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ABSTRACT
Intel OptaneTM DC Persistent Memory (DCPMM) is an emergent
non-volatile memory (NVM) technology that is promising due to its
byte-addressability, high density, and similar performance to DRAM.
Hybrid DRAM and DCPMM architectures have the potential to
improve applications by enabling them to place and directly access
a larger working set in fast memory, and thus reduce the need of
evicting data to slow block-based storage.

In order to reap the potential benefits of DCPMM integration, the
underlying data placement algorithm must consider the disparity
between access latency and bandwidth offered by both memory
tiers in order to define an optimal strategy. However, due to the
limited availability of commodity large-scale NVM, prior work on
dynamic data placement in these architectures results from trace
or simulation-driven experiments which are inherently inaccurate.

We propose Ambix, a dynamic page placement algorithm that is
designed for and tested on a real system equipped with a DRAM-
DCPMMmemory configuration. We extensively discuss how differ-
ent memory policies and distributions affect throughput and energy
consumption in this system, leveraging the conclusions to guide
Ambix ’s design. We show that Ambix has an up to 10x speedup
in HPC-dedicated benchmarks, compared to the default memory
policy in Linux.
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1 INTRODUCTION
The emergent workloads of tomorrow’s Exascale systems will most
likely be characterized by a high degree of data complexity and
parallelism, as well as a growing demand for increased memory
capacity [1]. However, scaling up memory capacity in order to meet
these workloads’ requirements incurs multiple challenges – from
power limitations and cooling, to area constraints and cost [2].

Non-volatilememory (NVM) is an emerging class ofmemory that
has the potential to mitigate these issues [3]. It is byte-addressable
and has read/write latencies in the nanosecond range. Compared
to DRAM, NVM is denser while being cheaper per GB.

Intel recently made commercially available a byte-addressable
NVM named Intel’s Optane Data Center Persistent MemoryModule
(DCPMM), based on 3D XPoint non-volatile memory technology.
Compared to contemporary block-based non-volatile memory tech-
nologies, DCPMM significantly narrows down the performance
gap to volatile memory, while improving in terms of density and
endurance [4, 5]. DCPM modules are up to 4x denser than DRAM,

ranging from 128 to 512GB, and are compatible with DDR4 DIMM
slots.

Integrating DCPMM comes as an interesting proposition for
large-scale workloads, especially at Exascale-level, where process-
ing power is often times underutilized due to memory- or I/O-
related bottlenecks [5]. In workloads that require more memory
than what is available per core, the additional capacity of the NVM
tier can be leveraged in order to place a larger subset of the work-
load local to the running threads, and thus resort to fewer remote
nodes.

In DCPMM-equipped systems, DCPMMs coexist with DRAM
DIMMs. This constitutes a hybrid DRAM-NVM memory architec-
ture. The DRAM-based nodes have better read and write through-
put and latency, but suffer from limited capacity. In contrast, the
DCPMM-based nodes offer worse performance than DRAM, espe-
cially for writes, but benefit from an increased density, granting
ample memory resources. This duality raises the problem of where
to place data objects. Allocating data to the appropriate memory
tier, taking into account the performance differences between both
tiers, becomes a decisive challenge to the effective scalability of
Exascale applications [5].

The commercial availability of DCPMM constitutes a notable op-
portunity to revisit previously proposed techniques for data place-
ment in hybrid DRAM-NVM systems and to devise new imple-
mentations that are tailored to the idiosyncrasies of the real NVM
hardware. In this paper, we explore such path to propose Ambix,
a dynamic page placement for off-the-shelf Linux-based systems
equipped with DCPMM.

As a first contribution, we start by empirically studying some
fundamental performance properties of DCPMM that are relevant
to the design of dynamic page placement solutions. This allows
us to reach a set of design guidelines, from which we then build
Ambix. It is worth noting that our observations invalidate some
key design choices of several previous proposals in literature.

As a second contribution, we leverage the guidelines to design
and implement Ambix as a complement to the existing Linux page
management mechanisms. In a nutshell, Ambix considers the dis-
parity in performance between DRAM and DCPMM, and decides
new page distributions that ultimately lead to a higher application
throughput and lower energy consumption.

As a third contribution, we evaluate Ambix, as well as rele-
vant page placement alternatives, with several benchmarks from the
NAS Parallel Benchmark (NPB) [6] suite. To the best of our knowl-
edge, this is the most comprehensive experimental evaluation of
dynamic page placement solutions on a real system equipped with
DCPMMmemory. We show that Ambix outperforms both solutions
proposed in past literature and placement options that are currently
available in off-the-shelf DCPMM-equipped Linux systems, with



an average speedup of 3.6x in large footprint workloads, reaching a
peak improvement of 10x, compared to the default memory policy
in Linux.

2 BACKGROUND
2.1 DCPMM internals
DCPMM is delivered as DIMMs that are compatible with DDR4 sock-
ets. The current capacity of DCPMM modules range from 128GB to
512GB, which represents up to a 4x increase in per-module capacity
compared to DDR4 DRAM. Currently, DCPMM modules can be
used with Intel’s Cascade Lake CPUs with large memory support,
either in single-socket or multi-socket machines.

In this setup, each CPU contains 2 integrated memory controllers
(iMC), each supporting up to 3 memory channels. Each iMC uses
the DDR-T protocol to communicate with DCPMM. Like DDR4,
DDR-T operates at cache-line granularity (usually 64B). Internally,
each DCPMM module caches 256B blocks (called XPLines), with an
associated prefetcher. This cache also serves as a write-combining
buffer for adjacent stores. Due to the granularity mismatch between
DDR4 and XPLines, random stores incur in costly read-modify-
write cycles. Similarly to SSDs, DCPMM uses logical addressing for
minimizing wear-leveling, leveraging an internal address indirec-
tion table.

Current systems with DCPMM have hybrid memory architec-
tures, where different DIMM configurations are possible, with vary-
ing DRAM-DCPMM capacity ratios, with the restriction that each
iMC needs to be populated with at least one DRAM module. In
multi-socket machines, the multiple hybrid DRAM-DCPMM mem-
ory systems (at each socket) are interconnected in a cache-coherent
non-uniform memory access (ccNUMA) architecture.

2.2 DCPMM operation modes
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Figure 1: Architecture inside a socket
DCPMM can be configured in two different modes: App Direct

Mode (ADM), and Memory Mode (MemM), which are illustrated in
Figure 1.

In the MemM configuration, the DCPMM at each socket is trans-
parently accessible to the operating system (OS) as a single memory
node, whose capacity is the same as the total DCPMM capacity
installed in the socket. The socket’s DRAM is configured as an
internal last-level cache, which interposes every access to the local
DCPMM memory node.

When DCPMM is configured in ADM, both DRAM and DCPMM
are directly exposed to the OS as two distinct memory nodes (at each
socket). Each one can be directly accessed through load and store
operations. Therefore, the OS has access to a larger aggregate main
memory capacity, since the DRAM capacity is no longer hidden
as a cache, and each access needs to be directed at one of the two
types of memory.

2.3 Exposing DCPMM to applications
When MemM is used, the OS sees only one memory node per
socket, as in a traditional DRAM-based NUMA system. Therefore,
the standard NUMA-aware memory management mechanisms of
modern OSes can still be used.

For instance, Linux prioritizes the allocation of new pages to
the NUMA node (i.e., the socket’s MemM node) that is local to the
thread that first-touched the page. If that node is full, Linux falls
back to allocating the new page to a remote NUMA node, trying to
choose the one that minimizes the NUMA distance (according to the
underlying NUMA interconnect topology). Additional allocation
policies are provided through the numactl CLI, e.g., to interleave
pages across NUMA nodes in a round-robin fashion . Once a page is
allocated to a given NUMA node, it may be paged out to secondary
storage if that node is occupied beyond a given threshold. The
pages to evict from main memory are selected by a standard page
replacement mechanism (e.g., LRU-based implementation in most
Linux systems).

Linux also supports the Automatic NUMA balancer (AutoNUMA)
[7], which is enabled by default. AutoNUMA dynamically allocates
thread and pages across a NUMA system with the goal of maximiz-
ing locality, i.e., ensuring that threads and the pages they access
are placed on the same socket.

When DCPMM is configured in ADM, the OS now views two
distinct physical memory nodes at each socket. Starting with Linux
v4.0, the plain NUMA model was extended to support hybrid mem-
ory subsystems in each socket. When used on a multi-socket ma-
chine with DCPMM configured in ADM, each socket comprises
two logical NUMA memory nodes with differing characteristics.
At each socket, the DRAM node is given priority when allocating
pages accessed by local threads. When such preferential node is
full, the DCPMM node is then chosen to allocate additional pages
in that socket.

3 TAILORING PAGE PLACEMENT TO THE
IDIOSYNCRASIES OF DCPMM

This section provides multiple insights on how pages should be dis-
tributed in DRAM-DCPMM systems. We leverage these conclusions
in order to guide Ambix’s design and implementation.

We answer two main questions:
• When a workload saturates DRAM bandwidth, is there any
benefit in allocating a subset of pages in DCPMM? If so, what
is the optimal distribution ratio for different workloads?

• Which page placement strategy provides the best possible
throughput and lowest energy consumption, at different
workload sizes?

In order to answer each question, we devise two benchmarks,
which we describe next.
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3.1 Experimental Methodology
We populate a socket with a total of 32GB of DRAM and 256GB of
DCPMM, in a 1-1 configuration (i.e., each memory channel contains
a single DRAM and DCPMM DIMMs), where only 2 out of the 3
available memory channels are used. The configured CPU is an
Intel® Xeon® Gold 5218 CPU, running at 2.30GHz, with 16 physical
cores (32 threads).

Due to idle system resources, DRAM utilization is limited to
27GB, or ∼0.84x its effective size, in the benchmarks we run.

Both benchmarks generate multi-threaded workloads that al-
locate a test array, and then iterate sequentially over each of the
array’s pages for a fixed runtime, after which they output the num-
ber of accesses performed to the array per second (throughput).
The test array is parametrized to always have a large enough num-
ber of pages, i.e., size, causing each entry’s reuse distance to be
much larger than the LLC size. This leads to an accessed entry
being evicted from the cache before accessed again in the next
iteration, therefore maximizing the percentage of memory accesses.
Similarly, when a test array entry is modified, it is cached (load)
and eventually written back (store), without accesses in between.
Therefore, write-only workloads are one read one write (1R1W), and
two accesses are counted when an array entry is modified.

Since we intend to study page placement between memory tiers,
we isolate the benchmarks to a single NUMA socket. Besides mea-
suring throughput, we also leverage perf, in order to collect memory
energy consumption of the timed portion of the workload (without
the allocation phase).

We assume that cold pages should never be prioritized in DRAM
over intensive pages, and therefore do not factor them in the de-
vised benchmarks. This assumption is consistent with the design
of current page or cache replacement algorithms for DRAM-only
architectures, in which cold pages are evicted first.

3.2 Page Distribution Study
In order to study the throughput effect of distributing pages over
the DRAM and DCPMM tiers, with and without DRAM bandwidth
saturation, we devise the Interleave Weighted Benchmark (IWB).
IWB tests if and by how much a workload’s throughput can be
increased by distributing pages between memory tiers when band-
width saturation is detected.

The benchmark allocates a 24GB array of fixed size, which fully
fits in DRAM. It is parameterized with a varying number of threads
(1-32), and page distribution, from all pages in DCPMM to all pages
in DRAM.

We benchmark two workloads: (i) Read-only (RO); and (ii) Write-
only (WO).

Figure 2: IWB Throughput Heat Map. Read-only Workload.

In Figures 2 and 3 we present two throughput heat maps from
the RO and WO parametrizations of IWB, respectively.

Figure 3: IWB Throughput Heat Map. Write-only workload.
Each cell displays the average throughput, in million accesses per

second, of a given page distribution and memory access demand,
represented by the percentage of pages allocated in DRAM and
number of running threads, respectively. The cells are colored in
a red to green gradient, where the green cells have the highest
possible throughput in a given thread configuration (column-wise).
In both heat maps, we highlight the best page distribution for a
given access demand with thicker borders, i.e., the greenest cells.

By design, IWB has a sequential access pattern, where all pages
have an identical access frequency. Therefore, the page distribu-
tion also represents the distribution of accesses for any given
parametrization.

In the read-only workload throughput heat map (Figure 2), we
observe both DRAM and DCPMM saturation at around 8 threads.
Before this point, allocating all pages in DRAM grants the best
possible throughput. At 8 threads, the optimal throughput-wise
distribution shifts towards 95%, and subsequently stabilizes around
the 80% range when we further increase memory demand. In this
workload, the 32 thread configuration observes a 27% increase in
throughput when 20% of pages are allocated in DCPMM (80%),
compared to all pages in DRAM (100%).

In the write-only workload throughput heat map (Figure 3),
the same saturation point is observed for DRAM, but DCPMM
is saturated earlier, at 4 threads. In this case, we see the optimal
throughput-wise distribution stabilize at 90% after DRAM is sat-
urated. However, the observed throughput gain in the 32 thread
configuration is much smaller, with only a 5% increase in the 90% vs.
100% distributions. We attribute this smaller throughput difference
to DCPMM’s lower write throughput.

By comparing throughput in the 0% and 100% distributions after
each tier is saturated, we can also observe DCPMM’s read/write
asymmetry, compared to DRAM. In the all pages in DCPMM sce-
narios (0%), at 8-32 threads, throughput is 62% lower on average
in the write-intensive workload compared to the read-only one. In
comparison, the all pages in DRAM (100%) throughput drops by
only 15%. We find that these results are expected, as they confirm
prior studies on DCPMM’s performance [4, 5].

3.3 Placement Strategy Study
The previous study assumed data sets with uniform access patterns,
and tested workloads with either all read- or write-dominated pages.
However, workloads frequently allocate pages which differ in read-
and write-dominance. In this scenario, if the working set is unable
to fully fit in DRAM, some pages must be placed in DCPMM.

In order to study which pages benefit the most out of being
allocated in DRAM, we devise a policy benchmark (PB) which tests
different memory policies at varying array sizes, from workloads
that fully fit in DRAM, to workloads that are more than twice
as large. For simplicity of presentation, PB does not consider the
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Figure 4: PB plot. 2R1W, 32 threads
optimal BW-aware ratios defined in IWB, and instead focuses on
memory capacity as a trigger for page placement.

PB allocates an array with two equally sized and intensive read-
and write-dominated portions. We assume the write-heavy portion
to be 1R1W, and the read-intensive one to be 1R. Therefore, PB
generates 2R1W workloads.

The benchmark is parameterized to allocate the array follow-
ing one out of four defined memory policies: (i) Write first-touch
(WrFT): Allocates as many pages as possible in DRAM, initializ-
ing the write-intensive segment first; (ii) Read first-touch (RdFT):
Similar to (i), but prioritizes read-intensive pages in DRAM (iii)
Interleave: Follows the default interleave policy, which performs
round-robin allocations between both DRAM and DCPMM nodes,
leading to an even page distribution; (iv) DCPMM: Limits allocation
to the DCPMM tier.

We parameterize PB with different array sizes, ranging from
0.5x-2.5x DRAM size, for each policy. A PB run launches 32 threads,
which fully utilize the local CPU’s available cores.

In Figure 4 we see multiple parameterizations of PB, with the
four aforementioned memory policies, at different workload sizes.
The bars represent throughput, in million page accesses per second,
and are represented by the left axis. The lines present the per-
access energy consumption, in Joules per million accesses, and
are associated to the right axis. The horizontal axis indicates the
workload size in comparison to DRAM size (recall that DRAM has
around 84% effective capacity due to idle system resources).

The interleave and DCPMM policies serve as a baseline for the
WrFT and RdFT policies, where the interleave policy places both
read and write intensive portions evenly, and the DCPMM policy
defines the worst throughput and energy efficiency values at each
workload size.

As expected, the DCPMM policy throughput and energy con-
sumption results are constant in all workload sizes. The same is
true for the interleave policy up to the 1.5x DRAM (1.5x) workload
size. However, in the 2x and 2.5x scenarios, the interleave policy
depletes DRAM space and therefore allocates a larger percentage
of pages in DCPMM, which negatively impacts both throughput
and energy efficiency.

In the 0.5x, and 0.75x workloads, the full test array fits in DRAM.
Since the WrFT and RdFT policies prioritize DRAM allocation, they
place the full array in DRAM, and thus output the same throughput
and energy efficiency results. At 1x, the test array is larger than the
available DRAM capacity, and we see a 68% throughput drop and a
177% increased energy consumption per access in the RdFT policy.
In contrast, the WrFT policy remains performant until the 2x size
workload, at which point the policy places as many pages from the
write-intensive portion as the RdFT policy in the 1x workload. Both
cases exhibit identical throughput and energy consumption even
though the workload is twice as big in the WrFT case.

The 1.5x workload showcases the scenario where the RdFT and
WrFT policies fully allocate each array portion to opposite tiers. In
this parameterization, the WrFT policy’s throughput is around 5x
higher than the RdFT one, which indicates a 5x benefit in prioritiz-
ing a write-dominated over a read-dominated page in DRAM.

Overall, prioritizing write-intensive page allocation in DRAM
leads to the best throughput and energy efficiency values at every
workload size. If the workload is twice as large as DRAM’s effective
capacity, the interleave policy comes as a second best out of the four.
Otherwise, any other policywhich prioritizes DRAMallocation over
an even page distribution, such as RdFT, grants higher performance.

3.4 Insights
From both IWB and PB we can draw two main guidelines which we
will leverage to steer page placement in DRAM-DCPMM systems:

• Prioritize DRAM Allocation: Before DRAM capacity is
full, every accessed page should be placed in DRAM.

• Asymmetry-aware Migration: When DRAM is at capac-
ity, cold pages should be prioritized and, if still needed, read-
intensive pages. Similarly, if write-intensive pages are de-
tected in DCPMM, these pages should be promoted to DRAM,
and exchanged with cold or read-intensive pages, if needed.

IWB additionally shows that, when DRAM bandwidth is satu-
rated, the optimal throughput-wise access distribution lies some-
where between 80 and 90%. We find that these results prove that
a bandwidth-aware component is superfluous in a dynamic HMA-
aware placement algorithm due to two main reasons.

Firstly, the main use case for a DRAM-DCPMM HMA is to allow
the system to run larger footprint workloads without resorting to
remote memory or data eviction. Even in a very read-intensive
workload, where the ideal throughput-wise distribution would be
around 80% in favor of DRAM, the working set would have to
be lower than 1.25x DRAM size in order for this distribution to
be possible. Conversely, at smaller or identical workload sizes, a
DRAM-only configuration would be able to fit the full workload
in two DRAM DIMMs, while still having at least 0.75x free space
in the second DIMM, or 37.5% in both, assuming an unweighted
interleave distribution.

Secondly, while IWB assumes a sequential-like access pattern
where pages are equally intensive, common workloads have the
added complexity of accessing some pages more frequently than
others, with some being more read- or write-dominated. Moreover,
it is also common for a workload’s access pattern to change, leading
to some pages which were (i) intensive, or (a) write-dominated; be-
coming (ii) colder or (b) read-dominated, and vice versa. However,
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as dynamic solutions do not profile the workload a priori, the access
pattern is not well known, and therefore the appropriate balance
should be found via adaptive methods. Such a balancing mecha-
nism would likely be implemented on a trial and error approach,
which requires both: (i) the access pattern to remain stable after a
migration, in order to correctly associate the resultant throughput
difference to the migration; and (ii) the future access pattern of the
workload to compensate the migration cost.

Combining both motives, we find that the complexity added
by implementing a bandwidth-aware approach would seldom be
beneficial in systems which integrate DCPMM. Therefore, we will
design Ambix without a bandwidth-aware component.

4 AMBIX
Ambix manages page placement within a socket with a DRAM and
ADM DCPMM tiers, illustrated in Figure 1a. Our solution requires
minimal changes to the Linux kernel, and expands existing page
placement mechanisms in order to accommodate the integration
of DCPMM. Ambix leverages: (i) existing page walking mecha-
nisms, (ii) the page table’s dirty and reference bits, managed by the
memory management unit (MMU), (iii) the move_pages syscall in
order to migrate pages between tiers, and (iv) Processor Counter
Monitor (PCMon) [8], which allows us to determine the bandwidth
usage of each of the memories with hardware counters available in
most modern Intel CPUs. Ambix combines the collected page and
bandwidth metrics at runtime in order to perform page placement
decisions that take advantage of each tier’s characteristics, and ulti-
mately improve throughput by several times compared to a default
allocation policy.

Following the insights provided in Section 3, Ambix separates
pages into three different categories: write-intensive, read-intensive
and cold. The algorithm keeps as many write-intensive pages as
possible in DRAM. If these do not fully occupy DRAM, Ambix
prefers read-intensive pages over cold pages in the faster tier.
Ambix periodically determines the suitability of a current page
distribution, following three main criteria:

• DRAM has enough free space to allow newly referenced
pages to fit in the faster tier. These pages are expected to
be accessed frequently after allocated, due to the temporal
locality principle. Thus, Ambix maintains a defined buffer of
free space in DRAM by demoting pages eagerly, before it is
depleted.

• DCPMM’s write throughput is nominal, indicating that the
tier does not contain a significant amount of frequently mod-
ified pages.

• If DRAM is at capacity but the DCPMM’s write threshold is
substantial, no pages can be exchanged between both tiers,
such that the threshold is reduced.

If Ambix finds the current distribution to be suboptimal based
on these criteria, it devises a new placement decision that corrects
the current distribution, migrating a subset of pages in a given
orientation.

In order to select which pages to migrate, Ambix leverages un-
modified page table walk (pagewalk) and PTE bit manipulation
mechanisms, implemented in the Linux kernel. These mechanisms
have a relatively stable implementation, which benefits Ambix by

making it compatible with a wide range of kernel versions. Further-
more, configuring Ambix on a new kernel version requires only a
single line of code, which exports the pagewalk routine, making it
available to our solution.

In demotion scenarios, we apply concepts from the traditional
CLOCK algorithm, modified to separate intensive pages into read-
and write-dominated. Page promotion, on the other hand, applies a
novel delay mechanism, which allows Ambix to identify recently
accessed and modified pages in the DCPMM tier with low overhead.

Ambix also implements an exchange-based migration technique,
using only pre-existing system calls, wherein an equal number of
pages are switched between both tiers, thus preserving their current
allocation.

In order to monitor multiple sockets, different instances of Am-
bix must be launched, each targeting a single socket. For simplicity
of presentation, the following sections assume a single-socket sce-
nario, where only one instance of Ambix runs.

4.1 Architecture

Ambix Control

  User Application

bind/unbind

bind/ 
unbind

PCMon

send 
pages

request 
pages

read BW info

write BW info

Kernel Space

User Space

Bandwidth File

page 
walk

Ambix
API

Linux KernelAmbix SelMo

Figure 5: Ambix Architecture Overview

Figure 5 provides an overview of Ambix, presenting its compo-
nents and how they interact. Our solution consists of two main
components: Control and the Page Selection Module (SelMo).

Control is an elevated process running in user-space, which is
responsible for formulating and putting into effect new placement
decisions. In order to formulate new decisions, the component lever-
ages Processor Counter Monitor (PCMon) [8], which periodically
outputs the current throughput per node to a shared text file.

To use kernel-implemented mechanisms, Ambix integrates a
kernel-space module, named SelMo. The module selects pages be-
longing to bound processes, in order to carry out Control’s deci-
sions.

Control is Ambix’s entry point, being responsible for binding
and unbinding applications to our solution. Although Ambix pro-
vides specific APIs for binding/unbinding user applications written
in C, C++, or Fortran, it supports virtually any target binary using
alternative methods, such as user input via Control or a provided
C wrapper.

The dual-component implementation achieves a small footprint
within the kernel, since all mechanisms related to devising and
effectuating new placement decisions are offloaded to the user-
space component.
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Mode Tier Scope Goal

DEMOTE DRAM Demote cold pages
PROMOTE DCPMM Promote pages

PROMOTE_INT DCPMM Promote only intensive pages
SWITCH Bidirectional Switch intensive with cold pages

DCPMM_CLEAR DCPMM Clear the R/D bits from all resident pages

Table 1: PageFindModes and Goal.

4.2 Implementation
SelMo is the first component launched in Ambix, and waits a bind
request from Control. When Control binds itself, it starts to mon-
itor memory usage metrics and accept bind requests from external
processes. When a process binds itself to Ambix, it communicates
with Control, which then forwards the request to SelMo with the
process’ PID. At this point, future placement decisions affect the
bound process’ page distribution within the socket. A process may
also decide to, prematurely or at the end of its execution, unbind
itself.

Ambix avoids direct communication between a user application
and SelMo. Instead, it performs a sanity check in user-space, before
forwarding the request to kernel space.

4.2.1 Control. Control periodically monitors current memory us-
age and throughput values per NUMA node. The node IDs specific
to a socket’s DRAM and DCPMM tiers are statically defined in a
header file, imported by both of Ambix’s components. In order to
get the current memory allocation of each tier, the component lever-
ages the libnuma library [9], which provides per-node statistics on
total node size and utilization. It is also able to detect the presence
of write-intensive pages in DCPMM, without communicating with
SelMo, by reading the information file generated by PCMon.

Depending on the collectedmetrics, Control devises a new place-
ment decision and sends a PageFind request to SelMo. The request
contains the number of pages to find and specifies the selection
criteria, or mode.

In Table 1 we summarize the multiple modes, describing the tier
from which they select pages, and their respective goals.

By design, DRAM has a defined maximum usage threshold below
its actual size. Above the threshold, Ambix considers that the tier
is full or near to depletion. The resulting buffer should be large
enough to allow newly referenced pages to fit in the faster tier,
while not provoking Ambix to demote pages too eagerly, which
could adversely impact the bound processes’ throughput.

Similarly, DCPMM has a defined write throughput threshold.
If DCPMM’s current throughput is above the defined threshold,
Control requests intensive pages and promotes them to DRAM. If
DRAM is above its usage threshold, an equal number of pages must
be demoted, such that the free space buffer is preserved. Therefore,
SWITCH PageFind is sent to the module. Otherwise, it tries to max-
imize the faster tier’s utilization, by promoting as many intensive
pages as possible such that the usage threshold is not surpassed, by
requesting a PROMOTE_INT PageFind.

Inversely, if the DCPMM’s throughput is below its threshold,
two decisions can be performed. If DRAM has enough available
space, Control allows cold pages to be eagerly promoted, via
a PROMOTE PageFind. Otherwise, if DRAM is near depletion, a
DEMOTE PageFind is requested, such that cold pages are demoted.

Before sending any PageFind request that will promote pages,
Control requests SelMo to clear the R/D bits of all PTEs pointing

to pages in the DCPMM tier, via the DCPMM_CLEAR PageFind, after
which it waits for a configurable delay.

Delay affects the access frequency at which a page is considered
intensive. Pages that are accessed or modified during the delay
interval are considered read- or write-intensive, while all others
are classified as cold. A shorter delay leads to the promotion of
only a smaller subset of frequently accessed pages, while with a
more relaxed delay, a wider range of pages can be selected.

If, after a PageFind request, SelMo sends back a non-empty array
of selected pages, Control migrates them to their new tier. This is
achieved with the move_pages() syscall, which is implemented
and made available by the kernel.

4.2.2 SelMo. SelMo iterates over each bound process’ page table,
in order to select which pages Control should migrate in a given
direction, based on the PageFind request’s goal.

The module stores the bound processes’ information in an array
of task_struct structures, which are defined and maintained by
the Linux kernel. The structure contains the PID of a process and a
pointer that allows access to its page table, among other information.
When a process ends, its task_struct is freed. Before any request
SelMo updates the array, removing all entries from processes that
are no longer running from it.

The module leverages the kernel-implemented
walk_page_range() routine, which iterates over a defined
virtual address range.

SelMo passes a PTE callback as an argument to the routine, so
that it can observe and manipulate each PTE’s R/D bits. The call-
back is invoked whenever a non-empty PTE is found. Through the
callback, the module is also able to obtain the NUMA node where
the associated page frame resides and its virtual address. Since we
want to perform different operations depending on the goal of the
PageFind request, we define multiple callbacks, one for each mode.

There are three groups of pages in all callbacks (except
DCPMM_CLEAR, which simply has R/D bits cleared):

• Priority: The priority group contains the best candidate pages
that fulfill the PageFind request criteria. Pages placed in this
group are sent back to Control.

• Backup: The backup group contains pages that meet the
selection criteria, although are worse suited than those in
the priority group. Backup pages may be sent to Control
if the priority pages fail to meet the number of requested
pages.

• Retain: The last group contains pages that the algorithm
decides to retain in their current memory tier, since they fail
to meet the selection criteria.

We decided to minimize page classification overhead as much
as possible, relying only on the binary nature of a PTE’s R/D bits,
and its MMU-managed implementation to classify a page. An al-
ternative would be to devise a more costly weight- or age-based
algorithm, which would need to rely on PTE unmapping or similar
mechanism as to induce minor page faults in order to quantify the
access frequency of a page.

If the callback’s goal is to demote pages, then it clears the R/D
bits of all pages that are not in the priority group. If one such page
is referenced thereafter, the memory management unit (MMU) sets
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its PTE’s reference bit; and also its modified bit, in the event of a
store operation. In contrast, if the page is not accessed until the
next page table iteration, then it is suitable for demotion.

If, on the other hand, the callback’s goal is to promote pages,
then PTEs are expected to have both their R/D bits unset, since
they have been recently cleared by the module. In this scenario,
the MMU may change the PTE’s R/D bits, so that the respective
page is suitable for promotion over a next page table iteration.
Therefore, promotion callbacks do not directly manipulate R/D bits.
Instead, the algorithm deems a page in the DCPMM intensive if
only referenced during the delay window, and write-intensive if
modified.

Pages in the priority or backup groups are placed into two arrays.
The arrays store entries that contain the virtual address and PID of
a page, both of which are required by Control in order to migrate
the page.

When: (i) the number of priority pages exceeds the required
amount set in the request; or (ii) the process has iterated over all
PTEs, the page selection phase ends. At this point, the last PTE’s
address and PID is stored and the page selection phase ends. For
each tier, the module keeps two last address and PID pairs, which
set the start of the next page selection phase for that tier. Thus,
PTEs that have not been inspected for longer are prioritized for
migration over recently seen ones.

Then, a reply-back phase begins, which prepares a final page
array to be sent back to Control, initially containing all pages in
the priority group. In the latter scenario, the module was unable to
find a sufficient number of pages that meet the priority criteria. In
this case, the module proceeds to add the remaining entries from the
backup array to the final array. If the pages from the backup array
still fail to meet the demanded value, the module sends an array
with less than the requested entries back to user-space, consisting
of all priority and backup pages.
Algorithm 1: DEMOTE Callback
global_input :curr_pid, pages_array, bak_pages_array, pages_found,

bak_pages_found, pages_to_find, last_addr_dram
input :pte, address

1 if pages_found = pages_to_find then
2 last_addr_dram := address ;
3 return 1 ; // end pagewalk

4 if !pte_present(pte) or !pte_write(pte) or pfn_to_nid(pte_to_pfn(pte)) != DRAM
then

// pte not present, write protected, or not in DRAM

5 return 0 ; // continue pagewalk

6 if !pte_young(pte) then
7 put address and curr_pid in pages_array;
8 increment pages_found;
9 return 0;

10 if !pte_dirty(pte) and bak_pages_found < (pages_to_find − pages_found) then
11 put address and curr_pid in bak_pages_array;
12 increment bak_pages_found;
13 old_pte := ptep_modify_prot_start(..., pte);

// clear R bit

14 old_pte := pte_mkold(old_pte);
// clear dirty (D) bit

15 old_pte := pte_mkclean(old_pte);
16 ptep_modify_prot_commit(..., old_pte, pte);
17 return 0;

In Algorithm 1, we present the callback associated to a DEMOTE
PageFind. Its goal is to find cold, or, as a backup, read-intensive
pages from the faster tier.

Page classification is achieved by using the pte_young() and
pte_dirty() functions, defined in the Linux kernel, which indi-
cate if a PTE has its R, and D bits set, respectively.

In order to find the NUMA node in which the PTE’s page is allo-
cated, two kernel functions are used. Firstly, the PTE is converted
to a page frame number (PFN), via the pte_to_pfn() function.
Then, the pfn_to_nid() function outputs the node ID where the
page frame resides.

Every observed page that does not meet the priority array cri-
teria has its PTE’s R/D bits cleared by the callback. In order to
achieve this, a temporary copy of the original PTE is created. Then,
its bits are cleared with the pte_mkold() and pte_mkclean()

routines. Finally, the temporary PTE is written over the original
one, effectively changing its R/D bit information while keeping all
other fields intact.

When a PROMOTE PageFind is requested, the module selects
pages to promote to a faster tier. The callback selects any page
from DCPMM, with an emphasis on read- and write-intensive
pages, which are placed in the priority array. In this callback, read-
intensive pages are attributed the same priority as cold pages, as
the main goal of the operation is to maximize space utilization in
DRAM. Similarly to the DEMOTE callback, all pages that do not meet
the priority criteria have their referenced and modified bits cleared.

In scenarios where DRAM space is scarce, Control sends a
PROMOTE_INT PageFind instead, which is associated with a call-
back where only write or read-intensive pages are selected for
promotion.

The SWITCH PageFind differs from the previous variants, as the
module is requested to find N pages to swap between both tiers. In
this mode, we perform two page table iterations, starting with the
slower tier, associated with the PROMOTE_INT callback. The module
then looks for the same number of pages found in the faster tier.
In this case, SelMo uses the DEMOTE callback. After both iterations,
SelMo reconstructs the page array, such that the number of pages
selected from each tier are equal. Moreover, the backup pages from a
tier are only added to the array if it is matched with a page that is in
the priority array of the other tier. Hence, Ambix avoids switching
equally intensive pages. At this point, a separator is also added to
the middle of the array, indicating Control to reverse the migration
orientation for the subsequent pages.

When the module receives an DCPMM_CLEAR PageFind request
from Control, it performs a pagewalk with a callback that clears the
R/D bits from the PTEs associated to the pages allocated in DCPMM.
In this mode, no pages are selected or sent back to Control. The
callback precedes a PageFind operation in DCPMM, and is used
to tune the frequency at which a page is considered write or read-
intensive.

5 EVALUATION
In this chapter, we present the experimental results we obtained
while evaluating Ambix. We start by enumerating our evaluation’s
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goals, then specify our experimental setup, baseline, and chosen
workloads. Finally, we introduce and discuss the attained results.

5.1 Goals
Our main goal is to understand how Ambix performs in workloads
with different characteristics, and comparing it against: (i) HMA-
aware dynamic placement solutions proposed in past literature,
and (ii) placement options that are currently available in off-the-
shelf DCPMM-equipped Linux systems. We will explore how a
workload’s throughput is affected in each configuration, compar-
ing workloads with varying read/write ratios, locality, and access
patterns.

In (i), we choose Intel’s AutoNUMA patch [10] and Memos [11],
as we believe that these solutions are closest to the state of the
art in dynamic placement, and present mechanisms that could be
implemented with existing hardware.

In (ii), we consider: (a) DRAMandADMDCPMMwith the default
node local NUMA policy, without any dynamic placement solution
applied; and (b) MemM DCPMM.1. The former represents a two-
tiered configuration with no tier migration, and the latter provides
a hardware-managed caching algorithm, which dynamically places
and evicts intensive data to and from DRAM.

Additionally, our evaluation aims at addressing the following ques-
tions:

• What is the overhead of each solution when the workload
does not benefit from having having its pages distributed,
such as in workloads with low footprint or that present a
near-uniform access pattern.

• How effective Ambix is in maximizing the percentage of
total and write accesses to DRAM.

5.2 Experimental Setup
5.2.1 Hardware Configuration. The hardware configuration is iden-
tical to the one described in Section 3

5.2.2 OS Configuration. All experiments except those with the
AutoNUMA patch run on the v5.8.5 kernel.

We reconfigure some of the kernel’s components in order to
focus our efforts on the study of DRAM-DCPMM interaction. We
choose to disable AutoNUMA balancing, and set the swappinness
value to 0.

We run experiments with the AutoNUMA patch on a separate
kernel (v5.5), since the patch makes extensive and fundamental
changes to Linux’s memorymanagement subsystem. For this kernel,
we leave the AutoNUMA balancing and swappinness values to their
default values. This is an essential step, since otherwise AutoNUMA
would not perform any migrations.

In all workloads we run, we limit CPU utilization to a single
socket, via the numactl CLI, and also bind it to the DRAM and
DCPMM NUMA nodes within the CPU’s socket or simply to the
DCPMM node in the MemM scenario.

5.2.3 Ambix Configuration. As a prerequisite to using Ambix,
we patch the v5.8.5 with a single line of code to make the
walk_page_range() routine callable from kernel-level modules.

1We will abbreviate these configurations as ADM-default and MemM, respectively.

We assume that, as traditional in dynamic solutions, no informa-
tion about each bound workload is known before runtime. There-
fore, we configure Ambix identically for all workloads.

The used variables are defined as follows:
• Control’s periodicity, i.e., the frequency at which the it per-
forms new placement decisions, is set to 2 seconds.

• The DRAM target threshold variable is set to 0.95, therefore
keeping at least 5% free space in DRAM at all times, demoting
pages if needed.

• The clear mechanism delay, used before selecting DCPMM-
resident pages to promote, is set to 50ms.

• The Switch component is always activated, therefore having
no need to set a target threshold for DCPMM.

• DCPMM’s write throughput threshold, after which Control
reacts to the presence of write-intensive pages in DCPMM
is set to 50MB/s.

5.3 Baseline
This section presents further information about our chosen base-
lines. Ambix can be directly compared to the ADM-default, the
AutoNUMA patch, and Memos configurations, since we configured
DCPMM identically.We can also extract some insight on whether or
not the MemM configuration improves system performance when
compared to the former ADM-based page placement solutions and,
if so, rank it against the dynamic ones.

5.3.1 HMA-Aware Placement Solutions. Our solution is tested
against Intel’s AutoNUMA patch, which is the only publicly avail-
able dynamic page placement solution designed specifically for
systems that integrate DCPMM. The patch relies on an ADM con-
figuration, where both DRAM and DCPMM are directly accessible
and seen as NUMA nodes by the system.

We choose the tiering-0.4 version [12], which is the most up-to-
date documented version currently, based on the v5.5 kernel. We
configure the kernel and run the post boot setup as proposed in the
documentation, using the recommended settings for performance
experiments2.

Additionally, we incorporate Memos into the comparison, as it
presents a bandwidth-aware approach, which starts by initially plac-
ing every page in NVM.Memos proposes a full-fledged solution that
has other focuses besides page placement, such as bank imbalance,
alternative migration techniques, and an in-house TLB miss pro-
filer. We decided to implement a simplified version, strictly focusing
on the proposed placement algorithm, relying on the mechanisms
implemented in Ambix to classify pages 3.

5.3.2 Default Configurations. We benchmark dynamic placement
solutions against the ADM-default and MemM configurations. The
former will set the baseline for improvement, as it provides no
dynamic placement decisions, we expect it to perform best in work-
loads with low footprint, and enable us to compare the classifica-
tion and migration/caching overhead of the dynamic solutions and
MemM.

2This configuration will be referred to as autonuma.
3We will refer to this plain version as memos.
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We expect that the MemM configuration will be competitive
against HMA-aware algorithms in high locality and low footprint
scenarios, as it can cache a workload’s entire intensive working set
in DRAM, and therefore have comparable performance to HMA-
aware solutions. However, its performance should fall off in work-
loads with higher footprint or asymmetric data accesses, as it not
only does not distinguish write- and read-dominated pages, but also
always caches pages on accesses, which could lead to some thrash-
ing due to the promotion and soon-after demotion of sporadically-
accessed pages.

5.4 Workloads
In order to present a comprehensive assessment of all configu-
rations, we evaluate multiple workloads from the NAS Parallel
Benchmark (NPB) suite [6]. NPB provides benchmarks whichmimic
common access patterns in computational fluid dynamics applica-
tions, and was designed to evaluate the performance of parallel
supercomputers.

We choose the BT (3.5R:1W),FT (1.7R:1W), MG (4R:1W), and
CG (>60R:1W) benchmarks from the OpenMP[13] version of NPB
v3.4.1, which present a good balance between computational cost
andmemory bandwidth requirements, and have different read/write
intensity.

We directly modify the parametrizations the benchmarks’ source
code, in order to tailor it to our system’s memory capacity and avail-
able processing power. For each NPB benchmark, we evaluate small
(∼0.8x DRAM size), medium (∼1.5x) and large (∼3.5x) parametriza-
tions.

5.5 Evaluation
Figure 6 presents four graphs which contain the average through-
put of the BT (fig. 6a), FT (fig. 6b), MG (fig. 6c), and CG (fig. 6d)
benchmarks, each with three different parametrizations, ordered
by footprint. Furthermore, we introduce a fifth graph, which shows
the geometric mean of all four chosen benchmarks, called NPBAVG
(Figure 6e). In all graphs, the y axis represents throughput in million
operations per second (M Ops/s).

5.5.1 Small Workloads – Overhead Study. In the small data sets,
autonuma has an identical performance to ADM-default in the FT,
MG, and CG workloads, but presents a 60% lower throughput in
the BT workload, when compared to both.

We attribute this larger drop to the combination of two factors.
The AutoNUMA patch relies on a non-zero swappinness value, as it
is designed to extend the kswapd daemon in order to demote pages
to DCPMM. However, it does not make changes to how the page
selection mechanism is implemented, and thus fails to consider
asymmetry when choosing which pages to demote. This means
that the algorithm may end up choosing write-intensive pages to
migrate to DCPMM. When this happens: (i) the demoted page is
written to DCPMM; (ii) it may quickly trigger the patch’s fault-
based promotion mechanism, which is more relaxed when the page
fault is caused by a write access.

In contrast, the migration mechanism of Ambix not only keeps a
smaller 5% buffer in the faster tier, but also chooses to never demote
a page it considers write-intensive even if it fails to find a suitable
amount of cold ones. With this mechanism, Ambix is able to fully
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Figure 6: NPB Plots. Varying Workload Size, Single socket,
32 threads
mitigate writes and virtually every access to the DCPMM tier in
BT, as well as in all other small parametrizations.

On average, MemM performs better than autonuma and iden-
tically to ambix, in the small workloads (Figure 6e). Compared to
ADM-default,MemM has an average 1.4% throughput penalty in all
small workloads, reaching up to a 3% drop in the write-intensive
FT workload.

Although the hardware-based caching algorithm starts by plac-
ing every page in DCPMM, the full working set is eventually cached
in DRAM at first access, and therefore its performance only suffers
from the initial placement policy. Therefore, since the initialization
phase throughput is also measured in NPB’s report, but dominated
by the workload phase, we find the 1.4% overhead expected.

Similarly to the previous benchmarks, memos outputs the worst
possible throughput in the small parametrizations, with an average

9



82% lower throughput, compared to ADM-default, being best in the
very read-intensive CG benchmark, with still a large 62% drop.

5.5.2 Medium and Large Parametrizations. Compared to ADM-
default, in the medium data sets, the MemM, autonuma, and ambix
configurations have a speedup of 1.5x, 1.3x, and 2.7x on average,
while in the large parametrizations the speedup increases to 2.8x,
1.8x, and 4.4x, respectively.

Despite the fact that Ambix performed no better than the AutoN-
UMA patch in the high locality pmbench workloads past 128GB, we
observe that its placement mechanisms improve both throughput
and DRAM hit rate more than the AutoNUMA patch in the larger
parametrizations, despite only changing a single line of code in
the kernel, and processing most of the placement decisions in a
user-level process. In all medium and large workloads, ambix has an
average speedup of 3.6x, compared to autonuma’s 1.6x. Its benefit is
most noticeable in the BT workloads, where autonuma fails to im-
prove the ADM-default configuration, while ambix has an average
1.25x speedup. In the read-intensive CG workload, autonuma grants
better performance than ambix in the medium parametrization, but
falls off in the large one, with a 3x vs. 10x speedup compared to
ADM-default.

While in the smaller workloads, MemM is the third best non-
static solution, it performs better than autonuma in the majority
of medium and large workloads. However, ambix still surpasses it,
having a 25% higher average throughput, in the medium and large
parametrizations.

6 RELATEDWORK
Shortly after the first research papers started showcasing promising
breakthroughs with NVM technologies [14] – nearly a decade ago
–, many proposals for data placement on the upcoming hybrid
DRAM-NVM systems have been published. While some rely on
profiling and compile-time instrumentation [15–17], others propose
a transparent support by extending OS kernel’s page management
mechanisms to dynamically migrate an application’s pages to the
most appropriate tier [10, 11, 18–21]. Since commodity NVM was
not available at the time, the design of all such proposals is based on
speculative assumptions – not only about the performance of NVM,
but also about how NVM would be integrated into the hardware
architecture and supported by the OS. Furthermore, these proposals
were evaluated through inaccurate software-based emulation.

7 CONCLUSION
In this work, a dynamic page placement algorithm for DCPMM-
equipped systems was proposed and evaluated against other rele-
vant configurations, including two other proposed dynamic algo-
rithms for our architecture and the DCPMM’s hardware-based
caching implementation. Our evaluation included benchmarks
which test scalability, performance in sequential access patterns,
and expected potential in HPC applications, all of which tested com-
mon scenarios where a DRAM-DCPMM system could be beneficial
due to its increased memory capacity.

We described Ambix in detail, specifying critical implementation
decisions in its design. These decisions were justified from two
created benchmarks (IWB and PB), which tested the latency and
energy impact of different page distributions and placement policies.

Our discussion of these benchmarks not only helped justify Ambix’s
implementation, but also provides a relevant base for future work.
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