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Abstract

This work aims at evaluating surrogate based Multidisciplinary Design Optimization (MDO) strategies for
designing an Urban Air Mobility (UAM) Vertical Take-Off and Landing (VTOL) aircraft. During the conceptual
stages, it is important to have a vast exploration of the design space, using models for several disciplines that need
to be considered regarding the mission requirements. Surrogate models are a potentially good approach to rapidly
explore the design space. Therefore, in this work, a comparison between the results of a MDO using real functions
and the surrogate models of these functions is provided. Three major strategies for the aircraft optimization are
carried out: an optimization using the real, analytical functions and their derivatives with the adjoint method; a
surrogate-based optimization where surrogate models for both the objective function and constraints are built, using
the Surrogate Modeling Toolbox (SMT); and an optimization based on adaptive sampling and infill criteria such as
the Watson and Barnes criterion (WB2). To compare these MDO strategies, an energy minimization problem is
established for the VTOL aircraft as a case study in OpenMDAO, where aerodynamics and structures are modeled
using the low-fidelity models provided in the OpenAeroStruct (OAS) framework. Initially, only two design variables
are considered. Then, more design variables are added to the problem, and therefore increasing the complexity of the
optimization problem.
Keywords: Multidisciplinary design optimization, surrogate models, adaptive sampling, aircraft design, aerostruc-
tural design

1. Introduction

Over the last years, there has been a significant increase in
the research of Urban Air Mobility (UAM), with the num-
ber of applications also growing [1]. New problems have to
be solved in order to turn UAM into a reality, as the soci-
ety also demands a cleaner and more sustainable aviation,
capable of responding to the requisites of transportation
in urban scenarios. As these demands grow, the necessity
for developing tools that consider different requirements
from different disciplines also increases. Hence, Multi-
disciplinary Analysis and Optimization (MDAO) [2] is a
tool that can be very useful in early stages of designing a
new aircraft, where usually there is a great exploration
of possible concepts. Using MDAO allows a designer
to integrate multiple disciplines, for example aerodynam-
ics, structures, propulsion, emissions, performance, among
others, with the objective of considering the influence of a
discipline on the others, so that in the end, the obtained
solution is one that satisfies a compromise between all the
disciplines taken into account. As the complexity of the
problem increases, by the increment in disciplines consid-
ered, or the higher fidelity models used, the computational
burden of this optimization can become too demanding.

One possible approach to solve this problem is by the
use of surrogate models, that try to mimic the the real
functions [3].

This work aims at comparing three optimization strate-
gies, used to solve an aircraft design problem: (i) opti-
mization using the real functions with sensitivities com-

puted by means of the adjoint method; (ii) optimization
using the surrogate models of the previous functions; (iii)
optimization using adaptive sampling with the WB2 cri-
terion [4]. The aircraft design problem consists in mini-
mizing the energy consumption of a Vertical Take-Off and
Landing (VTOL) aircraft for UAM. The physical models
are defined using a low-fidelity tool, the OpenAeroStruct
(OAS) [5] and the optimization problem is defined using
the OpenMDAO framework [6]. The surrogate models are
built using the open-source Surrogate Modeling Toolbox
(SMT) [7].

2. Background
2.1. Surrogate models
A surrogate model is an approximation model that tries to
mimic the behaviour of the real model [3]. This model is
cheaper to evaluate than the original one. To build such
a model there are three main steps: (i) set a Design of
Experiments (DOE) to obtain a set of sample points, in
this case the Latin Hypercube Sampling (LHS) [3] is used,
and choose a modeling technique; (ii) evaluate the real
functions at the given points and train the model; (iii)
test and validate the surrogate model built. The chosen
model in this work is the Kriging model, which assumes
that a deterministic response can be estimated by ŷ(x) =
f(x) + Z(x), where f(x) is a regression model and Z(x)
is a random process [7]. The regression model used in
this work is assumed to be a constant unknown, µm(x).
A Gaussian process is used for the random part of the
Kriging model, with zero mean and a covariance defined
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by:
cov[Z(x), Z(x′)] = σ2R(x, x′) (1)

where x and x′ are two points in the design space, σ2 is the
process variance and R(x, x′) is the spatial correlation, i.e.
the kernel function. The most common kernel function,
and the one used on this work, is the squared exponential
kernel function, given by:

R(x, x′) =

d∑
l=1

exp(−θl(xl − x′l)2) (2)

where each θl ∈ IR is a hyperparameter, and there are
d hyperparameters, with d being the number of design
variables.

The mean of the Gaussian process, µm, and the process
variance, σ2, can be estimated by maximizing the likeli-
hood function and with these two estimated, a prediction
for the function being modeled can be done by:

ŷ(x) = µ̂m + {ψ}T [Ψ]−1({y} − {1}µ̂m) (3)

where {ψ} is the vector of correlations between the sam-
pled data and the new prediction, [Ψ] is the correlation
matrix for the sampled data, {y} is the real function val-
ues of the sample points and {1} is a n× 1 column vector
of ones. It is also possible to estimate the variance of the
prediction made with:

ŝ2(x) = σ̂2

[
1− {ψ}T [Ψ]−1{ψ}+

1− {1}T [Ψ]−1{ψ}
{1}T [Ψ]−1{1}

]
(4)

2.2. Infill criteria
The surrogate models are trained based on a set of sample
points, as explained before. However, an adaptive sam-
pling may be used, i.e., a sampling plan which is updated
by adding points in some areas of interest. These new
points are chosen according to the criterion defined. The
Expected Improvement (EI) [8] is a criterion that balances
exploration of the design space and exploitation, and its
calculated using the information provided by the Kriging
model:

E[I(x)] = (ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+

ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
(5)

where Φ(·) is the cumulative distribution function, φ(·) is
the probability density function of the standard normal
distribution and ymin is the minimum value of the sample
data values. It should be noted, that in equation (5), when
ŝ(x) = 0 then E[I(x)] = 0. The point to be added to the
sample is the one that maximizes the EI function. This
function is a multi-modal function, that can be costly to
evaluate when used in an optimization process. Therefore,
the Watson and Barnes criterion was proposed [9]. This
criterion smooths the EI criterion, by using the prediction
of the Kriging model:

WB2(x) = ŷ(x)− E[I(x)] (6)

2.3. Multidisciplinary Design Analysis and Optimization
2.3.1 Framework architecture and solver

The architecture sets the structure of how the Multidisci-
plinary Design Analysis and Optimization (MDAO) prob-
lem is going to be solved, it defines the sequence of the
optimization [2]. In this work, a Multi-Discipline Feasi-
ble (MDF) [2] architecture is used, which ensures that in
each iteration the two disciplines used, aerodynamics and
structures, are coupled. The eXtended Design Structure
Matrix (XDSM) diagram [10] of this architecture is de-
picted in Figure 1.

Figure 1: XDSM of a MDF architecture using a Gauss-
Seidel solver [5].

In each iteration of the optimization, each discipline
analysis is done and the Multidisciplinary Design Analysis
(MDA) solver ensures the convergence between the differ-
ent disciplines (aerodynamics and structures). After, the
objective function and constraints are calculated with the
variables that result from the MDA and the point to be
evaluated at the next iteration is defined. In this work,
the MDA solver used is a Non-Linear Block Gauss-Seidel
(NLBGS) approach with Aitken relaxation.

2.3.2 Aerodynamic model

The aerodynamic model used is the one implemented on
OAS [5], which is the Vortex Lattice Method (VLM) [11].
This method uses a series of lifting lines instead of just
one, with the wing being discretized along the span and
along the chord leading to lifting panels. Each of these
is represented by a single horseshoe vortex of constant
unknown strength at a given control point. The bound
vortex is located at the quarter-chord of each panel and
the control point’s location is at the center line of the
panel (in the spanwise direction) and at three quarter-
chords from the front. At each control point, the vortices

induce a velocity,
−→
V , that can be calculated by using the

Biot-Savart law [11]:

d
−→
V =

Γ

4π

d
−→
l ×−→r
||
−→
V ||3

(7)

where
−→
V is the induced flow velocity, Γ is the circulation

of the considered vortex, d
−→
l a finite length of the vortex

filament and −→r is the position of the control point relative
to the filament. By combining all the vortex circulations,
Γ, using the superposition method, the induced velocity
at each control point un can then be calculated:

un =

N∑
j=1

Ai,jΓj (8)
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where N is the number of vortices, i.e. the number of
panels and Ai,j is a row of the aerodynamic influence coef-
ficient matrix, which represents the influence of the vortex
on panel j on the induced velocity of panel i.

Since the method used, the VLM, assumes an incom-
pressible potential flow, some corrections are made so that
the values of the drag and lift coefficients are more accu-
rate. A compressible correction is made to the pressure
coefficient, Cp, by using the Prandtl-Glauert theory [11]:

Cp =
Cp,0√

1−M2
∞

(9)

where Cp,0 is the linearised pressure coefficient for the in-
compressible flow and M∞ is the Mach number of the
undisturbed flow.

A viscous correction is also applied to correct the drag
coefficient, based on the skin friction of a flat-plate, both
under laminar and turbulent flow. This calculated skin-
friction drag is then adjusted to take into account the pres-
sure drag using a form factor for lifting surfaces, presented
in [12].

2.3.3 Structural model
A Finite Element Method (FEM) [13] is employed, by us-
ing a spatial beam element of two nodes, each with six de-
grees of freedom, which assembles two bending elements,
a torsion element and an axial element [5].

The local stiffness matrices are calculated, and then the
global stiffness matrix [K] is assembled by transforming
the local matrices to the global frame. The loads applied
to the structure are calculated by the aerodynamic model,
and therefore the displacement vector can now be calcu-
lated [13], using :

[K]{u} = {F} (10)

where {F} is the load vector, and {u} is the unknown
displacement vector.

To determine if the structure fails under the applied
load, the Von-Mises equivalent stress [13] is calculated and
compared with the admissible load, using a safety factor
of 1.5.

2.3.4 Fluid-Structure Interaction
During the multidisciplinary analysis, information from
one discipline is passed to the other and so there is a need
to define a Fluid Structure Interaction (FSI) algorithm.
Knowing the aerodynamic and structural solution is al-
ready known at iteration k, the coupled solution at itera-
tion k + 1 can be obtained by first solving the aerodynamic
system for the current iteration, then integrating the aero-
dynamic loads onto the structural domain, followed by
the structural analysis with the aerodynamic loads as in-
put. After the displacement transfer from the structural
analysis to the aerodynamic surface mesh is done and fi-
nally the mesh is updated and the aerodynamic system is
solved again and everything is repeated until convergence
is achieved.

After this the MDA is done, and the objective function
and constraints are calculated, as mentioned before.

2.3.5 Optimization algorithms
To determine the next point to be evaluated at each it-
eration, different algorithms can be used. These can be

classified into deterministic, which are then divided into
gradient-based and gradient-free, or heuristic [14]. In this
work, a gradient-based and a heuristic algorithms are used.

A gradient-based algorithm uses information from both
the objective function value and also its derivatives with
respect to the design variables, to compute the search di-
rection and consequently the next point to be considered
in the optimization. In this work, the gradient-based al-
gorithm chosen is the Sequential Least-Square Quadratic
Programming (SLSQP) [15]. The adjoint method [14] is
used to provide the gradients when using the real func-
tions.

An heuristic algorithm tries to mimic some natural be-
haviour and use a certain amount of randomness to avoid
getting trapped at a local optimum. The algorithm used
in this case is the Genetic Algorithm (GA) [16], which is
based on natural evolution.

3. Implementation

The sequence of the aircraft design optimization problem
developed during this work can be summarized with the
flowchart presented in Figure 2.

Figure 2: Implementation process flowchart

Firstly, the Flexcraft project [17] concept and the
changes in the mission are analysed, and some potential
concepts to be used for the new mission are studied. The
best concept is chosen by using an Analytical Hierarchy
Process (AHP) [18] and then an initial sizing is done. This
initial sizing is performed by using design point equations,
analysing stability conditions to define a baseline for the
wing, and every components’ weight and position are es-
timated so that the centre of gravity of the new concept
can be calculated. This way, a baseline for the optimiza-
tion is set. Then the optimization process starts, using
the OpenMDAO framework [6], and it can be done either
using the real OAS model functions, or using the surro-
gate models. The latter also presents two possible ways,
and so the surrogate-based optimization can occur using
the surrogate model itself (prediction-based) or using infill
criteria functions.

3.1. Conceptual design

An initial conceptual design is performed according to the
new mission profile, so that a baseline for the optimization
can be defined.

3.1.1 Choice of the configuration

First, an AHP is performed to choose the configuration to
be used. The criteria chosen to perform this study are:

� Aerodynamics - When assuming a constant weight,
specific fuel consumption, velocity and range, the fuel
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consumption decreases with the increase of the aero-
dynamic efficiency, L/D.

� Weight and Structures - The concept should be a re-
sult of a compromise between structural stiffness and
robustness and its weight.

� Propulsion - The propulsive system efficiency has to
be taken into account as it has a large impact on the
fuel and battery consumption.

� Manufacturing and Maintenance - The more com-
plex the aircraft’s systems are, the more expensive its
maintenance and manufacturing will be. For exam-
ple the maintenance costs depend on the number of
engines and electric motors, increasing the expenses
as the level of complexity grows.

� Stability and Control - Given that the mission does
not require high manoeuvrability, the stability of the
concept is favoured. The control during the VTOL
parts of the mission also impacts the decision making
process on the initial concept.

� Take-off and Landing capabilities - The regulations
for this kind of vehicle here considered are not well
developed yet. Based on regulations for general avia-
tion, an evaluation on the capabilities to take-off and
particularly land in critical conditions (such as motor
inoperative) were taken into consideration.

� Noise - Since the goal is to design an unmanned aerial
vehicle with VTOL capacity to be used in regional
connections between urban centres, the noise pro-
duced by the system (especially during the mission
phase inside cities) has also an impact on the choice
of the concept.

Five concepts were analysed with this process. The con-
figuration of each concept can be observed in Figure 3.
After carrying out the AHP, concept I is chosen.

(a) Concept I (b) Concept II (c) Concept III

(d) Concept IV (e) Concept V

Figure 3: Configurations analysed during the conceptual
design phase. The rotors that with a solid colour have
tilting capability.

3.1.2 Design point
Having chosen a concept for the general configuration of
the aircraft and using the MTOM of 3500 kg of the Flex-
craft project, now some general dimensions can be defined.
This is done using the design point equations, for both ver-
tical and forward flight. A more detailed explanation of
the design point analysis can be found in [12].

First, the forward flight is considered, where the Wing
Loading and the Power Loading that satisfy all the mis-
sion requirements are estimated. The Wing Loading is
W/S and Power Loading is W/P , where W is the aircraft’s
weight, S is the wing area, and P is the required power.
The wing loading affects some parameters of aircraft per-

formance, such as the stall speed or range, and so it has
to be chosen according to the mission requirements. The
conditions considered are the stall speed, the maximum
wing loading for range, and the maximum power loading
for both a defined climb angle and for cruise. With these
four conditions, the design space can be plotted (see Fig-
ure 4) and the design point found. This is the point where
the cruise line intersects the stall condition, since it is the
one that maximizes both power loading and wing loading.

Figure 4: Design space and design point for the forward
flight

Now, the vertical flight conditions are considered, where
the Power Loading and the Disc Loading need to satisfy
once again the mission requirements, with the disc load-
ing being W/AR, where AR is the total rotor area. Once
again, four conditions are considered: the maximum disc
loading, DLmax = 600 N m−2, which is a typical value
for a tilt rotor [19] and the maximum power loading for
vertical climb, hover and transition.

As it was done before for the forward flight phase, now
the design space can be plotted, as shown in Figure 5. The
dot corresponding to the intersection between the vertical
climb condition and the maximum disc loading represents
the design point.

Figure 5: Design space and design point for the vertical
flight

Combining the two design points, an initial sizing of the
aircraft is done and the results are presented in Table 1.

Table 1: Initial sizing based on the design point consider-
ations(

W

P

)
ff

(
W

S

) (
W

P

)
vf

(
W

A

)
W Pff Pvf S AR

[N W−1] [N m−2] [N W−1] [N m−2] [N] [kW] [kW] [m2] [m2]

0.0641 1218 0.0386 600 34335 535 890 28.18 57.23
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3.1.3 Weight and balance estimations
Initially, for the design points considerations, the mass of
the aircraft was assumed to be the same as in the Flexcraft
project, 3500 kg. However, to estimate the center of grav-
ity (CG) position, some predictions of each component’s
weight and locations have to be made. The estimations for
the weight of each component were done by using empirical
equations, presented in both [12] and [20], or by using some
previous estimations done for the Flexcraft project. The
position of each component was also estimated, based on
the configuration chosen and some values of the Flexcraft
project. The final total mass was estimated in 3529.74 kg,
a value close to the one from Flexcraft project.

3.1.4 Wing initial design
The airfoil used was kept the same as the one on the Flex-
craft project and the same happens for the horizontal sta-
bilizer airfoil. However, since the mission has changed,
the wing planform is now different from the one on the
original concept. The wing span and the taper ratio were
kept the same, but the wing tip and root chord are now
different, because the obtained wing area is also different.
Also, the wing sweep angle has to change because of the
longitudinal static stability. A study was made to evalu-
ate the static margin of the aircraft using different sweep
angles. The results are presented in Figure 6.

Figure 6: Static margin variation with the wing sweep
angle

The wing for the baseline is therefore characterized by
the parameters shown in Table 2. The horizontal stabilizer
was not modified, being the same as the one from the
Flexcraft project (see Table 3).

Table 2: Wing dimensions

Parameter Nomenclature Value Units

Span b 15 m
Mean aerodynamic chord c̄ 1.994 m

Root chord croot 2.684 m
Tip chord ctip 1.074 m

Taper ratio TR 0.4 −
Sweep Λ 20 °

Dihedral Γd 2 °

3.1.5 Propulsive system architecture
Even though a detailed study on the propulsive systems
is out of the scope of this work, a brief description of the
general architecture of the system is here provided.

The propulsive system consists in an hybrid series con-
figuration, shown in Figure 7. In this configuration, the
internal combustion engine burns fuel and rotates an AC
generator. The power generated can be used to charge the

Table 3: Horizontal stabilizer dimensions

Parameter Nomenclature Value Units

Span b 4 m
Root chord croot 1.86 m
Taper ratio TR 1 −

Sweep Λ 0 °

Dihedral Γd 0 °

batteries and to be delivered to the AC electric motors that
drive the propellers. The series configuration allows for a
separation of power and thrust generation and also to have
different flight modes, i.e, to have flight phases where only
the electric energy of the batteries is used to propel the
aircraft, and other phases where only the Internal Com-
bustion Engine (ICE) is the provider of the necessary en-
ergy. This way, the vertical climb, hover, transition and
vertical descent are driven using the batteries and the for-
ward flight phases are carried out using only fuel energy.
Therefore, the ICE and generator can be sized for only
cruise, which allows the system to be working at a steady
state in most of the mission, and so it is working with
the same specific fuel consumption (SFC), at the optimal
engine point. However, this system implies an increase of
the propulsive system weight and its complexity.

Internal
combustion
engine

Generator AC-DC
Power

distribution
unit

DC-AC Electric
motors Propellers

DC-DC

Batteries

Figure 7: Propulsive system high-level representation

3.2. Optimization problem formulation
Using the mission requirements, the optimization is formu-
lated by defining the objective function, the design vari-
ables and the constraints. The main requirements for the
mission considered are: (i) a cruise speed of 110 m s−1;
(ii) a fixed range of 800 km; (iii) a payload of 500 kg; (iv)
a static margin between 5 % and 20 % and an ability to
have a trimmed flight; (v) structural integrity in both the
VTOL phases and a pull-up manoeuvre of 3.8g.

3.2.1 Objective function
With the range fixed, one main objective is to minimize
the fuel consumption. Also, since VTOL phases play a ma-
jor role in the power required, which influences the weight
of the rotors and batteries, this power should also be con-
sidered. In order to deal with these different possible ob-
jectives, an energetic objective function is used, combining
the energy spent during both cruise and VTOL operations.
This way the total energy is given by:

E = mfuel × Especfuel
+ Pvc × tvc + Phover × thover + Etr

(11)
where mfuel is the mass of necessary fuel to complete
the cruise phase, calculated with the Breguet equation;
Especfuel

is the fuel’s specific energy density, assumed to
be equal to 43.28 MJ kg−1; Pvc and Phover is the power
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needed for the vertical climb and hover phases, respec-
tively, which are calculated using the design point equa-
tions; tvc and thover are the times of the vertical climb and
hover phases, respectively; and Etr is the energy needed
for the transition phase, which is assumed to be constant.

3.2.2 Design variables

Different case studies are made, using different design vari-
ables (DV). Here all the DV used are presented. The
wing planform is defined using a linear distribution for
the chord, by controlling the chord at the root, (croot)wing,
and the chord at the tip (ctip)wing. The same happens for
the horizontal tail planform, using (croot)tail and (ctip)tail.
The wingbox structure is defined by the thickness of the
spars and the skins. Using the OAS model for the wing-
box, the rear and front spar thicknesses, (tspar)wing, are
considered to be the same, as well as the upper and lower
skin thicknesses, (tskin)wing. A constant thickness is con-
sidered along the span for both the spars and the skins.
This consideration was taken because of manufacturing re-
strictions. Once again, the same happens for the horizon-
tal tail, thus adding two more design variables, (tspar)tail
and (tskin)tail. The angle of attack at cruise condition, α,
is also used as design variable in one of the case studies.

3.2.3 Constraints

To ensure a longitudinally stable aircraft, the static mar-
gin [12], Kn, will have to be between 5 and 20 % as men-
tioned before. Directional and lateral stability are not
considered on this thesis, since the vertical stabilizers are
not being considered to the optimization problem, and are
assumed to be equal to the ones on the Flexcraft project.
Additionally, in order to have a trimmed flight during
cruise, a constraint regarding the pitching moment coeffi-
cient, CM , is used, and is also imposed that lift must be
equal to the total weight. During the pull-up manoeuvre
considered, an additional constraint is imposed, so that
the lift is equal to the total weight multiplying by the pull
up load factor, n = 3.8g. Two load cases are considered:
the vertical climb, and a pull-up of 3.8g. The four critical
points on the wingbox, explained in [21], must satisfy the
structural failure criterion at these ultimate load cases.
The criterion used is the Von-Mises failure criterion. Fi-
nally, a constraint regarding the volume of the necessary
fuel is employed. This, ensures that the volume occupied
by the fuel is smaller than the available volume inside the
wingbox structure of the wing.

The constraints’ equations were arranged in a manner
that to be satisfied they need to be negative (apart from
the fuel volume constraint, which needs to be positive).
Since there are computational errors and limitations, each
equality constraints was transformed into two inequality
constraints.

3.3. Optimization cycle

Before building the surrogate models, and solving the op-
timization problem using these approximated functions,
the problem is solved using the real functions and their
analytical derivatives. Summarily, the optimization cycle
when using the real functions is described by the flowchart
of Figure 8.

In the approach where the surrogate models are used,
the objective function of the optimization problem is the

Model
setup

Search
direction MDA Function

evaluations Convergence Solution

No

Yes

Figure 8: Optimization cycle when using the real functions

surrogate model itself, without adding any additional sam-
ple points. As shown in Figure 9, firstly the DOE is gener-
ated and the surrogate models, for the objective functions
and every constraint, are built. Having the new, approxi-
mated, functions, the optimization problem is then solved
using the SLSQP algorithm. The final solution is then
evaluated with the real model to check if there are any
major discrepancies.

DOE
Surrogate models 
(Objective function

and constraints)

Optimization
(SLSQP) Solution

Evaluation of
solution with real

functions

Figure 9: Optimization cycle when using the surrogate
models

On the other hand, in the adaptive sampling approach,
instead of using the objective function surrogate model
as the function to be minimized, an infill criterion func-
tion is used instead. The constraints used in the problem
correspond to the constraints’ surrogate models.

DOE
Stopping 

criteria

Surrogate models 
(Objective function

and constraints)

Infill criterion
function

Optimization
(GA) New point

Evaluation with
real functions

Update DOE
and surrogates

No

Yes

Solution

Figure 10: Optimization cycle when using the adaptive
sampling approach

As shown in Figure 10, an initial DOE is generated and
the initial surrogate models are built. After this, the infill
criterion function is defined, using the objective function
(total energy) surrogate model. At this point, the objec-
tive function, for the optimizer to minimize, becomes the
infill criterion function itself. The optimization problem
is solved using a genetic algorithm, and the solution ob-
tained is then evaluated with the real model and a new
sample point is added to the DOE. The surrogate models,
and consequently the infill criterion. function, are then up-
dated and the process starts over again until convergence
is achieved.

4. Results
4.1. Baseline and Case studies
The baseline is defined according to the studies done in
the conceptual design phase, as explained before. The
wing and horizontal tail planform are already defined, and
shown in Tables 2 and 3. The baseline wing spar and skin
thicknesses are both equal to 0.0038 m, and the horizontal
tail spar and skin thicknesses are equal to 0.00255 m. The
angle of attack used for the baseline is equal to −0.8°.
The presented configuration is evaluated using the OAS
framework and its performance parameters are shown in
Table 4.
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Table 4: Baseline performance

Wing structural
mass
[kg]

Horizontal tail
structural mass

[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy
[MJ]

408.35 37.68 407.07 3524.10 13.36 17937.11

Several case studies of the problem are carried out, each
using different design variables in the optimization. The
design variables used in each case study done are presented
in Table 5.

Table 5: Design variables used in each case study

Case Attitude Wing Tail
study α croot ctip tspar tskin croot ctip tspar tskin

2.1 x x
2.2 x x
2.3 x x
4 x x x x
8 x x x x x x x x

4.2. Surrogate model’s accuracy

Before carrying out the optimization, using the three dif-
ferent approaches explained before, a study on the surro-
gate models’ accuracy for each case is done. The goal is to
find out how many points are needed to have a surrogate
model that is able to correctly mimic the real function be-
haviour. Both the objective function and each constraints’
surrogate models are tested using a different set of test
points for each case. Only the results of the average rel-
ative error of the objective function, the total energy, are
presented here.

(a) Case 2.1 (b) Case 2.2

(c) Case 2.3 (d) Case 4

(e) Case 8

Figure 11: Average relative error of the objective function
surrogate model for each case

The objective function surrogate model in each case
presents very low values of the average relative error even
with a small number of sample points. However there are
some constraints that show a significantly higher relative

error (sometimes around 300%). In the cases where this
happens, these constraints show a non-linear behaviour,
which explains the need to have more sample points so
that the surrogates can capture the real behaviour of the
function. Even so, with an increase of the number of sam-
ple points, the relative error tends to decrease and con-
verge to a value near 0%.

The number of sample points needed to have a relative
error smaller than 5% is: 35 for case study 2.1; 10 for case
2.2; 25 for case 2.3; 40 for case 4 and more than 300 for
case 8.

4.3. Optimization results
For each case study, the optimization problem is solved
using three different approaches previously mentioned: (i)
using the real functions, implemented on OAS and us-
ing the adjoint method; (ii) using the surrogate models
of these real functions; (iii) using an adaptive sampling
with the WB2 criterion. For the first two strategies, the
optimization algorithm is the SLSQP, while for the last
approach the GA is used instead.

4.3.1 Case 2.1
The results for case 2.1 obtained with the three strategies
mentioned before are presented in Table 6.

Table 6: Results of the different solutions of case 2.1
Wing root

chord
[m]

Wing skin
thickness

[m]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy
[MJ]

Baseline 2.684 0.0038 408.35 407.07 3524.10 13.36 17937.11

Real
functions

2.739 0.00155 228.68 378.10 3315.47 13.54 16433.35
-44.00 % -7.12 % -5.92 % 1.35 % -8.38 %

Surrogate
search

2.739 0.00154 228.26 378.02 3314.96 13.54 16429.71
-44.10 % -7.14 % -5.93 % 1.38 % -8.40 %

Adaptive
sampling

2.739 0.00157 230.06 378.42 3317.16 13.54 16446.95
-43.66 % -7.04 % -5.87 % 1.38 % -8.31 %

All the three solutions present similar results, with dif-
ferences between them smaller than 1%. This way the re-
sults obtained with the surrogate models are validated. It
is worth to notice that the performance parameters, that
correspond to strategies where the surrogate models are
used, are the real function evaluations when those design
variables.

In the second approach, the optimization results shown
correspond to the ones when the surrogate models are
built using 50 sample points. When the adaptive sam-
pling is used, the starting sampling plans to build the sur-
rogate models are composed by: 5 sample points in the
case of the objective function, 20 sample points for the
constraints with a linear behaviour, and 50 sample points
for the constraints with non-linear behaviour. In this last
approach, the number of individuals for each population
and the number of generations used by the GA are 200
and 100, respectively. The number of points added to the
sampling plans is 50. However, the best solution is found
after the third iteration, i.e. after adding three points.

In terms of computational cost, the number of itera-
tions, function and gradient evaluations associated with
each approach are presented in Table 7.

The benefits of using the surrogate models, in terms of
computational cost (Table 7), are not verified in this case,
since the optimization using the real functions when us-
ing the SLSQP algorithm with the gradient information
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Table 7: Computational cost of the four methods for case
2.1

Real functions
(SLSQP)

Surrogate
search

Adaptive
sampling

Iterations 6 11 50
Function evaluations 6 44 (+50) 1000000 (+50+50)
Gradient evaluations 6 11 0

obtained from the adjoint method takes only 6 iterations
to find the optimum, which corresponds to 6 function and
gradient evaluations. On the other hand, the second ap-
proach takes 44 surrogate model predictions and 50 real
function evaluations to build the surrogate models, while
the adaptive sampling approach takes 105 surrogate model
predictions plus 100 real functions evaluations (50 to build
the initial surrogate models and one for each of the 50
points added).

4.3.2 Case 2.2
The different solutions obtained in this case are presented
in Table 8.

Table 8: Results of the different solutions of Case 2.2
Wing tip

chord
[m]

Wing spar
thickness

[m]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
Energy

[MJ]

Baseline 1.074 0.0038 408.35 412.76 3529.79 13.19 17937.11

Real
functions

1.340 0.00108 363.58 397.75 3470.01 13.47 17286.07
-10.96 % -3.64 % -1.69 % 2.18 % -3.63 %

Surrogate
search

1.347 0.00100 362.06 397.39 3468.13 13.48 17270.45
-11.34 % -3.73 % -1.75 % 2.20 % -3.72 %

Adaptive
sampling

1.341 0.00111 364.38 397.76 3470.82 13.47 17286.72
-10.77 % -3.63 % -1.67 % 2.18 % -3.63 %

The results from the different approaches are, once
again, very similar to each other, with differences smaller
than 1%.

The results correspondent to the surrogate search ap-
proach are obtained when using 10 sample points to build
the surrogate models. With the adaptive sampling ap-
proach, the number of sample points of the starting sam-
pling plan is: 5 for the total energy and 20 for the con-
straints. Once again, in this approach the GA is used and
the number of individuals and the number of generations
used are 200 and 100, respectively. Since in the previous
case, the 50 points added turned out to be excessive, be-
cause it was noted that the number of repeated points was
very high, in this case only 25 points were added to the
sampling plans.

In terms of computational cost, a comparison between
the different approaches is presented in Table 9.

Table 9: Computational cost of the different approaches
for Case 2.2

Real functions Surrogate search Adaptive sampling

Iterations 8 3 25
Function evaluations 10 4 (+10) 500000 (+20+25)
Gradient evaluations 8 3 0

Similarly to the previous case, the optimization with the
real functions presents the smallest computational cost,
having only 10 real functions’ evaluations, while the op-
timization using the surrogate models need only 4 surro-
gate model predictions but it also needs 10 real functions

evaluations to build models. The adaptive sampling ap-
proach is the most costly, needing 50 ·104 surrogate model
predictions, plus 20 real function evaluations to build the
total energy and the constraints initial surrogate models,
plus the 25 real functions evaluations (one for each added
point). In this case, the computational cost of the first
two approaches is very similar since the real functions op-
timization takes 10 real function evaluations, which is the
same value needed to build the surrogate models, and it
takes only 4 more surrogate models predictions in the sec-
ond approach.

4.3.3 Case 2.3
The different solutions obtained with the used approaches
are presented in Table 10.

Table 10: Results of the different solutions of Case 2.3
Wing root

chord
[m]

Angle of
attack

[° ]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy
[MJ]

Baseline 2.684 -0.8 408.35 407.07 3524.10 13.36 17937.11

Real
functions

2.500 -0.455 388.29 360.28 3457.25 14,91 15664.39
-4.91 % -11.49 % -1.90 % 11.59 % -12.67 %

Surrogate
search

2.500 -0.454 388.29 360.23 3457.20 14.91 15662.03
-4.91 % -11.51 % -1.90 % 11.61 % -12.68 %

Adaptive
sampling

2.512 -0.465 389.57 361.54 3459.79 14.87 15719.06
-4.60 % -11.18 % -1.82 % 11.30 % -12.37 %

The results are, once more, very consistent between each
other, with differences smaller than 1% again. The num-
ber of sample points, used to build the surrogate models
that lead to the optimal solution in the second approach, is
10. On the other hand, the number of sample points used
to build the initial sampling plans in the last approach are:
5 for the total energy function, 25 for every constraint ex-
cept the pitching moment coefficient, and 40 for this latter
constraint. The GA parameters are the same as in case
2.2 and the number of added points found with the WB2
criterion is again 25.

Again, in terms of computational costs (shown in Table
11), the real functions optimization presents a lower num-
ber of real function evaluations, 4, while the surrogate
based optimization needs only 3 iterations, but it takes 4
surrogate models predictions and 10 real functions eval-
uations to build the surrogate models. As for the adap-
tive sampling it takes 50 ·104 surrogate models predictions
to find the minimum, plus 40 real functions evaluations
to build the initial sampling plans, plus 25 real functions
evaluations, one for each added point.

Table 11: Computational cost of the three methods for
case 2.3

Real functions Surrogate search Adaptive sampling

Iterations 4 3 25
Function evaluations 4 4 (+10) 500000 (+40+25)
Gradient evaluations 4 3 0

4.3.4 Case 4
The three solutions obtained with each optimization ap-
proach are presented in Table 12.

In the second approach, the optimization problem was
again solved using the different number of sample points,
and the best solution was found when this number is 50.
When using the last strategy, the number of starting sam-
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Table 12: Results of the different solutions obtained in
case study 4

Tip
chord
[m]

Root
chord
[m]

Spar
thickness

[m]

Skin
thickness

[m]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy
[MJ]

Baseline 1.074 2.684 0.0038 0.0038 408.35 407.07 3524.10 13.36 17937.11

Real
functions

0.972 2.812 0.00196 0.00171 191.99 375.72 3275.66 13.46 16329.59
-52.98 % -7.70 % -7.05 % 0.75 % -7.69 %

Surrogate
search

0.982 2.818 0.00155 0.00186 194.64 376.78 3280.10 13.44 16375.18
-52.33 % -7.44 % -6.92 % 0.60 % -7.43 %

Adaptive
sampling

0.959 2.825 0.00245 0.00178 210.41 378.99 3298.08 13.43 16471.23
-48.47 % -6.90 % -6.41 % 0.52 % -6.89 %

ple points are: 10 for the total energy functions, 30 for
every constraint except two of the failure criteria of the
wing in the pull-up manoeuvre, in which case the number
of samples is 40. Again, the GA was used in this ap-
proach, using a number of individuals of 300 and a num-
ber of generations of 100. The number of added points to
the sampling plans is 50. In this case, contrarily to what
happened in the two DV cases, the 50 points added show
different results in almost every iterations, which suggests
that not enough points were added, and a better solution
could still be found. Also, the number of unfeasible points
added increased, which shows that there are still some er-
rors in the surrogate models, even though their accuracy
seems high (average relative error lower than 3%).

The differences between the different solutions are not
very significant (less than 1 %), but the best solution cor-
responds to the one found when the real functions are
used. As stated before, the solution found with the last
approach may correspond to a local minimum because the
population sizes or the number of generations are smaller
than needed, or the number of points added is too low.
The small amount of individuals, generations and points
added is explained by the time constraints existing. In
the approach where the surrogate models are used, and
the optimization problem is solved using the SLSQP, the
optimizer may got trapped in a local minimum as well,
since, even though the starting point is the same as the
one used in the real functions approach, the prediction of
the derivatives or the functions can show some errors, and
so the optimizer is guided to a slightly different solution.

Table 13: Computational cost of the different optimization
approaches for case 4

Real functions Surrogate search Adaptive sampling

Iterations 14 21 50
Function evaluations 21 34 (+50) 1500000 (+40+50)
Gradient evaluations 14 17 0

In terms of computational cost, the surrogate models
still do not shown an advantage, since the real functions
approach takes only 21 real functions evaluations, while
the surrogate model approach needs 34 surrogate models’
predictions plus 50 real functions evaluations to build the
models, and the last approach takes 15·105 surrogate mod-
els’ predictions plus 40 real functions evaluations to build
the initial sampling plans plus a real functions evaluation
for each of the 50 points added.

4.3.5 Case 8
The values of the design variables of the different solutions
found are presented in Table 14, and the corresponding
performance parameters, of each solution, are presented

in Table 15.

Table 14: Design variables values of the different solutions
obtained in case study 8

Wing tip
chord
[m]

Wing root
chord
[m]

Wing spar
thickness

[m]

Wing skin
thickness

[m]

Tail tip
chord
[m]

Tail root
chord
[m]

Tail spar
thickness

[m]

Tail skin
thickness

[m]

Baseline 1.074 2.684 0.0038 0.0038 1.86 1.86 0.00255 0.00255

Real
functions

1.230 2.511 0.00199 0.00222 1.15 1.15 0.0005 0.00168

Surrogate
search

1.205 2.533 0.0028 0.00203 1.15 1.15 0.0005 0.00089

Adaptive
sampling

1.253 2.488 0.00986 0.00132 1.155 1.161 0.00348 0.00054

Table 15: Performance parameters of the different solu-
tions obtained in case study 8

Wing structural
mass
[kg]

Horizontal mass
structural mass

[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy
[MJ]

Baseline 408.35 37.68 407.07 3524.10 13.36 17937.11

Real
functions

232.82 7.85 349.93 3261.61 14.45 15213.01
-42.99 % -79.17 % -14.04 % -7.45 % 8.19 % -14.00 %

Surrogate
search

237.67 7.12 349.70 3265.48 14.48 15203.15
-41.80 % -81.12 % -14.09 % -7.34 % 8.41 % -14.06 %

Adaptive
sampling

362.52 13.14 362.80 3409.45 14.58 15772.57
-11.22 % -65.14 % -10.87 % -3.25 % 9.14 % -10.84 %

The differences between the solutions obtained with the
first two approaches are very small. However, the differ-
ence of the solution found with the last approach is higher
than on the previous cases. This suggests that in the last
approach the global minimum was not found. This might
have happened because either the number of individuals
or the number of added points is too low and so some areas
of the design space might not be considered.

In terms of computational cost, the surrogate models
present a higher cost once again, with the number of real
function evaluations in the first approach being only 15,
while in the second approach there are 18 surrogate mod-
els predictions plus 200 real functions evaluations to build
the sampling plans of the surrogate models, and in the last
approach there are 50 · 105 surrogate models predictions,
plus 300 real functions evaluations to build the initial sam-
pling plans, plus 200 real functions evaluations, one for
each point being added.

Table 16: Computational cost of the different optimization
approaches for Case 8

Real functions Surrogate search Adaptive sampling

Iterations 14 19 200
Function evaluations 15 18 (+200) 5000000 (+300+200)
Gradient evaluations 14 18 0

4.4. Optimal solution
The optimal solution found, the one that minimizes the
most the total energy needed to complete the defined mis-
sion, corresponds to the solution found with the surrogate
models in case 8. The proposed configuration presents
a wing structural mass that is around 42 % lighter than
the wing structural mass of the baseline, a reduction of
around 81 % in the horizontal stabilizer structural mass
and a reduction of about 14 % of the fuel mass. This
leads to an overall mass that is around 7 % smaller than
the one of the baseline. The lift-to-drag ratio of this con-
figuration is almost 8.5 % higher than the baseline. The
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solution presents a significant reduction of the total energy
needed, 14.06 %. The two configurations, the baseline and
the optimal solution, are illustrated in Figure 12.

Figure 12: Baseline and optimal solution general configu-
rations

5. Conclusions
When comparing the surrogate models based optimization
with the real functions optimization, the latter shows a
smaller computational cost, and even though sometimes
its solution is slightly worse, it is not very significant. This
means, that for the problem at hand, the surrogate models
do not present a relevant advantage over the real functions,
which are already simple, since the physical models are of
low-fidelity.

This can also be explained because the analytical partial
derivatives of each function, computed by means of the
adjoint method, were possible to give as an input to the
optimizer. If for example the derivatives were too complex
or not available, the real functions approach may not have
been the better strategy.

The design of the wing is also very similar to the base-
line used, which can lead to the quick optimization process
using the real functions. This can either be happening be-
cause the optimization is to constrained, since the number
of design variables is relatively small, or because the base-
line is already a good design.
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