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Resumo

Esta tese apresenta uma comparação entre uma otimização multidisciplinar (MDO), baseada em mod-

elos de aproximação, e MDO usando funções reais de uma aeronave de asa fixa com capacidade de

descolagem e aterragem vertical (VTOL) para Mobilidade Aérea Urbana (UAM). Durante a fase con-

ceptual de projeto aeronáutico, é importante ter uma vasta exploração do espaço de projeto, usando

modelos de várias disciplinas que precisam ser considerados para satisfazer os requisitos da missão.

Modelos de aproximação são uma abordagem com potencial para explorar rapidamente o espaço de

projeto. Desta maneira, nesta tese, é realizada uma comparação entre os resultados de uma MDO

usando funções reais e os modelos aproximados dessas funções.

Três abordagens principais para a otimização são realizadas: uma otimização usando as funções

analı́ticas reais e as suas derivadas com o método adjoint ; uma otimização baseada em modelos

aproximados para a função objetivo e constrangimentos, usando a Surrogate Modeling Toolbox (SMT);

e uma otimização baseada em amostragem adaptativa e critérios de preenchimento, como o critério de

Watson e Barnes (WB2).

Para comparar estas estratégias de otimização multidisciplinar, resolvidas com recurso à ferramenta

OpenMDAO, um problema com o objectivo de minimizar a energia é definido para a aeronave VTOL,

sendo as disciplinas de aerodinâmica e estruturas modeladas com recurso aos modelos de baixa fi-

delidade implementados no OpenAeroStruct (OAS). Inicialmente, apenas duas variáveis de projeto são

utilizadas. São depois adicionadas mais variáveis ao problema, aumentando assim a complexidade do

problema de otimização.

Palavras-chave: Otimização multidisciplinar, modelos aproximados, amostragem adapta-

tiva, projeto aeronáutico, aeroestrutural
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Abstract

This thesis aims at evaluating surrogate based Multidisciplinary Design Optimization (MDO) strategies

for designing an Urban Air Mobility (UAM) Vertical Take-Off and Landing (VTOL) aircraft. During the

conceptual stages, it is important to have a vast exploration of the design space, using models for sev-

eral disciplines that need to be considered regarding the mission requirements. Surrogate models are

a potentially good approach to rapidly explore the design space. Therefore, in this work, a compari-

son between the results of a MDO using real functions and the surrogate models of these functions is

provided.

Three major strategies for the aircraft optimization are carried out: an optimization using the real,

analytical functions and their derivatives with the adjoint method; a surrogate-based optimization where

surrogate models for both the objective function and constraints are built, using the Surrogate Modeling

Toolbox (SMT); and an optimization based on adaptive sampling and infill criteria such as the Watson

and Barnes criterion (WB2).

To compare these MDO strategies, an energy minimization problem is established for the VTOL

aircraft as a case study in OpenMDAO, where aerodynamics and structures are modeled using the low-

fidelity models provided in the OpenAeroStruct (OAS) framework. Initially, only two design variables

are considered. Then, more design variables are added to the problem, and therefore increasing the

complexity of the optimization problem.

Keywords: Multidisciplinary design optimization, surrogate models, adaptive sampling, aircraft

design, aerostructural
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Chapter 1

Introduction

1.1 Motivation

Over the last years, there has been a significant increase in the research of Urban Air Mobility (UAM),

with the number of applications also growing.

This new concept of using aircraft in an urban scenario to transport people or cargo raises a series of

new problems to be solved as the society also demands a cleaner and more sustainable aviation. Also,

to have practical solutions to be used inside cities, more and more solutions are using vertical take-off

and landing (VTOL) procedures so that the aircraft can land and take-off virtually at any place inside an

urban context.

As these demands grow, the necessity for developing tools that consider different requirements from

different disciplines also increases. Hence, Multidisciplinary Analysis and Optimization (MDAO) is a

tool that can be very useful in early stages of designing a new aircraft, where usually there is a great

exploration of possible concepts.

Using MDAO allows a designer to integrate multiple disciplines, for example aerodynamics, struc-

tures, propulsion, emissions, performance, among others, with the objective of considering the influence

of a discipline on the others, so that in the end, the obtained solution is one that satisfies a compromise

between all the disciplines taken into account.

As the complexity of the problem increases, by the increment in disciplines considered, or the higher

fidelity models used, the computational burden of this optimization can become too demanding. To solve

this problem, surrogate models can be used to simplify this complexity by approximating the real models.

1.2 Project Overview

The work developed during this thesis intends to find a solution for an aircraft design problem using

multidisciplinary optimization. The problem includes aerodynamics, structures, and longitudinal static

stability. The optimization was performed using both the real and surrogate models, and the two were

compared.
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The aircraft is a VTOL Unmanned Aerial Vehicle (UAV) which is an adaption of the Flexcraft solu-

tion, which was presented at the 2019 Paris Air Show. This previous solution consists in an innovative

modular aircraft concept to be used for several purposes, including passenger transportation, logistics,

civil protection scenarios and air ambulance. The work developed uses this concept as a base to be

changed so that the new aircraft has VTOL capability. This way the mission profile is updated, as shown

in Figure 1.1.

Figure 1.1: Mission profile

The new mission consists in a vertical take-off and climb to 50 ft above ground, a transition to forward

flight and climb to the cruise altitude (4000 ft) which is followed by a cruise segment of up to 800 km.

After, the aircraft will descend and start the transition to vertical flight again, followed by a vertical descent

and landing. As mentioned above, this design is a change of the Flexcraft concept [1] and therefore some

aspects of its design were maintained:

• Vertical tail dimensions

• Fuselage shape and weight

• Booms’ design

• Lifting surfaces’ airfoils

1.3 State of the art

In this section a brief literature review on the topic is provided. First an overview on the work that is

being developed on UAM is given. After this, some simplifications commonly used in aircraft design,

and the disciplines usually used in a conceptual/preliminary phase are reviewed. Then, a review on

Multidisciplinary Design Optimization (MDO) and its uses is shown, followed by a revision on some

optimization framework architectures. Finally, a summary on surrogate models and sampling plans is

provided.

1.3.1 Urban Air Mobility

In the last decade, the number of companies investing in UAM solutions is increasing significantly with

the market expected to reach a 9.1 billion US dollars value by 2030 [2], and at the moment the concept

is close to become a reality. The number of recent studies [3–6] on the matter is very significant, with

increasing efforts for building a faster and more flexible means of transport in urban centres. Some
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concepts that are already at advanced stages of design are for example the CityAirbus [7], Lilum Jet [8],

or the Joby S4 [9, 10]. A survey on recent developments on the field can be found in [11, 12].

Different configurations are being proposed, with diverse solutions so that the aircraft can take-off

vertically [13]. The solution may be to use a Lift+Cruise configuration, where there are some designated

fixed motors for the take-off and others, also fixed, for the cruise phase. On the other hand, more

versatile solutions are also presented, such as having tilt-rotors or tilt-wings.

1.3.2 Aircraft Design

In an aircraft design MDO problem, the most common disciplines used are aerodynamics, structures,

weight estimation and propulsion. During the initial stages of conceptual and preliminary design, usually

the designers work with simple models such as empirical equations [14–17] or panel methods [18]

for aerodynamics, empirical equations [14, 19, 20] or statistical data for weight estimation, statistical

approximations [21] for propulsion and analytical equations or simplified numerical equations [22, 23]

for structural analysis. As mentioned above, usually some constraints regarding mission performance

and requirements are used, and so often geometric models, trim and stability and performance are

considered. Geometric models are often used to parametrize the aircraft in aerodynamic or structural

analysis [21, 24–26]. Stability is often taken into account by calculating the stability derivatives and

comparing them to empirical equations [15, 27–29] or by the use of stability metrics like the static margin

[19, 30] and trim is guaranteed by allowing the control surfaces variables to change [31, 32]. Some

more disciplines may be considered in the problem, like noise restrictions [3, 4, 33, 34] and emissions

[3, 4, 30, 35], especially in UAM problems.

1.3.3 Multidisciplinary Optimization

As the computation capabilities improve, so do the methods to solve complex MDO problems in aircraft

design. A survey of the most common practices in recent years can be found in [36]. The research

on the topic continues to grow, with different topics being explored, like efficient optimization methods

[37–43] and using different architectures [44].

When it comes to MDO applied to aircraft design problems, the most used objectives are related

to the overall operation and are associated with weight, aerodynamics, and mission performance [36],

and the objective function can be of a single function or a combination of multiple functions, being a

multiobjective problem. Concerning the constraints used, they can be regarding mission requirements

[31, 45, 46] or performance restrictions, such as noise and/or emissions [3, 4].

1.3.4 Multidisciplinary analysis

Since the computational capabilities are limited, there must be a compromise between the intended

accuracy and these limitations. As mentioned above, during the initial stages of design, where a wider

exploration of the design space is usually desired, simplified models, Low Fidelity (LF) models are then

used [24, 30, 31, 47–50], as they come at a lower computational cost. At a more advanced stage in
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the design, during detailed design there is a need for higher accuracy, and so High Fidelity (HF) models

need to be used [51–54] .

To overcome the loss of accuracy observed in LF models and the high computational burden in

HF models, some medium fidelity models can be used. There are two techniques for having this kind of

models: refinement of LF simulations [25, 26, 54] or simplification of the HF models [21, 55]. Alternatively

to these solution, a Multi-Fidelity (MF) approach can also be used. In such case, usually LF models are

used to explore the design space and an HF model is used on specific points of interest [15, 51, 56–59].

1.3.5 Framework architectures

A sequence of the MDAO must be defined, and since multiple disciplines and their influence on one

another are being considered, the coupling also needs to be defined.

A survey of different MDAO architectures can be found in [44]. Usually, these different architectures

are divided into monolithic and distributed, the first solving a single optimization problem and the latter

decomposing the problem into a set of smaller ones. Two examples of monolithic architectures are the

Multiple Discipline Feasible (MDF) and the Individual Discipline Feasible (IDF).

IDF architecture applies the Implicit Function Theorem to the constraints and so the coupling and

state variables become functions of the design variables and coupling targets. This architecture, de-

spite being simpler to implement than MDF, demonstrates a big disadvantage when a gradient-based

optimization is used because of its high computational cost due to the higher number of constraints

[60, 61].

MDF architecture is more commonly used as it has a global optimizer and a complete analysis of all

disciplines at each global iteration, guaranteeing a convergence of the discipline coupling. Due to this

analysis, the method is usually costly to build and run, but it ensures that a discipline converged to a

solution at the end of each iteration [19, 21, 25, 28, 33, 45, 59, 62].

1.3.6 Surrogate models

These approximation models are used to decrease the computational cost of an optimization problem,

replacing complex models with simplified ones that intend to mimic their behaviour. However, as the

models are simplified, there can also be a loss of accuracy, with the surrogate models presenting sig-

nificant deviations relative to the complex models. The models can also be used to generalize the

behaviour of a limited sample of experimental data [63]. A frequently used model is the Kriging model

[37, 41, 64, 65] defined by Matheron [63], or some of its adaptations, such as KPLS [41, 42], KPLSK

[42], and other variants [47, 56, 57, 66, 67]. Some other examples of different models can be found in

[37, 64, 65, 68–71]. The models used in this thesis, RBF and Kriging are presented in section 2.3.

1.3.7 Design of Experiments

Design Of Experiments (DOE) consists of a set of sample points where the objective function is evalu-

ated with the real model, so the surrogate model can then be trained. Different methods [37, 71–74] can
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be used to create a sampling plan within the design space, with the most common being the Latin Hyper-

cube Sampling (LHS) [37]. Recently, there have been advances on adaptive sampling plans [39, 43, 75]

that use space-filling criteria to update the sampling plan and consequently the surrogate model itself.

An example of these criteria is the Expected Improvement (EI) [39, 43, 57], that is based on the proba-

bilistic side of the surrogate model.

1.4 Objectives

The main objective of this thesis is to obtain an optimal solution for the aircraft design problem presented.

Three different approaches are going to be used to perform the optimization, to try to find this optimal

solution: (i) an optimization using the real functions, built in OAS; (ii) an optimization using surrogate

models that mimic the behaviour of the real functions; (iii) an optimization using infill criteria to adapt

the surrogate models. Therefore, another macro objective of this thesis is to compare the three different

methods employed.

To achieve these two broad objectives, the work can be divided into the following steps:

1. Conceptual design: definition of the initial configuration concept, initial sizing, weight and balance

estimations and the propulsive system configuration definition;

2. Problem definition: mission requirements, objective function, design variables and constraints;

3. Adapt the computational models, in OAS, to the problem at hand;

4. Study of different surrogate models and sampling plans with analytical test functions;

5. Assemble the databases to build the surrogate models;

6. Create the surrogate models;

7. Solve the optimization problem using the different approaches;

8. Compare the results of the different approaches.

1.5 Thesis Outline

The structure of this thesis is as follows.

In chapter 2, the theoretical aspects of the models used are presented, namely:

• Aerodynamic and structural background of the models used in OAS;

• Basic concepts and definitions of multidisciplinary optimization;

• Surrogate models and surrogate models’ search background;

• Brief description of the optimization algorithms used.

In chapter 3, the whole process followed to solve this aircraft design problem is presented:
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• First, the conceptual design and the decisions made in this phase are presented;

• Then, the optimization problem formulation is stated;

• After this, the MDA implementation schemes are explained, followed by the MDO methodology.

In chapter 4, the results obtained for the different case studies are presented and analysed. For

each case study, a comparison between the three different optimization approaches is also provided.

In chapter 5, an overview of this thesis’ achievements is provided. Some major conclusions about

the optimization results are also presented. Finally, some suggestions for future work are given.
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Chapter 2

Theoretical Overview

2.1 Multidisciplinary Analysis

The aircraft design problem in this study involves two main disciplines, structures and aerodynamics.

These two disciplines are coupled since the aerodynamic loads influence the structural analysis which

in turn may change the aerodynamic loads a lifting surface is subject to. In this section, these two major

disciplines, their coupling and support elements of the problem are addressed.

2.1.1 Structural Analysis

The structural analysis is implemented in the OpenAeroStruct (OAS) [22] framework and it uses a six

degrees of freedom (DoF) per node three dimensional spatial beam in a finite element method.

The purpose of this structural analysis is to obtain the displacements of the lifting surfaces knowing

the loads they are subjected to. The fundamental equation to compute this deformation is [76]:

[K]{u} = {F} (2.1)

where [K] corresponds to the stiffness matrix, {u} to the displacement vector and {F} to the load vector.

To compute the displacements along the lifting surface the following steps are carried out: first, in

the pre-processing phase, the domain is discretized into elements, the local stiffness matrix for each

element is calculated and then the global stiffness matrix is assembled; after this, during the processing

phase, equation (2.1) is solved, by using the sparse LU-decomposition to invert the matrix; in the post-

processing phase, the global displacements can then be transformed and the local strains and the stress

applied on each element can be computed.

2.1.1.1 Spatial Beam Element

The element used in the structural analysis is a combination of three basic elements [22]: a truss

element, a torsional bar element and two plane beam elements. This is possible by superposition of the

elements. As a result, the final spatial beam element has two nodes with six DoF each, as shown in
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Figure 2.1.

Figure 2.1: Spatial beam representation [22]

The correspondent local stiffness matrix is:
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(2.2)

where Ey is the Young’s modulus of the beam material, A is the element’s cross-sectional area, Lb is

the beam’s length, G is the material’s shear modulus and J is the torsion constant, and Iy and Iz are the

second moments of area about y-axes and z-axes. These properties are calculated for the cross-section

according to what is explained in [23].

2.1.1.2 Global Stiffness Matrix

As mentioned above, the next step is to transform the local matrices into the global reference frame.

This change is achieved by a series of three matrix rotations.

The final global matrix is the combination of all global node entries, and the result matrix has a form

represented in Figure 2.2.

2.1.1.3 Failure criterion

To determine if there is a failure at some point in the structure of the wing and horizontal tail, the Von

Mises criterion [77] is used. The equivalent Von Mises stress is calculated, with equation (2.3), and is
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Figure 2.2: Global matrix representation

then compared to the admissible stress, that also considers a safety factor of 1.5.

σVM =

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3(σ2

12 + σ2
23 + σ2

31) (2.3)

where σVM is the equivalent Von Mises stress, σ11, σ22 and σ33 are the direct stresses; and σ12, σ23,

and σ31 are the shear stresses.

2.1.2 Aerodynamic Analysis

In this subsection a brief description of the aerodynamic model used in the framework of OpenAeroStruct

is given. The methodology here explained is presented in detail by Anderson [78].

The fundamentals of aerodynamics used to explain the methods used in this work are shown in

Appendix A.

2.1.2.1 Vortex Flow Element

This is a flow element where the streamlines are concentric circles in the anticlockwise direction, as it

can be seen in Figure 2.3:

Figure 2.3: Vortex flow element [78]

In this kind of flow, the induced tangential velocity, Vθ, is inversely proportional to the distance be-

tween the point considered and the vortex origin, r , and the radial velocity, Vr is zero:


Vθ =

const

r

Vr = 0

(2.4)
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Since the circulation is defined as:

Γ =

∮ −→
V .ds = −2πrVθ (2.5)

Now, the induced tangential velocity can be determined as a function of the circulation:

Vθ = − Γ

2πr
(2.6)

As the problem in hand is a three-dimensional one, now a vortex filament must be considered, instead

of a plane vortex flow. An example of a vortex filament can be seen in Figure 2.4.

Figure 2.4: Vortex filament of strength Γ [78]

Given the rotational nature of the flow, the Biot-Savart law [78] can now be used to determine the

velocity gradient:

d
−→
V =

Γ

4π

d
−→
l ×−→r
||
−→
V ||3

(2.7)

where
−→
V is the flow velocity, d

−→
l is the finite filament size and −→r is the position vector. Now the induced

velocity at any point can be found by integrating equation (2.7).

To study an inviscid, incompressible flow using this approach, first two important theorems need to

be introduced, the Helmholtz’s vortex theorems [78]:

1. The strength of a vortex filament is constant along its length.

2. A vortex filament cannot end in a fluid; it must extend to the boundaries of the fluid (be they finite

or infinite) or form a closed path.

2.1.2.2 Lifting Line Theory

It is now possible to apply this approach to a finite wing model, using one single vortex filament, thus

using Prandtl’s lifting line theory [78]. This theory can be applied to wings that present a twist distribution,

a chord distribution and a variable airfoil along the span, but it does not consider dihedral or sweep. As

said before, it is assumed that the flow is incompressible and the theory gives good approximations

when used for wing with an aspect ratio greater than four, AR ≥ 4 [78].
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Figure 2.5: Single horseshoe vortex modelling [78]

The theory states that the wing can be represented by a bound vortex with constant strength, Γ.

As stated by Helmholtz, a vortex cannot end in a fluid, so this bound vortex needs to continue in the

form of two trailing vortices that go from the wing tip to infinity. This system of vortex filaments is called

a horseshoe vortex and is illustrated in Figure 2.5. Now, if the wing is discretized along its span, this

theory leads to a larger number of horseshoe vortices, as it can be seen in Figure 2.6, that can be

superimposed to study the flow.

From Figure 2.6, a single bound vortex, with strength Γ1, acts from point A to F. As said before,

this continues to the trailing vortices, so the vortex filaments at the wing tips have the same strength.

Between points B and E, another vortex is superimposed, and the strength of the bound vortex is now

Γ1 + Γ2, and because of these two additional trailing vortices need to start from these two points with a

strength Γ2. This way the lifting surface is represented by a single lifting line that is discretized only in the

spanwise direction. This theory as explained here is the basis to the Vortex Lattice Method explained

above.

Figure 2.6: Superimposition of horseshoe vortices along the lifting line [78]

2.1.2.3 Vortex Lattice Method

To overcome the fact that the Lifting Line Theory only allows for a spanwise distribution, another method

can be used, the Vortex-Lattice Method (VLM) [78, 79]. This method uses a series of lifting lines instead

of just one. Now the wing is discretized along the span and along the chord leading to lifting panels.

Each of these is represented by a single horseshoe of constant unknown strength. A representation of

one of these lifting panels is illustrated in Figure 2.7.
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Figure 2.7: Lifting panel schematic with one horseshoe vortex [78]

The bound vortex is located at one quarter of the panel’s chord and there are two trailing vortices as

before that begin at each side of the panel. A control point is defined at the center line of the panel with

respect to the spanwise direction and at the three-quarter panel’s chord from the front.

The tangency condition at the control points specifies that the normal velocity at the panel must be

zero. This way:
−→
V ∞ · −→n + un = 0 (2.8)

where
−→
V ∞ is the freestream velocity, −→n is the normal to the panel and un is the induced flow velocity

component.

The induced flow velocity un at every control point is a result of a linear combination given by:

un =

N∑
j=1

Ai,jΓj (2.9)

where N is the total number of vortices (corresponding to the number of panels) and Ai,j represents a

row of the aerodynamic influence coefficient (AIC) matrix, which represents the induced flow on panel i

due to the vortex on panel j.

Figure 2.8: Influence of the vortex Γn on point B [78]

These coefficients can be calculated using only the grid information, as shown in Figure 2.8. From

the Biot-Savart equation (2.7) and knowing that dl = rdθ:

dV =
Γn
4π

dlr sin θ

||−→r ||3
⇔ dV =

Γn
4π

dl sin θ

||−→r ||2
⇔ dV =

Γn
4π

sin θdθ

||−→r ||
(2.10)

Integrating, knowing that the normal distance between B and the vortex line is rn, the induced velocity
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in B because of the vortex line AC is:

V =

∫ θ2

θ1

dV =
Γn
4π

∫ θ2

θ1

sin θdθ ⇔ V =
Γn
4π

(cos θ1 − cos θ2) (2.11)

This way, the influence of a vortex on a specific control point can be computed.

Returning to the tangential condition equation (2.8) and using equation (2.9), and now that the AIC

is known, the entire circulation distribution can be calculated:

N∑
j=1

Ai,jΓj = −V∞ sinα (2.12)

where α is the angle between the freestream velocity and the panel.

With the circulation distribution known, now the loads applied on the panels can be determined, using

the Kutta-Joukowski theorem:

−→
F i = ρ(

−→
V ∞ +−→v i)Γn ×

−→
b i (2.13)

where −→v i is the induced velocity by the vortices and
−→
b i is the vector decribing the bound vortex for the

panel.

This force distribution can then be decomposed into lift and drag distributions, which can then also

be integrated to calculate the total aerodynamic forces and their coefficients.

2.1.2.4 Compressible Correction

Now that the incompressible aerodynamic coefficients are available, to achieve the compressible flow

coefficients, the Prandtl-Glauert [78, 79] theory is employed.

This transformation consists of changing the reference frame from the physical domain xy, used to

compute the linearised potential equation, equation (A.19), to a reference frame ξη, where: ξ = x and

η = βy. The velocity potential, φ̄ is now:

φ̄(ξ, η) = βφ̂(x, y) (2.14)

and the transformed derivatives are:

∂φ̂

∂x
=
∂φ̂

∂ξ

∂ξ

∂x
+
∂φ̂

∂η

∂η

∂x
=
∂φ̂

∂ξ
(2.15)

∂φ̂

∂y
=
∂φ̂

∂ξ

∂ξ

∂y
+
∂φ̂

∂η

∂η

∂y
=

1

β

∂φ̂

∂η
(2.16)

Finally, combining equations (2.14), (2.15) and (2.16), the following is obtained:


∂φ̂

∂x
=

1

β

∂φ̄

∂ξ
∂φ̂

∂y
=
∂φ̄

∂η

(2.17)
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The same procedure is used to calculate the second derivatives and so the new potential equation,

derived from equation (A.19) for compressible flow in the new reference plane becomes:

∂2φ̄

∂ξ2
+
∂2φ̄

∂η2
= 0 (2.18)

which corresponds to the Laplace’s equation.

To compute the lift and drag coefficients, firstly, the pressure coefficient is defined by:

Cp ≡
p− p∞
q∞

(2.19)

where p is the pressure at the considered point, p∞ is the pressure at the undisturbed flow and q∞ is the

dynamic pressure at the undisturbed flow given by q∞ = 1
2ρ∞V

2
∞.

This dynamic pressure can be written in terms of M∞ and considering that a2 = γ p∞ρ∞ the pressure

coefficient defined on equation (2.19) becomes:

Cp =
2

γM2
∞

(
p

p∞
− 1

)
(2.20)

Using the isentropic relations and considering that
(
û

V∞

)2

,

(
v̂

V∞

)2

,

(
ŵ

V∞

)2

� 1, the pressure

coefficient can now be written as:

Cp = − 2û

V∞
=

2

V∞

∂φ̂

∂x
= − 2

V∞

1

β

∂φ̄

∂ξ
=

1

β

(
− 2ū

V∞

)
(2.21)

Note that − 2ū
V∞

is simply the linearised pressure coefficient for the incompressible flow, and so the

pressure coefficient for compressible flow is:

Cp =
Cp,0
β

=
Cp,0√

1−M2
∞

(2.22)

where Cp,0 is the linearised pressure coefficient for incompressible flow.

2.1.2.5 Viscous empirical corrections

Since the methods used during the aerodynamic analysis assume an inviscid flow, some viscous cor-

rections are applied to the drag calculation, based on empirical equations [80, 81].

The skin friction coefficient on a flat-plate of a laminar flow [80] is given by:

cflam
=

0.664

Re1/2
(2.23)

On the other hand, considering a turbulent flow with a Mach number higher than 0.3, the skin friction

coefficient [80] is:

cfturb
=

0.455

(log10 Re)2.58(1 + 0.144M2)0.65
(2.24)

With equation (2.23) and (2.24) the drag coefficient can then be calculated:
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cd = cdlam
+ cdturb

= cdlam
(xcrt) + cdturb

(Lp)− cdturb
(xcrt) (2.25)

where xcrt is the point where the transition starts and Lp is the flat-plate length.

This calculated flat-plate skin friction drag coefficient is then adjusted to take into account the pres-

sure drag using a form factor for lifting surfaces [81]:

FFsurf =

[
1 +

0.6

(x/c)max

(
t

c

)
max

+ 100

(
t

c

)4

max

] [
1.34M0.18(cos Λ)0.28

]
(2.26)

where (x/c)m is the chordwise location of the airfoil maximum thickness point, (t/c)max is the maximum

thickness-to-chord ratio, and Λ is the wing sweep.

2.1.3 Fluid Structure Interaction

In the previous sections, the aerodynamic and structural models were discussed. During the multidisci-

plinary analysis, information from one analysis is passed to the other and so there is a need to define

the Fluid Structure Interaction (FSI).

Knowing the aerodynamic and structural solution at iteration k, the coupled solution at iteration k+ 1

can be obtained following the next steps [82]:

1. Solve aerodynamic system for the current iteration;

2. Integrate aerodynamic loads onto structural domain;

3. Solve structural analysis with the aerodynamic loads as input;

4. Displacement transfer from the structural analysis to the aerodynamic surface mesh;

5. Update the mesh and start from step 1 again, until convergence is achieved.

The implementation of the FSI in the OAS model is fully described in [22].

2.2 Multidisciplinary Optimization

In this subsection, the basic concepts of multidisciplinary design optimization will be introduced based

on [83].

2.2.1 Basic Concepts

• Objective function: function f to be minimized (or maximized) during the optimization process. It

allows the designer to compare different designs.

• Design variables: Is through these variables that the solver may vary the objective function. This

way, the optimization process consists of finding the values for the set of design variables that

minimize or maximize the objective function (subjected to the constraints, which are explained

below). All possible combinations of the different design variables’ values form the design space.
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The k-dimensional vector corresponding to the different k design variables will be denoted as x,

and defines each design point.

• Constraints: Metrics used to restrict the possible solution. Constraints are the way to ensure

that the obtained optimized solution is feasible. Most engineering applications are constrained

problems. These constraints can be limits on the design variables values directly, and in this case

they are called bounds, or they may limit the results indirectly, for example having a restricted static

margin. In this latter case, the constraints may be equalities and/or inequalities.

This way, the optimization problem can be formulated as in [83]:

minimize f(x)

w.r.t x ∈ χ

subject to gi(x) ≤ 0 i = 1, ..., ng

hj(x) = 0 j = 1, ..., nh

(2.27)

where g are the inequality constraints vector, that includes also the design variables’ bounds, h are the

equality constraints vector and χ is the design space.

2.2.2 MDO architectures

The MDO architecture sets the structure of how the MDAO problem is going to be solved, it defines the

sequence of the optimization.

Architectures can be monolithic or distributed. When using the first approach, there is a single

optimization problem. On the other hand, when using a distributed architecture, the optimization problem

is divided into smaller sub-problems with a smaller number of design variables and constraints [44]. The

latter approach is not going to be used in this thesis.

As mentioned, in a monolithic architecture, a single optimization problem is solved. Therefore, only

one optimizer is used to find the design variables values that minimize (or maximize) the objective

function, while guaranteeing that the constraints are satisfied. The architecture in the scope of this

thesis is the Multi Discipline Feasible (MDF).

2.2.2.1 Multi Discipline Feasible

The architecture was suggested by [84] and it ensures that each optimization iteration is multidisciplinary

feasible, i.e, that in each iteration the coupling constraints are satisfied. The optimization problem that is

solved when using this architecture is the standard, presented in equation (2.27).

2.3 Surrogate Models

In early stages of aerostructural design it is necessary for the designer/optimizer to have as much infor-

mation as possible. That means a huge amount of simulations/experiments has to be done in order to

give enough information about the design space.
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Even though the computational power is increasing significantly every year, solving optimization design

problems in aircraft engineering is often very costly [85]. These problems, involving a multiple number

of disciplines, such as structural or aerodynamic design and analysis, generally are associated with a

high number of variables and constraints. Furthermore, the search for an optimal aircraft design may

lead to unconventional solutions, where unaccounted phenomena such as non-linearities might become

relevant. As said before, in an early stage of design, the optimizer is interested in exploring the design

space as much and as fast as possible.

According to [69] there are three ways of performing heavy simulations in optimization problems:

• Using supercomputers, which are very expensive, especially when the managment of the down-

time is poorly made

• Using Cloud computing

• Building surrogate models

A surrogate model is an approximation model that tries to mimic the behaviour of the real model. This

surrogate model is cheaper to evaluate than the original one. These models, also known as metamodels

are being used to replace the complex simulation-based models [37, 74].

To build such model, there are three main steps [86]. First, a set of training points must be generated,

by performing a Design of Experiments and a modeling technique has to be chosen. The second main

step in constructing a metamodel is the training of the model itself on the given points. After building it,

the model must be validated and tested. For this validation purposes, different metrics can be used to

evaluate the performance of the model, see section 2.3.3.

2.3.1 Sampling Techniques

Sampling strategies evolved in the past years, consequence of the increasing in using these strategies to

explore an input space. In the beginning, experiments were planned by using the one factor or variable

factor at a time approach or by using a trial and error approach [73]. These strategies were too expensive

and the latter did not even guarantee to find the best sample points location [37].

Fisher [72] introduced the Design of Experiments to plan the experiments in order to understand the

behaviour of agricultural crops systems. He defined three basic principles, randomization, replication

and blocking [37]. These new strategies were planned when only physical experiments (which can be

biased) were made. With the emergence of computational experiments, the need of replication was lost,

since simulation-based experiments are deterministic [73].

Montgomery [73] outlined these three basic principles of DOE:

• Randomization - The order of the runs and each run material experiment have to be randomly

determined. This principle ensures an alleviation of bias by external factors.

• Blocking - Is a technique that reduces the unexplained variability, i.e, the variability that cannot be

overcome is mixed with an interaction to eliminate its influence on the experiment. This is done
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by using groups/blocks of runs that have similar nuisance factors (that are not the scope of the

experiment).

• Replication - This concept has two properties. First, it allows for a determination of an eventual ex-

perimental error. Second, by using the mean of one parameter, replication gives the experimenter

the chance to obtain a more precise value for the real response of the parameter.

The DOE sampling strategies can be classified into two main groups [73]:

• Classical DOE – Examples: Full/fractional factorial design, Central Composite Design (CCD), Box-

Behnken design and Orthogonal Arrays (OA). The first is explained below and the others can be

found in [73];

• Modern DOE – Main groups: Random designs, Quasi-random designs, Projection-based designs,

Uniform designs, Miscellaneous designs and Hybrid designs [73].

2.3.1.1 Classical Design of Experiments

Classic DOE are sampling techniques that assume an uniform distribution of training points. This en-

sures a fixed number of samples and so the influence of the random error term in posterior simulations

is minimized. In this category, the Full and Fractional Factorial Designs will be presented.

Full and Fractional Factorial Designs

In a Full Factorial (FF) design, in each run of the experiment, every possible combination of factor levels

has to be tested. For example, if the problem has two factors, one with x levels and another with y levels,

in each run there are xy possible combinations.

This sampling technique can be implemented in Python, using the Surrogate Modelling Toolbox referred

in [74]. The number of levels used in industrial experiments is commonly 2 or 3, i.e, 2-levels (2k) and

3-levels (3k) factorial designs, where k is the number of factors/design variables. A geometrical view of

a 23 full factorial design is presented in Figure 2.9.

Figure 2.9: 23 Full-factorial design geometrical view [73]

These designs are used when the optimizer desires to fully explore the design space. However they

have some limitations [37]:
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• The computational cost is high because the size of the experiment depends on the number of

design variables.

• The response of a 2-levels full factorial design is approximately linear over the range of the design

variables.

As a way to reduce the size of the experiment, and if the designer knows a priori that certain high-order

interactions are negligible, instead of running the whole experiment, only a fraction of it may be tested.

Thus, the relevant information can still be obtained and the time to run the experiment is reduced.

These designs are known as fractional factorial designs and are usually represented by 2(k−p), for a

2-levels fractional factorial design with k design variables and where 1/(2p) represents the fraction of

the full factorial design. To generate a fractional factorial design, the experimenter has to choose the

criteria to select the fractions. The most used ones are the highest resolution possible and the minimum

aberration [73].

2.3.1.2 Modern Design of Experiments

Modern DOE are also known as space-filling or exploratory designs. These DOE have been replacing

the classical ones mainly because of their expensive cost. These techniques tend to locate more training

points in the interior of the design space [73].

Random Designs

The methods in this category generate training points which have an equal probability to appear in any

sample n from a population N . [87]

The most common methods from this group are the Monte Carlo methods. Such methods include for

example the Markov Chain Monte Carlo (MCMC) samplings, Gibbs sampling and the Metropolis Hast-

ings sampling [73].

Monte Carlo Methods

These methods are used to evaluate mathematical/physical expressions through the use of experiments

with random numbers. [87]

The methods can only be used when there is no missing data because they tend to show poor coverage

regions in high dimensions. They are advantageous when used in complex systems, particularly with a

high level of simultaneous correlations among the design variables. [37]

Latin Hypercube Sampling

Latin Square is N ×N grid containing sample points in which there is only one point per each row and

column. Latin Hypercube Sampling (LHS) [37] is a generalization of this concept to higher dimensions.

This design is a variant of stratified random samplings, which uses a constraint Monte Carlo sampling to

solve the uncertainty quantification of some problems.

This is the most used simulation-based design in aerodynamics because of its flexibility. However it
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has some disadvantages, for example it may not always be space-filling. This drawback can be solved

by using it in combination with orthogonal arrays, suitable space-filling criteria or by the construction of

another LHS within small regions of the design space.

2.3.1.3 Hybrid Designs

Hybrid designs are a combination of some techniques aforementioned, either classical or modern, to

overcome their individual drawbacks. There is a great effort to improve LHS and so there are several

hybrid designs which are based on it such as Nearly Orthogonal Latin Hypercubes and Minimax/Maximin

Latin Hypercubes [37].

The maximin LHS uses space-filling metrics to provide a good cover of the design space. The metric

is based on the pairwise distances between any two points (x and x′) of the sampling plan. All the

distances, equation (2.28), are calculated based on the Euclidean norm [86].

d(x, x′) =

√√√√√∑k
i=1

(
xi − x′i

ximax
− ximin

)2

k
(2.28)

where k is the number of dimensions and ximax and ximin are the maximum and minimum values of the

ith dimension of x.

Using the maximin criterion, a set of different sampling plans is built, and then, the one that maximizes

the minimum distance between every two points is selected.

2.3.1.4 Adaptive sampling

The aforementioned techniques are used to generate a sampling plan which is static, i.e which does

not change during the evolution of an optimization. However, some points can be added to some areas

of interest, for example where the objective function is expected to be improved or where there are few

sample points. When points are added to the initial sampling plan, according to some criterion at choice,

the sampling is called adaptive. Some criteria that can be used for this purpose are explained in section

2.4.

2.3.2 Surrogate Modelling Techniques

A surrogate model is a cheaper to evaluate approximation of the real model. These models have been

becoming more used in optimization problems in aircraft engineering (examples in [19, 38, 39, 67])

because they allow for a more efficient design exploration in early stages of design.

These models can be classified according to the nature of the design variables and to the methodology

[37]. When looking to the methodology, the models use different methods to determine the relationship

between the different design variables:

• Regression

• Interpolation

20



• Projection

On the other hand, when analysing the nature of the design variables, the methods can be [86]:

• Parametric - depend explicitly on the model structure and presuppose a global functional rela-

tionship between the training set and responses. Examples: Polynomial regression [37, 65] and

Multivariate Adaptative Regression Splines (MARS), [37, 69, 70, 86].

• Non-parametric - combine local information and implicitly construct the model. Examples: Radial

Basis Function (RBF) [64, 65, 68, 70, 71, 74] and Support Vector Regression (SVR) [37, 64, 69].

In the following subsections the surrogate models used during this thesis, the Kriging models and two of

its variants and the Radial Basis Function, are presented.

2.3.2.1 Kriging

Kriging [88] is a statistical interpolation method, suggested by Krige in 1951 [89] and formulated by

Matheron in 1963 [63], which assumes that a deterministic response, y(x) can be a realization of a

stochastic process Y (x), that includes a regression model, f(x), and a random process, Z(x):

Y (x) = f(x) + Z(x) (2.29)

This random process is assumed to have a mean zero, i.e, E[Z(x)] = 0, and a non-zero covariance,

given by:

cov[Z(x), Z(x′)] = σ2R[Z(x), Z(x′)] (2.30)

where σ2 is the process variance, R[·, ·] is the correlation, also known as kernel function, and x and x′

are two points in χ.

The correlation between two points, depends solely on the distance between them, and it can be

calculated using different kernel functions [65]. The most common one, and the one used during this

work, is the squared exponential kernel function kse(x, x′):

R[Z(x), Z(x′)] = kse(x, x
′) =

d∑
l=1

exp(−θl(xl − x′l)2) (2.31)

where θl ∈ IR is the hyperparameter correspondent to the l design variable and d is the number of design

variables.

This way, a correlation matrix, [Ψ], for the observed data can be defined by:

[Ψ] =


R[(x(1), x(1)] · · · R[x(1), x(n)]

· · ·
. . . · · ·

R[(x(n), x(1)] · · · R[x(n), x(n)]

 (2.32)

where n is the number of sample points and xi are the sample points locations; which leads to a covari-

ance matrix defined by:
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cov({Z}, {Z}) = σ2[Ψ] (2.33)

Depending on the regression model used, the Kriging model can be:

• Simple Kriging [88] - presupposes a known constant regression term;

• Ordinary Kriging [66] - assumes a constant unknown regression term;

• Universal Kriging [65, 74] - the regression model is given by: f(x) =
∑n
i=1 kifi(x);

• Blind Kriging [66] - as commonly the full behaviour of the real model is unknown, it is complicated

to choose a trend function. The main goal of blind Kriging is to find the basis/trend functions that

capture the most variance in the sample data;

• Gradient-Enhanced Kriging (GEK) [47] - is an extension of Kriging model where the gradients’

information is used during the construction of the model. This improves the accuracy of the predic-

tion. There are two different ways to integrate the gradient information at samples: direct GEK and

indirect GEK. In the direct approach the information is introduced directly to the model equation

system by adding the weighted sum of the gradients to the weighted sum of the data. In indirect

GEK, a finite difference step size has to be determined for using derivative information;

• Co-Kriging [47] - The Co-Kriging method was created to predict an under-sampled primary variable

of interest by better sampled auxiliary variables. It was then extended to variable-fidelity surrogate

modelling [67].

In this thesis, an ordinary Kriging is considered, and so equation (2.29) becomes:

Y (x) = µm(x) + Z(x) (2.34)

where µm is the mean of the response at a sampled design point.

The aforementioned hyperparameters are used to control the performance of the Kriging model.

They can be estimated by maximizing the likelihood function [74]. This function [86], presented in equa-

tion (2.35), is a measure of the goodness of the fit for a given set of sample data and the unknown

parameters.

Lh =
1

(2πσ2)n/2|[Ψ]|1/2
exp

[
− ({y} − {1}µm)T [Ψ]−1({y} − {1}µm)

2σ2

]
(2.35)

where {y} is the vector of sample points response and {1} a n × 1 column vector of ones. Equation

(2.35) can then be simplified by taking the natural logarithm. By deriving the resulting equation and

setting it to zero, one can obtain the maximum likelihood estimates (MLE) for µm and σ2:

µ̂m =
{1}T [Ψ]−1{y}
{1}T [Ψ]{1}

(2.36)

σ̂2 =
({y} − {1}µ̂m)T [Ψ]−1({y} − {1}µ̂m)

n
(2.37)
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If we substitute these results back in equation (2.35) and by taking its logarithm, the concentrated

ln-likelihood function is obtained:

ln(Lh) ≈ −n
2

ln(σ̂2)− 1

2
ln |[Ψ]| (2.38)

which depends only on the unknown hyperparameters {θ}. The hyperparameters can therefore be

found by maximizing equation (2.38), using numerical optimization.

The Kriging model can now predict the true function on an unsampled point, that has to be consistent

with the observed data and with the correlation parameters found. Hence, the prediction is such that it

maximizes the likelihood of the sample data and the prediction, thus the prediction ŷ is:

ŷ(x) = µ̂m + {ψ}T [Ψ]−1({y} − {1}µ̂m) (2.39)

where {ψ} is the vector of correlations between the sampled data and the new prediction:

{ψ} =


R[Y (x(1)), Y (x)]

...

R[Y (x(n)), Y (x)]

 =


ψ(1)

...

ψ(n)

 (2.40)

The model can also be used to estimate the variance of the prediction:

ŝ2(x) = σ̂2

[
1− {ψ}T [Ψ]−1{ψ}+

1− {1}T [Ψ]−1{ψ}
{1}T [Ψ]−1{1}

]
(2.41)

The approach for the estimation of the hyperparameters can be computationally heavy and the op-

timizer can be trapped between local minima. To solve these problems, cross-validation was presented

as an alternative [37]. With this, Kriging was combined with other methods such as the Partial Least

Squares (PLS) to produce faster estimates for the hyperparameters. Hence, new methods such as

KPLS and KPLSK were developed. PLS is a method that searches the direction that maximizes the

variance between the input and output variables. In KPLS, the PLS method is included in the Krig-

ing correlation matrix to scale the number of inputs by reducing the number of hyperparameters [41].

KPLSK is an improvement of KPLS method which is less accurate than the original Kriging model in

some cases, especially for multimodal functions. This method uses an additional step. The first step is

to construct the KPLS model and estimate the hyperparameters in the reduced space. After this, the

estimated hyperparameters are expressed in the original space and used as a starting point to optimize

the likelihood function of a standard Kriging model. This method was proposed by Bouhlel et al. [42].

2.3.2.2 Radial Basis Function

Radial Basis Function model is used to interpolate scattered multivariate data. Each training point

has an associated RBF and the model is a linear combination of all these functions. The response of

these functions depends only on the distance from the prediction point to the training point in question,

they decrease (or increase) monotonically with this distance [71, 74]. A common way to represent the
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prediction equation for RBF is:

ŷ(x) =

n∑
i=1

aiφbf (d(x, xi)) (2.42)

where ai is the weighted coefficient for the i-th basis function, n is the number of training points, (d(x, xi))

is the Euclidean distance (other equivalent metric can be used) between the i-th training point xi and a

testing point x and φbf is a basis function. The coefficients ai are calculated during the training stage.

The basis functions can be, for example, Gaussian, multi-quadric, or inverse multi-quadric.

2.3.3 Error metrics

Since a surrogate model is just an approximation of a real function, it is important to evaluate the accu-

racy of the model in mimicking the real behaviour of a function. For that purpose, there are some com-

monly used metrics, like the Root Mean Squared Error (RMSE), and its normalized version (NRMSE),

and cross-validation [90, 91].

The surrogate model can be tested in some additional test points, that also need to be evaluated with

the real function. To compare the two, the RMSE, calculated using equation (2.43), is used.

RMSE =

√√√√ 1

ntest

ntest∑
i=1

(
f(xitest)− ŷ(xitest)

)2
, for i = 1, . . . , ntest (2.43)

where ntest is the number of test points used, xtest is the sampling test point, f(xtest) is its corresponding

real function value, and ŷ(xtest) is its surrogate prediction value.

On the other hand, instead of using computational time to compute additional test samples, the

surrogate accuracy can be evaluated using the sample points itself, using cross-validation. A leave-

one-out cross validation error corresponds to an error measured at a sample point using the surrogate

built with all samples apart from that point. This can be done for every sample point, and the global

cross-validation error measure is obtained. This error measure is called PRESS [90, 91].

2.4 Surrogate Search

After having the surrogate model built, now an optimization can be performed so that the new, approxi-

mated, objective function is minimized.

However, the surrogate model can also be used as an initial prediction and then be updated in some

areas of interest. This is done by adding points to the sample set using infill criteria. The criteria used

during this work are briefly explained next.

2.4.1 Expected Improvement

This criterion balances the exploitation and exploration of the design space by taking into consideration

the mean and the variance provided by the Kriging model [85]. The optimizer uses the Expected Im-

provement (EI) function, given by equation (2.46), to add a new sample point where the EI is maximum.
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According to [83], considering that the best solution know so far is x∗, and its value is f(x∗) = ymin,

the improvement of a new point x for the objective function f(x) is given by:

I(x) = max(f(x∗)− f(x), 0) (2.44)

which means that, if f(x) ≥ f(x∗) there is no improvement, and on the other hand if f(x) < f(x∗), the

improvement will be the possible decrease of the objective function.

The probability of this improvement is given by:

P [I(x)] =
1

ŝ
√

2π

∫ 0

−∞
e−[I(x)−ŷ(x)]2/(2s2)dI (2.45)

At a sample point, there is no probability of improvement as the function is already known there, and

so the EI will also be null. The expected improvement using the distribution predicted by the Gaussian

process is then given by:

E[I(x)] =


(ymin − ŷ(x))Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
ymin − ŷ(x)

ŝ(x)

)
, if ŝ(x) > 0

0, if ŝ(x) = 0

(2.46)

where Φ(·) is the cumulative distribution function and φ(·) is the probability density function of the stan-

dard normal distribution.

The expression is a trade-off between exploitation of the model and exploration of the design space.

The criterion ensures that, if enough iterations are carried out, the global minimum is found. This hap-

pens because, even if the optimizer gets trapped in a local minimum at a given iteration, on the next

iteration it can “jump” to a new area, where there is a lack of sample points and the variance is therefore

high.

2.4.2 Watson and Barnes

The EI criterion is a multimodal function, and so the optimization can be quite costly [39]. Therefore, an

alternative is presented, the Watson and Barnes criterion (WB2), proposed in [92]. The criterion aims to

improve the efficiency of the optimization [43] by smoothing the EI criterion, which is done by using the

prediction of the surrogate as well as the EI, resulting in an objective function given by:

WB2(x) =

ŷ(x)− E[I(x)], if ŝ(x) > 0

0, if ŝ(x) = 0

(2.47)

Even though the criterion is less multimodal and leads to a more efficient optimization, it may not

steer to a global minimum, and instead yield to a local minimum. This may happen because after some

iterations, the magnitude of the Expected Improvement decreases, as the quality of the surrogate model

gets higher, and so the algorithm focuses on exploitation.
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2.5 Optimization Algorithms

After having the real and the surrogate models defined, as well as the method for surrogate search, is

time now to define the optimization algorithm to be used to find the optimal solution.

The optimization process requires an iterative method, in which the guess of the optimal value is

varied until a solution is obtained. What differentiates the different algorithms is their strategies to move

between consecutive iterations. [83, 93].

The most common classification used to characterize optimization algorithms is by dividing them

into deterministic (which can be divided into gradient-free and gradient-based) or heuristic algorithms,

depending on whether or not they include a random parameter generation in the algorithm [83]. In

section 2.5.1, some examples of deterministic algorithms are presented. In section 2.5.2, the genetic

algorithm, heuristic, is then briefly explained.

2.5.1 Deterministic Algorithms

2.5.1.1 Gradient-free

The approach in this category is to move from a point to the next one, if the value of the objective function

in the new one is smaller than before [83]. This strategy presents a high computational cost when the

problem has a high number of design variables since it takes a lot of function evaluations. However,

these methods can offer some advantages when solving noisy or non-differentiable function problems.

2.5.1.2 Gradient-based

Instead of using solely the objective function value at a certain point, and compare with the next point

to move, these algorithms use both the objective function and its derivatives with respect to the design

variables to compute the search direction.

Though they are usually faster and need fewer iterations to find the optimal solution, they require a

smooth objective function and they only guarantee to converge to a local optimum. The order of the

method is defined by the order of the derivatives used, for example, the steepest descent method only

uses first order derivatives while Newton algorithms use second order derivatives [83, 93].

To compute the derivatives, if needed, the number of function evaluations increases, especially when

using second-order methods. Therefore, to overcome this issue, while maintaining a higher accuracy,

new methods were developed – the quasi-Newton algorithms. Such methods, like Davidon-Fletcher-

Powel (DFP) or Broyden-Fletcher-Goldfarb-Shanno (BFGS) [83, 93], use only first order derivatives and

approximate the Hessian matrix with the function and gradient values from previous iterations, hence

generating second-order information.

The choice of the algorithm to be used to find the optimal solution depends also on the type of

problem, which can be unconstrained or constrained. Usually, engineering problems are constrained,

thus some algorithms to solve this type of problems are presented [83, 93]:

• Projection
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• Sequential Quadratic Programming (SQP)

• Penalty and Barrier

In this thesis, the algorithm used is the Sequential Least-Square Quadratic Programming (SLSQP)

[94], implemented on OpenMDAO [95], which allows to consider a constrained problem with both bounds,

equality and inequality constraints. This algorithm simplifies the original non-linear optimization problem

into simpler quadratic sub-problems. A brief description of this algorithm is given next, based on what is

presented in [83].

Considering an equality constrained optimization problem, the Lagrangian function of this problem

can be defined as:

L(x, λ) = f(x) + h(x)Tλ (2.48)

where λ is the vector of Lagrange multipliers.

The Karush-Kuhn-Tucker (KKT) conditions are necessary to solve the constrained optimization prob-

lem. These conditions are defined as the derivatives of equation (2.48) set to zero:


δL
δxi

=
δf(x)

δxi
+
∑l
i=1 λj

δhj(x)

δxi
= 0, for i = 1, ..., k

δL
δλj

= hj(x) = 0, for j = 1, ..., l
(2.49)

where k is the number of variables and l is the number of equality constraints. By solving these two

conditions, the optimization problem is addressed as an unconstrained problem with k + l variables,

instead of a constrained problem with k variables and l (equality) constrains.

The quadratic problem in an optimization is one with a quadratic objective and linear constrains. A

quadratic sub-problem at a design point xi is defined as:

minimize
1

2
{p}T [W ]i{p}+ {bf}Ti {p}

subject to [Q]i{p}+ hi = 0
(2.50)

where {p} is the only unknown, W (x, λ) = ∇2
xxL(x, λ), bf (x) = ∇f(x) and Q(x) = ∇h(x).

This problem has only one unique solution, given by solving:

[W ]i{p}+ {bf}i − [Q]Ti {λ}i = 0

[Q]i{p}+ {h}i = 0

(2.51)

and {p}i and {λ}i are the solutions of the equations.

The non-linear equations can then be solved using Newton’s method H × st = −jb, where H rep-

resents the Hessian matrix and jb the Jacobian vector of the Lagrangian, and st is the finite difference

step-size:

Wi −ATi
Ai 0

 pi

λi+1

 =

−bi
−hi

 (2.52)
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The set of variables pi is used to update the design point:

xi+1 = xi + pi (2.53)

The value of the design point is also updated in the same way, but by using λi+1.

A SQP algorithm relies on the calculation of the Hessian of the Lagrangian, W (x, λ). The Newton

method uses an exact Hessian matrix. However this can be costly, and an approximation may be used

instead, and so the method becomes Quasi-Newton. The SLSQP algorithm used in this work, employs

such an approximation by updating the matrix using BFGS method. Each quadratic sub-problem is then

replaced by yet another sequence of linear squares sub-problems, using a stable LDLT -factorization of

the matrix W . This method is fully explained in [94]. The method can be extended to handle inequality

constraints by linearising them and using an active-set approach. This allows to only consider the active

constraints at a given iteration, and then check if some constraints are not satisfied.

2.5.2 Heuristic Algorithms

Heuristic or stochastic methods try to mimic some natural behaviour and use a certain amount of ran-

domness to avoid getting trapped at a local optimum [96]. They are generally used in problems with

different local optima, or when the gradients cannot be calculated. In the case of this work, an heuristic

method, a Genetic Algorithm (GA), implemented on OpenMDAO [95] is used in the case of the adaptive

sampling, where the SLSQP could not present good results.

Genetic algorithms [97] are based on natural genetics and the process of natural selection. The

most important steps on the algorithm are now explained. An initial population with different individuals

(design points) is generated using LHS. Each individual has a score according to the objective function,

and the ones with the best scores have more probability of passing their information, chromosome, to

the next algorithm iteration, called a generation. The process of passing this information is achieved

by means of crossover and mutation processes. The algorithm implemented on the framework does

not have a stopping criteria based on convergence, and it stops only when the number of generations

reaches the number of maximum generations specified by the user.

2.5.3 Sensitivity Analysis

Sensitivity analysis allows to know how the outputs vary with the given inputs. In an optimization process

it is important to have this information and so the derivatives of the objective function with respect

to the design variables should be computed. Since the computational cost is highly dependent on

the function evaluations, and the most demanding step in the optimization is the gradient calculations,

having the right approach to compute the derivatives is of utmost importance. The most common method

is using finite differences for their easy implementation although they lack accuracy. In the work here

developed, which has a considerable amount of design variables and constraints, the derivatives must be

computed in a more efficient way for the computational cost not to be extremely high. Hence automatic

differentiation is used [62]. This method consists on calculating the derivatives by resorting to the chain
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rule. OpenAeroStruct uses the OpenMDAO [95] framework to compute derivatives. To this end, the

framework relies on a Modular Analysis and Unified Derivatives (MAUD) architecture [98]. The method

uses the chain rule, the direct and adjoint method, a couple form of the chain rule and hybrid methods

which are explained in [22]. The main advantage of using this architecture is that the OpenAeroStruct

only needs the user to specify the partial derivatives of each module’s outputs with respect to its inputs.
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Chapter 3

Implementation

The sequence of the aircraft design and optimization developed in this thesis is summarized in Figure

3.1.

Flexcraft
project

Mission
requirements

changes

Potential
concepts

Analytical
Hierarchy
Process

Concept
configuration

chosen

Initial sizing:
- Design point
- Wing design
- Weight estimations

Baseline
defined

Optimization
process

Using OAS
model

functions

Using
surrogate
models

Prediction
based

optimization

With adaptive
sampling using

infill criteria 

Figure 3.1: Implementation process flowchart

Firstly, the Flexcraft project concept and the changes in the mission are analysed, and some potential

concepts to be used for the new mission are studied. The best concept is chosen by using an Analytical

Hierarchy Process (AHP) and then an initial sizing is done. This initial sizing is performed by using design

point equations, analysing stability conditions to define a baseline for the wing, and every components’

weight and position are estimated so that the centre of gravity of the new concept can be calculated. This

way, a baseline for the optimization is set. Then the optimization process starts, using the OpenMDAO

framework [95], and it can be done either using the real OAS model functions, or using the surrogate

models. The latter also presents two possible ways, and so the surrogate-based optimization can occur

using the surrogate model itself (prediction-based) or using infill criteria functions.

3.1 Conceptual Design

As said before, in section 1.2, the concept of the aircraft is based on the Flexcraft project concept,

whose configuration is shown in Figure 3.2. However, since the mission has changed, new variants of
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the original concept were studied. These concepts allow to integrate the new propulsive system, with

VTOL capability. First, five concepts are analysed and compared using an Analytical Hierarchy Process,

explained in section 3.1.1. After this, the best concept is used and an initial sizing is done by means of

design point equations, presented in section 3.1.2, weight and balance estimations, in section 3.1.3 and

by doing an initial wing design, presented in section 3.1.4. A brief description of the aircraft’s propulsive

system architecture is also shown in section 3.1.5.

Figure 3.2: Flexcraft configuration [99]

3.1.1 Analytical Hierarchy Process

The selection of the aircraft concept was based on an Analytical Hierarchy Process, that was proposed

by Saaty [100]. This systematic method consists on breaking down the problem using chosen criteria

and making pairwise comparisons.

Considering the optimization objective function and the mission itself the criteria chosen to evaluate

the relative strength of each concept were:

• Aerodynamics - When assuming a constant weight, specific fuel consumption, velocity and range,

the fuel consumption decreases with the increase of the aerodynamic efficiency, L/D.

• Weight and Structures - The concept should be a result of a compromise between structural

stiffness and robustness and its weight.

• Propulsion - The propulsive system efficiency has to be taken into account as it has a large impact

on the fuel and battery consumption.

• Manufacturing and Maintenance - The more complex the aircraft’s systems are, the more ex-

pensive its maintenance and manufacturing will be. For example the maintenance costs depend

on the number of engines and electric motors, increasing the expenses as the level of complexity

grows.

• Stability and Control - Given that the mission does not require high manoeuvrability, the stability

of the concept is favoured. The control during the VTOL parts of the mission also impacts the

decision making process on the initial concept.

• Take-off and Landing capabilities - The regulations for this kind of vehicle here considered are

not well developed yet. Based on regulations for general aviation, an evaluation on the capabilities
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to take-off and particularly land in critical conditions (such as motor inoperative) were taken into

consideration.

• Noise - Since the goal is to design an UAV with VTOL capacity to be used in regional connections

between urban centres, the noise produced by the system (especially during the mission phase

inside cities) has also an impact on the choice of the concept.

The pairwise comparisons are made using qualitative judgements based on a scale of relative im-

portance:

Table 3.1: Scale of relative importance [100]

Intensity Definition

1 Equal importance
3 Moderate importance of one over another
5 Essential or strong importance
7 Demonstrated importance
9 Extreme importance

The even numbers between the aforementioned can also be used when necessary.

To find the priority vector of the criteria chosen, a pairwise comparison matrix has to be built. This

is done by defining the relative importance between different criteria using the scale presented on Table

3.1. The reciprocal property, aij = 1/aji, has to be respected when building the matrix. Then, the priority

vector is the normalized principal eigenvector.

The comparison between the criteria used is presented in Table 3.2, which corresponds to the global

priority data matrix, where “Aerodynamics” present a slightly higher importance than “Propulsion” as

seen in the first row of the data from the table, in column 3.

Table 3.2: Pairwise comparison between the different criteria

Criteria A B C D E F G Priority Vector

Aerodynamics A 1 1 2 9 3 7 3 0.29
Structures and Weight B 1 1 2 7 3 5 3 0.26

Propulsion C 1/2 1/2 1 7 3 3 3 0.18
Manufacturing and Maintenance D 1/9 1/7 1/7 1 1/2 1/5 1/5 0.026

Stability and Control E 1/3 1/3 1/3 2 1 2 3 0.099
Takeoff and Landing F 1/7 1/5 1/3 5 1/2 1 3 0.080

Noise G 1/3 1/3 1/3 5 1/3 1/3 1 0.066

Five concepts, shown in Figure 3.3 are going to be analysed, using these criteria, to evaluate which

one represents the best configuration:

• Concept I: Tilt rotor with four rotors on the wing.

• Concept II: Tilt rotor with four rotors, two on the wing tips and two on the horizontal stabilizer tips.

• Concept III: Lift + Cruise with two fixed rotors for cruise on the wing, two fixed rotors for vertical

take off and landing on the tail booms and two tilt rotors on the wing tips.
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• Concept IV: Lift + Cruise with two fixed rotors for cruise on the wing, one fixed rotor for vertical

take off and landing on an additional surface between the tail booms and two tilt rotors on the wing

tips.

• Concept V: Lift + Cruise with two fixed rotors for cruise on the wing, one fixed rotor to increase

stability during vertical take-off and landing on the horizontal stabilizer and two tilt rotors on the

wing tips.

(a) Concept I (b) Concept II (c) Concept III

(d) Concept IV (e) Concept V

Figure 3.3: Configurations analysed during the conceptual design phase. The rotors with a solid colour
have tilting capability.

For each criterion used, a pairwise comparison of the five concepts needs to be done and so, for

each criterion, there will be a comparison matrix, that are shown in C.1. Having the priority vectors

correspondent to all the criteria, and the global priority vector, now it is possible to assess what config-

uration is best. That is achieved by multiplying each criterion priority vector by the global priority vector.

The global comparison and the rank of each concept are presented in Table 3.3.

Table 3.3: Global comparison of the concepts

A B C D E F G Priority Vector Rank

I 0.218 0.459 0.312 0.117 0.447 0.051 0.472 0.321 1
II 0.480 0.208 0.496 0.266 0.041 0.107 0.270 0.320 2
III 0.035 0.058 0.037 0.045 0.171 0.281 0.047 0.075 5
IV 0.062 0.121 0.078 0.521 0.171 0.281 0.106 0.123 4
V 0.205 0.154 0.078 0.051 0.171 0.281 0.106 0.161 3

With this final rank, the conclusion is that the first concept is the potential best for the considered

mission and it is the one to use.

3.1.2 Design Point

Having chosen a concept for the general configuration of the aircraft, now some general dimensions

can be defined. This is done using the design point equations, for both vertical and forward flight. A

more detailed explanation of the design point analysis can be found in [81]. The parameters used in the

following equations are presented in Table 3.4.
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The weight of the aircraft is considered to be the same as the Flexcraft as a first approach, which

means that the Maximum Take Off Mass (MTOM) is 3500 kg. This is the value used to find the design

point.

First, the forward flight is considered, where the Wing Loading and the Power Loading that satisfy

all the mission requirements are estimated. The Wing Loading (WL) is WL = W/S and Power Loading

(PL) is PL = W/P , where W is the aircraft’s weight, S is the wing area, and P is the required power.

The wing loading affects some parameters of aircraft performance, such as the stall speed or range,

and so it has to be chosen according to the mission requirements.

The first condition used to size the initial concept is the stall speed, presented in equation (3.1):

(
W

S

)
stall

≤ 1

2
ρV 2

stallCLmax
(3.1)

where Vstall is the stall speed, defined by the aviation regulations [101], and CLmax
is the maximum lift

coefficient.

The second condition is the aircraft’s range. This condition is assessed with equation (3.2):

(
W

S

)
range

≤ 1

2
ρV 2

cr

√
CD0

k
(3.2)

where Vcr is the cruise speed, CD0 is the zero-lift drag coefficient and k is the induced drag factor, which

corresponds to k = 1
πARe , where AR is the aspect ratio and e is the Oswald’s efficiency factor.

The power loading also plays an important role in the aircraft’s performance, and there are some

conditions that can be imposed so that it satisfies all the requirements. The conditions used are the

maximum power loading at climb angle requirement and cruise, presented in equations (3.3) and (3.5),

respectively.

(
W

P

)
ca

≤ 1

Vca
ηp

sin γca +
ρV 2

caCD0

2

(
W

S

) +
2k

ρV 2
ca

W

S


(3.3)

with Vca being:

Vca =

√√√√2

ρ

(
W

S

)√
k

3CD0

(3.4)

(
W

P

)
cr

≤ 1

1

ηp

ρV 3
crCD0

2

(
W

S

) +
2k

ρVcr

W

S


(3.5)

where ηp is the propulsive system efficiency, and γca is the climb angle.

Having these four conditions, the design space can be plotted as shown in Figure 3.4. In the plot,

it is possible to identify the point where all the conditions are satisfied and the wing loading and power
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loading are maximum, which corresponds to the design point (where the cruise line intersects the stall

condition). Now, knowing WL and PL and the weight of the aircraft, the wing area necessary and the

required power can be determined.

Figure 3.4: Design space for forward flight

Now, the vertical flight conditions are considered, where the power loading and the Disc Loading

(DL) need to satisfy once again the mission requirements, with the disc loading being DL = W/AR,

where AR is the total rotor area.

Four conditions are considered. The first one is the maximum disc loading, which in this thesis is

chosen to be DLmax = 600 Nm−2 which is a typical value for a tilt rotor [102].

Another requirement is the maximum power loading at vertical climb, given by equation (3.6):

(
W

P

)
vc

≤ 1(
Vvc −

ki
2
Vvc +

ki
2

√
V 2
vc +

2DL

ρ
+
ρV 3

tip

2DL

(
σrCdblade

8

)) (3.6)

where Vvc is the vertical climb speed, ki ≈ 1.2 is the induced power factor, used to include the effects of

drag and inefficiencies, like the rotor tip losses, Vtip is the rotor’s tip velocity, σr is the rotors’ solidity ratio

and Cdblade
is the average blade’s drag coefficient.

For the hover condition, this maximum power loading is given by equation (3.7):
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√
DL

2ρ
+ ρ

V 3
tip

DL
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8

) (3.7)

The last condition to be considered is the maximum power loading to satisfy the transition condition

from equation (3.8):
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(3.8)
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where θtilt is the rotor tilt angle measured clock-wise from horizontal axes, Vh is the horizontal com-

ponent of the forward flight velocity, µ is the advance ratio given by equation (3.9) and X is given by

equation (3.10).

µ =
Vh
Vtip

(3.9)

X =
1

2
ρV 3
∞CD0

1

WL
+

2WL

(πARe)ρV∞
(3.10)

The condition of transition should be evaluated at different tilt angles, with different corresponding

velocities.

As it was done before for the forward flight phase, now the design space can be plotted, as shown

in figure 3.5. The point corresponding to the intersection between the vertical climb condition and the

maximum disc loading represents the design point.

Table 3.4: Initial sizing based on the design point considerations

Parameter Units Value Parameter Units Value

Vstall ms−1 40 ki - 1.2
Vcr ms−1 111.11 e - 0.8
Vvc ms−1 3 AR - 7.98
Vtip ms−1 204 σr - 0.09
CLmax

- 1.4 ηp - 0.85
CD0

- 0.02 ρ (cruise) kgm−3 1.088
Cdblade

- 0.03 ρ (hover) kgm−3 1.223
γca ° 5 ρ (ground) kgm−3 1.225

Figure 3.5: Design space for vertical flight

Combining the two design points, an initial sizing of the aircraft is done and the results are presented

in Table 3.5.
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Table 3.5: Initial sizing based on the design point considerations(
W

P

)
ff

(
W

S

) (
W

P

)
vf

(
W

AR

)
W Pff Pvf S AR

[NW−1] [Nm−2] [NW−1] [Nm−2] [N] [kW] [kW] [m2] [m2]

0.0641 1218 0.0386 600 34335 535 890 28.18 57.23

3.1.3 Weight and Balance Estimations

The total mass of the aircraft was assumed to be 3500 kg as mentioned before. However, until this point

there is no breakdown of the total weight for each aircraft’s component. In this section, an estimation

of the weight of each component is given. The estimates were made using either empirical equations

(presented in [81] or in [20]) and they are presented in Tables C.8, C.9, C.10, C.11 in the Appendix C,

section C.2. A position for each component is also presented, and this position is taken with respect to

the wing’s leading edge at root and to ground level (the referential used can be observed in Figure 3.6).

Figure 3.6: Schematics of the aircraft and the referential used

With the weights and position of every component, the center of gravity (CG) location can now be

determined. This position is presented in Table 3.6, as well as the updated total weight.

Table 3.6: Total mass and CG position

Total mass CG Postition
[kg] x [m] y [m] z [m]

3530.56 2.00 0 2.097

3.1.4 Wing Design

As mentioned in section 1.2, the airfoils of the lifting surfaces were kept for this work. However, now the

wing area is different from the one on the Flexcraft project, and the mission has changed too. The taper

ratio (TR) of the wing was maintained, being TR = 0.4 and the wingspan was also kept the same and

equal to 15 m, to obey helipads limitations. With the CG position known, an estimation of the neutral

point for different sweep angles is done, so that it is possible to have a reasonable value for the static
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margin, Kn = xN−xCG

c̄ , with xN being the longitudinal position of the neutral point, xCG is the longitudinal

position of the CG and c̄ is the mean aerodynamic chord.

The neutral point was calculated using XFLR5 software, that performs aerodynamic analysis using

panel methods [103]. The wing used for this study is characterized by the dimensions presented in Table

3.7. The wing sweep angle is going to be varied from 10 to 20 degrees.

Table 3.7: Wing dimensions

Parameter Nomenclature Value Units

Span b 15 m
Mean aerodynamic chord c̄ 1.994 m

Root chord croot 2.684 m
Tip chord ctip 1.074 m
Taper ratio TR 0.4 −

Sweep Λ 10-20 °
Dihedral Γd 2 °

The horizontal stabilizer dimensions used are the same as the Flexcraft aircraft, and are presented

in Table 3.8.

Table 3.8: Horizontal stabilizer dimensions

Parameter Nomenclature Value Units

Span b 4 m
Root chord croot 1.86 m
Taper ratio TR 1 −

Sweep Λ 0 °
Dihedral Γd 0 °

The static margin is then evaluated with the different sweep angle of the wing varying. The results

are presented in figure 3.7.

Figure 3.7: Static margin variation with respect to the wing sweep angle

As baseline, it was chosen to have a wing with 20° of sweep angle in order to have a reasonable

value for the static margin.
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3.1.5 Propulsive System Architecture

Even though a detailed study on the propulsive systems is out of the scope of this thesis, a brief descrip-

tion of the general architecture of the system is here provided.

The propulsive system consists on an hybrid series configuration, shown in Figure 3.8. In this con-

figuration, the internal combustion engine burns fuel and rotates an AC generator. The power generated

can be used to charge the batteries and to be delivered to the AC electric motors that drive the propellers.

The series configuration allows for a separation of power and thrust generation and also to have

different flight modes [104], i.e, to have flight phases where only the electric energy of the batteries is

used to propel the aircraft, and other phases where only the Internal Combustion Engine (ICE) is the

provider of the necessary energy. This way, the vertical climb, hover, transition and vertical descent are

driven using the batteries and the forward flight phases are carried out using only fuel energy.

Therefore, the ICE and generator can be sized for only cruise, which allows the system to be working

at a steady state in most of the mission, and so it is working with the same specific fuel consumption

(SFC), at the optimal engine point. However, this system implies an increase of the propulsive system

weight and its complexity.

Internal
combustion
engine

Generator AC-DC
Power

distribution
unit

DC-AC Electric
motors Propellers

DC-DC

Batteries

Figure 3.8: High-level representation of the propulsive system

3.2 Optimization Problem Formulation

Now that the concept for the aircraft is chosen, and the general dimensions for the baseline are defined,

the next step is to perform the optimization from this baseline. In this section, the formulation used to

solve this problem is presented.

3.2.1 Mission Requirements

Initially, the mission requirements are set. Based on these, the objective function and the design vari-

ables can then be chosen, as well as the constraints can be set.

The mission requirements considered are as follows:

• Cruise speed: The cruise speed was set to be the same as for the Flexcraft project, which is 110

ms−1.
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• Range: The aircraft’s range was slightly decreased, in comparison to the Flexcraft project, being

reduced from 1000 km to 800 km. This change results from the limitations found with the electrical

vertical take off and landing, and the weight of batteries that this requires.

• Payload: As it happened with the range, the amount of payload also suffered a reduction, going

from 900 kg to 500 kg. Once again, this happens because of the increase in batteries weight and

the tilt system that now needs to be employed.

• Stability: Even though in this thesis there is not a comprehensive study on the matter, the aircraft

must at least be able to fly trimmed and with a guaranteed reasonable value for the static margin.

Therefore, it was decided that the static margin should be between 5 % and 20 %, and the pitching

moment coefficient should be zero at the cruise phase.

• Structural integrity: The aircraft must be able to withstand the VTOL phases and also a pull-up

manoeuvre of 3.8g.

3.2.2 Objective Function

With the range fixed, one main objective is to minimize the fuel consumption. Also, since VTOL phases

play a major role in the power required, which in turn influences the weight of the rotors and batteries, this

power should also be considered. In order to deal with these different possible objectives, an energetic

objective function is used, combining the energy spent during both cruise and VTOL operations.

The mass of consumed fuel is estimated by using the Breguet equation for a propeller aircraft [81,

105], shown in equation (3.11). This equation does not present the propeller efficiency that is generally

used, since this is not implemented on OAS.

mfuel =
W0

g

[
exp

(
−R · g · SFC

Vcr

CD
CL

)
− 1

]
(3.11)

where W0 is the aircraft’s weight without the fuel, R is the fixed range and SFC is the specific fuel

consumption.

The corresponding energy can be calculated using the fuel’s specific energy density, Especfuel
, which

is assumed to be equal to 43.28 MJkg−1, according to [106].

The energy for the VTOL phases of the mission is estimated using the required power, that comes

from the equations presented in section 3.1.2 and the time that each phase takes. It was considered

to have a vertical climb to obstacle height of 5 seconds and a hover time of 60 seconds. The transition

phase was also considered, by adding a fixed term to the total energy. A preliminary study of the neces-

sary energy needed during transition was done, but since this term is relatively small in comparison to

the total energy obtained for each configuration, the transition energy will not play a role in the optimized

solution.

The final expression for the objective function is then given by equation (3.12):

E = mfuel × Especfuel
+ Pvc × tvc + Phover × thover + Etr (3.12)
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3.2.3 Design Variables

Various case studies are going to be performed, using different numbers of Design Variables (DV).

Consequently, in this section, all the DV are presented.

The wing planform is defined using a linear distribution for the chord, by controlling the chord at the

root, (croot)wing, and the chord at the tip (ctip)wing. The same happens for the horizontal tail planform,

using (croot)tail and (ctip)tail.

The wingbox structure is defined by the thickness of the spars and the skins. Using the OAS model

for the wingbox, the rear and front spar thicknesses, (tspar)wing, are considered to be the same, as well

as the upper and lower skin thicknesses, (tskin)wing. A constant thickness is considered along the span

for both the spars and the skins. This consideration was taken because of manufacturing restrictions.

Once again, the same happens for the horizontal tail, thus adding two more design variables, (tspar)tail

and (tskin)tail.

The angle of attack at cruise condition, α, is also used as a design variable in one of the case studies.

3.2.4 Constraints

The constraints of the problem are related to the mission requirements, explained on section 3.2.1.

To ensure a longitudinally stable aircraft, the static margin, estimated according to [81], Kn, will have

to be between 5 and 20 % as mentioned before. Directional and lateral stability are not considered on

this thesis, since the vertical stabilizers are not being considered in the optimization problem, and are

assumed to be equal to the ones on the Flexcraft project.

Additionally, in order to have a trimmed flight during cruise, a constraint regarding the pitching mo-

ment coefficient, CM , is used, and is also imposed that lift must be equal to the total weight. During the

pull-up manoeuvre considered, an additional constraint is imposed, so that the lift is equal to the total

weight multiplied by the pull up load factor, n = 3.8g. Two load cases are considered: the vertical climb,

and a pull-up of 3.8g. The four critical points on the wingbox, explained on section 3.3.3, must satisfy

the structural failure criterion at these ultimate load cases. The criterion used is the Von-Mises failure

criterion, presented in section 2.1.1.3. Finally, a constraint regarding the volume of the necessary fuel

is employed. This, ensures that the volume occupied by the fuel is smaller than the available volume

inside the wingbox structure of the wing.

The constraints’ equations were arranged in a manner that to be satisfied they need to be negative

(apart from the fuel volume constraint, which needs to be positive). Since there are computational errors

and limitations, each equality constraint was transformed into two inequality constraints. The limiting

values of the constraints used in the optimization are presented in Table 3.9. The bound of the design

variables are also set, and they are presented in Table 3.10.

3.2.5 Optimization Problem Statement

Having defined the objective function in section 3.2.2, the design variables presented in section 3.2.3,

and set the constraints and bounds of these design variables in section 3.2.4, it is now possible to state
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Table 3.9: Constraints’ minimum and maximum allowable values

Contraint Minimum value Maximum value

Kn 0.05 0.2
CM -0.01 0.01

Failure criterion - -0.001
L=W (Cruise) -0.1 0.01

L=nW (Pull up) -0.1 0.01
Fuel volume 0.001 -

Table 3.10: Design variables bounds

Design variable Units Lower bound Upper bound

(ctip)wing m 0.5 2
(croot)wing m 1.5 3.5
(tspar)wing m 0.001 0.01
(tskin)wing m 0.001 0.01
(ctip)tail m 1.15 2.5
(croot)tail m 1.15 2.5
(tspar)tail m 0.0005 0.01
(tskin)tail m 0.0005 0.01

α ° -1.5 0.5

the optimization problem in the form explained in section 2.2.1 in equation (2.27). This statement is

presented in equation (3.13).

minimize mfuel × Especfuel
+ Pvc × tvc + Phover × thover + Etr

w.r.t (ctip)wing, (croot)wing, (tspar)wing, (tskin)wing,

(ctip)tail, (croot)tail, (tspar)tail, (tskin)tail, α

subject to 0.05 ≤ Kn ≤ 0.2

(CM )cr ≈ 0

Lcr ≈W

Lpull ≈ nW

Von-Mises criterion (VTOL) . 0

Von-Mises criterion (pull-up) . 0

Fuel volume < Available volume

(3.13)

3.3 MDA implementation

The analysis performed during the optimization includes structural and aerodynamic analysis. In this

section, the architecture of the MDA is explained.

3.3.1 Discipline coupling

In the beginning of the MDA, performed at each iteration of the optimization, the lifting surfaces’ geome-

tries are set using the inputs of the design variables. An aerodynamic analysis is then performed. Using
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the outputs from the aerodynamic analysis, the aerodynamic loads, a structural analysis is then carried

out. With the displacements computed in this analysis, a new aerodynamic shape is used to perform the

aerodynamic analysis once again. This process repeats until convergence, between aerodynamics and

structures, occurs.

There are two main approaches to solve the MDA: fixed-point and Newton [107]. By using a fixed-

point approach each analysis is solved individually and the data from other disciplines is fixed when

solving a certain analysis. Two examples of this approach are the Jacobi and the Gauss-Seidel ap-

proach [107]. In the first one, the outputs used from the other analysis correspond to the previous

iteration. In contrast, the Gauss-Seidel approach uses the most recent outputs. The latter approach

generally converges faster. On the other hand, in the Newton approach [107], all the analyses are

solved simultaneously in each optimization iteration.

In [22], a comparison between different approaches for solving a coupled aerostructural system for

level flight and pull-up (2.5g) using OAS is presented. The authors compared a Newton approach, a Non-

Linear Block Gauss-Seidel (NLBGS) and a NLBGS approach with Aitken relaxation. They concluded that

the best approach is NLBGS with Aitken relaxation, and so this is the approach used in this thesis. A

diagram of the approach can be consulted in Figure 3.9.

Figure 3.9: eXtended Design Structure Matrix (XDSM) diagram [108] for aerostructural optimization
using a Gauss-Seidel approach. The x vectors are design variables and the y vectors are states, where
* represents the values at the design optimum. Figure from [22].

3.3.2 Aerodynamic analysis

The OAS framework uses a VLM for the aerodynamic analysis. The inputs used are both design vari-

ables or outputs from the geometric models. Also, some corrections in the drag calculations are consid-

ered regarding viscosity and compressibility, as explained in section 2.1.2. The loads carried by the lifting

surfaces are evaluated at two different load cases, a vertical climb condition and a pull-up manoeuvre of

3.8g.
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3.3.3 Structural analysis

To evaluate the failure criterion, a Finite Element Analysis (FEA) is employed using the elements ex-

plained in section 2.1.1. The cross-section is a wingbox structure, with a thin walled spar and skin,

represented in Figure 3.10.

Figure 3.10: Wingbox representation [23]

The lifting surface is discretized according to the user-specified number of panels, and the FEA

elements used can be observed in Figure 3.11.

Figure 3.11: Aerodynamic and structural discretization [23]

For the cross-section in each discretized element, its area, the area moments of inertia about two

axes, and the torsion constant are calculated [23]. These are estimated using the normalized user-

specified coordinates of the wingbox.

The failure criterion, presented in section 2.1.1.3, is checked at the root of the two lifting surfaces,

wing and horizontal stabilizer, in four critical points, shown in Figure 3.12.

In addition to the already calculated failure criterion, it is also possible to obtain the CG position of

both lifting surfaces.

3.3.4 Mesh convergence

The number of panels, for both chordwise and spanwise directions, is given by the user. In this thesis,

the number of panels for either the aerodynamic and structural analysis are considered the same, since

this is the only option available on OAS, so far.
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Figure 3.12: Critical stress combinations [23]

Considering that the number of divisions in the spanwise direction is ny, and in the chordwise direc-

tion is nx, a study on the influence of the number of panels chosen on the aerodynamic and structural

parameters is performed.

The parameters considered are lift and drag coefficients, as well as the average tip displacements in

both the wing and tail.

For both lifting surfaces nx is considered to be the same, and it will be varied from 3 to 11. As for the

spanwise discretization, the number of panels in the horizontal tail is considered to be two-thirds of the

wing panels, but always ensuring that (ny)tail is at least equal to 7. It is also ensured that ny is always

an odd number, which is a requirement of the framework used.

The results of the parameters considered are compared to the ones obtained when using a mesh

with the following characteristics: nx = 17, (ny)wing = 99 and (ny)tail = 67. The deviations in form of

percentages to this reference mesh are shown in Figure 3.13.

Based on the results, and having in mind that by increasing the number of panels the computational

costs also increases, it was chosen to have a mesh with the following parameters: (ny)wing = 27,

(ny)tail = 19 and nx = 7.

3.4 MDO methodology

Two different approaches of the optimization, implemented on OpenMDAO [95] are compared in this

thesis, one that uses the OAS model to evaluate the objective function and the constraints, and another

one that uses surrogate models and different search methods to carry out the optimization. First, the

sampling plans and surrogate models were studied using known test functions, like the Branin function.

These studies are presented in section 3.4.1, and then the optimization cycle is explained in section

3.4.2.
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(a) Mesh convergence test evaluating CL (b) Mesh convergence test evaluating CD

(c) Mesh convergence test evaluating the average tip displace-
ment of the wing

(d) Mesh convergence test evaluating the average tip displace-
ment of the horizontal tail

Figure 3.13: Mesh convergence study

3.4.1 Test functions studies

The surrogate models used during the thesis were built in Python, using the Surrogate Modeling Toolbox

(SMT) [74]. The sampling plans were also generated using the same toolbox.

First, in order to study different sampling plans and surrogate models, a study with analytical test

functions was carried out. The functions used were the Branin, equation (3.14) and the Rosenbrock,

equation (3.15), functions [86]. The latter was evaluated using different numbers of design variables, nx.

f(x) =

(
x2 −

5.1

4π2
x2 +

5

π
x1 − 6

)2

+ 10

[(
1− 1

8π

)
cosx1 + 1

]
, x1 ∈ [−5, 10], x2 ∈ [0, 15] (3.14)

f(x) =

nx−1∑
i=1

[(xi+1 − x2
i )

2 + (xi − 1)2], −2 ≤ xi ≤ 2, for i = 1, ..., nx (3.15)

Three different types of sampling plans were used, the LHS (with a maximin criterion), FF and a

random design sampling plan. Different numbers of sample points were used to evaluate their influence

on the surrogate models built. Four different surrogate models were tested, the Kriging model, the KPLS,

KPLSK and RBF models.

When evaluating the surrogates built using the Branin and the two variables Rosenbrock function, a

test sample set was used, with 200 sample points. The test samples were generated using LHS with
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the maximin criterion. The results of the average relative error evaluated on those test points are shown

in the following tables and figures.

To understand the influence of the sampling plan, first the surrogate model used is fixed, and three

sampling plans for each value of training points are built, one using LHS, one using FF and another one

using a random design. Figure 3.14 shows the relative errors obtained with each sampling plan, when

using a Kriging surrogate model.

(a) Branin function (b) Rosenbrock function

Figure 3.14: Average relative error with the different sampling plans using a Kriging surrogate model to
represent the Branin function and the Rosenbrock function with 2 design variables

When using a Full Factorial sampling plan, usually it is necessary to have more training points to

get good results but, by doing so, the computational cost increases. This trend is also seen when other

surrogate models (KPLS, KPLS and RBF) are used, and when using the Rosenbrock test function. The

results can be seen in the Appendix B, in figures B.1 and B.2.

From this study, the sampling plan chosen was the LHS plan. Using this plan, the accuracy of the

different surrogate models itself were then studied.

Table 3.11: Average relative error obtained with the different surrogate models representing the Branin
function

# Training points Kriging KPLS KPLSK RBF

20 26 % 54 % 37 % 296 %
26 6.04 % 16.45 % 5.95 % 277 %
30 3.69 % 15.57 % 9.24 % 257 %
36 0.62 % 12.69 % 13.30 % 292 %
40 5.03 % 16.65 % 15.20 % 259 %
46 3.82 % 25.07 % 18.17 % 211 %
50 0.021 % 22.27 % 23.82 % 191 %
70 0.019 % 10.35 % 9.85 % 163 %

100 0.002 % 0.003 % 0.002 % 129 %

From Table 3.11, it is observed that the relative error associated with the RBF surrogate model is

significantly higher than the others. This trend is observable when using both test functions (the rest of

the results are shown in the Appendix B in tables B.1 and B.2). Therefore, the RBF model will not be

used. It can also be concluded that the Kriging model is the one that needs less training points to have

good matching results with the real function. For example, for the Branin function, the Kriging model

needs 46 training sample points to achieve an average relative error smaller than 5 %, while the KPLS
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and KPLSK models need more than 70.

(a) Branin function (b) Rosenbrock function with 2 design variables

Figure 3.15: Training time to build the different surrogate models represent the Branin function and the
Rosenbrock function with 2 design variables

The training time needed to built the different surrogate models is presented in Figure 3.15. As it

is shown, the Kriging model and the KPLS model are the ones that take less time, i.e, they imply less

computational cost. Since the Kriging model shows the smaller average relative errors between these

two models, it will be the chosen surrogate model to use in the aircraft design optimization problem.

3.4.2 Optimization cycle

Before building the surrogate models, and solving the optimization problem using these approximated

functions, the problem is solved using the real functions and its analytical derivatives.

In summary, the optimization cycle when using the real functions is described by the following steps:

1. Model setup, using OAS: set the flow conditions, material’s properties, the mission performance

values (e.g. vertical climb velocity) and the initial values of the design variables (from the baseline

already defined).

2. Search direction: Computed with the gradient information of the objective function and constraints

to find the next iteration point.

3. Point evaluation: MDA in the point chosen, using a scheme represented in Figure 3.9.

4. Assessment: Constraints and convergence criteria assessment.

5. Repeat steps 2 to 4 until convergence is achieved.

The results from this optimization problem are then compared with the results obtained when surro-

gate models are used.

The optimization using the surrogate models is described in Figures 3.16 and 3.17, for when no infill

criterion is used, and for when there is an adaptive sampling plan based on the infill criterion chosen,

respectively.

In the first case, the objective function of the optimization problem is the surrogate model itself,

without adding any additional sample points.
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DOE
Surrogate models 
(Objective function

and constraints)

Optimization
(SLSQP) Solution

Evaluation of
solution with real

functions

Figure 3.16: Optimization cycle with the surrogate models functions

As shown in Figure 3.16, firstly the DOE is generated and the surrogate models, for the objective

functions and every constraint, are built. Having the new, approximated, functions, the optimization

problem is then solved using the SLSQP algorithm.

The final solution is then evaluated with the real model to check if there are any major discrepancies.

DOE
Stopping 

criteria

Surrogate models 
(Objective function

and constraints)

Infill criterion
function

Optimization
(GA) New point

Evaluation with
real functions

Update DOE
and surrogates

No

Yes

Solution

Figure 3.17: Optimization cycle with the surrogate models functions using an adaptive sampling plan

On the other hand, instead of using the objective function surrogate model as the function to be

minimized, an infill criteria function, explained in section 2.4, can be used. The constraints used in the

problem correspond to the constraints’ surrogate models.

As shown in Figure 3.17, an initial DOE is generated and the initial surrogate models are built. After

this, the infill criterion function is defined, using the objective function (total energy) surrogate model.

At this point, the objective function, for the optimizer to minimize, becomes the infill criterion function

itself. The optimization problem is solved using a genetic algorithm, and the solution obtained is then

evaluated with the real model and a new sample point is added to the DOE. The surrogate models,

and consequently the infill criterion function, are then updated and the process starts over again until

convergence is achieved.
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Chapter 4

Results

As mentioned before, the results from the optimization using the real functions and using the surrogate

models are compared. In fact, several optimization problems were solved, each with different parameters

as design variables. First, three case studies (cases 2.1, 2.2 and 2.3) using only two design variables

were carried out. These studies allowed to have a deeper knowledge of the problem, meaningly, the

objective function and constraints behaviour. After this, a case study using four design variables (case

4) was performed, and lastly a case with eight design variables (case 8) was done. In this chapter, the

results of these different case studies are presented and discussed.

4.1 Baseline

The results presented in the following sections will be compared to the baseline characterized by the

parameters presented in Table 4.1. The angles of attack used as baseline are: α = −0.8° for cruise,

αvc = −0.3° for vertical climb and αpull = 6° for pull up.

Table 4.1: Baseline geometric parameters

Parameter Units Value Parameter Units Value

Wing root chord m 2.684 Tail root chord m 1.86
Wing tip chord m 1.074 Tail tip chord m 1.86
Wing skin thickness m 0.0038 Tail skin thickness m 0.00255
Wing spar thickness m 0.0038 Tail spar thickness m 0.00255
Wing sweep ° 20 Tail sweep ° 0
Wing span m 15 Tail span m 4
Wing dihedral ° 2 Tail dihedral ° 0

The performance parameters, obtained using the OAS model for this baseline configuration are

presented in Table 4.2.
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Table 4.2: Baseline performance

Wing structural
mass
[kg]

Horizontal tail
structural mass

[kg]

Fuel

[kg]

Total mass

[kg]

L/D Total energy

[MJ]

408.35 37.68 407.07 3524.10 13.36 17937.11

4.2 Case studies conditions

In this section, the design variables used in each case study, presented in the following sections, are

identified. The objective function is always considered to be the total energy minimization, its surrogate

model or the infill criterion based on this surrogate model. The constraints are also always the same

functions, explained before in Chapter 3, or their surrogate models. The design variables used in each

case study carried out are the following:

• Case 2.1 - wing root chord (range: 1.5 m to 3.5 m); wing skin thickness (range: 0.001 m to 0.01 m);

• Case 2.2 - wing tip chord (range: 0.5 m to 2 m); wing spar thickness (range: 0.001 m to 0.01 m);

• Case 2.3 - wing root chord (range: 1.5 m to 3.5 m); angle of attack at cruise phase (range: −1.5°

to 0.5°);

• Case 4 - wing tip chord (range: 0.5 m to 2.0 m); wing root chord (range: 1.5 m to 3.5 m); wing skin

thickness and the wing spar thickness (range: 0.001 m to 0.01 m);

• Case 8 - wing tip chord (range: 0.5 m to 2.0 m); wing root chord (range: 1.5 m to 3.5 m); wing skin

thickness and the wing spar thickness (range: 0.001 m to 0.01 m); tail tip chord and tail root chord

(range: 1.15 m to 2.5 m); tail skin and spar thicknesses (range: 0.0005 m to 0.01 m).

4.3 Cases with 2 design variables

4.3.1 Surrogate models’ accuracy

4.3.1.1 Case 2.1

To test the accuracy of the surrogate models’ predictions, a sample test set of 100 points was generated

using LHS. Then, the sampling plans with which the surrogate models are built were generated, using an

increasing number of sample points. The accuracy of the corresponding surrogate model was evaluated

with the average relative error, calculated for each test point. The results of the average relative error

obtained with the different sample sets are shown in Figure 4.1. The results of the constraints that are

not presented here, because of space limitations, follow the same trend as the ones shown in Figure

4.1, and the same happens on the following cases.

The behaviour of the objective function is well captured even with a reduced number of sample points.

However, some constraints, like the wing failure criterion for both the vertical climb phase and pull up

manoeuvre, for example, need more sample points to give good results. This can be explained by the

non-linear behaviour of these two functions, depicted in Figure 4.2. However, the general trend for every
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(a) Objective function (b) Static Margin

(c) Wing failure criterion in point 2 at vertical climb (d) Wing failure criterion in point 2 at pull up

Figure 4.1: Average relative error of different functions vs number of sample points used for case 2.1

constraint and the objective function is for the average relative error to decrease with the increase in

number of sample points, as expected. The number of sample points needed so that the total energy

and every constraint function presents a relative error smaller than 5% is 35.

(a) Objective function (b) Wing failure criterion in point 2 at ver-
tical climb

(c) Wing failure criterion in point 2 at pull
up

Figure 4.2: Behaviour of the real functions varying with the two design variables used in case 2.1

4.3.1.2 Case 2.2

As it was done in the first case study, initially the quality of the surrogate models when varying the

number of sample points to built them is analysed. Again, a test sample set was used, generated with

LHS and using 100 test points. The results of the average relative error of some of the surrogate models

built are shown in Figure 4.3.

As it was seen before in case 2.1, there is a clear trend of the relative error, decreasing with the
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(a) Objective function (b) Static Margin

(c) Wing failure criterion in point 2 at vertical climb (d) Wing failure criterion in point 2 at pull up

Figure 4.3: Average relative error of different functions vs number of sample points used for case 2.2

increase of sample points used, as expected. Unlike case 2.1, all the surrogate models present an

average relative error smaller than 5% even when only using 10 sample points. This suggests a more

linear behaviour of the functions with respect to these two design variables, which can be confirmed in

Figure 4.4.

(a) Objective function (b) Wing failure criterion in point 2 at ver-
tical climb

(c) Wing failure criterion in point 2 at pull
up

Figure 4.4: Behaviour of the real functions varying with the two design variables used in case 2.2

4.3.1.3 Case 2.3

As it was done in cases 2.1 and 2.2, another set of test points with 100 points was generated with LHS.

The result of the surrogate models’ predictions for each function were compared with the real functions

on those points, and the results of the average relative error are presented in Figure 4.5.

The relative errors tend to decrease with the increase of number of sample points used, and to
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(a) Objective function (b) Static Margin

(c) Wing failure criterion in point 2 at vertical climb (d) Wing failure criterion in point 2 at pull up

Figure 4.5: Average relative error of different functions vs number of sample points used for case 2.3

converge to zero, as expected. The number of sample points necessary, so that the relative error

associated with every function is lower than 5%, is around 25. As in case 2.2, the behaviour of the real

functions is more linear than in case 2.1, and so the surrogate models can mimic the results more easily,

i.e. requiring less samples. The behaviours of the objective function, and two wing failure criteria are

shown in Figure 4.6. From these figures it is also possible to conclude that, when the angle of attack

is a design variable, its influence on the objective function is much more significant than the wing root

chord variable. For this reason, when using the angle of attack as a design variable in more complex

cases, it was noted that the surrogate models were not able to depict well the real function behaviour

and therefore the angle of attack was dropped out, and in cases 4 and 8 it is not used.

(a) Objective function (b) Wing failure criterion in point 2 at ver-
tical climb

(c) Wing failure criterion in point 2 at pull
up

Figure 4.6: Behaviour of the real functions varying with the two design variables used in case 2.3
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4.3.2 Optimization results

The optimization results for the cases 2 are here presented. Also, a comparison of the different ap-

proaches, the optimization using the real functions, optimization using the surrogate models, and opti-

mization using the adaptive sampling, is presented.

4.3.2.1 Case 2.1

The optimization problem is first solved using the real functions and its derivatives, using the SLSQP

algorithm and the adjoint method. The optimal solution found is presented in Table 4.3, and the opti-

mization history of the objective function (total energy), the design variables and active constraints are

shown in Figures 4.7 and B.3, respectively. It is possible to see that the optimal solution corresponds to

a higher wing root chord and a smaller wing skin thickness. It is enoticeable that in some iterations there

was, at least, a constraint which was violated. This is explained because of how the SLSQP algorithm

works, it first minimizes the objective function and only then it tries to obtain a feasible solution.

Figure 4.7: Optimization history of the objective function in case 2.1 (when using the real functions)

In the case of the second approach, where the objective function is a surrogate model of the total

energy function and the constraints are the corresponding surrogate models as well, the problem was

solved using the different sampling plans, i.e., with the different number of sample points presented

before, to build the surrogate model. Only the best result is presented here, and it corresponds to

when the number of sample points used is 50, the largest database considered. In this approach the

algorithm used is the SLSQP and it uses the prediction values of the surrogate models and its derivatives

estimates as well. The results of the optimization are presented in Table 4.3. It should be noted that the

performance data corresponds to the real function values evaluated at the optimum solution obtained

with the surrogate models.

In last approach, the sampling plan, with which the surrogate models are built, is an adaptive plan,

i.e, there are points that are added to the plan, according to some criterion (WB2 in this case), as it was

explained in section 3.4.2 and shown in Figure 3.17. Bearing in mind the quality study of the surrogates

explained before, different number of starting sample points were chosen for different functions, since

the WB2 criterion is based on the total energy and the constraints are assumed to be good enough

to represent their corresponding real functions. For the total energy (previous objective function) the

number of initial sample points is 5, for the constraints which have a linear or almost linear behaviour the
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surrogates were built using 20 starting sample points, and for the constraints that, in the accuracy study

shown a difficulty in mimicking their real function (such as the wing failure criteria), the number of starting

sample points is 50. Once the starting surrogate models were built, the new objective function is defined

as the WB2 criterion. The algorithm used in this optimization process is the GA, since the analytical

derivatives of this function are too complex. A penalty function is added to the objective function, when a

constraint or more are not respected, which corresponds to the absolute value of the constraint multiplied

by a fixed scalar, 130. To ensure that the design space is well explored, the population was chosen to be

composed by 200 individuals and the maximum number of generations was set to 100. For each iteration

of the global optimization cycle a new point is added to the sampling plans (using OAS to evaluate the

real functions at that point), the surrogate models are built again, and the GA looks for a new minimum.

The stopping criterion used was the number of added points. A convergence criterion was not used

because the WB2 presents a balance between the exploitation and exploration, and so, even if there

is convergence in two consecutive iterations, in the next iteration the optimizer might tend to explore

another area of the design space with a lower total energy needed. The number of added points for

this case was set to 50. However, it was then observed that the optimal solution for the considered 50

iterations was found after adding just 3 points and the points found by the GA were very similar in most

iterations. Even so, the 50 points were added to explore other regions and ensure that the best solution

was found. The results of the history of the optimization are presented in Figure 4.8.

Figure 4.8: Optimization history of the total energy in Case 2.1 using the adaptive sampling approach

In Figure 4.8, it is possible to see the value of the total energy of the 5 initial sample points (triangles)

and the total energy of the points that were being added to the sampling plans (circles). The first two

points added correspond to unfeasible solutions, and the third is the optimal solution for this case. This

solution is characterized by the parameters found in Table 4.3.

All of the three approaches employed lead to an improvement in comparison to the baseline, and the

differences between the three solutions is very small (less than 1 % in the total energy). This validates

the results obtained with the surrogate models, either when using the models as the objective function

and constraints and when using the WB2 criterion, since the solutions found present very similar values

for the design variables.

The benefits of using the surrogate models, in terms of computational cost (Table 4.4), are not verified

in this case, since the optimization using the real functions when using the SLSQP takes only 6 iterations
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Table 4.3: Results of the different solutions of case 2.1

Wing root
chord

[m]

Wing skin
thickness

[m]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy

[MJ]

Baseline 2.684 0.0038 408.35 407.07 3524.10 13.36 17937.11

Real
functions

2.739 0.00155 228.68 378.10 3315.47 13.54 16433.35
-44.00 % -7.12 % -5.92 % 1.35 % -8.38 %

Surrogate
search

2.739 0.00154 228.26 378.02 3314.96 13.54 16429.71
-44.10 % -7.14 % -5.93 % 1.38 % -8.40 %

Adaptive
sampling

2.739 0.00157 230.06 378.42 3317.16 13.54 16446.95
-43.66 % -7.04 % -5.87 % 1.38 % -8.31 %

to find the optimum, which corresponds to 6 function and gradient evaluations. On the other hand, the

second approach takes 44 surrogate model predictions and 50 real function evaluations to build the

surrogate models, while the adaptive sampling approach takes 105 surrogate model predictions plus

100 real functions evaluations (50 to build the initial surrogate models and one for each of the 50 points

added).

Table 4.4: Computational cost of the four methods for case 2.1

Real functions
(SLSQP)

Surrogate
search

Adaptive
sampling

Iterations 6 11 50
Function evaluations 6 44 (+50) 1000000 (50+50)
Gradient evaluations 6 11 0

4.3.2.2 Case 2.2

When using the SLSQP and the real functions, the solution found is again an improvement in comparison

to the baseline. The values of the design variables of the optimal solution are presented in Table 4.6.

In this table, the results of the general performance of the aircraft are also shown. In Figure 4.9, the

optimization history of the total energy can be observed, and the history of the design variables and the

active constraints during the process are shown in Figure B.4.

Figure 4.9: Optimization history of the objective function in case 2.2 (when using the real functions)

It is observed that the total energy converges to the optimal solution, varying very little in the last
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iterations, where the optimizer is just trying to find a feasible solution near the region where it found the

minimum.

When considering the approach that uses the surrogate models, as before, the optimized solution

presented next, corresponds to the best solution found with the different sampling plans. The best

solution is found when 10 sample points are used, and is presented in Table 4.5.

As it was explained in case 2.1, the third approach used corresponds to the adaptive sampling plan,

using the WB2 criterion as the objective function of the optimization and adding sample points to the

surrogate models according to this criterion, in order to find the optimal solution. The number of starting

sample points used to build the total energy surrogate model is 5, and the number of the starting points

used to build the constraints’ surrogate models is 20, since the accuracy with this number of sample

points is reasonable, as seen before in section 4.3.1. Once again, the GA was used as the optimization

algorithm and were used a population with 200 individuals and a maximum number of generations of

100. Since in case 2.1, the number of added points, 50, turned out to be excessive, and because of time

constraints, in this case only 25 points were added to the sampling plans. The result of the optimization

is presented in Table 4.5, and the optimal solution corresponds to the point added on the 6th iteration.

The total energy through the different iterations is shown in Figure 4.10.

Figure 4.10: Optimization history of the total energy in Case 2.2 when using the adaptive sampling
approach

The first points, in iteration 0, correspond to the starting sample points used to build the total energy

surrogate model. The points corresponding to the first two iterations present a lower value of the total

energy than the optimal solution, but they are unfeasible. Once again, the points added to the sampling

plans are very similar to each other, which suggests that probably the global minimum was found, or that

there is a very small feasible area that was not found by the GA.

All the approaches reach a better solution than the baseline, and the differences between the three

solutions found are very small. In every optimization, the wing tip chord is increased, to similar values,

and the wing spar thickness is reduced, being very close to the lower boundary of that design variable.

The solution obtained using the surrogate models is slightly better than the other two, reducing the total

energy in 3.72 % in comparison to the baseline. In terms of computational cost, a comparison between

the different approaches is presented in Table 4.6.

Similarly to the previous case, the optimization with the real functions presents the smallest computa-
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Table 4.5: Results of the different solutions of Case 2.2

Wing tip
chord

[m]

Wing spar
thickness

[m]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
Energy

[MJ]

Baseline 1.074 0.0038 408.35 412.76 3529.79 13.19 17937.11

Real
functions

1.340 0.00108 363.58 397.75 3470.01 13.47 17286.07
-10.96 % -3.64 % -1.69 % 2.18 % -3.63 %

Surrogate
search

1.347 0.00100 362.06 397.39 3468.13 13.48 17270.45
-11.34 % -3.73 % -1.75 % 2.20 % -3.72 %

Adaptive
sampling

1.341 0.00111 364.38 397.76 3470.82 13.47 17286.72
-10.77 % -3.63 % -1.67 % 2.18 % -3.63 %

Table 4.6: Computational cost of the different approaches for Case 2.2

Real functions Surrogate search Adaptive sampling

Iterations 8 3 25
Function evaluations 10 4 (+10) 500000 (+20+25)
Gradient evaluations 8 3 0

tional cost, having only 10 real functions’ evaluations, while the optimization using the surrogate models

need only 4 surrogate model predictions but it also needs 10 real functions evaluations to build models.

The adaptive sampling approach is the most costly, needing 50 ·104 surrogate model predictions, plus 20

real function evaluations to build the total energy and the constraints initial surrogate models, plus the 25

real functions evaluations (one for each added point). In this case, the computational cost of the first two

approaches is very similar since the real functions optimization takes 10 real function evaluations, which

is the same value needed to build the surrogate models, and it takes only 4 more surrogate models

predictions in the second approach.

4.3.2.3 Case 2.3

Once again, the optimization algorithm used in the real functions approach, is SLSQP. The evolution of

the objective function as well as the design variables’ values and the active constraint (L = nW at pull

up) through the optimization problem can be seen in Figures 4.11 and B.5, respectively. The solution

obtained is presented in Table 4.7.

Figure 4.11: Optimization history of the total energy in Case 2.3 (when using the real functions)
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From the optimization history, it is possible to observe that the optimizer converges to the solution in

a small amount of iterations. This can indicate that either the objective function and the constraints are

linear or almost linear (which is verified from the results shown in section 4.3.1) or, that the optimizer got

trapped in a local minimum.

For the second approach, the optimization problem was solved with the different surrogate models

created before, and the best result is presented in Table 4.7, and was found when considering 10 sample

points to build the surrogates.

In the last approach, the adaptive sampling is used, where new points are added to the sampling

plans and the surrogate models are updated accordingly. In this case, as it happened before, the

number of starting sample points is different for the total energy function, and the constraints. The

starting plan for building the total energy surrogate model has 5 points, while the sampling plan for all

the constraints, except the pitching moment coefficient, uses 25 sample points, and the sampling plan

used to build the latter constraint uses 40 sample points at the start. Once again, the WB2 criterion plus

a penalty function was used as the objective function, optimized using the GA available in OpenMDAO.

The number of individuals on each population and the maximum number of generations were again set

to 200 and 100, respectively. The number of added points to each sampling plan, and consequently to

the surrogate models, was 25. Once again, a convergence stopping criterion was not used, for the same

reasons as before.

The best solution was found after adding 6 points to the sampling plans. The total energy of the

optimal solution found in each iteration is found in Figure 4.12.

Figure 4.12: Optimization history of the total energy in case 2.3 using the adaptive sampling plan

The points presented in iteration 0 correspond to the starting points of the total energy sampling

plan. Every point added corresponds to a feasible solution, and as said previously, the best solution is

found in iteration 6, which is characterized by the parameters in Table 4.7. Once more, the points added

are very similar to each other in different iterations which leads to believe that the global minimum was

found, or that a feasible small region was not found.

As noticed for cases 2.1 and 2.2, every optimization process lead to a solution which shows an

improvement, when compared to the baseline configuration. The difference between the three obtained
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Table 4.7: Results of the different solutions of Case 2.3

Wing root
chord

[m]

Angle of
attack

[° ]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy

[MJ]

Baseline 2.684 -0.8 408.35 407.07 3524.10 13.36 17937.11

Real
functions

2.500 -0.455 388.29 360.28 3457.25 14,91 15664.39
-4.91 % -11.49 % -1.90 % 11.59 % -12.67 %

Surrogate
search

2.500 -0.454 388.29 360.23 3457.20 14.91 15662.03
-4.91 % -11.51 % -1.90 % 11.61 % -12.68 %

Adaptive
sampling

2.512 -0.465 389.57 361.54 3459.79 14.87 15719.06
-4.60 % -11.18 % -1.82 % 11.30 % -12.37 %

solutions can be found in Table 4.7. The best solution is the one obtained when using the total energy

surrogate model as the objective function, but the difference between the three solutions are again

very small, around 0.3 %, which validates the results. Previously, it was said that the optimizer in the

real functions problem could be trapped in a local minimum because it took a very small amount of

iterations. However, the results when using the GA in the adaptive sampling criterion, suggest that a

global minimum was found.

Again, in terms of computational costs (shown in Table 4.8), the real functions optimization presents

a lower number of real function evaluations, 4, while the surrogate based optimization needs only 3

iterations, but it takes 4 surrogate models predictions and 10 real functions evaluations to build the

surrogate models. As for the adaptive sampling it takes 50 · 104 surrogate models predictions to find

the minimum, plus 40 real functions evaluations to build the initial sampling plans, plus 25 real functions

evaluations, one for each added point.

Table 4.8: Computational cost of the three methods for case 2.3

Real functions Surrogate search Adaptive sampling

Iterations 4 3 25
Function evaluations 4 4 (+10) 500000 (+40+25)
Gradient evaluations 4 3 0

4.4 Case 4

4.4.1 Surrogate models’ quality

The quality of the surrogate models built is once again tested, but now using a set of 400 test points,

generated with LHS. The results of the average relative errors of four examples of the surrogate models

are presented in Figure 4.13. The models which are not here represented, follow the same trends as

the ones depicted here.

The objective function and static margin functions relative errors show a clear trend of decreasing

with the number of sample points. On the other hand, the wing failure criteria, both in VTOL and Pull up,
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(a) Objective function (b) Static Margin

(c) Wing failure criterion in point 2 at vertical climb (d) Wing failure criterion in point 2 at pull up

Figure 4.13: Average relative error of different functions vs number of sample points used for case 4

show some oscillations with a lower number of sample points, but the average relative error is always

smaller than 1 % for 80 or more sample points. As seen before, in the cases with less variables, these

two criteria present non-linear behaviour, that explains the increased difficulty in getting an accurate

surrogate model when using fewer sample points.

4.4.2 Optimization results

The real functions optimization, once again, uses the SLSQP algorithm and the adjoint method. The

optimization history of the problem can be seen in Figures 4.14 and B.6, where the total energy and

the design variables and active constraints in each iteration are shown. The optimal solution’s design

variables values are presented in Table 4.9, where the corresponding performance parameters are also

shown. It is again observed, that the optimizer first finds a minimum and in the last iterations there is

only a fine tuning of the design variables, so that every constraint is satisfied.

The optimization problem, in the case when using the surrogate models, was solved using the differ-

ent sampling plans and the best result is presented in Table 4.9, and was found when using 50 sample

points to build the surrogate models.

The adaptive sampling plan approach, consists in continuously adapting the sampling plan and con-

sequently the surrogate models, as explained before. In this case, the starting sampling plan to build

the total energy surrogate model has 10 sample points, while the sampling plans to build the constraints

have 30 sample points, except two of the failure criteria of the wing in the pull-up manoeuvre, in which

case the initial surrogate models are built using 40 sample points. As it happened in the previous cases,
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Figure 4.14: Optimization history of the total energy in case 4 (when using the real functions)

the objective function considered is the WB2 criterion, and the optimizer used is the GA of OpenMDAO.

The population size used was 300 and the maximum number of generations was set to 100. The num-

ber of added sample points to the surrogate models was 50. The total energy history throughout the

optimization is shown in Figure 4.15.

Figure 4.15: Optimization history of the total energy in Case 4

The best feasible solution obtained was found after 29 iterations, i.e, after the 29 real functions

evaluations were done, and is characterized by the parameters shown in Table 4.9. The number of

unfeasible solutions found was much more significant than on the cases with less variables. Since the

point is considered as feasible by the surrogate predictions, but then it is after all unfeasible, when

evaluated with the real functions, it shows that there are still some errors in the surrogate models’

predictions. This happens even though the surrogate models’ accuracy shown before, in section 4.4.1,

seems very high (average relative error lower than 3%). This can be explained by the complexity of the

problem, and the wide design space that is being considered. Even though the relative errors may be

low, it can happen that the test points are close to the points used to build the surrogates, and so, there

might be some unsampled areas of the design space. Contrary to what happened before, in this case,

the added points show different results in almost every iteration. This can mean that the design space

was not yet completely explored and thus is not ensured that a global minimum was found.

Since in the last cases, there was a clear difference between the approaches where the adjoint

method was used and where the GA was used, in this case and the next one, the approach that uses
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the real functions is also carried out by using the GA. In this case, the number of individuals used

was significantly smaller than the one used in the adaptive surrogate model approach, because the

evaluations are more expensive. Therefore, the number of individuals and the number of generations

used was 130 and 50, respectively.

Table 4.9: Results of the different solutions obtained in Case study 4

Wing tip
chord

[m]

Wing root
chord

[m]

Wing spar
thickness

[m]

Wing skin
thickness

[m]

Wing structural
mass
[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy

[MJ]

Baseline 1.074 2.684 0.0038 0.0038 408.35 407.07 3524.10 13.36 17937.11

Real
functions

0.972 2.812 0.00196 0.00171 191.99 375.72 3275.66 13.46 16329.59
-52.98 % -7.70 % -7.05 % 0.75 % -7.69 %

Surrogate
search

0.982 2.818 0.00155 0.00186 194.64 376.78 3280.10 13.44 16375.18
-52.33 % -7.44 % -6.92 % 0.60 % -7.43 %

Adaptive
sampling

0.959 2.825 0.00245 0.00178 210.41 378.99 3298.08 13.43 16471.23
-48.47 % -6.90 % -6.41 % 0.52 % -6.89 %

Real
functions (GA)

1.176 2.653 0.00227 0.00118 220.85 380.03 3309.56 13.44 16516.66
-45.92 % -6.64 % -6.09 % 0.60 % -6.63 %

Each of the four approaches leads to an improvement of the total energy needed to complete the

aircraft’s mission. The spar and skin thicknesses are much smaller than the ones from the baseline

and so the structural mass of the wing is significantly smaller, in comparison to the baseline this mass is

around half in every solution. The improvement on the aerodynamic efficiency, L/D, which consequently

leads to a decrease on the necessary fuel, and the decrease in the wing structural mass, leads to a

significant reduction of the total energy necessary to complete the mission.

The differences between the several solutions are not very significant (around 1%), but the best

solution corresponds to the one found when the real functions are used. As stated before, the solution

found with the third approach may correspond to a local minimum because the population sizes or the

number of generations are smaller than needed, or the number of points added is too low. The small

amount of individuals, generations and points added is explained by the time existing constraints. In

the approach where the surrogate models are used, and the optimization problem is solved using the

SLSQP, the optimizer may got trapped in a local minimum as well, since, even though the starting point

is the same as the one used in the real functions approach, the prediction of the derivatives or the

functions can show some errors, and so the optimizer is guided to a slightly different solution.

In this case, it is noticeable that when using the real functions but with the GA instead, the difference

between the real functions and the adaptive sampling are smaller that when comparing to the results

with the SLSQP.

Table 4.10: Computational cost of the different optimization approaches for case 4

Real functions Surrogate search Adaptive sampling Real functions (GA)

Iterations 14 21 50 50
Function evaluations 21 34 (+50) 1500000 (+40+50) 6500
Gradient evaluations 14 17 0 0

In terms of computational cost, the surrogate models still do not shown an advantage when in com-
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parison with the real functions using the SLSQP. The real functions approach takes only 21 real functions

evaluations, while the surrogate model approach needs 34 surrogate models’ predictions plus 50 real

functions evaluations to build the models, the third approach takes 15 ·105 surrogate models’ predictions

plus 40 real functions evaluations to build the initial sampling plans plus a real functions evaluation for

each of the 50 points added, and lastly, the final approach takes 6500 real functions evaluations. The

results show that, in a case where the gradient-based algorithm is not possible to use, or when the ob-

jective functions is multi-modal for example, the adaptive sampling shows some advantage in terms of

results. In terms of the computational cost, the differences between the two approaches are much less

significant (since the time it takes to get a surrogate model prediction is around 100 times lower than the

time it takes to evaluate the real functions).

4.5 Case 8

4.5.1 Surrogate model’s quality

The quality of the surrogate models built is tested using a 600 sample points test set, generated with

LHS. The results of the average relative error of the objective function (total energy) and some of the

constraints functions are presented in Figure 4.16.

(a) Objective function (b) Static Margin

(c) Wing failure criterion in point 2 at vertical climb (d) Wing failure criterion in point 2 at pull up

Figure 4.16: Average relative error of different functions vs number of sample points used for case 8

The average relative error of the total energy function clearly tends to decrease with the number of

sample points converging to a value near 0 %. The constraints present a higher relative error, needing

more sample points to have a surrogate model capable of representing their functions. In some cases,
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Table 4.11: Number of starting sample points according to the function

Function # Samples Function # Samples

Energy 50 Wing Failure 1 & 2 (VTOL) 300
SM 300 Wing Failure 3 & 4 (VTOL) 100

Lcr ≈W 300 Tail Failure 1 & 2 & 3 & 4 (VTOL) 100
Lpull ≈ nW 300 Wing Failure 1 & 2 (Pull up) 300

CM 300 Wing and Tail Failure 3 & 4 (Pull up) 100
Fuel volume 100 Tail Failure 1 & 2 (Pull up) 150

it is necessary to have 300 points so that the relative error assumes a reasonable value, smaller or near

5 %, which is the case of the presented constraints in figure 4.16.

4.5.2 Optimization results

In the first approach, the real functions are used and the optimization algorithm is again the SLSQP. The

optimal solution found is presented in Tables 4.12 and 4.13. The optimization history of the total energy

can be found in Figure 4.17, while the design variables and the active constraints in each iteration are

shown in Figure B.7. As it was observed before, the last iterations show that the optimizer is just trying

to find a feasible solution near the area where it already found a minimum, i.e., it is exploiting that region.

Figure 4.17: Optimization history of the total energy in Case 8 (when using the real functions)

In the second approach, the best result of the optimizations performed with the different sampling

plans to build the surrogate models, corresponds to the sampling plan of 200 sample points. The optimal

solution found is presented in Tables 4.12 and 4.13.

In the third approach, once again, the sampling plans that are used to build the surrogate models

are updated according to the WB2 criterion. The starting sampling plans to build each surrogate model

contain the number of sample points indicated in Table 4.11. Once more, the GA was used to solve

the problem, and a population of 500 individuals was considered in each iteration, with the number of

maximum generations being set to 50. The number of points added to the sampling plan was increased

to 200, from the experience gained in case 4.

The total energy values of the solution in each iteration are presented in Figure 4.18. As it happened

in case 4, the number of unfeasible solutions found is again very high, corresponding to 160 of the

200 points added. However, there are feasible solutions that improve the total energy function, and

the best one corresponds to the first point that is found and added to the sampling plans (1st iteration).
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Figure 4.18: Optimization history of the total energy in Case 8

The values of the design variables and the performance parameters corresponding to the best solution

found are presented in Tables 4.12 and 4.13, respectively. Even though the number of added points

was increased, it is once again noticeable that the added points correspond to different solutions and

so, once more, it might be that the global minimum was not found.

Once again, the real functions approach was carried out one more time, but using the GA as optimizer

instead, as it was done in case 4. This time, the number of individuals and of generations was set to 260

and 80, respectively.

All the four approaches lead to a significant improvement from the baseline, corresponding to a

reduction higher than 10 % of the total energy needed. The differences between the first two approaches

are not very significant, thus validating the results obtained with the surrogate models. On the other

hand, the solution found with the adaptive sampling strategy shows significant differences from the other

two, more than 30 %, when analysing the wing structural mass for example. This confirms that the

global minimum was not found in this approach, and that there was a need for more points to be added,

or a need to have a bigger population. Once again, the results of the adaptive sampling are closer to

the results of the real functions when using the GA than when using the SLSQP, which shows that the

adaptive sampling method can be a good approach to some problems where the derivatives can not be

used.

The solutions of the first two approaches present a wing tip chord which is slightly increased, in

comparison with the baseline, and the wing root chord that is slightly smaller. Overall, this leads to a

decrease in the wing area, and since the wingspan is fixed, the aspect ratio increases, which helps to

explain the increase of the L/D. Both structural masses decrease significantly, as a consequence of the

decrease in the spar and skin thickness of both the wing and the horizontal tail. Therefore, with both an

aerodynamic improvement and a reduction of the overall weight of the aircraft, the total energy is much

smaller than in the baseline, reducing it more than 14 %.

In terms of computational cost, the surrogate models present a higher cost in comparison with the

first approach once again, with the number of real function evaluations in the first approach being only

15, while in the second approach there are 18 surrogate models predictions plus 200 real functions
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Table 4.12: Design variables values of the different solutions obtained in case study 8

Wing tip
chord

[m]

Wing root
chord

[m]

Wing spar
thickness

[m]

Wing skin
thickness

[m]

Tail tip
chord

[m]

Tail root
chord

[m]

Tail spar
thickness

[m]

Tail skin
thickness

[m]

Baseline 1.074 2.684 0.0038 0.0038 1.86 1.86 0.00255 0.00255

Real
functions 1.230 2.511 0.00199 0.00222 1.15 1.15 0.0005 0.00168

Surrogate
search 1.205 2.533 0.0028 0.00203 1.15 1.15 0.0005 0.00089

Adaptive
sampling 1.253 2.488 0.00986 0.00132 1.155 1.161 0.00348 0.00054

Real
functions (GA) 1.812 2.033 0.00248 0.00354 1.15 1.161 0.0005 0.00069

Table 4.13: Performance parameters of the different solutions obtained in case study 8

Wing structural
mass
[kg]

Horizontal mass
structural mass

[kg]

Fuel

[kg]

Total
mass
[kg]

L/D Total
energy

[MJ]

Baseline 408.35 37.68 407.07 3524.10 13.36 17937.11

Real
functions

232.82 7.85 349.93 3261.61 14.45 15213.01
-42.99 % -79.17 % -14.04 % -7.45 % 8.19 % -14.00 %

Surrogate
search

237.67 7.12 349.70 3265.48 14.48 15203.15
-41.80 % -81.12 % -14.09 % -7.34 % 8.41 % -14.06 %

Adaptive
sampling

362.52 13.14 362.80 3409.45 14.58 15772.57
-11.22 % -65.14 % -10.87 % -3.25 % 9.14 % -10.84 %

Real
functions (GA)

362.61 5.87 359.01 3398.49 14.69 15608.34
-11.20 % -84.42 % -11.81 % -3.56 % 9.96 % -11.77 %

evaluations to build the sampling plans of the surrogate models, and in the last approach there are

50 · 105 surrogate models predictions, plus 300 real functions evaluations to build the initial sampling

plans, plus 200 real functions evaluations, one for each point being added. In the last approach, the

optimization takes 10400 real functions evaluations to find a solution, which is much more significant

than the 15 evaluations when using the gradient-based algorithm, and the solution is worse.

Table 4.14: Computational cost of the different optimization approaches for Case 8

Real functions Surrogate search Adaptive sampling Real functions (GA)

Iterations 14 19 200 80
Function evaluations 15 18 (+200) 5000000 (+300+200) 10400
Gradient evaluations 14 18 0 0

4.6 Optimal solution

The optimal solution found, the one that minimizes the most the total energy needed to complete the

defined mission, corresponds to the solution found with the surrogate models in case 8. The proposed
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configuration presents a wing structural mass that is around 42 % lighter than the wing structural mass

of the baseline, a reduction of around 81 % in the horizontal stabilizer structural mass and a reduction of

about 14 % of the fuel mass. This leads to an overall weight mass that is around 7 % smaller than the one

of the baseline. The lift-to-drag ratio of this configuration is almost 8.5 % higher than the baseline. The

solution presents a significant reduction of the total energy needed, 14.06 %. The two configurations,

the baseline and the optimal solution, are shown in Figure 4.19.

Figure 4.19: Baseline and optimal solution general configurations
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Chapter 5

Conclusions

5.1 Achievements

This thesis focuses on solving an aircraft design optimization problem, using different approaches to

carry out the optimization process. The aircraft is a variant of the Flexcraft configuration, developed to

have VTOL capabilities.

First the concept of the Flexcraft was adapted to the new mission profile, by performing some ini-

tial studies, like conceptual sizing of the lifting surfaces, weight and balance estimations, design point

analysis and defining the general configuration of the propulsive system. The new concept was then

considered as the baseline for the optimization problem.

Then, the optimization problem itself was defined, by identifying the mission requirements which were

the base to select the design variables, constraints and objective function. The physical models were

then implemented using OAS framework, which presents low-fidelity models for both aerodynamics and

structural analysis. The necessary modules, such as the objective function chosen, were added to the

framework. To study the different sampling plans and surrogate models available on the SMT, some

studies using analytical common test functions were carried out, which lead to the use of the LHS and

the Kriging model to solve the optimization problem.

Several case studies were then performed, in order to understand the behaviour of the objective

function and constraints and the different approaches. First, the case studies were very simple, having

only two design variables, and then the complexity was increased by using four and then eight design

variables. For each case study, different databases were generated to build and test the surrogate

models for every function. Then each case study optimization problem was solved using the three

different approaches at hand, the one using the real functions, the one using the surrogate models of

these real functions, and the one using an adaptive sampling plan that uses the WB2 criterion has the

objective function, and the surrogate models of the real functions as constraints. On the last two case

studies, an additional approach was used: an optimization using the real functions but with a GA as

optimizer.

The optimization algorithms used consist of a gradient-based, SLSQP, and a heuristic algorithm,
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the GA. The first was used in the optimization using the real functions and in the optimization using its

surrogate models. The GA was used on the third approach, where for each iteration the optimizer finds

a possible minimum, which is then evaluated by the real functions and added to the sampling plans of

the surrogate models.

The solutions obtained with the different approaches are compared for each case study done, and a

final configuration, based on the best optimal solution of every case study, is finally presented. For each

case study, an analysis of the computational cost taken for each optimization approach is also depicted.

5.2 General conclusions

When comparing the surrogate models based optimization with the real functions gradient-based op-

timization, the latter shows a smaller computational cost, and even though sometimes its solution is

slightly worse, it is not very significant. This means, that for the problem at hand, the surrogate models

do not present a relevant advantage over the real functions, which are already simple, since the physical

models are of low-fidelity.

This can also be explained because the analytical partial derivatives of each function were possible

to give as an input to the optimizer. If for example the derivatives were too complex or not available, the

real functions approach may not have been the better strategy.

The design of the wing is also very similar to the baseline used, which can lead to the quick opti-

mization process using the real functions. This can either be happening because the optimization is too

constrained, since the number of design variables is relatively small, or because the baseline is already

a good design. If a higher design freedom was allowed, multi-modal solutions could have been possible

which could favour surrogate-based optimization.

5.3 Future Work

Since the results for the surrogate models, based on the low-fidelity models available on OAS, present

good results, one possible idea for future work would be to use these models to explore the design space

first, so then higher fidelity models could be employed in some points/areas of interest.

Another aspect that would be interesting to study is the increase in the number of variables. Some

suggestions are: to let the wing sweep angle vary, ensuring that the electric motors position along the

chord would match with this angle; allow for a wing span variation, and this time ensuring that the electric

motors’ position in the spanwise direction was also compatible with the new span.

The models used were only from aerodynamics and structures, with an additional consideration of

the static margin, but some more complex models could also be employed. For example, some weight

estimations could be integrated on the code, to allow for a variation of the tilt system weight with the

position of the electric motors relative to the wing. Another idea would be to improve the models of

aerodynamics and structures, by including the influence of the rotor’s on the wing and tail and including

some aeroelastic instabilities’ considerations, respectively.
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Appendix A

Aerodynamics

A.1 Fundamentals

The theory used in the aerodynamic analysis is based on the three laws of conservation:

• Mass conservation

• Momentum conservation

• Energy conservation

Analysing a finite control volume in which the balances will be done, one can have a volume fixed in

space (Eulerian perspective) or one that moves with the fluid (Lagrangian perspective).

Applying the mass conservation equation to a finite volume fixed in space:

∂

∂t

∫
V
ρ dV +

∮
S

ρ
−→
V · d

−→
S = 0 (A.1)

where t corresponds to time, ρ is the air density,
−→
V is the fluid’s velocity, V is the finite volume and S is

the finite volume’s surface.

Since the volume is fixed in space, the limits of integration are also fixed and so the time partial

derivative can be placed inside the integral.

∫
V

∂ρ

∂t
dV +

∮
S

ρ
−→
V · d

−→
S = 0 (A.2)

Applying the Gauss Theorem to the surface integral, one obtains:

∫
V

[
∂ρ

∂t
+∇ · (ρ

−→
V )

]
dV = 0 (A.3)

For a given arbitrary finite control volume, the only possible solution for the aforementioned equation

is:

∂ρ

∂t
+∇ · (ρ

−→
V ) = 0 (A.4)
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Considering that the flow analysed is fully developed around the airfoil and therefore is steady, the

time derivative becomes null. If one also assumes that the flow is incompressible, i.e, ρ is constant, then:

ρ∇ ·
−→
V = 0 =⇒ ∇ ·

−→
V = 0 (A.5)

Since a subsonic flow across an airfoil can be considered as irrotational, we can consider the flow to

be a potential flow:


∇ ·
−→
V = 0

∇×
−→
V = 0

−→
V = ∇φ

(A.6)

where φ is the potential of the velocity and u =
∂φ

∂x
, v =

∂φ

∂y
, w =

∂φ

∂z
.

This leads to Laplace equation:

∇ · ∇φ = 0 =⇒ ∇2φ = 0 (A.7)

Moving onto the momentum equation, one has that:

∂

∂t

∫
V
ρ
−→
V dV = −

∮
S

ρ
−→
V (
−→
V · −→n ) dS −

∮
S

p−→n dS +

∫
V
ρ
−→
f dV (A.8)

where p is pressure, −→n is the normal to the surface, and
∫
V ρ
−→
f dV represents the mass forces.

To simplify, now the Lagragian differential form of the equation is used:

ρ
D
−→
V

Dt
= −∇p+ ρ

−→
f (A.9)

Assuming that
−→
f = 0,

∂
−→
V

∂t
= 0 and using the vectorial identity (for a irrotational flow):

−→
V · ∇

−→
V = ∇

(
V 2

2

)
−
−→
V × (∇×

−→
V ) = ∇

(
V 2

2

)
(A.10)

The momentum equation becomes:

ρ d

(
V 2

2

)
= −dp (A.11)

The Euler equation is therefore obtained and considering that at a constant entropy
dp

dρ
= a2, where

a is the speed of sound and a =
V

M
the following can be derived:

dρ

ρ
= −M2 dV

V
(A.12)

This equation allows to understand that the Mach number, M, will have an impact on compressibility

effects.
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Therefore, a step back is needed, to equation (A.5). As stated, the flow is considered to be fully

developed and so the time derivative can be dropped:

∇(ρ ·
−→
V ) = 0 (A.13)

Considering a flow around an airfoil, like the one represented in Figure A.1, the velocity components

in the undisturbed and disturbed flows can be written as follow:

Undisturbed flow:


Vx = V∞

Vy = 0

Vz = 0

Disturbed flow:


Vx = V∞ + û

Vy = v̂

Vz = ŵ

(A.14)

Figure A.1: Airfoil in the physical space [78]

Using the velocity potential, through some algebraic manipulation is possible to obtain from equation

(A.13):

ρ(φxx + φyy + φzz) + φx
∂ρ

∂x
+ φy

∂ρ

∂y
+ φz

∂ρ

∂z
= 0 (A.15)

Considering the Euler equation (A.11) and the relation between the speed of sound and
dp

dρ
, one can

obtain:

[
a2 −

(
V∞ + φ̂x

)2
]
φ̂xx +

[
a2 −

(
V∞ + φ̂y

)2
]
φ̂yy +

[
a2 −

(
V∞ + φ̂z

)2
]
φ̂zz−

− 2
(
V∞ + φ̂x

)
φ̂yφ̂xy − 2

(
V∞ + φ̂x

)
φ̂zφ̂xz − 2φ̂yφ̂zφ̂yz = 0

(A.16)

a2
∞

γ − 1
+
V 2
∞
2

=
a2

γ − 1
+

(V∞ + û)2 + v̂2 + ŵ2

2
(A.17)

Using the relation between the potential of velocity and the velocity itself, and using the energy

equation (A.17) and equation (A.16), one can obtain the potential equation for compressible flow:
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(1−M2
∞)

∂û

∂x
+
∂v̂

∂y
+
∂ŵ

∂z
=

= M2
∞

[
(γ + 1)

û

V∞
+
γ + 1

2

(
û

V∞

)2

− γ − 1

2

v̂2 + ŵ2

V 2
∞

]
∂û

∂x
+

+ M2
∞

[
(γ − 1)

û

V∞
+
γ + 1

2

(
v̂

V∞

)2

− γ − 1

2

û2 + ŵ2

V 2
∞

]
∂v̂

∂y
+

+ M2
∞

[
(γ − 1)

û

V∞
+
γ + 1

2

(
ŵ

V∞

)2

− γ − 1

2

û2 + v̂2

V 2
∞

]
∂ŵ

∂z
+

+ M2
∞

[
v̂

V∞

(
1 +

û

V∞

)(
û

V∞
+

v̂

V∞

)
+

ŵ

V∞

(
1 +

û

V∞

)(
û

V∞
+

ŵ

V∞

)
+
v̂ŵ

V 2
∞

(
v̂

V∞
+

ŵ

V∞

)]

(A.18)

For the subsonic regime, some assumptions can be made. The perturbations are going to be con-

sidered as much smaller than the velocity of the undisturbed flow: û, v̂, ŵ � V∞ =⇒ û

V∞
,
v̂

V∞
,
ŵ

V∞
�

1 and
(
û

V∞

)2

,

(
v̂

V∞

)2

,

(
ŵ

V∞

)2

� 1.

Therefore, the linearised potential equation becomes:

(1−M2
∞)

∂û

∂x
+
∂v̂

∂y
+
∂ŵ

∂y
= 0⇔ (1−M2

∞) φ̂xx + φ̂yy + φ̂zz = 0 (A.19)
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Appendix B

Surrogate models

B.1 Test functions studies for surrogate models and sampling plans

In this section some complementary results from the accuracy studies done to evaluate the different

surrogate models and sampling plans techniques are presented.

The first results figure B.1 shown are relative to the study done using the Branin test function to

evaluate the influence of the sampling plan on the surrogate models’ predictions.

The results shown in Figure B.2, are relative to the same study but using the Rosenbrock test function

instead.

(a) Kriging surrogate model (b) KPLS surrogate model

(c) KPLSK surrogate model (d) RBF surrogate model

Figure B.1: Average relative error with the different sampling plans to represent the Branin function
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(a) Kriging surrogate model (b) KPLS surrogate model

(c) KPLSK surrogate model (d) RBF surrogate model

Figure B.2: Average relative error with the different sampling plans to represent the Rosenbrock function
with 2 design variables

As said in section 3.4.1, the from the first study, the LHS was the chosen technique to implement the

DOE. Using this sampling plan, different surrogate models techniques were then studies. The results

of the study when using the Rosenbrock function with two and four design variables are presented in

Tables B.1 and B.2, respectively.

Table B.1: Average relative error obtained with the different surrogate models representing the Rosen-
brock function with two design variables, when using LHS plan

# Training points Kriging KPLS KPLSK RBF

20 2.92 % 145.09 % 14.93 % 430.10 %
26 0.29 % 13.51 % 0.32 % 564.59 %
30 0.23 % 2.34 % 0.22 % 293.52 %
36 0.12 % 0.21 % 0.11 % 384.74 %
40 0.04 % 0.15 % 0.06 % 349.47 %
46 0.21 % 0.76 % 0.19 % 380.63 %
50 0.02 % 0.07 % 0.02 % 226.35 %
70 0.07 % 0.06 % 0.06 % 80.24 %
100 0.01 % 0.01 % 0.01 % 37.17 %
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Table B.2: Average relative error obtained with the different surrogate models representing the Rosen-
brock function with four design variables

# Training points Kriging KPLS KPLSK RBF

40 54.63 % 68.93 % 54.75 % 125.82 %
50 45.11 % 65.50 % 50.41 % 115.21 %
60 26.52 % 49.18 % 33.76 % 89.73 %
70 12.32 % 56.94 % 21.72 % 89.58 %
80 12.32 % 56.94 % 21.72 % 89.58 %
90 2.05 % 32.35 % 8.18 % 77.18 %
100 1.05 % 21.76 % 5.77 % 69.64 %
120 0.69 % 2.98 % 0.81 % 60.82 %
140 0.33 % 11.05 % 0.99 % 51.83 %
150 0.21 % 0.56 % 0.19 % 47.03 %

B.2 Optimization using the real functions

In this section, some complementary results of the optimization history when using the real functions

are presented.

First, in Figure B.3, the results of the first case study, 2.1, are shown. The, the results of case study

2.2 are presented in Figure B.4. The results fo the last of the two design variables case studies, case

2.3, are presented in Figure B.5. Finally, the results of the last two cases, case 4 and case 8, can be

observed in Figures B.6 and B.7. In every case, the results presented here show the evolution of both

the design variables and the active constraints in each optimization iteration.

(a) Design variables (b) Active constraints

Figure B.3: Optimization history in Case 2.1 (when using the real functions)

(a) Design variables (b) Active constraints

Figure B.4: Optimization history in Case 2.2 (when using the real functions)
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(a) Design variables (b) Active constraint

Figure B.5: Optimization history of Case 2.3 (when using the real function)

(a) Design variables (b) Active constraint

Figure B.6: Optimization history of Case 4 (when using the real function)

(a) Design variables (b) Active constraint

Figure B.7: Optimization history of Case 8 (when using the real function)
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Appendix C

Conceptual design

C.1 Analytical Hierarchy Process

In this section the pairwise comparison matrices for each of the criterion chosen, to evaluate the different

concepts, are presented.

Table C.1: Aerodynamics comparison of all the concepts

I II III IV V Priority Vector

I 1 1/3 7 5 1 0.2184
II 3 1 9 7 3 0.4802
III 1/7 1/9 1 1/3 1/5 0.0348
IV 1/5 1/7 3 1 1/5 0.0615
V 1 1/3 5 5 1 0.2050

Table C.2: Structures and Weight comparison of all the concepts

I II III IV V Priority Vector

I 1 3 5 7 3 0.4590
II 1/3 1 3 5 1/2 0.2083
III 1/5 1/3 1 1/3 1/2 0.0575
IV 1/7 1/5 3 1 2 0.1213
V 1/3 2 2 1/2 1 0.1539

Table C.3: Propulsion comparison of all the concepts

I II III IV V Priority Vector

I 1 1/2 7 5 5 0.3115
II 2 1 9 7 7 0.4959
III 1/7 1/9 1 1/3 1/3 0.0368
IV 1/5 1/7 3 1 1 0.0779
V 1/5 1/7 3 1 1 0.0779
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Table C.4: Manufacturing and Maintenance comparison of all the concepts

I II III IV V Priority Vector

I 1 1/3 3 1/5 3 0.1169
II 3 1 7 1/3 5 0.2659
III 1/3 1/7 1 1/9 1 0.0451
IV 5 3 9 1 7 0.5207
V 1/3 1/5 1 1/7 1 0.0513

Table C.5: Stability and Control comparison of all the concepts

I II III IV V Priority Vector

I 1 1/2 3 3 3 0.4474
II 2 1 1/5 1/5 1/5 0.0408
III 1/3 5 1 1 1 0.1706
IV 1/3 5 1 1 1 0.1706
V 1/3 5 1 1 1 0.1706

Table C.6: Take-off and Landing comparison of all the concepts

I II III IV V Priority Vector

I 1 1/3 1/5 1/5 1/5 0.0505
II 3 1 1/3 1/3 1/3 0.107
III 5 3 1 1 1 0.2808
IV 5 3 1 1 1 0.2808
V 5 3 1 1 1 0.2808

Table C.7: Noise comparison of all the concepts

I II III IV V Priority Vector

I 1 2 7 5 5 0.4715
II 1/2 1 5 3 3 0.2704
III 1/7 1/5 1 1/3 1/3 0.0470
IV 1/5 1/3 3 1 1 0.1055
V 1/5 1/3 3 1 1 0.1055

C.2 Weight and position Estimations

In this section, the estimates done for the weight of each aircraft’s component and its position are pre-

sented. The components are divided into functional groups such as: structural components, whose

estimates are presented in Table C.8; propulsion system components, and their estimates are shown in

Table C.9; equipment components, whose estimations of weight and position are shown in Table C.10;

and other components shown in Table C.11. The sources of the estimations are indicated in the column

”Source”, and it should be noted that when its said to be ”Flexcraft” it is a value that was used from

the Flexcraft project, ”Raymer” is a value calculated with some equation or ratio presented in [81] and

”NASA” is from [20].
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Table C.8: Structural components’ weight estimation and position

Component Weight Source Position
Estimation [kg] x [m] y [m] z [m]

Wing 585.56 Raymer - eq. (15.46) 1.967 0.0 2.441
Horizontal Tail 53.94 Raymer - eq. (15.47) 6.500 0.0 4.492
Vertical Tail 1 18.49 Raymer - eq. (15.48) 5.727 2.0 3.381
Vertical Tail 2 18.49 Raymer - eq. (15.48) 5.727 -2.0 3.381

Fuselage 284.95 NASA - eq. (56) 2.027 0.0 1.018
Main Landing Gear 1 86.02 NASA - eq. (63) 1.600 2.0 1.090
Main Landing Gear 2 86.02 NASA - eq. (63) 1.600 -2.0 1.090
Tail Landing Gear 1 24.81 NASA - eq. (64) 4.500 2.0 1.879
Tail Landing Gear 2 24.81 NASA - eq. (64) 4.500 -2.0 1.879

Paint 11.57 NASA - eq. (68) 2.027 0.0 2.741
Nacelles & Air Introduction 36.75 NASA - eq. (69) 1.000 0.0 2.741

Tilt System 3 55.50 Ratio 1.279 3.0 2.419
Tilt System 2 55.50 Ratio 1.279 -3.0 2.419
Tilt System 4 55.50 Ratio 3.267 7.5 2.566
Tilt System 1 55.50 Ratio 3.267 -7.5 2.566

Boom 1 60.00 Flexcraft 3.350 2.0 2.292
Boom 2 60.00 Flexcraft 3.350 -2.0 2.292

Wing Pylon 150.00 Flexcraft 2.586 0.0 2.179

Total 1723.41

Table C.9: Propulsion components’ weight estimation and position

Component Weight Source Position
Estimation [kg] x [m] y [m] z [m]

Engine 160.60 Ratio 1.000 0.0 2.741
Generator 76.95 Ratio 2.250 0.0 2.741

Fuel System/tanks on wing 24.65 NASA - eq. (94) 1.455 0.0 2.376
Fuel System/tanks on fuselage 10.56 NASA - eq. (94) -1.000 0.0 0.618

Electric motor 3 27.82 Ratio 0.292 3.0 2.419
Propeller and Hub 3 11.13 Ratio -0.108 3.0 2.419

Electric motor 2 27.82 Ratio 0.292 -3.0 2.419
Propeller and Hub 2 11.13 Ratio -0.108 -3.0 2.419

Electric motor 4 27.82 Ratio 2.230 7.5 2.566
Propeller and Hub 4 11.13 Ratio 1.830 7.5 2.566

Electric motor 1 27.82 Ratio 2.230 -7.5 2.566
Propeller and Hub 1 11.13 Ratio 1.830 -7.5 2.566

Total 428.56

Table C.10: Equipment components’ weight estimation and position

Component Weight Source Position
Estimation [kg] x [m] y [m] z [m]

Avionics 97.97 NASA - eq. (108) 1.574 0.0 2.409
Hydraulics 49.17 NASA - eq. (104) 2.249 0.0 2.409
Electrical 99.14 Raymer - eq. (15.56) 2.027 0.0 2.409
Anti-icing 29.59 NASA - eq. (115) 1.000 0.0 2.409

Total 275.87
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Table C.11: Other components. (Note: * are estimated with design point expressions and transition
study)

Component Weight Source Position
Estimation [kg] x [m] y [m] z [m]

Fuel 410 Flexcraft 1.455 0.0 2.441
Reserve fuel 35 Flexcraft 2.050 0.0 0.618

Batteries 76.04 * 1.240 0.0 2.024
Oil 6.68 Raymer 1.900 0.0 2.38

Payload 575 Chosen 2.050 0.0 1.02

Total 1102.72
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