
Chattuga

A meta-chatbot for the portuguese language

Mariana Rodrigues Seguro Gaspar Fernandes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Dr. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur

Examination Committee

Chairperson: Prof. Dr. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Dr. Maria Luı́sa Torres Ribeiro Marques da Silva Coheur

Member of the Committee: Prof. Dr. Francisco António Chaves Saraiva de Melo

November 2019

Acknowledgments

First and foremost I would like to thank the person who always taught me that this is the way: first to

choose a dream, and then to pursue it without ever giving up. That person is my greatest hero and also

my Mom, who, unfortunately, was not able to witness my journey through college but whose teachings

were what got me through said journey. Thank you so much my dear and beloved Mom.

I would also like to thank my advisor, teacher and friend Luı́sa for being great at everything she does.

For not only advising me and guiding me through this journey but also for being so gentle, encouraging

and funny through the whole process. You light up every room that you walk into. Thank you for being

the great person, friend, advisor and teacher that you are. This thesis was only possible because of you.

I have a profound admiration, respect and care for you. Thank you a lot!

Dad, thank you for introducing me to the wonderful world of computers. All of those computers that

we fixed both hardware and software wise throughout the years ever since I was a little girl really ignited

my passion for this fascinating world. Thanks to you I found my vocation. I am also very grateful that

you let me focus only on school in all these years.

Sofia, Filipa and Madalena, my dear sisters, you were my rocks through these hard years. I love you

all beyond words. To my brothers in law, thank you for all that you have done for me and for taking such

good care of my sisters. To my two nephews, thank you for making me want to be better so I can be a

good role model for you.

Catarina C. thank you so much for your help through the hardships I have been through and for

helping me in my growth as a person. Your support and care through all these years are invaluable to

me and I am going to carry them with me and treasure them my entire life.

Prof. Alexandra Forte, thank you for being incredibly supportive in a time where I so much needed

support. Thank you also for believing and making me believe in myself and thus helping me succeed

in your course. Prof. Juvenal Brites thank you for being the first teacher to see in me my ability for

mathematics and helping me in feeding that. If it were not for you, my college life would be much much

harder. Prof. Ana Moura Santos, I will never forget the dedication you showed in teaching us and helping

us pass your course, you were with us for hours (you did not even eat!!!). Thank you so much. Prof.

Paula Gouveia, thank you for helping me after I had to miss classes for two weeks, you did not have

to but you did it anyway and I will be forever thankful. Prof. Ana Cardoso-Cachopo, I am sorry that I

did not pass your course right away because your incredible passion and dedication and your bet in me

should have been rewarded with an equal amount of effort on my part. Thank you for not giving up on

me and for helping me even after you were no longer my teacher. Prof. Francisco Melo, as Prof. Ana

Moura Santos you too were several hours helping us with our project for your course when you could

have been just one or two hours. You stayed a whole evening and afternoon just so you could help

everyone. In that day my project was failing miserably and without your help I would not have been able

to make it. Thank you so much. Prof. Francisco Santos, thank you for teaching me a valuable life lesson

when I was doing your course and did not dedicate enough time to the project and also for being a great

teacher and person. You are one of the nicest persons I have ever met. Prof. Ricardo Chaves, thank

you for failing me in your course the first time I did it. If you had not done that, I would have not learned

anything, and I very much liked to learn all of it in the next year. Prof. Miguel Pardal, thank you for your

kindness and extreme helpfulness not only when I was taking your course but also afterwards. Prof.

António Ferraz thank you for your patience in teaching me electromagnetism and optics, a course that

brought me much headaches but with your calm and support I was able to finish it with a relatively good

grade. Thank you all for showing me what a great professor looks like (this also applies to my advisor).

Anisa, Dannie, Bruno, Francisco, Henrique, Luı́s R., Andreia, António, José, Diana , Luı́s G., Luı́s S.,

thank you all for being there for my journey through college and for being great through it all. I honestly

could not have done this without the laughs, trips, support and all that you have provided me with. Also

to Anisa, I am glad you said ”hi” enough times for me to respond back. Thank you, Anisa, for not giving

up, for being great when I was not, for all the work I did alongside you, all the support you gave me and

for being so funny and silly, you are a friend for life – I adore you. Dannie, I am so glad we met at the

time we did, our lives were really at the same point and you have become a huge part of my life in such

a short amount of time. Your kindness, love and jokes are mesmerizing, I adore you. I look forward to

expanding this short amount of time to the timespan of our lives. To Luı́s R., Francisco and Henrique,

doing this thesis alongside you was a lifeline. Each of you showed me something I admired: Henrique,

you have such passion and thirst for knowledge — I hope one day to learn how to be more like you;

Francisco, all those mornings and afternoons we met and talked a little bit were a huge support; Luı́s R.

you were an inspiration of perseverance throughout this thesis – I respect and admire that. Working on

my thesis with you all made it easier. To Bruno and Francisco, thank you for being such a great team in

all those projects we performed together, I could not have done them without you. Thank you migs for

making this journey easier and lighter.

João and Kiko, thank you for being my best friends for 14 plus years and putting up with my humours

and for supporting me and growing up with me. João, it was great to share the thesis experience with

you. It truly helped a lot. All those days at Amoreiras and Caleidoscópio made this thesis easier. Sofia,

ii

thank you for joining our group and for being so kind, funny and caring.

Carla C. there are no words to describe all that you have done for me over these years. You called

me into your office and I responded with little interest. After being there a few minutes you saw that I

was in dire need of help and you gave me your hand and all the tools that I needed to pick myself up. I

see in you a friend for life. Thank you so much!

Paula, Inês, Isabel, my oreo’s, I will never forget those afternoons laughing and occasionally studying

with you. You are crazy, but the same crazy as me. Thank you, you have made this journey easier.

Leonor, I could not listen to a single class when I was by your side. You made me laugh countless

times and I had so much fun in boring settings with you. Thank you so much for being so goofy and

crazy!

Patrı́cia, the talks, the rides, fatacil, the bad and good moments, they were all incredible. Thank you

so much for everything!

Leonor L., João S. and Luı́sa, manos was one of the best teams I ever had, thank you for making it

so. I had a blast with you guys.

To all my friends and colleagues that helped me grow as a person and were always there for me

during the good and bad times in my life. Thank you.

To my grandmother, aunts, uncles and cousins, one of the things I love the most in this world is

having a huge family and you have staggered me with your unconditional love. Thank you especially

to aunt Belinha, uncle Emı́lio and cousin Tiago for taking me in in the first semester when I was with

crutches, your love, care, rides and food were invaluable. To my aunt Adı́lia and Manuel, thank you for

picking me up every day of my first semester to have lunch for free at your restaurant. To my aunt Olinda,

you were the most supportive aunt ever during these years, I have no words to describe how incredible

you were. Thank you so much.

To AMA, FCT, INESC-ID, all the crew of SLATE, Teresa, Luı́sa, Pedro and Catarina for the amazing

experience in Coimbra when I went to present the UC-PT corpora work. It was a perfect experience that

I will always treasure.

To FCT and AMA. This work contributes to the FCT, Portugal INCoDe 2030 National Digital Skills

Initiative, within the scope of the demonstration project “Agente Inteligente para Atendimento no Balcão

do Empreendedor” (AIA).

Last but not least, to all of IST and its community. When I entered this college, I was living the worst

time of my life and here I found a home where I healed. I will forever be thankful to this wonderful school.

It takes a village. To each and every one of you – Thank you for being my village.

iii

Abstract

Most works on question answering systems follow a similar approach: they start by gathering data,

which is then pre-processed, classified and used in a system which replies queries in the domain of

that data. In this work, we propose a plug and play (for the addition of corpora and agents and for

the control of system modules) “collaborative” chatbot framework for the Portuguese language that has

as basis the assumption that all agents can, potentially, answer all questions. We study classification

approaches and similar systems and we base our architecture on that study. The system built in this

thesis, receives a query from a user and redirects it to all chatbots integrated within it. These chatbots

all provide their suggested answers to the user query. When the program finishes gathering all these

answers it evaluates the agent’s answers as well as their expertise in the domain of the question and

combines that with the classification of the user’s query intent to perform an answer ranking process. In

both classification processes, both Machine Learning and rule-based approaches are combined. The

evaluation of the program developed in the scope of this thesis is made with the metrics of Accuracy and

Mean Reciprocal Rank, where the first is used for the query classification evaluation and the second is

used for the system’s answer ranking decision evaluation. Results show that our system has a strong

classification component both for questions and answers and also that it is good at identifying specialist

agents.

Keywords

Question Classification; Question and Answering systems; Conversational Agents; Machine Learning;

Rule Based.

v

Resumo

A maioria dos trabalhos sobre sistemas de question answering seguem uma abordagem semelhante:

começam por recolher dados, que são depois pré-processados, classificados e utilizados num sistema

que responde a perguntas no domı́nio desses dados. Neste trabalho, propomos uma framework plug

and play (para a adição de corpora e agentes e controlo de módulos do sistema) de chatbot “colab-

orativo” para o português que tem como pressuposto que todos os agentes podem, potencialmente,

responder a todas as questões. Estudamos abordagens de classificação e sistemas semelhantes e

baseamos a nossa arquitectura nesse estudo. O sistema construı́do nesta tese, recebe uma query

de um utilizador e redirecciona-a para todos os chatbots integrados no mesmo. Todos estes fornecem

as suas respostas sugeridas para a query do utilizador. Quando o programa reúne todas essas re-

spostas, ele avalia-as, bem como a sua especialidade no domı́nio da pergunta e combina isso com

a classificação da intenção da query do utilizador para realizar um processo de rank de respostas.

Em ambos os processos de classificação, tanto machine learning quanto as abordagens baseadas em

regras são combinados. A avaliação da framework desta tese é feita com as métricas de Accuracy e

Mean Reciprocal Rank, onde a primeira é usada para a avaliação da classificação da query e a se-

gunda é usada para a avaliação da decisão do rank de respostas. Os resultados mostram que nosso

sistema tem uma forte componente de classificação, tanto para perguntas quanto para respostas, e

também que a framework é boa na identificação de agentes especializados.

Palavras Chave

Classificação de questões; Sistemas de pergunta-resposta; Agentes Conversacionais; Machine Learn-

ing; Sistemas Baseados em Regras.

vii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Contributions . 5

1.4 Project Overview . 5

2 Related Work 7

2.1 Introduction . 9

2.2 Similar Architectures . 9

2.2.1 TalKit . 9

2.2.2 Microsoft QnA Maker . 10

2.3 Classification . 11

2.3.1 Taxonomies . 12

2.3.2 Rule Based Approaches . 14

2.3.3 Machine Learning Approaches . 17

2.4 Answer Search in TalKit . 19

2.5 Query Answer Matching . 20

2.6 Similarity Measures . 21

2.7 Agents . 21

3 Corpora 23

3.1 Introduction . 25

3.2 TalKit Corpora . 25

3.2.1 Question vs. Non-Question corpus . 26

3.2.1.A Questions . 26

3.2.1.B Non-questions . 27

3.2.1.C Some Statistics . 27

3.2.2 Personal vs. Impersonal Questions . 27

3.2.2.A Personal Questions . 28

ix

3.2.2.B Impersonal Questions . 29

3.2.2.C Some Statistics . 29

3.2.3 Yes/No Questions vs. Other . 30

3.2.3.A Yes/No Questions . 30

3.2.3.B Other . 30

3.2.3.C Some Statistics . 30

3.2.4 Inter-annotator Agreement . 31

3.3 Li & Roth Corpus . 32

3.4 Multieight-04 Corpus . 33

3.5 SubTle Corpus . 34

4 Chattuga 37

4.1 Introduction . 39

4.2 Chattuga Overview . 39

4.3 Baseline . 40

4.4 Plug and Play Module . 40

4.4.1 Agent Plug and Play Module . 41

4.4.2 Corpora Plug and Play Module . 42

4.4.3 System Plug and Play Module . 46

4.5 Classification Module . 47

4.5.1 Query Classification . 47

4.5.2 Answer Classification . 48

4.5.2.A Query Labels/Agent Labels Matching Module 49

4.5.2.B Answer Labels/Query Labels Matching Module 49

4.5.2.C Impersonal Answers Module . 50

4.5.2.D Personal Answers Module . 52

4.6 Coordinator’s answer ranking decision . 54

5 Evaluation 57

5.1 Introduction . 59

5.2 Experimental Setup . 59

5.2.1 Scikit-learn . 59

5.2.2 Pandas . 60

5.2.3 NLTK . 60

5.2.4 Gensim . 60

5.2.5 Spacy . 60

5.2.6 Numpy . 60

x

5.3 Query Classification . 61

5.4 Evaluating the Plug and Play Module . 62

5.4.1 Evaluating the Agents Plug and Play Module . 62

5.4.2 Evaluating the Corpora Plug and Play Module . 63

5.4.3 Evaluating the System Plug and Play Module . 63

5.5 Evaluating the Answer Ranking Process . 65

5.6 Discussion . 69

6 Conclusions and Future Work 71

6.1 Summary of Dissertation . 73

6.2 Contributions . 73

6.3 Limitations . 73

6.4 Future Work . 74

A Li & Roth Additional Statistics 79

xi

xii

List of Figures

1.1 Overview of the system’s components. 4

2.1 TalKit Architecture. This diagram was based on images extracted from [1] to showcase

relevant components. 9

2.2 QnA Maker Architecture. Image extracted from Microsoft’s website (footnote 1). 11

2.3 Parse tree of a question. The headword is represented in bold. Image extracted from [2]. 16

4.2 Simplified plug and play module representation. 41

4.3 Simplified classification module representation. 47

4.1 Simplified Chattuga’s general architecture. 55

5.1 Variation of scores by varying the parameters of the system config file. 64

5.2 Variation of scores by varying the similarity measure of the personal answers module on

the system config file. 65

xiii

xiv

List of Tables

2.1 Li & Roth taxonomy. Information extracted from [3]. 12

2.2 List of question patterns for the identification of a semantic tag without using headwords.

Extracted from [2]. 14

2.3 Manually built patterns list to help with the identification of headwords. Extracted from [2]. 15

3.1 Statistics about the Question vs. Non-question corpus. 28

3.2 Statistics about the personal and impersonal corpus. 29

3.3 Statistics about the Yes/No Question and Other corpus. 31

3.4 Inter annotator agreement results. 31

3.5 Statistics about the Li & Roth corpus. 32

3.6 Statistics about the multieight corpus. 34

3.7 Statistics about the personal subtle corpus. 35

5.1 Results of the best pipeline (combination of features, classifier and vectorizer) of classifi-

cation for each corpus. 61

5.2 Results of the cross-validation with 10 folds executed with the classification pipeline found

to have the best results. 62

5.3 Mean Reciprocal Rank results (approximated) for each annotator. 67

5.4 Number of queries to which no satisfactory answer was found among the set of answers

per annotator and Chattuga. 67

5.5 Example of a query used in the evaluation with the answers and respective rank and

score. 68

5.6 This Table contains the scores breakdown of the scores awarded to each agent’s answer. 68

A.1 Number of questions per fine category in the Li & Roth corpus. 80

A.2 Number of questions per coarse category in the Li & Roth corpus. 81

xv

xvi

Acronyms

NLP Natural Language Processing

IST Instituto Superior Técnico

FAQ Frequently Asked Questions

NLP Natural Language Processing

IR Information Retrieval

SSS Say Something Smart

AMA Agência para a Modernização Administrativa

CNN Convolutional Neural Networks

LSI Latent Semantic Indexing

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

CNN Convolutional Neural Network

RNN Recurrent Neural Network

TF-IDF Term Frequency - Inverse Document Frequency

NN Neural Networks

NER Named Entity Recognizer

SVM Support Vector Machine

TRR Total Reciprocal Rank

xvii

xviii

1
Introduction

Contents

1.1 Motivation . 3

1.2 Objectives . 3

1.3 Contributions . 5

1.4 Project Overview . 5

1

2

This thesis is a work named Chattuga for the Portuguese language in the field of artificial intelligence,

more specifically, in the area of Natural Language Processing (NLP) that intends to present a new plug

and play architecture for a chatbot (also known as conversational agent) in which we will use several

other conversational agents. Next we will present the motivation (Section 1.1), objectives (Section 1.2),

contributions (Section 1.3) and project overview (Section 1.4) for this thesis.

1.1 Motivation

With the exponential increase in internet services, it has become clear that online support is very im-

portant for costumer satisfaction. One approach to this is to use conversational agents who can answer

client’s questions about a given service. There are chatbots that do this for a strict domain. However,

for an online organization that has many different services, it would be interesting to have many chat-

bots: one for each service. For instance, an online retailer could have an agent that only knows about

payment methods, other agent that has knowledge of technological products, another one that is a spe-

cialist in legal procedures, among others. Each have its area of expertise and they can work in parallel

in providing online support for costumers. Not only is such an architecture useful for company’s needs:

a website or application with recreational and/or educational purposes could use such an architecture of

multi-agents to answer user’s questions about a multitude of subjects such as movies, personal matters,

science, space, among others. One work that already integrates several conversational agents is de-

scribed in [1]. However, this work does not take into account the fact that there may be some intersection

between what two conversational agents can answer. For instance: an agent that retrieves answers from

Wikipedia 1 can answer factoid questions, and an agent that retrieves answers from IMDB 2 can answer

questions about cinema. Both can answer questions about cinema, although the agent that uses IMDB

can potentially do it better since it is its domain of expertise. In this thesis we will tackle this issue by

assuming that “all agents can potentially answer all questions”. Then, a Coordinator will decide how to

rank their answers based on their topics of expertise.

1.2 Objectives

For this thesis we have three main objectives: to have a system for the Portuguese language that

works in a plug and play fashion in the way it adds agents and corpora and in the way it controls the

modules of the system, and has a Coordinator controlling the different agents. A simplified overview of

the components involved is represented in Figure 1.1. Note that the numbers in the figure represent the

order in which the different components are called.
1https://www.wikipedia.org/ (Last accessed on: 25/11/2018).
2https://www.imdb.com/ (Last accessed on: 25/11/2018).

3

Figure 1.1: Overview of the system’s components.

The focus of this work will not be on building conversational agents of different domains (those

are already built and then integrated in our system), but rather on understanding a user’s intention

when he introduces a query in order to understand which answer among the ones returned by the

various conversational agents is the most suitable. To perceive which answer is more suitable to the

user’s query, we are going to use machine learning techniques, similarity techniques and rule based

techniques. First, we classify the query with machine learning modules trained in the corpora that is

added to the system using the plug and play module. The plug and play module also provides the system

with conversational agents which will have specified their areas of expertise. With the classification of

the query, we can compare it with the area of expertise of the agents. Secondly, depending on whether

the query is personal or impersonal (information we obtain from the classification process), we use

similarity measures, rule based approaches and/or machine learning techniques to determine to which

extent the answers are close to the query. Lastly, if a corpora of answers is added through the plug

and play module, we use machine learning techniques to classify the agent’s answers and compare the

classification of the answer with the classification of the query. The plug and play module also allows a

control over which modules are used to rank the answers.

To ensure a coordination of the different techniques (machine learning techniques, similarity tech-

niques and rule based techniques), we require an agent that is capable of retrieving from the combination

of all these models, the ranking of answers that, according to the techniques, is the most correct one.

This agent will be the Coordinator that was previously mentioned.

4

1.3 Contributions

The main contributions of this work are:

• A new plug and play multi-bot architecture for chatbots for dynamic addition of corpora and agents

as well as to control the system modules that are used. This includes a way to dynamically gen-

erate init files for Python which allows systems to import other Python systems that are in different

folders (which is required for the agents plug and play addition);

• A corpora [4], namely a corrected corpus for the Portuguese language that allows to distinguish: (a)

questions from non-questions; (b) impersonal questions from personal questions; and (c) yes/no

questions from other questions;

• Proposal of techniques and pipelines of classification to employ in conversational multi-agent sys-

tems that help in the task of answer ranking, which also generated another contribution that is a

proposal as to how to evaluate such systems;

• A system tested with two specialized agents.

1.4 Project Overview

Chattuga is a framework that will be composed of several modules in order to achieve its proposed

functionality. The first thing that is done in this system is to retrieve informations from the plug and play

module that will indicate which agents, corpora and system modules will be used in Chattuga. When the

system has these informations, it passes them to a module called Coordinator which instantiates the

agents and gets the corpora. After it has the corpora, it trains another module, the query classification

module, with the informations provided by the corpora plug and play module. When the user enters

the query, the system is already trained to classify the user’s query intention. The query is redirected

by the Coordinator to the agents and to the query classification module. The agents return their

answers to that query and the query classification module returns the labels it predicted for the query.

The Coordinator then evaluates the informations it got from the system plug and play module to

ascertain to which answer classification modules it can send the agents’ answers to. After it gets this

information, it sends the agents answers to the active answer classification modules. These send

their scores of each agent answer which the Coordinator combines to obtain the combined score per

agent answer and, with that information, ranks the answers according to their predicted relevance to the

user query.

This work is divided as follows: Chapter 2 covers related works. These are inserted in four main

categories that follow the same structure as Chattuga, that is, each Section supports a component

5

of the framework. Those are:: similar architectures to the one we intend to propose (Section 2.2);

question classification which will be of the essence to help us in the choice of an appropriate answer

(Section 2.3); answer ranking, using different techniques (Section 2.4, Section 2.5, Section 2.6); finally,

we will describe some agents that are integrated in our system (Section 2.7). Chapter 3 describes the

corpora that we have used in this work to perform the training of the classification models. Chapter 4

provides a guide through the implementation of this project. Chapter 5 explains what we have done to

evaluate our work and the results of that evaluation. Lastly, Chapter 6 presents our conclusions and

contains some suggestions of future work.

6

2
Related Work

Contents

2.1 Introduction . 9

2.2 Similar Architectures . 9

2.3 Classification . 11

2.4 Answer Search in TalKit . 19

2.5 Query Answer Matching . 20

2.6 Similarity Measures . 21

2.7 Agents . 21

7

8

2.1 Introduction

In this Chapter we will look at works that will be important for our project, namely works with similar

architectures (Section 2.2), works on question classification (Section 2.3), to a module of answer search

(Section 2.4), a work on query/answer match (Section 2.5), some similarity measures (Section 2.6) and

some agents that we can integrate in our system (Section 2.7).

2.2 Similar Architectures

In this Section we present similar architectures to the one we intend to propose.

2.2.1 TalKit

TalKit [1] is a program developed by a masters student at Instituto Superior Técnico (IST). TalKit receives

as input a user question and, through several NLP techniques, it redirects that question to a conversa-

tional agent that it considers to have some expertise in the topic of that query and thus, possibly, provides

a good answer. First, it pre-processes the line of dialog, thus facilitating the next steps in the pipeline;

second, classifies the inputted question according to a taxonomy (this classification is detailed later in

this Chapter); third, according to the classification attributed in the previous step, it redirects the question

to the appropriate agent. TalKit’s architecture can be seen in Figure 2.1.

Figure 2.1: TalKit Architecture. This diagram was based on images extracted from [1] to showcase relevant com-
ponents.

We intend to use multiple conversational agents to answer a user input, which is somewhat similar to

9

what is presented in TalKit. A query is received and the system knows some chatbots and redirects the

query to them. Our approach will be different in the sense that we will redirect the query to all the agents

that our program knows, that is all the conversational agents that were added to our system and they

each provide an answer for the user interaction. The final answer that will be sent to the user is chosen

among those answers. It is a different approach to TalKit because TalKit only redirected a question to

one chatbot (the one seen as the most adequate to answer the received user query).

2.2.2 Microsoft QnA Maker

QnA Maker 1 is a system by Microsoft that receives as input a Frequently Asked Questions (FAQ) or other

semi-structured source of information containing multiple question/answer pairs that are converted into a

conversational agent to which a user can make various queries. It will return the most likely answer from

the semi-structured information source. Furthermore, this system also returns several possible answers

to the same question. The company and clients using it can choose the best answer (if the one that is

returned first is not the most correct one) thus coaching the system as to what is the best solution to a

given question. It is a plug and play service that, in the end, can provide a chatbot for any subject that it

is fed data about. For example: if we give as input a FAQ about health-care, then a chatbot that knows

how to answer health-care questions that are already answered in the FAQ is built. The same applies to

other subjects. QnA Maker also has the ability to train itself by receiving user input which in turn makes

the system recalculate the order to which it gives the answers the next time it is asked that particular

question. It is not detailed how this training is done. It is only mentioned that machine learning is used

without further details. The architecture here described can be seen in Figure 2.2.

Our work, similarly to the one presented in this section, intends to be plug and play, that is: a user

provides a chatbot and the training data and our system should be able to integrate the new elements

provided.

1https://docs.microsoft.com/en-us/azure/cognitive-services/qnamaker/overview/overview (Last Accessed on: 06/01/2019).

10

Figure 2.2: QnA Maker Architecture. Image extracted from Microsoft’s website (footnote 1).

2.3 Classification

For our work, question classification is an important module considering that we can only evaluate if

an answer is good if we know the question and its intention (works [5] and [6] discuss the importance

of question classification in question answering). Some systems that provide meaningful results in this

topic will be presented next.

The state of the art in question classification up until the year of 2011 is summarized in the survey

made by Loni [7] which details works over several datasets and several different approaches to question

classification. Since 2011 there has been some more works on question classification, namely the one

by Pota et al. [8] in 2015, which provides a study of the comparison between different sets of features

that can be used in machine learning approaches, with the aim of finding smaller and less complex sets

of features that still provide good results. Still by Pota et al. [9] a work where a procedure of forward-

selection of features is used with support vector machines to classify questions with a smaller set of

11

features with the goal of reducing the noise in the feature space. In 2015, Feng et al. [10] presents a

system that uses semantic similarity between questions to do question classification but also to find a

similar question that has an answer in the dataset. Kim, detailed in [11], uses Convolutional Neural

Network (CNN) with word vectors to perform sentence classification and sentiment analysis. Kiros

et al. [12] uses what he called Skip-Thought Vectors (a model that uses a sentence to predict the

sentences around it). The author then tested this in tasks of classification, one of them being question-

type classification. The works that will be used for this thesis are detailed next.

2.3.1 Taxonomies

Li & Roth [3] proposed a taxonomy where a factoid question can be classified with a broader (coarse

grained) category or a more specific (fine grained) category. For instance, the question “What is the

proper name for a female walrus?” is classified as “ENTITY:animal” because that is what is expected

in the proper answer for this question. The full set of coarse and fine grained categories can be found

in Table 2.1. The dataset that was made in conjunction with this taxonomy has been translated to the

Portuguese language by Costa et al. [13].

Table 2.1: Li & Roth taxonomy. Information extracted from [3].

Coarse Fine
ABBREVIATION abb, exp

ENTITY

animal, body, color, creative, currency, dis.med.,
event, food, instrument, lang, letter, other, plant,
product, religion, sport, substance, symbol,
technique, term, vehicle, word

DESCRIPTION definition, description, manner, reason
HUMAN group, ind, title, description
LOCATION city, country, mountain, other, state

NUMERIC code, count, date, distance, money, order, other,
period, percent, speed, temp, size, weight

In TalKit’s [1] taxonomy a sentence is classified as QUESTION or NON-QUESTION. If it is a question

(receives the tag “QUESTION”) it can also have a question sub-category such as:

• “yes/no question”: tag “YN QUESTION”, that is a question that is meant to be answered with

just “sim” (“yes”) or “não” (“no”) (example: “Usas óculos?” (“Do you wear glasses?”));

• “or question”: tag “OR QUESTION”, a question that is a choice between two alternatives (exam-

ple: “Preferes carne ou peixe?” (“Do you prefer meat or fish?”));

12

• “rhetorical question”: tag “RHETORICAL QUESTION”, a question that is, usually, not meant to

be answered, it is only rhetorical (example: “És maluco?” (“Are you crazy?”));

• “open-ended question”: tag “OPEN ENDED QUESTION”, these are questions that have no spe-

cific answer, but an answer is expected (example: “Mais alguma coisa?” (“Anything else?”));

• “list-question”: tag “LIST QUESTION”, questions that ask for indications of something (example:

“Diz o nome de três presidentes portugueses.” (“Say the name of three portuguese presidents.”));

• or “what/when/where/who/whom/which/whose/why/how question”: tag “WH QUESTION”, a

question that starts with one of the words enumerated at the beginning of this sentence (examples:

“Qual é a capital de Portugal?” (“What is the capital of Portugal?”), “Como se faz o chocolate?”

(“How is chocolate made?”)).

However, having just a sub-category of a QUESTION is not enough to know how to redirect it through

the system, given that a question can be of a certain sub-category and depending of whether or not

it is a personal question it can require a different kind of agent to produce a response to the same

sub-category: tags “PERSONAL” or “IMPERSONAL”. An agent who is trained to respond to small talk

can be better suited to a personal question whereas an agent that can answer to facts can be better at

answering impersonal questions. An impersonal line of dialog can be further classified by the Li & Roth

Taxonomy to extract a relevant feature concerning the topic of the line of dialog.

If the user interaction is tagged as “NON QUESTION”, it can be further classified as:

• Social obligation: tag “SOCIAL OBLIGATIONS”, these are the sentences that are uttered as part

of the socially required obligations (example: “Bom dia!” (“Good morning!”));

• Acknowledgements: tag “ACKNOWLEDGEMENTS”, such as acknowledging an answer (exam-

ple: replying “ok” to a sentence sent by the agent);

• Declarative sentence: tag “DECLARATIVE SENTENCE”, that, as the name indicates, is a sen-

tence that is declarative (example: “O Porto fica no norte de Portugal.” (“Porto is located at the

north of Portugal.”)).

There is an additional classification (tag “NO UNDERSTANDING”) in this taxonomy, given after we de-

termine if the sentence is a question or not, whose sole purpose is to determine if it is a sentence

that indicates a lack of understanding on the part of the user, that is, indicates that the sentence re-

ceived is the user telling the system that he did not understand the reply that the agent gave to him

(example: the agent returns some sentence and the user replies “I’m sorry, I did not understand.”, this

reply of the user is classified with the tag “NO UNDERSTANDING”). This classification with the tag

13

“NO UNDERSTANDING” is given regardless of the line of dialog being classified as a QUESTION or as

a NON-QUESTION, contrarily to the others mentioned before. A part of this taxonomy will be used in this

work. If needed, some minor adaptations will be performed.

2.3.2 Rule Based Approaches

The work by Silva et al. [2], is a rule based one combined with a machine learning one. The system

developed in the previously mentioned work [2] uses several techniques combined in order to obtain a

semantically relevant tag for a question. To identify the categories of questions (according to the pre-

viously described Li & Roth’s taxonomy), the system uses manually built patterns but, as that is not

enough, it also has several steps to identify a headword and map it into a question category. Then,

this is combined with the questions unigrams in a machine learning approach. The steps taken by the

system are described next.

Manually Built Patterns

A great deal of questions within a category follow the same pattern regarding its construction (exam-

ple: when asking for the meaning of an acronym, we usually ask “What does” + the acronym + “means?”,

like the following different questions “What does DNA mean?” and “What does ONU mean?”). These

patterns were identified and used in the question classification system presented in this section. When-

ever a line of text is received by the system it is compared against these patterns and if a match is found,

a question category is also found. A list of the patterns used is presented in Table 2.2.

Table 2.2: List of question patterns for the identification of a semantic tag without using headwords. Extracted
from [2].

Category Question pattern description Example
ABBREVIATION.:exp Begins with What do(es) and ends with an What does AIDS mean?

acronym – i.e., a sequence of capital letters
possibly intervened by dots –, followed by
stands for/mean;
Begins with What is/are and ends with an What is F.B.I.?
acronym

DESCRIPTION:definition Begins with What is/are and is followed by What is ethology?
an optional determiner and a sequence of
nouns

ENTITY:term Begins with What do you call What do you call. . .
ENTITY:substance Begins with What is/are and ends with What is glass made of?

composed/made of
DESCRIPTION:reason Begins with What causes What causes asthma?
HUMAN:description Begins with Who is/was and is followed by a Who was Mozart?

proper noun

14

Headwords

In order to identify a category of a question, it is often useful to find the most relevant word within the

question: the one that gives the best clue to uncover the question’s intention. This relevant word can

also be called headword. To extract a headword, the investigators based their approach on the morpho-

syntactic categories of words. Some sequences of morpho-syntactic categories can tell us which word

is the best to our purposes. The subset of head-rules used to the work here presented can be found in

Table 2.3. What the algorithm developed by João Silva does is to go through the parse tree and match it

to manually built patterns. A subset of those patterns can be seen in Table 2.3. A representation of the

parse tree can be seen in Figure 2.3. So, if it comes from a node “S”, it then searches in the priority list

for the “child” nodes starting at the left of the priority list, if it finds the node in the priority list it repeats

the process with the node found now being the parent, until it reaches a terminal symbol which will be

the headword.

In addition to those patterns presented in Table 2.3, there are some extraordinary cases that would

be incorrectly identified by this method. For those cases, some non-trivial rules were established. The

complete rules have not been described here, but can be seen in [2].

Table 2.3: Manually built patterns list to help with the identification of headwords. Extracted from [2].

Parent Direction Priority List
S Left VP S FRAG SBAR ADJP
SBARQ Left SQ S SINV SBARQ FRAG
SQ Left NP VP SQ
NP Right by position NP NN NNP NNPS NNS NX
PP Left WHNP NP WHADVP SBAR
WHNP Left NP
WHPP Right WHNP WHADVP NP SBAR

15

Figure 2.3: Parse tree of a question. The headword is represented in bold. Image extracted from [2].

Mapping Headwords to categories

Once a headword is identified by the aforementioned algorithm, a mapping to a category must be

done in order to finish the classification of the question. To perform this action, the word identified was

mapped into WordNet2 [14] to find a general category for the question. For instance: the word “actor” is

mapped into “HUMAN:individual”.

This process of classification is particularly useful for our work since by having a category of a question

we can know what to expect in an answer. Having that knowledge can provide us the insight we need to

sort through the multiple answers for the same question that we are going to have and give them weights

accordingly.

In TalKit, the first phase of classification is to go through a set of rules manually crafted to detect some

of the tags (detailed in Section 2.3.1). The tags that are not identified by this approach are, afterwards,

identified by the machine learning approach.

1. For the tag “YN QUESTION”, the morpho-syntactic tags identified in the pre-processing phase are

used, so the sentence is identified as a yes/no question if it starts with: a verb; a pronoun followed

by a verb; a proverb; an adverb; a determinant followed by a noun; or a noun.

2A large lexical database that contains over 155.000 words that are organized in groups by semantic meaning.

16

2. For the tag “OR QUESTION”, if we find an “ou” (“or”) in the sentence, it is identified with this tag.

3. For the tag “WH QUESTION”, if a pronoun or an interrogative adverb is found in the beginning of

the sentence, the aforementioned tag is attributed.

4. For the tag “LIST QUESTION”, if a keyword that usually appears in this type of questions is present

such as “Indique” (“Indicate”), “Diga” (“Say”), etc. then the sentence is identified as a list question.

5. Finally, for the tags “RHETORICAL QUESTION”, “OPEN ENDED QUESTION”, “SOCIAL OBLIGATIONS”,

“ACKNOWLEDGEMENTS” and “NO UNDERSTANDING”, if a list of sentences/words that are co-

herent with the type of interaction are found, the appropriate tag is attributed.

A work that was able to improve on the results for fine grained categories of Silva et al. [2] using a rule

based approach is described in [15]. This work is purely rule based using Syntactic Maps, Types [16]

and Concepts. The approach is simple: the investigators first start by checking if the question is in a

format known by the system. For example, the question “In 139 the papal court was forced to move to

Rome from where?” is rewritten as “To where was the papal court forced to move from Rome in 139”

– a more standard form of writing a question. If it is not in this format, then the question is rewritten in

a format that the system can understand. When the question is in the known format it is mapped to a

syntactic map which is a general template that they created for questions that, with the help of parse-

trees, captures the question’s “Wh-word”, the noun phrase contained in a WHNP and finally the auxiliary

verb, noun phrase and first main verb in the SQ sub-tree. If any of those elements does not exist in the

phrase, its value will be set to None. If the question cannot be mapped into a syntactic map, it cannot be

classified using this work. After they do that, they proceed to match the words of the question to Types

which tell the system some sense of the meaning of a word with the help of the WordNet [14] Synsets,

of its type. After they have all of what they need (the question’s wh-word – explained in Section 2.3.1 –

and the head noun, head noun adjectives, verb and auxiliary verb and the respective types) they match

the question to its question class (fine-grained category).

2.3.3 Machine Learning Approaches

Silva et al. [2] combines a machine learning approach (Support Vector Machines) with the aforemen-

tioned rule based classifier. The question’s unigrams are combined with the features provided by the

rule based classifier (those features are question category and question headword) and they are used in

a machine learning module which yields an accuracy of 95% for coarse-grained categories of questions

(the broadest category of a question) and an accuracy of 90.8% for fine-grained classification (the more

specific category of a question).

17

The state of the art in coarse grained categories for the UIUC dataset was obtained by Van-Tu and

Anh-Cuong [17]. What this work has done was to experiment with different sets of features to use as

input to a linear kernel functions Support Vector Machine to increase the accuracy of the classification,

ultimately finding a solution that obtained the aforementioned state of the art results. The features used

in this work were:

• Unigrams which consists on using each individual word of a question as a feature;

• Bigrams which is using two consecutive words on a question as a feature;

• Word-Shapes that is to use the shape of the words as features (example: if they are lowercase, if

they are or contain digits, etc.);

• Headword is to use the “key” word of a question, that is, the one that provides better information

about a question as a feature (these are extracted using a syntactic parse tree, not detailed in the

paper how);

• Related Words which are words that represent a category of a word that is in a question, for

instance if the question contains the word “month” then “date” will be added as a feature;

• Query Expansion consists on collecting the hypernyms of the headword using WordNet [14] and

add them as a feature as well as their distance to the headword in the WordNet tree.

• Question Category is comparing the headword with all question categories available and finding

the most similar one using WordNet. When that word is found it is added to the features;

• Question Pattern are a set of patterns that the investigators built having in mind “Wh” questions

(explained before, in Section 2.3.1) and their most common structures. These were also used as

a feature.

After considering these features, the investigators wrote an algorithm that calculated which were

the features that increased the similarity for each type of question for the development set. From

that algorithm they have concluded that, for questions with “How”, “Who”, “Why”, “When”, “Where” and

“Which”, the set of features that reached the highest accuracy were Unigrams, Bigrams, Word-Shapes

and Question Pattern. For questions with “What” the set of features found were Unigrams, Bigrams,

Headword, Word-Shape, Related Words, Question Pattern, Query Expansion and Question Category.

Lastly, for other questions, the set of features is Unigrams, Bigrams, Word-Shape and Related Words.

This proved to be a good approach since it reached state of the art results for coarse-grained categories,

thus, having better results than Silva et al. [2] on the UIUC dataset.

18

In TalKit [1] a wide variety of training corpora was fed to the algorithm (Support Vector Machine) such

as:

• two corpus built in the context of the TalKit thesis – one contained yes/no questions and the other

contained rhetorical questions, open ended questions, greetings and farewell expressions, con-

firmation expressions and questions/sentences that indicate that the user did not understand the

system’s answer;

• one corpus containing Factoid Questions – corpus retrieved from the work by Costa et al. [13] that

translated the corpus created by Li & Roth [3] to the portuguese language;

• one corpus containing Personal and Impersonal questions – the personal questions corpus was

built with basis on the corpus used for the aforementioned agent “Just.Chat” [18] which was trans-

lated for the Portuguese language to be used in TalKit. The impersonal questions corpus was

made with questions from the Costa et al. [13] corpus which is the Li & Roth corpus translated to

the Portuguese language, as mentioned before;

• one corpus containing Questions and Non-Questions – corpus built with questions from the pre-

viously mentioned yes/no corpus and the personal and impersonal questions corpus. The Non-

Questions corpus was built with answers to the question’s corpus retrieved from the Say Something

Smart (SSS) work, described in [19] and mentioned in Section 2.7.

The features used in the machine learning algortihm were n-grams (sequence of n consecutive

words: were used Unigrams, Bigrams and Trigrams), Binary N-grams, length and Word-Shape.

2.4 Answer Search in TalKit

With TalKit’s taxonomy and the two classification approaches previously described, the system is able

to redirect the lines of dialog according to the respective tag as described below.

When a Tag is identified, it is time to produce an answer. If the line of dialog is found to be of

type “WH QUESTION” or “LIST QUESTION” and of type “IMPERSONAL” it will be considered a factoid

question and it is, thus, redirected to a chatbot that retrieves facts from Wikipedia and replies them to

the user according to what was asked. If the sentence introduced by the user is tagged as “PERSONAL”

then it is redirected to a system (chatbot) which knows how to answer personal interactions by means of

pairs of question/answer retrieved from movie subtitles. For all other tags, there is a set of pre-defined

answers from which an answer is selected according to the type of question or non-question and then

returned to the user. For instance, for the tag “SOCIAL OBLIGATIONS”, if the user introduces the query

“obrigado” (“thank you”), the system replies “De nada!” (“You are welcome!”) or “Sempre às ordens!”

19

(“Always at your disposal!”). This work assumes that each agent has a specialty and it only redirects

a question for the specialist in it. Contrarily, in our work, we assume that all agents can answer all

questions.

2.5 Query Answer Matching

One approach to perform a match between query and answer is having a large corpora containing pairs

of query/answer. Such a corpora is, for example, the ubuntu chat corpus [20] which is a collection of

chat interactions from Ubuntu’s IRC support channels (more specifically, the eleven more frequently

used) made publicly available containing multi-participant chat logs. This corpora was then modified

twice ([21], [22]) to transform it into a format where instead of having a large dataset with multiple

dialogues with multiple users, we have a dataset with multiple dyadic dialogues (dialogues between

two users). This dataset has over seven million utterances and 100 million words – which makes it an

excellent candidate to use with Neural Networks (NN) considering they need huge amounts of data to

be trained. Upon having this, the sequences of utterances were transformed in sets of tuples of context,

answer and flag in which context corresponds to an utterance in the dialogue and the answer, if it is

correct, to the next utterance from another user in the same dialogue. The incorrect answers were

randomly taken from the various dialogues in the corpus. Flag indicates whether it is an answer to the

context (flag 1) or not (flag 0). The tuples were organized in two groups, one group had an utterance,

a correct answer and an incorrect answer (1 in 2); the second group contained one correct answer and

nine incorrect answers (1 in 10). Having this configuration, they performed some experiences on two

natural language tasks: response classification and automatic generation of next utterance. Of interest

to this work is the response classification task, which aims to distinguish whether a response is valid or

not to a given utterance. The algorithms they performed experiences with to evaluate this corpus for this

task were: Term Frequency - Inverse Document Frequency (TF-IDF), Recurrent Neural Network (RNN)

Dual Encoder and Long Short-Term Memory (LSTM) Dual Encoder. To which they chose the Recall@k

metric to evaluate their performances. Both for the group of one in two and the group of one in ten, the

algorithm that rendered the best results was the LSTM Dual Encoder, obtaining the following results:

• Group of one in two with Recall@1: 86.9%

• Group of one in ten with Recall@1: 55.2%

• Group of one in ten with Recall@2: 72.1%

• Group of one in ten with Recall@5: 92.4%

20

2.6 Similarity Measures

On the task of text classification, one approach commonly used in Information Retrieval (IR) and NLP

is the use of similarity techniques. Similarity is divided in three main groups: string-based similarity,

knowledge-based similarity and corpus-based similarity. Where the first corresponds to lexical similarity

and the last two correspond to semantic similarity. Lexical similarity focuses on the characters of a

string, whilst semantic similarity focuses on its meaning. The first step to apply these techniques usually

includes defining a logical framework for the representation of the textual data. These can be sets,

vectors, probability distributions, among others [23]. As this is not the scope of this thesis, in this Section

we only provide a brief overview of some similarity methods.

A survey made in 2013 [24] sums the main methods used in this context. From these, we detach

cosine similarity, n-grams and Latent Semantic Analysis (LSA) (also know as Latent Semantic Indexing

(LSI)) which are the most widely known and used. The cosine similarity consists on performing the

dot product between two vectors, these vectors are some representation of the texts we are trying to

compare. This similarity approach is commonly used with the bag of words model which is a form of

representation of text where the text is represented as a set of the counts of its words. One advanced

form of the bag of words model is the TF-IDF model which is a calculation of the term frequency in

a document over the total number of terms in the same document multiplied by the logarithm of the

number of documents (or texts) where a certain term appears over the total number of documents. N-

grams are usually sets of n words (or stems) in a given text which are then used to compare the similarity

of two texts by calculating the number of similar n-grams. LSA is an approach which uses singular value

decomposition to build a matrix of word counts per paragraph. This matrix is then compared by column

by calculating the cosine between the angle of any two columns (each column represents a paragraph).

More recently, NN and word embeddings3 have been used to compute the similarity between sen-

tences and/or texts. One work that calculates similarity using word embeddings is [25] which computes

the cost of moving one word from one sentence to another sentence. As for NN, some of the works that

use them to compute similarities are [26], [27], [28] which use CNN and Siamese LSTM Long Short-Term

Memory NN.

2.7 Agents

The purpose of our work is not to build agents that answer questions, but rather to select an answer from

those agents. There are already some agents developed in IST that we can use in our work. Some of

these agents were also used in TalKit. They are Talkpedia [29], SSS [19], and Edgar [30].

3Representation of words as vectors of numbers.

21

• Talkpedia uses Wikipedia to retrieve answers to factoid questions adding a template to it, so it

provides a complete answer instead of just pieces of information.

• Say Something Smart is a system that uses movie subtitles to to reply to an user interaction. In

this work, the version of SSS used is the one built in a simultaneous master thesis to this one [31].

• Say Something Smart AMA is a system that uses the SSS agent framework with a corpus built

with the Agência para a Modernização Administrativa (AMA)45;

• Edgar is a virtual museum assistant in Palácio de Monserrate (Monserrate Palace) that has ex-

pertise about the palace. Edgar was at Palácio de Monserrate answering questions that users had

about the palace.

• Cheat is an agent built in the context of this work and with some similarities to TalKit’s rule based

approach, that uses rules to answer queries. It answers salutations with the equivalent salutation

(good morning with good morning, hello with hi or hello, etc.); answers or questions by replying the

word after the or in the query; answers yes/no questions with yes, no or maybe. If it is none of the

above it says that it is not its area of expertise.

4https://www.ama.gov.pt/ (Last accessed on 02/01/2019).
5A public Portuguese institution that intends to bring some modernization to the administrative processes.

22

3
Corpora

Contents

3.1 Introduction . 25

3.2 TalKit Corpora . 25

3.3 Li & Roth Corpus . 32

3.4 Multieight-04 Corpus . 33

3.5 SubTle Corpus . 34

23

24

3.1 Introduction

In this Chapter, we describe some of the corpora that we used to perform the classification required for

our work. We start by addressing the TalKit Corpora (Section 3.2), we proceed to talk about the Li &

Roth corpus (Section 3.3), next we describe the Multieight corpus (Section 3.4) and we finish by talking

about the SubTle corpus (Section 3.5).

3.2 TalKit Corpora

The TalKit corpora is composed of: the Question vs. Non-Question corpus which aims to classify an

utterance as “question” if it is a question and as “NON QUESTION” otherwise (Section 3.2.1); the Per-

sonal vs. Impersonal corpus which aims to distinguish personal questions from impersonal questions

using the labels “PERSONAL” and “IMPERSONAL” (Section 3.2.2); finally, the Yes/No vs. Other corpus

that uses the label “YN QUESTION” when a question only requires a yes/no/maybe answer and the

label “OTHER” otherwise (Section 3.2.3). The sentences in all the three corpora came from different

sources, namely:

• from the translation into Portuguese [13] of the widely used Li & Roth corpus [3];

• from a manual Portuguese translation of parts of the corpora of a chatbot called Just.Chat [18];

• from the B-Subtle corpus, a corpus built from movies Subtitles, as described in [19].

In addition, some sentences were gathered from the web, created by the author of TalKit or suggested

by Técnico Students at Taguspark, in a Natural Language course.

The proposed use of this corpora, is to use the Personal vs. Impersonal and the Yes/No vs. other

corpus only if the utterance is first classified with the label “QUESTION” using the Question vs. Non-

Question corpus.

In the context of this thesis, some corrections were made. The main corrections that were made were

on the level of structure of sentences, grammar, ortographical mistakes, fixing incorrect labels, etc. To

evaluate the magnitude of the changes, a calculation of the edit distance1 with the Levenshtein distance

formula2. After performing the calculation of the Levenshtein distance [32] of the whole corpora (train

and test) before and after modifications, the results were:

• 2306 for the question vs. non question corpus (Section 3.2.1);

• 4455 for the personal vs. impersonal corpus (Section 3.2.2);

1Distance between two strings according to their differences
2Computes the number of insertions, deletions and substitutions that are needed to convert one string into another. Each

operation costs 1. The bigger the sum of the costs of these operations, the bigger the edit distance between two strings.

25

• 78 for the yes/no vs. other corpus (Section 3.2.3).

These corrections and analysis of the corpora resulted in a paper [4] that was published on July 2019.

In the following we describe each one of the three corpora.

3.2.1 Question vs. Non-Question corpus

In this Section we give a brief description of the Question vs. Non-question corpus, namely, the different

formulations of questions that were gathered, as well as some examples of the non-questions.

3.2.1.A Questions

Several types of questions were taken into consideration. Besides the usual direct questions, we also

gave some room to imperative sentences3 that constitute a request for information.

Regarding direct questions, the corpus contains several examples of the so called “Wh-questions”,

that is, questions that contain the keywords “quem” (“who”), “onde” (“where”), “porquê, porque” (“why”),

“o quê, qual” (“what”), “o quê, qual” (“which”), “quando” (“when”) and “como” (“how”). Examples of such

questions are:

• “Quem é Alan Turing?” – “Who is Alan Turing?”;

• “Qual é o nome abreviado do Mississippi?” – “What is the nickname for the state of Mississippi?”;

• “O que é a viscosidade?” – “What is viscosity?”;

• “Quando foi travada a batalha de Somme?” – “When was the battle of Somme fought?”;

• “Por que motivo foi inventado o fecho de correr?” – “Why was the zipper invented?”.

It was also included in the corpus wh-questions that present a possibility, like an imagined scenario,

and then inquire something with that scenario in mind (e.g., “Se o mundo inteiro estivesse ouvindo, que

dirias?” – “If the whole world was listening, what would you say?”). In addition, questions whose answer

can be a simple “Sim” (“Yes”) or “Não” (“No”) (e.g., “Gostas de ler?” – “Do you like to read?” or “Andas

na escola?” – “Do you go to school?”), including questions that are only one word (e.g., “Jantar?” –

“Dinner?”) were also addressed. Moreover, questions that contain two possibilities of answer separated

by the connector “or” (choice questions), were also added to the corpus (e.g., “Do que gostas mais:

factos ou ficção?” – “What do you like more: facts or fiction?”).

In what concerns imperative sentences that constitute a request for information, or ask for a descrip-

tion or definition of something, several cases were included in the corpus. Some examples are:

3Sentences that are an order, an instruction or a request to do something [33].

26

• “Mencione um cetáceo.” – “Mention a cetacean.”;

• “Diga o nome da organização que é presidida por um Conselho de Segurança.” – “Say the name

of the organization that is presided by a security counsel.”;

• “Descreva a aparência do músico Finlandês Salonen.” – “Describe the Finnish music personality

Salonen’s appearance.”;

• “Defina cosmologia.” – “Define cosmology.”.

Finally, some cases where several questions are formulated in the same entry were also added. The

reason for this is that sometimes people ask several questions related to each other in a row (e.g., “Se

tivesses de escolher, qual animal de uma quinta gostarias ser? Porquê? Podes fazer o som?” – “If you

had to pick, which farm animal would you like to be? Why? Can you do its sound?”).

In summary, the utterances labeled as questions encompass: choice questions, wh-questions, yes/no

questions and imperative sentences.

3.2.1.B Non-questions

The non-questions part of the corpus is constituted of sentences such as:

• “A ideia é os dez formarem um cı́rculo de protecção em torno do possuı́do.” – “The idea is that the

ten form a circle around the possessed.”;

• “O David precisa de ir ao lançamento de um filme.” – “David needs to go to a movie launch.”;

• “Deixou a faculdade de direito, não tem emprego.” – “Left law school, has no job.”;

• “Não é motivo para renegar a famı́lia.” – “It is no motive to renegate the family.”.

3.2.1.C Some Statistics

The corpus was randomly splitted in two, one part for training and one part for testing. The training

corpus contains 4526 entries, from which 2280 are labeled as “question” and the remaining 2246 as

“non-question”. The testing corpus contains 508 entries from which 264 are “non-questions” and 244

are “questions”. Extra details can be found on Table 3.14.

3.2.2 Personal vs. Impersonal Questions

In this section we explain what can be found in the Personal vs. Impersonal corpus.

4In this and in the remaining corpora, the number of tokens and the number of characters take into consideration punctuation.

27

Table 3.1: Statistics about the Question vs. Non-question corpus.

Training Set Testing Set Training + Testing Set

Number of Tokens 42614 4552 47166

Number of Unique words 7741 1509 8253

Average Word Length 4.26 4.31 4.26

Number of Characters 162610 17464 180074

Number of StopWords 13651 1442 15093

Number of Words 36812 3901 40713

3.2.2.A Personal Questions

In European Portuguese, the way personal questions are formulated depend on who we are talking to.

Hierarchy and age difference, among others, will lead to more formal/informal conversations. When two

people engage in an informal conversation, the second person of the singular is usually used; otherwise

the third person of the singular is employed. For instance, if we ask a friend if he likes to read, we would

ask “Gostas de ler?” or “Tu gostas de ler?”, but if we asked a person we do not know or has one of the

aforementioned differences, we would ask “Gosta de ler?” or “Você gosta de ler?” (being the latter in a

more Brazilian Portuguese style). In the English language all these questions translate to “Do you like

to read?”. In the corpus for personal and impersonal questions these cases were taken into account.

Examples are (the first one is an example of formal speech, and the second of informal speech):

• “Diga algo que fez em criança que os seus pais não sabem.” – “Say something that you did as a

child that your parents do not know of.”;

• “Diz 1 coisa que desejavas mudar em ti.” – “Say 1 thing that you wish to change in yourself.”.

Other examples of personal questions that can be found in the corpora are related with: a) situations

in which the user presents a scenario and then asks what the other person would do considering it

(e.g., “Se tivesses que comer um guaxinim ... como irias cozinhá-lo?” – “If you had to eat a raccoon...

how would you cook it?”); b) personal preferences (this can be regarding to movies, food, among other

personal tastes) (e.g., “Qual é o teu filme favorito?” – “What is your favourite movie?”); c) family, friends,

romantic relationships, among others (e.g., “O que me podes dizer sobre um dos teus avós?” – “What

can you tell me about one of your grandparents?”); d) feelings, opinions, beliefs and visions in life:

(e.g., “Achas que é correto namoriscar se tens namorado/namorada?” – “Do you think it is ok to flirt

if you have a boyfriend/girlfriend”); e) past and/or a person’s experience (e.g., “Indica 1 coisa que te

28

faz falta das férias quando eras criança.” – “State 1 thing that you miss of the vacations you had when

you were a child.”); f) what a person wears and his/her appearance, habits, skills, personal info/data,

personal options, facts about personal life, etc. (e.g., “És bom a escrever na tua lı́ngua materna?” –

“Are you any good at writing in your mother tongue?”). In conclusion, personal questions are questions

about the interlocutor’s personal matters, such as his opinions, feelings, memories, home city, friends,

among others. If the questions are about the personal life of a person that is not an acquaintance of the

interlocutor and if that question is not asking for an opinion, then it is not personal.

3.2.2.B Impersonal Questions

As for the impersonal questions, they are mostly factoid questions extracted from the aforementioned

translation of Li & Roth corpus for Portuguese. Some examples include:

• “O que faz com que um tornado gire?” – “What makes a tornado turn?”;

• “Quais são os dois paı́ses cuja costa faz fronteira com a Baı́a de Biscaia?” – “What two countries’

coastlines border the Bay of Biscay?”;

• “Que actor casou com a irmã de John F. Kennedy?” – “What actor married John F. Kennedy’s

sister?”.

3.2.2.C Some Statistics

The personal/impersonal training corpus has 3329 queries, from which 1746 are labelled as “impersonal”

and the other 1583 are labelled as “personal”. The testing corpus has 369 entries from which 205 are

tagged as “impersonal” and the other 164 are tagged as “personal”. More detailed statistics about this

corpus can be found on Table 3.2.

Table 3.2: Statistics about the personal and impersonal corpus.

Training Set Testing Set Training + Testing Set

Number of Tokens 33407 3733 37140

Number of Unique words 5714 1173 6099

Average Word Length 4.38 4.29 4.37

Number of Characters 132257 14413 146670

Number of StopWords 10197 1117 11314

Number of Words 29272 3248 32520

29

3.2.3 Yes/No Questions vs. Other

In this Section we explain what are Yes/No questions and we provide some examples of the questions of

this kind that can be found in this corpus. We also present some examples of the questions that cannot

be answered with a simple “yes”, “no” or “maybe”.

3.2.3.A Yes/No Questions

Examples of Yes/No questions are:

• “Lês muito?” – “Do you read a lot?”;

• “Gostas de dançar?” – “Do you like to dance?”;

• “Tens dinheiro?” – “Do you have money?”;

• “Ontem choveu?” – “Did it rain yesterday?”.

Notice that, in the set of Yes/No questions, one can find questions constituted of one single word

(e.g., “Pizza?”).

3.2.3.B Other

As to the questions labeled as other, they are similar to the ones presented in Section 3.2.1, excluding

the Yes/No ones. Under the label “other” we can find questions such as ”Wh-questions”, imperative

sentences, among others. Here are some examples (extracted from the corpus):

• “Indique um pesticida.” – “State a pesticide.”;

• “Em que cidade se encontra a Bası́lica de São Pedro?” – “In what city is Saint Peter’s basilica

located?”;

• “És de que clube?” – “Of what club are you?”;

• “Quanto custou o Túnel da Mancha?” – “How much did the channel tunnel cost?”.

3.2.3.C Some Statistics

The training corpus has 320 entries, from which 157 are labeled as “yes/no-question” and the other 163

as “other”. As for the testing corpus it contains 40 entries from which 19 are labelled as “other” and the

other 21 are labelled as “yes/no-question”. More detailed information can be found in Table 3.3.

30

Table 3.3: Statistics about the Yes/No Question and Other corpus.

Training Set Testing Set Training + Testing Set

Number of Tokens 2058 261 2319

Number of Unique words 723 147 787

Average Word Length 4.59 4.69 4.60

Number of Characters 8199 1057 9256

Number of StopWords 530 65 595

Number of Words 1711 216 1927

3.2.4 Inter-annotator Agreement

A random sample of 100 queries was selected from each of the above corpus, rendering for each corpus

50 queries for each label. This sample was given to three different annotators (one external annotator

for each corpus) which, in turn, gave their annotation for each query. Upon doing this, the results were

compared with the original labelling, made by a single annotator, using the Cohen’s kappa coefficient

metric (using the implementation provided by Scikit-learn [34]). The results obtained can be found

in Table 3.4, and show that, for the Question vs. Non-question corpus, there is a perfect agreement

between the annotators. As for the other two corpus there is a near-perfect agreement.

Table 3.4: Inter annotator agreement results.

Corpus Cohen Kappa Score

Question and Non-Question 1.00

Personal and Impersonal 0.88

Yes/No and Other 0.98

Some examples of sentences in which the annotators did not agree in the Personal vs. Impersonal

corpus are:

• impersonal: “Porque estamos na Terra?” – “Why are we on Earth?”;

• personal: “Quando saem os objectos de Halloween nas lojas no teu paı́s?” – “When do the

Halloween objects come out in your country’s stores?”.

As these questions could be answered with both opinions and facts, it is understandable that the

ambiguity causes a non-agreement between the two annotators.

31

The only sentence in which the annotators did not agree in the Yes/No question vs. Other corpus

was:

• yes/no-question: “Do Stephen King? Um filme de terror?” – “From Stephen King? An horror

movie?”.

This question could be answered with a simple yes or no, and with a movie, which explains why the

annotators did not agree on the label.

3.3 Li & Roth Corpus

The Li & Roth corpus [3] named UIUC dataset is a widely known corpus of factoid questions that con-

tains 5500 questions manually labeled according to the taxonomy discussed in Section 2.3.1. It contains

English questions collected from the USC [6], 500 manually built questions, and 1403 from the confer-

ences TREC 8,9 and 10. The distribution of questions per coarse categories can be found in Table A.2

(Appendix A). The distribution of questions per fine categories can be found in Table A.1 (Appendix A).

The information in these two tables was gathered by the author of this thesis. The author of this thesis

also compiled a table that contains some statistics about this corpus (Table 3.5).

Table 3.5: Statistics about the Li & Roth corpus.

Training Set Testing Set Training + Testing Set

Number of Tokens 60676 3901 64577

Number of Unique words 9732 1070 10057

Average Word Length 4.36 4.69 4.34

Number of Characters 240667 14236 254903

Number of StopWords 17552 1156 18708

Number of Words 53648 3384 57032

Some examples of this corpus are:

• DESCRIPTION and manner – How did serfdom develop in and then leave Russia?

• ENTITY and creative – What films featured the character Popeye Doyle?

• ENTITY and animal – What fowl grabs the spotlight after the Chinese Year of the Monkey?

• ABBREVIATION and expansion – What is the full form of .com?

32

• HUMAN and individual – What contemptible scoundrel stole the cork from my lunch?

• HUMAN and group – What team did baseball ’s St. Louis Browns become?

• DESCRIPTION and definition – What are liver enzymes?

• NUMERIC and date – When was Ozzy Osbourne born?

• LOCATION and state – What sprawling U.S. state boasts the most airports?

• NUMERIC and count – How many Jews were executed in concentration camps during WWII?

Note that in boldface are the coarse and fine categories of each example of question presented. We do

not present examples for each fine category as it would be too extensive, but these can be consulted in

the full corpus at the website5 that contains it.

This corpus is of special interest to our work due to the facts that it is publicly available, it has a

considerable amount of data, it has a benchmark on classification and it was translated to the Portuguese

language (as described in [13]). It constitutes a powerful tool for question classification.

3.4 Multieight-04 Corpus

The Multieight-04 corpus [35] was a corpus built in the context of CLEF 2004 QA track. The focus of

this track was multilingual information access. One example of an application of this track, which is also

mentioned in the paper cited above, is, for instance, automatic translation of texts. Having this purpose,

there was a need for a multilingual corpus to support this task. From this need, the multieight-04 corpus

was built having 700 questions translated to 8 languages (one of them being Portuguese) in a XML

format. Each of these questions also has an answer (a very objective answer, containing only what

was asked without proper sentence formation, for example: the question “Com quem se casou Michael

Jackson?” (“Who is Michael Jackson married to?”), the answer is just “Lisa Marie Presley”) and an

answer type which is what can be expected to be found on the answer out of 8 categories: person,

location, organization, other, measure, time, object and manner.

For this thesis, slight adaptations were made to this corpus. First, we parsed the XML file to obtain

only the Portuguese questions and answers as this work is focused solely on the Portuguese language.

Then, using a model trained in the Portuguese Li & Roth corpus, we predicted the labels that the ques-

tions has within that taxonomy. Upon having the predicted labels, these were manually corrected when

the author of this work considered that they were wrong. This produced a corpus that had both ques-

tions and answers and also labels. The interest of adding Li & Roth’s labels to this corpus stems from

the fact that the questions encompassed within this corpus and its answers are factoid and thus, can be
5https://cogcomp.seas.upenn.edu/Data/QA/QC/ (Last Accessed on: 30/10/2019).

33

labeled with this taxonomy. One example of a question answer pair that was labelled in the context of

this thesis is “Em que ano foi atribuı́do o prémio Nobel a Thomas Mann? ” (“What year was Thomas

Mann awarded the Nobel Prize? ”) which had the label “TIME” in the original multieight corpus and was

changed for “NUMERIC” and “date” for this work. As we already have a corpus with 5000 questions to

train a model using this taxonomy, we can have a much more accurate label for a question. With the

multieight corpus, we can now have labels for the answers and compare them with the labels for the

questions obtained from the previously trained model with the Li & Roth corpus. Statistics about the

multieight corpus used in this work are presented in Table 3.6 (at the end of the Chapter).

Table 3.6: Statistics about the multieight corpus.

Whole Corpus

Number of Tokens 7896

Number of Unique words 2448

Average Word Length 4.89

Number of Characters 35172

Number of StopWords 2068

Number of Words 7051

3.5 SubTle Corpus

The SubTle corpus [36] was a corpus built from movie subtitles, where the movies were selected with

basis on IMDB6 lists, and the subtitles for those movies were requested to OpenSubtitles7. The criteria

for the selection of subtitles was their format and their average user rating. Upon the collection and

processing of subtitles, they were organized in the following format:

subtlesample.txt

1 SubId - 101330

2 DialogId - 2

3 Diff - 1505

4 I - Preparada para come çar a cavar ?

5 R - Penso que sim

6https://www.imdb.com/ (Last accessed on: 06/06/2019)
7https://www.opensubtitles.org/ (Last accessed on: 06/06/2019)

34

For our work, we are especially interested in question/answer pairs due to our answer ranking com-

ponent. Upon some analysis of this corpus, we decided that it would be interesting to save the pairs

I/R (Interaction/Response) that were a question and its answer. With this in mind, we used a model

trained in the Question vs. Non-Question mentioned above, in Section 3.2, to predict which sentences

were questions. We also used a rule that checked whether a sentence ended with a question mark or

not. We only considered questions that were in the “Interaction” part of the subtitle, so that we could

retrieve the “Response” part as being the answer to such question. Upon identifying all of the pairs I/R

that were questions and answers, we wrote them in a new file forming a new corpus that contains pairs

question/answer. We then made a subset of this corpus that contains only questions that were deemed

personal by the model trained with the corpus mentioned above, in Section 3.2. Statistics about the

personal SubTle corpus can be consulted in Table 3.7 (at the end of this Chapter).

Table 3.7: Statistics about the personal subtle corpus.

Whole Corpus

Number of Tokens 6091509

Number of Unique words 109680

Average Word Length 4.24

Number of Characters 21524868

Number of StopWords 1437921

Number of Words 4759209

35

36

4
Chattuga

Contents

4.1 Introduction . 39

4.2 Chattuga Overview . 39

4.3 Baseline . 40

4.4 Plug and Play Module . 40

4.5 Classification Module . 47

4.6 Coordinator’s answer ranking decision . 54

37

38

4.1 Introduction

In this chapter, we describe how this project is built. In Section 4.2 is provided an overview of the whole

system, in Section 4.3 we describe the baseline of our work, in Section 4.4 we talk about the plug

and play module of Chattuga, in Section 4.5.1 we refer the techniques we used to perform the task of

classification, in Section 4.5.2 we detail the module of answer classification and lastly, in Section 4.6, we

explain how the Coordinator decides on the answer ranking.

4.2 Chattuga Overview

Chattuga has three main components which are all managed by the Coordinator (as shown in Figure

4.1, at the end of this chapter). These components are the plug and play module (Section 4.4), the

query classification module (Section 4.5.1), and the answer classification module (Section 4.5.2). The

plug and play module is set up before the Coordinator starts (under number 1 at Figure 4.1). It gets the

information from the configuration files that a technical user prepared (this information is represented

at Figure 4.1 as the element that says “Corpora, Agents and Answer Classification Methods”). When

the Coordinator starts, it sets up the agents (under the number 2 at the figure that is in the end of the

chapter). The query classification models are already trained when the Coordinator starts. After the

Coordinator sets up the agents, it prompts the user to insert a query. The user introduces a query, for

example, the query “Como te chamas?”. This query is routed through the query classification module

which provides its predictions for the set of classification labels that this query should have according to

the corpora at its disposal. With the base corpora that were detailed in the previous chapter (Chapter

3), these labels would be: “QUESTION”, “PERSONAL”, among others. The Coordinator then proceeds

to send the query to the agents and receive their answers. The answers and the query classification

information are sent to the answer classification module which has several approaches to score the

answers (detailed later, in Section 4.5.2) – this process can be seen at Figure 4.1 where it shows the

Coordinator sending the query, answers, and corpora to the classification module and then receiving

all the classification information it needs to rank the answers. The Coordinator uses this classification

information, which includes the scores attributted by each module of answer classification to the agents

answers and it combines them to perform an answer ranking of the answers. When all the information

is gathered, the Coordinator provides the answers ordered according to their ranking to the user.

39

4.3 Baseline

The baseline of our work is the TalKit project (mentioned in Chapter 2). This work had a multi-agent

architecture for query answering that redirected a query to an agent that was an expert in that type of

query (for example: a query that was classified as “PERSONAL” was redirected to an agent expert in

“PERSONAL” queries). It did not take into consideration the agent’s answer. In Chattuga, it is assumed

that all agents can, potentially, answer all questions. With that assumption, it was taken as baseline the

work developed in TalKit and iterations were made to it. Chattuga started by having what TalKit had:

a process of choosing an answer based solely on the agents expertise. This process, however, was

already slightly different, because whilst in TalKit a query was only given to a single agent, in Chattuga

the query goes to all the agents and each agent gets a score for their expertise (or lack thereof) in the

labels that the query has from the classification process. As Chattuga evolved, it started to have three

more modules to help the Coordinator with the answer ranking. The three modules have in consideration

the answer of the agent instead of their expertise which is not always the best metric to choose an

answer. Beyond the answer ranking modules added, the system developed in the context of this thesis,

also has a plug and play module which allows for further addition of agents and corpora and also for

inner system configurations. Another addition to the baseline, is the correction of the corpora that was

developed for the TalKit thesis, as described in Chapter 3. The previous system used some answer

templates to reply to Yes/No questions, or questions and social talk (examples of social talk are: “Olá”

(“Hello”), “Bom dia” (“Good Morning”)). In Chattuga, these templates were used to create the Cheat

Agent, mentioned previously, in Chapter 2. Last but not least, it was used some of the code written for

TalKit to embed the agents in a multi-agent system and, for Chattuga, a Python file that uses this code

was created to enable the integration in its framework.

4.4 Plug and Play Module

A technical user that wishes to utilize Chattuga in his own tasks can do both external additions to the

system, by using the plug and play module to add new agents and corpora, but also control its inner

components by turning on and off the answer ranking modules available. In this Section, it is detailed

how this module (represented in Figure 4.2) works.

40

Figure 4.2: Simplified plug and play module representation.

4.4.1 Agent Plug and Play Module

To add a new agent, the user simply needs to have a Python file (representing the new agent) that

has a method which receives as argument a query and returns an answer to that query. This file must

be encompassed in a folder that contains everything that is needed for the execution of the agent. This

folder must be located in the “agents” folder of the Chattuga project. Upon performing all of these actions,

the technical user must then proceed to add, in the “agents config.xml” file, the required configurations.

For example, to add the agent SSS, these were the configurations inserted in the “agents config.xml”:

tables and code/agents config.xml

1 <agent >

2 <classname >SaySomethingSmart </classname >

3 <dialogMethod >dialogue </ dialogMethod >

4 <folderName >sss </folderName >

5 <labels >

6 <label score='0.7'>QUESTION </label >

7 <label score='0.7'>PERSONAL </label >

8 </labels >

9 <escapeSentences >

10 <escapeSentence >N~ao sei responder a isso </ escapeSentence >

11 </escapeSentences >

12 </agent >

41

Where the configurations in that example file mean:

• classname – the correct name of the file where the method that receives a query and returns an

answer to that query is. In this case, the classname is “SaySomethingSmart” which is the name of

the Python file where the dialog method is.

• dialogMethod – The name of the dialog method that receives a query and returns an answer to

that query. In this case the name of that method is “dialogue”.

• folderName – The name of the folder where the aforementioned file is and all the others that the

new agent needs has to be written. This folder has to be located in the agents folder. In this case,

the folder name is “SSS” and it contains the file “SaySomethingSmart.py”.

• labels – Contains the sub-fields “label” where in each sub-field it should be a label where the

agent is an expert. This label should also be in the corpora. The element “label” has to contain an

attribute named “score” which corresponds to a score of “how good” that agent is in the said label.

For this example of SSS, the labels in which it is an expert are “QUESTION” and “PERSONAL”

and it is an expert in them with a score of 0.7.

• escapeSentences – Contains the sub-fields “escapeSentence” where in each of these sub-fields

is a sentence that the agent uses to “escape” the query that the user inserted because it was

unable to find an answer. In the case of SSS, the agent only has one escape sentence which is

“Não sei responder a isso”.

These configurations are then used to perform the import of the agents and the call to the corre-

sponding method through reflection 1. To be able to perform these imports, an “ init .py” file had to

be created in the agents directory that dynamically imports all agents and its Python files. The inner

representation of this configuration file within Chattuga is a dictionary containing the informations in that

file.

4.4.2 Corpora Plug and Play Module

For the dynamic addition of corpora, the technical user needs to have in consideration some factors

which are:

• The type of hierarchy that the corpora being added has. In Chattuga, two types are accepted. The

first one follows the same logic as the Li & Roth corpus where there are two labels for the same

query and a classifier needs to first classify a query with the first label, and only then classify it
1The ability of a program to reason with itself in runtime.

42

with the second label using the classifier trained with the utterances labelled with the first label

(for instance, a question can only be classified as “animal” if it first was classified as “ENTY”).

The second follows the approach of the TalKit corpora where a label from one corpus indicates

whether a second corpus is used (e.g. if a query is not labeled as “QUESTION” by a first corpus

that distinguishes utterances that are questions from utterances that are not, it does not make

sense to try to label it with a second corpus that classifies types of questions).

• The type of corpus being added to the system. For instance, the Monserrate corpus contains

almost exclusively questions about Monserrate’s palace and labels about Monserrate and it does

not make sense to have a question labelled with this corpus if the query is about a generic domain.

In the corpora configuration file, which is showcased below, the fields “corpusType”, “hierarchyType”,

“sublabel” and “parentLabel” were added to tackle the factors discussed in the above itemization. An-

other important factor is that, as there can be corpora of questions as well as corpora of answers, the

fields that are detailed next should be encompassed within the tags “question” and “answer” depending

on whether it is a corpus of questions or answers, respectively. Examples of a corpora configuration file

are:

tables and code/corpora config.xml

1 <corpus >

2 <name >PI </name >

3 <path >/novo corpora/query/Treino/personalImpersonal.csv </path >

4 <corpusType >generic </corpusType >

5 <parentLabel >QUESTION </ parentLabel >

6 <vectorizer >

7 <name >TfidfVectorizer </name >

8 <param >encoding='utf -8'</param >

9 <param >ngram_range =(1 ,2) </param >

10 <param >tokenizer=TweetTokenizer ().tokenize </param >

11 </vectorizer >

12 <classifier >

13 <name >SVC </name >

14 <param >kernel =" linear"</param >

15 </classifier >

16 </corpus >

43

tables and code/corpora config.xml

1 <corpus >

2 <name >LR </name >

3 <path >/novo corpora/query/Treino/liRoth.csv </path >

4 <corpusType >generic </corpusType >

5 <hierarchyType >sublabel </ hierarchyType >

6 <vectorizer >

7 <name >TfidfVectorizer </name >

8 <param >encoding='utf -8'</param >

9 <param >ngram_range =(1 ,2) </param >

10 <param >tokenizer=TweetTokenizer ().tokenize </param >

11 </vectorizer >

12 <classifier >

13 <name >LinearSVC </name >

14 </classifier >

15 <sublabel >

16 <vectorizer >

17 <name >CountVectorizer </name >

18 <param >encoding='utf -8'</param >

19 <param >ngram_range =(1 ,1) </param >

20 <param >tokenizer=TweetTokenizer ().tokenize </param >

21 </vectorizer >

22 <classifier >

23 <name >LinearSVC </name >

24 </classifier >

25 </sublabel >

26 </corpus >

The complete list of fields required are presented next:

• name – Where it should be written the name of the corpus to be added.

• path – The path to the new corpus.

• classifier/vectorizer (optional) – If the technical user wishes to apply a specific vectorizer or

classifier to classify the new corpus, he just needs to insert the tag classifier or vectorizer and

inside those, the name and/or parameters of the classifier or vectorizer, as shown in the examples

above. All Scikit learn vectorizers and classifiers are accepted. If this field is not used, the default

classifier and vectorizer (LinearSVC and CountVectorizer) will be used for that corpus.

44

• corpusType – In this parameter it has to be specified if the queries in the new corpus have a

generic nature or a very specific one. This field mitigates the problem discussed above, about

classifying queries with specific corpus such as the Monserrate corpus.

• hierarchyType (optional) – This can only have two values, that the technical user should add.

Those are “sublabel” and “subcorpus”. This indicates the program whether you want to have a

hierarchy of classification of corpus or of labels. As explained above, Chattuga accepts two types

of hierarchy. If the hierarchy is like the Li & Roth hierarchy then it is “sublabel”; if it is as the TalKit

corpus it is “subcorpus”.

• parentLabel – This element should only be used when the field “hierarchyType” is set to “subcor-

pus” and is used to indicate the system which label should prompt a further classification with the

corpus being added. For instance, if we want to further identify a question to learn if it is a question

that can be answered with a yes/no or if it is another kind of question, we should, within the ele-

ment that identifies the Question vs. Non Question corpus, have another element for the Yes/No

vs. Other corpus which in its turn should have the element “parentLabel” that should encompass

the word “QUESTION”.

• sublabel (optional) – This field should only be used if the hierarchyType is “sublabel” and its

purpose is to contain the fields classifier and vectorizer if a specific vectorizer or classifier is to be

used for the sublabels.

It should be noted that, for different hierarchy types, a different approach to classification is applied.

If the hierarchy type is “subcorpus”, then a classifier is trained for each corpus and then, in the prediction

phase, the model for the subcorpus is used only if its parentLabel has been already identified to be the

query’s label. For the hierarchy type “sublabel”, a classifier is trained on the labels of the first level of the

hierarchy, and then, for a sublabel, a classifier is trained for each parent label. For instance, in the case

of the Li & Roth corpus there are six coarse categories and fifty fine categories. In this case, a classifier

is trained to identify which coarse category is, and then a classifier for each coarse category is trained

for the fine categories. This will render seven models: one for each coarse category and one for all the

coarse categories. To better understand, lets suppose the query “Quem é o arqui-inimigo do Snoopy?”

enters the system. The system then proceeds to identify that query with a coarse category using the

model trained in all coarse categories. It then uncovers a coarse label for that given query which is

“HUMAN”. Upon having that coarse label, it calls the model that was trained with the fine categories

associated with that coarse label, that is, the model trained with the queries labeled as “HUMAN”, and

uncovers a fine category (“individual”) for the query based on its coarse category. Also worthy of note is

that Chattuga creates a model for each “specific” corpus that is trained with utterances from the “specific”

corpus and utterances from a generic corpus and it learns to distinguish if a query is specific or generic

45

before further classifying it with the “specific” corpus labels.

4.4.3 System Plug and Play Module

The third plug and play’s module purpose is to provide the possibility to the technical user to choose

which methods it uses in the answer ranking process (explained in the next Section). If the technical

user considers that one of the modules is not useful or it even is prejudicial to his purposes he has this

way to turn them off. As there are four available answer classification modules ((1) – query/agent label

match module; (2) – personal answers module; (3) – impersonal answers module; (4) – query/answer

label match module), the configuration file for the system has four elements, which correspond to the

answer ranking methods available. To use one of them, the user just needs to write “True” inside the

corresponding element. By default the system uses all three methods. They are all set to “True”. Addi-

tionally, for the personal answers module (explained in the next section), as it has four available methods,

the technical user needs to input in the attribute of the corresponding element, a string containing the

methods or method which it intends to use separated by “|”, in case it uses more than one. The default

configuration file for the system has the following appearance:

tables and code/system config.xml

1 <system >

2 <query -agent -label -match >True </query -agent -label -match >

3 <answer -classification -impersonal >True </answer -classification -impersonal >

4 <answer -classification -personal

5 sim_measure='tfidf_normal '>True

6 </answer -classification -personal >

7 <query -answer -label -match >True </query -answer -label -match >

8 </system >

As it can be seen in the example file, there is a xml field for each of the enumerated answer clas-

sification modules and they are all set to True, which means that the Coordinator will use all available

methods to rank the answers of the agents. As to the similarity measure(s) that the Coordinator will ask

the personal answers module to use, it will be the TF-IDF normal as that is the only one specified in the

“sim-measure” property in the field of this module in the system configuration file.

46

4.5 Classification Module

In Chattuga, there are two main classification modules, which are the query classification module (de-

tailed in Section 4.5.1) and the answer classification module (explained in Section 4.5.2). A representa-

tion of this module can be seen in Figure 4.3.

Figure 4.3: Simplified classification module representation.

4.5.1 Query Classification

Chattuga, without any modifications to the configuration files, uses Support Vector Machine (SVM) with

a linear kernel, using unigrams or unigrams+bigrams as features (experiments conducted in this thesis

have shown that these are the pipelines that scored higher in accuracy. These experiments are detailed

later, in Chapter 5), trained with the Question vs. Non-Question, the Yes/No vs. other corpus, the

Personal vs. Impersonal corpus, the Li & Roth corpus and the Monserrate corpus2 to classify queries.

The system also has handcrafted rules, to classify questions as “WH QUESTION”, “OR QUESTION”

2Edgar’s corpus containing informations about Monserrate.

47

and “LIST QUESTION”. This rule based classifier is very simple: it only looks for words that may indicate

that we are in the presence of one of these questions:

• For the “WH QUESTION” label, it searches for “como” (“how”), “quando” (“when”), “quem” (“who”),

etc.

• For the “LIST QUESTION” we look for “Indique” (“Indicate”), “Mencione” (“Mention”), “Diga” (“Say”),

among others.

• Finally, for the “OR QUESTION” we simply search for the word “or”. This rule based architecture

is very similar to the one of TalKit.

4.5.2 Answer Classification

To understand, among a set of answers from different agents, which one is the most adequate to a given

query, there are several approaches that can be followed. One is related to knowing the agent’s area of

expertise (for example, the agent Edgar is an expert in all the labels that concern Monserrate’s palace).

In this case, if the query is classified with a label that is related with that expertise, we could assume

that an answer from that agent will be more valuable than the other agents’ answers. Another approach

would be to have corpora with queries and answers labelled with the same set of labels. Having these

corpora and using machine learning algorithms, one could obtain a classification on the query and on

the set of agent’s answers and, thus, perform a direct matching. If the label of the query and the label of

the answer matched, that answer could be considered more valuable. Without having this kind of data,

considering that most labelled corpora available contain only queries, another kind of corpora could be

used: a corpora that contains pairs query/answer. This kind of corpora could be used in two manners:

• If the corpora is very large, it could be used with neural networks to obtain a classification of

whether that answer is adequate to that query or not (this approach was explained in Section 2.5).

• If we knew that the corpora had a specific characteristic, for instance, that it has only “PERSONAL”

utterances, we could compare the agents answers when the user inserts a query that is considered

“PERSONAL”, with the whole corpora using similarity measures. The most similar answer to that

corpora would then be considered the most adequate.

In Chattuga, we use all the aforementioned strategies:

• We compare the labels of a query with the labels of expertise of an agent (Section 4.5.2.A): for

instance, we attribute a bigger score to SSS if the query is classified as “PERSONAL” because

personal queries are its area of expertise;

48

• We use rules and machine learning approaches to determine labels of an answer and compare

it to a query (Section 4.5.2.B and Section 4.5.2.C): for example, an agent’s answer that has two

labels in common with the user query gets two points;

• Finally, we use similarity measures to compare agents’ answers to a corpus of answers (Section

4.5.2.D): e.g. we compare agents’ answers to a query classified with the label “PERSONAL” with

a corpus of personal answers. The score each answer receives is its degree of similarity with the

corpus.

The way in which we use them is detailed next.

4.5.2.A Query Labels/Agent Labels Matching Module

The first method of ranking the agent’s answers is heavily drawn from TalKit, as mentioned before. This

method uses the information it has on the agent’s expertise. From the plug and play module explained

before, the labels that each agent has an expertise on are drawn. These have a score that pertains to a

measure of “how good” an agent is in answering utterances classified with a certain label (for instance,

Edgar has a score of 1.0 in all Monserrate’s corpus labels). The query is also classified with a machine

learning module to get its labels. Once we have both the query’s labels and the agent’s labels, we sum

the scores of each agent’s label that matches the query’s label. This will render a final score that will

be used to rank the answers. For instance, in the previous section (Section 4.4), where the agent’s plug

and play module was discussed, it was mentioned that the agent SSS has an expertise score of 0.7 both

for queries with the label “QUESTION” and the label “PERSONAL”. This means that if a user inserts a

query that has these two labels, SSS receives 1.4 points for being an expert in the domain of that query.

However, if the query is classified with only one of those labels, SSS only receives 0.7 and so on and so

forth. The Coordinator receives these scores and uses them to make a decision on the answer ranking.

4.5.2.B Answer Labels/Query Labels Matching Module

The module of answer labels/query labels matching is quite similar to the query classification module.

The only thing that is done in this module is to use the answer corpora that are inserted in the corpora

configuration file to train a model and perform a classification of the agent’s answers with that corpora.

As the purpose of adding a corpora of answers is for it to have answers that are annotated with the same

labels as one of the corpora of questions, it only gives a score above 0 to an answer if it is found to have

labels in common with the ones found for the query in the query classification phase. If there are labels

in common, the answer being analysed receives 1 point for each label it has in common with the query.

For example, the query “Quantas janelas tem o palácio?” (“How many windows does the palace have?”)

is classified with, among others, the label “MONSERRATE INTERIOR” from Edgar’s corpus, and the

49

answer “O palácio tem vinte e cinco janelas ogivais nos seus dois pisos principais e sete janelas mais

pequenas ao nı́vel do piso superior dos torreões.” (“The palace has twenty-five arched windows on its

two main floors and seven smaller windows on the towers’ top floor.”) is classified with the same label. In

this module, this answer would receive 1 point due to the label in common between query and answer.

4.5.2.C Impersonal Answers Module

This module uses the multieight corpus described earlier, in Section 3.4. However, as this corpus is

very small, its accuracy cannot be relied to obtain a classification. For this reason, it was only used

when a classification with rules could not be found. In this module, agent’s answers are iterated over to

find clues to ascertain whether they have answered the question or not. To perform this operation, the

query’s labels are used, more specifically, the ones that come from the classification with the Li & Roth

taxonomy.

The first approach that this module tries is to use the Wikipedia api for Python3 to send the ngrams

of the answers to wikipedia and get a summary of the articles it finds. The impersonal answers module

then searches for the fine category obtained in the classification of the query within that summary. The

reason for this is that if, for example, a search is performed in Wikipedia about “Girassol” (“Sunflower”)

(a plant), usually the summary returned contains the word “plant” which is one of the fine categories of

the Li & Roth taxonomy. For fine categories that are more broad such as “cremat” that encompasses

books, movies, plays, among others, a list of words to search was compiled (in the case of “cremat”, the

aforementioned examples were included). If a user inputted the query “Que planta contém a palavra sol

no seu nome?” (“Which plant contains the word sun in its name?”) and it was classified correctly as

“ENTY:plant”, if an agent answered “É o girassol!” (“It is the sunflower!”), this module would be able to

retrieve the word plant from the wikipedia summary and thus attribute the correct fine category to the

answer. If this wikipedia method takes too long or is unable to find the category, the impersonal answer

module proceeds to use another module based on the work in [37], which, depending on the coarse

category, uses different methods:

• Coarse category Entity: The module uses nltk’s WordNet [14] [38] for the Portuguese language

to find all of the hyponyms of the hypernym corresponding to the fine category. For instance, for

the fine category “animal” it will look in the synset tree for all the hyponyms of animal, then it will

search in all the words of the agent’s answer for a word that matches an hyponym of animal. If it

finds one it returns the category “ENTY:animal”. This has five exceptions: creative, other, letter,

term and word to which wordnet cannot be used, these are classified using the model trained on

the multieight corpus.

3https://pypi.org/project/wikipedia/ (Last accessed on: 27/10/2019)

50

• Coarse category Location: For the location coarse category, we use Spacy’s Named Entity Rec-

ognizer (NER) to identify named entities in the answer, due to the fact that usually this method is

able to identify locations. Then, if the fine category is country, city, mountain or state, we use the

same approach as described above to check whether one of the hyponyms of the fine categories

matches a word in the answer. For example, if a user inserts the query “Qual é a montanha de

maior altitude no Mundo?” (“What is the highest mountain in the world?”) and an agent answered

“A montanha de maior altitude é o monte Evereste.” (“The highest mountain is mount Everes.t”) the

NER would extract “Evereste” which is then used as the hyponym in wordnet and the fine category

“montanha” (“mountain”) as the hypernym, and then a search in the hyponyms of the hypernym

is done to check if the hyponym “Evereste” is there. If a classification is not obtained using these

steps, the named entity extracted from the answer (in the previous example, this named entity

would be “Evereste”) is classified using a SVM trained in the multieight corpus. Only the named

entity is classified with the multieight corpus trained model due to the fact that the answers of the

multieight corpus are just names or dates or small answers, as mentioned in Section 3.4, which

means that if just the named entity is classified with this model, there is a bigger chance of getting

a more accurate classification.

• Coarse category Human: Similarly to the approach followed in the location coarse category, in

the human category we also perform an extraction of named entities and then classify that named

entity with the SVM trained on the multieight corpus. We only classify the named entity due to the

fact that the multieight corpus has very small and direct answers and thus, using only the named

entity there is a higher chance of a correct classification. For example, for the answer “O primeiro

rei de Portugal foi D. Afonso Henriques.” (“The first king of Portugal was D. Afonso Henriques.”) to

the query “Quem foi o primeiro rei de Portugal? (“Who was the first king of Portugal?”), the name

“D. Afonso Henriques” would be extracted by the NER and classified with the multieight module.

The reason for only classifying the named entity with the multieight trained classifier is the same

as the one described in the previous topic about the category Location.

• Coarse category Abbreviation: In the fine category “abbreviation” we iterate over all words of

the answer to determine whether one of them matches a regular expression that checks whether

the word is a set of two or more capitalized letters separated by dots or not. As for the fine cat-

egory “expansion”, we extract from the query the abbreviation using the aforementioned regular

expression and then, we look in the answer for a set of words whose first letter correspond to

the abbreviation. For instance, in the query “O que é que a sigla NASA significa?” (“What does

the abbreviation NASA mean?”) we extract NASA. Then for the answer “A sigla NASA quer dizer

National Aeronautics and Space Administration.” (“The abbreviation NASA means National Aero-

nautics and Space Administration.”) we iterate over the words of the answer and look for the set of

51

words that matches the letters “NASA”, if we find those, the classification with this coarse and fine

category is returned.

• Coarse category Numeric: In this category we used regular expressions, spacy’s PoS tagging

and some rules to verify whether a number was present in the answer or not. For the fine category

“date” we used regular expressions to verify numbers separated by “/”, “-” or “.”. Additionally, in

this fine category, we also check if the answer has keywords such as the months of the year, the

days of the week or simply the words “today”, “yesterday”, among others. For the fine category

“code” we simply check if it matches a Portuguese zip code. Finally, for the categories “distance”,

“temperature”, “size” and “weight”, we check if the answer contains any unit that could point to one

of these categories using wordnet.

As we could not cover all methods with rules, when a question category is not found with this rule

based classification, this module uses a SVM trained on the multieight corpus to perform the classifica-

tion of the answer.

4.5.2.D Personal Answers Module

Working with the resources that we possess for the Portuguese language, that is, the corpora presented

in the previous Chapter, and due to the lack of corpora to distinguish personal answers from imper-

sonal answers, i.e., corpora with answers labeled with “PERSONAL” and “IMPERSONAL”, as we have

for questions, which would allow us to compare the answers’ labels with the question’s labels, we, in this

work, tried two methods to be able to use all the resources available. The first method we tried to employ

to determine which answer was better for an user query was the one followed in [22] (detailed in Section

2.5). However, this method, although very adequate for our work, takes a long time to train and to pro-

duce good results. We ran the method on our personal answers corpus. It took over a week just to run

one epoch which rendered recall@5 in a group of 10 answers (1 right answer and 9 wrong answers) of

a little over 50%, which is not very good. The best results should come after epoch 2, unfortunately due

to the process of the neural network taking too much resources for far too long it had to be terminated

before it could finish this epoch. For these reasons, we could not use this method on this work. Instead,

as we only contain a corpus with one example (“PERSONAL” answers) of answers, we decided to use

an approach that simply compares each agent’s answer with a corpus that contains personal answers

(the subset of the SubTle corpus described in Section 3.5). If a query is classified as “PERSONAL” and

among the set of answers we can find one that is “PERSONAL” as well, we can give a higher score to

that answer. We do this by using some similarity approaches to compare an answer to the corpus of

personal answers, as if an answer is similar to a the aforementioned corpus of personal answers, it can

be argued that the more similar it is, the most likely it is that that answer is personal. These similarity

52

approaches are described next.

Word embeddings + Mean Embedding Vectorizer + Cosine similarity

For this method and the following one, we used an implementation (with slight modifications) available

online4 to use word embeddings with Scikit learn functions. For this, the developer made two custom

vectorizers, the Mean Embedding Vectorizer which computes the mean weights of word embeddings

vectors and the TF-IDF Embedding Vectorizer which computes the mean values of the TF-IDF weights

of the word embeddings vectors. In this section we will focus on the mean embedding vectorizer. This

vectorizer simply computes the mean values of the word vectors of the word embeddings model (trained

on the personal answers corpus). Upon transforming both the answers and the personal answers cor-

pus, we compare the similarity between them using the cosine similarity.

Word Embeddings + TF-IDF Embedding Vectorizer for Embeddings + Cosine similarity

Similarly to the previous approach, we use the aforementioned implementation which computes the

mean values of the TF-IDF weights as well as the word vectors weights. With the vectors corresponding

to the personal answers and the answers transformed with this vectorizer we perform the cosine similarity

to determine the closest answer to the personal corpus.

LSI similarity

Another approach that can be used to test the similarity between an answer and the corpus of

answers is Latent Semantic Indexing, explained before, in Section 2.6. Using gensim’s (Section 5.2.4)

implementation of this similarity approach, we first train the model with the corpus of answers, then we

create a matrix containing all the similarities that came from the lsi model. Using this matrix, we then

compare each agent’s answer to this matrix and obtain a similarity for each one of them.

Regular TF-IDF Vectorizer + Cosine similarity

The last and the default approach of our system is to use the regular TF-IDF vectorizer from Scikit

learn, to get the vectors of weights to each word and then perform the cosine similarity. This method is

the default because of its speed. It takes three seconds to compute four agent’s answers as opposed

to the more than ten seconds that the other methods take (they take a little over ten seconds for four

4http://nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/ (Last accessed on: 09/09/2019)

53

agents using parallel computing, otherwise they would take more than that). As this method is fairly

good at performing the similarity, we considered that it could be a default method considering the trade

off time/effectiveness.

4.6 Coordinator’s answer ranking decision

To return a ranked list of answers to the user, the Coordinator checks the system’s configuration file

to check which answer classification modules it can use and, in case the personal answers module is

active, the similarity measure or measures it can use. With this information, the Coordinator calls these

modules and sums the different scores it receives from each one of them. The answers are showed to

the user ordered by their score, from highest to lowest. In case there is a draw, this information is given

to the user as well.

54

Fi
gu

re
4.

1:
S

im
pl

ifi
ed

C
ha

ttu
ga

’s
ge

ne
ra

la
rc

hi
te

ct
ur

e.

55

56

5
Evaluation

Contents

5.1 Introduction . 59

5.2 Experimental Setup . 59

5.3 Query Classification . 61

5.4 Evaluating the Plug and Play Module . 62

5.5 Evaluating the Answer Ranking Process . 65

5.6 Discussion . 69

57

58

5.1 Introduction

The Chattuga framework consists of several functionalities which connected make a meta-conversation

system. As the focus of this work is not the agents that integrate it, in this evaluation we focus on its true

functionality: how good is Chattuga in the ordering of answers according to their relevance and how

good is it in the integration of new agents and corpora. Thus, we have three main characteristics on

which we base this evaluation:

• The query classification module – In this module, the user’s intent is classified and it is further

used to discern between the agent’s answers. This helps the system in the ordering of answers

according to their relevance.

• The plug and play module – This module has three parts: the agents plug and play part to add

agents; the corpora part which is to add corpora; finally, the system part that controls which answer

ranking methods are used. The first two parts of this module (agents and corpora addition) will

allow the system in the integration of new agents and corpora and the third part (system) will

help the system in the ordering of answers according to their relevance.

• The answer ranking process – This process is consisted of four modules of answer classification

((1) – query/agent label match module; (2) – personal answers module; (3) – impersonal answers

module; (4) – query/answer label match module) that each produce a score for each agent’s an-

swer which are then summed by the Coordinator. The system uses this information to perform the

ordering of answers according to their relevance.

In Section 5.2 we provide a brief explanation of the tools that were used in this work. In Sections 5.3,

5.4 and 5.5 we describe how the evaluation was performed in each of these modules.

5.2 Experimental Setup

To perform the implementation of the system and its evaluation, several tools for Python were used.

These are detailed in this section.

5.2.1 Scikit-learn

Scikit-learn [34] is a package for Python that contains several implementations of state-of-the-art algo-

rithms for machine learning that are both supervised and unsupervised. It contains not only a classifica-

tion component, but also models such as bag-of-words that can be fed to classification algorithms. It also

provides implementations for evaluation metrics such as accuracy, recall, precision, among others. This

59

tool is very important for the whole functionality of our system as we use its classification algorithms, its

vectorizers, similarity tool, among others.

5.2.2 Pandas

Pandas [39] is a library for Python that provides a set of tools to structure and analyze data. The most

interesting feature of this tool for our work is its functionality to import files and store them in data frames

that are structured and also its integration with scikit-learn which allows us to easily have the data in the

format required by scikit in its functions. We use this tool for our corpora.

5.2.3 NLTK

Nltk [38] is a toolkit for Python that provides lexical resources to process natural language. These include

tokenization, stemming, parsing, tagging, among several others. This toolkit includes resources for the

Portuguese language such as Floresta Sintática [40]. We use its tokenization tool, WordNet, and set of

stopwords.

5.2.4 Gensim

Gensim [41] is a Natural Language Processing software framework which is focused in scalability and

ease of use. This tool provides implementations of several natural language processing tools such as

the vector space model, latent semantic analysis, word embeddings among others. In our work, we use

the tools related to word embeddings, Latent Semantic Indexing similarity and Vector Space Model. We

did made some experiments with the word movers distance similarity. However it was proven to be very

slow and not very scalable so we have decided not to use it.

5.2.5 Spacy

Spacy [42] is an open source library for natural language processing in Python that supports more than

52 languages, including Portuguese. For our work, we use its tokenizer and the named entity recognizer.

5.2.6 Numpy

Numpy [43] is a scientific computing tool that performs array operations very efficiently. In Chattuga, this

tool is used mainly implicitly, within the other tools. It was used an implementation1 from another devel-

oper to perform word embedding operations that uses numpy to perform the word vectors operations.

We also used the mean function to obtain the mean similarities.
1http://nadbordrozd.github.io/blog/2016/05/20/text-classification-with-word2vec/ (Last accessed on: 09/09/2019).

60

5.3 Query Classification

To evaluate the performance of the different corpora (Question vs. Non-Question, Yes/No vs. Other,

Personal vs. Impersonal and Li & Roth) we conducted experiences in the suggested partition of train

and test corpus with several scikit-learn algorithms of classification (DecisionTreeClassifier, KNeigh-

borsClassifier, MultiLayerPerceptron, all Naive Bayes’ algorithms and Support Vector Machines with

different kernels), all the vectorizers (CountVectorizer, TfidfVectorizer and HashingVectorizer) and with

these together with the TweetTokenizer of NLTK. We experimented with Unigrams, Bigrams, Trigrams

and combinations of them. When possible we maintained the default parameters of the classifiers and

of the vectorizers. In some cases this was not possible as it would raise a warning or an exception (for

instance, in some combinations of the HashingVectorizer with a classifier, an exception would be raised

and we had to set the parameter “non-negative” to True). The algorithm that achieved the best results in

all the corpora was the SVM with linear kernel. The results are presented next, in Table 5.1:

Table 5.1: Results of the best pipeline (combination of features, classifier and vectorizer) of classification for each
corpus.

Accuracy Features Vectorizer Classifier

Question vs. Non-Question 100.0% Unigrams CountVectorizer LinearSVC

Personal vs. Impersonal 98.1% Unigrams + Bigrams TfidfVectorizer SVC + linear kernel

Yes/No vs. Other 100.0% Unigrams CountVectorizer LinearSVC

Li & Roth coarse 90.5% Unigrams + Bigrams TfidfVectorizer LinearSVC

Li & Roth fine 82.4% Unigrams CountVectorizer LinearSVC

Additionally, using the algorithms, features and vectorizers found to be the best according to these

experiences, we performed a cross validation with 10 folds on these corpora (for the cross validation,

we used the whole corpus, that is, the test and train corpus together for each corpus). The results are

presented in Table 5.2.

The accuracies obtained show that the system has a strong module of classification for the labels in

these corpora. Some of these corpora are quite small and the results obtained can be high due to that

fact. The values obtained for the accuracy are quite similar to the one’s obtained in TalKit [1]. However,

a direct comparison cannot be done due to the fact that the cross validation in that work was done solely

on the train corpus whilst the values presented in this work were obtained for the combination of the

train and test corpus.

61

Table 5.2: Results of the cross-validation with 10 folds executed with the classification pipeline found to have the
best results.

Mean Accuracy Standard Deviation

Question vs. Non-Question 100.0% 1.0%

Personal vs. Impersonal 97.0% 1.0%

Yes/No vs. Other 97.0% 6.0%

Li & Roth coarse 86.0% 4.0%

Li & Roth fine 78.0% 3.0%

5.4 Evaluating the Plug and Play Module

To evaluate the first two parts of this module, we have considered a case study which is Edgar. We built

the entire system which started by containing only the chatbots Talkpedia and SSS. We then decided

to get a highly specific chatbot as is Edgar and add it to the system to see how it adapts. In section

5.4.1 we describe the experience of adding the agent Edgar, in section 5.4.2 we detail how it was to add

corpora and finally, in section 5.4.3 we detail some experiences made with the parameters of the system

configuration file.

5.4.1 Evaluating the Agents Plug and Play Module

The first thing that had to be done to integrate Edgar in Chattuga was to run it as a standalone agent.

The agent was ran and, in doing that, the required steps to invoke the agent and what libraries were

needed to run it were identified. When the agent was ran successfully and a conversation with it was

held, an investigation had to be done to see how the agent could be adapted so that it would receive

a single query instead of being always running and asking for more queries. This is because the only

agent that should be asking the user for a query is Chattuga. After performing the required adaptations

to Edgar’s code, we had to build a wrapper in Python for Edgar’s code as it was made in Java. The

hardest part was performing all these adaptations to Edgar’s code and understanding its architecture

and its requirements. The construction of the Python wrapper, after having an example from the other

two agents did not prove to be difficult. The actual part of the plug and play, which is to add the agent to

the config file, was straightforward: all the required arguments were written in the config file and when

the program was ran, the agent immediately started answering questions alongside the other agents.

62

5.4.2 Evaluating the Corpora Plug and Play Module

The original corpora of the Edgar project was built in a XML format where each file corresponded to a

question about a different part of Monserrate’s palace or about the butler itself (a different category of

question). Chattuga requires a csv file or a txt file in a different format. The first step to integrate this

corpus in the system was to transform it into this format. To do this operation, a parsing of the xml files

was done. The questions and the category were retrieved and all the files of Edgar were combined in

a single txt and a single csv file. The path for these files and the remaining informations required by

the plug and play module were added to the corpora config file, including that this corpora is of type

“specific” due to its restrict domain. Chattuga was ran after the configurations were added to the corpora

config file and the labels of this corpora were promptly returned for the queries that were introduced as

part of the experiment.

5.4.3 Evaluating the System Plug and Play Module

To evaluate this module, we introduced a query that we knew the agent Edgar could answer, and then,

with the same query we tried different combinations of settings in the system config file. In this way, we

can assert how well this module works. The query that was first inserted in the system was “Quantas

janelas tem o palácio?” (“How many windows does the palace have?”) with the following configurations:

system config.xml

1 <system >

2 <query -agent -label -match >True </query -agent -label -match >

3 <answer -classification -impersonal >True </answer -classification -impersonal >

4 <answer -classification -personal

sim_measure='tfidf_normal '>True </answer -classification -personal >

5 <query -answer -label -match >True </query -answer -label -match >

6 </system >

This led the system to choose Edgar’s answer as the best one with a score of 3.4 (2 points from the

query-agent label match module; 0.5 points from the impersonal answers module; 1 point from the

query-answer label match module). Disabling the modules one by one (this is done by setting them

to False in the config file), the scores obtained for the same agent differ drastically, as can be seen in

Figure 5.1.

This chart illustrates not only that this plug-and-play module works as supposed but also it shows its

utility. If a technical user deems one of the modules less adequate to its agents, that module can be

turned off.

63

Figure 5.1: Variation of scores by varying the parameters of the system config file.

0

1

2

3

4

Edgar Talkpedia SSS SSS_AMA Cheat

All modules

All but impersonal
module

All but query-agent label
match module

All but query-answer
match module

Only query-agent label
match module

Only impersonal module

Only answer-label match
module

Points scored

Another setting that can be changed in this config file is the similarity measure or measures that are

to be used to obtain a score to personal answers. The first experiment that was conducted was to use

all similarity measures (to perform this experiment and the following experiments, we only activated the

personal module as that was the focus of these experiences) and then run the system with the query

“Como te chamas?” (“What is your name?”). With that configuration, the system config file has the

following appearance:

system config2.xml

1 <system >

2 <query -agent -label -match >False </query -agent -label -match >

3 <answer -classification -impersonal >False </answer -classification -impersonal >

4 <answer -classification -personal

5 sim_measure='tfidf_normal|tfidf_embedding|mean_embedding|lsi'>True

6 </answer -classification -personal >

7 <query -answer -label -match >False </query -answer -label -match >

8 </system >

All combinations of similarity measures were then tried and are represented in Figure 5.2. Note

64

that in this chart the agents “Cheat”, “Talkpedia” and “SSS AMA” are not included as they returned an

utterance that indicated that they did not know the answer and thus were not scored by this module. This

chart shows that the system allows for different configurations of measures quite easily; it also shows

that TF-IDF + cosine returns a score that is much lower than all the other four measures. However, as it

is the fastest and it is consistent in the result that it deems as the most similar with the other measures,

it is used as the default.

Figure 5.2: Variation of scores by varying the similarity measure of the personal answers module on the system
config file.

5.5 Evaluating the Answer Ranking Process

One of the most important jobs of Chattuga is its ability to detect, among a set of agent’s answers, the

one or ones that are more relevant to a query. In information retrieval, it is studied the retrieval of relevant

documents to a given query. These techniques are mostly used in search engines to order the results

found according to their relevance. As the system discussed in this thesis has an analogous function

in the sense that it intends to order its results (answers) according to their relevance, to evaluate the

Chattuga’s answer ranking capabilities, we have decided to compute the Mean Reciprocal Rank [44]

which is one of the metrics used in the field of information retrieval to evaluate a system’s effectiveness

in ordering the retrieved documents according to their relevance. This metric will help us establish the

system’s performance benchmark. As we do not have a corpus that establishes the relevance of each

answer to each query inserted in the system, we have asked three users to rank the answers given to

the system according to a scale of 1 to 5. We have randomly selected 100 queries from various sources.

The queries that we used to perform the evaluation of Chattuga’s answer ranking process were randomly

sampled queries of the following types:

65

• 25 impersonal corpus questions;

• 25 personal corpus questions;

• 10 Edgar’s corpus questions;

• 10 AMA’s corpus questions;

• 10 queries from the non-questions corpus;

• 5 queries such as “bom dia” (“good morning”), “boa tarde” (“good afternoon”), etc.

• 5 yes/no corpus questions;

• 5 or questions;

• 5 list questions.

We then took these ratings given by the annotators as the correct ones (to calculate the Mean Reciprocal

Rank) and calculated the Mean Reciprocal Rank between the rating of each annotator and the rating

the system gave to each answer2. If there is more than one answer graded with a one, we just compute

the reciprocal rank for the first one to be rated with a one. The results for each annotator are presented

in Table 5.3. Note that the labels of expertise of:

• Talkpedia are “QUESTION” and “IMPERSONAL”;

• Edgar are “QUESTION”, “PERSONAL, IMPERSONAL”, and all Monserrate’s labels;

• SSS are “QUESTION” and “PERSONAL”;

• SSS AMA are “QUESTION”, “IMPERSONAL” and all AMA’s labels;

• Cheat are “OR QUESTION” and “YN QUESTION”.

From the answers selected as the most relevant for each query out of the 100, some were answers

stating that the chatbot was unable to find an answer to that particular query. Examples of such answers

are “Não sei responder a isso” (“I do not know how to answer that”), “Essa não é a minha área de

especialidade” (“That is not my area of expertise”), among others. In Table 5.4 we present the number

of queries to which such answers were deemed more relevant per annotator.

2We had to keep in mind some details when calculating the mean reciprocal rank. As both the system and the annotators could
consider two or more answers as the best (thus, giving the rate 1) we had to make a decision as to what to do in those cases.
One possibility was to use the Total Reciprocal Rank (TRR) formula which is mentioned in [45]. This formula is proposed to be
used in these cases where multiple results are relevant and is computed by summing all of the reciprocal ranks of all the answers
relevant (which could result in having the sum of the maximum of 500 reciprocal ranks which would be divided by 100 all the
same). Another possibility we considered was to compute the average per query on these cases (for example: if three answers
are deemed relevant, then we compute the reciprocal rank for each one and then we sum the three results and divide that sum by
three). In the end, we have decided to compute the Mean Reciprocal Rank in the regular way.

66

Table 5.3: Mean Reciprocal Rank results (approximated) for each annotator.

MRR

Annotator 1 68.2%

Annotator 2 63.1%

Annotator 3 51.0%

Table 5.4: Number of queries to which no satisfactory answer was found among the set of answers per annotator
and Chattuga.

Number of queries to
which the most relevant answer
was a discard answer

Annotator 1 46

Annotator 2 57

Annotator 3 62

Chattuga 65

These results show that for half (or more) the queries selected, both the annotators and the sys-

tem were unable to find a satisfactory answer among the ones returned by the different conversational

agents inserted in the system. The answers in which there was more disagreement between annotators

and system were the ones provided by Talkpedia and by the Cheat agent. This is due to the fact that

in the agents config file, Talkpedia was given a big score in the expertise of the labels “IMPERSONAL”

and “QUESTION”. This agent, however, was not able to deliver any viable answer to any of the queries.

Regarding the Cheat agent, due to the fact that it is based in very simple rules without “artificial intelli-

gence”, it was given a low score in its expertise on the labels “OR QUESTION” and “YN QUESTION”

causing it to have a low score against the more intelligent agents. From the queries used to perform this

evaluation, we extracted some examples to illustrate this inadequacy in the trade-off of scores/agent.

These are presented next, in Table 5.5.

67

Table 5.5: Example of a query used in the evaluation with the answers and respective rank and score.

Query: Acreditas em astrologia? Segues o teu horóscopo do zodı́aco?

Agent Answers A1
rank

A2
rank

A3
rank

Chattuga
rank

Chattuga
score

SSS Não sei responder a isso 3 3 3 1 1.40

Talkpedia
Posso dizer que no results found for:
Acreditas em astrologia?
Segues o teu horóscopo do zodı́aco

4 4 5 2 1.00

Cheat Não. 1 1 1 3 0.88

Edgar Podia repetir, por favor? 2 2 4 4 0.42

SSS AMA Não sei responder a isso 3 3 3 5 0.20

In Table 5.6 we can see the scores that generated the Chattuga ranks for each question. These

scores stem from two modules of answer classification. The agent-query label match module and the

personal answers module. As can be seen, in each column there are the scores for each module. In

the column of the query-agent label match there is a score for each query label, which is 0 if the agent

is not an expert in that label. Both SSS and Talkpedia only received the scores of the first module due

to the fact that they both did not find any answer (thus, they were only awarded for their expertise). In

Table 5.6, it is presented a breakdown of the scores shown in Table 5.5, in the column of the scores (the

values in that column are a sum of the scores in the following table). The modules that did not contribute

to the final score were omitted from this Table (meaning they returned a score of 0.0).

Table 5.6: This Table contains the scores breakdown of the scores awarded to each agent’s answer.

Query-Agent Label Match Module Personal
Answers Module Total

QUESTION PERSONAL YN QUESTION ENTY:other

SSS 0.70 0.70 0.00 0.00 0.00 1.40

Talkpedia 1.00 0.00 0.00 0.00 0.00 1.00

Cheat 0.00 0.00 0.80 0.00 0.08 0.88

Edgar 0.20 0.20 0.00 0.00 0.02 0.42

SSS AMA 0.20 0.00 0.00 0.00 0.00 0.20

As can be seen in the Table, both SSS and Talkpedia appear before the Cheat agent which had

the best answer according to all annotators, based on their expertise score. However, the module of

68

personal answers, deemed the answer given by the Cheat agent the best one.

5.6 Discussion

With this evaluation, we have concluded that Chattuga has a strong query classification module due

to the high accuracy achieved in all the main corpora. Some of these accuracies are quite high which

can be caused by two factors: either the amount of data is insufficient and with low diversity causing

the algorithm to easily learn the patterns of the data or it is not very hard to distinguish the utterances

of the different labels for a computer algorithm. In what concerns the plug and play module, there

are some difficulties inherent to adding a new agent and corpora but these cannot be surpassed as

they are related to the fact that systems and corpora are built in different ways and, to be integrated

in another, some adaptations have to be made. However, it did not took a great implementation effort

to make such modifications and after these were made, the only thing that remained to be done was

to add some configurations in the corpora and agent’s configuration files. Lastly, the answer ranking

module evaluation shows that, when the agents can provide an answer, the ranking process behaves as

expected by giving the right scores to the right answer. Namely for Edgar and SSS AMA, only a portion of

their score came from the module that was based on the baseline, the query-agent label match module,

the rest of the score came from the other modules which took as input the agents answers. A negative

point that this system has is the time it takes to run. It takes approximately 20 seconds per query (with

the default settings) which is not very fluid when having a conversation. This happens because every

time a query is inserted, the agents have to be initialized which takes a long time to run even with parallel

computing which was used. This time problem is related to the fact that the agents are written in another

programming language and they have to be called as if it were in the command line – which means that

at each query a new instance of an agent is created.

69

70

6
Conclusions and Future Work

Contents

6.1 Summary of Dissertation . 73

6.2 Contributions . 73

6.3 Limitations . 73

6.4 Future Work . 74

71

72

6.1 Summary of Dissertation

In this work, we proposed a different approach to multi-agent query answering where it is assumed that

all agents can, potentially, answer all queries. To build such an architecture, the system is composed of

a set of modules that contribute to a final choice on the answer ranking process. Additionally, this archi-

tecture is plug and play in regard to (a) external components: more agents and corpora can be smoothly

integrated in the system; and (b) internal components: specific system modules to rank answers can be

disabled. The modules proposed and used in this work are (a) the query classification module which pro-

vides the labels for the user inserted query; (b) the answer ranking modules: one that takes into account

the agent’s expertise; one that does a classification of answers to queries labelled as “IMPERSONAL”;

one that uses similarity measures to compare answers to queries labelled as “PERSONAL” to a corpus

of personal answers; lastly, one that uses machine learning to classify answers with labels and matches

it to the queries labels; and (c) the plug and play module which has three sub-modules: agents, corpora

and system. These modules all provide a score which is the basis for the answer ranking decision.

6.2 Contributions

The contributions that arose from this dissertation were: a multi-agent question-answering system for

the Portuguese language, which can be used with new agents and corpora in the future without it taking

much implementation effort by the use of the plug and play module; a proposal of classification and

evaluation for such systems; a proposal of answer ranking without much data; a system tested with two

specialized agents; lastly, a paper submitted, accepted, presented and published in the context of a

Portuguese conference that took place in June in Coimbra (SLATE’19), in which context the modified

TalKit corpora was presented.

6.3 Limitations

The biggest limitation that was found in the process of implementing this system was the lack of good

agents. Most queries were answered unsuccessfully. Especially queries that were more generic.

Queries of the domain of AMA or Monserrate were more successful. Another problem is the lack of

data available for the Portuguese language. There is especially a lack of corpora that contains pairs of

query/answer which would enrich this work.

73

6.4 Future Work

One thing that could be done in the future that can benefit a lot this work is to incorporate the Ubuntu

corpus strategy (Section 2.5) as a module in this project. For this, in the context of this work, a corpus has

already been built that can be used for that purpose, containing one right answer and ten wrong answers.

What remains to be done is to apply the neural networks to that corpus so that a match between query

and answer can be done. Another interesting addition that could be done to Chattuga is to integrate a

reinforcement learning1 module that adjusts the agents expertise scores dynamically since one of the

limitations that was found on the course of this work were the agents inability to answer queries to which

they had expertise on, whilst others that were supposed to have less expertise performed better. With

this module, this problem can be mitigated and agent’s score can be more informative for the system’s

answer ranking process. Another important future work is to wrap the agents that are built in other

programming languages in a more time efficient fashion, since the one used in the context of this work

implied the instantiation of the agent every time a query was inserted which, ultimately, weighed in the

running time of the program.

1A technique where a conversational agent learns from user input.

74

Bibliography

[1] C. Dias, “TalKit - Desenvolvimento de um Sistema de Diálogo para Português,” Master’s thesis,

Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, 2015.

[2] J. Silva, L. Coheur, A. C. Mendes, and A. Wichert, “From symbolic to sub-symbolic information in

question classification,” Artificial Intelligence Review, vol. 35, no. 2, pp. 137–154, 2011.

[3] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of the 19th International

Conference on Computational Linguistics - Volume 1, ser. COLING ’02. Stroudsburg,

PA, USA: Association for Computational Linguistics, 2002, pp. 1–7. [Online]. Available:

https://doi.org/10.3115/1072228.1072378

[4] M. G. Fernandes, C. Dias, and L. Coheur, “Distinguishing Different Classes of Utterances

- the UC-PT Corpus,” in 8th Symposium on Languages, Applications and Technologies

(SLATE 2019), ser. OpenAccess Series in Informatics (OASIcs), R. Rodrigues, J. Janousek,

L. Ferreira, L. Coheur, F. Batista, and H. G. Oliveira, Eds., vol. 74. Dagstuhl, Germany:

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, pp. 14:1–14:8. [Online]. Available:

http://drops.dagstuhl.de/opus/volltexte/2019/10881

[5] D. Moldovan, M. Paşca, S. Harabagiu, and M. Surdeanu, “Performance issues and error analysis

in an open-domain question answering system,” ACM Trans. Inf. Syst., vol. 21, no. 2, pp. 133–154,

Apr. 2003. [Online]. Available: http://doi.acm.org/10.1145/763693.763694

[6] E. Hovy, L. Gerber, U. Hermjakob, C.-Y. Lin, and D. Ravichandran, “Toward semantics-based

answer pinpointing,” in Proceedings of the First International Conference on Human Language

Technology Research, 2001. [Online]. Available: http://aclweb.org/anthology/H01-1069

[7] B. Loni, “A survey of state-of-the-art methods on question classification,” Delft University of Tech-

nology, Tech. Rep., 2011.

[8] M. Pota, A. Fuggi, M. Esposito, and G. D. Pietro, “Extracting compact sets of features for question

classification in cognitive systems: A comparative study,” in 2015 10th International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Nov 2015, pp. 551–556.

75

https://doi.org/10.3115/1072228.1072378
http://drops.dagstuhl.de/opus/volltexte/2019/10881
http://doi.acm.org/10.1145/763693.763694
http://aclweb.org/anthology/H01-1069

[9] M. Pota, M. Esposito, and G. De Pietro, A Forward-Selection Algorithm for SVM-Based Question

Classification in Cognitive Systems, 06 2016, pp. 587–598.

[10] G. Feng, K. Xiong, Y. Tang, A. Cui, J. Bai, H. Li, Q. Yang, and M. Li, “Question classification

by approximating semantics,” in Proceedings of the 24th International Conference on World Wide

Web, ser. WWW ’15 Companion. New York, NY, USA: ACM, 2015, pp. 407–417. [Online].

Available: http://doi.acm.org/10.1145/2740908.2745403

[11] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Association for Computational Linguistics, 2014, pp. 1746–1751. [Online]. Available: http:

//aclweb.org/anthology/D14-1181

[12] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler,

“Skip-thought vectors,” in Advances in Neural Information Processing Systems 28, C. Cortes, N. D.

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp.

3294–3302. [Online]. Available: http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf

[13] Â. Costa, T. Luı́s, J. Ribeiro, A. C. Mendes, and L. Coheur, “An english-portuguese

parallel corpus of questions: translation guidelines and application in smt,” in Proceedings

of the Eighth International Conference on Language Resources and Evaluation (LREC-

2012). European Language Resources Association (ELRA), 2012. [Online]. Available:

http://www.lrec-conf.org/proceedings/lrec2012/pdf/356 Paper.pdf

[14] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, vol. 38, no. 11, pp. 39–41,

Nov. 1995. [Online]. Available: http://doi.acm.org/10.1145/219717.219748

[15] H. T. Madabushi and M. Lee, “High Accuracy Rule-based Question Classification using Question

Syntax and Semantics,” no. 2002, pp. 1220–1230, 2016.

[16] H. T. Madabushi, M. Buhagiar, and M. Lee, “UoB-UK at SemEval-2016 Task 1 : A Flexible and

Extendable System for Semantic Text Similarity using Types , Surprise and Phrase Linking,” vol. 0,

pp. 680–685, 2016.

[17] N. Van-Tu and L. Anh-Cuong, “Improving question classification by feature extraction and selection,”

Indian Journal of Science and Technology, vol. 9, no. 17, 2016.

[18] M. Pereira, “ Just.chat - dos sistemas de pergunta/resposta para os chatbots,” Master’s thesis,

Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, 2015.

[19] D. Ameixa, “Say Something Smart - ensinando um chatbot a responder com base em legendas de

filmes,” Master’s thesis, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, 2015.

76

http://doi.acm.org/10.1145/2740908.2745403
http://aclweb.org/anthology/D14-1181
http://aclweb.org/anthology/D14-1181
http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/356_Paper.pdf
http://doi.acm.org/10.1145/219717.219748

[20] D. C. Uthus and D. W. Aha, “The ubuntu chat corpus for multiparticipant chat analysis,” in 2013

AAAI Spring Symposium Series, 2013.

[21] R. Lowe, N. Pow, I. Serban, and J. Pineau, “The ubuntu dialogue corpus: A large dataset for

research in unstructured multi-turn dialogue systems,” CoRR, vol. abs/1506.08909, 2015. [Online].

Available: http://arxiv.org/abs/1506.08909

[22] R. T. Lowe, N. Pow, I. V. Serban, L. Charlin, C.-W. Liu, and J. Pineau, “Training end-to-end dialogue

systems with the ubuntu dialogue corpus,” Dialogue & Discourse, vol. 8, no. 1, pp. 31–65, 2017.

[23] R. Baeza-Yates, B. d. A. N. Ribeiro et al., Modern information retrieval. New York: ACM Press;

Harlow, England: Addison-Wesley,, 2011.

[24] W. H. Gomaa and A. A. Fahmy, “A survey of text similarity approaches,” International Journal of

Computer Applications, vol. 68, no. 13, pp. 13–18, 2013.

[25] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embeddings to document distances,”

in International conference on machine learning, 2015, pp. 957–966.

[26] J. Mueller and A. Thyagarajan, “Siamese recurrent architectures for learning sentence similarity,” in

Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[27] Z. Wang, H. Mi, and A. Ittycheriah, “Sentence similarity learning by lexical decomposition and

composition,” arXiv preprint arXiv:1602.07019, 2016.

[28] H. He, K. Gimpel, and J. Lin, “Multi-perspective sentence similarity modeling with convolutional neu-

ral networks,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, 2015, pp. 1576–1586.

[29] P. Mota, “LUP: A Language Understanding Platform,” Master’s thesis, Instituto Superior Técnico,

Av. Rovisco Pais, 1049-001 Lisboa, 2015.

[30] P. Fialho, L. Coheur, S. Curto, P. Cláudio, Â. Costa, A. Abad, H. Meinedo, and I. Trancoso,

“Meet edgar, a tutoring agent at monserrate,” in Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics: System Demonstrations. Association for Computational

Linguistics, 2013, pp. 61–66. [Online]. Available: http://aclweb.org/anthology/P13-4011

[31] J. Santos, “Say Something Smart 3.0:A Multi-Agent Chatbot in Open Domain (Under Preparation),”

Master’s thesis, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, 2019.

[32] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet

physics doklady, vol. 10, no. 8, 1966, pp. 707–710.

77

http://arxiv.org/abs/1506.08909
http://aclweb.org/anthology/P13-4011

[33] B. Aarts, Oxford Modern English Grammar. Oxford University Press, 2011.

[34] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Prettenhofer,

A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for

machine learning software: experiences from the scikit-learn project,” in ECML PKDD Workshop:

Languages for Data Mining and Machine Learning, 2013, pp. 108–122.

[35] B. Magnini, A. Vallin, C. Ayache, G. Erbach, A. Peñas, M. de Rijke, P. Rocha, K. Simov, and R. Sut-

cliffe, “Overview of the clef 2004 multilingual question answering track,” in Multilingual Information

Access for Text, Speech and Images, C. Peters, P. Clough, J. Gonzalo, G. J. F. Jones, M. Kluck,

and B. Magnini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 371–391.

[36] D. Ameixa, L. Coheur, and R. A. Redol, “From subtitles to human interactions: introducing the

subtle corpus,” Tech. rep., INESC-ID (November 2014), Tech. Rep., 2013.

[37] J. Silva, “QA+MLWikipedia&Google,” Master’s thesis, Instituto Superior Técnico, Av. Rovisco Pais,

1049-001 Lisboa, 2009.

[38] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, 1st ed. O’Reilly Media,

Inc., 2009.

[39] W. McKinney, “Data structures for statistical computing in python,” in Proceedings of the 9th Python

in Science Conference, S. van der Walt and J. Millman, Eds., 2010, pp. 51 – 56.

[40] C. Freitas, P. Rocha, and E. Bick, “A new world in floresta sinta(c)tica - the portuguese treebank,”

Calidoscópio, vol. 6, pp. 142–148, 09 2008.

[41] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large Corpora,” in Pro-

ceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. Valletta, Malta:

ELRA, May 2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[42] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding with Bloom embeddings,

convolutional neural networks and incremental parsing,” 2017, to appear.

[43] T. E. Oliphant, A guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

[44] E. M. Voorhees, “The trec-8 question answering track report,” in In Proceedings of TREC-8, 1999,

pp. 77–82.

[45] D. R. Radev, H. Qi, H. Wu, and W. Fan, “Evaluating web-based question answering systems.” in

LREC, 2002.

78

http://is.muni.cz/publication/884893/en

A
Li & Roth Additional Statistics

79

Table A.1: Number of questions per fine category in the Li & Roth corpus.

Coarse Category Fine Category Training Set Testing Set Training + Testing Set

ABBREVIATION abbreviation 16 1 17
expansion 70 8 78

ENTITY

animal 112 16 128
body 16 2 18
color 40 10 50
creative 207 0 207
currency 4 6 10
diseases and medicine 103 2 105
event 56 2 58
food 103 4 107
instrument 10 1 11
language 16 2 18
letter 9 0 9
other 217 12 229
plant 13 5 18
product 42 4 46
religion 4 0 4
sport 62 1 63
substance 41 15 56
symbol 11 0 11
technique 38 1 39
term 93 7 100
vehicle 27 4 31
word 26 0 26

DESCRIPTION

definition 421 123 544
description 274 7 281
manner 276 2 278
reason 191 6 197

HUMAN

group 189 6 195
individual 962 55 1017
title 25 1 26
description 47 3 50

LOCATION

city 129 18 147
country 155 3 158
mountain 21 3 24
other 464 50 514
state 66 7 73

NUMERIC

code 9 0 9
count 363 9 372
date 218 47 265
distance 34 16 50
money 71 3 74
order 6 0 6
other 52 12 64
period 75 8 83
percent 27 3 30
speed 9 6 15
temperature 8 5 13
size 13 0 13
weight 11 4 15

80

Table A.2: Number of questions per coarse category in the Li & Roth corpus.

Coarse Category Training Set Testing Set Training + Testing Set

ABBREVIATION 86 9 95

ENTITY 1250 94 1344

DESCRIPTION 1162 138 1300

HUMAN 1223 65 1288

LOCATION 835 81 916

NUMERIC 896 113 1009

81

82

83

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Project Overview

	2 Related Work
	2.1 Introduction
	2.2 Similar Architectures
	2.2.1 TalKit
	2.2.2 Microsoft QnA Maker

	2.3 Classification
	2.3.1 Taxonomies
	2.3.2 Rule Based Approaches
	2.3.3 Machine Learning Approaches

	2.4 Answer Search in TalKit
	2.5 Query Answer Matching
	2.6 Similarity Measures
	2.7 Agents

	3 Corpora
	3.1 Introduction
	3.2 TalKit Corpora
	3.2.1 Question vs. Non-Question corpus
	3.2.1.A Questions
	3.2.1.B Non-questions
	3.2.1.C Some Statistics

	3.2.2 Personal vs. Impersonal Questions
	3.2.2.A Personal Questions
	3.2.2.B Impersonal Questions
	3.2.2.C Some Statistics

	3.2.3 Yes/No Questions vs. Other
	3.2.3.A Yes/No Questions
	3.2.3.B Other
	3.2.3.C Some Statistics

	3.2.4 Inter-annotator Agreement

	3.3 Li & Roth Corpus
	3.4 Multieight-04 Corpus
	3.5 SubTle Corpus

	4 Chattuga
	4.1 Introduction
	4.2 Chattuga Overview
	4.3 Baseline
	4.4 Plug and Play Module
	4.4.1 Agent Plug and Play Module
	4.4.2 Corpora Plug and Play Module
	4.4.3 System Plug and Play Module

	4.5 Classification Module
	4.5.1 Query Classification
	4.5.2 Answer Classification
	4.5.2.A Query Labels/Agent Labels Matching Module
	4.5.2.B Answer Labels/Query Labels Matching Module
	4.5.2.C Impersonal Answers Module
	4.5.2.D Personal Answers Module

	4.6 Coordinator's answer ranking decision

	5 Evaluation
	5.1 Introduction
	5.2 Experimental Setup
	5.2.1 Scikit-learn
	5.2.2 Pandas
	5.2.3 NLTK
	5.2.4 Gensim
	5.2.5 Spacy
	5.2.6 Numpy

	5.3 Query Classification
	5.4 Evaluating the Plug and Play Module
	5.4.1 Evaluating the Agents Plug and Play Module
	5.4.2 Evaluating the Corpora Plug and Play Module
	5.4.3 Evaluating the System Plug and Play Module

	5.5 Evaluating the Answer Ranking Process
	5.6 Discussion

	6 Conclusions and Future Work
	6.1 Summary of Dissertation
	6.2 Contributions
	6.3 Limitations
	6.4 Future Work

	Bibliography
	Appendix A

	A Li & Roth Additional Statistics
	Appendix B

