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Abstract

In the health insurance industry, policies are typically one year contracts that are renewed after these
twelve months. In Multicare, this renewal starts to be negotiated at the end of the first nine months of
the current annuity. At this point it is necessary to set a prediction of how the present annuity will end,
i.e, there is the need to forecast the loss ratio of the last three months of the annuity considering the loss
ratios of the first nine months.

This problem is currently handled using a time series algorithm, ARIMA, that forecasts future loss
ratios considering only the past ones and ignoring all other external information that can also prove
useful in predicting the behaviors of the insured population, both in terms of frequency of usage of the
insurance and in terms of the cost of medical acts.

This study incorporates a wide variety of external variables coming from different sources in the tra-
ditional datasets of Multicare and performs a comparison between several types of tree-based machine
learning models, aiming to find the ones that lead to better performances in predicting claims and costs
of the insured population.

The main contribution of this work is the proposal of a new prediction model for the claims and
costs of the insured population of health insurance and its inevitable comparison with the model that is
currently in production in Multicare, based on ARIMA time series.

Keywords: machine learning, forecasting, time series, health insurance, loss ratio, tree algorithms
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Resumo

No setor segurador de saúde, as apólices são normalmente contratos de um ano que sofrem uma
renovação após esse perı́odo. Na Multicare, essa renovação começa a ser negociada ao final dos
primeiros nove meses da anuidade atual. Neste ponto, é necessário fazer uma previsão de como a
anuidade atual irá terminar, ou seja, há a necessidade de se projetar a sinistralidade dos últimos três
meses da anuidade, considerando a sinistralidade dos primeiros nove.

Este problema é atualmente tratado, usando algoritmos de séries temporais, ARIMA, que prevê
a sinistrlaidade futura, considerando apenas a sinsitralidade passada e, ignorando todas as outras
informações externas que também podem ser úteis na previsão do comportamento da população se-
gurada, tanto em termos de frequência de uso do seguro, como em termos de custo dos atos médicos.

Este estudo incorpora uma grande variedade de variáveis externas provenientes de diferentes fontes
nos datasets tradicionais da Multicare e realiza uma comparação entre vários tipos de modelos de
aprendizagem automática baseados em árvores, com o objetivo de encontrar aqueles que levam a
melhores desempenhos na previsão de sinistros e custos da população segurada.

A principal contribuição deste trabalho é a proposta de um novo modelo de previsão dos sinistros e
custos da população segurada e sua inevitável comparação com o modelo atualmente em produção na
Multicare, baseado em séries temporais ARIMA.

Keywords: aprendizagem automática, previsão, séries temporais, seguro de saúde, sinsitralidade,
algoritmos de árvores
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Chapter 1

Introduction

In this chapter, it is presented an introduction to the problem under study. First, a detailed description of
the initial motivation is given in section 1.1, followed by an explanation of how the problem is currently
being handled in section 1.2 in the literature and finally a thesis outline in section 1.4.

1.1 Motivation

In the health insurance industry and, particularly, in Multicare, by definition, the insurer receives from its
clients in advance an amount of premium that can generate future liabilities. Regarding the subscription
of a corporate health insurance policy, two key moments have to be taken into account by the pricing
actuaries.

The first one concerns the establishment of a fair price at the moment the policy is subscribed. At
this moment the insurer has access to a very limited range of information about the client. The available
information includes only the age, gender, and EAC (Economic Activity Code) for each insured person.
Pricing a client at this moment, having only this type of information, is delicate and forces actuaries to
implement creative and precise models to make sure they predict the loss ratio accurately to propose a
fair price to the client.

The second key moment happens with an annual periodicity. After each annuity (the twelve month
periods in which an insurance policy is active), the contract needs to be renewed. Health insurance
contracts in Multicare are mostly one year contracts with optional renewal at the end. At this time the
insurer makes a new proposal to the insured client. In this proposal, both the price of the policy and the
conditions of the insurance plan can be subjected to changes.

Contrary to what happens in the subscription moment, in the renewal moment the insurer has access
to a larger set of information regarding the client. The most obvious one and probably one of the most
important is the information about the claims that occurred in the ending annuity. However, looking
back at the past behaviors of a corporate client can only help to predict the future ones up to a certain
point, since it does not capture any external events that might influence health expenditures if taken into
account. Besides past behavior information, Multicare has also at its disposal other sets of geographical
and socioeconomic variables, such as client addresses and respective road distances to the health
providers, performance indicators of the nearest public providers, among others that may prove useful
and relevant in predicting the behaviors of each insured person.

For the present work, the clients that will be priced are all corporate clients and, as a consequence,
the mutualization is done within each company.

In Multicare, the process of renewing a contract and predicting the price of the next annuity of a
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corporate client is a long taking process with a lot of legal deadlines to follow. The negotiation begins
three months from the end of the annuity, where the pricing actuaries have to predict the loss of those
last three months and, based on the total loss of that annuity, i.e., the nine real months plus the three
predicted ones, set up a price for the next one. This predicts the next annuity depend largely on the
behavior each client has in the present one and gives great importance to accurately predicting the last
three months’ loss since a bad prediction here can compromise the entire next annuity.

The concept of loss ratio is one of the most important indicators in monitoring a corporate client, but,
despite the importance of a good prediction of this indicator, it presents a lot of variation and therefore
can prove difficult to predict.

Loss Ratio =
Claims Costs

Total Earned Premiums
(1.1)

It is defined by the ratio between the total costs of the claims and the total earned premiums received
by the company. Assuming that the corporate client remains stable, the value of the denominator (Total
Earned Premiums) is a known factor. Given that, the variation in the loss ratio comes from the claims
costs. The total claims costs, in turn, are defined by:

Claims Costs = Reported Claims+ IBNR (1.2)

IBNR stands for Incurred but not reported and refers to a claim that has already occurred but has
not yet been reported (they are always reported after the accounting date). This means that, since the
insurer does not know how many of these losses have occurred, this value is always an estimate.

This thesis urges from the difficulty that arises from this nine month loss ratio prediction, which is a
preliminary step before predicting the renewals. Nowadays, as it is shown in the following sections of
this introduction, the claims predicting is made using a time series algorithm.

1.2 Literature Review

This section describes how the problem presented in the previous section is addressed in the literature.

One of the classical ways for dealing with the present problem is the one suggested by the United
Kingdom’s Institute and Faculty of Actuaries (IFA). In their Claims Reserving Manual, the problem is
treated by calculating the loss ratio for each month of the first nine ones of the annuity.[9] So, in this way,
the loss ratio for month i (LRi) would be:

LRi =
CCi
TP

(1.3)

where CCi refers to the total of Claims Costs in month i and TP corresponds to the total amount of
premiums received by the company for that whole year.

It is clear that, since the numerator of the previous equation is cumulative, the loss ratio increases
when i increases.

After having calculated all the nine values of the Loss Ratio (LR1,...,9), the IFA suggests then fitting
a least squares approximation to those values. With this fit, it is possible then to find the values for the
loss ratios of the last three months of the annuity (LR10,...,12)

Another model pointed out by England et al. (2002) to deal with this issue, is the classic Mack’s
Chain Ladder (CL) method, which is described in greater detail in Section 1.3.1, because it is the one
currently used in Multicare to estimate the IBNR claims.[10]

The work of Wuthrich (2018) proposes a modification of the traditional Mack’s Chain Ladder.[1] In the

2



Chain Ladder method, the aggregated claims payments are assumed to fulfill a regression assumption,
however, in Wuthrich’s paper the goal was to extend this simplified regression assumption by allowing
for the inclusion of individual claims information. The individual claims information that was included in
the study were:

• the line of business the individual claim is belonging to (LoB);

• the claims code denoting the labor sector the injured is working in (CC);

• the accident quarter of the occurrence of the individual claim (AQ);

• the age of the injured age in years at claims occurrence (age);

• the injured body part (inj. part).

To model this new information neural networks are used. The loss function to be minimized is the
weighted square loss function

Lj =
1

σ2
j−1

I−j∑
i=1

∑
x:Ci,j−1(x)>0

Ci,j−1(x)

(
Ci,j(x)

Ci,j−1(x)
− fj−1(x)

)2

(1.4)

where Ci,j is the cumulative claims payments for claims with accident year i done within the first j
development periods and having feature value x and fj−1 are the Chain Ladder factors.

The architecture chosen for the neural network was a feed forward one with only one hidden layer
having twenty neurons. This network has the hyperbolic tangent as its activation function. A schematic
representation of this architecture is shown below.

Figure 1.1: Schematic representations of the neural network architecture from Wuthrich (2018).[1]

In this paper, the forecasting process takes into account the difference of the non-zero claims and the
zero claims (claims in which Ci,j−1(x) = 0). Since the data in analysis has a lot of feature combinations
for which the total claims are 0 for a given i and j, for the latter a new model that does not take into
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account the claims features is proposed. In this model the predicated claims are just given by the
formula:

C∗i,j ≈ Ci,I−i
j−1∏
l=I−i

g
(i)
l (1.5)

for given g(i)I−i, . . . , g
(i)
J−1 CL parameters.

At the end of this paper, it is admitted that it is only the start of a broader spectrum of work that can
be done incorporating machine learning for the problem of loss ratio forecasting. One next step that
the authors suggest that should be considered is the incorporation of dynamic variables (variables that
change in time) in the models, instead of only static ones. An attempt to include this type of variables
into machine learning models was done by Wuthrich. [2]

In this work, it is proposed a regression tree model. The variables taken into account include static
ones, such as claim code (cc) stating the type of claim, diagnosis code (diag) stating the type of injury,
the lawyer involved (law), static categorical feature and reporting delay (j), and also dynamic variables
like closed at time i + j + k (cl) which indicates if the claim is closed or open at time i + j + k where i
is the accident year and j + k are the amount of time it takes until the claim is reported, known as the
reporting delay. A closed claim is one in which all compensations are paid. The other dynamic variables
are the amount of money paid by the insurer at time i+ j + k.

The regression functions are estimated using classification and regression tree (CART) methods. It
is done using the rpart function in R, which successively partitions the feature space into rectangles by
solving standardized binary split questions.

This model used different methods to estimate both the Reported Claims and the IBNR.

For the Reported Claims, cross validation is done to find the hyperparameter of the number of leaves,
and the cost-complexity plot is done, given an optimal number of leaves of 11.

Figure 1.2: Best tree found for forescasting the Reported Claims according to Wuthrich (2018). [2]

For the IBNR claims, the information about the number of reported claims Ni,j is not yet observed,
thus they had to be predicted. It is assumed that the claims occurrence and reporting process can
be described by a homogeneous marked Poisson point process. By doing so, the IBNR claims were
calculated resorting once again to the Chain Ladder model.

In the work of Kuo (2019) it is presented a more sophisticated approach to the loss ratio forecasting
problem.[3] The authors resort to the use of deep learning, more specifically, neural networks.
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The database used in the study refers to various claims from accident years 1988-1997 for a total of
fifty companies. The inputs of the neural network developed are the past loss ratios, calculated in two
different ways, one with the incremental paid losses and the other one with the total claims outstanding,
and also a company code so that it is possible to identify the company.

The architecture of the proposed neural network is the one shown in the figure below.

Figure 1.3: Neural Network architecture used by Kuo (2019).[3] GNU refers to Gated Recurrent Unit (a
type of recurrent neural network) and FC refers to Fully Connected layer.

For both the encoder and decoder GNU modules 128 hidden units are used and a dropout rate of
0.2. Regarding the company codes input variable, each company is mapped to a fixed length vector
in IRk, where k is a hyperparameter. After this, each decoded GNU timestep is concatenated with the
company embedded output and enters the fully connected layers. The two subnetworks correspond to
the paid loss and case outstanding predictions, respectively, and each consists of a hidden layer of 64

units with a dropout rate of 0.2, followed by an output layer of 1 unit to represent the paid loss or claims
outstanding at a time step.

The performance measures used to test this method were the Mean Absolute Percentage Error
(MAPE) and the Root Mean Squared Percentage Error (RMSPE). This method performed better than
both the traditional Chain Ladder and the Chain Ladder with neural networks.

1.3 Baseline Method

In the following section, the procedures to address the problem shown in the previous sections will be
described. These procedures will be the baseline method in our study and at the end, the results of this
baseline method will be compared with the ones from the proposed alternative solutions to this problem.

Currently, in Multicare, the problem of predicting the loss ratio in the last three months of each annuity
is handled by resorting to time series. But before this, it is mandatory to find a solution to address the
estimation of the IBNR claims. In Multicare the method used is the Chain Ladder.

1.3.1 IBNR estimation

The Chain Ladder method is widely used in actuarial science and relies on the assumption that the past
loss patterns are indicative of the future ones. To understand how this method works it is important to be
familiar with the concept of run-off matrices, which are n× n matrices with the time of occurrence (time
in which the claim happened (YYYYMM)) of claims as lines and accounting time (time in which the claim
was processed) as columns. Below is an example of a run-off matrix like the ones used in Multicare.
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Figure 1.4: An example of a run-off matrix like the ones used at Multicare. [4]

In the above figure, the elements above the main diagonal correspond to the reported claims. Let
ci,j denote the entry of the matrix in column j and line i. Given that, the elements ci,1 refer to the values
of claims that happened in occurrence time i and were processed in the same month of the occurrence.
The elements ci,j where j > 1 correspond to claims that happened in occurrence time i and were only
processed in the months after.[11]

The elements below the diagonal matrix are all represented as NA and they correspond to the values
of claims that already occurred but have not been yet reported (IBNR). These are the values that need
to be estimated and will be with the Chain Ladder method.

The first step in the Chain Ladder method is calculating the development factors fk according to the
following formula:

fk =

∑n−k
i=0 ci,k+1∑n−k
i=0 ci,k

, 0 ≤ k ≤ n− 1 (1.6)

This way we obtain a development fk for each column k an we are able to estimate the values below
the main diagonal. For each column k we have that the element to be estimated ci,k is given by:

ci,k = ci,i × fk , k > i (1.7)

where ci,i is the element in the main diagonal of line i. The run-off matrix shown below serves for
illustrating the method described above.

Figure 1.5: An example of a factor development calculation in a run-off matrix.

1.3.2 Loss Ratio Estimation

The step that follows the estimation of the IBNR claims is the estimation of the loss ratio for the corporate
clients of each renewal date.
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Nine months after each contract renewal date, the insurer is in charge of forecasting the loss ratio
for the last three months of the annuity based on the past loss ratio (last nine months for a new client
and also past annuities for older clients). This forecasting is done using the ARIMA time series model.
Below is a definition of time series.

Definition 1.3.2.1. A time series is a set of observations xt where each of them is recorded at a given
time t. [12]

To perform time series analysis, the time series data is usually considered as a realization of a
stochastic process.

The ARIMA model (autoregressive integrated moving average) is, in fact, a generalization of the
ARMA model (autoregressive moving average) that, contrary to ARMA which only models stationary
series, can incorporate also a wide variety of non-stationary ones.[13]

Definition 1.3.2.2. If d is a nonnegative integer, then {Xt} is an ARIMA(p,d,q) process if Yt := (1 −
B)dXt (where B is the backward shift operator) is a casual ARMA(p,q) process.[13]

To understand the definition of an ARIMA process one must first understand the definition of an
ARMA process.

Definition 1.3.2.3. {Xt} is an ARMA(p,q) process if {Xt} is stationary and if for every t,

Xt − φ1Xt−1 − ...− φpXt−p = Zt + θ1Zt−1 + ...+ θqZt−q (1.8)

where {Zt} ∼ WN(0, σ2) and the polynomials (1 − φ1z − ... − φpzp) and (1 + θ1z + ... + θqz
q) have

no common factors.[13]

A loss ratio forecast in Multicare is performed following a set of steps like the ones described below.

• The first step is to calculate the past loss ratio per month from the data displayed in the run-off
matrices and according to the formula presented in section 1.1

• After having calculated all the loss ratio values per month the next step is identifying any outliers
between those values. This is done by resorting to the Grubbs test.

The Grubbs test is commonly used to find outliers in a univariate data set under the assumption
that data are normally distributed. Grubbs test, as shown by its definition, tests outliers one by
one.

Definition 1.3.2.4. Grubbs’s test is defined by the following hypothesis:

H0 : The data set has no outliers.

H1: The data set has at least one outlier

The Grubbs’s test statistic is defined by G = max|Yi−Y |
s where Y and s are the sample mean and

its standard deviation respectively.[14]

The maximum and minimum limits above and below which the value is considered an outlier are
respectively Y + 3× s and Y − 3× s.

The outliers found by the Grubbs Test are then set equal to the smallest or highest (depending on
whether the outlier is above or below the interval for which the values are not considered outliers)
non-outlier value from the whole loss ratio sample.

• Next in the forecasting process is an important step that is used to verify that the data from the
past loss ratios shows evidence of stationarity.
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Definition 1.3.2.5. A time series {Xt} is a stationary time series if:

a) the mean function of {Xt}, µX(t) = E[Xt] is independent of t,

and,

b) the covariance function of {Xt}, γX(t+h, t) = Cov (Xt+h, Xt) = E [(Xt+h − µX(t+ h)) (Xt − µX(t))]

is independent of t for each h. [13]

To verify this, two tests are performed, the Augmented Dickey-Fuller test (ADF) and the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test.

In the KPSS test, the null hypothesis is that the data is stationary around a deterministic trend. [15]

On the other hand, in the ADF test, the null hypothesis is the data having a unit root. [16] A unit
root arises when the autoregressive or moving average polynomial of an ARMA model has a root
on or near the unit circle. A unit root near 1 of the autoregressive polynomial suggests that the
data should be differenced before fitting an ARMA model, whilst a unit root near 1 of the moving
average polynomial suggests that the data were overdifferenced.[13]

In a time series, differencing is a method of transforming a non-stationary time series to make it
stationary. [17] It consists of subtracting consecutive observations.

X
′

t = Xt −Xt−1 (1.9)

The computations of this differencing are intended to stabilize the mean of the time series, by
eliminating trends. Sometimes computing only the first order difference might not be enough to
achieve this, so differencing of higher orders can also be computed.

X
(n)
t = X

(n−1)
t −X(n−1)

t−1 (1.10)

Differencing can also be computed to eliminate the seasonality, which means differencing between
an observation and the corresponding observation in the previous season.

X
′

t = Xt −Xt−m (1.11)

where m is the duration of the season.[18]

In the ADF test one value that can also alert to the presence of stationarity or not in the data is the
ADF statistic, which is a negative number, and the more negative it is, the stronger the rejection of
the null hypothesis.[13]

• After being more confident about the stationarity of the data the ARIMA is computed resorting to the
R function auto.arima, that returns the best ARIMA model according to AIC values. The function
searches for all possible models within the order constraints provided. The order (d parameter of
the ARIMA model) provided to the function is d = 0.

1.4 Objective

Despite the developments of the prediction algorithms in recent years, the problems of predicting accu-
rately both IBNR claims and the loss ratio of the ending months of an insurance annuity are still popular
subjects inside the non-life insurance community.
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This subject becomes even of greater importance when in the context of health insurance and when
dealing with corporate clients, since the loss of a corporate insurance policy means, in most cases, the
loss of a significant amount of individual clients and consequently, depending on the client size, the loss
of market share.

The main objective of this work is to find a procedure that allows the insurer more accurate predictions
to propose a fairer price to each corporate client. Since predicting loss ratios means predicting the
amount of claims, it is accepted that the amount of claims might not be very accurately forecasted taking
only into account the past values of those claims. Keeping that in mind, in this work some external
socio-economic and geographical variables will be introduced in the prediction models. Also, it will only
focus on the outpatient coverage considering only claims that happened in our network of providers
(i.e. excluding the reimbursement ones) because, from the ones that have a behavioral component, the
outpatient coverage is the one that has the greatest financial impact on a renewal.
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Chapter 2

Method

In this chapter, we explain more deeply the proposed theoretical methods used for dealing with the
forecasting of the loss ratio for corporate clients and detail in a more theoretical way the algorithms used
in the model and how they interconnect between themselves.

The baseline method currently in use in Multicare, as explained in the previous chapter, uses time-
series algorithms (namely ARIMA) to forecast future loss ratios based on the previous ones. This means
that the past loss ratio is the only information that the current model uses to forecast future ones.

The question we ask ourselves at the beginning of this work is: Is the past loss ratio the only variable
relevant for predicting the future loss ratio or can other information that we, as a company, have regarding
our clients be also relevant?

Given this, we propose in this work an approach using machine learning techniques to predict the
future loss ratio for corporate clients.

The method proposed will consist of two different forecasting problems. The first one is predicting
the number of claims per insured person in the last three months of one annuity inside each corporate
client company, whilst the second one consists in predicting the cost of each medical act performed by
each insured person in the last three months of each annuity.

2.1 Cost and Number of Claims split

In section 1 it was stated that the loss ratio was calculated as a ratio between the total amount of money
paid in claims for one corporate client in one annuity and the total amount of premiums paid by that client
in the same annuity.

Loss Ratio =
Claims Costs

Total Earned Premiums
(2.1)

Since the total amount of premiums (amount of money paid by a client to the insurer in exchange for
an insurance policy) is well known, we are interested in forecasting the total costs with claims which are
given the following formula:

Claims Costs = Reported Claims+ IBNR (2.2)

As we showed in the previous section, the forecast for IBNR is made separately from the Reported
Claims one, and optimizing them will not be a subject of this work for the simple reason that the problem
of IBNR only appears when dealing with reimbursement claims and in this work, we will only deal with
claims that occurred within the net of providers of Multicare. Given this, our focus will turn only into
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the total amount of reported claims. This one is calculated by multiplying the medium cost of a claim
(Medium Cost) by the total amount of claims performed by one corporate client in each annuity (Total
Number Claims).

Reported Claims = Medium Cost× Total Number Claims (2.3)

Following the previous formula, it becomes obvious that to have the Reported Claims value, we must
first predict the Cost of each claim and compute the mean value over all claims in the dataset and also
the Total Number of Claims, which can be obtained by predicting the number of claims each insured
person will perform in the last three months of each annuity and summing over all insured persons.

2.2 Forecasting Costs and Number of Claims

The number of claims is a variable that takes positive integer values, meaning that computing its predic-
tion is a classification problem. Therefore we will test three different tree-based classifiers for predicting
it and compare its performances.

• Decision Tree Classifier

• Random Forest Classifier

• Gradient Boosting Classifier

The approach that will be taken to forecast the cost is predicting the cost of each medical act per-
formed by each insured person in the database and compute its mean value.

The cost of a claim is simply the amount of money (in euros) requested by the health care provider
for each medical act. This variable is typically continuous, therefore its prediction is typically a regression
problem.

Three regression algorithms will be tested in this work:

• Decision Tree Regressor

• XGBoost Regressor

• Random Forest Regressor

2.2.1 Models

Decision Tree

A classification tree is built through an iterative process of splitting the data into partitions again and
again recursively on each of the branches created, known as recursive partitioning.

This recursive partitioning works as follows. It starts with a tree with only one leaf, called the root.
Then, to this leaf, it is assigned a label according to a majority vote among all labels over the training
set. After this, it is performed a series of iterations. On each iteration, we examine the effect of splitting
a single leaf. We define some “gain” measure that quantifies the improvement due to this split. Then,
among all possible splits, we either choose the one that maximizes the gain and perform it or choose
not to split the leaf at all. [19]

The recursion is completed when the subset at a node has all the same values of the target variable,
or when splitting no longer adds value to the predictions.
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Figure 2.1: An example of a decision tree for classification. [5]

Decision tree classifiers work top-down to find the most adequate variables to split in each node.
How they choose the most adequate one depends on what type of metric is used. Different types of
metrics typically include the gini impurity or the information gain.

The gini impurity measures how often a randomly chosen element from the set would be incorrectly
labeled if it was randomly labeled according to the distribution of labels in the subset. [20]

Let pi be the fraction of items labeled with class i and consider a set of items with N classes, then
the gini impurity can be computed as:

IG = 1−
N∑
i=1

pi (2.4)

The information gain measures the difference between the entropy of the label before and after the
split and is used to decide which feature to split on each step. It is based on the concept of entropy,
since it is calculated as follows:

IG(T, a) = H(T )−H(T |a) =

N∑
i=1

pi · log2(pi)−
N∑
i=1

Pr(i|a) · log2(Pr(i|a)) (2.5)

where H(T ) is the entropy of the parent node and H(T |a) is the sum of the entropy of the children
nodes and pi represent the percentages of each class 1, ..., N present in the child nodes.

To avoid the trees growing in such a way that each observation occupies its node, stopping criteria
are needed when training a decision tree. The resulting tree would be computationally expensive, difficult
to interpret, and would probably not work very well with new data. In the diagram below, the dotted curve
represents a decision boundary that accurately separates two classes in an example of training data.
For this case, a diagonal red line is probably a better decision boundary for new cases.
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Figure 2.2: An example of a decision boundary between two classes. [6]

The stopping criteria used by decision trees are typically:

• Number of cases in the node is less than some pre-specified limit.

• Purity of the node is more than some pre-specified limit.

• Depth of the node is more than some pre-specified limit.

• Predictor values for all records are identical in which no rule could be generated to split them.[6]

The trees that result from this algorithm are usually very large. For this there are normally two
different solutions, one is to limit the number of iterations, leading to a tree with a bounded number of
nodes. Another is to prune the tree after it is built, hoping to reduce it to a much smaller tree, but still
with a similar empirical error. [19]

The decision tree regression algorithm is similar to the decision tree classifier one, but the True/False
question in the nodes is done resorting to thresholds.

Threshold values have to be estimated during the tree-growing process, usually by exhaustive search.
All threshold values are considered for each feature and the one that leads to the best impurity is se-
lected. [7]

Figure 2.3: An example of a decision tree for a continuous response variable. [7]
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Random Forest

The Random Forest is an algorithm based on an ensemble of decision trees trained resorting to a
technique called bagging. The main premise for this algorithm is that training a small decision tree with
few features is computationally cheap, therefore, if we can build several weak decision tree learners in
parallel and then combine them by averaging or majority vote we can build a single and strong learner.

The bagging method works by taking a training set T and generate N training sets Ti by boot-
strap, i.e., by sampling T with replacement, then training a classifier from each set Ti, computing the a
posteriori distributions [Pi(y = 0|x), ..., Pi(y = K − 1|x)] and then aggregating all the estimates:

P̂ (y = k|x) =
1

N

N∑
i=1

Pi(y = k|x) (2.6)

In the random forest algorithm, a subset of features is randomly selected at each node and only
those features are candidates for splitting features. This method is known as random subspace. [7]

Below is illustrated the pseudocode for the random forest training algorithm.

Algorithm 1: Random Forest [21]
Precondition: A training set S := (x1, y1) , . . . , (xn, yn) , features F, and number

of trees in forest B.
1 function RANDOMFOREST (S, F )

2 H ← ∅
3 for i ∈ 1, . . . , B do
4 S(i) ← A bootstrap sample from S

5 hi ← RANDOMIZEDTREELEARN
(
S(i), F

)
6 H ← H ∪ {hi}
7 end for
8 return H
9 end function
10 function RANDOMIZEDTREELEARN (S, F )

11 At each node:
12 f ←← very small subset of F
13 Split on best feature in f
14 return The learned tree
15 end function

During the bagging method about one-third of the cases are left out of the sample. This out-of-bag
(OOB) data is used to get a running unbiased estimate of the classification error as trees are added to
the forest. It is also used to get estimates of variable importances.

Along with this work, random forests will also be used several times to measure variable impor-
tances. To measure the importance for variable Xi the idea is to permute all values of this variable,
and measure variable importance by computing the difference in prediction accuracy caused by the
permutation.

The variable importance is computed in the following way. Let Bt denote the out-of-bag samples for
a tree t and let L (Tt (xi) , yi) denote the prediction accuracy at the ith training example. The importance
for variable Xj in tree t is defined as

V I(t) (Xj) =
∑
i∈Bt

L (Tt (xi) , yi)− L
(
Tt
(
xi,πj

)
, yi
)

(2.7)

15



where xi,πj
=
(
xi,1, ..,xπj(i),j ,xi,j+1..,xi,p

)
, and where πj is a random permutation of

n integers. In classification settings the prediction accuracy L (Tt (xi) , yi) is defined as L(Tt (xi) , yi) =∑
i∈Bt I(ŷ

t
i=yi)

|Bt| where ŷti = Tt (xi) denotes the prediction at point xi by tree t, and I(·) denotes the
indicator function. The variable importance measure for variable Xj is computed as the sum of the
importances over all trees in the forest,

V I (Xj) =

∑
t∈B V I

(t) (Xj)

n
(2.8)

where n denotes the total number of trees. [22]

Gradient Boosting

Gradient Boosting, like the Random Forest, is also an ensemble of decision trees, but with two main
differences. Gradient Boosting is an additive model, meaning that the trees are built differently, instead
of building each tree independently, it builds one tree at a time. Now we take a more theoretical look at
how a Gradient Boosting classifier works, as described by Friedman. [23]

Considering a problem of function estimation in the classical supervised learning approach and a
dataset (x, y)Ni=1, where x = (x1, . . . , xd) are the explanatory variables and y the response variable. The
goal is to estimate the function f that transforms x into y, x → y. Let f̂(x) represent our estimate of f ,
we want to minimize a specified loss function Ψ(y, f).

f̂(x) = y (2.9)

f̂(x) = arg min
f(x)

Ψ(y, f(x)) (2.10)

Writing the previous equation in terms of expected values, we want to minimize the expected value
of the loss function conditioned on the explanatory variables x.

f̂(x) = arg min
f(x)

Ex[

expected y loss︷ ︸︸ ︷
Ey(Ψ[y, f(x)]) | x]︸ ︷︷ ︸

expectation over the whole dataset

(2.11)

For the problem of function estimating to be tractable, we can restrict the function search space to a
parametric family of functions f(x, θ). This transforms the problem of estimating f into the following.

f̂(x) = f(x, θ̂) (2.12)

θ̂ = arg min
θ
Ex [Ey(Ψ[y, f(x, θ)]) | x] (2.13)

To perform parameter estimation normally iterative processes are used, with the simplest and most
frequent one being the steepest gradient descent.

Given N data points (x, y)Ni=1 the goal is to decrease the loss function J(θ) over the observed data:

J(θ) =

N∑
i=1

Ψ
(
yi, f

(
xi, θ̂

))
(2.14)

The steepest gradient descent is based on consecutive improvements along the direction of the
gradient of the loss function ∇J(θ) and it is organized as follows:
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• Initialize the parameter estimates θ̂0. For each iteration t, repeat:

• Obtain a compiled parameter estimate θ̂t from all of the previous iterations:

θ̂t =

t−1∑
i=0

θ̂i (2.15)

• Evaluate the gradient of the loss function ∇J(θ), given the obtained parameter estimates of the
ensemble:

∇J(θ) = {∇J (θi)} =

[
∂J(θ)

∂J (θi)

]
θ=θ̂t

(2.16)

• Calculate the new incremental parameter estimate θ̂t :

θ̂t ← −∇J(θ) (2.17)

• Add the new estimate θ̂t to the ensemble. [24]

This additive model works in a forward stage-wise manner, introducing a base learner to improve the
shortcomings of existing weak learners. That is, we parameterize the function estimate f̂ in the additive
functional form:

f̂(x) = f̂M (x) =

M∑
i=0

f̂i(x) (2.18)

with M being the number of iterations, f̂0 the initial guess and
{
f̂i

}M
i=1

the function increments, also
called as boosts.

In order to make the estimate of the functional more feasible base learner functions h(x, θ) are
introduced. Using this we get the optimization rule defined as:

f̂t ← f̂t−1 + ρth (x, θt) (2.19)

(ρt, θt) = arg min
ρ,θ

N∑
i=1

Ψ
(
yi, f̂t−1

)
+ ρh (xi, θ) (2.20)

Another difference stands in the way the results are combined, while in the random forest they are
combined at the end of the process, usually by majority rules or averaging, in gradient boosting it com-
bines the results along the way. [25]

To summarize this approach we show below the pseudocode algorithm for the Gradient Boosting
Machines.
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Algorithm 2: Gradient Boosting Machine [24]
Inputs:
− input data (x, y)Ni=1

− number of iterations M
− choice of the loss function Ψ(y, f)

− choice of the base learner model h(x, θ)

Algorithm :

1 : initialize f̂0 with a constant
2 : for t = 1 to M do:
3 : compute the negative gradient gt(x)

4 : fit a new base-learner function h (x, θt)

5 : find the best gradient descent step-size ρt ρt = arg minρ
∑N
i=1 Ψ

[
yi, f̂t−1 (xi) + ρh (xi, θt)

]
6 : update the function estimate: f̂t ← f̂t−1 + ρth (x, θt)

7 : end for

XGBoost

Extreme Gradient Boost (XGBoost) is an additive ensemble of decision trees that is composed of several
base learners (decision trees).

XGBoost is a reliable and distributed machine learning system to scale up tree boosting algorithms.
The system is optimized for fast parallel tree construction. [26]

Given a dataset with n observations and m features D = {(xi, yi)} (|D| = n,xi ∈ Rm), a tree ensem-
ble resorts to K additive functions to forecast the output.

ŷi = φ (xi) =

K∑
k=1

fk (xi) , fk ∈ F (2.21)

where F =
{
f(x) = wq(x)

}
(q : Rm → T,w ∈ Rm) represents the space of regression trees. Here q

represents the structure of each tree that maps an example to the leaf index and w is the weight vector
of each leaf.

To learn a tree ensemble, the model tries to optimize the regularized objective function

L(φ) =
∑
i

l (ŷi, yi) +
∑
k

Ω (fk) , Ω(f) = γT + λ‖w‖2 (2.22)

where l represents a differentiable convex loss function and Ω a function to measure the complexity
of the model and avoid overfitting. The model is then trained in an additive manner, with a new tree
being added at each iteration. We can derive a score to measure the quality of a given tree structure q

L̃(t)(q) = −1

2

T∑
j=1

(∑
i∈Ij gi

)2
∑
i∈Ij hi + λ

+ γT (2.23)

where gi = ∂ŷ(t−1) l
(
yi, ŷ

(t−1)) and hi = ∂2
ŷ(t−1) l

(
yi, ŷ

(t−1)) are the gradient and second order gradi-
ent statistics respectively. This score is similar to the impurity score for evaluating decision trees, except
that it is derived for wider range of objective functions. [26]

The biggest advantage of the XGBoost is the fact that it is very fast to converge when compared to
other gradient boosting algorithms.
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Chapter 3

Data Analysis

In this chapter, we dive into the more practical part of this work. It addresses the setup that made our
empirical work possible. We discuss the datasets that supported it together with all the cleaning work
that was done on them.

We will also explain in more detail the experiments that led to the final results.

3.1 Datasets

In the previous section, the method we will implement in this work is explained in greater detail and
consists of forecasting two separate quantities, the number of claims and the cost of claims. For this
reason, the data set we will be using in this work is also divided into two.

The first one consists of data containing information about the number of claims per insured person
per month of each annuity. Here, the idea of organizing the data by month emerged because in insurance
analysis it is essential to have a time unit to measure the risk exposure (the measure of potential future
loss resulting from a specific activity or event, that, in the insurance industry, are claims) and also to
capture seasonality.

The second one has data related to the total cost of the claims per insured person.

3.1.1 Claim Catalogs

In this section, before diving into a more detailed analysis of the datasets, we start by introducing a
particular variable that is present in our datasets and that can reveal itself as a very important one
further in our analysis.

This variable is called CATALOG and characterizes a claim, indicating its respective claim catalog.

The concept of claim catalog was created to group the claims by their medical similarity. The goal
was to have a variable that could provide a high-level description of each claim. To illustrate this, we
show a table below containing four records of claims taken from our dataset. Here we only display three
columns, the one indicating that these are outpatient claims, and then the description of the claim and
the respective catalog, showing how much more high level is the CATALOG variable.
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Table 3.1: Excerpt taken from our dataset with an example of four records of claims showing the compar-
ison between the claim description registered in the systems by the provider and the variable indicating
the respective catalog.

Type of cover Claim Description CATALOG

Outpatient Medical Assistance Other Claims
Outpatient Aspartate transaminase (AST) = GOT Clinical Analysis
Outpatient Permanent Medical Care Emergency Appointments
Outpatient Abdominal - 2 views+ X-Rays

To assign each of the thousands of descriptions present in our datasets to a suitable catalog we had
the help of a team of medical doctors of the company. In our datasets we have ten different catalogs:

• Medical Appointments

• Emergency Appointments

• Clinical Analysis

• Pathological Anatomy

• Ultrasounds

• Physical and Rehabilitation Medicine

• X-Rays

• MRI

• Computed Tomography

• Other Catalogs

3.1.2 Number of Claims dataset characterization

This database has one line per insured person per month of each annuity, meaning that each insured
person appears in the database 12 times in each annuity.

The number of claims database has 989625 lines and 107 variables. The variables are divided into
two main groups. A group of variables at the insured person level includes age, gender, the company
they work for, and residence addresses, and another group that includes information about the health,
socio-economic and demographic conditions in the parish of residence of each insured person. These
variables include indicators of the quality of the public health institutions that are closer to the insured
person’s residence and the real estate prices in the parish of residence. It also includes variables with
the distances (in kilometers) and journey times from the residence to the closest public and private
health providers by road (considering the shortest road path between the two points).
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Table 3.2: Summary table of the variables that were introduced in our datasets resorting to external
entities.

Socio-Economical / Demographic Health

INE

Information about:
Residents by Education
Residents by employability
Retired Residents
(data by statistical subsection)

Transparency Portal
(Portuguese National
Health Service)

Information about:
Responsiveness of the public health
Oncological screenings
No of appointments
No of surgeries
No of users and user rates
(data by ACES or Hospital)

Real Estate

Information about:
Medium price offer by m2
Medium price transaction by m2
Medium rent contracted by m2
(data by parish)

Private Entities Information about:
Responsiveness of private health

Road Network Distances and times by
road between two points

In the table above we have a summary of the variables that are external to the company data and
were introduced in our database.

In the variables that come from INE (Portuguese National Institute of Statistics), the data are shown
by statistical subsection. The statistical subsection corresponds to the block in urban areas, the
place or part of the place in rural areas, or residual areas that may or may not contain statistical units.
In the image below we can see an example of a portion of the map of Portugal divided by a statistical
subsection.

Figure 3.1: Example image of a portion of the portuguese territory divided into statistical subsections.

The variables that came from the Transparency Portal of the Portuguese National Health system are
all displayed either at the hospital level or at ACES influence area level.

The ACES influence area is how the National Health System divides the country in terms of influ-
ence areas of provision of primary health care.
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Figure 3.2: Example image of how the portuguese territory is divided under ACES influence areas.

Below we show also an image to illustrate the variables of the distances by road from two points. In
the case of our dataset, we have the distances from the residence of each insured person to the closest
private and public health providers.

Figure 3.3: Example image of the distance by road from the residence of insured persons to the closest
public provider.

Data Types

Regarding data types, the data frame has 87 numerical variables and 20 categorical variables. The
response variable, the Number of Claims is a categorical variable with values in the interval [0, 19].

Missing Values

When performing a missing value analysis some variables had more than 90% of missing values, so the
decision was to eliminate them. These were some variables related to the real estate information and
also some regarding the vaccination programs in the public hospital of the parish of residence. All of the
other variables present less than 13% of missing values, so they are all worth keeping.
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In those variables that had missing values, such values were replaced by the median value of the
respective column. We choose to replace them with the median because it is a more robust method
since it is not so affected by the presence of outliers as the mean is.

3.1.3 Cost dataset characterization

This database has one line per claim for each annuity.

The cost database has 227174 observations and 111 variables. Similar to what happens with the
number of claims database, here there are also two main groups of variables, the first one with variables
indicating the cost of each claim, the age, gender, and other personal information concerning the insured
person that had the claim. The second group includes, once again, information about the health and
socio-economic conditions in the parish of residence of each insured person that had claims and also
the distances in kilometers and travel times by road from the residence to the health care provider where
the claim was registered.

Data Types

Regarding data types, the data frame has 88 numerical variables and 23 categorical variables, and the
response variable, the Claims Cost is a numerical variable.

Missing Values

When performing a missing value analysis, all of the variables in the dataset have less than 10% of
missing values, so they are not worth being eliminated at this point.

Given that in the cost dataset the response variable for the prediction problems that will follow is the
Cost of Claims, and that, in some claim catalogs this variable can assume a very high range of values,
some of which will be treated as outliers further in our analysis, we used again the method of replacing
the missing values with the median value of the column.

3.1.4 Number of Claims Analysis and Visualization

Visualization

First, we will look at the number of claims dataset and draw attention to the response variable, the
number of claims.
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Figure 3.4: Bar plot for the number of claims distribution

From the bar plot, the number of claims that are equal to 0 (meaning the insured person had no claim
reported in that month of the respective annuity) is notoriously high when compared to the other values,
indicating that this dataset has a clear problem of class imbalance. The entries of the dataset classified
with 0 claims represent 75% of all entries.

Next, we take a look at how the insured persons and the number of claims are distributed by age,
gender, and district of residence.

The insured persons in this dataset have an average age of 38.6 years (median of age equal to 38

years) and the following age distribution.

Figure 3.5: Bar plot for the number of insured persons distributed by age.

The gross of insured persons is distributed between 25 and 50 years old, with all the age values
between this two having more than 15000 insured persons. This is an expected distribution since, for
this work, we are only considering the insurance policyholders.

A policyholder is an insured person that has agreed with an insurance company that it will provide
insurance against particular risks, meaning that, in this definition, policies of the rest of the household
are not included. This is also the reason for not having anyone aged below 18 years old in our dataset.

In terms of the number of claims distribution by age, we can see by the plot below that for younger
ages, the response variable has low values that tend to increase more in the interval of [30, 40] years
old. It is curious to note that after the age of 50, the response variable values start to decrease again.
This happens because the number of insured persons in the age interval of 50+ years old is much lower
than for lower age intervals since we are not considering retired policies.
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Figure 3.6: Bar plot for the number of claims distribution by age

In terms of gender distribution, in a total of 70418 insured persons, 55.5% are women and 44.5% are
men as we can see from the bar plot below.

Figure 3.7: Bar plot for the gender distribution
Figure 3.8: Bar plot for the number of claims distri-
bution by gender

It is very interesting to note that, despite having a small percentage difference between the number
of females and males in our data sample, the number of claims belonging to clients of the female gender
is almost double of those belonging to men, as the plot on the right shows.

When looking at the plot of the distribution of the insured persons by district it is clear and expected
that the largest part lives in either Lisbon or Porto districts.
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Figure 3.9: Bar plot for the district of residence distribution.

It might be interesting to relate the response variable (number of claims) to the district. Here it is
expected that the number of insured persons living in one district positively influences the number of
claims, meaning that the districts that have a higher number of insured persons will automatically have
a higher number of claims. For this reason, we chose to plot the ratio between the number of claims and
the number of insured persons by the district.

Figure 3.10: Bar plot for the number of claims by insured person distribution by district of residence.

The districts that have a higher number of claims in proportion to their respective number of insured
persons are Lisbon, Setubal, and Porto. These same differences between districts are more easily seen
in the Portuguese map below.
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Figure 3.11: Portuguese map for the number of claims by insured person distribution by district of
residence.

We see that despite for example the district of Porto has more insured persons than Setubal, the
second one has a higher ratio of claims.

Correlations and Variable Importance

In terms of correlations, the first step in our approach was to calculate the pairwise correlations between
all the columns in the data frame and also analyze the correlation between all the variables and the
response variable (Number of Claims).

First of all, in our analysis, we found out that there are 88 pairs of independent variables that have
a pairwise correlation higher than 0.9, which means that they have a high degree of correlation. This
type of correlation can later influence the performance of models that assume independence between
variables.

An example of two variables with a high correlation is the Travel Time Home-Closest Private Hospital
and the Travel Distance Home-Closest Private Hospital. From the scatter plot of these two variables
shown below, the linear correlation is visible.
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Figure 3.12: Scatter plot of travel distance and travel time from home to closest private hospital variables.

For this reason, one of the approaches we will take further in this work is performing Principal
Componente Analysis in this dataset.

In terms of correlations between independent variables and the response variable, the values we
found were all a bit low.

Table 3.3: Table of the independent variables that achieved a higher correlation coefficient with the
response variable in the number of claims dataset.

Variable Correlation Coefficient

DEDUCTIBLE NET NORMAL 0.246
DEDUCTIBLE YEARLY 0.227
DEDUCTIBLE NET MAX 0.222
PERC COPART INSU NET 0.216
PLAFOND 0.180
PROP ELDERLY CHRONIC DISEASE VACCIN 0.164
TIME AT RISK 0.152
USERS SUBSCRI FLU VACCINE 0.141
AGE 0.134

The top three variables that achieve the higher value for the Pearson correlation coefficient are the
ones related to deductibles.

A deductible is the amount paid out of pocket by the policyholder before an insurance provider will
pay any expenses. [27] The value of each deductible varies from contract to contract and is negotiated
between the insurance company and the policyholder at the moment of subscription.

Despite the low values for these correlations, we plotted below the scatter plots between the Number
of Claims and the top four correlated variables, i.e., the three different types of deductibles and the
percentage of co-payment that the insurance ensures in the health providers included in the providers
net.

The providers net is the list of health providers that have special agreements with the insurance
company and normally contracted prices for several medical acts.
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Figure 3.13: Scatter plot of Number of Claims and
the value for the deductible in normal net of Multi-
care providers.

Figure 3.14: Scatter plot of Number of Claims and
yearly deductibles.

Figure 3.15: Scatter plot of Number of Claims and
the maximum value for the deductible in normal net
of Multicare providers.

Figure 3.16: Scatter plot of Number of Claims and
the percentage of co-payment by the insured per-
son.

By analyzing these plots it is clear why the correlation values are so low.
The fact that the Pearson correlation coefficients between independent variables and the dependable

one are not very high does not mean that they are not correlated, it just means that they are not linearly
correlated, and we believe that the problem of forecasting the number of claims based on the variables
we have available is too complex to be captured by any linear phenomena.

With this in mind, we decided to run another method for checking the importance of the co-variables
to explain the response variable. We trained a Random Forest Regressor with 50 estimators and ex-
tracted the features importances.

Feature Importances are useful to quantify the strength of the relationship between the predic-
tors and the outcome and rank the predictor variables. As the number of attributes becomes large,
exploratory analysis of all the predictors may be infeasible, and concentrating on those with strong rela-
tionships with the outcome may be an effective training strategy. [28]

According to this method, the features that are more important for the prediction of the Number of
Claims are the claim catalogs, the age of the insured persons, the time by road that it takes from the
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house of each insured person to the closest public hospital, the month in which the insured person is
exposed to risk and their professional occupation.

• CATALOG

• AGE

• CLOSEST PUBLIC HOSPITAL TIME TRAVEL

• MONTH

• PROFESSIONAL OCCUPATION

Below we show the scatter plots of some of the above variables with the number of claims.

Figure 3.17: Scatter plot of Number of Claims by insured person in one annuity and the medical catalog
of a claim.

We can see that there are some medical catalogs in which insured persons registered higher num-
bers of claims than others. Clinical Analysis is one good example of a catalog that tends to have a high
number of claims since most of the individual clinical analysis are usually cheap and when a doctor pre-
scribes what we empirically call clinical analysis, that prescription is generally made of a lot of individual
analysis. On the other hand, there are no records of any insured persons having more than two claims
of computed tomographies (CT scan) in the same annuity, which is normally an expensive claim that
can easily make insurance plafonds run out.
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Figure 3.18: Scatter plot of Number of Claims and
the age of each insured person.

Figure 3.19: Scatter plot of Number of Claims and
the travel time in minutes from the each insured per-
son’s residence and the closest public hospital.

In the scatter, plot on the left the younger ages and the older ones tend to have a lower number of
claims than the other ones. On the right, we see that the insured persons who live closer to a public
hospital have more claims using health insurance than the ones that live farther away.

To strengthen our belief that the variable CATALOG is the most important one when it comes to
predicting the number of claims, we trained a decision tree classifier with the number of claims dataset
and plotted the tree that was trained. In Figure 3.20 we show the first two levels of the decision tree
trained. In the first two levels, the tree only splits by CATALOG.

Figure 3.20: Plot of the first two levels of the decision tree trained with the original dataset.
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Variable Importance Analysis by claim catalog

It may be interesting to perform the previous analysis but using only the claims of each catalog, instead
of the whole data frame, and compare the conclusions.

Since we have ten different catalogs we will create ten datasets and in each of them there will be all
of the insured persons, but in the variable number of claims, we will only count claims of the respective
catalog.

In the table below we show the different possible catalogs for outpatient claims and summarize the
top three most important variables to predict the response variable (Number of Claims) using a Random
Forest Regressor and also the number of pairs of variables that have a Pearson correlation higher than
0.9 between them.

Table 3.4: Table with the top three most important variables to predict the number of claims by each
catalog and the number of pairwise highly correlated variables.

Catalog Top 3 Important Variables (RF) Number of parwise
highly correlated variables

Appointments AGE 88
MONTH

CLOSEST PUBLIC HOSPITAL TIME TRAVEL
Clinical Analysis AGE 114

CLOSEST PRIVATE ANALYSIS LAB KM DISTANCE
CLOSEST PRIVATE ANALYSIS LAB TIME TRAVEL

Pathological
Anatomy AGE 142

PROFESSIONAL OCCUPATION
CLOSEST PRIVATE ANALYSIS LAB KM DISTANCE

Ultrasounds AGE 200
PROFESSIONAL OCCUPATION

CLOSEST PUBLIC HOSPITAL KM DISTANCE
Physical and
Rehabilitation
Medice

CLOSEST PUBLIC HOSPITAL TIME TRAVEL 144

N HOME APPOINTMENTS PUBLIC SECTOR
CLOSEST PUBLIC HOSPITAL KM DISTANCE

X-Rays AGE 196
CLOSEST PUBLIC HOSPITAL TIME TRAVEL

PROFESSIONAL OCCUPATION
Magnetic
Resonance AGE 248

CLOSEST PUBLIC HOSPITAL TIME TRAVEL
PROFESSIONAL OCCUPATION

Computed
Tomography AGE 76

WOMEN ONC RECORD PUBLIC SECTOR
N RETIRED PARISH RESIDENCE

Emergency
Appointments AGE 88

MONTH
PROFESSIONAL OCCUPATION

Other Catalogs AGE 162
CLOSEST PUBLIC HOSPITAL TIME TRAVEL

CLOSEST PRIVATE RADIOLOGY LAB KM DISTANCE

Performing this analysis by catalog, therefore, eliminating the variable catalog from the dataset, gave
big importance to the age variable in almost all of the datasets, which is in line with our common sense
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that age is generally the most important factor to determine the number of claims.

These results, at least from our empirical point of view, seem to make more sense than the ones
achieved with the whole dataset. As we saw in the scatter plot between the number of claims and the
claim catalog, different catalogs display a very different number of claims, because their medical nature
is in some cases completely different and the context in which they are performed is very different.

When trying to build a model for predicting the number of claims with all the catalogs together we are
asking the model to capture phenomena that are generally very different.

3.1.5 Cost Analysis and Visualization

Visualization

Contrary to what happens with the number of claims dataset, in the cost one there is only information
concerning people that had any claim during the analysis period. This makes the average age rise to
almost 42 years old, four years more than that of the number of claims dataset. In this dataset, the
response variable is the Cost of Claim, which, as already pointed, indicates how much did a claim cost
in euros.

Figure 3.21: Density plot of the cost.
Figure 3.22: Cullen and Frey graph to approximate
a possible distribution for the response variable.

From the plot on the left, it is noticeable that the Cost variable has a lot of observations for lower
values and very few observations for higher values. The range of this variable is rather big, as the
values for claims costs in our database vary in the interval [0.78, 2200].

Using the same Cullen and Frey plot used in the number of claims dataset, the right side plot tells us
that the Cost variable can be better approximated by a lognormal distribution with parameters:

µ = 6.98

σ = 1.005

In terms of age, the average one is 41.8 years and it has the following age distribution.
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Figure 3.23: Plot of the medium cost (in euros) of a claim per age.

From the plot above we can see that the medium cost of claim values are a bit high at the age of 18

years old then they drop in the age of 20 and remain more or less stable between 30 and 40 euros and
then they tend to increase again for insured persons with more than 60 years old.

The high values of the medium cost of a claim in the insured persons with 18 years old are because
in our dataset we only have two records of claims, both emergency appointments with a cost of 75 euros
each.

Figure 3.24: Bar plot for the medium cost distribution by age for males.

Figure 3.25: Bar plot for the medium cost distribution by age for females.

Generally, the costs of female clients are lower than for male clients, except for the 18 years old
range, because, as we saw before, the two claims of emergency appointments both belong to women.

When analyzing the gender distribution and the mean claim costs per gender, the findings are very
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interesting. We found that despite that in this data frame the number of female insured persons is almost
double than the number of male insured persons like we saw in the number of claims distribution from
the last section when we look at the medium cost of a claim, the value for male clients is higher. Women
go more often to the doctor since their total number of claims is almost double that of men, but still, on
average, their claims are cheaper.

Figure 3.26: Bar plot of the gender distribution.
Figure 3.27: Bar plot for the medium claim cost dis-
tribution by gender.

This seems to suggest that women go more often to the doctor, therefore might prevent complicated
and costly problems in the future, while men might not be so worried about prevention and only resort to
the doctor when they already have a problem in a more advanced stage.

In terms of geographical distribution, we show again the plot of the number of claims per district and
also one with medium cost per claim in each district.

Figure 3.28: Bar plot for the district distribution.
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Figure 3.29: Bar plot for the average claim cost distribution by district.

In the above plots we can see that, first, the districts with more claims are, by far, Lisbon, Porto, and
Setúbal, which is because they have more insured persons. The second graph represents the medium
cost of a claim in each district and is more interesting to look at since we see, for example, that Beja
is the district where the medium cost per claim is higher, despite being one of the districts with fewer
claims.

Lisbon has the higher medium cost per claim after Beja, being closely followed by Setúbal.
An interesting fact is also the case of the district of Coimbra, despite having a reasonable population,

it has a relatively low number of insured persons and also a relatively low number of claims and we know
that it is because the public hospital of the city of Coimbra has a very good level of responsiveness.

This can be proved by looking at the plot of the percentage of appointments done inside the limits of
what is considered by the Portuguese National Health Service as a reasonable waiting time for an ap-
pointment by the district. This percentage was extracted from the Transparency Portal of the Portuguese
National Health System (SNS) and is done by the district, therefore including data from all the hospitals
inside each district.

Figure 3.30: Bar plot of the percentage of appointments done inside the limits of what is considered by
the Portuguese National Health Service as a reasonable waiting time for an appointment by the district.

Correlations and Variable Importance

In terms of correlations, again the first step on our approach was to calculate the pairwise correlations
between all the columns in the dataset and also analyze the correlation between all the variables and
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the response variable (Cost of a Claim). First of all, in our analysis, we found out that there are 128 pairs
of independent variables that have a pairwise correlation higher than 0.9, which means that they have a
high degree of correlation. An example of two variables with a high correlation is the Average contracted
rent prices and the Average asked rent prices. From the scatter plot of these two variables shown below,
the linear correlation is visible.

Figure 3.31: Scatter plot of the average asked rent prices in the parish of residence and average con-
tracted rent prices in the parish of residence by square meter variables.

In terms of correlations between independent variables and the response variable, the values we
found were all very low.

Table 3.5: Table of the independent variables that achieved a higher correlation coefficient with the
response variable in the cost of claims dataset.

Variable Correlation Coefficient

PERC CHILDREN 7YO VACCIN PROG 0.057820
PERC TEEN 14YO VACCIN PROG 0.055570
AGE 0.053374
VAL TRANSACT AVG 0.043400
NUM AB AVG TIME S NEW APART 0.040334
VAL RENT REQUEST AVG 0.039369
USERS SUBSCRI FLU VACCINE 0.037548
PLAFOND 0.036567
PERC CANCER TRACKING 0.031094

Similar to what we said regarding the problem of having low correlations between the independent
and response variables in the number of claims dataset, in the cost dataset that line of thought is re-
peated. We believe that the problem of forecasting the cost of claims based on the variables we have
available is too complex to be captured by any linear phenomena.

Following the same line of thought was for the number of claims dataset, we trained again a Random
Forest Regressor with 50 estimators and extracted the feature importance of each of them. According to
this method, the features that are more important for the prediction of the Cost of Claims are the claim
catalogs, the age of the insured persons, the month in which the insured person is exposed to risk, the
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distance by road in kilometers from each insured person residence and the closest clinical analysis lab
and the travel time by road from each insured person residence and the closest private hospital.

• CATALOG

• AGE

• MONTH

• CLOSEST PRIVATE ANALYSIS LAB KM DISTANCE

• CLOSEST PRIV HOSPITAL TIME TRAVEL

Figure 3.32: Bar plot of the importance of each of the variables to explain the response variable.

The plot above shows all of the variables of the cost dataset in the x-axis and the importance given
by the random forest to each of them. The biggest bar by far that can be spotted in the plot is the
variable CATALOG. This means that it is the most important variable to explain the cost. This makes
perfect sense since the different types of medical catalogs have different tabulated prices for each of the
different providers.

Having in mind that the Pearson correlation only captures linear relationships and therefore might
not be the most robust way to measure relationships between variables, and as a way to confirm the
Random Forest results, we also tried Power Predictive Score, a measure that tries to identify if two
variables have some kind of relation (not necessarily linear). [29]

Using this method the only variable that achieved a PPS greater than 0 was CATALOG.
The fact that the variable CATALOG is constantly identified as the one which has the best relationship

with the response variable indicates that it is crucial and the main differentiator in predicting the cost of
a claim and that it might be interesting to analyze the dataset by each CATALOG value and compare
results, again, similarly to what was done in the number of claims dataset.

Variable Importance Analysis by claim catalog

Following the same thought as we did for the number of claims dataset, in the table below we show the
different possible catalogs for outpatient claims and summarize their total number of observations in our
data frame, the average age of those observations, the medium cost inside each of the catalogs, the top
three important variables to predict the response variable using a Random Forest Regressor and also
the number of pairs of variables that have a Pearson correlation higher than 0.9 between them.

38



The original dataset was split into 10 different datasets, in each one of them including only the infor-
mation regarding the claims of the respective type of catalog.

Table 3.6: Table with the average age, medium cost of claims, top three most important variables to
predict the cost of claims and number of pairwise highly correlated variables by catalog.

Catalog Average Age Medium Cost (e) Top 3 Important Variables (RF)
Number of parwise
highly correlated

variables

Appointments 41.5 32.5 AGE 82
PERC APPOINT PUBLIC SECTOR

DISTRICT
Clinical Analysis 41.6 12 AGE 80

GENDER
MONTH

Pathological
Anatomy 41.2 30 GENDER 84

AGE
MONTH

Ultrasounds 41.8 34 AGE 92
MONTH

DISTRICT
Physical and
Rehabilitation
Medice

41.2 12.1 CLOSEST PRIV HOSPITAL TIME TRAVEL 114

CLOSEST RAD LAB KM DISTANCE
CLOSEST RAD LAB TRAVEL TIME

X-Rays 44.3 25.1 AGE 92
GENDER

CLOSEST PRIVATE ANALYSIS LAB KM DISTANCE
Magnetic
Resonance 44 186 PERC APPOINT PUBLIC SECTOR 76

AGE
DISTRICT

Computed
Tomography 44.1 98.7 AGE 72

N RETIRED PARISH RESIDENCE
PERC APPOINT PUBLIC SECTOR

Emergency
Appointments 42.3 83.3 N EMER APPOINT PUBLIC SECTOR 88

DISTRICT
PERC APPOINT PUBLIC SECTOR

Other Catalogs 39.4 47.3 AGE 84
MONTH

N RESID COLLEGE DEGREE PAR RESID

When we split the dataset of the several types of claims, the variable CATALOG is no longer present
and the random forest gives more importance to the variables AGE and MONTH in most of the catalog
datasets. Also, the GENDER is rated as an important factor to explain the cost of some medical catalogs.

We also note the relations identified between the cost of claims, which are always done in private
providers, with some variables regarding the public health services. For example, the variable identified
as the most important one to explain the cost of an emergency appointment is the number of emergency
appointments performed in the public sector.

In general, the results of the above table are all in line with our empirical knowledge.

3.2 Association Rules

Before introducing algorithms for predicting both the number of claims and cost we decided to perform
a market basket analysis on the claim catalogs using association rules, in particular, the apriori algo-
rithm.

The apriori algorithm proceeds by identifying the frequent individual items in the database and
extending them to larger and larger item sets as long as those item sets appear sufficiently often in the
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database.
Apriori uses breadth-first search and a hash tree structure to count candidate item sets efficiently.

It generates candidate item sets of length k from item sets of length k−1. Then it prunes the candidates
which have an infrequent subpattern. The candidate set contains all frequent k-length item sets. After
that, it scans the transaction database to determine frequent item sets among the candidates. [30]

Figure 3.33: Association Rules with higher confidence.

We found that with a confidence higher than 80%, the clients who have Pathological Anatomy,
Clinical Analysis, Ultrasounds, Emergency Appointments, and Other Claims are very likely to do an
Appointment next.

Confidence is a measure of how frequently a rule was actually found to be true. It can be present
as the following formula depending on the support of that rule:

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)
(3.1)

The support of a rule is an indication of how frequently the itemset appears in the dataset. Consid-
ering T as the dataset of transactions, t a single transaction and X an itemset, the support is defined
as:

supp(X) =
|{t ∈ T ;X ⊆ t}|

|T |
(3.2)

This is a curious result that is in line with our common sense, given that, every time someone does a
medical exam, in most cases, they need to show it to a doctor through an appointment.

After the above result, it might also be interesting to forget these rules that seem obvious and in line
with our common sense and try to find some that might not be so obvious at first sight. Below we show
a table with the other association rules that were captured by the apriori algorithm and that have a
confidence higher than 0.5.

Figure 3.34: Association rules with higher confidence excluding the most obvious ones.

The results obtained with this association rule mining analysis raise the question of how important
the last medical act of an insured person is to predict the number of claims, given that it is important to
predict the next medical act.
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As a result, two new variables were introduced in our number of claims dataset, one indicating the
last medical act performed by an insured person in the current annuity and the other the amount of time
from the date of that last act and the current year/month/annuity the insured person is in.
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Chapter 4

Experimental Setup

4.1 Number of Claims Setup

Before testing the method described in Section 2, we will test the algorithms presented there in the
whole number of claims dataset and measure their performance. We will compare the three algorithms
(Decision Trees, Random Forest and Gradient Boosting) to the original dataset, a version where we ap-
plied Principal Component Analysis and another version of the dataset where we applied a Random
Over Sampler method.

We will split the whole dataset, into train and test sets, with 80% for training and 20% for testing.
The approach here was to test which of these three dataset versions will perform better before moving
on to making the predictions by client/annuity. The best-performing one will be used in that next step.
The performance measures that will be used in this step are Accuracy and F1-Score. This last one was
chosen because the number of claims dataset is highly unbalanced as can be seen from the plot below.

Figure 4.1: Bar plot for the number of claims distribution.

We show again the count of all the possible values of the response variables Number of Claims. We
can see clearly that the response variable is imbalanced since the number of values equal to 0 is higher
than the sum of the counts of all the other possible values.

43



4.1.1 Metrics

Accuracy

Accuracy is a classification metric that takes the fraction between the total number of correct predictions
over the total number of predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

This metric might not be very reliable when we have a highly imbalanced dataset, since it can achieve
high values and still get the predictions for entire classes completely wrong.

F1-Score

F1-score is calculated from the precision and recall of the test, where the precision is the number
of correctly identified positive results divided by the number of all positive results, including those not
identified correctly, and the recall is the number of correctly identified positive results divided by the
number of all samples that should have been identified as positive.

The F1 score is the harmonic mean of the precision and recall. The highest possible value of F1 is
1, indicating perfect precision and recall, and the lowest possible value is 0, if either the precision or
the recall is zero. [31]

F1 =
TP

TP + 1
2 (̇FP + FN)

(4.2)

This balance between precision and recall makes this metric a better one for measuring performance
in imbalanced datasets.

4.1.2 Principal Component Analysis

Principal Component Analysis is a method to explain the associations among a set of variables through
linear combinations of these variables. It is mainly used to perform data reduction.

Let X = (X1, ..., Xp)
t be a random vector describing a given population, with mean µ and covariace

matrix
∑

. The principal components can then be defined, algebrically, as non-correlated linear combi-
nations of the original variables and, geometrically, as corresponding to a new coordination system of
axes (change of base) to represent the data.
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Figure 4.2: Example of a new coordination system of axes to represent the data. [8]

The first principal component, Y1 is the linear combination of X,atX, with maximum variance, such
that ‖a‖ = 1

The i-th principal component, Yi is the linear combination of X,atX, with maximum variance, such
that:

(i) ‖a‖ = 1

(ii) Cov (atX, γtkX) = 0,⇔ atΣγk = 0 (⇔ atγk = 0) k = 1, . . . , i− 1

In this work we thought it might be adequate do experiment if applying PCA to our number of claims
dataset might help improve the performance results, given that we have a considerable number of vari-
ables and this method contributes to making a variable selection and also that there are a lot of variables
that have a high correlation between them. [32]

When we applied PCA we chose to keep the first 25 principal components because together they
explained more than 80% of the variance of the data.

4.1.3 Random Over Sampling

Random oversampling involves randomly duplicating examples from the minority class and adding them
to the training dataset.

Examples from the training dataset are selected randomly with replacement. This means that ex-
amples from the minority class can be chosen and added to the new more balanced training dataset
multiple times; they are selected from the original training dataset, added to the new training dataset,
and then returned or replaced in the original dataset, allowing them to be selected again. [33] [34]

It will be used to try to overcome the severe imbalance problem we have in the number of claims
dataset.

4.1.4 Dataset Transformation Results

First, we experimented with the 3 datasets (the original one and the other two variants), first using a
decision tree classifier using as a function to measure the split quality the gini impurity, a minimum
number of samples required to split an internal node of and a minimum number of samples required
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to be at a leaf node of 15, then using a random forest classifier with 50 estimators and finally using a
gradient boosting classifier with 50 estimators.

The performance results are displayed in the table below.

Table 4.1: Performance results of the three dataset versions using the three different classifiers.
Classifier Original Dataset Random Over Sampler Dataset PCA Dataset

Decision Tree Accuracy 0.9615 0.9367 0.8683
F1-Score 0.9551 0.9427 0.8571

Random Forest Accuracy 0.8516 0.8389 0.8481
F1-Score 0.8432 0.8371 0.8341

Gradient Boosting Accuracy 0.7946 0.6124 0.7617
F1-Score 0.7701 0.6943 0.6988

Despite knowing that the accuracy measure can be misleading when used in the presence of imbal-
anced datasets we still registered its results. The original dataset was the best in terms of accuracy and
F1 score.

For the three classifiers, the original dataset was the one that achieved better results in all metrics,
therefore we decided to proceed with our analysis not performing PCA neither Random Over Sampling
to the dataset.

4.2 Cost Setup

We start the cost forecasting setup by looking at the density plot for the Cost of Claim variable.

Figure 4.3: Plot of the density of the Cost of a claim variable.

We can see that claims with a lower cost are much more frequent than the more expensive ones.
The range of values in the cost variable is very large since the minimum cost of a claim is 0.78 cents
and the maximum is 2200 euros. Below there is a table displaying a summary of information about the
response variable, the Cost of a Claim.
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Table 4.2: Summary statistics of the cost dataset.
Number of obs. 226546
Mean Cost 38.92
Standard Deviation 41.97
Minimum Cost 0.78
Quantile 25 29.00
Quantile 50 32.50
Quantile 75 35.00
Maximum Cost 2200.00

As we saw in the Dataset Section, and similarly to what happened in the number of claims dataset,
every time we performed variable importance analysis, the variable that always appeared first was CAT-
ALOG.

Since we have a high range of values for the cost variable and the one that most contributes to
explain it was CATALOG, we decided to proceed with our analysis considering each individual catalog,
i.e, we will form more homogeneous cost groups and forecast the cost of an appointment claim, the cost
of a clinical analysis claim, ...

Even though inside each of these groups, the cost variable is much more homogeneous, we still
performed an outlier analysis, resorting to a technique called DBSCAN, to detect and eliminate any
extreme values.

4.2.1 Metrics

Root Mean Squared Error

The root mean squared error (RMSE) of an estimator measures the average of the squares of the
errors. It takes the differences between the real values and the predicted values, i.e. the residuals,
squares them, and then computes the square root of the mean of these squared values.

Given this informal definition, it becomes intuitive to understand that the RMSE values are always
positive and that the estimator’s performance is better the closer the RMSE value is to zero.

More formally, it can be defined resorting to the following mathematical formula:

RMSE =

√√√√ 1

N

N∑
i=1

(Yi − Ŷi)2 (4.3)

for Yi the i-th real value, Ŷi the i-th predicted value and N the size of the sample.

4.2.2 Outlier Analysis

To help understand what was described before, we chose the catalog Clinical Analysis just to illustrate
that there are still some extremely high values of the cost that might be selected by our outlier detection
method as being outliers.

We can spot a big tail in the density plot of the cost of a Clinical Analysis claim.
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Figure 4.4: Plot of the density of the Cost of a Clinical Analysis claim variable.

Table 4.3: Summary statistics of the cost of clinical analysis claims.
Number of obs. 25853
Mean Cost 12
Standard Deviation 19.38
Minimum Cost 0.78
Quantile 25 3.67
Quantile 50 6.26
Quantile 75 11.08
Maximum Cost 250

The range of values that this variable can take is a bit high, which can be problematic in the training
phase. Let’s first apply the DBSCAN method and then check if it detects the presence of any outlier
values.

DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is, in reality, a density-based
clustering approach and not an outlier detection method. It grows clusters based on a distance measure.
Core points, i.e. points that have a minimum of points in their surrounding, and points that are close
enough to those core points together form a cluster.

Nevertheless, it can be used for outlier detection because points that do not belong to any cluster
get their class: −1. The algorithm has two parameters (epsilon: length scale, and min samples: the
minimum number of samples required for a point to be a core point). Finding a good epsilon is critical.

DBSCAN thus makes binary predictions: a point is either an outlier or not. To refine the predictions,
we consider the other clusters apart from the main cluster also as outlier clusters, the smaller the cluster,
the higher the outlier score.

The used distance function will be the default Euclidean distance.

Taking the above example of the Clinical Analysis claims, we applied the DBSCAN algorithm with an
epsilon of 300 and a min samples of 2 and it identified the values of cost in the range [120, 250] as being
outliers and eliminated them.
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Figure 4.5: Plot of the density of the Cost of a Clinical Analysis claim variable after performing DBSCAN.

Table 4.4: Summary statistics of the cost of clinical analysis claims after performing outlier analysis.
Number of obs. 21008
Mean Cost 11.84
Standard Deviation 18.83
Minimum Cost 0.78
Quantile 25 3.7
Quantile 50 6.33
Quantile 75 11.09
Maximum Cost 120

After this outlier analysis, 484 observations were eliminated and the mean cost dropped from 12

euros to 11.84.
The Clinical Analysis catalog was used here as an example of what we did for all of the other catalogs.

4.3 Forecasting Setup

In terms of the number of claims, given that the variable CATALOG was selected as the most important
one both in the Random Forest importance method and in the Power Predictive Score and was also
the first one to be chosen by the decision tree we trained above, we decided to proceed to forecast the
number of claims for each individual catalog.

What does this mean? We have 10 different claim catalogs, meaning we will train a Decision Tree, a
Random Forest, and a Gradient Boosting machine to each of the 10 catalogs and compare the perfor-
mance results using F1-Score. Using this method we will choose for each catalog the best performing
classifier and use it to predict the number of claims of the respective catalog.

We will then start the prediction of the number of claims by each client/annuity.
In the end, we will have the total number of claims predicted for the last three months of the annuity

for each catalog, N Claims Pred Catalogk Clienti Annuityj .
We will do this for all the client/annuity pairs.
The same will happen with the cost, we will train a Decision Tree, an XGBoost machine, and a

Random Forest to each of the 10 catalogs and compare the performance results using RMSE. Using
this method we will choose for each catalog the best performing regressor and use it to predict the cost
of claims of the respective catalog.
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We will then start the prediction of the cost of claims by each client/annuity.
In the end, we will have the mean cost of a claim predicted for the last three months of the annuity

for each catalog, C Claims Pred Catalogk Clienti Annuityj .
This means that the total amount of claims for client i in the last three months of annuity j is calculated

as follows, given N to be the total number of catalogs:

Reported Claims Pred Clienti Annuityj =

N∑
k=1

N Claims Pred Catalogk Clienti Annuityj × C Claims Pred Catalogk Clienti Annuityj (4.4)

With the value calculated above we can easily compute the Loss Ratio for client i in annuity j:

Loss Ratio Pred Clienti Annuityj =
Reported Claims Pred Clienti Annuityj
Total Earned Premiums Clienti Annuityj

(4.5)

since the value of Total Earned Premiums Clienti Annuityj is previously known.
In sum, the goals of this work will be to:

• Compare the performances of the three classifiers in the number of claims prediction for each
catalog;

• Compare the performances of the three regressors in the cost prediction for each catalog;

• Compare the final predicted loss ratio (using the classifier and regressor that achieved the best
performance for each catalog) for each client/annuity with the value of the baseline model (ARIMA,
currently in production in Multicare);

• Compare the mean squared error of all predictions for every client/annuity of our model with the
baseline model;

• Compare the amount of money saved or spent by the insurance company if either the renewal
proposal was made following our new model and the baseline model.

All results of the above experiments will be shown in the Results section below.
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Chapter 5

Results

In this chapter, we will show the results of the performance comparisons proposed at the end of the
previous chapter.

To generate these predictions we will take each corporate client and their respective annuities and
use the values for the first nine months of those annuities to be our training set and the last three months
to be our testing set.

One of the error metrics used to measure the performance (that we normally use in Multicare) for
both the baseline and our model was the following:

Error(%) =
Reported Claims Forecasted−Reported Claims Real

Reported Claims Real
× 100% (5.1)

This means that when the error is negative it means that the model forecasts a value below the real
one and when it is positive it forecasts a value above the real one, i.e., an error of −10%, for example,
means that the value of claims forecasted by the model is 10% lower than the real value of claims.

This is a piece of information that we want to know, since the model should be above the real value
than below, because, in real contract negotiation, it gives the insurer a much more comfortable position
when the forecasted value is slightly above the real one than the other way around.

As stated in the introduction section of this work a contract renewal negotiation starts with the fore-
casting of the last three months of the present annuities. At this point, if the value forecasted by our
models is lower than the real value of claims, the client will automatically ask for a discount in the next
annuity premium, making it hard for the insurer to assume any negotiation position other than accepting
lowering the price or risking losing the client. The lower the forecasted value in comparison to the real
one, the higher the discount demanded by the clients. On the other hand, if the forecasted value is
above the real one, the insurance company is not forced to lower the premium of the next annuity and
as much more margin to negotiate it.

The goal of this work is to forecast the loss ratio of each client/annuity, however, to provide a better
understanding of the amount of money involved we will show the results in terms of Reported Claims.

Reported Claims = Loss Ratio× Total Earned Premiums (5.2)

5.1 Number of Claims Forecast by catalog

In this section, we will show the result of the three classifiers tested for predicting the number of claims
of each catalog and compare them to see which one performs better. In this section, we will not split
the insured persons by company. We are assuming that every insured person belongs to the same
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company in the same annuity since the point of this experiment is just to test which classifier is better
for predicting the number of claims of each catalog and the idea is to have a method that produces solid
results independently of the company or annuity we want to test.

We will show a table for each catalog with information about the real number of claims the dataset
had and the total number of claims each algorithm predicted, as well as the accuracy and F1 score of
those predictions.

Table 5.1: Performance results of the three classifiers tested for all the ten different catalogs.
Catalog Classifier Real Number of Claims Forecasted Number of Claims Accuracy F1-Score

Decision Tree 22984 0.9294 0.9195
Medical Appointments Random Forest 26877 21941 0.9469 0.9339

Gradient Boosting 20822 0.9384 0.9132
Decision Tree 5563 0.9708 0.9623

Clinical Analysis Random Forest 6116 5529 0.9769 0.9689
Gradient Boosting 5510 0.9733 0.9618
Decision Tree 2751 0.9780 0.9704

Pathological Anatomy Random Forest 2977 2757 0.9815 0.9753
Gradient Boosting 2750 0.9784 0.9696
Decision Tree 2751 0.9780 0.9704

Emergency Appointments Random Forest 2977 2753 0.9815 0.9753
Gradient Boosting 2754 0.9784 0.9696
Decision Tree 3607 0.9849 0.9793

Ultrasounds Random Forest 3801 3609 0.9878 0.9834
Gradient Boosting 3609 0.9875 0.9829
Decision Tree 9509 0.9534 0.9438

Other Outpatient Claims Random Forest 10941 9378 0.9666 0.9575
Gradient Boosting 9385 0.9672 0.9584
Decision Tree 2745 0.9864 0.9806

X-Rays Random Forest 2890 2769 0.9859 0.9859
Gradient Boosting 2767 0.9893 0.9858
Decision Tree 1086 0.9953 0.9929

Magnetic Resonance Random Forest 1107 1089 0.9959 0.9944
Gradient Boosting 1089 0.9959 0.9944
Decision Tree 904 0.9962 0.9944

Computerized Tomography Random Forest 918 907 0.9970 0.9961
Gradient Boosting 905 0.9965 0.9950
Decision Tree 148 0.9706 0.9684

Physical and Rehabilitation Medicine Random Forest 155 153 0.9983 0.9979
Gradient Boosting 149 0.9965 0.9954

5.2 Cost Forecast by catalog

In this section we will show the results of the three regressors tested for predicting the cost of a claim
of each catalog and compare them, to see which one performs better. Similarly to what was done with
the number of claims dataset, in this section, we will not split the insured persons by company, we are
assuming that every insured person belongs to the same company and that n the same annuity since
the point of this experiment is just to test which regressor is better for predicting the cost of a claim of
each catalog and the idea is to have a method that produces solid results independently of the company
or annuity we want to test.

We will show a table for each catalog. In each one, we will compute the mean cost of all claims
in the dataset (Real Medium Cost) and compute the mean cost of all claims predicted by each model
(Forecasted Medium Cost) as well as the RMSE for each model.
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Table 5.2: Performance results of the three regressors tested for all the ten different catalogs.
Catalog Regressor Real Medium Cost Forecasted Medium Cost RMSE

Decision Tree 32.44 2.17
Medical Appointments XGBoost 32.45 32.45 2.07

Random Forest 32.44 1.97
Decision Tree 12.08 21.37

Clinical Analysis XGBoost 12.39 12.31 20.92
Random Forest 13.12 21.16
Decision Tree 37.52 16.66

Pathological Anatomy XGBoost 37.77 38.22 16.10
Random Forest 39.19 15.72
Decision Tree 83.19 12.45

Emergency Appointments XGBoost 83.39 83.01 11.03
Random Forest 82.96 10.72
Decision Tree 33.47 10.62

Ultrasounds XGBoost 33.62 33.51 10.08
Random Forest 33.94 9.96
Decision Tree 47.3 80.73

Other Outpatient Claims XGBoost 46.66 48.53 82.68
Random Forest 51.26 82.72
Decision Tree 23.98 17.13

X-Rays XGBoost 24.08 24.31 17.69
Random Forest 24.45 16.75
Decision Tree 184.18 24.98

Magnetic Resonance XGBoost 184.12 183.48 23.14
Random Forest 183.35 22.22
Decision Tree 95.1 9.72

Computerized Tomography XGBoost 95.23 95.12 9.39
Random Forest 95.19 9.08
Decision Tree 4.19 6.22

Physical and Rehabilitation Medicine XGBoost 5.08 4.7 6.77
Random Forest 4.25 5.76

5.3 Forecasting pipeline

In the previous section the performances of both the regressors and the classifiers, used for predicting
the cost of a claim and the number of claims respectively, are presented.

The forecasting architecture is presented in section 4.3 and consists of forecasting the number of
claims and the cost of a claim for and computing the total amount of claims for each catalog separately
(in euros) and then summing over all the 10 different catalogs like displayed in the formula below.

TRC =

10∑
i=1

NCi ×MCi (5.3)

where TRC represents the total reported claims, NCi the total number of claims of catalog i and
MCi the medium cost forecasted for catalog i.

The classifiers and regressors for the forecasting pipeline were then chosen accordingly to the results
of sections 5.1 and 5.2 and are the following:

53



Table 5.3: Chosen classfiers and regressors to forecast number of claims and cost of claims respectively
for each catalog.

Catalog Classifier Regressor

Medical Appointments Gradient Boosting XGBoost
Clinical Analysis Random Forest XGBoost
Pathological Anatomy Random Forest Random Forest
Emergency Appointments Random Forest Random Forest
Ultrasounds Random Forest Random Forest
Other Outpatient Claims Gradient Boosting Decision Tree
Physical and Rehabilitation Medicine Random Forest Random Forest
MRI Random Forest Random Forest
Computerized Tomography Random Forest Random Forest
X-Rays Gradient Boosting Random Forest

As stated before we chose these classifiers and regressors based on their performance in each
individual catalogs, assuming that every insured person belonged to the same company in the same
annuity. This assumption was made because the goal was to set up an algorithm that can achieve good
results regardless of company or annuity, instead of having a different model adapted to each company.

Given this forecasting pipeline, the next step in our approach was to measure the error of our model
and compare it with the error of the baseline model (ARIMA).

5.4 Reported Claims forecast comparison

In terms of interest to the insurance company, the most important measure is to know how much our
predictions are above or below the real amount spent on claims by a client in one annuity.

Therefore in this section, using the best performing classifier for forecasting the number of claims
and the best performing regressor for forecasting the cost in each catalog from the above section, we
built a pipeline to predict the total amount of claims spent by client i in annuity j:

Reported Claims Pred Clienti Annuityj =

N∑
k=1

N Claims Pred Catalogk Clienti Annuityj × C Claims Pred Catalogk Clienti Annuityj (5.4)

using the predictions of the number of claims of each individual catalog

N Claims Pred Catalogk Clienti Annuityj and the predicitons of the medium cost of each individ-
ual catalog C Claims Pred Catalogk Clienti Annuityj .

The error formula was the following:

Error(%) =
Reported Claims Forecasted−Reported Claims Real

Reported Claims Real
× 100% (5.5)

This formula gives us an understanding of how far the value of our predicted claims is from the value
of the real claims and if we are either above or below the real value.

The problem of having a prediction above or below the real value of claims of a client, might not be
of much interest inside the academic context, but it is of great importance in the practical daily decisions
of an insurance company since forecasting a lower value means lowering the price in the next annuity
and probably ending up losing money, as we will see in greater detail in the next section.
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Table 5.4: Comparison table of the errors made by both our new model and the baseline ARIMA model
for each client/annuity in our study.

Client Annuity Real Reported Claims (e)

Forecasted
Reported Claims

(New Model)
(e)

Forecasted
Reported Claims

(ARIMA)
(e)

New Model
Error (%)

ARIMA
Error (%)

A 1 33374 33986 23149 1.83 -30.63
A 2 742538 837725 552305 12.81 -25.61
B 1 251159 240843 197633 -4.10 -21.31
B 2 281214 262885 198545 -6.51 -29.39
C 1 99307 90897 67836 -8.46 -31.69
D 1 132250 119454 77055 -9.67 -41.73
E 1 807220 874895 614837 8.38 -23.83
F 1 12845 11523 10012 -10.29 -22.05
G 1 6949 8406 7541 20.96 8.51
G 2 7024 6977 8247 -0.66 17.41
H 1 16338 16154 14697 -1.12 -10
I 1 7055 8551 6204 21.20 -12.06
I 2 4207 4393 6157 4.42 46.35
J 1 17649 17377 16679 -1.54 -5.49
L 1 18434 20021 20216 8.60 9.66
M 1 5837 6066 5368 3.92 -8.03
N 1 3313 3167 2789 -4.40 -15.81
O 1 7964 6541 5314 -17.86 -33.27
P 1 22228 25500 22838 14.72 2.74

From the table above we can see that our model achieve a smaller error in sixteen out of nineteen
client/annuity pairs. From those three clients where our model had a greater error than the ARIMA
baseline model in all of them the value our model predicted was greater than the real one, which, from
the company perspective is not a very severe error.

Next, we calculated the total root mean squared error (RMSE) of all the above predictions of both
models.

Table 5.5: Comparison between the root squared error of both models for all the clients.
New Model ARIMA

RMSE 612 67695

The RMSE of our model is more than 100 times smaller than the error of the ARIMA model.

5.5 Money Gained/Lost model comparison

After displaying the errors of our new method compared with the ARIMA baseline model the results of
our new model look promising. In terms of percentage error, our model performed better in sixteen out
of nineteen client/annuity pairs. When we look at the MSE over all of the client/annuity pairs the value of
our new model is much lower than that of the ARIMA.

However, since this is a work that is intended to have a direct impact on the business of an insurance
company, one interesting exercise that can be done is to translate all of the error results above into
money, and see how much money the company would lose or win if either the renewal proposal was
based on the prediction of the ARIMA model against the prediction of our new model.

As explained in the introductory section of this work, in corporate insurance contracts, the process of
renewal typically starts when nine months of the current annuity have elapsed. At this time the insurer
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makes a prediction of the last three months and based on that prediction it proposes the price for the
next annuity following the process described below.

Since the pricing of annuity j + 1 takes place after the first nine months of annuity j, to price the
annuity j+ 1 using ARIMA, we will assume, as exercise, the method of taking the total amount of claims
predicted for annuity j (the nine months of real claims that we know of plus the last three months of
claims that we estimate using ARIMA) and increasing this value by the average inflation rate in the
health sector of the last ten years, which is 1.01%, according to [35].

Price Clienti Annuityj+1 ARIMA = Total Claims Clienti Annuityj × 1.0101 =

(Total Claims 9Months Real + Total Claims 3Months ARIMA)× 1.0101 (5.6)

To make a fair comparison we will use the same method to forecast annuity j + 1 using our new
proposed model.

Price Clienti Annuityj+1 NewModel = Total Claims Clienti Annuityj × 1.0101 =

(Total Claims 9Months Real + Total Claims 3Months NewModel)× 1.0101 (5.7)

The column Real Price in the below tables is the real total amount of claims verified in annuity j + 1.
So, if we compute the difference between the Price Estimation using either ARIMA or the New Model
(the proposed price for the next annuity) and the Real Price (total amount of claims in the next annuity)
we can check if the company lost or gained money in each company.

Difference = Price Estimation−Real Price (5.8)

Table 5.6: Table that shows the difference between the real amount spent in claims in each client/annuity
and the price that would be proposed to the client for the next annuity based on the predictions of the
baseline ARIMA model.

Company Annuity Total Claims 9 Months
(Real) (e)

Total Claims 3 Months
(ARIMA Estimation) (e)

Price Estimation
(ARIMA) (e) Real Price (e) Difference (e)

A 1 2359898 23149 2407182 3257195 -850012
A 2 2343668 552305 2925303 3298922 -373618
B 1 948794 197633 1158037 1113615 44422
B 2 879201 198545 1088661 1252798 -164136
D 1 435797 77055 518045 599836 -81790
E 1 2595575 614837 3242926 4051080 -808153
F 1 37879 10012 48375 51553 -3177
G 1 39916 7541 47936 46503 1433
G 2 38868 8247 47591 50195 -2603
H 1 63462 14697 78950 77112 1838
I 1 34688 6204 41305 33414 7891
I 2 27756 6157 34255 47043 -12787
J 1 67373 16679 84902 94351 -9448
L 1 87157 20216 108459 171377 -62917
M 1 21391 5368 27029 22830 4199
N 1 11530 2789 14463 19857 -5393
O 1 22345 5314 27938 36621 -8682
P 1 101799 22838 125898 137143 -11244
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Table 5.7: Table that shows the difference between the real amount spent in claims in each client/annuity
and the price that would be proposed to the client for the next annuity based on the predictions of our
new model.
Company Annuity Total Claims 9 Months

(Real) (e)
Total Claims 3 Months

(New Model Estimation) (e)
Price Estimation
(New Model) (e) Real Price (e) Difference (e)

A 1 2359898 33986 2418128 3257195 -839066
A 2 2343668 837725 3213614 3298922 -85307
B 1 948794 240843 1207482 1207482 -5795
B 2 87901 262885 1153652 1159217 -5564
D 1 435797 119454 560873 599836 -38962
E 1 2595575 874895 3505618 4051080 -545461
F 1 37879 11523 49902 51553 -1650
G 1 39916 8406 48810 46503 2307
G 2 38868 6977 46308 50195 -3886
H 1 63462 16154 80422 77112 3310
I 1 34688 8551 43676 33414 10262
I 2 27756 4393 32474 47043 -14568
J 1 67373 17377 85608 94351 -8742
L 1 87157 20021 108262 171377 -63114
M 1 21391 6066 27734 22830 4904
N 1 11530 3167 14845 19857 -5011
O 1 22345 6541 29178 36621 -7442
P 1 101799 25500 128587 137143 -8555

Summing the values of the Difference columns in both tables we get the amount of money gained or
lost by the company in the this universe of clients under study.

Table 5.8: Comparison between the money difference of both models for all the clients.
ARIMA New Model

Balance (e) -2 334 179 -1 612 345
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Chapter 6

Conclusion

This work arose from the need to develop a more accurate method for predicting the loss ratio of the
outpatient coverage in corporate clients.

It started with a brief literature review on how to forecast future loss ratios in the health insurance
industry. Then a more detailed description of the baseline model was presented, addressing the solu-
tions used currently in Multicare to deal with this problem, both in the perspective of reported claims,
as well as IBNR claims, without prejudice to the fact that in this work we only addressed the problem of
forecasting reported claims.

Having presented the problem and the current way to handle it, the next step was to start thinking
about an alternative method for the problem. An alternative forecasting method that we could, in the
end, compare with the current one and realize if using the alternative method instead of the classical
one translated into any economic impact for the insurance company and, if so, how much of an impact
did it translate into?

With that previous goal in mind, we started by presenting a theoretical introduction to the algorithms
we thought of using in this work, followed by a detailed analysis of the datasets that allowed for the
construction of the prediction models.

The two datasets (one having the number of claims as the response variable and another having
the cost of a claim as response variable) that embody this work was the result of a collaboration with
the Advanced Analytics department of Fidelidade, that made possible the extraction and incorporation
of several variables that came from external sources in our datasets and that proved to be useful during
this work.

After a process of cleaning the datasets, we started a more deep analysis of them and began to
suspect that to have more accurate predictions in the future the best idea was probably to divide the
claims into medical catalogs to increase the homogeneity in the datasets.

This decision to divide the claims into groups according to their medical similarity led to a forecasting
pipeline that needed to have many forecasting steps, i.e., there was the need to forecast both the number
of claims and the cost of claims for each of the medical catalogs. The solution was to divide the original
datasets into ten new ones, each regarding the number of claims and cost of claims of each of the ten
different medical catalogs and training either a classifier or a regressor in each of them.

In terms of classifiers for forecasting the number of claims from the three tree-based ones tested we
ended up using only two of them, random forests and gradient boosting machines because they were
the ones that achieve the best results in the tests we performed. For this same reason, from the three
regressors we tested initially for forecasting the cost of claims, we only used two, random forests and
xgboost machines.

The next step, after defining the algorithms to forecast both the number of claims and cost of claims
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for each medical catalog, was to do the forecasting of the reported claims for the last three months of
the annuities of each of the fifteen companies in our study and compare the results with the ones from
the baseline model.

The first results were very promising for our new model since its predictions were closer to the real
values than the baseline model in sixteen out of nineteen client/annuity pairs. In terms of root mean
squared error, it achieved a value much smaller than the one achieved by the baseline method.

Since this is a more practical work and one of the main goals is to develop a practical and ready
to use solution for the insurance company, a metric that we thought would be important is the amount
of money lost or gained by the company if the renewal proposal for the next year was done using the
three-month forecast of our new model in opposition to the value forecasted using the baseline model
(ARIMA). Overall, if we sum the amounts of money gained/lost by each of the companies in our study,
we see that despite the company losing money with both methods, with the new model developed that
loss was almost less than one million when compared to the loss generated by the ARIMA predictions.

In the last section of this work, we presented a comparison of the amount of money that would
be gained or lost by the company when using both the ARIMA and our new model forecasts of the
last three months to construct the next annuity prediction. The problem of calculating the next annuity
prediction was handled, as we saw before, by taking the cost of the present annuities and summing
1.01% (the average inflation rate in the health sector of the last ten years) of this value. This process
is the main responsible for the losses obtained both with our model and with the ARIMA (−1.6M and
−2.3M respectively). Given this, it would be of great importance the development of a forecasting
solution to deal with the next annuity predictions that could be based on this one with the respective
adjustments, i. e., instead of making a forecast for three months, what is needed in this problem is the
forecasting of the next fifteen months (the last three months of the present annuity as well as the twelve
months of the next one).

In terms of future work, there is still a lot of ground to cover on this subject. The first step to being
done in the future is because this work only is focused exclusively on the outpatient coverage of insured
persons and in the claims that occurred within the net of providers of Multicare. So, given this, the first
step is clearly to extend this work to the reimbursement claims inside the outpatient coverage. This way
we have the loss ratio predictions for the entire outpatient coverage.

The final prediction of the last three months of the annuity of each client is intended to encompass
not only the outpatient coverage but all covers, such as hospital stays, stomatology, medicines, and
prosthesis, and orthotics. It is, therefore, of great importance to keep this work, extending it for these
other covers. The coverage of hospital stays has the particularity of not being a consumption coverage,
meaning that it is a coverage that is mostly activated when the insured person needs it and not by option.
This particularity means that the consumption behaviors may differ a bit from the other consumption
covers, like the outpatient one presented in this work, and therefore it might require a different kind of
approach.

At last, one important note for the future is using the same approach that was done in this work but,
instead of considering only the first nine months to train the models it would be important to extend the
range of the training data with claims before that, i. e., using all the past claims of the previous annuities.
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