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1 Introduction and model definition

The Ising model is a mathematical model used in Statistical Physics. The model is defined on a graph

and defines random variables associated to the vertices of the graph, which can take one of two values

{±1}. These represent the orientation of dipoles, and the main characteristic is that each dipole can

interact with their neighbours: configurations where more neighbouring dipoles agree occur with higher

probability.

Given a finite graph G = (V, E), to each vertex v ∈ V we associate a variable σv ∈ {±1}, referred to

as the spin of the vertex. A spin configuration is an assignment of spins σ = (σv)v∈V ∈ {±1}V to every

vertex. The Hamiltonian function is defined as

H : {±1}V ABCD−−−−→ R

σ
ABCD7−−−−→ −

∑
e∈E

e=(vu)

σvσu

which can be seen as the sum of “contributions” from all edges: each edge e = (vu) ∈ E contributes with

−1 if σv = σu or +1 if σv = −σu. The model is defined by the probability distribution P(σ) such that

P(σ) is proportional to exp
(
− βH(σ)

)
, where β > 0 is a fixed constant. More explicitly,

P(σ) =
1

Zβ
exp

(
− βH(σ)

)
where

Zβ ..=
∑

σ∈{±1}V
exp

(
− βH(σ)

)
is called the partition function of the model. Another expression for the probability can be obtained by

expanding the Hamiltonian:

P(σ) =
1

Zβ

∏
e∈E

e=(vu)

exp(βσvσu).

Remark 1.1. In a physical context β is the inverse temperature of the system (assuming the units are

such that the Boltzmann constant kB equals 1) and the Hamiltonian of a configuration is interpreted as

its energy. The probability distribution is therefore the Gibbs measure.
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Many changes have been proposed to this model throughout the years. The most common generaliza-

tion is to introduce interaction constants (Je)e∈E , allowing some connections to be stronger than others.

The Hamiltonian becomes

H(Je)(σ) ..= −
∑
e∈E

e=(vu)

Jeσvσu

with the probability measure defined in the same way:

P(Je)
..=

1

Z(Je),β
exp

(
− βH(Je)(σ)

)
=

1

Z(Je),β

∏
e∈E

e=(vu)

exp(βJeσvσu)

where the partition function is now given by

Z(Je),β
..=

∑
σ∈{±1}V

exp
(
− βH(Je)(σ)

)
=

∑
σ∈{±1}V

∏
e∈E

e=(vu)

exp(βJeσvσu).

Some combinations of interaction constants have particular importance. An Ising model with disorder

insertions is a model where Je ∈ {±1}. Informally speaking, an edge with a disorder insertion behaves

opposite from normal, making configurations where the neighbouring spins have opposite signs more

likely. Usually these are described using dual paths, and the edges crossed by those dual lines are the

ones where Je = −1.

Definition 1.2. Given a planar graph G = (V, E) with faces F , the set of all dual edges is labelled E†.

The dual edge of an edge e ∈ E is denoted by e† and the dual set of a set E ⊆ E is E† = {e† : e ∈ E}.

The dual graph is the graph G† = (F , E†).

Definition 1.3. Given an Ising model on a planar graph G = (V, E) with faces F , a set of disorder lines

is a set Γ ⊆ E†. We say the model has a set of disorder lines Γ if the Hamiltonian is defined as

HΓ(σ) ..= −
∑

e∈E\Γ†

e=(vu)

σvσu +
∑
e∈Γ†

e=(vu)

σvσu.

The partition function, the probability distribution and expected values of the model are written as ZΓ
β ,

PΓ and EΓ, respectively.

2 Scaling limits

The thesis is dedicated to a continuous version of the two-dimensional Ising model, with a spin variable

assigned to each point of a domain Ω ⊆ C. Such a model would be described by a Statistical Field Theory.

The first difficulty one faces is how to formally define such an object, and the approach followed is to

consider it as a scaling limit of discrete models.

Given Ω ⊆ C, for every δ > 0 consider appropriate discretizations Ωδ of Ω (Figure 1) which converge

in some sense to the original domain as δ −→ 0. We then consider a family of Ising models defined on
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Figure 1: A domain Ω with a square grid (on the left) and an example of a discretization Ωδ (on the
right). Boundary sites are often considered for the model, and coloured grey.

every Ωδ. The properties of the continuous version are defined by the corresponding properties of the

discrete models passed to the limit. For example, given a, b ∈ Ω, the expected value of a product of spin

variables σaσb for the continuous Ising model would be defined as:

EΩ[σaσb] ..= lim
δ→0

EΩδ [σaσb]

and note that there is an abuse of notation here: the sites on the right-hand side may not be a and

b but instead appropriate approximations of these points on Ωδ. Apart from proving that such limits

exist, the well-definedness of these quantities requires proving that choices regarding discretizations are

not relevant when passing to the limit. Most works in literature consider discretizations using square

lattices, and our work is no different in this regard. This formulation of the continuous model has

seen recent success in formally defining and proving Physics conjectures regarding conformal invariance

[Smi06, Smi10, CHI15, CS12, CI13].

3 Setting

We consider a discrete domain Ωδ which is the union of faces of a square grid with mesh size δ > 0.

Such faces are called interior faces and are denoted by IntFΩδ . Given such a domain, the set of interior

vertices is the set IntVΩδ of vertices of the grid that are corners of any face of IntFΩδ , and the set of

interior edges is the set IntEΩδ of edges that are adjacent to any face of IntFΩδ .

Additionally, we define the sets of boundary faces, vertices and edges as being the respective elements

adjacent/incident to their interior counterparts that do not belong to those sets, and are denoted by

∂FΩδ , ∂VΩδ and ∂EΩδ . The sets of faces, vertices and edges are the union of the corresponding interior

and boundary elements: FΩδ
..= IntFΩδ ∪ ∂FΩδ , VΩδ

..= IntVΩδ ∪ ∂VΩδ and EΩδ ..= IntEΩδ ∪ ∂EΩδ . Figure
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1 shows an example of such a discretization with boundary elements coloured grey.

The domain Ωδ is any polygonal domain resulting from the union of square grid faces, and to simplify

arguments we will assume that Ωδ is simply connected and any edges connecting vertices of IntVΩδ belong

to IntEΩδ .

4 Disorder variables and Duality

Section 2 of the thesis is dedicated to introducing Kramers-Wannier duality: a symmetry relating Ising

models defined on dual graphs. Historically, it was an important step to find the critical temperature of

the model. From this point of view, disorder lines are found to be dual objects of spin variables [KC71].

The most common formulation of this fact is achieved by using disorder variables.

Definition 4.1. Given an Ising model on a planar graph G = (V, E) with faces F and a set of disorder

lines Γ ⊆ E†, the degree of a face a ∈ F in Γ is the cardinality |{e ∈ Γ : a is an endpoint of e}|. We write

Γ ≡ Γ[a1, . . . , a2m] to emphasize the faces a1, . . . , a2m ∈ F that have an odd degree on Γ, which must

exist in an even number.

Remark 4.2. When employing the notation Γ[a1, . . . , a2n] (and more generally, when speaking about

disorder lines), we allow for some of the endpoints ak to be repeated. The faces that are endpoints of an

odd number of elements of Γ are the ones that appear an odd number of times on the list a1, . . . , a2n (note

that the list must still have even length). We will make an abuse of language when referring to a1, . . . , a2n

as the vertices with odd degree in Γ[a1, . . . , a2n], even if some of the ak repeat. This “cancellation” will

be a recurring pattern in the sequel, and will be left implicit.

Definition 4.3. Given an Ising model on a planar graph G = (V, E) with faces F , a disorder variable is

a random variable of the form (
2n∏
j=1

µaj

)
Γ

..=
∏
e∈Γ†

e=(vu)

exp(−2βJeσvσu)

where a1, . . . , a2m ∈ F and Γ ≡ Γ[a1, . . . , a2n] ⊆ E† is a set of disorder lines.

The following statement from [KC71] relates disorder lines and disorder variables

Proposition 4.4. Consider an Ising model on a planar graph G = (V, E) with parameter β and let

Γ ≡ Γ[a1, . . . , a2n] ⊆ E† be a set of disorder lines. Then,

PΓ(σ) =

(
2n∏
j=1

µaj

)
Γ

E

[(
2n∏
j=1

µaj

)
Γ

] · P(σ) and EΓ[X] =
Zβ
ZΓ
β

· E

[
X ·

(
2n∏
j=1

µaj

)
Γ

]

where X ≡ X(σ) is any random variable depending on the spin variables.

A classic duality result is the following:
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Theorem 4.5. Consider an Ising model on GΩδ = (IntVΩδ , IntEΩδ) with parameter β, together with

another Ising model on G†Ωδ = (FΩδ , IntE†Ωδ) with parameter β† and + boundary conditions: that is, all

the spins of ∂FΩδ are conditioned to be +1. Let Θ ≡ Θ[v1, . . . , v2m] ⊆ IntEΩδ and Γ ≡ Γ[a1, . . . , a2n] ⊆

IntE†Ωδ . If tanhβ = exp(−2β†), then

EGΩδ

[
2m∏
k=1

σvk

(
2n∏
j=1

µaj

)
Γ

]
= (−1)|Θ∩Γ†| · EG†

Ωδ

[
2n∏
j=1

σaj

(
2m∏
k=1

µvk

)
Θ

]
. (1)

From this result follows a well-known fact about disorder lines: changing Γ while keeping the endpoints

fixed only affects the factor (−1)|Θ∩Γ†| on the right-hand side of (1), therefore the expected value

EGΩδ

[
2m∏
k=1

σvk

(
2n∏
j=1

µaj

)
Γ

]

is independent of the choice of Γ up to a sign.

5 Spinor observables

The bulk of the thesis focuses on spinor observables FΓ
[Ωδ;a;u]. The definition given in the thesis is a

“combinatorial definition”, which expresses the function as a combinatorial sum. It is rather lengthy and

requires quite a bit of work to check that it is well defined, but it is essential to prove s-holomorphicity

(more details below). Another possibility is provided by an “analytical definition”, which gives insight

as to why these objects are interesting to study. The latter will be the one followed in the present text.

Figure 2 shows an example of a discretization using a lattice of mesh size
√

2δ and rotated by 45◦.

The sites VΩδ , EΩδ and FΩδ are displayed, and note how the edges are identified with their midpoints

and faces with their centers. Around each vertex v we add four neighbour corners v± δ
2 and v± δ

2 i. The

collection of all corners is denoted by CΩδ and is partitioned into CΩδ = C1
Ωδ
∪ CiΩδ ∪ C

λ
Ωδ
∪ CλΩδ depending

on the position of each corner relative to the neighbouring vertex, as shown in Figure 2. Depending on

where a corner c is placed in this partition, we associate to it a complex number ηc amongst 1, i, λ ..= ei
π
4

and λ = e−i
π
4 . For a corner c, v(c) denotes the neighbouring vertex and f(c) refers to the face where it

is inserted.

We consider the Ising model on the graph G†Ωδ = (FΩδ , IntE†Ωδ) at the critical temperature β = βc =

1
2 ln

(√
2 + 1

)
with boundary conditions +: that is, all the spins of ∂FΩδ are set as +1. Our objective

is to study such a model with disorder lines Γ ≡ Γ[v1, . . . , v2m], but we often consider the same model

with other disorder lines. Let c1, . . . , c2m ∈ IntCΩδ be pairwise disjoint corners adjacent to v1, . . . , v2m

and set uk = f(ck). Consider some additional faces a1, . . . , an ∈ IntFΩδ , not necessarily distinct from

u1, . . . , u2m, and let Θ be a collection of edge-disjoint paths in G†Ωδ linking u1, . . . , u2m, a1, . . . , an and

possibly aout ∈ ∂FΩδ . We write a ≡ a1, . . . , an, c ≡ c1, . . . , c2m, u ≡ u1, . . . , u2m and v ≡ v1, . . . , v2m.

The spinor observables are functions defined on the canonical double cover of Ωδ \ {a,u} branching

around each point a,u, which is denoted by [Ωδ; a; u]. There is a natural 2-to-1 correspondence between

[Ωδ; a; u] and Ωδ \ {a,u}; the two representatives of z ∈ Ωδ in [Ωδ; a; u] are called the lifts of z, whereas
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VΩδ

EΩδ
FΩδ

C1
Ωδ

CiΩδ

CλΩδ

CλΩδ

Figure 2: Example of sites for a discretization Ωδ, with boundary elements coloured grey.

the representative of z̃ ∈ [Ωδ; a; u] in Ωδ is the projection of z̃. We write z̃ when referring to an element

of [Ωδ; a; u] whose projection is z, and [A; a; u] for the set of lifts of elements of A ⊆ Ωδ in [Ωδ; a; u].

Finally, for each z̃ ∈ [Ωδ; a; u] we define sheeta,u(z̃) as follows:

1. Fix forever a lift ã→
1 ∈ [Ωδ; a; u] of the corner a→

1
..= a1 + δ

2 .

2. Take any smooth path π running from a→
1 to z such that π intersects Θ an even number of times

and π does not go through any of the points a and u.

3. Lift π to the double cover [Ωδ; a; u] starting from ã→
1 . Such a path must end in one of the two lifts

of z.

4. sheeta,u(z̃) = +1 if the lifted path ends at z̃ and sheeta,u(z̃) = −1 otherwise.

Finally, we assume EΓ,+
Ωδ

[σa1σa2 · · ·σan ] 6= 0.

Definition 5.1. Given a lifted corner z̃ ∈ [CΩδ \ {c, a→
1 }; a; u] with associated ηc ∈ {1, i, λ, λ}, define

FΓ
[Ωδ;a;u](z̃)

..=
Z Γ̃,+

Ωδ

ZΓ,+
Ωδ
· EΓ,+

Ωδ
[σa1σa2 · · ·σan ]

· sheeta,u(z̃)ηz · τ0EΓ̃,+
Ωδ

[σf(z)σa2 · · ·σan ]

where Γ̃ ≡ Γ̃[v, a1 + δ, v(z)] is another set of disorder lines linking additional vertices and τ0 ∈ {±1} is a

normalizing sign depending on the choice of Γ̃: by duality arguments, EΓ̃,+
Ωδ

[σf(z)σa2
· · ·σan ] is independent

of the choice of Γ̃ up to a sign, and τ0 corrects this.
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Definition 5.2. Given a lifted edge z̃ ∈ [EΩδ ; a; u], define

FΓ
[Ωδ;a;u](ẽ)

..= FΓ
[Ωδ;a;u]

(
z̃ +

δ

2
i

)
+ FΓ

[Ωδ;a;u]

(
z̃ − δ

2
i

)

where z̃ ± δ
2 i is the lift of z ± δ

2 i located on the same sheet of [Ωδ; a; u] as z̃.

Remark 5.3. In the setting of [KC71, CCK17], the spinor can be written using fermions: on the corners,

the spinor is essentially given by the operator

1〈
n∏
k=1

σ(ak)

2m∏
k=1

[
σ(uk)ψ(ck)

]〉
〈

n∏
k=1

σ(ak)

2m∏
k=1

[
σ(uk)ψ(ck)

]
· ψ(a→

1 )ψ(z)

〉
. (2)

For the definition of ψ(z) see Definition 4.1 of the thesis.

In the particular case v(z) = a1 + δ, the second collection of disorder lines Γ̃ should link the vertices

v, a1 +δ, a1 +δ. Therefore, we can take Γ̃ = Γ. This leads to the following result that is vital in extracting

the information from the spinors.

Proposition 5.4. The equalities

FΓ
[Ωδ;a;u](a

→
1 + δ) = τ0

EΓ,+
Ωδ

[σa1+2δσa2
· · ·σan ]

EΓ,+
Ωδ

[σa1
σa2
· · ·σan ]

FΓ
[Ωδ;a;u]

(
ã→

1 +
1 + i

2
δ

)
= τ0

EΓ,+
Ωδ

[σa1+(1+i)δσa2
· · ·σan ]

EΓ,+
Ωδ

[σa1
σa2
· · ·σan ]

hold, where ã→
1 + δ and ã→

1 + 1+i
2 δ are the lifts of a→

1 + δ and a→
1 + 1+i

2 δ located on the same sheet of

[Ωδ;a;u] as ã→
1 .

6 Strategy for the convergence proof

The main difficulty faced in the study of a conformally invariant scaling limit of discrete models is the

rigorous proof of the passage to the scaling limit. In fact, although heuristic arguments from Physics have

suggested many observables for which a passage to the limit is expected, both for the Ising model and

other 2D models, the technical difficulties faced in this step are so substantial that only recently it has been

possible to arrive at a completely rigorous proof of convergence for a specific family of observables. We

describe an outline of this proof, for more in depth insights, as well as remarks regarding generalizations

to other models, see [Smi06].

The converging functions have to be carefully chosen. Since we wish to prove a conformal invariance

property, we require a conformally covariant object in the continuous setting together with an adequate

discretization. Note that it is unreasonable to expect the covariance property to hold at the lattice

level. In addition, the discretization must possess properties that allow one to work with it and prove

estimates. Some important properties in the continuum are already well understood at the lattice level:

namely, analyticity and harmonicity. In fact, defining the function in the continuum using either of these

properties and a boundary condition (like Dirichlet, Neumann or Robin) means that the corresponding

discretizations have only to verify a local condition and a boundary condition.
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6.1 S-holomorphicity

Restricted to [EΩδ ; a; u], the spinor observable FΓ
[Ωδ;a;u] verifies a discretized version of the Cauchy-

Riemann equations. For eNW , eSW , eSE , eNE ∈ EΩδ that are vertices of a square of side δ starting in the

upper left corner and going counter-clockwise,

FΓ
[Ωδ;a;u](ẽNW )− FΓ

[Ωδ;a;u](ẽSE)

ẽNW − ẽSE
=
FΓ

[Ωδ;a;u](ẽNE)− FΓ
[Ωδ;a;u](ẽSW )

ẽNE − ẽSW

for both lifts of the edge midpoints, as long as all four are on the same sheet of [Ωδ; a; u]. This is not true

for all combinations of eNW , eSW , eSE , eNE : namely, the ones surrounding one of the branching points

a,u (which would make the statement “all four are on the same sheet of [Ωδ; a; u]” not clear), but also

the squares to the right of a1 and u. These are seen as “discrete singularities” and will require additional

care.

Additionally, FΓ
[Ωδ;a;u] verifies the following boundary condition:

For z ∈ [∂EΩδ ; a; u], FΓ
[Ωδ;a;u](z̃) ·

√
νout(z) ∈ R

where νout(z) is a discrete analogue of the outer normal to the boundary at z. Together with the spinor

nature of this function, this should allow us to identify the continuous version fΓ
[Ω;a;u] : [Ω; a; u] −→ C of

FΓ
[Ωδ;a;u]:

1. fΓ
[Ω;a;u] is holomorphic on [Ω; a; u]1.

2. For every z̃ ∈ [∂Ω; a; u], fΓ
[Ω;a;u](z̃)

√
νout(z) ∈ R.

3. fΓ
[Ω;a;u] has multiplicative monodromy −1 around each branching point b1, . . . , br.

(We require additional knowledge regarding the behaviour around the branching points, which we are

ignoring for now).

This reasoning faces a difficulty: the boundary condition is not robust enough to pass to the limit.

Since Ωδ is always a square grid rotated by an angle of π
4 , the discrete version of νout(z) can only take

the values of e
πi
4 , e

3πi
4 , e

5πi
4 and e

7πi
4 , hence we may not have νΩδ

out(z)
δ→0−−−→ νΩ

out(z).

A solution to this problem is to integrate the square of fΓ
[Ω;a;u]. Note that

fΓ
[Ω;a;u](z̃)

√
νout(z) ∈ R⇔

(
fΓ

[Ω;a;u]

)2
(z) · iνout(z) ∈ iR+

0

and iνout(z̃) is now tangent to Ω at z. Consider an antiderivative h of (fΓ
[Ω;a;u])

2, which verifies

h(v)− h(u) =

∫
γ

(
fΓ

[Ω;a;u]

)2
(z) dz

for any path γ running from u to v. If γ ⊆ ∂Ω then the integrand must be imaginary. Hence, h verifies

the boundary condition <(h) ≡ Cte, which passes to the limit naturally and is generally more pleasant

to deal with.
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This strategy runs into a technical difficulty: it requires some definition of “discrete primitive” of

(FΓ
[Ωδ;a;u])

2. This is problematic because, under usual definitions of discrete holomorphicity, there is no

guarantee that the square of a discrete holomorphic function is discrete holomorphic, and so there may

not be a well-defined primitive.

The solution to this problem is provided by a rather astounding observation first made in [Smi06].

By requiring that FΓ
[Ωδ;a;u] is s-holomorphic, a stronger version of the usual discrete holomorphicity, it is

possible to provide a suitable definition of <
∫ (
FΓ

[Ωδ;a;u]

)2
. In addition, this function shares many of the

properties of discrete harmonic functions, as one would expect. The function <
∫ (
FΓ

[Ωδ;a;u]

)2
plays an

important role in proving the convergence of FΓ
[Ωδ;a;u].

Definition 6.1. To each corner c ∈ CΩδ we associate the line l(c) ..= ηcR — seen as a subset of C — and

denote by Projl(c)[w] the projection of a complex number w onto the line l(c), which can be written as

Projl(c)[w] = <
(
wηc

)
ηc =

1

2

(
w + η2

cw
)
.

A function F : [C∪EΩδ ; a; u] −→ C defined on the lifts of sets C ⊆ CΩδ and EΩδ is strongly holomorphic

at c ∈ C, or s-holomorphic for short, if for both e ∈ EΩδ adjacent to c (that is, such that |c− e| = δ
2 )

F (c̃) = Projl(c)
[
F (ẽ)

]
for both lifts of c, with the lift of e taken to be on the same sheet of [Ωδ; a; u]. Moreover, F is s-holomorphic

on C if it is s-holomorphic at each c ∈ C.

Remark 6.2. The function FΓ
[Ωδ;a;u] is s-holomorphic on [CΩδ \ {a→

1 , c} ∪ EΩδ ; a; u]. The projections to

the corners c = a→
1 , c have opposite signs. Recalling Remark 5.3, note that the s-holomorphicity breaks

down when ψ(z) cancels out with another ψ on the numerator in (2).

6.2 Behaviour around the branching points

To completely define fΓ
[Ω;a;u] we need to translate the behaviour of FΓ

[Ωδ;a;u] around the branching

points to the continuous setting. Around the branching points b = a2, . . . , an (where there are no discrete

singularities), the discrete primitive H = <
∫

(FΓ
[Ωδ;a;u])

2 turns out to be bounded from below. Imposing

this for the limit, together with (fΓ
[Ω;a;u])

2 being holomorphic in a punctured neighbourhood of b, it follows

that h = <
∫

(fΓ
[Ω;a;u])

2 should behave like C1 log |z−b|+C2 for some C1 ∈ R−0 , C2 ∈ C. Therefore, fΓ
[Ω;a;u]

behaves like
√
C(z − b)−1/2, or C(z − b)−1/2 with C ∈ iR.

For the other branching points b = a1,u, we define a spinor F[Cδ;b] which has the same type of

singularity. For the case b = a1 this is conveyed by simply stating that FΓ
[Ωδ;a;u]−F[Cδ;b] can be extended

to be s-holomorphic at b + δ/2. Using results regarding the convergence of normalized discrete Poisson

kernels from [CS11], F[Cδ;b] is proven to be a discretization of 1/
√
z − b. This means FΓ

[Ωδ;a;u] does not

blow up faster than ±1/
√
z − b at b = a1.

For b = u, the same idea works but F[Cδ;b] needs to be multiplied by an additional multiplicative

constant, which is the ratio of two other spinors. These are simpler in the sense that they have two less
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endpoints in their disorder lines. We thus require a recursive method in order to accurately define these

spinors: one starts by studying the spinors with no disorder lines (for which the case b = u is vacuous),

then uses them to define spinors with one disorder line, which are used in the definition of spinors with

two disorder lines and so on. Although more involved, this situation does not require additional technical

tools to handle when compared to the case b = a1.

6.3 Convergence result and implications

Using the strategy described, we are able to prove the convergence result.

Theorem 6.3. Given a bounded, simply connected domain Ω ⊂ C, let Ωδ be a family of discrete, simply

connected domains that converges to Ω as δ → 0. Then, for any ε > 0,

1

ϑ(δ)
FΓ

[Ωδ;a;u](z̃)
δ→0−−−→ fΓ

[Ω;a;u](z̃)

uniformly on compact sets at distance at least ε from the branching points.

The normalizing constant ϑ(δ) is the probability that a simple random walk on Cδ — the square

grid rotated by 45◦ with mesh size equal to
√

2δ — starting from an approximation of 1 on the lattice

hits 0 before hitting the half-line {z < 0}. We prove that ϑ(δ) is bounded both above and below by
√
δ

asymptotically.

We then use the previous theorem to find a conformal invariance result. Proposition 5.4 states that

we can extract information about the model by studying its behaviour near a1. Passing to the scaling

limit, we arrive at the result below.

Theorem 6.4. Define AΓ
Ω(a;u) as the following coefficient in the expansion of fΓ

[Ω;a;u] near the first

branching point a1:

fΓ
[Ω;a;u](z) =

1√
z − a1

+ 2AΓ
Ω(a;u)

√
z − a1 +O

(
|z − a1|3/2

)
.

This coefficient verifies the conformal covariance rule

AΓ
Ω(a;u) = ϕ′(a1) · Aϕ(Γ)

Ω′

(
ϕ(a);ϕ(u)

)
+

1

8

ϕ′′(a1)

ϕ′(a1)

for any conformal mapping ϕ : Ω→ Ω′. In addition,

lim
δ→0

1

2δ

(
EΓ,+

Ωδ
[σa1+2δσa2

· · ·σan ]

EΓ,+
Ωδ

[σa1
σa2
· · ·σan ]

− 1

)
= <

(
AΓ

Ω(a;u)
)

lim
δ→0

1

2δ

(
EΓ,+

Ωδ
[σa1+2iδσa2

· · ·σan ]

EΓ,+
Ωδ

[σa1σa2 · · ·σan ]
− 1

)
= −=

(
AΓ

Ω(a;u)
)

with the respective values computed on the Ising models at the critical temperature, with + boundary

conditions and with disorder lines Γ on graphs defined on Ωδ.
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