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Resumo analítico 

O planeamento e sequência de exploração de uma determinada área de um jazigo em ambiente 

subterrâneo consiste na avaliação de reservas minerais e programação da sua exploração. Parâmetros 

como os métodos de desmonte em uso, condicionantes da produtividade, custos de exploração e de 

tratamento, parâmetros geomecânicos e geotécnicos e parâmetros económicos como os preços dos 

metais são contabilizados na avaliação das reservas e o risco ou a incerteza associada às reservas 

deveriam tomar em conta a incerteza associada a esses mesmos parâmetros, tal como acontece na 

quantificação dos recursos (teores estimados do jazigo). 

 Pretendeu-se com a presente dissertação apresentar uma metodologia em que os parâmetros mais 

importantes – recuperação mineira, preço dos metais, teores de entrada na lavaria – são considerados 

variáveis aleatórias com leis de distribuição inferidas a partir de dados experimentais. Para tal, tendo 

em vista a exploração de zinco na mina de Neves-Corvo, utilizaram-se 181 observações mensais de 

preços de zinco dos últimos 15 anos e, aplicando o método de alisamento de Holt, obtiveram-se as 

previsões de preços para os 3 meses seguintes, com MAPE igual a 9.66 %. A lei de distribuição 

cumulativa de 17 observações de recuperação mineira utilizando o método de desmonte Bench-and-

Fill foi ajustada a uma equação exponencial cujo coeficiente de determinação (R
2
) foi de 96.9 %. Por 

fim, foi analisada uma amostra de 49 observações de teores de entrada na lavaria de zinco da qual se 

obteve que a amostra era proveniente de uma distribuição normal com parâmetros média igual a 7.6% 

e desvio-padrão igual a 0.795%.  

O conjunto das leis de distribuição foram simuladas e co simuladas utilizando o método de Monte 

Carlo. Tendo em conta o princípio de que as minas geram NSRs a volta de 50% para o zinco, obtiveram-

se leis de distribuição das reservas minerais, com teor de corte acima de 5.3%, e leis de distribuição do 

NSR, que podem ser quantificas num risco ao longo dos 3 meses do plano mineiro a curto-médio termo.   

Palavras-chave: Planeamento Mineiro, Método de Holt, Bench-and-Fill, Risco, Reservas Mineiras, NSR; 
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Abstract 

The planning and sequence of exploration of an area from a mining deposit in an underground 

environment consists of evaluating mineral reserves and scheduling of their exploration. Parameters 

such as mining methods in use, productivity constraints, exploration and treatment costs, geomechanical 

and geotechnical parameters and economic parameters such as metal prices are accounted for in 

mining reserves evaluations and the risk or uncertainty associated with the reserves should take into 

account the uncertainty associated with these parameters, as in the quantification of resources 

(estimated grades of ore in the deposit). 

 The aim of this dissertation was to present a methodology in which the most important parameters - 

mining recovery, metal prices, zinc head grades - are considered random variables with probability 

distribution inferred from experimental data. For this purpose, taking zinc exploration in the Neves-Corvo 

mine, 181 monthly zinc price observations of the last 15 years were analysed and, applying the Holt 

exponential smoothing method, the price forecast for the next 3 months was obtained, with MAPE equal 

to 9.66%. The cumulative distribution of 17 mining recovery observations using the Bench-and-Fill 

mining method was adjusted to an exponential equation whose determination coefficient (R
2
) was 96.9%. 

Finally, a sample of 49 observations of zinc head grades was analysed, from which it was inferred that 

the sample came from a normal distribution with parameters mean equal to 7.6% and standard deviation 

equal to 0.795%. 

The set of probability distributions was simulated and co-simulated using the Monte Carlo method. 

Keeping in mind the rule-of-thumb that mines generate NSRs around 50% for zinc, a probability 

distribution of mineral reserves was obtained, with cut-off value above 5.3%, and probability distribution 

of NSR, which can be quantified as risk over the 3 months of the mining plan in the short-medium term. 

Keywords: Mine Planning, Holt Exponential Smoothing, Bench-and-Fill, Risk, Mining Reserves, NSR; 
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Chapter 1 – Introduction  

1.1 Motivation 

Exploitation of natural resources, namely the extraction and processing of raw materials in the mining 

industry such as metals, used for the production of commodities, plays a major role in the way society 

has been evolving to complex civilizations during the last centuries and that continues to be the trend. 

Take zinc for example, for which demand is expected to rise as other industries like civil engineering 

and automobile will continue to use this product on a large scale associated with steel, Daigo et al (2013), 

and as countries like China and India continue their expansions towards urbanization. Indeed, zinc is the 

fourth most widely used non-ferrous metal worldwide only below aluminum, copper and lead and, as 

table 1.1 shows, the recent zinc consumption between 2016 and 2021 have stabilized around 13 million 

tons, even during 2020 when the industry was hit by the global COVID-19 pandemic. 

Whilst there are good prospects for past, current and future demand for transformed mineral 

products, the mining industry faces sustainable challenges characterized as the “combination of 

enhanced socioeconomic growth and development, and improved environmental protection and 

pollution prevention”, Hilson and Murck (2000). Also, as pointed out during conferences like the Earth 

Summit (1992) in Rio, addressing general principles to solve this issue, it is necessary to work with local 

governments, so as to offer them a mining perspective, thereby adopting practices that engage the local 

communities such as: providing jobs to the residents irrespective of race, gender or religion or using 

state of the art clean technologies during the extraction, processing and mine closure.   

In addition to the social issues addressed above, new technical and financial solutions might become 

necessary for companies to remain competitive, as the more the industry matures, the more minerals 

will come from lower grade ore bodies and sometimes in deeper and severe geological conditions. As 

noted by Albanese and McGagh (2011), higher data density and increased predictive power will enable 

investors and decision makers to more confidently accept or reject extraction projects in its pre-

feasibility stages and, although the scope of this thesis is towards the operational phase of a mining, it is 

based on this premise that the majority of the work is developed.  

 

 

Table 1.1 - Zinc Consumption between 2016-2021; Source: International Lead and Zinc Study Group 
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1.2 Objectives 

The purpose of this thesis is to create a stochastic model of the reserves estimates and profit in a way 

that can be translated into a risk throughout the mine planning. In the initial stage, it will be a priority to 

recognize what are the financial and technological parameters that correlates with profit and reserves 

estimates, such as the mining recovery, processing plant recovery, metal price estimates, mining and 

processing costs as well as water and tailing costs and General and Administrative (G&A) expenses. 

Thereafter, probability density functions (PDFs) of the parameters where historical data is available 

will be estimated so that a model used to predict different outcomes can be applied, called Monte Carlo 

simulation. Then, using an equation relating revenues and costs, the PDF of the mine profit will be 

obtained, therefore enabling mineral reserves evaluation.  

The results obtained are critical as they link geostatistics with financial analysis, accounting for risk 

in the short-term and medium-term horizons, and provide important information to assist in a decision-

making process to better act in future events. 

 

1.3 Document Outline 

The work presented in this document is divided in five chapters. The first chapter consists of a brief 

overview of the current situation in the mining industry, major social issues that the sector is facing and 

will continue to be scrutinized for in the near future. Next, the objective of the thesis is also presented.  

The second chapter gives a summary of some simplistic methods for forecasting and the general 

concept of the Monte Carlo simulations, referring to the inverse transform method. A brief discussion of 

graphical methods to infer known probabilities from historical data is also presented and finally, a vision 

on how the risk analysis is applied in the mine planning is addressed. 

Chapter 3 describes the methodology used to obtain the final results. It consists of the data analysis 

that was executed and the mathematical or statistical models that can be applied for each case. It also 

shows how the simulations were made. Chapter 4 can be viewed as an extension of its preceding 

chapter, as it presents the results of the methodology and a discussion. Both chapters 3 and 4 make 

reference to the second chapter. 

Finally, chapter 5 gives concluding remarks to the thesis related to literature and describes 

recommendations and future improvements to be made given the limitations of the present work.
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Chapter 2 – State-of-the-art 

In this chapter, the knowledge that has been developed in the same working areas of the present thesis, 

necessary to structure the solutions for the proposed problem, will be presented. Therefore, 

bibliographic research work was carried out in the following subjects: 

• Time series and forecasting methods; 

• Monte Carlo simulation; 

• Risk analysis in mine planning. 

2.1 Time Series and Forecasting Methods  

Metal prices (together with knowledge of the structure of the ore deposit to be exploited) represent the 

factor with the greatest impact on the financial performance of companies in the mining sector, however, 

the unpredictable changes caused by the fluctuation in the demand for these materials, make this 

component uncertain and volatile. Eggert (1987) states that changes in metal prices in the present and 

in the past shape expectations about future prices and influence mining revenues, profits and costs. 

Against this backdrop, it is essential to use metal price forecasting techniques as an auxiliary tool for 

mine planning. 

Makridakis et al. (1998) classify forecasting methods in two categories: 

• Qualitative methods 

• Quantitative methods 

o  Explanatory: explanatory relationship between two or more variables (e.g., copper 

price and zinc price). 

o Time series: forecast based on historical patterns. 

In the context of this work, quantitative methods were used, which can only be applied when the 

following conditions exist, identified by Makridakis et al. (1998): 

1. Availability of information about the past. 

2. This information has to be quantified in the form of numerical data. 

3. It can be assumed that patterns observed in the past will continue into the future. 

In addition to these aspects, according to Dooley and Lenihan (2005), it is necessary to choose the 

time scale of the forecast, as well as the appropriate techniques, collect the data to be analysed and test 

the forecast model. 

The choice of forecasting methods presented below is related to their simplicity of use, the fact that 

they capture trends in metal prices, the availability of inexpensive software both economically and 

temporally, as well as its effectiveness for short-term forecasts. 
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To analyse data sets in a simple way, a univariate analysis is used. In this type of analysis, parameters 

such as mean, standard deviation and variance are evaluated. Data types that show fluctuation patterns 

around an average value are called stationary in their mean. The concept of Simple Moving Average 

(SMA), specifies how many observations recorded in the past are desired to be included in the average 

value, this value being stored in a variable named k. As new observations become available, a new 

average is computed, discarding the oldest values and adding the most recent values. The SMA forecast 

(Ft + 1) performed through the sum of the last k observed values (Yi) divided by the number of 

observations considered (k), translates into equation (2.1): 

 

𝐹t+1=
1

k
∑ Yi

t

i=t-k+1

 

 

(2.1) 

Makridakis et al. (1998) states that an extension of the method above is prediction by Simple 

Exponential Smoothing (SES). In this method, the forecast captures the fact that the most recent 

observations generally offer a more reliable guide for the future, establishing a scheme that gives more 

weight to the most recent observations and a lesser weight to the older observations, a weight that is 

transposed to a variable α that ranges between 0 and 1. Equation (2.2) provides the forecast value Ft + 

1, obtained from the previously predicted value, Ft, adjusted with a forecast error that is known when 

the actual value of the respective observation, Yt, becomes available. 

Ft+1= αYt+(1-α)Ft (2.2) 

The use of this simple forecasting model was expanded by Holt (1957) so that the forecast values 

generated could capture the trend of the data. This improved model, known as the Holt linear method, 

or double exponential smoothing, is based on two smoothing constants α and β, also with values 

between 0 and 1, and the number of forecast periods, k, translated into three equations, of level - (2.3), 

trend (slope) - (2.4), and forecast - (2.5): 

Nt=αYt+(1-α)(Nt-1+Tt-1) (2.3) 

Tt=β(Nt-Nt-1)+(1-β)Nt-1 (2.4) 

Ft,k=Nt+kTt (2.5) 

For the forecasting method to be started, Sharif and Hasan (2019) point to the need of initialization 

of N0 as the estimate for the level and T0 for the trend. For the present work, assuming that the data of 

the prices to be predicted have a regular and slightly erratic behaviour, we take N0=Y0 and T0=Y1-Y0, 
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otherwise, Makridakis et al. (1998) proposes the use of the least number of squares regression of the 

first values to initialize the variables. For simple exponential smoothing, as well as for double exponential 

smoothing, the values of α and β can be chosen from the percentage error in a given period (PEt), given 

by equation (2.6), in order to minimize the value of the equations (2.7) and (2.8), the average percentage 

error (MPE), the average percentage absolute error (MAPE), respectively, or another error criterion. 

 

PEt=
Yt-Ft

Yt

 

 

(2.6) 

 

MPE=
1

n
∑ PEt

n

t=1

 

 

(2.7) 

 

MAPE=
1

n
∑|PEt|

n

t=1

 

 

(2.8) 

Finally, Makridakis et al. (1984) points out that for situations in which it is difficult to obtain accurate 

forecasting using smoothing techniques, more sophisticated univariate statistical analysis methods 

should be used. Diggle (2013) finds that Monte Carlo tests encourage data analysis, since the user can 

choose any statistical class U (Unbiased) to focus on any “aberrant” characteristic of their data. 

2.2 Monte Carlo Simulation 

Monte Carlo simulations are part of a computational method originating in the 1940s, developed by 

scientists who tried an alternative to the trial-and-error method, to solve a problem in the development 

of nuclear weapons at the Los Alamos National Laboratory. The general idea is to establish a model that 

generates random values from a variable with known probability distribution. Mohammad et al. (2013) 

proposed an approach similar to the following steps to carry out a Monte Carlo simulation, in the context 

of selecting an underground exploration method:  

1. Determine the probability density function and cumulative distribution function for each variable 

to be simulated. 

2. Use a pseudorandom number generator between [0,1]. 

3. For each random number allocate a value, using the cumulative distribution function. 

4. Establish a method to combine the results of each simulation and design the resulting probability 

density function. 
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As a way of selecting the probability distribution for one variable when historical data is available, 

Thomopoulos (2013) proposes to use graphical methods such as Q-Q Plot, which consists of comparing 

quantiles of the data sample to be analysed with the specific theoretical probability distribution quantiles 

and observing the quality of fit of the data. Therefore, the author advises that we start by confronting the 

data with more common probability distributions, such as normal, exponential, lognormal, gamma, beta 

and Weibull. Kolmogorov-Smirnov (KS) test can also be used to compare a set of data with a reference 

probability distribution. As noted by Hassani and Silva (2015), KS test is used to compare the empirical 

cumulative distribution function of the data,𝐹𝑜𝑏𝑠, with the theoretical cumulative distribution function, 

associated with the null hypothesis that the sample comes from the theoretical distribution, 𝐹𝑒𝑥𝑝. The one 

sample KS statistic is given by equation 2.9 where 𝐷𝑛 stands for the maximum absolute distance between 

the expected and observed distribution functions. 

 

Dn= max
x

|Fexp(x)-Fobs(x)| 

 

(2.9) 

The variables to be simulated can be considered discrete, if the result set is in a list of possible values, 

or continuous when the variable takes on any value specified in a range. Thomopoulos (2013) identifies 

two methods for generating values of a random variable, through a probability distribution: 

• Accept-Reject method; 

• Inverse transform method. 

In the context of this work, the variables to be considered will be continuous and the inverse transform 

method will be chosen, since it requires fewer steps than the concurrent method and because it is 

assumed that the probability distributions to be studied will be relatively simple and mathematically easy 

to apply. In this paradigm, taking x, a continuous variable in the domain [a, b], f (x) is called the probability 

density function. The cumulative distribution function of x, in domain [0,1], corresponds to equation 

(2.10): 

 

F(x)= ∫ f(x)dx
x

a

 

 

(2.10) 

Considering a number u, from a pseudo-random number generator between 0 and 1, which 

generates from a standard uniform distribution, u ~ U (0,1), it is possible to obtain the value of x through 

the inverse function of F(x), represented by equation (2.11): 



7 

 

 

x= F
-1

(u) 

 

(2.11) 

Geostatistical estimation models the orebody spatial distribution of grades and other characteristics 

of interest of the deposit that are used by mine production scheduling, applying a set of deterministic 

assumptions to come up with an “optimal” underground mine design, extraction sequence, and 

production time schedule, maximizing profits, as noted by Monkhouse and Yeates (2018). From the 

beginning of the last decade a different framework of the presented above has been developed, using a 

set of equiprobable models of the deposit as show in figure 2.1, integrating risk and uncertainty.  

 

2.3 Risk Analysis in mine planning 

The Monte Carlo method can be used to assess the uncertainty of future estimates and allows the 

creation of plans that can mitigate possible risks. Rendu (2002), explains that the risk depends on the 

parameters that control the value of the project and the uncertainty with which these parameters are 

known. The objective of risk analysis and management consists firstly of quantifying the uncertainty of a 

set of factors, characterizing which are the most important factors for the joint uncertainty and in realizing 

how they can reduce the uncertainties, and what improvements they bring to the value of the project. 

Dimitrakopoulos et al. (2002) identify the tonnage and the expected metal content of the deposit to 

be exploited, as the main technical risk factors in a mining project. With regard to economic parameters, 

capital costs, operating costs and the price of metals are included as the main factors of uncertainty. In 

addition to the sources of risk listed, it is worth mentioning that mining projects are subjected to 

environmental and political challenges, which do not deserve an incisive study in the scope of this 

dissertation, but can make any exploration unfeasible, even if the geological and economic risks indicate 

Figure 2.1 - Traditional vs Stochastic approach to reserves evaluation; Source: Strategic 

Mine Planning Under Uncertainty, Dimitrakopoulos (2011) 
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signs of a good investment. Integration in the planning of risk parameters proves to be extremely 

important, as it allows for more informed decisions in project evaluation, design or management. 

Kear (2006) highlights the fact that the mining industry has very long cycles between its different 

stages, during the useful life. It also compares the aspects between the strategic and tactical planning 

of a mine, where in the former the objective to be reached is established, usually obtaining the best 

economic evaluation of a given resource through a detailed plan of operations in the production phase, 

and in the latter resources are allocated to achieve the respective objective. Neves et al. (2020) point 

out that many authors consider medium-long-term planning scenarios on a time scale that varies from 

months to some years. Regarding the optimization of short-term tactical planning, the time scale for 

precise and detailed solutions, has to be reduced. They also note that, although the two scenarios are 

complementary, there is no guarantee that the solution found for the short-term horizon will be included 

in the global optimal solution over a longer horizon and an ideal planning results from a combination of 

benches to be explored, depending on geotechnical and temporal factors, which are selected according 

to the maximization or minimization of an objective function, related to metal, tonnage, NSR or NPV. 

Maybee and Yana (2017) used techniques imported from the asset management sector, namely the 

SIM (Single-Index Model), which relates the return on a given asset with the return on the underlying 

market index. Applied to a case of underground gold mining, the adaptation based on this model relates 

the internal rate of return for a given exploration area with the change in the gold price in the same 

period. 

For companies, analysts and investors, one of the fundamental parameters for evaluating a project is 

represented by the NPV (Net Present Value), obtained when discounting future cash flows. Starting from 

the concept of the value of money over time, in which an investment received today is worth more than 

an investment received tomorrow, investors are rewarded for accepting that their investment is paid at 

a later stage of the project. Thus, Gocht et al. (1988) define the discount rate as the cost of capital 

associated with raising funds from investment outside the company. The NPV is translated into the 

formula (2.12): 

 

NPV=(R0-C0)+ 
R1-C1

1+r
+

R2-C2

(1+r)
2

+…
Rn-Cn

(1+r)
n 

 

(2.12) 

The NPV is the sum of revenues (R) minus costs (C) between year 0 (start of the project) until year 

n (end of the project), applying a discount rate r. Using this evaluation method, when positive NPV is 

obtained, it indicates that the estimated revenues are higher than the estimated costs and, therefore, the 

project must be carried out. Otherwise, the costs will be higher than the revenues and so the project 

must be abandoned. 
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In figure 2.2 the evolution of the risk and value of a mining project is represented, highlighting the 

divergence between these two components in the initial phase. The role of geostatistics and forecasting 

methods in this phase is essential to bring these two components closer together and to quantify the 

risk in the best way, optimizing production plans over the life of the project.

Figure 2.2 - Value of mining project vs investment risk; Source: SME (2011) 
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Chapter 3 – Methodology  

This chapter comprises the methods based on the literature review presented in the previous chapter, 

to accomplish the objectives proposed in section (1.2). As such, it was divided into the following sections: 

3.1 Zinc Price Forecasting; 3.2 Mining Recovery; 3.3 Zinc Head Grade; 3.4 Profit Risk Assessment. It is 

worth mentioning that for data analysis purposes the open-source cross-platform Integrated 

Development Environment (IDE) software Spyder for programming in the Python (version 3.8) language 

was used and that all data used for the present work, except for zinc prices, were obtained through the 

Neves-Corvo copper, zinc and lead mine that is owned by SOMINCOR (Sociedade Mineira de Neves-

Corvo S.A.) which is a subsidiary of Lundin Mining. Despite the fact that copper prices are in almost all-

time highs, second only to the price levels in 2011 after the 2008 crisis, the present case-study is focused 

on zinc as the methodology can also be applied to the remaining metals and based on the assumption 

that more scientific research for this metal is necessary as the company started zinc production in 2006, 

compared with copper production initiated in 1989 and, in 2017 an expansion of zinc production 

denominated ZEP (Zinc Expansion Project) was announced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 - Schematic representation of the methodology 
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The purpose of this work is to present a method that quantifies the financial risk of a mining 

investment decision, by calculating the probability distribution of profit distribution, that can be allocated 

to a tool that translates the performance of a project, Net Smelter Return (NSR) or Net Present Value 

(NPV). As Armstrong M. (1994) points out, in practice there are several factors that influence profits 

(e.g., metal price forecasts, reserve estimates) and costs (e.g., fees and labour). The probability 

distribution for these factors has to be calculated in advance, so that in the end it is possible to combine 

the various fluctuations of these variables in the calculation of the estimates of possible profits. A diagram 

summarizing this idea is presented in figure 3.1. 

 

3.1 Zinc Price Forecasting 

Forecasting techniques are indispensable for an individual or organizations as addressed by Makiridakis 

et al. (1998). Dooley and Lenihan (2005) as well as Eggert (1987) took forward this forecasting relevance 

into the mining context when accounting forecast information for decision making. With this in mind it is 

important to recognize that forecasting is oftentimes a difficult task and the quantitative methods used 

in this work should be used in conjunction with each other and with qualitative methods as well. 

This section describes the methods used for zinc price forecasting in the short-term horizon, i.e., up 

until 3 months in the future. For this work, a sample from the Federal Reserve Bank of St. Louis (FRED) 

comprising monthly prices from February 2006 up until February 2021 was chosen, on the assumption 

that the data capture enough trend fluctuations and also based on the fact that the methods here 

presented, give more weight to recent observations when executing forecasts. Figure 3.2 shows zinc 

price variation in this period.  

 

Figure 3.2 - Zinc Price between Feb 2006 and Feb 2021 
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Simple Moving Average  

Using equation 2.1, moving averages of 3, 10, 30 and 50 periods were performed. Besides not being the 

main forecast tool for this work context, moving averages smooths the time series resulting in useful 

information about trend cycles. Using a large number of terms in the moving average increases the 

chances of randomness being eliminated, the extreme case being SMA (n) where n is the number of 

observations in the series, which is equivalent to computing the mean of all data. Conversely, SMA (1) 

is equivalent to using the value from n-1 as a forecast for the period n. 

For the realization of this method the data must be stationary, meaning that the process generating 

the data is in equilibrium around a constant value, the mean, and that the variance around the mean 

remains constant over time, as noted by Dooley and Lenihan (2005) and Makridakis et al. (1998). The 

authors also noted that when the dataset is not stationary, day differences and derivatives can be used. 

For that reason, besides the simple visualization of our dataset that indicates an evidence for stationarity, 

a test named Dickey and Fuller (DF) statistic was executed.  

Testing for the following model in Greene (2003) presented in equation 3.1, where Yt represents the 

series in time t and Yt-1 in time t-1, γ, a coefficient and εt the error term, the test is carried under the null 

hypothesis of γ=1, i.e., non-stationarity, against the alternative hypothesis of γ<1 for stationarity. 

Calculating a test statistic in equation 3.2, we can compare with the values of the Dickey-Fuller 

distribution and if the calculated statistic is less than the critical value from the DF distribution, then the 

null hypothesis is rejected. Python automatically provides the DF statistic and the critical values, using 

the adfuller function under the Statsmodels package. 

Yt=μ(1-γ)+ γYt-1+εt 

 
(3.1) 

DFt=
γ̂

Est.Std.Error(γ̂)
 

 

(3.2) 

 Given the results in table 3.1 and comparing with a stretch of a Dickey-Fuller table with critical values 

in figure 3.3, considering 181 observations we can assume with more than 90% confidence that our data 

is stationary.  

Table 3.1 - DF Test Results 

 

Test Statistic -2.67 

P-Value 0.08 

Figure 3.3 - Critical Values for DF Statistic; Source: Greene (2013 
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Simple Exponential Smoothing 

Analysing equations 2.1 and 2.2 and given the fact that both the Simple Moving Average (SMA) and the 

Simple Exponential Smoothing (SES) methods use past observations to forecast, they can be seen as 

homologous since a low value of α has a similar effect to computing a large moving average and a high 

value of α is equivalent to taking a low moving average, the main difference being that in SES the weight 

of each observation decreases exponentially as we move backwards in time, as opposed to SMA where 

equal weights are given to each observation. Expanding equation 2.2 by replacing Ft with its components 

as shown in equation 3.3 and conceptualizing that the same exercise can be done for the Ft-1 term and 

for the remaining terms until the first observation, it becomes easy to understand that the weights 

decrease exponentially and in the extreme cases where α equals 0 and 1, the next forecast will account 

for all the observations or only for the last, respectively.  

 

 

Ft+1= αYt+(1-α)Ft (2.9) 

Ft+1= αYt+α(1-α)Yt-1+(1-α)
2
Ft-1 (3.3) 

Selecting α can become a cumbersome task as it is usually determined by trial and error and an 

optimization criterion can be difficult to attain. For this work it was chosen to find the best α minimizing 

MAPE using the Truncated Newton method.  

Double Exponential Smoothing 

Contrary to Simple Exponential Smoothing (SES) method explained above which gives a flat forecast, 

i.e., the forecast made for one period ahead is the same for the subsequent periods, Holt’s linear method 

updates new forecasts with the underlying trend of the data through the constant β in equation 2.4, that 

controls the speed of adjusting the trend. In other words, if the trend changes very quickly the value of 

β must be sublime. As in SES method, α and β were chosen to minimize MAPE and using the same 

nonlinear optimization method (Truncated Newton), of which a stretch of code1 using Python is shown 

in figure 3.4. It is worth mentioning that using this way of optimizing can cause the smoother parameters 

to get to their extremes (0 or 1) only to achieve an optimal solution based on the minimized error, 

representing a model with poor predictive performance.   

 
1 Inspired by Andre Queiroz. Available at: https://gist.github.com/andrequeiroz/5888967  

https://gist.github.com/andrequeiroz/5888967
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3.2 Mining Recovery 

In mine exploitation, considering a specific area of production, not all the material considered as valuable 

by the mine planning is extracted. That proportion between the actual quantity extracted and the quantity 

planned to be extracted is defined as the mining recovery. Sometimes, there is a tonnage increase in 

that process, given by the dilution parameter, often seen as the mass of waste mined which was not 

planned. To avoid more valuation fluctuations as this dilution factor may as well contain payable values 

according to McCarthy (2001), in the context of this work the dilution parameter was considered null, 

not forgetting that this methodology is not incompatible with a future approach for this problem 

considering this dilution as one more parameter with uncertainty.   

Data analysis was carried out using a sample from 17 observations from different areas of the Neves-

Corvo mine where the underground mining method Bench-and-Fill was used.  

Univariate Analysis 

This simple form of analyzing data reveals data patterns using histograms and describes the sample 

through measures of central tendency like the mean and median, as well as dispersion measures such 

as quartiles, minimum, maximum and standard deviation.  

Graphical methods of modelling a probability distribution  

Selecting the probability distribution when historical data is available can be achieved using graphical 

ways of analysing the sample. As a histogram of one sample can be very useful in creating a first 

impression of which probability distribution the data might represent, usually comparing the quantiles of 

Figure 3.4 - Code with function to minimize the MAPE 



15 

 

the sample data to the quantiles of a specified distribution and noting if the graphic displays a goodness 

of fit, can bring more certainty to our first intuition, in a method denominated as QQ (Quantile to Quantile) 

Plot. 

 As noted by Wilk and Gnanadesikan (1968), for one-dimensional samples, the empirical distribution 

function of the sample quantiles is computed using equation 3.4, where n is the number of observations 

and i the i-th ordered value.  

F[x(i)]=wi=
(i-0.5)

n
, i=1 to n (3.4) 

For n = 17, the set of probabilities, 𝑃𝑠, is presented in table 3.2. Comparing the fitting of the data with 

a known probability distribution with cumulative distribution function F(x), each corresponding quantile 

is obtained using the inverse function as in equation 3.5. 

q
i
= F

-1
(wi), i=1 to n (3.5) 

Considering the standard normal distribution, using a Z Table or computing using a statistical 

software, the previous equation gives a set of theoretical quantiles, as shown in the Z column of table 

3.2. Creating a scatter plot with the ordered values of the data in the y-axis and the theoretical quantiles 

in the x-axis, if the scatter plot looks like a 45º line (slope 1) x and y are considered identically distributed 

variables.  

 

 

 

 

 

 

 

 

Importing the following modules: pylab for plotting and stats which contains many statistical functions 

from the scipy open-source software to Python, it is easy to calculate and plot quantiles for a probability 

plot using the probplot function. Figure 3.5 shows the code to achieve these calculations and plot the 

graph comparing the fitting of the data with the normal distribution, specifying the respective parameters, 

mean and standard deviation. Keeping in mind Thomopoulos (2013) advice in 2.2, comparing the data 

with more common distributions such as exponential, lognormal, gamma, beta and Weibull can be 

Table 3.2 - Critical values for the cumulative standard normal distribution 

 

Figure 3.5 - Code for the probability plot using the normal distributionTable 3.3 

- Critical values for the cumulative standard normal distribution 
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achieved with a similar code represented below, modifying the distribution name and finding the 

respective parameters for each distribution.  

 

 

 

 

 

 

Kolmogorov-Smirnov test to fit the best probability distribution  

Selecting a distribution that best fits a sample data can also be examined in conjunction with the 

Kolmogorov-Smirnov (KS) test that can be viewed graphically as the maximum deviation from the 

diagonal line on a PP (Probability-Probability) Plot as exposed by Wilk and Gnanadesikan (1968) and in 

equation 2.9. This test is used to test H0: the sample comes from a theoretical distribution P, against H1: 

the sample does not come from P.  

The first step towards a response is to compute the empirical cumulative distribution function given 

by Ps in table 3.2 and used as Fobs(𝑥𝑖) in table 3.3. Testing again the hypothesis that the data distribution 

comes from a standard normal distribution, P, it is easy to compute Fexp(𝑥𝑖) following equation 3.6 using 

a Z normal table or a statistical software. Computing the absolute differences as in equation 2.9, the 

Kolmogorov-Smirnov statistic gives a maximum of 0.681 as show in red in table 3.3. Finally, the critical 

value at 95% significance level for a sample of 17 observations is 0.286 as seen in figure 3.6 of a trench 

of the critical values of the Kolmogorov-Smirnov test statistics. Since 0.681 > 0.286, we reject the null 

hypothesis, meaning that the data does not derive from a standard normal distribution.  

Fexp(xi)= P(Z≤xi) (3.6) 

 

 

 

 

 

Figure 3.5 - Code for the probability plot using the normal distribution 

Figure 3.6 - Critical values for the KS Test; Source: Miller (1956) 
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Table 3.4 – Absolute differences between the empirical and expected CDFs 

Sample Recovery Fobs(xi) Fexp(xi) |Dn| Sample Recovery Fobs(xi) Fexp(xi) |Dn| 

1 0,5518 0,029 0,709 0,680 10 0,8762 0,559 0,810 0,251 

2 0,7376 0,088 0,770 0,681 11 0,8826 0,618 0,811 0,194 

3 0,7835 0,147 0,783 0,636 12 0,8826 0,676 0,811 0,135 

4 0,7886 0,206 0,785 0,579 13 0,8830 0,735 0,811 0,076 

5 0,8028 0,265 0,789 0,524 14 0,8893 0,794 0,813 0,019 

6 0,8114 0,324 0,791 0,468 15 0,8900 0,853 0,813 0,040 

7 0,8138 0,382 0,792 0,410 16 0,9006 0,912 0,816 0,096 

8 0,8438 0,441 0,801 0,359 17 0,9008 0,971 0,816 0,154 

9 0,8597 0,500 0,805 0,305      

 

Following the above conclusion, we can either repeat the test until we achieve a good fitting of the 

data, using other parameters such as a different mean and standard deviation for the normal distribution, 

or testing against other suggested distributions in the literature.  Using the function kstest from the stats 

model in Python, values for the KS test statistic can be easily computed, as shown in figure 3.7, where 

the data is fitted to a beta distribution using the maximum likelihood estimation (MLE) method and, 

subsequently the KS test is performed with the parameters that best fit the data to the beta distribution. 

 

 

 

 

Analytical methods of modelling a cumulative distribution function 

Computing a histogram gives an understanding of the possible distribution that the numerical data might 

take. In that sense, it is possible to make an estimation of the probability density function (PDF) and if 

the equation is computed, the cumulative distribution function (CDF) can be obtained using equation 

2.10. An alternative to the estimation of the CDF of a variable can also be achieved plotting the graph of 

the empirical CDF given by Fobs(𝑥𝑖) in table 3.3, on the y axis against the actual sample values as in the 

second column of table 3.3, on the x axis, as shown in the graph of figure 3.8. 

Analysing figure 3.8 gives a sense that the exponential curve fitting might be the equation that best 

fits the CDF, similar to experiments on radioactive traces in this case rising in time in which one of the 

most widely accepted forms, Foss (1970), is given in equation 3.7.  

Figure 3.7 - Code to compute the KS Test using the beta distribution 
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y = ae-bx  (3.7) 

 

It is worth noting that one might consider the value for recovery around 0.5518 an anomalous value 

and disregard it, where in that case polynomial interpolation and smoothing curve fitting, Akima (1970), 

could be the best approximation for the CDF.  

  

 

 

 

 

 

 

Now, it becomes easy to obtain the a and b parameters of equation 3.7 using the curve_fit function 

from the scipy open-source library using the non-linear least squares method to fit the function y to data. 

Next, given the nature of the equation the inverse function is easily obtained. Generating pseudo-random 

numbers from a standard uniform distribution and, then using equation 2.11 generates a random number 

from the CDF derived from equation 3.7. The process to attain the Monte Carlo simulations for the mining 

recovery is shown in figure 3.9.  

Figure 3.8 - CDF function for the Mining Recovery 
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3.3 Zinc Head Grade 

Taken as one of the riskier factors in a project valuation, head grade can be viewed as the quantity of 

metal present in the material entering the processing plant during production. When the mine is still in 

its pre-feasibility and feasibility stages, grade distribution becomes a factor of great uncertainty as our 

knowledge of the deposit characteristic is limited. As pointed by Rendu (2002), reducing this uncertainty 

can be accomplished taking additional sampling as well as finding geostatistical methods that use 

simulations to model the grade distribution within a deposit. For this purpose, Dimitrakopoulos et al. 

(2019) propose a Stochastic Integer Programming (SIP) approach to manage geological uncertainty. 

Also, Dimitrakopoulos et al. (2002) appointed the advantages of using Conditional Simulation (CS) for 

modelling uncertainty. Given the fact that is often difficult to attain samples of a deposit to use the 

techniques above to estimate its grade distribution, in the context of this work was used historical 

observations of grades entering the processing plant to model the geological uncertainty.   

Univariate Analysis 

Assuming that there is uncertainty in all stages of a mine’s lifetime as we only know the exact composition 

of the orebody when it is fully extracted and also given the fact that the geostatistical methods presented 

above are time consuming and technical challenging, an alternative to model this uncertainty was 

necessary using the actual values of grade and modelling their uncertainty. For that purpose, 59 

Figure 3.9 - Code to fit the data to an exponential function and generate pseudo-

random numbers using the inverse function 
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observations of head grades feeding the Zn processing plant of the Neves-Corvo mine were obtained. 

From that, 10 observations with grade of 0% were dumped as in those days when the values where 

registered, the processing plant was fed with waste to produce material for the backfill. 

Graphical methods of modelling a probability distribution  

For the choice of the probability distribution that best fits the data acquired, the same methodology used 

for the mining recovery variable was applied. Due to the fact that the graphical methods and the KS test 

gave satisfactory results, as discussed in the next chapter, there was no need to apply the analytical 

methods to perform the Monte Carlo simulations. Instead, using the numpy library in Python, it was 

possible to generate values from the suited distribution specifying the respective parameters. For the 

purpose of discovering the number of trials for the Monte Carlo simulation, given the fact that the sample 

for zinc head grades contained a greater number of observations in comparison with the data obtained 

for the mining recovery, table 3.4 was computed where a number of simulations per week was generated 

and the respective mean and standard deviation errors were calculated in which μ
s
 and μ

MC
 represent 

the mean of the sample and the mean of the Monte Carlo simulations and ss and sMC the sample standard 

deviation and Monte Carlo standard deviation, respectively. In that regard, 400 simulations per week 

were chosen to be performed as it was the only case where an error of less than 5% was registered both 

for the mean and standard deviation.    

 

Table 3.5 – Mean and standard deviation errors for the Monte Carlo simulations 

Number of simulations per week Mean Error |
μs-μMC

μs

| Std Error |
𝑠s-𝑠MC

𝑠s
| 

100 0.1339 0.5120 

200 0.2279 1.3537 

300 0.1213 0.3399 

400 0.0216 0.0297 

500 0.0105 0.5394 

1000 0.0286 0.6197 

2000 0.0809 0.1871 

3000 0.0487 0.3206 

4000 0.00105 0.5044 

5000 0.0072 0.6001 

10000 0.02205 0.9615 

 

3.4 Profit Risk Assessment 

Various works on ore valuation using NSR have been carried out throughout the last three decades, 

Annels (1991), Hustrulid (2013), Wills and Finch (2016) all of which agree that this concept was created 

in polymetallic base-metal mines to describe the revenue received from the smelter for the concentrate 
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produced, Bargmann (2000), Goldie and Tredger (1991). However, they differ in accounting for 

commercial costs, as some include smelter deductions, treatment and refining costs as well as 

distributions costs on the NSR calculations like Goldie and Tredger (1991), while others take into account 

only smelting and refining charges ignoring costs such as freight and insurance, Hustrulid (2013).  

Adopting Goldie and Tredger (1991) approach NSR can be related to Gross Revenue and 

Commercial Costs as in equation 3.8: 

NSR = Gross Revenue - CC  (3.8) 

Gross Revenue can in turn be defined as the product of the price of metal and the quantity of 

concentrate produced in the processing plant, as equation 3.9 shows: 

Gross Revenue = Metal Price * Quantity of Metal  (3.9) 

Finally, quantity of metal can be defined, as in equation 3.10, by the product of the tonnage of mine, 

the grade z(x), the mining and processing plant recoveries. The operational margin of mine can be 

attained subtracting the NSR, also known as net revenue, from the operational costs presented in table 

3.5, as equation 3.11 shows.  

Quantity of Metal = Ton * z(x) * MR * PR  (3.10) 

Operating Margin = NSR - Operating Costs  (3.11) 

It is worth mentioning that due to the complex nature of the subject, time constraints and ultimately 

diverse information regarding the studies of the NSR a simple explanation was presented herein. For 

example, aspects of some importance denoted by Wills and Finch (2016) such as impurities in the 

concentrate which may be penalized by the smelter like arsenic and mercury or metals that may produce 

a bonus such as silver were overlooked. As a consequence, the intricate nature of contracts with 

smelters can be affected because a high concentration of impurities will eventually change the strategy 

of exporting the concentrate product to European smelters to maximize sales reducing freight and 

logistics cost as the “local” zinc smelters may not have the technology to remove such content.  

Although insurance, marketing and transportations costs are part of G&A costs they do not make the 

whole bulk. It is important to recognize that transportation costs are 100% variable and are dependent 

on the smelters where the concentrate is sent and are anchored to annual contracts from 1 to 5 years 

that are mostly confidential. In the absence of more precise data on commercial costs this approach 

gave results of mine netback with more than 100% error comparing with the results in the literature.    
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Table 3.6 - Production Costs 

 

 

 

 

 

 

 

Additionally, it is important to define the concept of cut-off grade which is the minimum amount of metal 

that one ton of material must contain before this material is sent to the processing plant, Rendu (2014), 

helping distinguish ore from waste, seeing as the former profitable to exploit while the latter it is not. For 

this work the equation below (3.12) relating the Production Costs (PC) with the metal price, mining and 

plant recoveries (MR and PR respectively) and the NSR in percentage, was used to evaluate this 

parameter.  

Z0 = 
PC

Metal Price*MR*PR*NSR
  (3.12) 

 

In their study about NSR and its use in polymetallic deposits, Goldie and Tredger (1991) discussed the 

help of an NSR model in determining cut-off grades in the exploitation phase, the dynamic characteristic 

of underlying parameters such as fluctuating metal prices and recoveries as well as its unstable impact 

in mine planning as constant revisions were required in a lengthy manual labour environment. In today’s 

era where every mine has mine planning data stored in a computer, as noted by the authors, this 

approach became more useful as it gave mine planners the resources to quickly adapt to new paradigms 

of the market, or technical constraints in the extraction or processing of an ore.       

Still in accordance with the aforementioned, a value of 0.5 was used for the NSR in equation 3.12, as 

Wellmer et.al (2008) presented as a typical value for a Zn mine return. Goldie and Tredger (1991) defined 

this value as mine netback given, as the ratio of net revenue to gross revenue, and presented a typical 

Canadian mine netback of 43%. The selection for the former instead of the latter comes with the 

assumption that Wellmer et.al (2008) achieved this result with studies conducted more recently and with 

more updated data. More importantly, this choice of taking mine netback constant instead of calculating 

on a weekly basis, as achieved by the Monte Carlo simulations is justified by the fact that the commercial 

costs were taken as part of the General and Administrative (G&A) costs. 

Opex Units Value 

Mine $/t milled 28.29 

Plants $/t milled 13.55 

Water & Tailings $/t milled 3.05 

G&A $/t milled 8.94 

Total $/t milled 53.83 

Forex EUR/USD 1.176 
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Chapter 4 - Discussion of Results 

This chapter presents the results of the application of the methodology, demonstrated in the previous 

chapter, to the variables on which the NSR and cut-off grade are dependent and, brief comments on the 

results that are obtained are also presented. 

4.1. Zinc Price Forecasting 

Table 4.1 shows the descriptive statistics of the zinc price from February 2006 to February 2021. As it 

can be seen, 181 observations were made available and using the simple average forecasting technique, 

we can take the value of mean of 2344.845 USD as the short-term zinc price forecast for the next three 

months. This result should be critically evaluated as, comparing this value with the last observation 

available from February 2021, around 2700 USD, as seen in figure 3.2, gives a spread of approximately 

350 USD which rarely happens in the data set horizon. Also, conversations about how a possible metals 

supercycle driven by demand for metals in clean power facilities and transportation, can drive 

commodities prices high for years or even decades are surging and should not be ignored. 

Table 4.1 – Descriptive Statistics of the Zinc Price 

 

 

 

 

 

 

 

 

 

 

Simple Moving Average  

Using equation 2.1, moving averages with 50, 30, 10 and 3 periods were performed. Although values of 

forecast for this method are not used because exponential smoothing methods are considered more 

robust, Simple Moving Averages (SMAs) can still give us some information about trends and higher 

order forecasts can eliminate some randomness as described in section 3.1. Figure 4.1 shows Simple 

Observations 181 

Mean 2344.845 

SD 600.651 

Min 1112.905 

25% 1928.011 

50% 2273.012 

75% 2616.290 

Max 4381.447 
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Moving Average with 50 terms, SMA (50) represented with a purple dashed line. With this scenario, 

important cycles can be smoothed out and a lag effect can have a negative influence if we are more 

interested in short-term forecasts. Contrastingly, SMA (30) and SMA (10), moving averages with 30 and 

10 terms, red and green dashed lines respectively, capture the effect of upward prices in 2016 and the 

followed downturn in 2018 and besides the SMA (30) still not capturing the upward effect in early 2020, 

SMA (10) and SMA (3) give a good sign that we can have a rise in zinc prices in the near term.  

Table 4.2 shows the MAPE error calculated for the training set using equation 2.8 in which each 

range can be seen in the x axis of figure 4.2 where the plot of the percentage errors is represented using 

equation 2.6. From that information it is worth noting the case for the SMA (10), where besides having 

the greater MAPE possibly because of a greater error due to over-forecasting in the beginning of the 

estimations (2008 to 2010), the most recent forecasts are less biased as their percentage errors do not 

vary too much around 0%. On the other side, SMA (3) presents the smallest value of MAPE, justified 

also by the fact that the percentage error does not vary too much around 0%, but it does not add too 

much information when analysing its importance in figure 4.1 possibly because the algorithm is more 

sensitive to randomness. 

 

Table 4.2 – Training Error Measures 

 

 

 

Moving Average SMA (3) SMA (10) SMA (30) SMA (50) 

MAPE (%) 8.098 13.857 21.054 11.999 

Figure 4.1 - Forecast using Simple Moving Averages 
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 Simple Exponential Smoothing 

The Simple Exponential Smoothing (SES) method, described in section 3.1, was applied optimizing 

alpha from equation 2.2 and minimizing MAPE, giving an error of 5.400%, with alpha equal to 1. The 

smoothing effect and the percentage error plot are shown in figures 4.3 and 4.4, respectively. The results 

here presented should be interpreted carefully as choosing alpha to minimize an error criterion can 

result in a smoothing effect where the algorithm gives all the weight to the previous observed value, 

which happens in this case, potentially due to the fact that rapid fluctuations in the zinc price are present. 

For that reason, the SES method was also performed with alpha equals to 0.2 which results in a MAPE 

of 11.781%, where the algorithm adopts a much smoother effect and a slower reaction to prices 

changes. 

Figure 4.2 - Percentage Error Plots for SMA (3), SMA (10), SMA (30) and SMA (50) 
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Another important factor to be noted in these results is that the algorithm does no project any trend 

for the future, which means that the last observed value of 2744.503 USD (α=1) or 2546.655 USD (α=0.2) 

is the forecast for the next month (March) and that value is kept “flat” for the following months (April and 

May). As pointed by Makridakis et al. (1998), the flat forecast function is used because SES works best 

with data that have no trend, seasonality or other underlying pattern, which it is not our case.  

 

 

 

 

Figure 4.3 - SES for Zinc Price 

Figure 4.4 - Percentage Error Plot for SES 
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Double Exponential Smoothing  

In accordance with the method Double Exponential Smoothing explained in section 3.1, using equations 

2.3, 2.4 and 2.5 and following the issues pointed for the SES method in the previous section, a forecast 

using Holt’s method was performed with N0 = 2219.725 and T0 = 207.921. Optimizing alpha and beta 

using the same non-linear optimization algorithm in SES gave a value for alpha = 1, beta = 0.4 and MAPE 

of 8.810% for which the graphical representation of the smoothing effect can be seen in figure 4.5. 

Analysing the results and comparing with the literature, it can be assumed that the error carries an 

acceptable value as, for a data set of 30 observations, Makridakis et al. (1998) achieved a value around 

5% for the MAPE. However, the values of alpha and beta do not represent correctly the data behaviour, 

as a high value of alpha only takes into account the previous observation for the next prediction and a 

value of 0.4 for beta is too low and somewhat closer to the value of 0.1 used by Sharif and Hasan (2019) 

where there was a clear upward trend in the data.  

 

In an attempt to better adjust such parameters to our data, the method was performed in various 

combinations, as shown in table 4.3, with lower alpha and higher beta. Values of alpha of 0.5 and 0.6 

smoothed the data in a similar way and higher values of beta gave lower errors until achieving a minimum 

around 0.7 and beginning to increase again with higher values. Accordingly, the combination with alpha 

= 0.6 and beta = 0.7 was chosen as this was the iteration that gave the minimum error and whose values 

appeared to be best adjusted, as shown in figure 4.6 and in the close-up from January 2020 until May 

2021 in figure 4.7.   

 

Figure 4.5 - Double Exponential Smoothing with alpha (1) and beta (0.4) 
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Table 4.3 – Attempts to better adjust the alpha and beta parameters to the dataset 

Combination α=0.5,β=0.4 α=0.5,β=0.7 α=0.5,β=0.8 α=0.6,β=0.7 α=0.6,β=0.8 

MAPE 10.123 9.922 9.929 9.658 9.716 
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Figure 4.6 - Double Exponential Smoothing with alpha (0.6) and beta (0.7) 

Figure 4.7 - Zinc Price Forecast 
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Observing figures 4.6, 4.7 and the plot of percentage errors for the Holt’s method in figure 4.8, it is 

important to note that the first scenario (alpha = 1 and beta = 0.4) gives a forecast with a downward 

forecast not conforming to the upward trend in the data started April 2020. In the contrary, the second 

scenario (alpha = 0.6 and beta = 0.7) gives the correct trend for the forecasts, with more observations 

captured in the forecast (lower alpha) and more responsiveness with trend fluctuations (higher beta). 

Finally, the error plot indicates that both scenarios are similarly biased with a difference in MAPE of 0.8 

percentage points approximately.    

One might consider this to be a high-risk scenario as these predictions are pointing to high values of 

zinc. With that said, in a business environment it is crucial to consider the uncertainty associated with 

economic recoveries as some countries are still facing lockdowns due to the COVID-19 pandemic 

despite the vaccine rollout in developed countries and its possible migration to less developed nations 

give some optimism about a rebound in zinc demand. Also, as pointed by the S&P Global, an almost 3% 

percent rise in zinc production to 14 million mt is expected this year, so, with such diversified information 

about the future, it becomes crucial to have sophisticated judgments of experts in order to adjust current 

trends for anticipated changes, Eggert (1987). 

 

  

 

 

 

 

Figure 4.8 - Percentage Error Plots of two scenarios with different smoothing parameters 
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4.2. Mining Recovery  

This section describes the results of analysing mining recovery data, fitting it to a known distribution 

using graphical methods and its results, as well as adjusting an equation to the empirical cumulative 

distribution function (CDF) of the data.   

Univariate Analysis  

To better access the behaviour of the mining recovery data, descriptive statistics and data visualization 

using a histogram were performed and presented respectively in table 4.4 and figure 4.9. From their 

analysis, a mean of 0.829 is extracted and a low dispersion of the data represented by a low standard 

deviation is observed. Also, it is worth noting that although the spread between the minimum value and 

the mean is of almost 30 percentage points, this is offset in the standard deviation calculation as 75% 

percent of the data is in the range of [0.803,0.900].  

  

Table 4.4 - Descriptive statistics of the mining recovery 

Observations Mean SD Min 25% 50% 75% Max 

17 0.829 0.087 0.552 0.803 0.860 0.883 0.900 

 

 

  

 

 

 

 

 

 

 

 

 

 

The spread between the minimum value and the 0.25 quantile is also great, around 25 percentage 

points, which indicates a lack of representativity of the data in this range. Finally, the visualization of the 

histogram can give an indication of possible distributions functions that can fit the data.   

 

 

 

Figure 4.9 - Histogram of the mining recovery 
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Graphical methods of modelling a probability distribution  

In the previous chapter the steps to achieve the plots of the ordered sample values against the quantiles 

of the reference distribution corresponding to any of the fractions, as stated by Wilk and Gnanadesikan 

(1968), using the standard normal distribution were presented in section 3.2. Next, still in section 3.2, it 

was viewed how the Kolmogorov-Smirnov (KS) test can help us accept or reject the hypothesis that our 

data comes from the chosen distribution, comparing the maximum distance between the theoretical and 

empirical CDFs, using equation 2.1, with a critical value for the KS Test with 95% confidence level. 

This section displays the results for the KS test and probability plot for the common distributions, 

normal, exponential and beta using its respective parameters, in table 4.5 and figures 4.10, 4.11 and 

4.12.   

Table 4.5 – KS Test results for the normal, exponential and beta distributions 

Distribution Normal Exponential Beta 

Statistic 0.1972 0.4485 0.1676 

      

Keeping in mind the critical KS value of 0.286 in figure 3.6 and the literature statement that a good fit 

is obtained when the probability plot looks like a 45º line from the lower left corner to the upper right 

corner of the graph, Thomopoulos (2013), the hypothesis that the data comes from an exponential 

distribution is promptly rejected as a value of 0.4485, greater than the critical KS value, was obtained 

and its probability plot does not follow the rule in the literature. The rest of the distributions have a 

statistic value below 0.286, for which the null hypothesis that the data either comes from a normal or 

beta distributions, can be accepted with 95% confidence.       

In fact, one can argue that the beta distribution better fits the data as a lower value of the KS statistic 

was achieved, in comparison with the normal distribution, and as the line of its probability plot looks 

more approximate to an angle of 45º.  

However, despite the fact that the software used in this work has tools to easily obtain and modify 

the probability distribution parameters and hence it becomes easy to perform simulations given that 

distribution, due to the lack of familiarity with the beta distribution and its respective parameters (shape, 

location and scale), associated with the lost in control that such abstraction could bring, it was decided 

to progress with the realization of Monte Carlo simulations using the inverse transform method of which 

the results are discussed in the next section.   
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Analytical methods of modelling a cumulative distribution function 

Following the brief discussion on the analytical methods in the previous chapter and, as a way of 

asserting that equation 3.7 best fits the cumulative distribution function (CDF) in figure 3.8 as 

hypothesized, figure 4.13 shows the CDF of the mining recovery and its respective best fitted equation 

with parameters a = 5.96×10
-6

 and b = -13.25. It is notable the high value of 0.969 for the coefficient of 

determination (R
2
) provides a decent indication of the goodness of fit, i.e., the proportion of data points 

that lie within the regression equation, giving a measure of how well the samples are predicted by the 

model.  

In that sense, we are more interested in the inverse function of the curve fitting model as it is crucial 

for obtaining a simulated value of recovery, x, from equation 2.11, given a random number between 0 

and 1, as illustrated in figure 3.9. In that regard, table 4.6 and figure 4.14 show, respectively, the mean 

of the descriptive statistics for each week of simulated results and the histogram of the various 

simulations for the next three months (400 simulations for each week).   

Figure 4.10 - Probability Plot for the normal 

distribution 

Figure 4.11 - Probability Plot for the exponential 

distribution 

Figure 4.12 - Probability Plot for the beta 

distribution 
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From that information it is fair to claim that the original data and the new simulated values come from 

the same probability distribution as the histogram of each week and its descriptive statistics are in the 

most part similar, except for the gap in the range [0.6,0.75] in figure 4.9 that became obsolete as it is not 

recognized by the CDF equation and the minimum value that varies by approximately 11 percentage 

points, possibly justified by the fact that the rounding of the CDF equation parameters does not capture 

very well its lower bound.  

 

  

 

 

 

 

 

 

 

Table 4.6 – Mean of the descriptive statistics for each week of simulated mining recovery 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulated 

Realizations 

Mean SD Min 25% 50% 75% Max 

4800 0.833 0.074 0.442 0.805 0.856 0.886 0.908 

Figure 4.13 - CDF for mining recovery and 

respective equation 

Figure 4.14 - Histogram of Monte Carlo simulations for the mining 

recovery 
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4.3. Zinc Head Grade  

In this section are presented and discussed the results of the data analysis, distribution fitting using 

graphical methods, as well as the Monte Carlo simulations for the zinc head grade.  

Univariate Analysis 

Performing a univariate analysis similarly to the mining recovery data, the descriptive statistics of the 

head grades in table 4.7 and its visualization, displayed in figure 4.15 in the form of a histogram, were 

obtained. From this information it is important to note that the values of the mean and the median 

(quantile 50%) are identical, suggesting that the data comes from a normal symmetric distribution. Also, 

as no anomalies in the data were found, it can be inferred that the cut-off grade is less than or equal to 

the minimum value, namely around 5.6%.  

Table 4.7 – Descriptive Statistics of the zinc head grade 

Observations Mean SD Min 25% 50% 75% Max 

49 7.600 0.795 5.598 7.100 7.658 7.913 9.488 

 

 

 

 

 

 

 

 

 

 

Graphical Methods 

To examine the truth of our assumption that the data comes from a normal distribution, the KS test 

attributed a test statistic of 0.1349 when testing for the normal distribution. Comparing with the critical 

value of approximately 0.174 = 
1.22

√49
 from the stretch of a KS test table in figure 4.16, as the test statistic 

is less than the critical value, we can accept with 95% confidence (α=0.05) that our data comes from a 

normal distribution.  

 

Figure 4.15 - Histogram of the zinc head grade 
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From the observation of figure 4.17 which shows the probability plot with the best fit line for the data 

when comparing with a normal distribution with parameters mean and standard deviation, as in table 

4.7, we can conclude that our assumption is valid, as this line is close to a 45º line intercepting the lower 

left part of the graph through to the upper right side with coefficient of determination equal to 0.984. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once the Monte Carlo simulations were performed, they presented the results in table 4.8 and figure 

4.18. Analysing the table, it is notable that the mean of the summary statistics for each week is in all 

similar to results given by original data in figure 4.17. From the figure 4.18, the same symmetrical 

characteristics as for the histogram of the original data in figure 4.15 are noticeable. Moreover, the 

simulations achieved values that surpassed the minimum and maximum boundaries of the original data 

but that should not be considered as an issue as these values are still in a range in which this error can 

be attributed to fluctuation of grades coming from the underground mine, as this is a recurring pattern 

when we only have an estimation of the orebody grade distribution.   

 

 

Figure 4.16 - Critical Values for the KS test for n > 

40; Source: Miller (1956) 

Figure 4.17 - Probability Plot using the normal distribution 
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Table 4.8 - Mean of the descriptive statistics for each week of simulated head grades 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Profit Risk Assessment  

For the calculation of the gross revenue using equation 3.9 it was used the zinc price forecast using the 

Holt’s method with parameters alpha = 0.6 and beta = 0.7 for the months of March (Week 1-4), April 

(Week 5-8) and May (Week 9 -12) being 2802.713 USD, 2835.642 USD and 2868.572 USD, respectively. 

Then, for the calculation of the quantity of metal in equation 3.10, processing plant recovery was kept 

constant at 80% and the values of mining recovery and zinc head grade are each of the simulated for 

the next three months, represented by the histograms in figures 4.14 and 4.18, respectively. Finally, the 

value of tonnage of mine is the one that produces one tone to be milled. Using the ratio between net 

revenue in equation 3.8 and gross revenue in equation 3.9 gives the NSR variation in percentage.  Figure 

4.19 illustrates these results, for the next three months, in a scenario where it is expected that the zinc 

metal prices continue to soar, with prices around 2800 USD as figure 4.7 shows. 

One could expect a slight increase in the NSR percentage over time due to the increase in prices but 

that behaviour is not perceptible due to the fact that the forecasting model does not predict values too 

far off the last observed value in February 2021. Also, it is important to note that the mining recovery 

Simulated 

Realizations 

Mean SD Min 25% 50% 75% Max 

4800 7.598 0.795 5.155 7.067 7.604 8.122 9.867 

Figure 4.18 - Histogram of Monte Carlo Simulations for zinc head grade 
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and the zinc head grade on which the NSR calculations are highly dependent, do not show a clear 

ascending or descending pattern overtime, offsetting the expected growth in NSR produced by 

increased zinc prices.  

It can be observed that the values of mine netback are in range of around 93% to 98%, due to the 

lack of precise data in transportation, freight, insurance and marketing costs that make up the 

commercial costs. The rule of thumb when dealing with a zinc concentrate NSR is to establish the mine 

netback in values around 50% as noted by Wellmer et.al (2008). 

Keeping the value of mine netback to 50%, calculations of possible cut-off grades for the next three 

months were achieved using equation 3.12 as figure 4.20 shows. From that, no increasing or decreasing 

pattern is found over time.  

It is notable that a high density of values is slightly less than 6% of grade. Comparing the values of 

the head grades data and simulated head grades, this is an inferior value as the mean for the original 

and simulated values is around 7.6%. This factor can be attributed to the fact that no dilution was 

considered and also by the lack of accuracy when accounting for total operating costs. 

The descendent shape of the histogram when looking through higher values of cut-off grade gives a 

clue that mining recovery plays a major role in its influence as these parameters follow the opposite 

pattern: the greater distribution of the mining recovery is for the values above 80% recovery and the 

high values of cut-off grade are possibly due to the calculations that the algorithm achieved using lower 

values of mining recovery. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.19 - Simulated NSR in percentage 
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Taking into account the information above it is essential that the uncertainty in the NSR calculations 

and cut-off grades are integrated in the creation of mine plans to better access the risk in the decision-

making process, by incorporating ways to reduce this risk and maximizing mining profits.  

Annex A contains the operational margin calculated with equation 3.11 where the range in which the 

mine would profit for the quantity of metal milled given grades, mining and processing recoveries, is 

observable, if prices forecasted and costs obtained would apply.  

Figure 4.20 - Simulated Cut-Off Grades 
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Chapter 5 – Conclusions 

This final chapter presents the summary of the objectives proposed for this work and how they were 

accomplished and presented throughout the dissertation. Visualizing a future enterprise framework for 

the issues discussed in this thesis, some advices and recommendations are also provided. 

5.1. Final Remarks  

The first major accomplishment of this work was to present a methodology that quantifies the financial 

risk of a mine planning decision, represented by the probability distribution of the NSR, which was the 

chosen parameter to quantify the performance of the exploitation of determined area of an orebody. 

This parameter is influenced by innumerous factors from which the metal price, reserves estimates 

associated with the zinc head grade and mining recovery were worthy of a special attention.  

Upgrading from the assumption that metal prices are deterministic, future metal prices were 

forecasted in a short-term horizon (3 months) using a dataset of the monthly prices, representative of 

the global market from the last 15 years. In conjunction with others, the Holt’s method achieved the best 

predictions, coinciding with the underlying trend for the most recent observations.  

Afterwards, a calculation for the probability distribution of the mining recovery dataset was achieved. 

Performing the KS Test and using graphical methods to compare the data distribution with various know 

distributions, satisfactory results were accomplished. Furthermore, fitting the data distribution with an 

exponential equation and performing Monte Carlo simulations using the inverse transform method, 

resulted in a better distribution function that quantifies the mining recovery uncertainty. 

Regarding the reserves estimates it is usually assumed that we have perfect knowledge of the 

orebody but using a stochastic framework adds value to the production schedule. As no model was 

available, samples of the zinc head grade were obtained and the probability distribution of the data was 

assertively assumed to have a normal distribution. Recurring to Monte Carlo simulations, future grade 

estimates were generated for the short-term horizon.  

Using the forecasted and simulated results, two models were created: one model of the percentage 

NSR (mine netback) and another for the cut-off grades that can be quantified in a risk throughout the 

timeframe of the mine plan. Values of zinc cut-off grade in the range between 5% to 6% are the most 

expected using 50% NSR and not accounting for dilution.  

 

5.2. Future Work  

Another objective of the present work was to develop meaningful ways of interconnecting geostatistics 

(ore evaluation) with financial analysis.  
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In accordance with quantification of geological risk using geostatistics and figure 3.1 in mind, the 

methodology here presented should be incorporated in a corporate environment envisioning a mine 

plan and production scheduling that takes into account not only one orebody model but multiple 

probable models and for each model perform an extraction schedule, progressing with the concept 

presented by Neves et al. (2020). In this approach, the dilution parameter should be integrated as it is a 

major part of the blasting operation.  In that regard, it could also be of great value applying this idea into 

a panel, obtaining the uncertainty of each block of the panel. Using selective mining strategies, mining 

recoveries could be diversified using another mining methods in use and choosing the one that obtains 

the best benefit.  

Such as the geology, metal prices play major influence in mine revenues and a simple approach for 

forecasting was used in the scope of this work. So, in a corporate level it is important to complement the 

results of quantitative methods with surveys and executives experienced input for forecasting as the 

forecasts methods here presented are dependent of factors that cannot be predicted. In line with this 

thought, metal prices can be examined for parameters such as seasonality that can be better addressed 

using the Holt-Winters method. Also, the gaining popularity of neural networks and its ability to solve 

complex problems can be of great help in the future.  

Finally, the gap between geostatistics and financial analysis can be filled with more research and 

development in both areas, bringing advantages to a mine in a strategic, tactical and operational fronts 

as in a longer-term horizon it can influence contractual agreements with smelters, provide higher value 

to the mine planners in the short-medium term horizon and, last, but not least, efficiently allocate and 

use resources on a daily basis.   
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Annexes 

Annex A – Operating Margins for each week in USD/ ton milled. 

 

 

 

 

 

 

 

 

 

 


