

·104

Workload Size (GB)

Th
ro

ug
hp

ut
(M

O
ps

/s
)

(c) MG (4R:1W)

18 (s) 39.8 (m) 150 (l)
0

0.2

0.4

0.6
·104

Workload Size (GB)

(d) CG (60R:1W)

small medium large
0

0.2

0.4

0.6

0.8

1

1.2

·104

Parametrization

Th
ro

ug
hp

ut
(M

O
ps

/s
)

ADM-default
MemM
memos

autonuma
ambix

(e) NPBAVG

Figure 5.3: NPB plots. Varying workload size, Single socket, 32 threads

75

worse than the ADM-default configuration. Similarly, we also exclude MemM from the table.

Small Workloads

In the small data sets, autonuma has an identical performance to ADM-default in the FT, MG, and CG

workloads, but presents a 60% lower throughput in the BT workload.

We attribute this larger drop to the combination of two factors. The AutoNUMA patch relies on a

non-zero swappinness value, as it is designed to extend the kswapd daemon in order to demote pages

to DCPMM. However, it does not make changes to how the page selection mechanism is implemented,

and thus fails to consider asymmetry when choosing which pages to demote. This means that the

algorithm may end up choosing write-intensive pages to migrate to DCPMM. When this happens: (i)

the demoted page is written to DCPMM; (ii) it may quickly trigger the patch’s fault-based promotion

mechanism, which is more relaxed when the page fault is caused by a write access. This is further

supported by the DRAM write % table, in which 65% of all write accesses are performed by DCPMM in

the autonuma configuration.

In contrast, the migration mechanism of Ambix not only keeps a smaller 5% buffer in the faster tier,

but also chooses to never demote a page it considers write-intensive even if it fails to find a suitable

amount of cold ones. With this mechanism, Ambix is able to fully mitigate writes and virtually every

access to the DCPMM tier in BT, as well as in all other small parametrizations.

On average, MemM performs better than autonuma and identically to ambix, in the small workloads

(Figure 5.3e). Compared to ADM-default, MemM has an average 1.4% throughput penalty in all small

workloads, reaching up to a 3% drop in the write-intensive FT workload.

Although the hardware-based caching algorithm starts by placing every page in DCPMM, the full

working set is eventually cached in DRAM at first access, and therefore its performance only suffers

from the initial placement policy. Therefore, since the initialization phase throughput is also measured in

NPB’s report, but dominated by the workload phase, we find the 1.4% overhead expected.

Similarly to the previous benchmarks, memos outputs the worst possible throughput in the small

parametrizations, with an average 82% lower throughput, compared to ADM-default, being best in the

very read-intensive CG benchmark, with still a large 62% drop.

Medium and Large Parametrizations

Compared to ADM-default, in the medium data sets, the MemM, autonuma, and ambix configurations

have a speedup of 1.5x, 1.3x, and 2.7x on average, while in the large parametrizations the speedup

increases to 2.8x, 1.8x, and 4.4x, respectively.

Despite the fact that Ambix performed no better than the AutoNUMA patch in the high locality pm-

bench workloads past 128GB, we observe that its placement mechanisms improve both throughput and

DRAM hit rate more than the AutoNUMA patch in the larger parametrizations, despite only changing a

single line of code in the kernel, and processing most of the placement decisions in a user-level process.

In all medium and large workloads, ambix has an average speedup of 3.6x, compared to autonuma’s

76

1.6x. The speedup is further supported by ambix ’s improved DRAM hit rate (76% vs. 55%), and write

access hit rate (74% vs. 50%). Its benefit is most noticeable in the BT workloads, where autonuma

fails to improve the ADM-default configuration, while ambix has an average 1.25x speedup. In the read-

intensive CG workload, autonuma grants better performance than ambix in the medium parametrization,

but falls off in the large one, with a 3x vs. 10x speedup compared to ADM-default.

While in the smaller parametrization, MemM is the third best non-static solution, it performs better

than autonuma in the majority of medium and large workloads. However, ambix still surpasses it, having

a 25% higher average throughput, in the medium and large parametrizations.

5.5.4 Summary

Throughout the evaluation section we reached the following set of conclusions:

• Ambix outperforms Intel’s AutoNUMA patch in the NPB benchmarks, consistently improving DRAM

total and write hit rate, as well as throughput. However, we identify some minor advantages to the

latter in terms of scalability, as well as sequential access performance in the larger GAP BFS data

set.

• Memos is unable to improve throughput, even in data sets that fully fit in DRAM, showing that its

bandwidth-aware promotion mechanism is inefficient at saturating DRAM throughput.

• The MemM configuration improves the AutoNUMA patch but performs worse than Ambix in the

NPB benchmarks. The configuration shows the worst scalability values in all tested pmbench

workloads, often having worse results Memos, which maintains almost all pages in DCPMM.

77

78

Chapter 6

Final Considerations

In this chapter, we discuss the conclusions of this work, and reflect on the future work that could lead to

further improvements to not only Ambix, but all HMA-aware placement solutions.

6.1 Conclusions

In this work, a dynamic page placement algorithm for DCPMM-equipped systems was proposed and

evaluated against other relevant configurations, including two other proposed dynamic algorithms for

our architecture and the DCPMM’s hardware-based caching implementation. Our evaluation included

benchmarks which test scalability, performance in sequential access patterns, and expected potential

in HPC applications, all of which tested common scenarios where a DRAM-DCPMM system could be

beneficial due to its increased memory capacity.

We described Ambix in detail, specifying critical implementation decisions in its design. These deci-

sions were justified from two created benchmarks (IWB and PB), which tested the latency and energy

impact of different page distributions and placement policies. Our discussion of these benchmarks not

only helped justify Ambix’s implementation, but also provides a relevant base for future work.

Despite the fact that DCPMM-equipped systems are still uncommon in servers and supercomput-

ers, we estimate that the technology will become mainstream in the near future, due to the well studied

memory scalability problem, which states memory capacity as one of the primary bottlenecks in current

systems. This will broaden our work’s scope to all scenarios that are currently DRAM-constrained but

need to remain performant when running memory intensive workloads, in which scenario simply inte-

grating DCPMM into the system is not sufficient. Ambix was able to improve throughput in the majority

of workloads, when compared to DCPMM’s MemM configuration, while leveraging existing mechanisms

in commodity Linux kernels and being implemented with low footprint within the kernel.

Therefore, one of the major takeaways in our work is that a performant HMA system can be achieved

without extensive kernel changes, and that DCPMM can replace some DRAM DIMMs, while still remain-

ing performant.

Overall, we find our work’s contributions to be useful to both the HPC and NVM-research fields, as

79

we find that our solution can remain relevant not only in future NVM technologies and memory man-

agement hardware improvements but also in emerging HPC workloads. We also devised our solution

in a way that is easily extensible to consider future improvements in NVM technology but also a possi-

ble integration with parallel placement algorithms, which could be applied to multi-socket or a multiple

machine scenarios.

6.2 Future Work

Although we have extensively tested Ambix in our system with benchmarks which test common HPC-

related access patterns, we have yet to evaluate how our solution would perform with real HPC work-

loads when configured on dedicated hardware.

Before this can be accomplished, we find that we need to target some of Ambix’s inefficiencies, namely

its:

• Migration throughput, by transitioning from a syscall-based migration to a more efficient solution,

such as the direct memory access (DMA) migration technique proposed in Nimble [95].

• Netlink-based communication protocol, which currently allows Ambix’s user- and kernel-level

to communicate should be replaced with a mechanism that allows more pages to be sent, as a

consequence of the increased migration throughput.

• Multi-socket agnosticism. Ambix could be extended with the locality- and/or contention-based

mechanisms discussed in prior NUMA-aware literature, considering new metrics such as access

locality and load imbalance. Alternatively, we find that Ambix could also be integrated into an

existing NUMA-aware solution, managing placement within each socket.

On a concrete note, we will continue working on Ambix, combining it with a static solution currently

being developed in parallel with this work by the Barcelona Supercomputing Center, on the scope of

the EPEEC project. We expect that this integration will improve both solutions, combining: (i) the static

solution’s in-depth knowledge about which objects cause the highest number LLC misses, using the

information to steer initial placement; and (ii) Ambix’s high-frequency migration component, which will

enable the solution to react to access pattern changes, by temporarily or permanently deviating pages

from the node where they were originally allocated.

80

Bibliography

[1] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S. H. K. Narayanan, A. A. Chien, P. Hov-

land, and B. Norris. Exascale workload characterization and architecture implications. In 2013 IEEE

International Symposium on Performance Analysis of Systems and Software (ISPASS), pages 120–

121. IEEE, 2013.

[2] O. Villa, D. R. Johnson, M. Oconnor, E. Bolotin, D. Nellans, J. Luitjens, N. Sakharnykh, P. Wang,

P. Micikevicius, A. Scudiero, et al. Scaling the power wall: a path to exascale. In SC’14: Proceed-

ings of the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 830–841. IEEE, 2014.

[3] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology challenges. In International

Conference on High Performance Computing for Computational Science, pages 1–25. Springer,

2010.

[4] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Phase change memory architecture and the quest for

scalability. Communications of the ACM, 53(7):99–106, 2010.

[5] A. Chen. A review of emerging non-volatile memory (nvm) technologies and applications.

Solid-State Electronics, 125:25 – 38, 2016. ISSN 0038-1101. doi: https://doi.org/10.

1016/j.sse.2016.07.006. URL http://www.sciencedirect.com/science/article/pii/

S0038110116300867. Extended papers selected from ESSDERC 2015.

[6] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E.

Goodson. Phase change memory. Proceedings of the IEEE, 98(12):2201–2227, 2010.

[7] S. Lai. Current status of the phase change memory and its future. In IEEE International Electron

Devices Meeting 2003, pages 10–1. IEEE, 2003.

[8] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory system

using phase-change memory technology. In ACM SIGARCH Computer Architecture News, vol-

ume 37, pages 24–33. ACM, 2009.

[9] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable dram

alternative. ACM SIGARCH Computer Architecture News, 37(3):2–13, 2009.

81

http://www.sciencedirect.com/science/article/pii/S0038110116300867
http://www.sciencedirect.com/science/article/pii/S0038110116300867

[10] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi,

C. Lam, L. A. Lastras, A. Padilla, et al. Phase change memory technology. Journal of Vacuum Sci-

ence & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement,

and Phenomena, 28(2):223–262, 2010.

[11] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating stt-ram as an energy-

efficient main memory alternative. In 2013 IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), pages 256–267. IEEE, 2013.

[12] K. Wang, J. Alzate, and P. K. Amiri. Low-power non-volatile spintronic memory: Stt-ram and beyond.

Journal of Physics D: Applied Physics, 46(7):074003, 2013.

[13] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. Energy reduction for stt-ram using early write termination.

In Proceedings of the 2009 International Conference on Computer-Aided Design, pages 264–268.

ACM, 2009.

[14] J. Müller, T. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar,

A. Kersch, et al. Ferroelectric hafnium oxide: A cmos-compatible and highly scalable approach to

future ferroelectric memories. In 2013 IEEE International Electron Devices Meeting, pages 10–8.

IEEE, 2013.

[15] S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller,

T. Melde, et al. A fefet based super-low-power ultra-fast embedded nvm technology for 22nm fdsoi

and beyond. In 2017 IEEE International Electron Devices Meeting (IEDM), pages 19–7. IEEE,

2017.

[16] H. Akinaga and H. Shima. Resistive random access memory (reram) based on metal oxides.

Proceedings of the IEEE, 98(12):2237–2251, 2010.

[17] I. B. Peng, M. B. Gokhale, and E. W. Green. System evaluation of the intel optane byte-addressable

nvm. In Proceedings of the International Symposium on Memory Systems, pages 304–315, 2019.

[18] M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart, C. Herold, A. Bonanni, A. Jack-

son, and M. Parsons. An early evaluation of intel’s optane dc persistent memory module and its

impact on high-performance scientific applications. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis, pages 1–19, 2019.

[19] Intel. Intel Aurora Supercomputer. https://www.intel.com.au/content/www/au/en/

high-performance-computing/supercomputing/aurora-video.html. Accessed:2021-

04-11.

[20] Y. Huang. autonuma: Optimize memory placement in memory tiering system. https://lwn.

net/Articles/803663/, 2020. [Online; accessed 19-November-2020].

[21] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi, P. O.

Frederickson, T. A. Lasinski, R. S. Schreiber, et al. The nas parallel benchmarks summary and

82

https://www.intel.com.au/content/www/au/en/high-performance-computing/supercomputing/aurora-video.html
https://www.intel.com.au/content/www/au/en/high-performance-computing/supercomputing/aurora-video.html
https://lwn.net/Articles/803663/
https://lwn.net/Articles/803663/

preliminary results. In Supercomputing’91: Proceedings of the 1991 ACM/IEEE conference on

Supercomputing, pages 158–165. IEEE, 1991.

[22] NASA. NAS Parallel Benchmarks. https://www.nas.nasa.gov/publications/npb.html,

2021. [Online; accessed 20-May-2021].

[23] S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite. arXiv preprint

arXiv:1508.03619, 2015.

[24] S. Beamer, K. Asanović, and D. Patterson. GAP Benchmark Suite. http://gap.cs.berkeley.

edu/benchmark.html, 2021. [Online; accessed 20-May-2021].

[25] S. Lee, H. Bahn, and S. H. Noh. Clock-dwf: A write-history-aware page replacement algorithm for

hybrid pcm and dram memory architectures. IEEE Transactions on Computers, 63(9):2187–2200,

Sep. 2014. doi: 10.1109/TC.2013.98.

[26] M. Lee, D. H. Kang, J. Kim, and Y. I. Eom. M-clock: Migration-optimized page replacement al-

gorithm for hybrid dram and pcm memory architecture. In Proceedings of the 30th Annual ACM

Symposium on Applied Computing, SAC ’15, pages 2001–2006, New York, NY, USA, 2015. ACM.

ISBN 978-1-4503-3196-8. doi: 10.1145/2695664.2695675. URL http://doi.acm.org/10.

1145/2695664.2695675.

[27] H. Seok, Y. Park, and K. H. Park. Migration based page caching algorithm for a hybrid main memory

of dram and pram. In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11,

pages 595–599, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0113-8. doi: 10.1145/1982185.

1982312. URL http://doi.acm.org/10.1145/1982185.1982312.

[28] H. Seok, Y. Park, K.-W. Park, and K. H. Park. Efficient page caching algorithm with prediction and

migration for a hybrid main memory. SIGAPP Appl. Comput. Rev., 11(4):38–48, Dec. 2011. ISSN

1559-6915. doi: 10.1145/2107756.2107760. URL http://doi.acm.org/10.1145/2107756.

2107760.

[29] Z. Sun, Z. Jia, X. Cai, Z. Zhang, and L. Ju. Aimr: An adaptive page management policy for hybrid

memory architecture with nvm and dram. In 2015 IEEE 17th International Conference on High

Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cy-

berspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Soft-

ware and Systems, pages 284–289. IEEE, 2015.

[30] X. Cai, L. Ju, M. Zhao, Z. Sun, and Z. Jia. A novel page caching policy for pcm and dram of hybrid

memory architecture. In 2016 13th International Conference on Embedded Software and Systems

(ICESS), pages 67–73. IEEE, 2016.

[31] Z. Zhang, Y. Fu, and G. Hu. Dualstack: A high efficient dynamic page scheduling scheme in hybrid

main memory. In 2017 International Conference on Networking, Architecture, and Storage (NAS),

pages 1–6. IEEE, 2017.

83

https://www.nas.nasa.gov/publications/npb.html
http://gap.cs.berkeley.edu/benchmark.html
http://gap.cs.berkeley.edu/benchmark.html
http://doi.acm.org/10.1145/2695664.2695675
http://doi.acm.org/10.1145/2695664.2695675
http://doi.acm.org/10.1145/1982185.1982312
http://doi.acm.org/10.1145/2107756.2107760
http://doi.acm.org/10.1145/2107756.2107760

[32] S. Kim, S.-H. Hwang, and J. W. Kwak. Adaptive-classification clock: Page replacement policy

based on read/write access pattern for hybrid dram and pcm main memory. Microprocessors and

Microsystems, 57:65–75, 2018.

[33] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos: Os design for heterogeneous

memory management in datacenter. In Proceedings of the 44th Annual International Symposium

on Computer Architecture, pages 521–534, 2017.

[34] Y. Tan, B. Wang, Z. Yan, Q. Deng, X. Chen, and D. Liu. Uimigrate: Adaptive data migration for

hybrid non-volatile memory systems. In 2019 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 860–865. IEEE, 2019.

[35] R. Salkhordeh and H. Asadi. An operating system level data migration scheme in hybrid dram-

nvm memory architecture. In 2016 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 936–941. IEEE, 2016.

[36] N. Agarwal and T. F. Wenisch. Thermostat: Application-transparent page management for two-

tiered main memory. In Proceedings of the Twenty-Second International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 631–644, 2017.

[37] L. Liu, S. Yang, L. Peng, and X. Li. Hierarchical hybrid memory management in os for tiered memory

systems. IEEE Transactions on Parallel and Distributed Systems, 30(10):2223–2236, 2019.

[38] S. Yu, S. Park, and W. Baek. Design and implementation of bandwidth-aware memory placement

and migration policies for heterogeneous memory systems. In Proceedings of the International

Conference on Supercomputing, pages 1–10, 2017.

[39] R. Salkhordeh and A. Brinkmann. Online management of hybrid dram-nvmm memory for hpc. In

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics

(HiPC), pages 277–289. IEEE, 2019.

[40] H. Servat, A. J. Peña, G. Llort, E. Mercadal, H. Hoppe, and J. Labarta. Automating the application

data placement in hybrid memory systems. In 2017 IEEE International Conference on Cluster

Computing (CLUSTER), pages 126–136, Sep. 2017. doi: 10.1109/CLUSTER.2017.50.

[41] K. Wu, Y. Huang, and D. Li. Unimem: Runtime data managementon non-volatile memory-based

heterogeneous main memory. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, pages 1–14, 2017.

[42] M. B. Olson, T. Zhou, M. R. Jantz, K. A. Doshi, M. G. Lopez, and O. Hernandez. Membrain: Auto-

mated application guidance for hybrid memory systems. In 2018 IEEE International Conference on

Networking, Architecture and Storage (NAS), pages 1–10. IEEE, 2018.

[43] M. B. Olson, B. Kammerdiener, M. R. Jantz, K. A. Doshi, and T. Jones. Portable application guid-

ance for complex memory systems. In Proceedings of the International Symposium on Memory

Systems, pages 156–166, 2019.

84

[44] T. C. Effler, A. P. Howard, T. Zhou, M. R. Jantz, K. A. Doshi, and P. A. Kulkarni. On automated

feedback-driven data placement in multi-tiered memory. In International Conference on Architecture

of Computing Systems, pages 181–194. Springer, 2018.

[45] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson, and K. Schwan.

Data tiering in heterogeneous memory systems. In Proceedings of the Eleventh European Confer-

ence on Computer Systems, pages 1–16, 2016.

[46] H. Liu, R. Liu, X. Liao, H. Jin, B. He, and Y. Zhang. Object-level memory allocation and migration in

hybrid memory systems. IEEE Transactions on Computers, 69(9):1401–1413, 2020.

[47] L. Zhang, R. Karimi, I. Ahmad, and Y. Vigfusson. Optimal data placement for heterogeneous

cache, memory, and storage systems. Proceedings of the ACM on Measurement and Analysis of

Computing Systems, 4(1):1–27, 2020.

[48] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight persistent memory. SIGPLAN

Not., 47(4):91–104, Mar. 2011. ISSN 0362-1340. doi: 10.1145/2248487.1950379. URL http:

//doi.acm.org/10.1145/2248487.1950379.

[49] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swanson. Nv-heaps:

Making persistent objects fast and safe with next-generation, non-volatile memories. SIGPLAN

Not., 46(3):105–118, Mar. 2011. ISSN 0362-1340. doi: 10.1145/1961296.1950380. URL http:

//doi.acm.org/10.1145/1961296.1950380.

[50] R. Bharadwaj. Mastering Linux Kernel Development: A kernel developer’s reference manual. Packt

Publishing Ltd, 2017.

[51] M. Gorman. Page Table Management. https://www.kernel.org/doc/gorman/html/

understand/understand006.html. [Online; accessed 19-December-2020].

[52] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems

journal, 5(2):78–101, 1966.

[53] E. J. O’neil, P. E. O’neil, and G. Weikum. The lru-k page replacement algorithm for database disk

buffering. Acm Sigmod Record, 22(2):297–306, 1993.

[54] P. B. Galvin, G. Gagne, A. Silberschatz, et al. Operating system concepts, pages 367–369. John

Wiley & Sons, 9th edition, 2012.

[55] F. J. Corbato. A paging experiment with the multics system. Technical report, MASSACHUSETTS

INST OF TECH CAMBRIDGE PROJECT MAC, 1968.

[56] P. B. Galvin, G. Gagne, A. Silberschatz, et al. Operating system concepts, pages 436–440, 795–

803. John Wiley & Sons, 10th edition, 2018.

[57] L. Torvalds. mm/vmscan.c. https://elixir.bootlin.com/linux/latest/source/mm/

vmscan.c, 2021. [Online; accessed 21-November-2020].

85

http://doi.acm.org/10.1145/2248487.1950379
http://doi.acm.org/10.1145/2248487.1950379
http://doi.acm.org/10.1145/1961296.1950380
http://doi.acm.org/10.1145/1961296.1950380
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://elixir.bootlin.com/linux/latest/source/mm/vmscan.c
https://elixir.bootlin.com/linux/latest/source/mm/vmscan.c

[58] corbet. A CLOCK-Pro page replacement implementation. https://lwn.net/Articles/

147879/, 2005. Accessed:2019-12-30.

[59] S. Jiang, F. Chen, and X. Zhang. Clock-pro: An effective improvement of the clock replacement. In

Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC ’05, pages

35–35, Berkeley, CA, USA, 2005. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1247360.1247395.

[60] T. Sterling, M. Anderson, and M. Brodowicz. Chapter 2 - hpc architecture 1: Systems and

technologies. In High Performance Computing, pages 43 – 82. Morgan Kaufmann, Boston,

2018. ISBN 978-0-12-420158-3. doi: https://doi.org/10.1016/B978-0-12-420158-3.00002-2. URL

http://www.sciencedirect.com/science/article/pii/B9780124201583000022.

[61] P. Stenström, T. Joe, and A. Gupta. Comparative performance evaluation of cache-coherent numa

and coma architectures. In Proceedings of the 19th annual international symposium on Computer

architecture, pages 80–91, 1992.

[62] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek. Intel R© quickpath interconnect architec-

tural features supporting scalable system architectures. In 2010 18th IEEE Symposium on High

Performance Interconnects, pages 1–6. IEEE, 2010.

[63] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The amd opteron processor for multipro-

cessor servers. IEEE Micro, 23(2):66–76, 2003.

[64] B. Lepers, V. Quéma, and A. Fedorova. Thread and memory placement on {NUMA} systems:

Asymmetry matters. In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15),

pages 277–289, 2015.

[65] V. Viswanathan, K. Kumar, T. Willhalm, P. Lu, B. Filipiak, and S. Sakthivelu. Intel memory latency

checker. Intel Corporation, 2013.

[66] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating system support for improving data

locality on cc-numa compute servers. ACM SIGOPS Operating Systems Review, 30(5):279–289,

1996.

[67] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and M. Roth.

Traffic management: a holistic approach to memory placement on numa systems. ACM SIGPLAN

Notices, 48(4):381–394, 2013.

[68] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. T. Morris, A. Pesterev, L. Stein,

M. Wu, Y.-h. Dai, et al. Corey: An operating system for many cores. In OSDI, volume 8, pages

43–57, 2008.

[69] D. Gureya, J. Neto, R. Karimi, J. Barreto, P. Bhatotia, V. Quema, R. Rodrigues, P. Romano,

and V. Vlassov. Bandwidth-aware page placement in numa. In 2020 IEEE International Par-

allel and Distributed Processing Symposium (IPDPS), pages 546–556, Los Alamitos, CA, USA,

86

https://lwn.net/Articles/147879/
https://lwn.net/Articles/147879/
http://dl.acm.org/citation.cfm?id=1247360.1247395
http://dl.acm.org/citation.cfm?id=1247360.1247395
http://www.sciencedirect.com/science/article/pii/B9780124201583000022

may 2020. IEEE Computer Society. doi: 10.1109/IPDPS47924.2020.00063. URL https://doi.

ieeecomputersociety.org/10.1109/IPDPS47924.2020.00063.

[70] A. Kleen. A numa api for linux. Novel Inc, 2005.

[71] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characterization and archi-

tectural implications. In Proceedings of the 17th international conference on Parallel architectures

and compilation techniques, pages 72–81, 2008.

[72] J. Corbet. Autonuma: the other approach to numa scheduling. LWN. net, 2012.

[73] S. Blagodurov, A. Fedorova, S. Zhuravlev, and A. Kamali. A case for numa-aware contention man-

agement on multicore systems. In 2010 19th International Conference on Parallel Architectures

and Compilation Techniques (PACT), pages 557–558. IEEE, 2010.

[74] Z. Majo and T. R. Gross. Memory management in numa multicore systems: trapped between cache

contention and interconnect overhead. In Proceedings of the international symposium on Memory

management, pages 11–20, 2011.

[75] L. Tang, J. Mars, X. Zhang, R. Hagmann, R. Hundt, and E. Tune. Optimizing google’s warehouse

scale computers: The numa experience. In 2013 IEEE 19th International Symposium on High

Performance Computer Architecture (HPCA), pages 188–197. IEEE, 2013.

[76] J. M. Bull and C. Johnson. Data distribution, migration and replication on a cc-numa architecture.

In Proceedings of the fourth European workshop on OpenMP, 2002.

[77] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma, R. Lachaize, and M. Roth.

Challenges of memory management on modern numa systems. Communications of the ACM, 58

(12):59–66, 2015.

[78] Intel. An Intro to MCDRAM (High Bandwidth Memory) on Knights Land-

ing. https://software.intel.com/content/www/us/en/develop/blogs/

an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.html, 2016.

Accessed:2021-05-13.

[79] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis & transforma-

tion. In International Symposium on Code Generation and Optimization, 2004. CGO 2004., pages

75–86. IEEE, 2004.

[80] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazel-

wood. Pin: building customized program analysis tools with dynamic instrumentation. Acm sigplan

notices, 40(6):190–200, 2005.

[81] Intel. Intel 64 and ia-32 architectures software developer’s manual. System Programming Guide,

3B, September 2016.

87

https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00063
https://doi.ieeecomputersociety.org/10.1109/IPDPS47924.2020.00063
https://software.intel.com/content/www/us/en/develop/blogs/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.html
https://software.intel.com/content/www/us/en/develop/blogs/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.html

[82] P. J. Drongowski. Instruction-based sampling: A new performance analysis technique for amd

family 10h processors. Advanced Micro Devices, 2007.

[83] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations Research, 45(5):758–

767, 1997.

[84] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Badgertrap: A tool to instrument x86-64 tlb misses.

ACM SIGARCH Computer Architecture News, 42(2):20–23, 2014.

[85] S. Jiang and X. Zhang. Lirs: An efficient low inter-reference recency set replacement policy to

improve buffer cache performance. ACM SIGMETRICS Performance Evaluation Review, 30(1):

31–42, 2002.

[86] T. Brown, T. Liao, and J. Chou. Analyzing the performance of intel optane dc persistent mem-

ory in app direct mode in lenovo thinksystem servers. Lenovo Press, 2019. URL https:

//lenovopress.com/lp1083.pdf.

[87] J. Chou, T. Brown, and T. Liao. Analyzing the performance of intel optane dc persistent mem-

ory in memory mode in lenovo thinksystem servers. Lenovo Press, 2019. URL https://

lenovopress.com/lp1084.pdf.

[88] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang, Y. Xu, S. R.

Dulloor, et al. Basic performance measurements of the intel optane dc persistent memory module.

arXiv preprint arXiv:1903.05714, 2019.

[89] K. Wu, F. Ober, S. Hamlin, and D. Li. Early evaluation of intel optane non-volatile memory with hpc

i/o workloads. arXiv preprint arXiv:1708.02199, 2017.

[90] OPCM. Processor Counter Monitor. https://github.com/opcm/pcm, 2016. [Online; accessed

25-November-2020].

[91] J. Yang and J. Seymour. Pmbench: A micro-benchmark for profiling paging performance on a sys-

tem with low-latency ssds. In Information Technology-New Generations, pages 627–633. Springer,

2018.

[92] J. Yang and J. Seymour. pmbench. https://bitbucket.org/jisooy/pmbench, 2021. [On-

line; accessed 20-May-2021].

[93] Y. Huang and V. Verma. AutoNUMA: tiering-0.4. https://git.kernel.org/pub/scm/

linux/kernel/git/vishal/tiering.git?h=tiering-0.4, 2020. [Online; accessed 19-

November-2020].

[94] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.

IEEE computational science and engineering, 5(1):46–55, 1998.

[95] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee. Nimble page management for tiered memory

systems. In Proceedings of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 331–345, 2019.

88

https://lenovopress.com/lp1083.pdf
https://lenovopress.com/lp1083.pdf
https://lenovopress.com/lp1084.pdf
https://lenovopress.com/lp1084.pdf
https://github.com/opcm/pcm
https://bitbucket.org/jisooy/pmbench
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git?h=tiering-0.4
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git?h=tiering-0.4

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Outline

	2 Background
	2.1 Memory Management
	2.1.1 Locality of Reference Principles
	2.1.2 Memory Management Unit
	2.1.3 Page Replacement Algorithms
	2.1.4 Virtual Memory Management in Linux

	2.2 NUMA-Aware Mechanisms
	2.2.1 NUMA Architecture
	2.2.2 From Latency-centric to Contention-aware Data placement in NUMA
	2.2.3 Linux NUMA Subsystem
	2.2.4 Contention-Aware Approaches

	2.3 Data Placement in HMAs
	2.3.1 Static Placement
	2.3.2 Dynamic Placement
	2.3.3 NUMA-Aware Solutions Compatibility
	2.3.4 Placement in DRAM-NVM Architectures

	3 Tailoring Placement to a DRAM-DCPMM Architecture
	3.1 DCPMM Internals and Configuration
	3.2 Placement Guidelines for DRAM-DCPMM
	3.2.1 Experimental Methodology
	3.2.2 Small Working Set Study – Balancing Approach
	3.2.3 Large Working Set Study – Placement Policy
	3.2.4 Insights

	3.3 Discussion of Related Proposals

	4 Ambix
	4.1 Goals
	4.2 Ambix in Theory
	4.3 Ambix in Practice
	4.3.1 Architecture
	4.3.2 SelMo
	4.3.3 Control

	4.4 Ambix's Optimizations and Limitations

	5 Results
	5.1 Goals
	5.2 Experimental Setup
	5.2.1 Hardware Configuration
	5.2.2 OS Configuration
	5.2.3 Ambix Configuration

	5.3 Experimental Baseline
	5.3.1 HMA-Aware Placement Solutions
	5.3.2 Default Configurations

	5.4 Workloads
	5.4.1 Pmbench
	5.4.2 GAP
	5.4.3 NPB

	5.5 Experimental Results
	5.5.1 Pmbench – Scalability Potential
	5.5.2 GAP – Sequential Pattern Performance
	5.5.3 NPB – Dynamic Configuration's Performance in HPC applications
	5.5.4 Summary

	6 Final Considerations
	6.1 Conclusions
	6.2 Future Work

	Bibliography

