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Resumo

Esta dissertação apresenta um estudo CFD sobre um disco rotativo em voo a ângulos de ataque 0◦,

5◦ e 10◦, procurando investigar a potencial aplicação desta geometria em MAVs. O software comercial

FLUENT foi utilizado em simulações com IDDES. A geometria do disco é circular e infinitamente fina,

pois não possui espessura. O número de Reynolds baseado no escoamento não perturbado e no

diâmetro do disco foi fixado em 150,000. O AdvR varia entre 0 e 8, no qual AdvR é o quociente entre

a velocidade da extremidade do disco devido a rotação e do escoamento.

Para incidência nula, os momentos de rolamento e picada, medidos numa superfı́cie do disco,

sofrem uma mudança de sinal entre AdvR = 1 e 2, e 2 e 4, respetivamente. Um comportamento

periódico foi observado para AdvR = 2, bem como uma linha de separação, que se movimenta para

montante com aumento de rotação. A α = 5◦, CL permanece aproximadamente constante até AdvR

= 2, pois uma bolha de separação está presente na superfı́cie superior e magnitudes de rotação são

baixas. A supressão da bolha e regiões intensas de baixa pressão, causadas pela rotação, ocorrem a

AdvR = 4 e 8, levando a um aumento de CL. O L/D diminui com rotação. Rotação diferencial (8,0)

leva a um aumento de CL enquanto que o caso (8,-8) reduz o momento de rolamento. Os resultados

para α = 10◦ mostram que a rotação diferencial (8,0) elimina também a bolha de separação e aumenta

a sustentação.

Palavras-chave: Disco Rotativo; Aerodinâmica; Micro-veı́culo Áereo; Mecânica dos Fluidos

Computacional; IDDES.
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Abstract

This dissertation presents a CFD study regarding a rotating disc in flight at angles of attack 0◦, 5◦

and 10◦, seeking to investigate the potential application of such geometry in MAVs. The commercial

software FLUENT was used for the simulations with IDDES. The disc geometry is circular and infinitely

thin, since it has no thickness. The free stream Reynolds number was fixed at 150,000, based on the

disc’s diameter. The AdvR was varied between 0 and 8, where AdvR is the ratio between disc edge

speed due to rotation and flow speed.

For zero incidence, rolling and pitching moments, measured for one surface of the disc, undergo a

change of signals from AdvR = 1 to 2, and 2 to 4, respectively. Periodic behaviour was obtained for

AdvR = 2, as was a salient separation line, which moves upstream with increasing rotation. At α = 5◦,

CL remains roughly constant until AdvR = 2, since a laminar separation bubble is present on the top

surface and rotation magnitudes are low. Suppression of the bubble and intense low pressure regions,

caused by rotation, occur at AdvR = 4 and 8 and both lead to an increase in lift production. The L/D

diminished with rotation. Differential rotation AdvR = (8,0) leads to an increase in CL, while case (8,-8)

decreases rolling moment. The results for α = 10◦ show that differential rotation (8,0) still suppresses

the separation bubble and leads to an increase in lift.

Keywords: Rotating Disc; Aerodynamics; Micro Aerial Vehicle; Computational Fluid Dynamics;

IDDES.
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Chapter 1

Introduction

1.1 Motivation

The Second World War brought forth an immense interest in aviation as military aircraft played a crucial

role in just about any battle throughout this global conflict. Naturally, every parameter and possible

shape of fighter jets was scrutinized and profoundly investigated, so that an edge over the opposing

force could be gained. One experimental design that emerged amidst this research was that of an

airplane with circular planform wing, which theoretically was more resistant and allowed for easier take-

off and landing, when compared to a conventional wing design. Both German and American forces

toyed with this concept, producing the Sack AS-6 V1 and the Vought V-173 (Figure 1.1), respectively.

Figure 1.1: Sack AS-6 V1 [1] (left) and Vought V-173 [2] (right).

While the Sack AS-6 V1 was plagued by technical problems, the American made ”Flying Pancake”

showed great promise, effectively proving that such designs are indeed worth looking into [2].

Some time later, during the second half of the twentieth century, the UFO (Unidentified Flying Object)

craze that took the world by storm and the increasing popularity of the science-fiction genre further

propelled the interest in circular-winged vehicles, or the so-called ”Flying Saucers”. The main idea then

was to design such a disc-shaped aircraft, with VTOL capabilities and able to cruise at high velocities.
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Several endeavours to design such vehicles in a functional yet efficient manner produced a colourful set

of concepts. The Avro Canada VZ-9 Avrocar (Figure 1.2) stands tall as perhaps the most recognizable

and the most practical, since it successfully hovered nearly 1 meter above ground, laying the foundations

for future VTOL technologies.

Figure 1.2: Avro Canada VZ-9 Avrocar [3].

However, since it was inherently unstable and proved much too hard to control, the project was

cancelled in 1961 [4].

Recently, Unmanned Aerial Vehicles (UAVs) have been the primary focus of several military branches.

The ability to use highly controllable vehicles to deploy and pick-up troops, perform surveillance and re-

connaissance, and engage in confrontations all without endangering human life is certainly appealing.

Disc-shape drones seem perfectly apt to perform these tasks, since they are highly maneuverable and

fairly stealthy: the circular shape scatters potential radar waves in many directions, making it harder to

detect.

Two exciting UAVs that have a circular shape are the Sikorsky Cypher, created in 1988, and the

ADIFO in 2019. Both can be seen in Figure 1.3.

Figure 1.3: Sikorsky Cypher [5] (left) and ADIFO [6] (right).
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The former was capable of carrying loads up to 23 kilograms and performing a multitude of tacti-

cal operations [7]. The much more recent ADIFO is reported to achieve a smooth transition between

subsonic and supersonic regimes, boasts a high L/D ratio and spectacular maneuverability [8].

The Micro Aerial Vehicles (MAVs) are a subclass of UAVs. As the name implies, MAVs are distin-

guished by their small size, allowing for added stealth and versatility. Precise figures vary, but MAVs do

not generally exceed 1 meter in wingspan and weigh more than 0.5 kilograms. Interest in such vehicles

has grown immensely, due not only to their low production cost, but also to the wide range of complicated

missions that these futuristic drones could theoretically perform: detection of radioactivity and chemical

compounds, search for survivors, improved communications in both urban and military scenarios, and

infiltration in confined, closely guarded areas [9, 10]. MAVs are meant to be carried by hand, therefore

highly practical, and easily, if not immediately, deployed and controlled.

Generally, fixed-wing MAVs operate at Re < 200,000 [11]. At such low Re, laminar separation bub-

bles are expected to make an appearance and negatively influence aerodynamic performance. Also,

due to size restrictions, Low Aspect Ratio (LAR) lifting surfaces are utilized in fixed-wing MAVs. As such,

a small, saucer-shaped drone, relying purely on a rotating surface for both lift and stability seems ideal

for this class of vehicles, since not only fragile rotors and complicated moving parts are absent, but also

because rotation might be able to control and suppress separation bubbles.

As of yet, the resulting flow structures and aerodynamic performance at such viscous Reynolds

numbers around a small, spinning surface are still largely unknown. Not to mention that the effects that

high degrees of rotation impart on the flow at various angles of attack are also mainly unreported on a

spinning disc-wing.

1.2 Topic Overview

Several CFD simulations were performed on a rotating disc with zero thickness as to better ascertain

the effect of rotation on aerodynamic performance and stability. Several degrees of rotation were tested

and the corresponding flow structures, pressure mapping and aerodynamic parameters duly compared.

1.3 Objectives

This thesis was envisioned with three main goals in mind:

• Test the viability of a flying, rotating disc design as a possible MAV application;

• Better understand the complicated interaction between disc rotation and incoming flow at low an-

gles of attack;

• Investigate the effects that high magnitudes of disc rotation have on aerodynamic performance.
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1.4 Thesis Outline

This thesis begins by introducing the motivation and main objectives of this work on chapter 1.

Chapter 2 presents the nomenclature and physics governing the flight of a rotating disc. Aerodynamic

forces and gyroscopic precession are briefly explained. The chapter ends with an overview of previous

studies regarding disc wings, with and without rotation.

Chapter 3 introduces the von Kármán problem and its similarity solution. It was then simulated

through CFD, as to assess the choice of mesh resolution and discretization schemes to handle rotational

flow problems.

Chapter 4 sets up the parameters and definitions of the main problem.

Chapters 5, 6 and 7 showcase the results for angles of attack 0◦, 5◦ and 10◦, respectively. Results

regarding turbulence kinetic energy distributions, vortical structures, aerodynamic data, limiting stream-

lines and differential rotation cases were all displayed and analyzed.

Finally, chapter 8 contains the conclusion and future work ideas, finalizing the thesis.
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Chapter 2

Physics of a Flying Disc

2.1 Description

A flying disc can be regarded as wing with low AR, producing considerable lift at low angle of attack. For

a typical wing, AR is defined by the following formula:

AR =
(Wing Span)2

Wing Area
, (2.1)

which, for a circular disc with radius Rd and diameter Dd, results in:

AR =
D2
d

(Dd/2)2π
=

4

π
≈ 1.273.

There are two key parameters governing the flight of a rotating disc: the lift force, and the spin of the

disc, which has a stabilizing effect. Both are vital but it is only the inherent interplay between the two

that allows the disc to stay airborne, as a disc without rotation would immediately topple over, and one

without lift would not even get off the ground. What is so remarkable about this simple configuration is

that one rotating surface can provide both lift and flight stability, thus avoiding the need for extra control

surfaces.

2.1.1 Disc Nomenclature

For sign convention, the axes of the disc and respective rolling, yawing and pitching moments (R, S and

P ) around the body are defined in Figure 2.1. The variable Ω represents the angular velocity of the disc.

Positive rotation implies anti-clockwise motion.

The center of mass (COM) is the point at which the force of gravity acts on the body, and the center of

pressure (COP) where the aerodynamic forces take action. As Figure 2.1 illustrates, the COP is usually

ahead of the COM, for typical disc flight.

5



Other important terms are the leading edge and trailing edge of the disc. These definitions are

analogous to those of an airfoil, with the former referring to the front edge of the disc, that is, the part

that comes into direct contact with the incoming flow, and the latter is the rear side. Once again regarding

Figure 2.1, the leading edge is present at negative values of X, while the trailing edge at positive values.

Since the disc is rotating, it is useful to distinguish retreating and advancing side. The former refers to

the side of the disc at which rotational speed and free stream velocity have the same sign and add up.

This occurs at positive Z values in Figure 2.1. On the other hand, the latter is where these two velocities

oppose each other, happening at negative Z values. The variable AdvR is the ratio of edge speed to

flow speed. If AdvR = 0, the disc is not rotating, and for AdvR = 1, the edges of the disc are moving at

the same speed as the free flow. Its formula is:

AdvR =
ΩRd
U∞

, (2.2)

where U∞ is the free stream velocity.

Figure 2.1: Orientation of the disc and sign convention.

2.1.2 Aerodynamics

Two of the most important aerodynamic contributions are the lift and drag forces. Simply put, lift force is

generated due to the shape of the disc, which promotes a pressure difference between the upper and

lower surface of the disc. This generates a force perpendicular to the incoming flow, which increases

with α, until a certain critical angle is reached. From then on, lift descends abruptly. This is the pillar of

all flight. Drag on the other hand, acts parallel to the flow but opposes it.
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These forces act on the COP, causing the disc to experience moments around its center of mass.

And since the COP regularly changes in flight, the prediction of these moments and their directions

becomes increasingly difficult. The coefficients of lift, drag and moment are calculated by:

CL =
FL

1
2ρAU

2
∞
, (2.3)

CD =
FD

1
2ρAU

2
∞
, (2.4)

CM =
M

1
2ρAU

2
∞L

, (2.5)

where FL, FD, M , ρ, A, and L are the lift force, drag force, moment, free stream density, surface area of

the disc (πR2
d) and reference length (Dd), respectively. A typical force scheme is shown in Figure 2.2.

Figure 2.2: Forces acting on a flying rotating disc.

The resulting lift acts on the front of the disc, ahead of the center of mass. This causes an acute,

unstable pitching moment, leading to a radical nose-up motion. This is where rotation comes into play.

2.1.3 Gyroscopic Precession

Firstly, a few definitions are in order. The angular momentum
−→
L is a rotational property, representing

the rotational equivalent of linear momentum. For a rigid body, it is calculated by the Formula 2.6:

−→
L = I

−→
Ω , (2.6)

where I is the moment of inertia. Angular momentum has the same direction as the spin rate. Obeying

conservation laws, the angular momentum remains constant when there are no torques present. For

the case of the flying disc, it was shown that aerodynamic moments act upon it, which cause a rate of

change in
−→
L , equal to the sum of all moments.
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d
−→
L

dt
=
−→
M. (2.7)

Referring to Figure 2.2, the lift produces a negative, nose-up pitching moment around the COM. This

moment is perpendicular to the angular momentum, causing it to preserve its magnitude, but not its

direction. This change of direction is named precession (
−→
ψ ). Equation 2.7 can now be rewritten.

d
−→
ψ

dt
L =

−→
M. (2.8)

Simply put, the axis of rotation will move towards the direction of the torque. Therefore, the unstable

pitching moment is now translated into a rolling moment. That is gyroscopic precession. While the

immediate pitch instability is avoided, the disc swerves to left or to right, depending on which direction

the disc is spinning. Also interesting to note is that the rate of precession can be lowered by increasing

the spin rate. The faster the disc spins, the less susceptible it is to precession, becoming more stable.

One might be tempted to fully eliminate this phenomenon, but while plenty of precession is detrimental,

a small amount is indispensable for flight. The unstable pitching moment must be transformed into a

rolling moment for the disc to attain altitude. This is of course a simplification, as the moments will

seldom act exactly on a defined axis, thus also causing rolling motion. Nonetheless, they will usually

act perpendicular to the direction of rotation, making the situation described above representative of the

overall stability granted by disc rotation.

2.1.4 Robins-Magnus Effect

Rotation causes yet another well-known effect. Since the advancing and retreating side experience

lower and higher relative speed, respectively, a velocity gradient will be created across the disc surface.

This generates a pressure difference, according to Bernoulli, resulting in a force perpendicular to the

flow and on the same plane as the disc. This is the Robins-Magnus effect, represented in Figure 2.3.

Consequently, roll is induced.

Figure 2.3: Robins-Magnus effect visualized.
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2.2 Flow Separation

2.2.1 Laminar Separation Bubble

As was previously stated, fixed-wing MAVs fly at Re < 200,000. At this low Reynolds number, a phe-

nomenon known as laminar separation bubble (LSB) is bound to appear.

Lacking the momentum transfer due to turbulent mixing, the laminar boundary layer is highly sus-

ceptible to separation under adverse pressure gradients. When the boundary layer does separate from

the surface, the flow reattachs itself downstream, encompassing a region of recirculating motion, as well

as transitional and turbulent flow. This typically happens near the leading edge for all aircraft models

flying at low Reynolds. The aerodynamic performance is severely worsened, since drag increases and

stability is reduced.

A typical profile of a LSB is represented in Figure 2.4.

Figure 2.4: Description of a laminar separation bubble from Lee et al. [12].

When the laminar boundary layer encounters an adverse pressure gradient strong enough to cause

separation, it abandons the surface and forms a laminar and highly unstable free shear layer. Transi-

tion soon ensues and, due to the high mixing and momentum transport, characteristic of the turbulent

state, the flow normally manages to reattach itself to the surface, in a process known as reattachment.

Downstream of this reattachment point exists a fully turbulent boundary layer.

A zone with recirculating flow, constituting the so called LSB, is evident between the separation and

the reattachment point, near the surface, having both a laminar and turbulent part. On the laminar

part, just after separation and before transition, a plateau of pressure is created. On the turbulent part

however, the pressure rapidly recovers, as seen in Figure 2.5.
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Figure 2.5: The Cp distribution across a typical LSB on an unspecified airfoil from Roberts [13].

The size and shape of the bubble vary greatly and it can be classified as either a short or long

bubble. A short bubble typically occurs at high Reynolds numbers and has a small effect on the pressure

distribution, barely impacting the flow outside of the bubble. Its size is roughly 1% chord and its biggest

impact is inducing transition. On the other hand, a long bubble interacts vividly with the exterior flow,

gravely influencing the pressure profile and thus the aerodynamic performance. A long bubble usually

covers most of the airfoil’s surface [13, 14].

The two key parameters that govern the bubble’s physical shape and behaviour on a typical airfoil

are Reynolds number Re and angle of attack α.

With a decrease in Reynolds number, the laminar shear layer becomes dominant and long. So long

in fact, that the short bubble is only capable of reattaching itself progressively downstream, bursting into

a long bubble. With even lower values of Re, the bubble has attained such a length over the surface

that it is unable to reattach itself, which translates to complete separation. Regarding α, the separation

point moves upstream with increasing angles of incidence, as the adverse pressure gradient becomes

more intense. This causes a reduction in bubble size, as transition and reattachment occur progressively

close to separation, thus contracting. For very high angles of incidence, near stall, the bubble bursts,

leading to a drastic loss of aerodynamic performance [13, 14].

2.2.2 3D Flow Separation

In two-dimensional flows, boundary layer separation is identified when the value of the skin friction

coefficient Cf is zero. That translates to:

Cf =
τw

1
2ρU

2
∞

= 0, (2.9)

where τw is the local wall shear stress.
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For three dimensional flows however, this simple criterion can no longer be utilized, since the flow

structures are much more complex and Cf = 0 is seldom associated with separation [14]. A typical 3D

flow separation is not synonymous with flow reversal, as in two dimensional cases, since here separation

translates to the flow leaving the near surface when confronted with adverse conditions.

The indicator of separation for 3D concerns the behaviour of limiting streamlines. These are defined

as streamlines when the distance normal to the surface tends to zero, and are coincident with the skin

friction lines, that are streamlines derived from the vector field of wall shear stress. Maskell [15] pos-

tulates that separation occurs when two distinct limiting streamlines converge onto a particular limiting

streamline. This is a necessary condition. Additionally, when approaching a separation line, τw drops to

a minimum. On the other hand, if limiting streamlines are seen diverging from a particular line, then a

reattachment process is identified, where the flow dives towards the surface and attaches.

Tobak and Peake [16] explained succinctly this criterion.

Figure 2.6: Scheme of limiting streamlines from Tobak and Peake [16].

With reference to Figure 2.6, n is the distance between two limiting streamlines and h the height of

a rectangular streamtube. Taking a mass flux balance across this rectangular area hn, and after some

substitutions and algebra, results in:

h = C

(
ν

nτw

) 1
2

. (2.10)

The height h of the streamlines increases as n or τw decreases, or when the separation line is

approached. Meaning that in the vicinity of a separation line, limiting streamlines must leave the surface.

The opposite is true for reattachment lines.

This criterion will be utilized to evaluate possible separations and reattachments.
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2.3 Literature Review

The disc-wing geometry has been the focus of much fewer studies than the conventional wing. Espe-

cially so, for rotating discs. As such, the intricacies of a flying disc rotating at high AdvR are as of yet

largely unknown. This next section is divided into results obtained through experimental measurements

and computational simulations. In turn, each is further divided on whether the tested geometry rotated

(AdvR 6= 0) or not (AdvR = 0).

2.3.1 Experimental Studies

Numerous wind-tunnel tests have been conducted on a still and rotating disc. Through these techniques,

direct observations can be made and physical phenomenons accurately reported.

AdvR = 0

Torres and Mueller [17], [18] laid the foundation of aerodynamic studies of LAR wings (one much like

the focus geometry of this work) at the typical MAV operational range (Re from 50,000 to 140,000). The

main characteristic of these types of wings is that the tip vortices might be present over most of area of

the wing, thus drastically altering their aerodynamic behaviour, such as energizing the flow and delaying

separation bubbles, thus generating more lift than a standard wing. In fact, it was found that as the AR

of the wing diminishes, the CL curves become progressively non-linear, and the stall angle increases.

Kamaruddin [19] extensively studied the impact that different configurations of flying discs have on

aerodynamic performance at Re = 378,000. Several parameters, such as camber shape, thickness-to-

diameter ratio, cavity and edge geometry were altered and their effects on L/D ratio, pitching moment

coefficient and flight trajectory duly compared.

AdvR 6= 0

Firstly, Nakamura and Fukamachi [20] visualized the effects that a disc with and without rotation had on

a planar flow field, with eventual AdvR of roughly 2.26 at Re = 16,000. From the disc at rest, a pair of

longitudinal vortices was noticed, which produced added lift, when compared to the case without rotation.

These structures were enhanced by rotation, which induced considerate downwash downstream of the

disc. Flow asymmetry was also noted.

Most notably Potts and Crowther [21] tested a restrict range of Advance Ratios (between 0 and 1.04)

at free stream Reynols numbers between 113,000 to 378,000. It was seen that, for pre-stall conditions,

rotation has little effect on aerodynamic loads. Lift and drag curves were unchanged, but pitching and

rolling moments differ only slightly for the highest values of AdvR. The evolution of the aerodynamic

coefficients can be seen in Figure 2.7. It was also remarked that, with increasing α, several changes

happen on the upper surface of the disc, like the separation line present on the front travels further

upstream, the one present on the trailing edge moves towards the center and the detachment point of

the trailing vortices migrates to the sides.
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Figure 2.7: Evolution of (a) CL, (b) CD, (c) CM pitch and (d) CM roll with AdvR at Re = 378,000 from
Potts and Crowther [21].

Some time after, the same authors remarked through smoke-wire flow visualization that the main

shape of the separation bubble on top of the disc is mainly unaffected by rotation, even though it slightly

shifts to the advancing side [22], as in Figure 2.8 (advancing side on the left).

A similar study regarding the effects of disc rotation on a cambered disc was conducted by Higuchi

et al. [23]. They remarked through flow visualization of a rotating disc atRe = 110,000 that added rotation

of the disc AdvR = 0.8 at high α (15◦ to 30◦) causes the separation bubble protruding from the leading

edge to slightly increase in size, but it has little to no effect on the trailing vortices. At low α (0◦ to 5◦)

however, the rotation helps to suppress separation at the trailing edge, by promoting transition. Also,

delayed and accelerated separation is seen to occur at the retreating and advancing side, respectively.

Seo et al. [24] obtained lift, drag and pitching moment coefficients for a spinning and non-spinning

commercially available discus. Oil and smoke visualizations of AdvR = 0 and 0.2 were also conducted.

When rotation was added, a pair of longitudinal vortices appear, rather similar to wing-tip vortices, and

would delay separation on the top surface of the disc.
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Figure 2.8: Flow visualization on the upper surface of the disc at α = 0◦ for AdvR = (a) 0 and (b) 0.9,
taken from Potts and Crowther [22].

2.3.2 Computational Studies

Despite not being able to replace wind-tunnel experiments, Computational Fluid Dynamics (CFD) has

proven to be an effective tool to obtain information about flow variables and structures of interest, mainly

because it circumvents the need to build and accurately recreate the intended problem in experimental

conditions.

AdvR = 0

An optimization study by means of a genetic algorithm was carried out by Seo et al. [25], with the

purpose of finding the ideal launch conditions and geometry of a disc. The longest flight distance was

achieved by maximizing the yaw rate.

Lukes et al. [26] analysed the flow around a non-rotating Floater disc at a wide range of α (0◦ to 15◦)

at Re = 375,000, employing several turbulence models, in order to find the most reliable for this type of

flow situation. He accurately replicated wind-tunnel measurements, mainly the separation downstream

of the leading edge, through the turbulent standard k− ε model, which he hailed as the most appropriate

model for this problem.

Potts and Masters [27] obtained an excellent agreement between available experimental data and

computational values, using the k − ω SST turbulence model, when dealing with a wide range of non-

rotating disc geometries at low α. At high angles of attack however, the CFD had trouble identifying the

problematic stall regime.
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A wide range of high angles of incidence (30◦ to 90◦) was then tested by Tian et al. [28] over a

disc using DNS at Re = 500, which sought to analyze the inherent unsteady phenomenons. He started

by directing the flow perpendicular to the disc (90◦) and progressively decreasing the angle of attack.

Four types of flow patterns were identified: chaotic pattern, quasi-periodic pattern, periodic pattern

associated with a low frequency modulation and periodic pattern, which means that a periodic pattern

emerges behind the disc with diminished angle of incidence. Here, periodic pattern translates to the

vortex shedding ceasing to be random, but determined. This change happened around 55◦ of angle

incidence. This shedding however was not aligned with the stream-wise direction.

A year later Gao et al. [29], broaden the study to a wider range of α (20◦ to 90◦) and the following

range for Re: (50 to 300). A fifth pattern, the steady state was identified and the consequent thresholds

between all five regimes were mapped out in a Reynolds vs α graph. Furthermore, each regime was

exhaustively described and characterised.

AdvR 6= 0

A CFD study was conducted by Rohde [30] on an ellipsoid with AdvR ranging from 0 to 1.5 at Mach

number 0.5. The flow was deemed compressible to accelerate the convergence process, on the basis

that the low Mach number of the simulations would have a minimal impact on boundary layer growth and

aerodynamic coefficients. The angle of attack was fixed at 5◦. It was discovered that without rotation,

a separation line appears at the top surface of the disc at roughly 70% chord and on the lower surface,

a much smaller separation region is present. When AdvR = 1 was applied, this last region completely

disappears, while on the top surface, the separation line wrapps around the left receding edge. It was

also discovered that rotation has a minimal effect on surface pressure distribution. He further confirmed

the results obtained from Potts and Crowther [21], by observing that rotation does not affect lift and drag

values, and that the rolling moment increases with rotation.

Wiesche [31] performed LES calculations on a rotating disc in an air crossflow at Re = 13,700, in

order to observe the heat transfer and wake changes that are brought by the spinning. With an AdvR

of 2, a periodic vortex shedding was reported and when the AdvR was increased to 10, a fully turbulent

wake was evident. Later, the same author analysed the consequent wakes of AdvR = 0, 1, 2.5 and 12.5

at Re = 8,000, and remarked that a turbulent wake was generated starting from AdvR = 2.5 [32].

A study of a flying coin-shaped disc was conducted by Khalid Moukhtar [33], in order to document

the aerodynamic parameters and overall behaviour of the flow. The tested range of AdvR was between

0 and 1. It was seen that only the rolling moment coefficient was affected by the spin of the disc, mainly

due to the Magnus force, and the results from Rohde [30] were corroborated.

With the intent to understand how the stabilizing effect of rotation on a disc would impact its throwing

distance, Rouboa et al. [34] regarded that rotation results in larger distances covered by the disc, with

the vertical distance remaining unchanged.

In addition, Dumitrache et al. [35] performed studies at Re = 690,000 on both rotating and non-

rotating discs, with URANS and SST k − w as the turbulence model. The variable AdvR assumed

values of 0.3 and 0.5. The typical asymmetry on pressure contours and flow structures was observed.
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Chapter 3

The von Kármán Problem

3.1 Description

The von Kármán swirling flow is merely composed by an infinitely long rotating planar disc immersed in

still flow and, as simple as it may sound, rotation is the only factor that drives the flow. A thin boundary

layer on the surface of the disc is created, due to the no-slip condition. The flow is pushed outwards, ex-

pected due to the centrifugal force, and drawn axially to satisfy mass conservation. To properly illustrate

this flow problem, the typical velocity profiles are represented in Figure 3.1.

Figure 3.1: Visual representation of the velocity profiles from the rotating disc configuration from Özkan
et al. [36].

As can be observed, the radial velocity profile possess an inflection point, which satisfies Rayleigh’s

inflection-point criterion. This means that the flow is inviscidly unstable, that is, it remains unstable at

infinite Reynolds number. This inviscid instability is also referred to as a crossflow instability, which

three-dimensional boundary layers, produced by the flow on a swept wing, habitually display. Due to

this similarity, extensive investigation of the rotating disc flow problem undoubtedly leads to a deeper

understanding of transition in 3D boundary layers and evolution of propagating instabilities.
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The additional appeal of this problem stems from two key aspects: it is rather easy to replicate in

experimental conditions and an exact similarity solution exists for laminar flow, derived by von Kármán

in 1921. This is quite remarkable, since the complex set of Navier-Stokes equations are boiled down to

a simple pair of ordinary differential equations, allowing the full description of the flow.

3.2 Governing Equations

The rotating disc is considered in a cylindrical coordinate system as an infinite planar surface, with

constant rotation rate Ω, spinning about an axis perpendicular to the disc.

The steady continuity and Navier-Stokes equations (NSE) in cylindrical coordinates, for a incom-

pressible fluid with constant viscosity are as follow, with r, θ and x as the radial, tangential and axial

components, respectively.

Continuity Equation
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Axial component of NSE
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where p, ρ and ν are the static pressure, density and kinematic viscosity, respectively.

This problem has axial symmetry ( ∂∂θ = 0) and since the gradients normal to the wall (axial direction)

are much larger that those in the radial and tangential directions, the diffusive terms but the one normal

to the surface can be neglected. Accordingly, Equations 3.1a - 3.1d boil down to:
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To handle this problem on laminar regime, von Kármán introduced a characteristic length ξ and the

following assumptions for the various velocities and pressure:

ξ = x

(
Ω

ν

) 1
2

, (3.3)

Ur = ΩrF (ξ), Uθ = ΩrG(ξ), Ux = (Ων)
1
2H(ξ), p = −ρΩνP (ξ). (3.4)

This exchange of variables enables the derivation of an exact similarity solution of the steady Navier-

Stokes equations. The substitution of the definitions presented in 3.3 and 3.4 in the Equations 3.2a -

3.2d yields the following non linear ordinary differential equations, with ′ symbolizing derivation:

H ′ = −2F, (3.5a)

F ′′ = F 2 −G2 + F ′H, (3.5b)

G′′ = 2FG+G′H, (3.5c)

P ′ = HH ′ −H ′′. (3.5d)

Now, only a set of boundary conditions are needed to solve the system of equations. Considering

the context of the problem, the following are easily deduced:

x = 0 : Ur = 0; Uθ = Ωr; Ux = 0,

x→∞ : Ur → 0; Uθ → 0.

which translate to:

x = 0 : F = 0; G = 1; H = 0,

x→∞ : F → 0; G→ 0,

This set of equations now becomes solvable. With the aid ofMATLAB, the evolution of the variables

F , G, H and P − P (0) with regards to ξ was obtained and plotted in Figure 3.2. The obtained solution,

achieved by solving the system of differential equations, serves as a comparison term for the upcoming

CFD results.
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Figure 3.2: Solution of the ordinary differential Equations 3.5a - 3.5d.

The inflection point in the radial profile is well evident. The tangential variable G diminishes from its

maximum value at the disc (Ωr) to zero with increasing height, and the axial profile starts from 0 on the

surface and asymptotically tends to H = -0.8845. At last, the difference P (ξ) − P (0) follows a similar

behaviour as that of F , tending to 0.3911. According to the last term of Equation 3.4, a low region of

pressure is created close to the disc’s surface.

It is also stipulated that the thickness of the boundary layer for this case δ is given by the location at

which the tangential velocity is 1% of the one given on the surface of the disc.

δ = 5.5
( ν

Ω

) 1
2

. (3.6)

Furthermore, the Reynolds number definition for rotational flows is:

ReΩ = r

(
Ω

ν

) 1
2

, (3.7)

which represents the ratio between inertial to viscous forces, and is widely utilized to outline the laminar,

transition and turbulent regimes.

For a finite disc, the ReΩ at the edges of the disc, or Reedge, is given by:

Reedge = Rd

(
Ω

ν

) 1
2

. (3.8)

3.3 Transition on a Rotating Disc

Lingwood [37] remarked that at ReΩ = 510, an absolute instability was found to take place, which could

potentially trigger the onset of transition to turbulent flow. The flow is said to be absolutely unstable when

the response to a transient disturbance grows with time at the source. She also showed that Coriolis

and streamline curvature effects do not play an important role in the transition mechanism.
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The transitional Reynolds numbers experimentally discovered by several authors were neatly sum-

marized by Healy [38], as shown in Figure 3.3. Several different criteria were employed but the indicator

for detection of this value was always the same: the Reynolds number at which serious nonlinear distor-

tion of waves first arose.

Figure 3.3: Experimental transitional Reynolds Rt previously remarked.

Imayama [39] offered an extensive review of the boundary layer resultant from the von Kármán prob-

lem. Additionally, he sought to investigate experimentally the processes that control the transition from

laminar to turbulent regime, and to further asses the role of the various instabilities on this transitional

phase of the flow. He remarked that, for ReΩ > 430, a broad peak centered around 2πf/Ω = 30 appears.

This defined peak was discovered to be linked with the formation of steady vortices, initially studied by

Gregory et al. [40]. These vortices can be seen in Figure 3.4. Fully turbulent regime was observed

starting from ReΩ = 650.

Figure 3.4: Instabilities on a rotating disc from Gregory et al. [40].
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3.4 Numerical Model

By simulating the von Kármán problem through CFD and further confirming its results, trust is gained in

the mesh resolution and chosen discretization methods, and confirmation that these are adequate for

the main problem is attained.

3.4.1 Mesh

The computational meshes used for the present and future cases were all produced through the software

ANSY S Meshing.

The mesh comprises a cylindrical domain with radius and height of 6 Dd. In its basis, a separate

circular region was defined, to serve as the rotating disc. At the center of the disc, the origin of the

Cartesian coordinate system (X,Y,Z) was defined. Since here an infinite disc is not possible, a finite disc

with radius Rd = 0.1 meters was used. The mesh is represented in Figures 3.5, 3.6 and 3.7.

Figure 3.5: Cylindrical mesh.

Figure 3.6: Slice by a X = 0 plane.
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Figure 3.7: Top view of the mesh: (a) outer domain and (b) disc region.

Far-field boundaries were set at a distance of roughly 6 Dd from the disc, in both vertical and horizon-

tal directions. These boundaries were required to be far away as to consider the effects of the boundaries

as negligible. Otherwise, the results obtained would be akin to those of an interior flow problem.

The uppermost boundary of the domain was selected as a pressure inlet and the sides of the domain

as pressure outlets. This combination resulted in an adequate representation of far-field boundaries in

this naturally subsonic case. The bottom of the cylinder was considered as a symmetry plane and the

rotating disc itself as a rotating wall. No slip-conditions were applied along the disc wall, meaning zero

velocity and impermeability. The selected boundary conditions are illustrated in Figure 3.8.

Figure 3.8: Scheme of the boundary conditions prescribed for the cylindrical mesh. Pressure inlet (blue),
pressure outlet (red), symmetry (yellow) and no-slip wall (black).
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A structured mesh was preferred over an unstructured mesh. Despite a much more arduous genera-

tion, a structured mesh is rather apt at solving boundary layers near walls. Also, it enables an organized,

and thus simpler, storage process, granting easier access to each and every cell, making the calculation

of fluxes and gradients considerably easier.

The domain was divided into two parts: a cylinder encompassing the disc at its basis; and an outer

cylinder (the remainder of the domain). In order to obtain a structured, approximately uniform mesh on

the surface of the disc, this separation had to be carried out. However, since refinement near the edge

of the disc had to be included (namely, inflation layers), some skewed cells were unavoidable. One can

alleviate this issue by considering the physics of the problem. Since a strong perturbation of the flow will

nonetheless appear on the edges of the disc, due to the discontinuity present there, the results obtained

at that region will not be adequate for validation. With this in mind, the rather skewed cells were placed

at an agreeable distance from the edge, while the remainder of the disc was designed as uniform in the

radial direction. This will enable an accurate solution in the disc surface far from the edges.

Two inflation layers were generated to properly capture phenomenons close to the disc. The first,

and perhaps the most essential, was in the axial direction. By keeping in mind that the boundary layer

thickness decreases as ReΩ number increases (Formula 3.6), the inflation layers were built around

the boundary layer characteristics of a rotational Reynolds close to transition, since only the laminar

domain is of interest. By following Equations 3.6 and 3.7, and considering data from a case in imminent

transition (ReΩ = 500), a boundary layer thickness of δ = 1.1e−3 meters is obtained. This axial distance

was covered with around 40 cell layers, resulting in first cell height h1 of approximately 5.8e−6 meters.

The other refinement was created at the interface between the disc and the outer region, in order to

accurately capture the discontinuity present there. This double inflation lead to cells with enormous

aspect ratios. However, these were present at the periphery of the domain, outside of the disc, where

the velocity gradients are expected to be quite small, thus not posing a serious concern. The aspect

ratio of cells in the disc region was nevertheless controlled as to avoid unnecessary uneven cells and

hindering the solver performance.

The resulting mesh contained around 3.8 million nodes, which assured a satisfactory compromise

between computational effort and solution accuracy.

3.4.2 Discretization Schemes

The commercial package FLUENT was used for all simulations.

This problem is steady, laminar and incompressible. Naturally, a pressure-based approach was

selected as it was purposefully designed for low velocity flows. Additionally, the SIMPLE algorithm was

chosen to solve the coupling between pressure and velocity. For pressure, a second-order scheme was

utilized and for momentum equations, the QUICK scheme.
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3.5 Problem Parameters

To broaden this CFD study, three distinct cases with different ReΩ were studied. To change this param-

eter, only the angular velocity of the disc Ω was altered. Initially, the radius at which data was gathered

was fixed at 30% Rd. A measuring radius far from the edges was preferred mainly for two reasons.

Firstly, as was previously discussed, there is a discontinuity between the edge of the disc and the outer

region, therefore collecting data far from this region was preferable. Secondly, non-linear behaviour is

expected near the edge of the disc for the case with the highest ReΩ, which might corrupt the accuracy

of the data collected.

The ReΩ and the Reynolds number on the edge of the disc Reedge can be seen in the Table 3.1.

Case Ω [rad/s] ReΩ Reedge

1 0.04 1.65 5.5

2 4.38 16.50 55

3 365.18 150 500

Table 3.1: Values for each case.

The range of ReΩ was chosen as to study the behaviour of the classic von Kármán problem when

the flow was either highly viscous (Case 1 - Low ReΩ), on the verge of transition on the border of the

disc (Case 3 - High ReΩ) or in between the previous cases (Case 2 - Intermediate ReΩ).

3.6 Results

To assess the precision of the CFD results, values of G, F and H at different ξ were gathered at

different heights from the disc and compared to their theoretical predictions. Figure 3.9 illustrates this

comparison. Cases 2 and 3 produced excellent results, with the latter showcasing a slightly better

agreement with the theoretical predictions. On the other hand, obtained data from case 1 break away

from the expected trend. Especially so for the axial profile, where the curve actually rises to higher

values of H instead of having an asymptotic behaviour towards H = -0.8845.
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Figure 3.9: Comparison of (a) G, (b) F and (c) H values between theoretical and CFD results.

3.6.1 Discussion

The disparities between case 1 results and the theoretical curves can be explained by visualising the

velocity profiles. Here, the velocity vectors were projected onto a ZY plane. The velocity values were

made adimensional by 1/ΩRd. Only half of the domain was represented, since the problem is symmetric

with respect to the Y axis. Figures 3.10, 3.11 and 3.12 represent these projected profiles. Far from the

edge of the disc, the velocity profile for cases 2 and 3 are as expected, with the flow being drawn axially

towards the disc, and then being subject to a centrifugal motion. This causes radial expulsion of the

flow. Immediately noticeable is the erratic profile on the tip of the disc in Figure 3.12. This behaviour

was anticipated, since, near the edge, ReΩ increases to the vicinity of expected transitional values. For

case 1, a recirculation can be observed slightly above the edges of the disc in Figure 3.10, no doubt due

to the intense viscous effects, justified by the low rotational Reynolds number. As seen in Figures 3.11

and 3.12, this anomaly is not present in both cases 2 and 3, which ultimately translates to much better

agreement between practical and theoretical values.
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Figure 3.10: Projected velocity profile of case 1.

Figure 3.11: Projected velocity profile of case 2.
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Figure 3.12: Projected velocity profile of case 3.

To explore how this recirculation corrupts the accuracy of the data collected, new data was obtained

at different positions of the disc. Instead of just gathering values from 30% of the radius of the disc,

other measurements were made at increasing distance from the center of the disc. This was done to

both cases 1 and 2. For case 3 however, this was not carried out due to the transitional instabilities

present near the edge of the disc (evident in Figure 3.12). Data of tangential, radial and axial velocity far

from the center of the disc would undoubtedly be affected by these instabilities, which, for this laminar

flow problem, are unforeseen.

Figure 3.13 reflects this change of measurement radius for case 1 and Figure 3.14 for case 2. It

can be seen that, for case 1, the results change drastically with measuring radius. For case 2 however,

despite a slight change in values of G and F at 5% radius, the results remain practically the same.

At the center of the disc, r = 0 leads to a singularity in both formulas of G and F (Formula 3.4).

Therefore, data of these values in the immediate vicinity of the origin are expected to be erroneous.

A selected distance of 5% radius, on which data is obtained, is apparently close enough to produce a

small discrepancy, but not in values of H. This was expected, as this variable does not depend on the

radius. This leads to the conclusion that for obtaining future values of tangential and radial velocity, a

high enough distance has to be selected (10% radius should suffice).
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There are additional problems concerning case 1. As was previously stated, the length of the inflation

layers of the mesh in the axial direction was based on adequate values for case 3. Therefore, the created

mesh is much more apt at capturing the phenomenons in the boundary layer for ReΩ = 500, while

having a weaker performance for much lower Reynolds (case 1), leading to erroneous results. Also, the

thin boundary layer approximations can only be considered for a high enough Reynolds number. This,

coupled with the fact that this problem was deduced for infinite radius, and thus infinite ReΩ, explain the

poorG, F andH results for ReΩ = 5.5, since several of the simplifications to the Navier-Stokes equations

that were previously applied are not valid.

Overall, the simulations successfully replicated the von Kármán problem with the intended accuracy.

The mesh resolution and used methods were deemed applicable to this kind of rotational flow.

Figure 3.13: Evolution of (a) G, (b) F and (c) H from case 1 for several measuring radii.
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Figure 3.14: Evolution of (a) G, (b) F and (c) H from case 2 for several measuring radii.

30



Chapter 4

Problem Formulation

4.1 Definitions

As opposed to the previous problem, a rotating disc will now be evaluated in flight condition at several

angles of attack. As such, some new definitions are in order. The Reynolds number based on the free

stream velocity is given by:

Re =
DdU∞
ν

. (4.1)

The Reynolds number based purely on disc rotation is once again given by Formula 3.7, repeated

here for convenience.

ReΩ = r

(
Ω

ν

) 1
2

, (3.7)

and Reedge is obtained through Formula 3.8:

Reedge = Rd

(
Ω

ν

) 1
2

. (3.8)

To facilitate a direct comparison between previous and eventual future studies, all relevant flow vari-

ables were adimensionalized as such:

U

U∞
,

p− p∞
1
2ρU

2
∞

= Cp,
tU∞
Dd

= t′,
τw

1
2ρU

2
∞

= Cf ,
k

U2
∞

= k′.

where t and k are time and turbulence kinetic energy, respectively.

The angle of attack, or α, is defined as the inclination between the longitudinal axis of the disc and

the incoming airflow. This variable was adjusted by varying the components of the incoming flow.
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4.2 Numerical Model

4.2.1 New Mesh

From the conclusions of chapter 3, confirmation that the used mesh was suitable to capture and portray

near-wall phenomenons of the von Kármán problem was obtained. The next logical step was to mirror

the mesh with regards to a XZ plane in order to account for the expected asymmetry. The full mesh is

represented in Figures 4.1 and 4.2.

The disc has zero thickness as this study intends to assess aerodynamic forces and performance,

while neglecting gyroscopic precession.

Some small alterations were made to the original mesh however. The cells on the surface of the

disc were aligned with the incoming flow (X direction) and the radius of the disc was doubled to 0.2

meters. This last change was made as to facilitate comparison with the experimental study of the current

problem, that was being carried out at the time of writing.

Moreover, since free stream velocity is now present and the disc is now bigger in radius, the far

field boundaries had to be pushed back. Seeing as the present case is similar to one with flow over an

airfoil, the outer boundaries were placed at a distance of 10 chords from the disc, as this distance has

previously produced agreeable results [41]. Here, chord is taken to be Dd and thus the distance of 10

Dd was used.

Figure 4.1: Final mesh.
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Figure 4.2: Top view of the final mesh zoomed in.

Also, to ease the computational effort, the axial refinement around the disc was made coarser. The

first cell height closest to the disc was altered from 5.8e−6 to 1.9e−5 meters. This placement assured

satisfactory y+ values, as will be seen in section 4.2.3.

The top and bottom faces of the domain were deemed as periodic interfaces. The side face was

divided in half by a YZ plane, as to consider the portion at negative X values as a velocity inlet, and the

one at positive X values as a pressure outlet. At the center of domain, the disc was once again chosen

as a rotating, no-slip wall. The choice of boundary conditions is represented in Figure 4.3.

Figure 4.3: Scheme of the prescribed boundary conditions for the final mesh. Periodic (teal), velocity
inlet (green), pressure outlet (red) and no-slip wall (black).

The end result was a mesh with 7.6 million nodes.
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Several attempts at devising a better mesh configuration were made. These alternative meshes are

showcased in Appendix A.

Von Kármán Problem Rerun

To ensure that this new mesh was not detrimental to the overall accuracy of the data gathered (since

it is coarser on the axial direction near the disc), the von Kármán problem was again tackled. Case

2, which translates to Reedge = 55, was chosen. To account for the increase in radius of the disc, the

rotational velocity had to be properly scaled. The measurement radius was once again 30% Rd. The

results obtained from this new mesh can be seen in Figure 4.4.

Figure 4.4: Evolution of G values from case 2 of the old and new mesh.

As was the case with radial and axial velocities values, the difference in the results between the old

and new mesh is almost imperceptible. To avoid redundancies, only the tangential profile was repre-

sented.

Overall, it is evident that the new mesh is as suitable as the old one at solving laminar rotational flow

problems.

4.2.2 Discretization Schemes

Since this remains an incompressible problem, a pressure-based solver was once again chosen. SIM-

PLE was selected for the pressure-velocity coupling. To finalize the choice of schemes, second-order

for pressure, QUICK for momentum and turbulent equations were selected once more. However, a tem-

poral method is now required due to the unsteady nature of this problem. The implicit second-order

scheme was used due to its unconditional stability. For the time step size, guidelines were found by tak-

ing into account the time an element of fluid takes to travel the length of the disc and the entirety of the

computational domain. After a careful investigation, regarding time-step independence, convergence,

computational resources and resolution, tc = 0.005 s yielded the most satisfactory agreement.

34



4.2.3 Turbulence Model

For the purpose of the present numerical simulations, the model IDDES was chosen. Its formulation is

explained in Appendix B. The complicated flow separations and vortical phenomenons, naturally present

for such a problem with high degree of rotation at α 6= 0◦, should be adequately resolved in order

to register accurate aerodynamic data. As such, and because enough computational resources were

available, this improved version of DES was selected. Values of y+ were controlled as to ensure that the

viscous sub-layer was always properly resolved. These were in the order of unity. Turbulence intensity

at boundaries was prescribed as 1%.

4.3 Problem Parameters

A Reynolds number given by the Formula 4.1 of 150,000 was chosen, typical for a fixed-wing MAV

operation. So by Formula 4.1, and fixing the kinematic viscosity at 1.46 x 10−5m2/s, follows that U∞ =

5.478 m/s. The flow direction is (1,0,0).

The disc is rotating at a fixed angular velocity Ω with both the top (+Y) and bottom surface (-Y) initially

rotating in the same direction. Later, differential rotation was applied, meaning that each surface has

its own AdvR. The rational behind the choice of AdvR was to start from a disc flying without rotation

(AdvR = 0) and sequentially increase the spinning until turbulence is expected on the majority of the

disc (AdvR = 8), according to Lingwood [37]. All cases are summarized on Table 4.1.

AdvR Ω [rad/s] Reedge

0 0 0

0.5 13.67 193

1 27.39 274

2 54.78 387

4 109.56 548

8 219.12 775

Table 4.1: Values for each case.

Aerodynamic coefficients of lift and drag were calculated with regards to the free stream velocity

axes, and the moment coefficients relative to the body axes. The moments were taken about the center

of the disc.

Finally, the circular disc has no thickness, with Rd = 0.2 m. The angle of attack assumed values of 0◦,

5◦ and 10◦, as these are typical values for fixed-wing MAV operations. For the first two angles of attack,

the full range of AdvR was tested. However, only AdvR = 0 and differential rotation were simulated for

α = 10◦.
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Chapter 5

Results for α = 0◦

5.1 Turbulence Kinetic Energy

To better asses the effect of disc rotation on turbulence production and the wake, Figure 5.1 represents

the evolution of turbulence kinetic energy contours on the plane longitudinal to the disc.

Figure 5.1: Turbulence kinetic energy distributions for AdvR = (a) 0, (b) 0.5, (c) 1 and (d) 2.

As expected, when rotation is increased, the turbulence intensity in the wake grows stronger.
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Without rotation, the k distribution is symmetric to the longitudinal axis. When the disc is spinning

however, turbulence is seen to be more intense at the advancing side of the disc and weaker at the

retreating side, which indicates early and delayed transition, respectively. These remarks are supported

by observations from Higuchi et al. [23]. In fact, k is steeply reduced at the retreating side for AdvR = 1,

and while high values cover most of the trailing edge for AdvR = 2, this delay is also evident. Additionally,

the wake is seen to become asymmetric and not aligned with the direction of the flow, characteristic of

the asymmetry caused by disc rotation, previously remarked by Nakamura and Fukamachi [20].

5.2 Vortical Structures

5.2.1 Comparison of Methods for Vortex Identification

To determine which technique for representation of vortical structures should be utilized henceforth, a

direct comparison of four vortex methods was carried out for a generic case (AdvR = 2 was chosen).

These are introduced in Appendix C. According to the equivalent thresholds presented by Chen et al.

[42], isosurfaces of Q, λ2 and swirl strength were built around values of 0.45, -0.45 and 1.5, respectively.

For the isosurface of vorticity, ω = 25 s−1 was chosen because by selecting this value, the resulting flow

structures were the most similar to the ones produced by the other methods, thus being apt for direct

comparison. The four resulting isosurfaces, filled with velocity contours, are observed in Figure 5.2.

Figure 5.2: Isosurfaces of (a) vorticity, (b) Q, (c) λ2 and (d) swirl strength for AdvR = 2.
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Vorticity offered a highly superficial version of the events, lacking detail in just about every portion

on the disc and wake. This was caused by the high degree of vorticity within the boundary and shear

layers, which are unfiltered by this method, effectively hiding the relevant flow structures, even though

the high degree of vortical structures on the advancing side was correctly identified. Also, no guidelines

for the value of the isosurface were available, suggesting that this method pales in comparison to the

remaining 3.

The other methods drew exceedingly detailed and globally similar vortical structures, with a few

mismatches however. The λ2 method seems to lack resolution near the leading edge and swirl strength

produces lower quality structures, particularly so on the advancing side. The Q criterion is free of these

complications and offers better resolution, thus being the preferred method for vortex visualization.

5.2.2 Isosurfaces of Q

The effects of increasing disc rotation can be further studied by comparing Q = 0.45 isosurfaces. In

addition to the instantaneous visualizations, surfaces of averaged Q of 55 t′ are represented in Figure

5.3 for all unsteady cases. These surfaces were obtained by considering the tensor of time-averaged

velocities to calculate Q and are useful to determine the structures that persist the averaging process.

Immediately noticeable is the rising complexity and number of vortices identified by the Q criterion as

rotation is escalated. These structures are unlike the stationary vortices observed by Gregory et al. [40]

for a typical rotating disc, as in Figure 3.4. This disparity highlights the impact that adding free stream

velocity to a typical von Kármán problem truly has.

Starting from AdvR = 0.5 and 1, long structures that detach from the surface are only visible on the

rear portion of the disc, while the surface is relatively free of any significant vortical motion. Next, for

AdvR = 2, instabilities arise and the problem ceases to be stationary, with small eddies occupying most

of the advancing side and the wake region. These eventually migrate upstream, to the leading edge,

for AdvR = 4. When maximum rotation is applied to the disc (AdvR = 8), the entirety of the surface

is covered by disturbances. The growing importance of turbulent structures with AdvR is consistent

with the evolution reported by Wiesche [32]. The retreating side always showcases less vortical motion,

consistent with the observations from k contours in Figure 5.1.

Also noteworthy is the appearance and eventual growth of hairpin-like vortices on the surface of the

disc, visible in Figures 5.3 (e) and (f). These are presumably associated with flow separation.

Figures 5.3 (h) and (i) both highlight a long, well defined coherent structure on the retreating side.

Apparently, this large scale tip vortex does not come into contact with the wake’s structures. Additionally,

stretched longitudinal vortices that reach the trailing edge are present on the middle section of the disc.

Comparing the full range of mean isosurfaces (Figures 5.3 (g), (h) and (i)), the middle section of the wake

is initially free of any significant vortical motion, but as rotation increases, this region becomes more and

more affected by the fluctuations happening upstream. Moreover, the well defined coherent structures

on the aft portion move sequentially towards the leading edge, by the sides, hinting that added rotation

promotes the earlier appearance of vortical motion and thus turbulence production on both sides.
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Figure 5.3: Top view of Q isosurfaces for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4, (f) 8 and mean Q
isosurfaces for AdvR = (g) 2, (h) 4 and (i) 8.

5.3 Aerodynamic Coefficients

5.3.1 Full Disc

In order to better understand the aerodynamic impact that increasing rotation causes, coefficients of lift,

drag and moments were calculated. Results for the full disc are summarized in Table 5.1. Here, low

orders of magnitude (10−5 or lower) were approximated as zero.
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AdvR CL CD CM roll CM pitch CM yaw

0 0 1.22 e−2 0 0 0

0.5 0 1.27 e−2 0 0 -2.19 e−3

1 0 1.36 e−2 0 0 -4.42 e−3

2 0 1.43 e−2 0 0 -1.02 e−2

4 0 1.99 e−2 0 0 -3.08 e−2

8 0 2.45 e−2 0 0 -0.104

Table 5.1: Mean aerodynamic coefficients of the full disc for α = 0◦.

Unsurprisingly, drag increases with AdvR, as rotation is sure to generate intense pressure gradi-

ents and high degree of turbulence. Yaw follows the same trend, because with added rotation, higher

moments relative to the Y axis will surely appear. Lift, rolling and pitching moments were expected to

be approximately zero, since the symmetric geometry of the disc at α = 0◦ produces a symmetric flow

situation, causing the effects on the top and bottom surfaces to counteract each other.

Up to AdvR = 1, the coefficients reached a steady value. For higher values of AdvR however,

unsteady behaviour was observed, justified by the generated vortical and turbulent structures. Values

of aerodynamic coefficients were obtained through time averages of at least 55 t′, after ensuring that a

statistically steady state was reached.

In order to quantify the unsteadiness associated with each averaged measurement, the Root Mean

Square Deviation (RMSD), given by Equation 5.1, was calculated through the sampled measurements.

RMSD =

√∑n
i=1(xi − x̄)2

n
. (5.1)

The variables xi, x̄ and n are the measured value, averaged value and number of samples, respec-

tively. RMSD can be understood as simply squaring each residual, averaging and then taking the root

mean square of the result. This way, a deeper understanding of the deviation inevitably present from the

averaged value in each unsteady case can be found. The results are summarized in Table 5.2.

AdvR CL CD CM roll CM pitch CM yaw

0 0 0 0 0 0

0.5 0 0 0 0 0

1 0 0 0 0 0

2 1.25 e−3 1.54 e−4 3.33 e−4 3.97 e−4 7.09 e−5

4 1.97 e−3 4.37 e−4 5.48 e−4 5.27 e−4 1.36 e−4

8 6.15 e−3 7.39 e−4 1.99 e−3 1.91 e−3 3.28 e−4

Table 5.2: RMSD of the measurements from Table 5.1.

Since the first 3 cases reached a steady state, no deviation was present and thus RMSD = 0.

41



The calculated RMSD values are shown to increase with AdvR, although even at AdvR = 8, their

relative weight is fairly weak, adding trust to the time-averaged values.

5.3.2 Half Disc

Since at zero incidence the problem is symmetric by nature, no insight into the evolution of lift, roll and

pitch was gained by analyzing the aerodynamic coefficients for the whole geometry. To solve this issue,

only the upper surface of the disc (+Y) was considered here. The results are summarized in Tables 5.3

and 5.4.

AdvR CL CD CM roll CM pitch CM yaw

0 4.62 e−3 6.13 e−3 0 0 0

0.5 4.98 e−3 6.36 e−3 -1.58 e−4 1.01 e−3 -1.09 e−3

1 6.71 e−3 6.78 e−3 -1.12 e−4 1.71 e−3 -2.21 e−3

2 1.58 e−2 7.16 e−3 1.14 e−3 1.69 e−3 -5.12 e−3

4 3.73 e−2 9.88 e−3 4.39 e−4 -3.91 e−3 -1.54 e−2

8 9.13 e−2 1.22 e−2 7.33 e−4 -1.99 e−2 -5.17 e−2

Table 5.3: Mean aerodynamic coefficients for the upper surface of the disc for α = 0◦.

AdvR CL CD CM roll CM pitch CM yaw

0 0 0 0 0 0

0.5 0 0 0 0 0

1 0 0 0 0 0

2 6.15 e−4 1.77 e−4 1.87 e−4 2.17 e−4 7.43 e−5

4 1.29 e−3 2.81 e−4 3.72 e−4 4.35 e−4 9.52 e−5

8 4.46 e−3 4.54 e−4 1.31 e−3 1.52 e−3 1.96 e−4

Table 5.4: RMSD of the measurements of Table 5.3.

The increase of lift with AdvR can be reasoned by Figure 3.2 and Formula 3.4. A low pressure

region is created above the disc and since it grows stronger with Ω, lift consequently increases with

AdvR. Because p increases linearly with Ω one would expect also a linear increase of CL. This is

not verified here due to the addition of free stream velocity (which was not present in the von Kármán

problem) that dominates over rotation at low AdvR.

Values of CD and CM yaw are half of their counterparts for the full disc, confirming the symmetric

contribution of each surface.

Immediately noticeable is the change of signs for both roll and pitch coefficients, occurring at the

transitions from AdvR = 1 to 2, and 2 to 4, respectively. This evolution is represented in Figure 5.4, with

the RMSD present as error bars.
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Figure 5.4: Evolution of CM roll and CM pitch for one side of the disc.

Pressure contours on the surface of the disc, represented in Figure 5.5, shed some light on this

atypical behaviour.

Figure 5.5: Pressure coefficient distribution for AdvR = (a) 1, (b) 2, (c) 4 and (d) 8.
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Rolling moment is created by differences in pressure between the left (retreating side) and right side

(advancing side) of the disc since X is the roll axis. Starting from AdvR = 1, the biggest low pressure

region, located on the aft portion, offers an approximately equal contribution to the left and right side.

The two high and low pressure areas on the front of the disc act together to produce a negative rolling

moment, even though its value is fairly low. The most asymmetric pressure distribution map around

the X axis, is clearly that of AdvR = 2. Regions of both high and low pressure are located mainly

on the advancing side. However, the lower pressure region is far bigger and more intense, causing a

positive rolling motion, larger in magnitude that any other case. Cases AdvR = 4 and 8 share between

them a similar topology, being roughly symmetric around the X axis, which explains the sudden drop in

magnitude of rolling moment, but its signal remains positive.

On the other hand, pitching moment is taken about the Z axis. It is generated when pressure im-

balances arise between the front and back of the disc. For AdvR = 1, two thin areas of high and low

pressure are seen on the front. These seem to be of comparable magnitude, but the presence of another

low pressure region, large and intense, covering most of the aft portion, bestows a nose-down, positive

pitching moment. Regarding the next case, AdvR = 2, both high and low pressure region have grown

in strength and moved upstream. These regions work together to again produce a positive pitching mo-

ment. Its value does not change by much however, as the rise in pressure near the leading edge seems

to be evened out by the migration of the low pressure area towards the front. AdvR = 4 brings forth a

radical change. Both regions are now located on front of the disc and the overwhelming low pressure is

evident. Consequently, a nose-up, negative pitching moment is now generated, with similar magnitude

as of the previous case. Finally, the same trend is noticeable for AdvR = 8 but now the high pressure

region is drastically reduced, as is its resistance to a nose-up motion. Therefore, a record negative

pitching moment was obtained.

Since the measured coefficients are especially low, a high degree of uncertainty was noticeable

in obtaining averaged values. The relatively high RMSD values from Table 5.4 corroborate this issue.

However, the notorious shift in signals for rolling and pitching moments is confirmed, because for these

AdvR, the RMSD are simply not high enough to cause erroneous signal changes.
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5.4 Periodic Behaviour

A flow cycle was observed for AdvR = 2, made evident by the regular, oscillatory variation of all aerody-

namic coefficients. Drag, pitching and yawing moments showcased clearer cyclic characteristics how-

ever, and their behaviour can be observed in Figure 5.6.

Figure 5.6: Evolution of CD, CM pitch and CM yaw with t′.

The frequency of this established cycle f can be expressed in adimensional form as the Strouhal

Number St given by:

St =
fDd

U∞
. (5.2)

Based on the average distance between peaks, the cycle takes about 10 t′, or St = 0.1. This value

is small enough compared to the Strouhal number linked to the disc rotation (St = 0.64) to confirm that

this periodic phenomenon is in fact physical and not a result of spurious computational artifacts.

Comparing the ReΩ for the onset of absolute instability from Lingwood [37] for pure rotation (510) and

Reedge for this case (387), the disparity is obvious. The inclusion of incoming flow seems to accelerate

the appearance of instabilities, promoting early transition. Furthermore, the peak in frequency spectrum

occurs at much lower frequencies (2πf/Ω = 0.16) than the one found by Imayama [39] (2πf/Ω = 30).

A periodic vortex shedding at AdvR = 2 for zero incidence was also reported by Wiesche [31], for a

disc with small thickness. However, a very different Re was used, and the reported St was higher than

the one found in this study.

For AdvR = 4 and 8, this cyclic behaviour disappears.
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Figure 5.7 shows the power spectra of CD, CM pitch and CM yaw for AdvR = 2 and 4. These plots

map out the distribution of relative power over frequency range and are a useful indicator of dominating

frequencies.

Figure 5.7: Power spectra of (a) CD, (b) CM pitch and (c) CM yaw.

For AdvR = 2, the low frequency peak at St = 0.1 clearly towers over all others in the frequency

range, thus ascertaining the periodic nature of this behaviour. This is noticeable for all 3 represented

aerodynamic coefficients in Figure 5.7.

This signature is still visible for AdvR = 4, particularly so for CD. But now a plethora of other,

energetically comparable components appear, partially hiding the once dominant peak. Meaning that

the low frequency, periodic behaviour of AdvR = 2 ceases to be noticeable.

This cycle can also be appreciated by visualizing isosurfaces of Q, colored with Cp contours. Evident

in Figure 5.8 is the migration of the high pressure region to the center front of the disc and subsequent

return. The shape of the low pressure area remains fairly constant however.
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Figure 5.8: Periodic behaviour during a time interval of t‘= 10.
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5.5 Limiting Streamlines

The topology of the flow close to the disc can be visualized by drawing limiting streamlines as well as

skin friction lines on the surface of the disc.

Firstly, mean limiting streamlines, along with Cp contours were obtained, as in Figure 5.9.

Figure 5.9: Mean limiting streamlines with contours of Cp for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and
(f) 8.
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For zero rotation (AdvR = 0) the streamlines are perfectly straight, as one would expect. With the

absence of disc rotation, the particles directly on the surface showcase a horizontal trajectory, parallel to

the free stream flow. As rotation is increased to AdvR = 0.5, asymmetry is evident between both sides

of the disc. The retreating side showcases streamlines parallel with the outer flow, while the ones on

the advancing side become increasingly curved and deformed. Pressure maintains an almost equal in

distribution toAdvR = 0 for this low degree of rotation. ForAdvR = 1, the slight adverse pressure gradient

causes a small separation line, made clear by the convergence of limiting streamlines. The overall lack

of long and predominant separation lines in these 3 cases is consistent with the observations of few

vortical structures in Figures 5.3 (a), (b) and (c).

When AdvR = 2 is reached, the configuration of the limiting streamlines changes drastically. Now a

focus of reattachment is visible, representing the suction of the flow due to rotation. After being drawn

to the disc, the fluid particles are then expelled radially due to rotation. The overall dynamics for this

AdvR start to act much like the characteristic centrifugal pump of the pure rotation von Kármán problem.

Additionally, the separation line migrated upstream, coincident with the adverse pressure gradient. This

is logical, since rotation now exerts higher resistance against the flow on the advancing side, and thus

the fluid particles separate from the surface sooner, when compared to previous cases with lower AdvR.

The separation line remains local and small in size however, effectively dividing regions where rotation

and convection by the outer flow dominate. The location of this separation line matches the appearance

of vortical structures on the advancing side, in Figures 5.3 (d) and (g). Rohde [30] reported a similar

separation line for AdvR = 1 but on the retreating side. The fact that the tested geometry had thickness

and a much higher free stream velocity was utilized (Mach = 0.5) might explain this disparity. Ultimately,

AdvR = 2 acts as a critical value, on which the impact brought by rotation is comparable to the convective

effects of the outer flow.

Further increasing the magnitude of rotation to AdvR = 4 moves the separation line to the leading

edge and approximates the topology of the streamlines to that of a pure rotation problem, as the focus

migrates to the center of the disc. Such a degree of rotation dominates over the effects of the free

stream velocity and so much so for AdvR = 8, where the flow immediately separates when confronted

with rotation. This is coherent with the presence of turbulent motion on the entire surface of the disc, as

Figures 5.3 (e), (f), (h) and (i) demonstrate.

Overall, after a critical AdvR is reached, the effect of rotation on the periphery of the disc becomes

intense enough to oppose the convective transport of the outer flow.
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5.6 Skin Friction Lines

While all other flow quantities are measured relative to the inertial reference frame, the wall shear stress

vector −→τw and consequently Cf are calculated with respect to the frame rotating along with the disc,

which creates an apparent disparity between limiting streamlines and skin friction lines.

This change of reference point is better understood in Figure 5.10.

Figure 5.10: Relative velocities for a (a) fixed and (b) moving observer, represented by the red dot.

For a fixed reference frame, the incoming flow adds up with the disc rotation at the retreating side and

opposes it at the advancing side, as expected. When changing to a reference frame that rotates with

the disc however, the direction of rotation seems inverted. This is caused by the perception of relative

velocities on the rotating frame. For an observer on the surface of the disc, the former retreating side

seems to collide with the flow, and the advancing side appears to travel alongside it, effectively sensing

a clockwise motion, even though the disc is rotating anti clockwise.

Since they are defined in different frames, the limiting streamlines do not tend to the skin friction

lines as the distance to the wall approaches 0, like in typical flow situations without a rotating surface.

Therefore, the skin friction lines representing the −→τw components showcase a mirrored topology of the

limiting streamlines previously represented. Figure 5.11 shows such skin friction lines with contours of

Cf .

With added rotation, the magnitude of Cf increases due to more intense velocity gradients present

at the edges of the disc. As is the case with Cp, contours of skin friction coefficient become increasingly

asymmetric until AdvR = 1. Beyond, the low Cf region migrates from the lower edge to the center,

where, at AdvR = 8, the distribution is what could be expected from a pure rotation problem. Aside from

a region of high Cf near the leading edge, Cf grows from the center to the edges, attaining a radially

symmetric configuration. Also, Cf is at its lowest value on the focus region for AdvR = 2, 4 and 8 and

shows a local minimum near the separation lines.
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Figure 5.11: Mean skin friction lines with contours of Cf for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and
(f) 8.
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Chapter 6

Results for α = 5◦

6.1 Turbulence Kinetic Energy

Contours of adimensional turbulence kinetic energy were once again obtained on the plane Y=0. These

are projected in Figure 6.1.

Figure 6.1: Turbulence kinetic energy distributions for AdvR = (a) 0, (b) 0.5, (c) 1 and (d) 2.

When compared to Figure 5.1, AdvR = 0 showcases here regions of higher turbulence intensity,

justified by the presence of tip vortices, noticeable at the edges of the disc.
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Overall the patterns are fairly similar, once again with accelerated transition on the advancing side

and delayed on the retreating side, though this delay is not as pronounced at this angle of attack,

especially so for AdvR = 1 and 2. Additionally, the wake becomes thinner and more compact.

6.2 Vortical Structures

6.2.1 Top Surface

Figures 6.2 and 6.3 show instantaneous and mean isosurfaces of Q = 0.45 for the upper surface of the

disc. Starting from AdvR = 0, a pair of tip vortices is immediately noticeable, a typical characteristic of

increasing incidence, and their presence is observed for every AdvR. These were confirmed by the k

contours of Figure 6.1 and initially start out symmetric at AdvR = 0. Until AdvR = 2, the vortices preserve

their size and shape, although a slight shift is noticeable, again consistent with observations from Potts

and Crowther [22] and Higuchi et al. [23]. The vortex on the advancing side migrates upstream and on

the retreating side, it grows in intensity. After AdvR = 4, both increase in size, becoming more intense

and deformed.

When compared to zero incidence in Figure 5.3, a higher density of vortical structures at low AdvR

(0 to 1) is evident, as the flow is now much more complex and prone to separations.

Figure 6.2: Top view of Q isosurfaces for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and (f) 8.
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Figure 6.3: Top view of mean Q isosurfaces for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and (f) 8.

Both instantaneous and mean surfaces for AdvR = 4 and 8 are fairly similar to their counterparts for

α = 0◦, indicating that at this degree of spin, rotation dominates over the effects of increasing incidence.

Aside from the tip vortices, the main differences from previous cases are the vorticity region present on

the leading edge of the disc for low rotation cases and the well-defined tip vortex on the advancing side.

The former is a result of laminar separation, otherwise missing for zero incidence, which will be analyzed

in future sections.

6.2.2 Bottom Surface

Now analyzing the structures seen on the bottom surface in Figures 6.4 and 6.5, the decrease of turbu-

lent structures occurring for AdvR = 0, 0.5 and 1 is evident. The incoming flow comes into direct contact

with this surface, delaying any separations and instabilities, thus leading to a far less complicated flow

representation. There are some similarities between the present and previous cases however. Most

notably, the mean isosurface for AdvR = 2 (Figure 6.5 (d)) is strikingly similar to its counterpart for zero

incidence (Figure 5.3 (g)). Also, the instantaneous surfaces of AdvR = 8 for both α = 5◦ surfaces (Fig-

ures 6.2 (f) and 6.4 (f)) are rather alike. The most interesting novelties present here are the thin, much

longer than previously seen structures on the retreating side for AdvR = 4 and 8 (Figures 6.4 (e) and (f)),

and the sharp, coherent structures, covering half of the disc, present in Figures 6.5 (e) and (f) exhibit.
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Figure 6.4: Bottom view of Q isosurfaces for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and (f) 8.

Figure 6.5: Bottom view of mean Q isosurfaces for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and (f) 8.

56



6.3 Aerodynamic Coefficients

Now the problem ceases to be symmetric. Therefore, only the aerodynamic data regarding the full disc

is of interest. Tables 6.1, 6.2 and 6.3 summarize the results.

AdvR CL CD CM roll CM pitch CM yaw

0 0.181 2.56 e−2 0 -4.70 e−2 0

0.5 0.181 2.60 e−2 0 -4.71 e−2 -2.14 e−3

1 0.182 2.68 e−2 -2.65 e−4 -4.75 e−2 -4.37 e−3

2 0.183 2.81 e−2 -1.48 e−3 -4.75 e−2 -1.01 e−2

4 0.197 3.63 e−2 -2.67 e−3 -4.75 e−2 -3.08 e−2

8 0.241 4.54 e−2 -2.56 e−3 -5.20 e−2 -0.104

Table 6.1: Mean aerodynamic coefficients for α = 5◦.

AdvR CL CD CM roll CM pitch CM yaw

0 3.41 e−4 7.36 e−6 1.02 e−4 4.83 e−5 4.13 e−6

0.5 5.92 e−4 1.88 e−5 1.99 e−4 6.38 e−5 7.26 e−6

1 6.47 e−4 3.71 e−5 1.90 e−4 9.79 e−5 1.77 e−5

2 8.15 e−4 1.49 e−4 2.52 e−4 2.16 e−4 5.01 e−5

4 1.80 e−3 2.71 e−4 4.92 e−4 5.68 e−4 9.19 e−5

8 6.11 e−3 8.33 e−4 1.72 e−3 1.89 e−3 2.61 e−4

Table 6.2: RMSD of the measurements of Table 6.1.

AdvR L/D

0 7.07

0.5 6.96

1 6.79

2 6.51

4 5.43

8 5.31

Table 6.3: Lift to drag ratio for α = 5◦.

At α 6= 0◦, a certain degree of unsteadiness was observed for every AdvR case.

Since the top and bottom surfaces now experience different pressure conditions, lift force will no

longer be zero, as well as rolling and pitching moments. Lift stays approximately constant until AdvR =

2. This trend was confirmed by the findings of Potts and Crowther [21] up to AdvR = 1.04. However,

when AdvR = 4 is reached, CL increases roughly 8% and after AdvR = 8, a substantial increase of 22%

is observed. Drag follows a similar trend than that of zero incidence, as it increases with rotation.
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Interesting to note is that the case α = 0◦, AdvR = 8 generates less drag than the disc without rotation

at α = 5◦, showing just how punishing increasing incidence is. Figure 6.6 highlights the evolution of CD

for both α, with the biggest increase in drag occurring from AdvR = 2 to 4 for either angle of incidence.

The error bars represent again the calculated RMSD.

Figure 6.6: Evolution of CD for α = 0◦ and α = 5◦.

Additionally, Figure 6.7 shows the trends of CL, CD and L/D. The latter is severely worsened at

AdvR = 4, but at AdvR = 8, the massive increase in lift almost balances the increase in drag, only

leading to a small decrease of lift to drag ratio.

Figure 6.7: Evolution of CD, CL and L/D for α = 5◦.

The rolling moment is always negative and increases with rotation, reaching its maximum value

at AdvR = 4. It plateaus thereafter. On the other hand, CM pitch stays roughly the same except a

slight increase at AdvR = 8. Besides, it constantly indicates a nose-up motion, predictable for non-zero

incidence. Finally, the yawing moments are practically equal to those produced at zero incidence.
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6.4 Limiting Streamlines

6.4.1 Top Surface

Figure 6.8 showcases the mean limiting streamlines on the top surface of the disc along with Cp con-

tours. Starting from AdvR = 0, a separation and reattachment line are immediately noticeable on the

front, signaling the presence of a laminar separation bubble. Here, flow reversal towards the leading

edge occurs and the fluid is convected to the sides, where it eventually joins other separation lines, rep-

resenting here the tip vortices and leave the surface. Near these lines the topology of the streamlines is

highly convoluted, indicating that time-average may not be the best option to determine the mean flow.

Adding rotation of AdvR = 0.5 and 1 causes a shift of the LSB, much like the flow observations from

Potts and Crowther [22] in Figure 2.8. The separation line on the retreating side decreases in size and is

sequentially pushed downstream. On the advancing side however, it migrates upstream, to the leading

edge. The regions of ill-defined streamlines near the tip vortices in Figure 6.8 (a) are much clearer now,

hinting that rotation pushes the flow to the vortices more efficiently.

For AdvR = 2, the separation lines on the side cease to appear, meaning that the tip vortices are

not created directly on the surface, as if prevented to do so by the rotation. Also, like in Figure 5.9

(d), a reattachment focus is present. Here, rotation is strong enough to generate suction and expelling

fluid particles in a centrifugal motion. The separation and reattachment line are still present, the latter

emerging from the focus. This represents a complex separation pattern, similar to a tornado-like vortex,

where fluid from the LSB is drawn to the disc due to rotation.

Finally, for high rotation values AdvR = 4 and 8, a pure rotation topology is obtained, as in zero

incidence (Figures 5.9 (f)) and thus the LSB is fully suppressed.

Focusing exclusively on the contours of pressure, the distribution barely changes up until AdvR =

2. Pressure stays approximately constant on the center region of the LSB (consistent with Figure 2.5)

and increases in the vicinity of the separation lines on the sides. Pressure is at its maximum near the

reattachment line, as the flow reaches the surface, and minimum on the leading edge, at the beginning

of the LSB. Only after AdvR = 4, when the LSB is suppressed, that strong, low pressure regions start to

appear. Indeed, at AdvR = 8, intense negative pressure regions cover the entirety of the leading edge,

strongest near the retreating side. This distribution is strikingly similar to its counterpart for α = 0◦, in

Figure 5.9 (f). Also noteworthy is how the reattachment line becomes less and less coincident for AdvR

up to 2 with the high pressure region that outlines the end of the LSB.

6.4.2 Bottom Surface

The same distributions for the bottom surface are represented in Figure 6.9. The patterns drawn by the

limiting streamlines are the same as for zero incidence, in Figure 5.9. However, Cp contours are radically

different. As expected, a high pressure region occupies the front, where the flow directly contacts the

surface. As rotation takes hold, this region decreases in size and migrates to the leading edge and, for

AdvR = 8, it shares the front with equally intense low pressure regions.
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Figure 6.8: Mean limiting streamlines with contours of Cp for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and
(f) 8 for the top surface.
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Figure 6.9: Mean limiting streamlines with contours of Cp for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and
(f) 8 for the bottom surface.
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6.4.3 Discussion

From section 6.3 it was seen that CL increases for AdvR = 4 but the biggest improvement was from

AdvR = 4 to 8. A reasoning behind this evolution can be accomplished by considering the results from

section 6.4.1. The pressure contours are almost equal until AdvR = 4 and a LSB is evident. This is

why CL is practically constant between these cases. From Equation 3.4, low enough pressure is only

created with high values of Ω. Low rotation magnitudes, coupled with the presence of the LSB, which

forces a plateau of pressure, leads to virtually constant CL values for low AdvR, up to 2. With increased

rotation, the separation bubble is fully suppressed at AdvR = 4 and a low pressure region is seen on

the retreating side. Both factors cause a mild increase in lift. However, the biggest jump comes as a

consequence of the intense low pressure regions, covering most of the leading edge for AdvR = 8. It can

be deduced that the elimination of the LSB is fundamental to achieve increase in lift for fixed incidence.

This suppression not only increases lift by itself, but also allows the creation of low pressure regions on

the top surface more efficiently due to rotation, further boosting CL.

Moreover, it can be argued that the bottom surface does not play a pivotal rule in the lift evolution. At

AdvR = 4 and 8, low pressure regions, consequence of the high degree of rotation, are created on this

surface as well, albeit with much lower dominance, which undoubtedly worsen CL. However, at these

values of AdvR, lift is seen to increase. As such, the biggest contribution of this lower surface is the

increase in drag it brings, since its effect on lift is not determinant.

Rolling moment suffers a massive increase between AdvR = 1 and 2 due to the asymmetry in pres-

sure distribution created on the lower surface (Figure 6.9 (d)). At AdvR = 4, the negative pressure on

the retreating side on the top surface (Figure 6.8 (e)) leads to an increase in magnitude of CM roll and

after that, it remains roughly constant. At AdvR = 8, the contribution that the low pressure region on the

retreating side for the top surface brings is opposed by a similar one on the bottom surface (Figures 6.8

(f) and 6.9 (f)). Nonetheless, a moderate high pressure region on the bottom surface near the retreating

side aids the negative rolling moment. The high concentration of negative pressure on the leading edge

for AdvR = 8 is also responsible for the increase in pitching moment. This region and high pressure ar-

eas in the bottom surface lead to the most adverse CM pitch of all cases, even though negative pressure

is also evident on the lower surface (Figure 6.9 (f)), which would help counteract the one on top.

Overall, high values of rotation (AdvR = 4 and 8) allow for an increase in CL, but also in CD and

CM pitch, which undoubtedly worsen aerodynamic performance. However, for a real life disc with mass,

the unstable pitching moment would be translated into a rolling moment by gyroscopic precession, as

explained in section 2.1.3.

6.5 Skin Friction Lines

Figure 6.10 shows the mean skin friction lines with contours of Cf for the top surface. Until AdvR = 1, a

crescent-like region of high magnitude of Cf is observed between the reattachment line and tip vortices,

as well as low Cf regions near the tip vortices.
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After that, the focus is developed and the distributions of Cf are fairly similar to those of zero inci-

dence (Figure 5.11). The skin friction lines and Cf maps for the bottom surface were not represented

here as to avoid redundancies, since they were indistinguishable from those of Figure 5.11.

Figure 6.10: Mean skin friction lines with contours of Cf for AdvR = (a) 0, (b) 0.5, (c) 1, (d) 2, (e) 4 and
(f) 8 for the top surface.

63



6.6 Differential Rotation

Better aerodynamic performance can undoubtedly be accomplished by imposing different degrees of

rotation on the top and bottom surfaces of the disc. The two simulated cases with differential rotation are

listed in Table 6.4. Here, negative AdvR implies clockwise rotation. This selection of AdvR was carried

out with the purpose of trying to maximize L/D and reduce the unstabilizing moments. Since AdvR = 8

on top produced the best CL results, only the rotation of the bottom surface was altered.

Case Top AdvR Bottom AdvR

1 8 0

2 8 -8

Table 6.4: The choice of AdvR for differential rotation.

The aerodynamic data is summarized in Tables 6.5, 6.6 and 6.7.

Case CL CD CM roll CM pitch CM yaw

1 0.253 3.87 e−2 -3.27 e−3 -5.87 e−2 -5.17 e−2

2 0.239 4.76 e−2 -5.32 e−4 -5.74 e−2 -7.21 e−4

Table 6.5: Mean aerodynamic coefficients for differential rotation.

Case CL CD CM roll CM pitch CM yaw

1 3.21 e−3 5.16 e−4 9.27 e−4 1.11 e−3 1.94 e−4

2 3.39 e−3 6.48 e−4 1.02 e−3 1.37 e−3 2.43 e−4

Table 6.6: RMSD of measurements of Table 6.5.

Case L/D

1 6.54

2 5.02

Table 6.7: Lift to drag ratio for differential rotation.

The resulting limiting streamlines and pressure contours on the top surface are the same as Figure

6.8 (f) for both cases. The bottom surface however, resulted in the same configuration as Figure 6.9 (a)

for case 1, and a shifted Figure 6.9 (f) for case 2.

Lift increases for case 1, when compared to equal rotation of AdvR = 8 on both surfaces (Table

6.1). Now, the bottom surface is free of any rotation and thus of induced negative pressure regions.

Therefore, the negative impact that these had on CL is gone, leading to an increase in lift production.

Case 2 results in approximately equal CL to AdvR = 8 on both sides, as pressure distributions mainly

shifted sides on the bottom surface.
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Drag follows the opposite trend. It decreases in value for case 1, since now there is no high rotation

to oppose the flow on the bottom surface. Additionally, a slight growth is noticeable for case 2. These

changes bring an appreciable increase in L/D for case 1 and a modest decrease for case 2. Interesting

to note is that L/D for case 1 is only slightly smaller than the one produced by AdvR = 0, which shows

that applying differential rotation from case 1 to achieve better CL is well worth the consequent increase

in drag. The full comparison of CL, CD and L/D is visualized in Figures 6.11 and 6.12. Here, the

notation AdvR = (a, b) translates to AdvR = a on the top surface and b on the bottom one.

Figure 6.11: Evolution of CL and CD for differential rotation.

Figure 6.12: Evolution of L/D for differential rotation.

Rolling moment suffers an increase in magnitude in case 1 but is then drastically reduced for case

2. Regarding the former case, the low pressure region on the bottom surface’s retreating side vanished.

As such, the one on the top surface is now unopposed, resulting in a more unstabilizing CM roll. For

the latter case, the high pressure area on the bottom surface changes sides due to the shift in rotation

direction and now counteracts the negative pressure on top (Figure 6.13), stabilizing the disc.
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Pitch always seems to slightly deteriorate. Due to the lack of low pressure regions on the leading

edge for the bottom surface, pitching moment increases in magnitude for case 1. Similarly, CM pitch

grows more unstable for case 2. This can be visualized in Figure 6.13. A slight superiority of the high

pressure region on the front of the disc for the differential rotation is observed, creating an increase in

pitching moment.

Figure 6.13: Mean limiting streamlines with contours of Cp of (a) Figure 6.9 (f) and (b) differential rotation
case 2 for the bottom surface.

Figure 6.14 highlights the changes in rolling and pitching moments.

Figure 6.14: Evolution of CM roll and CM pitch for differential rotation.

Finally, yawing moments showcase predictable results. Case 1 produces half of CM yaw for equal

rotation and case 2 roughly null moment.

Each differential rotation case is best suited for separate goals. Case 1 is apt at increasing L/D and

case 2 at minimizing the rolling moment. The latter becomes particularly useful when remembering that

in a real life scenario, gyroscopic precession will occur, and added rolling moment will be induced.
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Chapter 7

Results for α = 10◦

7.1 Turbulence Kinetic Energy

Figure 7.1 shows the k distribution on the plane Y = 0.

Figure 7.1: Turbulence kinetic energy distribution for AdvR = 0.

The magnitude of k is now more pronounced than Figures 5.1 (a) and 6.1 (a), particularly so near

the tips and trailing edge. The wake is much narrower in width due to higher convection happening on

the direction of the flow.

7.2 Vortical Structures

As Figures 7.2 (a) and (c) show, much more vortical structures are identified by the Q criterion around

and especially on the disc. Here, the return of hairpin-like vortices is noticeable. With added inclination,

stronger pressure gradients will be created on the surface of the disc, thus resulting in more intricate

turbulent structures.
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The tip vortices are now much thicker and form slightly more upstream. Moreover, the region of

vorticity identified right on the leading edge is larger than the one found on Figure 6.3 (a). Figure 7.2 (b)

now displays longitudinal and stretched vortices on the disc, which only appeared when high degree of

rotation was applied for α of 0◦ and 5◦.

Figure 7.2: Top surface’s (a) instantaneous and (b) mean Q isosurfaces. Bottom surface’s (c) instant
and (d) mean Q isosurfaces.

7.3 Aerodynamic Coefficients

Tables 7.1, 7.2 and 7.3 show the results regarding aerodynamic figures. The lift coefficient increases

massively, as well as CD when compared to values from Table 6.1, a typical trend for higher incidence.

However, the overall balance results in a decidedly worse lift over drag ratio. Pitching moment also

increases, due to the higher and lower pressure present at the bottom and top surface, respectively.
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AdvR CL CD CM roll CM pitch CM yaw

0 0.397 7.83 e−2 0 -9.66 e−2 0

Table 7.1: Mean aerodynamic coefficients for α = 10◦.

AdvR CL CD CM roll CM pitch CM yaw

0 2.93 e−3 1.53 e−4 9.20 e−4 6.41 e−4 3.28 e−5

Table 7.2: RMSD of measurements of Table 7.1.

AdvR L/D

0 5.07

Table 7.3: Lift to drag ratio for α = 10◦.

Validation with previous studies

The full range of aerodynamic coefficients for a non-rotating disc (AdvR = 0) is summarized in Table 7.4.

α [◦] CL CD L/D CM roll CM pitch CM yaw

0 0 1.22 e−2 0 0 0 0

5 0.181 2.56 e−2 7.07 0 -4.70 e−2 0

10 0.397 7.83 e−2 5.07 0 -9.66 e−2 0

Table 7.4: Mean aerodynamic coefficients for AdvR = 0.

These can be compared to corresponding data from Torres and Mueller [18] and Kamaruddin [19].

For the former, results from an elliptic wing model with AR = 1.25 are used for comparison. This aspect

ratio is sufficiently close to the one characteristic of the disc geometry, focus of this study (1.273). Re-

garding the latter, validation can be carried out by considering aerodynamic results from the thinnest disc

geometry. The sign conventions from this study and Kamaruddin [19]’s are opposite for the pitching axis.

To perform validation, the obtained CM pitch values from this study were made positive. Additionally,

the Re of these experimental studies are not the same as the one utilized in the present study. However,

Torres and Mueller [18] remarked that at such low Re, the effect of varying this variable on aerodynamic

data at low α can be considered negligible.

This comparison can be seen in Figures 7.3, 7.4, 7.5 and 7.6. All compared values from Table 7.4

agree exceptionally well with the previous studies. Obtained magnitudes of drag were slightly smaller

for the present study since the disc had no thickness.
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Figure 7.3: Comparison of obtained CL values with previous experimental studies.

Figure 7.4: Comparison of obtained CD values with previous experimental studies.

Figure 7.5: Comparison of obtained L/D values with previous experimental studies.
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Figure 7.6: Comparison of obtained CM pitch values with previous experimental studies.

7.4 Limiting Streamlines

Figure 7.7 showcases mean limiting streamlines with contours of Cp for both surfaces of the disc.

Figure 7.7: Mean limiting streamlines with contours of Cp for the (a) top and (b) bottom surface.

When compared to Figure 6.8 (a), two main differences are immediately noticeable. Firstly, the con-

voluted streamlines near the tip vortices are now well-defined and represent a clearer pattern. Secondly,

the two separation lines representing the tip vortices now unite in one long separation, that is present

near the leading edge, and an additional reattachment line is observed. By projecting the velocity vec-

tors onto a XY plane, as in Figure 7.8, a second, smaller separation bubble is seen. It is encapsulated by

the bigger one and is responsible for the appearance of the new lines. Apparently, this new phenomenon

existed in its primordial form at α = 5◦ and is now fully developed.
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Figure 7.8: (a) Projected streamlines onto a Z=0 plane with contours of Cp and (b) zoomed in.

Also, the original LSB increases in size, as the reattachment line signaling that the end of the bubble

moves downstream. This expansion with α was noted by Higuchi et al. [23] for the disc’s upper surface,

and the resulting topology of streamlines on Figure 7.7 (a) is strikingly similar to the one reported on the

same study, for the same angle of attack. Pressure magnitude exhibits more intense values near the

leading edge, a clear consequence of increased incidence.

7.5 Skin Friction Lines

The resulting Cf distribution from Figure 7.9 follows the same trend as expected. The same crescent

region of high magnitude is still visible, although slightly larger.

Figure 7.9: Mean skin friction lines with contours of Cf for the (a) top and (b) bottom surface.
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7.6 Differential Rotation

Previously, case 1 from Table 6.4 yielded the best CL results and also a vast improvement in terms of

L/D over the standard AdvR = 8, with a faint decrease over the AdvR = 0 case. Now, this differential

rotation is applied to α = 10◦ to observe the evolution in aerodynamic results (Tables 7.5, 7.6 and 7.7).

Case CL CD CM roll CM pitch CM yaw

1 0.479 9.89 e−2 -3.37 e−3 -0.108 -5.24 e−2

Table 7.5: Mean aerodynamic coefficients for differential rotation.

Case CL CD CM roll CM pitch CM yaw

1 5.08 e−3 9.75 e−4 1.29 e−3 1.73 e−3 2.00 e−4

Table 7.6: RMSD of the measurements of Table 7.5.

Case L/D

1 4.84

Table 7.7: Lift to drag ratio for differential rotation.

Values of CL, CD and CM pitch all increase in magnitude, when compared to the results from Table

7.1. Again, L/D suffered only a slight decrease from AdvR = 0. Interesting to note is that CM roll is

roughly the same as for α = 5◦, case 1, leading to the conclusion that the larger pressure gradients

produced here on both surfaces balance each other similarly. At α = 5◦, case 1 resulted in a lift increase

of approximately 40%, when compared to the case without rotation. Here, this growth is smaller: 21%.

However the separation bubble was also fully suppressed here, as Figure 7.10 shows. One can conclude

that AdvR = 8 rotation is still dominant enough to eliminate the now larger separation bubble and to

generate a vast improvement in CL over the disc without rotation, like for α = 5◦.

Figure 7.10: Mean limiting streamlines with contours of Cp of differential rotation case 1 for the top
surface.
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Chapter 8

Conclusions

8.1 Achievements

In this thesis, flow around an inclined, rotating disc at Re = 150,000 was studied by means of CFD

simulations, with IDDES as the selected mathematical model to model turbulence. The disc geometry

had no thickness and different magnitudes of rotation were applied, from AdvR = 0 to 8. Here, AdvR is

defined as the ratio between tip and flow speed. Additionally, the disc was immersed in free stream flow

at three distinct angles of attack (0◦, 5◦ and 10◦). Aerodynamic coefficients, limiting streamlines and

vortical structures were calculated and further validated by comparison to previous studies.

The main findings of the present study are as follows:

• From chapter 5, delayed and accelerated transition on the retreating and advancing side, respec-

tively, were observed. Hairpin-like vortices on the surface of the disc appeared for AdvR = 4 and 8.

Furthermore, the rolling moment measured on one surface of the disc was shown to shift signals,

converting from negative to positive values between AdvR = 1 and 2. Similarly, the pitching mo-

ment changes from positive to negative between AdvR = 2 and 4. These swaps were explained

by pressure contours on the disc. A periodic behaviour was noted at AdvR = 2. The measured os-

cillations showed a distinct peak in power spectra graphics at St = 0.1. From the topology of mean

limiting streamlines, a small separation line was first seen for AdvR = 1 on the advancing side,

which travels further upstream until it is no longer present on the disc at AdvR = 8. At this degree

of rotation, the resulting mean limiting streamlines and Cf distribution are almost identical to those

of a rotation-only problem. The same streamlines displayed the formation of a reattachment focus

past AdvR = 2, signaling the threshold beyond which rotation is strong enough to draw fluid onto

the surface;

• From chapter 6, tip vortices for AdvR = 0 were observed as was their growth and deformation with

added rotation. Vortical structures on the top and bottom surface were compared. Lift was shown

to be roughly constant up until AdvR = 2. The presence of a laminar separation bubble on the top

surface and low Ω magnitudes cause this plateau. At AdvR = 4 and 8, the LSB is suppressed by

rotation and intense regions of low pressure are visible on the top surface, generating added lift.
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Drag was shown to increase at a similar rate as for zero incidence. Pitching moment only suffers a

significant growth at AdvR = 8. The L/D ratio was shown to decrease with rotation. The topology

of mean limiting streamlines on the top surface shows both the tip vortices and the separation

bubble untilAdvR = 1. The former disappear atAdvR = 2 and the latter atAdvR = 4. On the bottom

surface, the streamlines and Cf contours were seen to be equal to that of zero incidence, despite

the change in Cp contours. Differential rotation AdvR = (8,0) increased aerodynamic performance

over AdvR = (8,8), namely CL and L/D, the latter being only slightly smaller than for AdvR =

0. Case AdvR = (8,-8) resulted in a considerable decrease of rolling moment, thus potentially

stabilizing the disc’s flight;

• From chapter 7, aerodynamic coefficients from AdvR = 0 for the entire range of tested α were val-

idated by results from Torres and Mueller [18] and Kamaruddin [19], showing excellent agreement.

The separation bubble increased in size and envelops a second, smaller bubble. Differential rota-

tion case AdvR = (8,0) was shown to suppress both these LSBs and again generate high amounts

of lift. Once again the L/D ratio was only slightly worsened due to the inclusion of rotation.

In conclusion, a deeper understanding of the physics governing the flight of a rotating disc at low

α and at Re for typical fixed-wing MAV operation was gained. Aerodynamic data and topologies of

limiting streamlines for high values of AdvR, otherwise missing from previous studies, were obtained.

These results will undoubtedly prove valuable for possible applications of rotating discs in MAVs, either

to control flow separations, improve lift capabilities, reduce drag forces and moments as to stabilize

the disc’s flight, develop optimal rotation configurations for specific mission and objectives and overall

contribute to the amounted knowledge of this field.

8.2 Future Work

The present study should pave the way for future endeavours regarding flying, rotating discs. Some

suggestions for subsequent investigations are:

• Observe the impact of changing Re on tested cases;

• Extend the range of applied AdvR to even higher values;

• Include more intermediate AdvR within the selected range;

• Extend the range of applied α;

• Include disc thickness to study gyroscopic phenomenons;

• Conduct a parametric study of the disc’s cross-section geometry;

• Further investigate the separation line on the disc and its evolution;

• Analyze additional combinations of differential rotation;

• Experimentally recreate the simulations of this study, as to ascertain their results.
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Appendix A

Alternative Meshes

It could be argued that the used mesh is unnecessarily fine in regions that predictably won’t be that

crucial to the overall flow. For instance, incredibly fine cells extend needlessly from the Y = 0 plane all

over the domain, granting a high quality resolution at the edges of the outer cylinder. This is futile, since

the borders of the domain were purposefully placed far enough from the disc as to achieve still and

undisturbed flow there. Another similar situation is the one present at the periphery of the disc. Sadly,

this refinement must be reproduced to the upper and lower boundaries of the domain as to keep the

mesh structured.

Due to this excessive and redundant computational effort, several alternative meshes were devised.

The most promising one was a typical C-mesh. This configuration would allow better refinement at

the wake of the disc, which is undoubtedly one of the most interesting and vital parts of the domain to

study, and more intuitive boundary condition placement. Figure A.1 showcases this new mesh.

Figure A.1: (a) Side view and (b) bottom view of the C mesh.

Sadly, the disc geometry proved much too hard to place in an ordinary C-mesh and excessive skewed

cells surrounded the main regions of interest. Also, unnecessarily fine cells in regions near the edge of

the domain also plagued this mesh.
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This idea was thus scraped.

The second idea was similar to the original structured mesh. However, an unstructured mesh was

incorporated to serve as the region far away from the disc. The surrounding area was kept as structured

to offer better refinement but instead of the usual outer cylinder encompassing the disc, a cube was

utilized. This was so as to offer better connectivity and control between both types of meshes. The

main motivation for this configuration was ending the protruding fine cells at the edges of the domain

and having a easier mesh generation far from the disc, where mesh quality is not paramount. A rough

representation of this mesh can be seen in Figure A.2.

Figure A.2: View of the (a) unstructured mesh and (b) slice by a X = 0 plane.

The interface between structured and unstructured mesh produced incredibly skewed and poor qual-

ity cells, which later proved fatal in a basic benchmark problem. Due to these vital regions being poorly

resolved, this idea was abandoned.
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Appendix B

Turbulence Modelling

After reaching a high enough Reynolds number, all flows become unstable and enter the so-called

turbulent regime, which is characterized by a chaotic and random state of motion. It is well established

that in this regime, rotational flow structures appear with a wide range of length and time scales known as

turbulent eddies [43]. They are responsible for the rapid and effective exchange of mass and momentum

and for regions of intense vorticity.

To perfectly capture and reproduce turbulent flow in a simulation, the full range of these eddies has

to be solved. The Direct Numerical Simulation (DNS) does exactly that. It requires a sufficiently fine

mesh with equally adequate time steps to resolve all the turbulent eddies. As perfect as it may seem,

the computational cost associated with this method is utterly excessive for high Reynolds flows, as the

number of points in the grid N required for the application of DNS is given by N ∼ Re9/4 [44].

The two main methods for modeling turbulent flow are RANS and LES. Both introduce models de-

signed to mimic the behaviour of turbulence, thus avoiding the need of solving down to the smallest

scale. This grants the user turbulent results (less accurate results, but results nonetheless) without the

absurd computational requirements of DNS. A compromise between accuracy and computational effort,

omnipresent in CFD, is required for the choice of turbulence model.

Each approach is briefly explained bellow.

B.1 RANS

Today, most turbulent flow computations are obtained through models based on the Reynolds-averaged

Navier-Stokes (RANS). Here, these equations are time-averaged and the resulting turbulent fluctuations

are described by a closure model. This method is rather attractive due to its low computational cost and

because time-averaged properties of the flow are sufficient for most engineering applications.

B.1.1 Shear Stress Transport (SST) k − w

This two-equation model developed by Menter [45] is a hybrid model, as in the near wall region the usual

k − w model is employed and in the fully turbulent region far from the wall, the k − ε model is used.
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This transformation is gradual, made possible by blending functions. As both its constituents, the

SST k − w solves two transport equations of turbulence quantities. One is for k, the turbulence kinetic

energy, and the other for w, the specific dissipation ratio. The added equations are:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

(
Γk

∂k

∂xi

)
+ G̃k − Yk + Sk, (B.1)

∂

∂t
(ρw) +

∂

∂xi
(ρwui) =

∂

∂xi

(
Γw

∂w

∂xi

)
+ G̃w − Yw + Sw +Dw, (B.2)

where the terms Γk and Γw represent the effective diffusivities given by:

Γk = µ+
µt
σt
, (B.3)

Γw = µ+
µt
σw

. (B.4)

The turbulence viscosity µt is calculated by:

µt =
ρk

w

1

max
[

1
α∗ ,

SF2

α1w

] . (B.5)

The variable S present in Formula B.5 is the strain rate magnitude. The main purpose of α∗ is to limit

the eddy viscosity.

α∗ = α∗∞

(
α∗0 +Ret/Rk
1 +Ret/Rk

)
. (B.6)

Also, σt and σw are the turbulent Prandtl numbers for k and w, respectively. They can be computed

through:

σk =
1

F1/σk,1 + (1− F1)/σk,2
, (B.7)

σw =
1

F1/σw,1 + (1− F1)/σw,2
. (B.8)

Alas, F1 and F2 are the aforementioned blending functions. Their formulas and subsequent param-

eters are:

F1 = tanh(Φ4
1), (B.9)

Φ1 = min

[
max

( √
k

0.09wy
,

500µ

ρy2w

)
,

4ρk

σw,2D
+
wy2

]
, (B.10)

D+
w = max

[
2ρ

1

σw,2

1

w

∂k

∂xj

∂w

∂xj
, 10−10,

]
(B.11)
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F2 = tanh(Φ2
2), (B.12)

Φ2 = max

[
2

√
k

0.09wy
,

500µ

ρy2w

]
, (B.13)

where y is the distance to the closest surface and D+
w is the positive portion of the cross-difusion term.

Some terms of Equations B.1 and B.2 still need to be defined. The variable G̃k represents the

generation of turbulence kinetic energy due to the mean velocity gradients and is given by:

G̃k = min(Gk, 10ρβ∗kw), (B.14)

where:

Gk = µtS
2. (B.15)

Additionally, Gw is the generation of w obtained by:

Gw =
α

νt
G̃k, (B.16)

for α:

α =
α∞
α∗

(
α0 +Ret/Rw
1 +Ret/Rw

)
. (B.17)

The term Rw is a constant, Ret is obtained through:

Ret =
ρk

µw
, (B.18)

and α∗ through the Formula B.6. The term α∞ present in the Formula B.17 is given by:

α∞ = F1α∞,1 + (1− F1)α∞,2, (B.19)

α∞,1 =
βi,1
β∗∞
− κ2

σw,1
√
β∗∞

, (B.20)

α∞,2 =
βi,2
β∗∞
− κ2

σw,2
√
β∗∞

. (B.21)

Also present in B.1 and B.2 are the dissipation terms:

Yk = ρβ∗kw, (B.22)

Yw = ρβw2, (B.23)
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where:

β∗ = β∗∞

(
4/15 + (Ret/Rβ)4

1 + (Ret/Rβ)4

)
. (B.24)

Finally the cross diffusion term Dw is:

Dw = 2(1− F1)ρσw,2
1

w

∂k

∂xk

∂w

∂xj
. (B.25)

With special regards to the software used, FLUENT , the value of w at the wall is given by:

ww =
ρ(u∗)2

µ
w+. (B.26)

In the viscous sub-layer:

w+ = min

(
w+
w ,

60

βi(y+)2

)
, (B.27)

and:

w+
w =


(

50
k+s

)2

, k2
s< 25

100
k+s
, k2

s≥ 25
, (B.28)

k+
s = max

(
1,
ρksu

∗

µ

)
, (B.29)

where ks is the roughness height. For the logarithmic region:

w+ =
1√
β∗∞

du+
turb

dy+
, (B.30)

which leads to the value of w as:

w =
u∗√
β∗∞κy

. (B.31)

B.2 LES

The Large Eddy Simulation (LES) method operates differently than RANS. Instead of time averaging the

Navier-Stokes equations, spatial filtering is carried out as to distinguish the large from the small scale

eddies. The former are fully computed while information regarding the latter is filtered. The smaller

eddies are then modeled through what is called a sub-grid scale model. This division stemmed from the

premise that the larger eddies have a higher impact on the overall flow and therefore must be resolved.

Contrarily, the smaller eddies are weaker and more universal, and can thus be modeled [44].

Results obtained from LES increase in accuracy, when compared to those obtained from RANS.

However, the price to pay for this improvement is a much higher computational cost.
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B.2.1 Spatial Filtering

The spatial filtering operation is defined by means of a filter function G as:

φ̄(x, t) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x, x′,∆)φ(x′, t) dx′1dx
′
2dx
′
3, (B.32)

where φ̄(x, t) is the filtered function, φ(x, t) is the unfiltered function and ∆ is the cutoff width. This last

variable determines what is kept and what is filtered.

There are several different formulations of the filtering function used to separate the scale of the

eddies into resolved and modeled. The most common are the Gaussian filter:

G(x, x′,∆) =

(
6

π∆2

)3/2

exp

(
−6
|x− x′|2

∆2

)
, (B.33)

the spectral cutoff:

G(x, x′,∆) =

3∏
i=1

sin[(xi − x′i)/∆]

(xi − x′i)
, (B.34)

and the top-hat or box filter:

G(x, x′,∆) =

1/∆3, |x− x′|≤ ∆/2

0, |x− x′|> ∆/2
. (B.35)

Filters B.33 and B.34 are mostly used in research literature but for finite volume implementation of

LES, B.35 is utilized [43]. For FLUENT and most commercial CFD codes, ∆ is chosen as to be the

grid size.

∆ = 3
√

∆x∆y∆z. (B.36)

B.2.2 Filtered Unsteady Navier-Stokes Equations

By applying the filtered operation to the Navier-Stokes equations results:

∂ρ

∂t
+

∂

∂xi
(ρūi) = 0, (B.37)

∂

∂t
(ρūi) +

∂

∂xj
(ρūiūj) =

∂

∂xj

(
µ
∂σij
∂xj

)
− ∂p̄

∂xi
− ∂τij
∂xij

, (B.38)

with:

σij ≡
[
µ

(
∂ūi
∂xj

+
ūj
∂xi

)]
− 2

3
µ
∂ūl
∂xl

δij , (B.39)

and τij represents the sub-grid-scale stresses (SGS).
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τij ≡ ρuiuj − ρūiūj . (B.40)

This last term can be further developed by decomposing a flow variable (φ(x, t)) into the filtered

function ( ¯φ(x, t)), which is fully computed by LES, and the unresolved spatial variations (φ(x, t)′), which

were cut off by the filter, as such:

φ(x, t) = ¯φ(x, t) + φ(x, t)′. (B.41)

After introducing modification B.41 into Equation B.40 and developing its terms, results as follows:

τij = (ρūiūj − ρūiūj) + ρūiu′j + ρu′iūj + ρu′iu
′
j . (B.42)

Three different groups can readily be seen. Firstly, the Leonard stress Lij given by:

Lij = ρūiūj − ρūiūj , (B.43)

which merely account for effects of the resolved scale, as only filtered components are present. Then

the Cross-stresses Cij :

Cij = ρūiu′j + ρu′iūj . (B.44)

As the name implies, they are due to the interaction between resolved and unresolved scales. The

final term of B.42 is called LES Reynolds stresses Rij , given by:

Rij = ρu′iu
′
j . (B.45)

They are the result of the interactions of the SGS eddies.

B.2.3 Smagorinksy-Lilly SGS Model

For finite volume applications, all the contributions of the SGS stresses listed above are modelled as a

single entity τij , despite the clearly different natures of each component.

Smagorinksy developed the first model for the SGS stresses. It simply postulated that the SGS

stresses are proportional to the local rate of strain of the resolved flow S̄ij as in:

τij −
1

3
τkkδij = −2µtS̄ij , (B.46)

with:

S̄ij ≡
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
, (B.47)
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The term τkk in Equation B.46 can be neglected or added to the filtered pressure term for incom-

pressible flows. The variable µt is the eddy viscosity and is obtained by:

µt = ρL2
s

√
2S̄ijS̄ij , (B.48)

Ls = min(κd,Cs∆), (B.49)

where κ is the von Kármán constant, d is the distance to the closest wall and Cs is the Smagorinksy

constant.

B.3 DES

The Detached Eddy Simulation model (DES) aims at combining both LES and unsteady RANS. The core

turbulent region is solely computed by the former, while boundary layers and shear layers are treated

through the latter, leading to a more intermediate computational cost. It seeks to combine the best of the

two models, as RANS fails to predict large separation regions and LES would be prohibitively expensive,

in terms of computational effort, to apply everywhere in the domain [46].

Whether LES or RANS is applied depends entirely on the length scale given:

lDES = min(lRANS , lles) = min(lRANS , Cdes∆), (B.50)

where Cdes, is a constant and ∆ is obtained through:

∆ = max(∆x,∆y,∆z). (B.51)

B.3.1 SST k − w Based DES

The term Yk given by Formula B.22 undergoes a slight change:

Yk = ρβ∗kwFDES , (B.52)

FDES = max

(
Lt

Cdes∆
, 1

)
, (B.53)

Lt =

√
k

β∗w
. (B.54)

B.3.2 IDDES

This coupling between RANS and LES leads to mismatches, namely on the logarithmic layer, which lead

to a under-prediction of the skin friction of 15-20% [47]. This, and the desire to create a more robust
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DES formulation, brought forth the Improved Delayed Detached Eddy Simulation (IDDES). This method

combines a RANS model (SST k − w) and LES. The length scale of IDDES is as follows from [48]:

lIDDES = f̃d(1 + fe)lRANS + (1− f̃d)lLES . (B.55)

The LES length scale is defined as:

∆ = min(Cwmax(dw, hmax), hmax). (B.56)

Also, the empiric blending function f̃d present in Formula B.55 is given by:

f̃d = max((1− fdt), fb), (B.57)

fdt = 1− tanh
[
(Cdt1rdt)

Cdt
]
, (B.58)

rdt =
νt

κ2d2
w

√
0.5(S2 + Ω2)

, (B.59)

f̃b = min(2exp(−9α2), 1). (B.60)

The other blending coefficient fe is obtained by:

fe = fe2max((fe1 − 1), 0), (B.61)

fe1 =

2exp(−11.09α2), α≥ 0

2exp(−9.0α2), α< 0
, (B.62)

fe2 = 1−max(ft, fl), (B.63)

ft = tanh
(
(C2

t rdt)
3
)
, (B.64)

fl = tanh
(
(C2

l rdl)
10
)
, (B.65)

rdl =
ν

κ2d2
w

√
0.5(S2 + Ω2)

. (B.66)
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Appendix C

Methods for Vortex Identification

The appearance of vortical structures is undoubtedly expected, either from an increase in angle of attack

or from the interaction between the incoming flow and the rotation of the disc. An adequate analysis of

these structures grants a deeper understanding of the problem at hand and serves as an excellent

comparison between cases with changing parameters. As such, reliable methods to properly visualize

these occurrences have to be considered.

C.1 Vorticity

The most common way to observe vortical structures is through surfaces of constant vorticity −→ω , given

by:

−→ω = ∇×
−→
U . (C.1)

As appealing as this simple method may seem, vorticity alone can not distinguish between swirling

and shearing motions [49]. Thus, regions of high vorticity, as in shear and boundary layers, which

theoretically are uncorrelated to the presence of the vortices, appear alongside and may even obscure

them.

Another issue is the apparent random threshold for the isosurfaces of vorticity. With no clear guidance

for the choice of this value, different geometrical characteristics of the isosurfaces are obtained through

different thresholds. So, a clear and concise representation of vortical structures is not achieved.

As such, more robust methods, which cover these weaknesses, were created.

C.2 The Q Criterion

This next method starts from the velocity gradient tensor (Wij) given by:

Wij =
∂Ui
∂xj

. (C.2)
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The characteristic equation of the velocity gradient tensor, which allows the calculation of its eigen-

values λ is:

λ3 + Pλ2 +Qλ+R = 0, (C.3)

where P , Q and R are known as the invariants of Wij .

According to Hunt et al. [50], vortices can be defined by regions with positive second invariant Q and

pressure lower that ambient pressure. This last condition is to ensure that the streamlines of this region

are curved.

Mathematically, this results in:

Q > 0⇒ Q ≡ 1

2

(
||ω||2 − ||S||2

)
> 0, (C.4)

which translates to regions where the vorticity is stronger than the strain-rate, in terms of magnitude.

This is a vast improvement over the pure vorticity method, as a guideline for a threshold is introduced

and the pressure is now a decisive factor.

C.3 Swirl Strength

The swirl strength criterion analyses the eigenvalues for the velocity gradient tensor and was first pro-

posed by Zhou et al. [51]. Usually in 3D flow, the velocity gradient tensor exhibits 3 eigenvalues, real

and complex.

λ1 = λR ∈ R,

λ2,3 = λcr ± λci ∈ C.

The variable λci quantifies the strength of the swirling motion, thus providing a method for visualizing

vortex structures. As opposed to the Q criterion method however, a standard threshold is not present

here. A positive value, usually a small percentage of its maximum value was shown to provide smooth

results.

C.4 The λ2 Criterion

This criterion proposed by Jeong and Hussain [52] aimed at improving the previous methods by focusing

on finding a pressure minimum across the suspected vortex. One takes the gradient of the Navier-Stokes

equations and decomposes them into symmetric and assymetric parts. The former becomes the vorticity

transport equation:

DSij
Dt

− νSij,kk + ωikωkj + SikSkj = −1

ρ
pij , (C.5)
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where pij is the Hessian of pressure, which contains information about local pressure extrema.

The first two terms in Equation C.5 are dropped to avoid known mismatches between pressure

minimums and vortex cores. The first term represents unsteady irrotational straining, which may lead

to the existence of a pressure minimum in the absence of any vortical motion, and the second term

translates viscous effects, which can eliminate a pressure minimum amidst a vortical motion [52]. By

neglecting these two terms, this model hopefully becomes more reliable and accurate at identifying

vortical structures.

As is known, for the pressure to have a local minimum, pij must have two positive eigenvalues. Only

S2+ω2 are now taken into account to determine the existence of a local pressure minimum due to vortical

motion and by definition, a vortex core is present when two eigenvalues of S2 + ω2 are negative. Since

S2 + ω2 is symmetric, it has real eigenvalues. So, for eigenvalues λ1, λ2, λ3 ordered by λ1 ≥ λ2 ≥ λ3,

the criterion for the presence of a vortex core is λ2 < 0.
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