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Abstract

Most works on question answering systems follow a similar approach: they start by gathering data, which
is then pre-processed, classified and used in a system which replies queries in the domain of that data. In this
work, we propose a plug and play (for the addition of corpora and agents and for the control of system modules)
“collaborative” chatbot framework for the Portuguese language that has as basis the assumption that all agents
can, potentially, answer all questions. We study classification approaches and similar systems and we base our
architecture on that study. The system built in this work, receives a query from a user and redirects it to all
chatbots integrated within it. These chatbots all provide their suggested answers to the user query. When the
program finishes gathering all these answers it evaluates the agent’s answers as well as their expertise in the domain
of the question and combines that with the classification of the user’s query intent to perform an answer ranking
process. In both classification processes, both Machine Learning and rule-based approaches are combined. The
evaluation of the program developed in the scope of this work is made with the metrics of Accuracy and Mean
Reciprocal Rank, where the first is used for the query classification evaluation and the second is used for the
system’s answer ranking decision evaluation. Results show that our system has a strong classification component
both for questions and answers and also that it is good at identifying specialist agents.
Keywords: Question Classification; Question and Answering systems; Conversational Agents; Machine Learning;
Rule Based.

1. Introduction

This document is about a work named ChaTuga for the
Portuguese language in the field of artificial intelligence,
more specifically, in the area of Natural Language Pro-
cessing (NLP) that intends to present a new plug and
play architecture for a chatbot (also known as conversa-
tional agent) in which we will use several other conversa-
tional agents. Next we will present the motivation (sec-
tion 1.1), objectives (section 1.2) and project overview
(section 1.3) for this document.

1.1. Motivation

With the exponential increase in internet services, it has
become clear that online support is very important for
costumer satisfaction. One approach to this is to use
conversational agents who can answer client’s questions
about a given service. There are chatbots that do this for
a strict domain. However, for an online organization that
has many different services, it would be interesting to
have many chatbots: one for each service. For instance,
an online retailer could have an agent that only knows
about payment methods, other agent that has knowledge
of technological products, another one that is a special-
ist in legal procedures, among others. Each have its area
of expertise and they can work in parallel in providing
online support for costumers. Not only is such an ar-
chitecture useful for company’s needs: a website or ap-
plication with recreational and/or educational purposes
could use such an architecture of multi-agents to answer
user’s questions about a multitude of subjects such as
movies, personal matters, science, space, among others.

One work that already integrates several conversational
agents is described in [7]. However, this work does not
take into account the fact that there may be some inter-
section between what two conversational agents can an-
swer. For instance: an agent that retrieves answers from
Wikipedia 1 can answer factoid questions, and an agent
that retrieves answers from IMDB 2 can answer ques-
tions about cinema. Both can answer questions about
cinema, although the agent that uses IMDB can poten-
tially do it better since it is its domain of expertise. In
this work we will tackle this issue by assuming that “all
agents can potentially answer all questions”. Then, a
Coordinator will decide how to rank their answers based
on their topics of expertise.

1.2. Objectives
For this thesis we have three main objectives: to have a
system for the Portuguese language that works in a
plug and play fashion in the way it adds agents and
corpora and in the way it controls the modules of the
system, and has a Coordinator controlling the different
agents.

The focus of this work will not be on building conver-
sational agents of different domains (those are already
built and then integrated in our system), but rather on
understanding a user’s intention when he introduces a
query in order to understand which answer among the
ones returned by the various conversational agents is
the most suitable. To perceive which answer is more

1https://www.wikipedia.org/ (Last accessed on: 25/11/2018).
2https://www.imdb.com/ (Last accessed on: 25/11/2018).
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suitable to the user’s query, we are going to use ma-
chine learning techniques, similarity techniques and rule
based techniques. First, we classify the query with ma-
chine learning modules trained in the corpora that is
added to the system using the plug and play module.
The plug and play module also provides the system with
conversational agents which will have specified their ar-
eas of expertise. With the classification of the query, we
can compare it with the area of expertise of the agents.
Secondly, depending on whether the query is personal
or impersonal (information we obtain from the classifi-
cation process), we use similarity measures, rule based
approaches and/or machine learning techniques to de-
termine to which extent the answers are close to the
query. Lastly, if a corpora of answers is added through
the plug and play module, we use machine learning tech-
niques to classify the agent’s answers and compare the
classification of the answer with the classification of the
query. The plug and play module also allows a control
over which modules are used to rank the answers.

To ensure a coordination of the different techniques
(machine learning techniques, similarity techniques and
rule based techniques), we require an agent that is capa-
ble of retrieving from the combination of all these mod-
els, the ranking of answers that, according to the tech-
niques, is the most correct one. This agent will be the
Coordinator that was previously mentioned.

1.3. Project Overview
This work is divided as follows: , in Section 2 we de-
scribe some agents that are integrated in our system.
Section 3 describes the corpora that we have used in
this work to perform the training of the classification
models. Section4 provides a guide through the imple-
mentation of this project. Section 5 explains what we
have done to evaluate our work and the results of that
evaluation. Lastly, Section 6 presents our conclusions.

2. Agents
The purpose of our work is not to build agents that an-
swer questions, but rather to select an answer from those
agents. There are already some agents developed in In-
stituto Superior Técnico (IST) that we can use in our
work. Some of these agents were also used in TalKit.
They are Talkpedia [14], Say Something Smart (SSS)
[2], and Edgar [9].

• Talkpedia uses Wikipedia to retrieve answers to
factoid questions adding a template to it, so it pro-
vides a complete answer instead of just pieces of
information.

• Say Something Smart is a system that uses movie
subtitles to to reply to an user interaction. In this
work, the version of SSS used is the one built in a
simultaneous master thesis to this work [16].

• Say Something Smart AMA is a system that
uses the SSS agent framework with a corpus built
with the Agência para a Modernização Administra-
tiva (AMA)34;

3https://www.ama.gov.pt/ (Last accessed on 02/01/2019).
4A public Portuguese institution that intends to bring some

• Edgar is a virtual museum assistant in Palácio de
Monserrate (Monserrate Palace) that has expertise
about the palace. Edgar was at Palácio de Monser-
rate answering questions that users had about the
palace.

• Cheat is an agent built in the context of this work
and with some similarities to TalKit’s rule based
approach, that uses rules to answer queries. It
answers salutations with the equivalent salutation
(good morning with good morning, hello with hi
or hello, etc.); answers or questions by replying the
word after the or in the query; answers yes/no ques-
tions with yes, no or maybe. If it is none of the above
it says that it is not its area of expertise.

3. Corpora
In this section, we describe some of the corpora that we
used to perform the classification required for our work.
We start by addressing the TalKit Corpora (Section 3.1),
we proceed to talk about the Li & Roth corpus (Section
3.2), next we describe the Multieight corpus (Section
3.3) and we finish by talking about the SubTle corpus
(Section 3.4).

3.1. TalKit Corpora
The TalKit corpora is composed of: the Question
vs. Non-Question corpus which aims to classify an
utterance as “question” if it is a question and as
“NON QUESTION” otherwise (Section 3.1.1); the Per-
sonal vs. Impersonal corpus which aims to distinguish
personal questions from impersonal questions using the
labels “PERSONAL” and “IMPERSONAL” (Section
3.1.2); finally, the Yes/No vs. Other corpus that uses
the label “YN QUESTION” when a question only re-
quires a yes/no/maybe answer and the label “OTHER”
otherwise (Section 3.1.3). The sentences in all the three
corpora came from different sources, namely:

• from the translation into Portuguese [6] of the
widely used Li & Roth corpus [12];

• from a manual Portuguese translation of parts of
the corpora of a chatbot called Just.Chat [15];

• from the B-Subtle corpus, a corpus built from
movies Subtitles, as described in [2].

In addition, some sentences were gathered from the web,
created by the author of TalKit or suggested by Técnico
Students at Taguspark, in a Natural Language course.

The proposed use of this corpora, is to use the Personal
vs. Impersonal and the Yes/No vs. other corpus only if
the utterance is first classified with the label “QUES-
TION” using the Question vs. Non-Question corpus.

In the context of this work, some corrections were
made. The main corrections that were made were on
the level of structure of sentences, grammar, ortographi-
cal mistakes, fixing incorrect labels, etc. The magnitude
of the changes amounted to a Levenshtein[11] distance
of 2306 for the question vs. non question corpus (sec-
tion 3.1.1); 4455 for the personal vs. impersonal corpus

modernization to the administrative processes.
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(section 3.1.2); and 78 for the yes/no vs. other corpus
(section 3.1.3). These corrections and analysis of the cor-
pora resulted in a paper [8] that was published on July
2019.

In the following we describe each one of the three cor-
pora.

3.1.1 Question vs. Non-Question corpus

In this Section we give a brief description of the Question
vs. Non-question corpus, namely, the different formula-
tions of questions that were gathered, as well as some
examples of the non-questions.

Questions :

Several types of questions were taken into consider-
ation. Besides the usual direct questions, we also gave
some room to imperative sentences5 that constitute a
request for information.

Regarding direct questions, the corpus contains sev-
eral examples of the so called “Wh-questions”, that is,
questions that contain the keywords “quem” (“who”),
“onde” (“where”), “porquê, porque” (“why”), etc. Ex-
amples of such questions can be found on [8]. It was
also included in the corpus wh-questions that present a
possibility, like an imagined scenario, and then inquire
something with that scenario in mind (e.g., “Se o mundo
inteiro estivesse ouvindo, que dirias?” – “If the whole
world was listening, what would you say?”). In addition,
questions whose answer can be a simple “Sim” (“Yes”)
or “Não” (“No”), including questions that are only one
word (e.g., “Jantar?” – “Dinner?”) were also addressed.
Moreover, questions that contain two possibilities of an-
swer separated by the connector “or” (choice questions),
were also added to the corpus (e.g., “Do que gostas mais:
factos ou ficção?” – “What do you like more: facts or
fiction?”).

In what concerns imperative sentences that constitute
a request for information, or ask for a description or
definition of something, several cases were included in
the corpus. Some examples can be found on [8].

Finally, some cases where several questions are formu-
lated in the same entry were also added. The reason
for this is that sometimes people ask several questions
related to each other in a row (e.g., “Se tivesses de escol-
her, qual animal de uma quinta gostarias ser? Porquê?
Podes fazer o som?” – “If you had to pick, which farm
animal would you like to be? Why? Can you do its
sound?”).

In summary, the utterances labeled as questions en-
compass: choice questions, wh-questions, yes/no ques-
tions and imperative sentences.

Non-questions The non-questions part of the corpus
is constituted of sentences such as:

• “A ideia é os dez formarem um ćırculo de protecção
em torno do possúıdo.” – “The idea is that the ten
form a circle around the possessed.”;

5Sentences that are an order, an instruction or a request to do
something [1].

• “O David precisa de ir ao lançamento de um filme.”
– “David needs to go to a movie launch.”;

Some statistics about this corpus can be found on [8].

3.1.2 Personal vs. Impersonal Questions
In this Section we explain what can be found in the Per-
sonal vs. Impersonal corpus.

Personal Questions In European Portuguese, the
way personal questions are formulated depend on who
we are talking to. Hierarchy and age difference, among
others, will lead to more formal/informal conversations.
When two people engage in an informal conversation,
the second person of the singular is usually used; other-
wise the third person of the singular is employed. For
instance, if we ask a friend if he likes to read, we would
ask “Gostas de ler?” or “Tu gostas de ler?”, but if we
asked a person we do not know or has one of the afore-
mentioned differences, we would ask “Gosta de ler?” or
“Você gosta de ler?” (being the latter in a more Brazil-
ian Portuguese style). In the English language all these
questions translate to “Do you like to read?”. In the
corpus for personal and impersonal questions these cases
were taken into account. Examples are (the first one is
an example of formal speech, and the second of informal
speech):

• “Diga algo que fez em criança que os seus pais não
sabem.” – “Say something that you did as a child
that your parents do not know of.”;

• “Diz 1 coisa que desejavas mudar em ti.” – “Say 1
thing that you wish to change in yourself.”.

Other examples of personal questions can be found
at [8]. In conclusion, personal questions are questions
about the interlocutor’s personal matters, such as his
opinions, feelings, memories, home city, friends, among
others. If the questions are about the personal life of a
person that is not an acquaintance of the interlocutor
and if that question is not asking for an opinion, then it
is not personal.

Impersonal Questions As for the impersonal ques-
tions, they are mostly factoid questions extracted from
the aforementioned translation of Li & Roth corpus for
Portuguese. Some examples include:

• “O que faz com que um tornado gire?” – “What
makes a tornado turn?”;

• “Quais são os dois páıses cuja costa faz fronteira
com a Báıa de Biscaia?” – “What two countries’
coastlines border the Bay of Biscay?”;

Some statistics about this corpus can be found on [8]

3.1.3 Yes/No Questions vs. Other
In this Section we explain what are Yes/No questions
and we provide some examples of the questions of this
kind that can be found in this corpus. We also present
some examples of the questions that cannot be answered
with a simple “yes”, “no” or “maybe”.
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Yes/No Questions Examples of Yes/No questions
are: “Lês muito?” (“Do you read a lot?”) and “Gostas
de dançar?” (“Do you like to dance?”). Notice that,
in the set of Yes/No questions, one can find questions
constituted of one single word (e.g., “Pizza?”).

Other As to the questions labeled as other, they are
similar to the ones presented in Section 3.1.1, excluding
the Yes/No ones. Under the label “other” we can find
questions such as ”Wh-questions”, imperative sentences,
among others. Some examples (extracted from the cor-
pus) are: “Indique um pesticida.” (“State a pesticide.”)
and “Em que cidade se encontra a Baśılica de São Pe-
dro?” (“In what city is Saint Peter’s basilica located?”).

Some statistics about this corpus can be found on [8].

3.2. Li & Roth Corpus
The Li & Roth corpus [12] named UIUC dataset is a
widely known corpus of factoid questions that contains
5500 questions manually labeled according to the tax-
onomy discussed in [12]. It contains English questions
collected from the USC [10], 500 manually built ques-
tions, and 1403 from the conferences TREC 8,9 and 10.

Examples of utterances that are in this corpus are
available at the website6 that contains it.

This corpus is of special interest to our work due to
the facts that it is publicly available, it has a consider-
able amount of data, it has a benchmark on classification
and it was translated to the Portuguese language (as de-
scribed in [6]). It constitutes a powerful tool for question
classification.

3.3. Multieight-04 Corpus
The Multieight-04 corpus [13] was a corpus built in the
context of CLEF 2004 QA track. The focus of this track
was multilingual information access. One example of an
application of this track, which is also mentioned in the
paper cited above, is, for instance, automatic transla-
tion of texts. Having this purpose, there was a need
for a multilingual corpus to support this task. From
this need, the multieight-04 corpus was built having 700
questions translated to 8 languages (one of them being
Portuguese) in a XML format. Each of these questions
also has an answer (a very objective answer, containing
only what was asked without proper sentence formation,
for example: the question “Com quem se casou Michael
Jackson?” (“Who is Michael Jackson married to?”), the
answer is just “Lisa Marie Presley”) and an answer type
which is what can be expected to be found on the an-
swer out of 8 categories: person, location, organization,
other, measure, time, object and manner.

For this work, slight adaptations were made to this
corpus. First, we parsed the XML file to obtain only the
Portuguese questions and answers as this work is focused
solely on the Portuguese language. Then, using a model
trained in the Portuguese Li & Roth corpus, we predicted
the labels that the questions has within that taxonomy.
Upon having the predicted labels, these were manually
corrected when the author of this work considered that
they were wrong. This produced a corpus that had both

6https://cogcomp.seas.upenn.edu/Data/QA/QC/ (Last Ac-
cessed on: 30/10/2019).

questions and answers and also labels. The interest of
adding Li & Roth’s labels to this corpus stems from the
fact that the questions encompassed within this corpus
and its answers are factoid and thus, can be labeled with
this taxonomy. As we already have a corpus with 5000
questions to train a model using this taxonomy, we can
have a much more accurate label for a question. With
the multieight corpus, we can now have labels for the
answers and compare them with the labels for the ques-
tions obtained from the previously trained model with
the Li & Roth corpus.

3.4. SubTle Corpus
The SubTle corpus [3] was a corpus built from movie
subtitles, where the movies were selected with basis on
IMDB7 lists, and the subtitles for those movies were re-
quested to OpenSubtitles8. The criteria for the selec-
tion of subtitles was their format and their average user
rating. For our work, we are especially interested in
question/answer pairs due to our answer ranking com-
ponent. Upon some analysis of this corpus, we decided
that it would be interesting to save the pairs I/R (Inter-
action/Response) that were a question and its answer.
With this in mind, we used a model trained in the Ques-
tion vs. Non-Question mentioned above, in Section 3.1,
to predict which sentences were questions. We also used
a rule that checked whether a sentence ended with a
question mark or not. We only considered questions that
were in the “Interaction” part of the subtitle, so that we
could retrieve the “Response” part as being the answer
to such question. Upon identifying all of the pairs I/R
that were questions and answers, we wrote them in a
new file forming a new corpus that contains pairs ques-
tion/answer. We then made a subset of this corpus that
contains only questions that were deemed personal by
the model trained with the corpus mentioned above, in
Section3.1.

4. Chattuga
In this section, we describe how this project is built. In
section 4.1 is provided an overview of the whole system,
in section 4.2 we describe the baseline of our work, in
section 4.3 we talk about the plug and play module of
Chattuga, in section 4.4.1 we refer the techniques we
used to perform the task of classification, in section 4.4.2
we detail the module of answer classification and lastly,
in section 4.5, we explain how the Coordinator decides
on the answer ranking.

4.1. Chattuga Overview
Chattuga has three main components which are all man-
aged by the Coordinator. These components are the
plug and play module (section 4.3), the query classifi-
cation module (section 4.4.1), and the answer classifica-
tion module (section 4.4.2). The plug and play mod-
ule is set up before the Coordinator starts. It gets the
information from the configuration files that a techni-
cal user prepared. When the Coordinator starts, it sets
up the agents. The query classification models are al-
ready trained when the Coordinator starts. After the

7https://www.imdb.com/ (Last accessed on: 06/06/2019)
8https://www.opensubtitles.org/ (Last accessed on:

06/06/2019)
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Coordinator sets up the agents, it prompts the user to
insert a query. The user introduces a query, for exam-
ple, the query “Como te chamas?”. This query is routed
through the query classification module which provides
its predictions for the set of classification labels that
this query should have according to the corpora at its
disposal. With the base corpora that were detailed in
the previous Section (Section 3), these labels would be:
“QUESTION”, “PERSONAL”, among others. The Co-
ordinator then proceeds to send the query to the agents
and receive their answers. The answers and the query
classification information are sent to the answer classifi-
cation module which has several approaches to score the
answers (detailed later, in section 4.4.2). The Coordi-
nator uses this classification information, which includes
the scores attributed by each module of answer classi-
fication to the agents answers and it combines them to
perform an answer ranking of the answers. When all the
information is gathered, the Coordinator provides the
answers ordered according to their ranking to the user.

4.2. Baseline

The baseline of our work is the TalKit project (men-
tioned in Section 1). This work had a multi-agent archi-
tecture for query answering that redirected a query to an
agent that was an expert in that type of query (for ex-
ample: a query that was classified as “PERSONAL” was
redirected to an agent expert in “PERSONAL” queries).
It did not take into consideration the agent’s answer. In
Chattuga, it is assumed that all agents can, potentially,
answer all questions. With that assumption, instead of
having just one answer choice method, we have four, de-
scribed in Section 4.4.2.

4.3. Plug and Play Module

A technical user that wishes to utilize Chattuga in his
own tasks can do both external additions to the system,
by using the plug and play module to add new agents
and corpora, but also control its inner components by
turning on and off the answer ranking modules available.
In this section, it is detailed how this module works.

4.3.1 Agent Plug and Play Module

To add a new agent, the user simply needs to have
a Python file (representing the new agent) that has a
method which receives as argument a query and returns
an answer to that query. This file must be encompassed
in a folder that contains everything that is needed for the
execution of the agent. This folder must be located in
the “agents” folder of the Chattuga project. Upon per-
forming all of these actions, the technical user must then
proceed to add, in the “agents config.xml” file, the re-
quired configurations. Those configurations include the
name of the agent, the name of its dialog method, the
folder where it is inserted, the labels in which it is an
expert and the sentences it uses to “escape” a query
(example: the agent replies saying it does not know the
answer to a query). The inner representation of this con-
figuration file within Chattuga is a dictionary containing
the informations in that file.

4.3.2 Corpora Plug and Play Module

For the dynamic addition of corpora, the technical user
needs to have in consideration some factors which are:
(a) The type of hierarchy that the corpora being added
has. In Chattuga, two types are accepted. The first one
follows the same logic as the Li & Roth corpus where
there are two labels for the same query and a classifier
needs to first classify a query with the first label, and
only then classify it with the second label using the clas-
sifier trained with the utterances labelled with the first
label. The second follows the approach of the TalKit
corpora where a label from one corpus indicates whether
a second corpus is used (e.g. if a query is not labeled as
“QUESTION” by a first corpus that distinguishes utter-
ances that are questions from utterances that are not, it
does not make sense to try to label it with a second cor-
pus that classifies types of questions); and (b) The type
of corpus being added to the system. For instance, the
Monserrate corpus contains almost exclusively questions
about Monserrate’s palace and labels about Monserrate
and it does not make sense to have a question labelled
with this corpus if the query is about a generic domain.
In the corpora configuration file, there are fields where
the technical user should specify those factors (if the hi-
erarchy is of sublabels, of subcorpus and if the corpus is
generic or sepcific). Additionally, the technical user has
to include the name and the path of the corpus, among
other options.

4.3.3 System Plug and Play Module

The third plug and play’s module purpose is to pro-
vide the possibility to the technical user to choose which
methods it uses in the answer ranking process (explained
in the next section). If the technical user considers that
one of the modules is not useful or it even is prejudi-
cial to his purposes he has this way to turn them off.
As there are four available answer classification modules
((1) – query/agent label match module; (2) – personal
answers module; (3) – impersonal answers module; (4)
– query/answer label match module), the configuration
file for the system has four elements, which correspond
to the answer ranking methods available. To use one
of them, the user just needs to write “True” inside the
corresponding element. By default the system uses all
three methods. They are all set to “True”. Additionally,
for the personal answers module (explained in the next
section), as it has four available methods, the technical
user needs to input in the attribute of the correspond-
ing element, a string containing the methods or method
which it intends to use separated by “|”, in case it uses
more than one.

4.4. Classification Module

In Chattuga, there are two main classification modules,
which are the query classification module (detailed in
section 4.4.1) and the answer classification module (ex-
plained in section 4.4.2).

4.4.1 Query Classification

Chattuga, without any modifications to the configura-
tion files, uses Support Vector Machine (SVM) with a
linear kernel, using unigrams or unigrams+bigrams as
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features (experiments conducted in this work have shown
that these are the pipelines that scored higher in accu-
racy. These experiments are detailed later, in Section
5), trained with the Question vs. Non-Question, the
Yes/No vs. other corpus, the Personal vs. Impersonal
corpus, the Li & Roth corpus and the Monserrate cor-
pus9 to classify queries. The system also has handcrafted
rules, to classify questions as “WH QUESTION”,
“OR QUESTION” and “LIST QUESTION”. This rule
based classifier is very simple: it only looks for words
that may indicate that we are in the presence of one of
these questions such as “how” for “WH QUESTION”;
“Mention” for “LIST QUESTION”; finally, “or” for
“OR QUESTION”.

4.4.2 Answer Classification

To understand, among a set of answers from different
agents, which one is the most adequate to a given query,
there are several approaches that can be followed. One
is related to knowing the agent’s area of expertise (for
example, the agent Edgar is an expert in all the labels
that concern Monserrate’s palace). In this case, if the
query is classified with a label that is related with that
expertise, we could assume that an answer from that
agent will be more valuable than the other agents’ an-
swers. Another approach would be to have corpora with
queries and answers labelled with the same set of labels.
Having these corpora and using machine learning algo-
rithms, one could obtain a classification on the query and
on the set of agent’s answers and, thus, perform a direct
matching. If the label of the query and the label of the
answer matched, that answer could be considered more
valuable. Without having this kind of data, considering
that most labelled corpora available contain only queries,
another kind of corpora could be used: a corpora that
contains pairs query/answer. This kind of corpora could
be used in two manners:

• If the corpora is very large, it could be used with
neural networks to obtain a classification of whether
that answer is adequate to that query or not.

• If we knew that the corpora had a specific character-
istic, for instance, that it has only “PERSONAL”
utterances, we could compare the agents answers
when the user inserts a query that is considered
“PERSONAL”, with the whole corpora using simi-
larity measures. The most similar answer to that
corpora would then be considered the most ade-
quate.

In Chattuga, we use all the aforementioned strategies.
The way in which we use them is detailed next.

Query Labels/Agent Labels Matching Module
The first method of ranking the agent’s answers uses the
information it has on the agent’s expertise. From the
plug and play module explained before, the labels that
each agent has an expertise on are drawn. These have a
score that pertains to a measure of “how good” an agent

9Edgar’s corpus containing informations about Monserrate.

is in answering utterances classified with a certain la-
bel. The query is also classified with a machine learning
module to get its labels. Once we have both the query’s
labels and the agent’s labels, we sum the scores of each
agent’s label that matches the query’s label. This will
render a final score that will be used to rank the answers.
The Coordinator receives these scores and uses them to
make a decision on the answer ranking.

Answer Labels/Query Labels Matching Module
The module of answer labels/query labels matching is
quite similar to the query classification module. The
only thing that is done in this module is to use the an-
swer corpora that are inserted in the corpora configura-
tion file to train a model and perform a classification of
the agent’s answers with that corpora. As the purpose of
adding a corpora of answers is for it to have answers that
are annotated with the same labels as one of the corpora
of questions, it only gives a score above 0 to an answer
if it is found to have labels in common with the ones
found for the query in the query classification phase. If
there are labels in common, the answer being analysed
receives 1 point for each label it has in common with the
query. For example, the query “Quantas janelas tem o
palácio?” (“How many windows does the palace have?”)
is classified with, among others, the label “MONSER-
RATE INTERIOR” from Edgar’s corpus, and the an-
swer “O palácio tem vinte e cinco janelas ogivais nos
seus dois pisos principais e sete janelas mais pequenas
ao ńıvel do piso superior dos torreões.” (“The palace
has twenty-five arched windows on its two main floors
and seven smaller windows on the towers’ top floor.”)
is classified with the same label. In this module, this
answer would receive 1 point.

Impersonal Answers Module This module uses the
multieight corpus described earlier, in section 3.3. How-
ever, as this corpus is very small, its accuracy cannot be
relied to obtain a classification. For this reason, it was
only used when a classification with rules could not be
found. In this module, agent’s answers are iterated over
to find clues to ascertain whether they have answered the
question or not. To perform this operation, the query’s
labels are used, more specifically, the ones that come
from the classification with the Li & Roth taxonomy.

The first approach that this module tries is to use the
Wikipedia api for Python10 to send the ngrams of the
answers to wikipedia and get a summary of the articles
it finds. The impersonal answers module then searches
for the fine category obtained in the classification of the
query within that summary. The reason for this is that
if, for example, a search is performed in Wikipedia about
“Girassol” (“Sunflower”) (a plant), usually the summary
returned contains the word “plant” which is one of the
fine categories of the Li & Roth taxonomy. For fine
categories that are more broad such as “cremat” that
encompasses books, movies, plays, among others, a list
of words to search was compiled (in the case of “cre-
mat”, the aforementioned examples were included). If a

10https://pypi.org/project/wikipedia/ (Last accessed on:
27/10/2019)
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user inputted the query “Que planta contém a palavra
sol no seu nome?” (“Which plant contains the word
sun in its name?”) and it was classified correctly as
“ENTY:plant”, if an agent answered “É o girassol!” (“It
is the sunflower!”), this module would be able to retrieve
the word plant from the wikipedia summary and thus at-
tribute the correct fine category to the answer. If this
wikipedia method takes too long or is unable to find the
category, the impersonal answer module proceeds to use
another module based on the work in [17], which, de-
pending on the coarse category, uses different methods
which include using WordNet with the Li & Roth’s fine
category as hypernym and then look for words in the
answer that are hyponyms of it; sing a named entity
recognizer to extract entities and check if they are loca-
tions or humans as these are categories of the Li & Roth
taxonomy; and using regular expressions and rules.

As we could not cover all methods with rules, when
a question category is not found with this rule based
classification, this module uses a SVM trained on the
multieight corpus to perform the classification of the an-
swer.

Personal Answers Module Working with the
resources that we possess for the Portuguese language,
that is, the corpora presented in Section 3, and due to
the lack of corpora to distinguish personal answers from
impersonal answers, i.e., corpora with answers labeled
with “PERSONAL” and “IMPERSONAL”, as we have
for questions, which would allow us to compare the an-
swers’ labels with the question’s labels, we, in this work,
tried a method that uses similarity approaches. As we
only contain a corpus with one example (“PERSONAL”
answers) of answers, we decided to use an approach that
simply compares each agent’s answer with a corpus that
contains personal answers (the subset of the SubTle
corpus described in section 3.4). If a query is classified
as “PERSONAL” and among the set of answers we can
find one that is “PERSONAL” as well, we can give
a higher score to that answer. We do this by using
some similarity approaches to compare an answer to the
corpus of personal answers, as if an answer is similar
to a the aforementioned corpus of personal answers,
it can be argued that the more similar it is, the most
likely it is that that answer is personal. These similarity
approaches are described next.

Word embeddings + Mean Embedding Vec-
torizer + Cosine similarity:

For this method and the following one, we used an
implementation (with slight modifications) available on-
line11 to use word embeddings with Scikit learn func-
tions. For this, the developer made two custom vector-
izers, the Mean Embedding Vectorizer which com-
putes the mean weights of word embeddings vectors and
the TF-IDF Embedding Vectorizer which computes
the mean values of the TF-IDF weights of the word em-
beddings vectors. In this section we will focus on the
mean embedding vectorizer. This vectorizer simply com-

11http://nadbordrozd.github.io/blog/2016/05/20/text-
classification-with-word2vec/ (Last accessed on: 09/09/2019)

putes the mean values of the word vectors of the word
embeddings model (trained on the personal answers cor-
pus). Upon transforming both the answers and the per-
sonal answers corpus, we compare the similarity between
them using the cosine similarity.

Word Embeddings + TF-IDF Embedding Vec-
torizer for Embeddings + Cosine similarity:

Similarly to the previous approach, we use the afore-
mentioned implementation which computes the mean
values of the TF-IDF weights as well as the word vectors
weights. With the vectors corresponding to the personal
answers and the answers transformed with this vector-
izer we perform the cosine similarity to determine the
closest answer to the personal corpus.

Latent Semantic Indexing (LSI) similarity:
Another approach that can be used to test the sim-

ilarity between an answer and the corpus of answers is
Latent Semantic Indexing. Using gensim’s imple-
mentation of this similarity approach, we first train the
model with the corpus of answers, then we create a ma-
trix containing all the similarities that came from the lsi
model. Using this matrix, we then compare each agent’s
answer to this matrix and obtain a similarity for each
one of them.

Regular TF-IDF Vectorizer + Cosine similar-
ity:

The last and the default approach of our system is to
use the regular TF-IDF vectorizer from Scikit learn, to
get the vectors of weights to each word and then per-
form the cosine similarity. This method is the default
because of its speed. It takes three seconds to compute
four agent’s answers as opposed to the more than ten
seconds that the other methods take (they take a little
over ten seconds for four agents using parallel comput-
ing, otherwise they would take more than that). As this
method is fairly good at performing the similarity, we
considered that it could be a default method considering
the trade off time/effectiveness.

4.5. Coordinator’s answer ranking decision
To return a ranked list of answers to the user, the Co-
ordinator checks the system’s configuration file to check
which answer classification modules it can use and, in
case the personal answers module is active, the similar-
ity measure or measures it can use. With this informa-
tion, the Coordinator calls these modules and sums the
different scores it receives from each one of them. The
answers are showed to the user ordered by their score,
from highest to lowest. In case there is a draw, this
information is given to the user as well.

5. Results & discussion
The Chattuga framework consists of several functionali-
ties which connected make a meta-conversation system.
As the focus of this work is not the agents that integrate
it, in this evaluation we focus on its true functionality:
how good is Chattuga in the ordering of answers ac-
cording to their relevance and how good is it in the
integration of new agents and corpora. Thus, we
have three main characteristics on which we base this
evaluation:

• The query classification module – In this mod-
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ule, the user’s intent is classified and it is further
used to discern between the agent’s answers. This
helps the system in the ordering of answers ac-
cording to their relevance.

• The plug and play module – This module has
three parts: the agents plug and play part to add
agents; the corpora part which is to add corpora;
finally, the system part that controls which answer
ranking methods are used. The first two parts of
this module (agents and corpora addition) will allow
the system in the integration of new agents and
corpora and the third part (system) will help the
system in the ordering of answers according to
their relevance.

• The answer ranking process – This process is
consisted of four modules of answer classification
that each produce a score for each agent’s answer
which are then summed by the Coordinator. The
system uses this information to perform the order-
ing of answers according to their relevance.

In sections 5.1, 5.2 and 5.3 we describe how the evalua-
tion was performed in each of these modules.

5.1. Query Classification
To evaluate the performance of the different corpora
(Question vs. Non-Question, Yes/No vs. Other, Per-
sonal vs. Impersonal and Li & Roth) we conducted
experiences in the suggested partition of train and test
corpus with several scikit-learn[5] algorithms of classifi-
cation, all the vectorizers and with these together with
the TweetTokenizer of NLTK [4]. We experimented with
Unigrams, Bigrams, Trigrams and combinations of them.
When possible we maintained the default parameters
of the classifiers and of the vectorizers. The algorithm
that achieved the best results in all the corpora was the
SVM with linear kernel. The results are 100% accuracy
for the Question vs. Non-Question Corpus and for the
Yes/No vs. Other corpus and 82.4% accuracy for the
fine categories of the Li & Roth corpus with unigrams
as features, the vectorizer CountVectorizer and the clas-
sifier LinearSVC; 98.1% accuracy for the Personal vs.
Impersonal corpus with unigrams+bigrams as features,
the classifier SVC+linear kernel and the vectorizer TfId-
fVectorizer; lastly, 90.5% accuracy for the coarse cate-
gories of the Li & Roth corpus with unigrams+bigrams
as features, the classifier LinearSVC and the vectorizer
TfIdfVectorizer. Additionally, using the algorithms, fea-
tures and vectorizers found to be the best according to
these experiences, we performed a cross validation with
10 folds on these corpora (for the cross validation, we
used the whole corpus, that is, the test and train cor-
pus together for each corpus). The results are for the
Question vs. Non-Question corpus: 100.0%; for the Per-
sonal vs. Impersonal corpus: 97.0%; for the Yes/No vs.
Other corpus: 97.0%; for the Li Roth corpus coarse
categories: 86.0%; lastly, for the Li Roth corpus fine
categories 78.0%.

The accuracies obtained show that the system has a
strong module of classification for the labels in these cor-
pora. Some of these corpora are quite small and the re-

sults obtained can be high due to that fact. The values
obtained for the accuracy are quite similar to the one’s
obtained in TalKit [7]. However, a direct comparison
cannot be done due to the fact that the cross validation
in that work was done solely on the train corpus whilst
the values presented in this work were obtained for the
combination of the train and test corpus.

5.2. Evaluating the Plug and Play Module
To evaluate the first two parts of this module, we have
considered a case study which is Edgar. We built the
entire system which started by containing only the chat-
bots Talkpedia and SSS. We then decided to get a highly
specific chatbot as is Edgar and add it to the system to
see how it adapts. In section 5.2.1 we describe the ex-
perience of adding the agent Edgar, in section 5.2.2 we
detail how it was to add corpora and finally, in section
5.2.3 we detail some experiences made with the param-
eters of the system configuration file.

5.2.1 Evaluating the Agents Plug and Play
Module

The first thing that had to be done to integrate Edgar
in Chattuga was to run it as a standalone agent. The
agent was ran and, in doing that, the required steps to
invoke the agent and what libraries were needed to run
it were identified. When the agent was ran successfully
and a conversation with it was held, an investigation had
to be done to see how the agent could be adapted so that
it would receive a single query instead of being always
running and asking for more queries. This is because the
only agent that should be asking the user for a query is
Chattuga. After performing the required adaptations to
Edgar’s code, we had to build a wrapper in Python for
Edgar’s code as it was made in Java. The hardest part
was performing all these adaptations to Edgar’s code
and understanding its architecture and its requirements.
The construction of the Python wrapper, after having an
example from the other two agents did not prove to be
difficult. The actual part of the plug and play, which is
to add the agent to the config file, was straightforward:
all the required arguments were written in the config file
and when the program was ran, the agent immediately
started answering questions alongside the other agents.

5.2.2 Evaluating the Corpora Plug and Play
Module

The original corpora of the Edgar project was built in a
XML format where each file corresponded to a question
about a different part of Monserrate’s palace or about
the butler itself (a different category of question). Chat-
tuga requires a csv file or a txt file in a different format.
The first step to integrate this corpus in the system was
to transform it into this format. To do this operation, a
parsing of the xml files was done. The questions and the
category were retrieved and all the files of Edgar were
combined in a single txt and a single csv file. The path
for these files and the remaining informations required
by the plug and play module were added to the corpora
config file, including that this corpora is of type “spe-
cific” due to its restrict domain. Chattuga was ran after
the configurations were added to the corpora config file
and the labels of this corpora were promptly returned
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for the queries that were introduced as part of the ex-
periment.

5.2.3 Evaluating the System Plug and Play
Module

To evaluate this module, we introduced a query that we
knew the agent Edgar could answer, and then, with the
same query we tried different combinations of settings in
the system config file. In this way, we can assert how well
this module works. The query that was first inserted in
the system was “Quantas janelas tem o palácio?” (“How
many windows does the palace have?”). This led the
system to choose Edgar’s answer as the best one with a
score of 3.4 (2 points from the query-agent label match
module; 0.5 points from the impersonal answers mod-
ule; 1 point from the query-answer label match module).
Disabling the modules one by one (this is done by set-
ting them to False in the config file), the scores varied
as expected, that is, if we disabled the query-agent label
match module Edgar’s score would drop 2 points, if we
disabled the impersonal answers module the score would
decrease 0.5, if we disabled both, 2.5, and so on and so
forth.

Another setting that can be changed in this config
file is the similarity measure or measures that are to be
used to obtain a score to personal answers. The first
experiment that was conducted was to use all similarity
measures (to perform this experiment and the following
experiments, we only activated the personal module as
that was the focus of these experiences) and then run the
system with the query “Como te chamas?” (“What is
your name?”). All combinations of similarity measures
were then tried and the scores showed that all measures
chose the same answer as the best one, although the
scores were different depending on the similarity mea-
sure. It also showed that this module was working as
expected as the scores varied with different combinations
of similarity measures.

5.3. Evaluating the Answer Ranking Process

One of the most important jobs of Chattuga is its abil-
ity to detect among a set of agent’s answers, the one
or ones that are more relevant to a query. In informa-
tion retrieval, it is studied the retrieval of relevant doc-
uments to a given query. These techniques are mostly
used in search engines to order the results found accord-
ing to their relevance. As the system discussed in this
document has an analogous function in the sense that
it intends to order its results (answers) according their
relevance, to evaluate the Chattuga’s answer ranking ca-
pabilities, we have decided to compute the Mean Recip-
rocal Rank[18] which is one of the metrics used in the
field of information retrieval to evaluate a system’s effec-
tiveness in ordering the retrieved documents according
to their relevance. This metric will help us establish the
system’s performance benchmark. As we do not have a
corpus that establishes the relevance of each answer to
each query inserted in the system, we have asked three
users to rank the answers given to the system accord-
ing to a scale of 1 to 5. We have randomly selected 100
queries from various sources. The queries that we used
to perform the evaluation of Chattuga’s answer rank-

ing process were randomly sampled queries (25 imper-
sonal corpus questions; 25 personal corpus questions; 10
Edgar’s corpus questions; 10 AMA’s corpus questions; 10
queries from the non-questions corpus; 5 queries such as
“bom dia” (“good morning”), “boa tarde” (“good after-
noon”), etc.; 5 yes/no corpus questions; 5 or questions; 5
list questions.) We then took these ratings given by the
annotators as the correct ones (to calculate the Mean
Reciprocal Rank) and calculated the Mean Reciprocal
Rank between the rating of each annotator and the rat-
ing the system gave to each answer. If there is more
than one answer graded with a one, we just compute the
reciprocal rank for the first one to be rated with a one.
The results for each annotator are: Annotator 1: 68.2%;
Annotator 2: 63.1% ; Annotator 3: 51.0%.

From the answers selected as the most relevant for
each query out of the 100, some were answers stating
that the chatbot was unable to find an answer to that
particular query. Examples of such answers are “Não sei
responder a isso” (“I do not know how to answer that”),
“Essa não é a minha área de especialidade” (“That is
not my area of expertise”), among others. The number
of queries to which such answers were deemed more rel-
evant per annotator were: Annotator 1: 46; Annotator
2: 57; Annotator 3: 62. And for Chattuga they were 65.

These results show that for half (or more) the queries
selected, both the annotators and the system were un-
able to find a satisfactory answer among the ones re-
turned by the different conversational agents inserted in
the system. The answers in which there was more dis-
agreement between annotators and system were the ones
provided by Talkpedia and by the Cheat agent. This is
due to the fact that in the agents config file, Talkpedia
was given a big score in the expertise of the labels “IM-
PERSONAL” and “QUESTION”. This agent, however,
was not able to deliver any viable answer to any of the
queries. Regarding the Cheat agent, due to the fact that
it is based in very simple rules without “artificial intel-
ligence”, it was given a low score in its expertise on the
labels “OR QUESTION” and “YN QUESTION” caus-
ing it to have a low score against the more intelligent
agents.

5.4. Discussion
With this evaluation, we have concluded that Chattuga
has a strong query classification module due to the high
accuracy achieved in all the main corpora. Some of these
accuracies are quite high which can be caused by two fac-
tors: either the amount of data is insufficient and with
low diversity causing the algorithm to easily learn the
patterns of the data or it is not very hard to distinguish
the utterances of the different labels for a computer al-
gorithm. In what concerns the plug and play module,
there are some difficulties inherent to adding a new agent
and corpora but these cannot be surpassed as they are
related to the fact that systems and corpora are built
in different ways and, to be integrated in another, some
adaptations have to be made. However, it did not took a
great implementation effort to make such modifications
and after these were made, the only thing that remained
to be done was to add some configurations in the cor-
pora and agent’s configuration files. Lastly, the answer
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ranking module evaluation shows that, when the agents
can provide an answer, the ranking process behaves as
expected by giving the right scores to the right answer.

6. Conclusions

In this work, we proposed a different approach to multi-
agent query answering where it is assumed that all agents
can, potentially, answer all queries. To build such an ar-
chitecture, the system is composed of a set of modules
that contribute to a final choice on the answer rank-
ing process. Additionally, this architecture is plug and
play in regard to (a) external components: more agents
and corpora can be smoothly integrated in the system;
and (b) internal components: specific system modules
to rank answers can be disabled. The modules pro-
posed and used in this work are (a) the query classifi-
cation module which provides the labels for the user in-
serted query; (b) the answer ranking modules: one that
takes into account the agent’s expertise; one that does a
classification of answers to queries labelled as “IMPER-
SONAL”; one that uses similarity measures to compare
answers to queries labelled as “PERSONAL” to a cor-
pus of personal answers; lastly, one that uses machine
learning to classify answers with labels and matches it
to the queries labels; and (c) the plug and play mod-
ule which has three sub-modules: agents, corpora and
system. These modules all provide a score which is the
basis for the answer ranking decision.
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[8] M. G. Fernandes, C. Dias, and L. Coheur. Dis-
tinguishing Different Classes of Utterances - the
UC-PT Corpus. In R. Rodrigues, J. Janousek,
L. Ferreira, L. Coheur, F. Batista, and H. G.
Oliveira, editors, 8th Symposium on Languages,
Applications and Technologies (SLATE 2019), vol-
ume 74 of OpenAccess Series in Informatics (OA-
SIcs), pages 14:1–14:8, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[9] P. Fialho, L. Coheur, S. Curto, P. Cláudio,
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[16] J. Santos. Say Something Smart 3.0:A Multi-Agent
Chatbot in Open Domain (Under Preparation).
Master’s thesis, Instituto Superior Técnico, 2019.
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[18] E. M. Voorhees. The trec-8 question answering
track report. In In Proceedings of TREC-8, pages
77–82, 1999.

10


	Introduction
	Motivation
	Objectives
	Project Overview

	Agents
	Corpora
	TalKit Corpora
	Question vs. Non-Question corpus
	Personal vs. Impersonal Questions
	Yes/No Questions vs. Other

	Li & Roth Corpus
	Multieight-04 Corpus
	SubTle Corpus

	Chattuga
	Chattuga Overview
	Baseline
	Plug and Play Module
	Agent Plug and Play Module
	Corpora Plug and Play Module
	System Plug and Play Module

	Classification Module
	Query Classification
	Answer Classification

	Coordinator's answer ranking decision

	Results & discussion
	Query Classification
	Evaluating the Plug and Play Module
	Evaluating the Agents Plug and Play Module
	Evaluating the Corpora Plug and Play Module
	Evaluating the System Plug and Play Module

	Evaluating the Answer Ranking Process
	Discussion

	Conclusions

