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Abstract

Key-value storage systems, offering weak-consistency, have emerged as a key strategy to increase the

performance and the scalability of cloud applications. Unfortunately, experience has shown that weak

consistency put a burden on programmers, making the development of applications harder and more

prone to bugs. This has raised the interest in the search for alternative consistency models, that can

simplify the application design without impairing scalability. Transactional Causal Consistency (TCC) is a

consistency criteria that meets these requirements. In this thesis we present FastCCS, a new algorithm

that can offer TCC with less communication round than previous work. The experimental results reported

in this thesis, where the performance of FastCCS is compared to that of other competing systems that

have been previously been proposed in the literature, show that FastCCS can sustain a throughput that

is 20% higher than those works.
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Resumo

Os sistemas distribuı́dos de armazenamento chave-valor, que oferecem modelos de coerência fraca,

emergiram como uma estratégia para aumentar o desempenho e a capacidade de escala dos sistemas

que operam na nuvem. Contudo, a coerência fraca dificulta o desenvolvimento de aplicações, existindo

enorme interesse em oferecer outros modelos de coerência que sejam úteis para os programadores

sem comprometerem a capacidade de escala. O modelo de Coerência Causal Transacional (CCT)

é particularmente relevante neste contexto. Nesta dissertação apresentamos o FastCCS, um novo

algoritmo para suportar CCT em menos rondas de comunicação que os trabalhos anteriores. Resul-

tados experimentais, em que comparamos o desempenho do FastCCS com o desempenho de outros

sistemas propostos na literatura, mostram que o FastCCS pode suportar um débito 20% superior ao

oferecido pelos sistemas anteriores.

Palavras Chave

Computação na Nuvem, Armazenamento Chave-Valor, Coerência Causal Transacional, Particiona-

mento de Dados
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In this thesis, we consider systems in which applications are structured in read and write sequences

of operations, denoted as transactions, which access data held in a key-value storage system. The

concurrent execution of these transactions, without adequate concurrency control mechanisms, may

yield results that are different from the ones intended by the programmer. These anomalies are due to

the interleaving of multiple operations from distinct transactions [1]. Strong consistency models, such

as serializability [2], avoid this problem by ensuring that the result of concurrent execution of a set of

transactions is equivalent some serial execution of these transactions. Unfortunately, mechanisms that

ensure serialization are either blocking or cause transactions to abort and rerun, severely limiting the

performance of storage systems [3]. In this thesis we address transactional consistency criteria than can

circumvent those limitations. In particular, we address the design of efficient algorithms to implement

Transactional Causal Consistency (TCC), a consistency that can be implemented using non-blocking

algorithms while limiting the number of times a transaction needs to be rerun when a conflict occurs.

1.1 Motivation

With the aim of overcoming the performance limitations inherent in traditional transactional database

systems, the first key-value storage systems that have been designed to support cloud application are

willing to drop strong consistency guarantees, offering instead weak consistency models, such as even-

tual consistency [4]. However, experience has shown that the use of weak consistency models make

application development difficult [5], so there is a keen interest in finding new consistency models and

techniques to support these models that can be useful to programmers without compromising scalabil-

ity [6]. The TCC model is particularly relevant in this context. This consistency model extends the Causal

Consistency model, initially defined for single operations, allowing applications to read multiple objects

from a causal snapshot and to perform atomic writes of multiple objects. The relevance of this model

stems from the fact that causal consistency is the strongest consistency model that can be supported

without compromising system availability in the presence of network failures or partitions [5].

It is worth to underline that, even in a centralized system, the effects that may result from the inter-

leaving of concurrent executions already makes it difficult to offer consistency guarantees. Distribution

further amplifies this complexity [7]. In particular, if different keys are stored on different nodes, the risk

of a client reading inconsistent versions becomes larger, as it is in practice impossible to ensure that the

multiple effects of a single transaction are visible at the same time on all servers [7]. On the other hand,

the ability to deploy, and the opportunity to partition data, and to store different partitions on different

servers is crucial for improving the performance and achieving scalability in cloud storage systems as it

enables different requests to be processed in parallel by different servers [8].

Systems that support TCC often use non-blocking algorithms, which use control information (meta-

3



data) to verify whether the transaction has read from a causal cut. This metadata is written, read, and

stored together with the data. When a transaction perform a set of readings that do not return mutually

consistent version of the data items, it may be required to read new versions of the data (and this may

occur more than once). The size of the metadata held by the algorithm has a significant impact on

system performance. On one hand, the larger the metadata volume, the less efficient the system is, as

it can consume a significant fraction of the system resources. On the other hand, a larger amount of

metadata allows for greater accuracy in identifying the causal cut and can avoid redundant rounds of

read operations. Many systems choose to reduce the size of metadata by creating what we call false

dependencies; that is, scenarios where the metadata suggests that two operations may be causally

related when, in fact, they are not.

1.2 Contributions

This thesis compares, implements and evaluates strategies for enforcing transactional causal consis-

tency. The resulting contributions are the following:

• The design of a low-latency algorithm to support TCC, Fast Causal Consistent Snapshot (FastCCS).

FastCCS explores a new trade-off between the degree of concurrency the system offers, the size

of the metadata, and the number of communication steps required to execute a transaction. In

particular, while previous TCC algorithms require the storage system to be linearizable (which

limits its parallelism) or to perform multiple communication rounds to read a consistent snapshot.

In contrast, FastCCS offers TCC on partitioned storage systems using only two communication

rounds in the worst case. Besides, when exposed to load profiles dominated by read transactions,

FastCCS executes most transactions in just one round of communication.

• A novel non-blocking read-only transaction algorithm that is both performant and returns a causal

consistent read in the worst case in only to two rounds of communication.

• A novel write-only transaction algorithm that atomically writes a set of keys, is lock-free (low la-

tency), and does not block concurrent read transactions.

1.3 Results

This thesis produced the following results:

• An implementation of FastCCS, in a real key value store (Cassandra)

4



• An experimental evaluation of the system implementation, regarding its performance. To better

position FastCCS in respect to other causally consistent strategies, some representative systems

were included as a way of creating acceptable boundaries.

1.4 Research History

This work was developed in the context of the Cosmos research project, that aims at finding techniques

to offer causal consistent storage for edge computing scenarios. Efficient techniques to offer Transac-

tional Causal Consistency when accessing the data are expected to be a key component in the final

COSMOS architecture.

In my work I have benefited from the useful feedback from the team members of COSMOS, both

from INESC-ID Lisboa and from NOVA LINCS.

A paper that presents parts of this work has been published as:

T. Lykhenko and L. Rodrigues. Concretização Eficiente de Coerência Causal Transaccional

na Nuvem. In Actas do décimo primeiro Simpósio de Informática (Inforum), Guimarães,

Portugal, Setembro de 2019.

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT)

as part of the projects with references UID/CEC/50021/2019 and COSMOS (financed by the OE with ref.

PTDC/EEICOM/29271/2017 and by Programa Operacional Regional de Lisboa in its FEDER component

with ref. Lisbon-01-0145-FEDER-029271).

1.5 Structure of the Document

This thesis is organized as follows: Chapter 2 presents some applications developed for the cloud and

introduces transactional consistency with some techniques that allow data stores with this consistency

guarantee. Chapter 3 describes the design of FastCCS and addresses the implementation of FastCCS’

prototype, as well as the other systems considered for evaluation. Chapter 4 reveals the results of the

evaluation and makes some remarks about the differences among the systems. Chapter 5 concludes

this thesis by outlining the discoveries and unveils some directions for future work.
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In this section, we discuss the guarantees that can be provided to clients accessing data stored in

a distributed key-value storage system. We distinguish two classes of consistency guarantees: those

that apply individual read and write operations and those that apply a sequence of operations that are

treated as a block (and that we generically denote as transactions).

2.1 Linearizability and Session Guarantees

We start by discussing linearizability [9], which is probably the most intuitive model of consistency. Then

we describe relevant relaxations of linearizability.

In the following discussion we assume that write and read operations may take some arbitrary amount

of time. In a distributed message passing system, this time is the time required for the nodes to coordi-

nate. Each operation has a starting time (when it is invoked) and a termination time (when the operation

returns). If an operation O2 starts before another operation O1 terminates, operations O1 and O2 are

said to be concurrent. If an operation O2 starts after another operation O1 terminates, O2 is said to be

subsequent to O1.

Linearizabilty Under linearizability [9] , read and write operations appear to execute instantaneously,

at an arbitrary time instant between the moment the operation is invoked and the operation completes.

Thus, after a write completes, all reads must observe that write (or a subsequent write). If a read is

executed concurrently with a write, the read can observe the value before or after the write. However, if

the read observe the new value, all subsequent reads must also observe the new value, even if they are

also concurrent with the write operation.

A linearizable memory register, that supports read and writes operations is denoted to be an atomic

register [10]. Fault-tolerant atomic registers can be implemented in message passing systems, by let-

ting different nodes to maintain a copy of the register value and by using the appropriate coordination

mechanisms to execute read and write operations. The implementation is based on quorums. A write

operation only returns when receives an acknowledgment from a majority of the servers. A read oper-

ation is more complex. First, the read must obtain values from a majority of nodes and select the most

recent version from the quorum. Then, before returning, the read operation must write back the value

read. This will ensure that subsequent reads will also return that value. Only after the write back phase

is concluded (i.e., a majority of acknowledgements is collected for the write phase) the read operation is

terminated.

As we have just seen, implementing linearizability in a non-blocking way is expensive and requires

clients to always contact a majority of replicas. It is interesting to discuss what guarantees can be

provided while offering better availability (namely by allowing progress even if the client can contact only

a single replica). In the next paragraphs, we discuss a number of properties that are known as “session

7



guarantees” because they require the client to keep some state regarding its past interactions with the

system. A session is assumed to be started when the client first contacts the system and get the initial

session state and terminates when the client discards the session state.

In the context of our work, we say that a system is highly available if a user that can contact at

least one server is guaranteed to get a response, even if a network partition prevents that server from

coordinating with other servers in the system. Thus, in order to ensure high availability we need to resort

to consistency levels that require little or none coordination among servers or, if such coordination exists,

that it can be performed asynchronously in background. This definition of high availability allows the use

of protocols that offer low latency, something that is important in a wide-area setting, were the latency

among different nodes is high and network partitioning is likely to occur, making coordination among

replicas a bottleneck.

Writes Follow Reads (WFR) under WFR, if a session observes an effect of an operation O1 and

subsequently executes another operation O2, then another session can only observe effects of O2 if it

can also observe O1’s effects (or later values that supersede O1’s). Thus, the sequence of a write after

a read must satisfy to Lamport’s “happens-before” relation [11].

Monotonic Reads (MR) under MR, within a session, subsequent reads to a given object “never

return any previous values”. Reads from each item progress according to a total order.

Monotonic Writes (MW) requires that each session’s writes become visible in the order they were

submitted.

It is worth noting that, using these properties, the availability of a system can be increased by delaying

the visibility of update operation. For instance, assume that a client makes a write operation w2 that

depends on some previous write w1. Assume that w2 becomes visible to other clients before w1 has

been applied at all datacenters. Another client that reads w2 can later be blocked when attempting to

read w1 from another replica (this can happen if clients are allowed to contact different replicas). If

that client is served with an older snapshot of the database, with versions that have been applied at all

datacenters, that client will miss the new update but it will also avoid being subsequently blocked when

reading other objects.

Some systems are more restrictive and force clients to remain connected to a single node. The

latter type of systems offers what is called sticky availability [4]. Sticky availability usually requires full

replication, given that the server to which the client is attached must be able to serve all requests from

that client. In systems that use partial replication, a server may not be able to serve requests for data that

is not replicated locally without coordinating with other servers. In fact, in that case, it may be simpler to

allow clients to migrate in order to access data that is only stored in other servers. With this availability

model, we can ensure the following session guarantees that were previously intangible as proven by

Bailis et al. [3].
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Figure 2.1: Relation among the session guarantees; the session guarantees in grey are only possible in sticky
availability

Read your writes requires that whenever a client reads a given data item after updating it, the read

returns the updated value (or a value that overwrote the previously written value).

PRAM (Pipelined Random Access Memory) lets clients observe a serialization of the operations

(both reads and writes) within each session. Different clients can observe different serializations. It can

be seen as a combination of monotonic reads, monotonic writes, and read your writes.

Causal consistency [12] is the combination of all of the session guarantees [13]. The causal depen-

dencies of an operation are determined by happened-before relations ( ), which are defined by three

rules:

• Thread of Execution. If a and b are two operations executed by the same thread of execution (for

instance, by the same client), then a b if a happens before b.

• Reads From. If a is an update operation and b is a read operation that reads the value set by a,

then a b.

• Transitivity. If a b and b c, then a c.

Whether wa(ka) and wb(kb) are two write operations on the same or two separate keys, ka and kb.

Let ra(ka) and rb(kb) be two read operations by the same client, where ra is executed before rb and

where ra returns the value written by wa e rb returns the value written by wb. A storage system is

said to be causally consistent if in the case that wa  wb there is no write w′
b on the kb key such that

wb  w′
b  wa.

Note that two concurrent updates can be applied in different nodes in a different order and still respect

causal consistency. In the lack of further updates, nodes would remain inconsistent indefinitely.

Causal+ consistency [14] is an extension to causal consistency that ensure that, in face of concur-

rent updates, one of the updates is applied last at all replicas.

Figure 2.1 summarizes the relation between the session guarantees mentioned above.
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2.2 Transactional Properties

Transactions are sequences of operations that are grouped together and executed as one single in-

divisible operation. Transactions are widely used in database systems. The concurrent execution of

transactions is coordinated by the database to ensure a set of proprieties, usually referred to as the

ACID proprieties (ACID stands for atomicty, consistency, integrity, and durability). One of the strongest

consistency criteria supported by databases is known as serializability. In short, serializability ensures

that the concurrent execution of transactions yields the same results as a some serial executions of

the same transactions. Ensuring serializability requires the database to execute some form of concur-

rency control. The most common approach to concurrency control consists in using locks to prevent

concurrent transactions to observe inconsistent values.

Even in centralized databases some DBMS opt for a lower isolation levels, that offer weaker consis-

tency models, to improve the performance of concurrent transactions. One of these weaker forms of

consistency is Snapshot isolation (SI). SI guarantees that all reads made in a transaction will see a

consistent snapshot of the database, and that the transaction itself will successfully commit only if none

of the updates it has made conflicts with updates performed concurrently by other transactions (i.e.,

transactions that have executed concurrently based on the same snapshot).

Serializability and snapshot isolation levels are often explained in terms of the anomalies they pre-

vent (where an anomaly is an observed state that would never occur if transactions where executed

instantaneously, one after the other). Two anomalies that are relevant in this context are the write skew

and the lost update. A write skew occurs when a transaction T1 reads an object written by concurrent

transaction T2 and T2 also reads an object written by T1. A lost update occurs when one transaction T1

reads a given data item, subsequently a second concurrent transaction T2 updates the same data item,

then T1 also modifies that data item without taking into account the value written by T2 (and thus, the

system behaves as if the update by T2 has never occurred). Serializability prevents both the write skew

and the lost update anomalies. SI only prevents the lost update anomaly.

Unfortunately, in a distributed setting, these two isolation models can only be enforced if at least

a majority of nodes are able to coordinate, given that both require transactions to be totally ordered.

Therefore, these models cannot be enforced without compromising the availability of the system.

2.3 Isolation Levels that Support High Availability

In order to ensure that transactions are highly available, we need to define isolation levels that can be im-

plemented with little coordination among replicas. We use the study by Bailis et al. [3] on highly available

transactions to enumerate a number of isolation levels that can be enforced with minimal coordination.
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As with serializability and snapshot isolation, several of these weak isolation models are defined in

terms of the anomalies they prevent. In this context, we identify the following additional anomalies.

Dirty Writes A Dirty Write anomaly occurs when two concurrent transactions update two or more

objects and these updates are applied in different orders at different objects [15]. This is illustrated in

Figure 2.2, where T1 updates x before T2 and T2 updates y before T1.

T1 T2
W (x1)

W (x2)
W (y2)

W (y1)

Figure 2.2: Dirty Write anomaly

Dirty Reads A Dirty Read anomaly occurs when one transaction reads a value that has been written

by another transaction that is still running and has not committed yet. Consider the example depicted

in Figure 2.3. In this example Dirty Read anomaly occurs if T3 read x = 1 or x = 3 in the case that T2

aborted.

T1 T2 T3
Wx(1) Wx(3) Rx()
Wx(2)

Figure 2.3: Dirty Read anomaly

Read Skew A Read Skew anomaly occurs when in a same transaction same read yields to a different

result. Consider the example depicted in Figure 2.4. In this example Read Skew anomaly occurs if the

reads over the item x in the transaction T2 return two different results.

T1 T2
Rx()

Wx(1)
Rx()

Figure 2.4: Read skew anomaly

With the help of the anomalies identified above, we can now list a number of relevant weak isolation

models.

2.3.1 Read Uncommitted (RU)

Read Uncommitted is an isolation level that only prevents the “Dirty Writes” anomaly. It does not prevent

other anomalies as it makes no attempt to prevent transactions from reading uncommitted values before

a transaction has finished. Dirty writes can be avoided by defining a total order among transactions and

ensuring that updates are applied to all objects according to that order.
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2.3.2 Read Committed (RC)

Read Committed is an isolation level that ensures that transactions never access uncommitted or in-

termediate versions of data items. RC prevents both “Dirty Writes” and “Dirty Reads” anomalies. Dirty

Reads can be prevented by not allowing the client to write in the database uncommitted data. Therefore,

other transactions will never read uncommitted data. This can be achieved by requiring the client to

buffer his writes until commit time or by having the servers to buffer multiple uncommitted values the

same data and to only apply those writes when the corresponding commit is received.

2.3.3 Cut Isolation (CI)

Under Cut isolation, if a transaction reads the same data more than once, it sees the same value each

time. This isolation level prevents “Read Skew” anomaly, if this property holds on data items, it is called

Item Cut Isolation (I-CI), and if it holds when a transaction does a predicate-based read (e.g., SELECT. . .

WHERE P) it is called Predicate Cut Isolation (P-CI). However this isolation level allows “Dirty Writes”

and “Dirty Reads” anomalies.

Cut Isolation (CI) could be achieved by the transaction caching reads locally at the client and then

reading from the cache so that the values do not change in the same transaction unless the transaction

itself overwrites them. Alternatively the reads could be stored in multiple versions at the server, and the

transaction would only read from this versions, this could be achieved by assigning the transaction to

a group of servers (transaction group) that would store this version and the following reads would only

read from this group of server until the end of the transaction. The cache and multiple versions of objects

are garbage collected at the end of the transaction.

2.3.4 Monotonic Atomic View (MAV)

Under Monotonic Atomic View (MAV), once some of the effects of a transaction Ti are observed by

another transaction Tj , after that, all effects of Ti are observed by Tj . That is, if a transaction Tj reads

a version of an object that transaction Ti wrote, then a later read by Tj cannot return a value whose

later version is installed by Ti. MAV prevents “Dirty Reads” by guaranteeing all or nothing visibility of

transactions. However allows “Dirty Writes” anomalies.

MAV could be achieved using lightweight locks and/or concurrency control over data items [16].

This approach of achieving MAV does not satisfy high availability, because the system could stall in

the presence of extended network partitions and has a significant impact on the system’s throughput.

There are enumerate alternatives to mitigate this problem and do an implementation of MAV without the

use of locks [3, 17] this systems store every data object that was ever written and replicas then gossip

information about versions they have observed and construct a lower bound on the versions that can be
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Figure 2.5: Relation between the guarantees of isolation levels

found on every replica. At the start of every transaction the client chooses a timestamp that is lower or

equal to the lower global bound, and during the transaction, the replicas return data items that have a

timestamp lower than the chosen timestamp.

2.3.5 Transactional Causal Consistency (TCC)

Causal consistency is defined for individual operations, regardless of how they are related, allowing se-

quences of read and write operations which results may not be as expected by programmers. Consider

for example two write transactions T 1 = w1
a(ka), w1

b (kb) and T 2 = w2
a(ka), w2

b (kb) where T 1  T 2

and two read transactions T 3 = r3b (kb), r
3
a(ka) and T 4 = r4a(ka), r4b (kb). Causal consistency guar-

antees that in case that T 3 reads the value of kb written by T 2 then, later it should read ka writ-

ten by T 2 (and not the previous value is written by T 1). This guarantee results from the fact that

w1
a(ka)  w1

b (kb)  w2
a(ka)  w2

b (kb) being independent from the way that operations are ordered

in a transaction. However, causal consistency allows that T 3 reads a value written by T1 in kb and af-

terward reads a value written in ka by T 2. Also, it allows that T 4 to read a value written by T 1 in Ka

afterward reads a value in Kb written by T 2. Neither of these sequences violates causal consistency;

However, introduces unexpected behavior.

Consider social network application, where the friendship relations are symmetric, and for that, it

needs to ensure the following invariant. If user u1 is visible in the friends’ list of u2, then u2 needs to be

also visible in the fiends’ list of u1. Consider that ki stores the friends’ list of ui and that the transaction

T 1 establishes a new relation of friendship between ua and ub, and that T 2 erases that relation. In this

case, both T 3 and T 4 would read a state that would violate the proposed invariant.

Now consider an application that manages a shared folder, in which ka registers which users have

access to the folder and kb stores the content of the folder. Consider that T 2 that excludes a user from the
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list and afterward writes a new document to the folder witch that user should no longer have access. The

sequences described above of the transaction T 4 would allow the transaction to read the old access-list

and the new document, the application is unable to enforce the access restriction intended by the user.

TCC as MAV avoids some anomalies described above by ensuring that all the effects of one write

transaction are visible to other transactions or none at all. However in contrast to MAV, clients read

and write transactions must respect causal consistency. For example if two write transaction T 1 =

w1
a(ka), w1

b (kb) and T 2 = w2
c (kc), w

2
d(kd) where T 1  T 2 and a read transaction T 3 = r3a(ka), r1c (kc).

In MAV is possible that T 3 returns a older value of ka and a new value of kb or vice verse as it only

guarantees that after T 3 reads a value installed by T 1 or T 2, all the effect from T 1 or T 2 are observed

by T 3. However, MAV does not capture the relation between transactions. And so it is possible that

T 3 will observe the effect of T 2 without observing the effects of T 1, thus MAV does not capture the

causal relation between transactions. In TCC the transaction must respect causal consistency, and

so T 3 should not observe the effects of T 2 without also observing the effects of T 1. Making TCC a

combination between MAV and causal consistency.

It should be noted that several systems extend causal consistency with support for read-only trans-

actions [14, 18–20]. These systems avoid the anomaly illustrated by T 4, although not the anomaly

illustrated by T 3. Thus, TCC is stronger than causal consistency with support for read transactions,

which in turn is stronger than causal coherence with no support for transactions. The interested reader

may find a hierarchical comparison of the various consistency models that have been proposed in the

literature in [5]. However, we emphasize that TCC remains weaker than snapshot isolation that, in turn

is weaker than serializability. These last two consistency models oblige to sort the write operations in a

total order, which is not the case with the TCC.

Figure 2.5 summarizes all the guarantees and the relation among the different isolation levels men-

tioned above.

2.4 Systems that Support Transactions

In this section, we survey relevant systems from the related work that address the problem of supporting

transactions in distributed storage systems. For each of them, we start by explaining how the transac-

tions are implemented, the isolation level and session guarantees that they grant. Finally, we will analyze

the chosen strategy for propagating the transaction’s updates.

2.4.1 COPS

COPS [14] is a distributed key-value storage system that has been designed to run across a small

number of datacenters. It implements a lock-free read-only transaction algorithm that provides clients
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with a causal+ consistent view of multiple keys in a distributed key-value store in at most two rounds of

local operations.

COPS assumes that each datacenter is fully replicated and linearizable. Moreover, clients only

communicate with their local datacenter which makes COPS sticky available.

In COPS each client is responsible for maintaining its causal history. This history maintains all

the client’s direct and indirect (i.e., transitive) dependencies to the reads and writes operations it has

performed. At the server side, each item is stored together with its list of dependencies, where each

entry in the list contains the key and the version of the corresponding dependence.

Every time a client reads an item, the client appends the item’s key to its history with that item’s list of

dependencies. When a client wants to write an item, first it computes the nearest dependency list and

then sends it with the update. If the update was successful a new version is created and, it returns the

new version number that the client then adds to its history with that item’s list of dependencies. After the

write finishes the datastore start to replicate it asynchronously to the other datacenters. When a server

receives a remote write it delays it until all the writes dependencies are visible.

To retrieve multiple values in a causal+ consistent manner, a client issues read-only transaction with

the desired set of item keys. The COPS as previously mentioned implements the read-only transactions

algorithm in at most two rounds. In the first round, it issues n concurrent read operations to the local

cluster, one for each key listed in the read-only transaction operation. Because COPS clients commit

writes locally and the local data store is linearized, the local data store guarantees that each of these

explicitly listed keys’ dependencies are already satisfied, therefore the reads on them will immediately

return. The first round of reads returns the corresponding items and the items’ versions and the list of

these items dependencies. The causal dependencies for each item are satisfied if either the client did

not request the dependent key, or if it did, the version it retrieved was greater or equal than that item’s

version in the dependency list.

For all the items that not satisfy this condition, the client issues a second round of concurrent read

operations for the greatest version in any dependency list from the first round. This only happens when

there are write operations racing the reads of the first round. These versions satisfy all the causal

dependencies because they are greater or equal to the needed versions. Furthermore, the second

round of reads does not introduce new dependencies because dependencies are transitive and all the

new retrieved items depend on the items from the first round which enables the read-only transaction to

finish in at most two rounds of reads.

Although how the client migration between datacenters are not specified in COPS, it is still possible

for a client to migrate from one datacenter to another. Since clients hold their entire causal history, once

they arrive at the new datacenter, they can wait until all the required writes are made visible in the new

datacenter before issuing new operations.

15



2.4.2 RAMP

RAMP [21] is an algorithm that enforces a lock-free read-only transaction that guarantees the MAV

isolation model among transactions within a datacenter. The authors presented tree variations of the

algorithm, that differ between each other by the size of the metadata and the number of rounds needed

to return a read-only transaction. For brevity, we will focus on the version that optimizes the number of

rounds needed to finish the read-only transaction because, in our algorithms, we will also favor solutions

with smaller number of communication rounds (instead of algorithms that use smaller metadata size but

more rounds of communication). In this version, the read-only transactions are guaranteed to finish in at

most two round of communication even in the presence of racing write and read operations.

RAMP assume that each datacenter contains all the data (i.e., they consider full replication) but the

the set of items is spread over multiple servers.

RAMP implements write-only transactions that use a two-phase commit protocol that ensures that if

a write of a write-only transaction is visible in one partition, all the other writes of that transaction are

present in the corresponding partitions. This helps to ensure that clients do not stall due to reading an

item written by a transaction that the effects are not yet present in all the corresponding partitions. After

receiving a write, the server creates a new version and responds to the client with a prepared message.

The new version is only made visible if the server receives a commit message from the client. After one

server receives the commit message, the transaction is guaranteed to be committed in the rest of the

servers and cannot be aborted.

In RAMP the client is responsible for guaranteeing that the read-only transaction returns a MAV. In

the first round, the client issues n concurrent read operations over the requested item set. The read

operation of the first round returns the item, the transaction number of the write transaction and a list

of the keys of the other items that the write transaction modified. After all the reads have returned, if

the client has read a version of an item that is included in a write transaction with a higher transaction

number, the client begins the second round of reads for the specific missing version number. This

scenario only occurs if the reads are concurrent with the writes or if the commit message from the client

has not yet arrived at the corresponding server (but has arrived to at least another server).

A possible optimization is the following: if read request is receive for a version that is not yet visible, it

is safe to make that version immediately visible. This is safe because a client only requests that version

if the corresponding transaction has already committed (and, therefore, it is safe to make the version

visible).
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2.4.3 Cure

Cure [5] was the first system to successfully support read and write operations within the same transac-

tion while ensuring TCC. Furthermore, Cure ensures that reads and writes can be executed using two

round of communications. In previous systems, such as COPS and RAMP, read operations need at most

two rounds of communication while guaranteeing only causal consistency or MAV isolation respectively.

Cure has been designed for a geo-replicated key-value store. Cure assumes that the full set of items

is replicated across different datacenters. Moreover, each datacenter is partitioned, where each partition

stores a non-overlapping subset of the key-space. The client executes all the operations of a transaction

in its local datacenter (i.e., Cure implements sticky availability).

Each partition holds two vector clocks of size equal to the number of datacenters in the system. One

vector clock (PVC) is responsible for tracking the remote updates received from the replicated partitions

in remote datacenters. The other is responsible for maintaining the latest globally stable snapshot (GSS)

known to that partition. The GSS is maintained by the partitions within the same datacenter exchanging

their PVCs. The PVC contains the physical clock values of the commit timestamps, and it is updated

in the corresponding entry when a local or a remote commit is received. Also if no local commits are

received within a threshold, the replica sends a heartbeat to the other replicas.

Transactions use a two-phase commit protocol where one of the participating partitions of the trans-

action is assigned as the transaction coordinator which is responsible for committing the client transac-

tion. Before starting a transaction, the client gets a transaction timestamp from the coordinator. This

timestamp is the max between the entry of that datacenter in the last GSS seen by the client and the

current coordinator physical clock. To ensure that the client’s causal remote dependencies are satisfied,

the coordinator stalls the operations until the client’s last seen GSS is lower or equal to the coordinator’s

GSS. All the client future reads during the transaction must return version lower than the transaction

timestamp and the client buffers all of its writes locally until the commit phase. During the commit phase,

the client sends the buffered write set to the coordinator that will then propagate to the corresponding

replicas. The replicas will prepare the new version and respond to the coordinator with their current

physical time. The coordinator after receiving all the clock values chooses the maximum as the com-

mit timestamp and sends it to the corresponding replicas. As the client’s dependencies are all locally

satisfied the effect of the transaction will be immediately visible to the client.

After locally committed the values are asynchronously propagated to the other replicas. The remote

transaction effects become visible when the GSS advances past their commit timestamp. This ensures

that all causally related transactions are already visible locally because they have a smaller commit

timestamp.

In the presence of network partition between datacenters, the observed transaction from remote

datacenters will be delayed until the network recovers, while local updates will continue to be made
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visible.

The client migration is not defined in Cure, however its possible to assume that the client could

migrate to any datacenter. When the client tries to start a transaction, the coordinator will stall the client

until all the causal dependencies are satisfied.

2.4.4 Eiger

Eiger [8] is a distributed key-value storage system that extends the ideas behind COPS. In addition to

lock-free read-only transactions, Eiger introduces write-only transactions which ensure TCC isolation

among transactions. Like COPS and Cure, clients transactions are performed in a single datacenter (to

which the client is attached) and the key-value store is fully replicated across datacenters.

Eiger’s read-only transaction algorithm has the same properties as COPS’s, however, the implemen-

tation is different, namely Eiger uses logical time instead of explicit dependencies to enforce causal

consistency. Each partition in a datacenter keeps an earliest valid time Earliest Valid Time (EVT) and

its current Logical Valid Time (LVT). EVT is the partition’s logical time when it committed the last visible

operation. As in COPS, each client is responsible for maintaining its causal history.

The read-only transaction return in at most tree rounds. The first round consists of reading from the

partitions that contain the target data objects optimistically. The partitions return the current visible value,

the EVT and its LVT. Once all the first round reads return, this metadata is used to check the consistency.

All values are consistent if the maximum EV T ≤ the minimum LV T . If not, the transaction issues a

second round of reads to the partitions that returned inconsistent values. In the second round, the client

issues a read to a specific timestamp that satisfies minimum LV T ≥ the maximum EV T , this ensures

that all the reads return and are consistent with the previously read values. It is possible that the second

round read, requests a key that has a pending commit value, this means that the LVT of the visible key is

lower than the LVT requested by the client. In this case, the partition is unsure which value to return and

must do a commit check with the coordinator partition to ensure which value to return without breaking

causality.

The second round should be rare as it only occurs if a concurrent write operation is committed in the

target partitions during the first round of reads.

Eiger’s write-only transactions allow the client to write atomically across multiple data objects across

multiple partitions without the use of locks. The write-only transactions are separated between local

write-only transactions and replicated write-only transactions. The local version is used between the

client and the local datacenter and the replicated version is used between datacenters to replicate the

local write-only transactions. Both use a Two Phase Commit (2PC) protocol and assign one of the target

partitions of the transaction as the coordinator. In the local write-only transactions, the coordinator first

prepares the writes by sending a prepare message to all the target partitions. These partitions create
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a new version of the data items and mark it as pending and respond with a yes vote to the coordinator.

When the coordinator receives all the votes, it sends a commit message and make the new value visible

and respond with an Acknowledge (ACK) to the coordinator. When the coordinator receives all the ACK,

the coordinator ends the transaction and asynchronously propagates the transaction write by running

a replicated write-only transactions. Upon receiving a replicated write-only transaction, the transaction

coordinator must first check if all the dependencies are locally visible. When the dependency check

returns, the coordinator proceeds with a local write-only transaction.

The client migration could be supported in the same way as the COPS because the client keeps its

entire causal history and its operations could be stalled until all the dependencies are satisfied.

It is important to note that in more than 10% write workloads Eiger has a very poor performance [5].

This is probably due to the overhead of the dependency checks of the remote updates and the read

transaction probably need always two round of communication.

2.4.5 Clock-SI

Clock-SI [22] is an algorithm that enforces Snapshot isolation (SI) using loosely synchronized clocks in

a partitioned Data Stores. Most of the previous solutions that implemented SI in a distributed system

relied on a centralized timestamp authority that managed the assignment of commit timestamps. How-

ever, this centralized authority introduced a single point of failure and could be a bottleneck in heavy

workloads. Clock-SI overcame this problem by removing the timestamp authority, using instead loosely

synchronized clocks to order transactions commits.

Clock-Si’s read transactions return a consistent view of multiple keys across multiple partitions from

a consistent snapshot. Moreover, as the Cure’s read transactions, also return in two round of communi-

cation.

However, using clocks to achieve a consistent snapshot manifests as a challenge for two major

reasons. First, clock skew can cause snapshot unavailability, this occurs when a partition P1 issues a

read transaction T1 with the snapshot timestamp of t to a partition P2 that is in snapshot t − θ, where θ

is the amount the P2 clock is behind P1’s. Therefore the Snapshot t is not yet available in P2, and if a

local write transaction in P2 commits between t− θ and t this change must be included in T1’s snapshot.

Second, a pending commit of a write transaction can cause a snapshot to be unavailable. If a write

transaction T1 with a snapshot timestamp t that updated the value of x, and started a commit operation

at t′ and finished the commit at t′′, where t < t′ < t′′, if a read transaction T2 starts with snapshot

timestamp between t′ and t′′ and tries to read x, it should not return the value written by T1 because it is

not certain if the commit will succeed, however we also cannot return the earlier value, because, if T1’s

commit succeeds, this older value will not be part of a consistent snapshot at t′′.

Both examples are instances of a situation where the snapshot specified by the snapshot timestamp
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of a transaction is not yet available. Clock-SI deals with this problem by delaying the read operation until

the snapshot becomes visible. In both cases, delaying a read operation does not introduce deadlocks,

an operation waits only for a finite time until a commit operation completes, or a clock catches up. A

possible optimization to reduce the probability and the duration of the read operation being delayed is

by assigning a slightly older snapshot timestamp to the read transactions, having a cost that the read

transaction return more stale data. This could the achieved by assigning to the read transaction a

snapshot timestamp lower than the most recent timestamp snapshot by ∆. If we want the most recent

data, the ∆ needs to be set to 0. On the other hand, if we want to reduce the probability of the read

operation being delayed, we could set the ∆ to the maximum between the time required to commit a

transaction to stable storage synchronously plus one round-trip network latency, and the maximum clock

skew minus one-way network latency between two partitions.

The write transactions in Clock-SI are very similar to the Cure’s [5], and the only difference is that

the Clock-SI concurrent write transaction over the same items abort this is to ensure a much stronger

isolation model (SI) than the Cure’s transactional causal consistency.

2.4.6 Orbe

Orbe [18] is a distributed key-value store that provides read-only transactions using loosely synchronized

clocks with causal consistency. Orbe requires two round of messages to execute a read-only transaction

in the failure-free mode while COPS requires maximum two rounds. Also, Orbe only tracks the nearest

dependencies at the client side, compared to COPS that the client has to track all the dependencies

explicitly.

The key-value store is fully replicated across datacenters. Each datacenter is divided into N par-

titions, one per server and there are M different replicas. Clients performs the operations in a local

datacenter.

The client keeps track of its causal history by maintaining a dependency matrix (DMc) with N rows

and M columns and a physical dependency time (PDTc). PDTc is the most recent update timestamp

that the client depends on its session.

Each partition maintains a version vector (V V ), which consists of M non-negative integer elements,

that correspond to a logical clock of updates received from the replicas and the local updates. Also,

every partition maintains a physical vector clock (PV V ) with one entry for each replica containing the

corresponding last seen physical clock value, to maintain this clock every partition sends periodically a

heartbeat containing its current physical clock value.

When the client issues an update to an object, the client sends with the request its PDTc and DM

to the local server responsible for the partition. The partition upon receiving the request waits until its

clock is greater than the PDTc, this ensures that all the causal dependencies of the client are satisfied
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before the update occurs. Then the partition creates a new version of the data object timestamped with

the current physical clock value and the logical clock value. Attached to the new version is the DMc, that

afterward will be used on replication. The timestamp is then returned to the client that updates its PDTc

to the maximum between the received physical timestamp and its current PDTc.

After the update to an object occurs, the server propagates the new version with the corresponding

metadata. The receiving server uses the DM and the V V to verify the dependencies. It looks at the

corresponding row of the same replicas and compares it to the V V . If all the values in V V are greater

than or equal to the corresponding entries in the DM the server can go to the next step. If not, it

means that the operation depends on other operations that the current datacenter may not store. So,

the server contacts the corresponding servers, making an explicit dependency check. If they fulfill the

dependencies, the remote update can be made visible and the corresponding vectors (V V and PV V )

entries updated.

When the client issues a read-only transaction, it sends a read set to one partition. The partition upon

receiving the request associates to the transaction a snapshot timestamp, similarly to [22] the Snapshot

Timestamp (ST) is the current physical clock value minus ∆, where ∆ is some positive number usually

the time of one network round-trip. This reduces the probability of the read operation being delayed and

the duration of the delay. If the partition does not contain an item from the transaction read set, the

partition reads from another local partition that contains the item. However, before that partition could

read the item it must first delay the read until two conditions hold: first the transaction ST must be lower

than the partition current clock value, second the transaction ST must be lower than the partition’s PV V .

When the two conditions hold, the partition responds with the highest version of the item that is lower

than ST. After all the reads finish, the client receives a set of values from the requested items and

updates the Physical Dependency Time (PDT) to the maximum of all retrieved items timestamp and the

current PDT.

However, this creates a problem in the face of failing servers or network partition between datacen-

ter, as the transaction read is delayed until ST < PV V , this means if a partition fails and stops sending

heartbeats the transaction needs to be stalled until the partition recovers, because the replica is un-

certain that all the dependencies are satisfied. To mitigate this problem when a transaction is delayed

past some threshold, the transaction ST is changed to a lower value. This will return a more stale data

in favor of reducing the delay of the read operation. However, if the downtime is very high, no useful

progress will be made until the partition recovers, so to mitigate this problem Orbe changes to a failure

mode. This mode uses a two-round read similar to Eiger [8] ensuring that more recent data is returned

and the system progresses.

21



2.4.7 GentleRain

GentleRain [20] is a causally consistent key-value store that implements causal consistent read-only

transactions. The contribution of this system is that it uses a physical timestamp to track dependencies

which reduce the communication and storage overhead and eliminates dependency check messages

for updates improving throughput compared to COPS [14] and Orbe [18].

The clients only have to store two timestamps, a PDT as in Orbe and the last seen Global Stable

Time (GST).

The server only maintains a physical vector clock (PV V ) with one entry for each replica containing

the corresponding last seen physical clock value and a GST. The lowest entry in the PV V is designated

as Local Stable Time (LST), that is a lower bound of all the updates visible in all the replicas.

GST is the lower bound on the minimum LST of all partitions in the same datacenter. This value

could be calculated by the partitions at the same datacenter periodically exchanging between each

other their LST. However, merely exchanging the LST between partitions could be a bottleneck and limit

the scalability in the presence of a high number of partitions. To efficiently derive the GST, GentleRain

uses a tree. Child nodes send their LST to the parent node, upon receiving all the LST from the children

it sends the lowest one to its parent node and this process repeats until the root node receives all the

LST. The root node then calculates the GST and pushes it down the tree, thus saving the number of

messages needed to calculate the GST.

GentleRain’s update operation the client only sends its PDT. The server stalls the update until

its clock is greater than the PDT received. Afterward, creates a new version assigned with the update

timestamp and updates the PV V . The server returns the update timestamp to the client and propagates

the update to the replicas.

The server upon receiving a remote update, creates a new version. However, this version is not

visible to local clients until the partition GST becomes greater than its update timestamp.

When the client issues a read-only transaction to any server in the client’s local datacenter, this

server will act as the transaction coordinator. The request contains the item set, the client’s GSTc and

PDTc. If the coordinator’s GST is lower than the GSTc, it updates the GST and starts requesting the

item with a timestamp lower than the GST to the corresponding partitions. The coordinator returns the

collected item values with the maximum update timestamp and the maximum GST. Upon receiving the

reply, the client updates its dependency time and the GSTc.

However using the read operation it is possible that a client could read an item that is not yet in the

GST, and so the read-only transactions will violate the causal consistency. If the PDTc and GSTc are

only apart by some defined threshold, the coordinator delays the read until the PDTc < GSTc, in the

case that the difference is greater than the threshold then the coordinator will use the protocol used in

Eiger [8] for causally consistent read-only snapshots.
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2.4.8 Yesquel

Yesquel [23] is a key-value store that in the other end of the spectrum from the system mentioned

above because in opposite to all the systems that offer very high availability sacrificing all the interesting

features that relational databases provided such as ACID transactions, joins, between clauses, and

others. The Yesquel provides all the features of a SQL relational database, however scales as well

as NoSQL in the same type of workload. To support this type of operations efficiently in a distributed

fashion, Yesquel implements a Distributed Balanced Tree (DBT) heavily inspired in a B+Tree. DBT

consists of a tree where the nodes are spread across servers, the leaf nodes of the tree contain the

values and the keys, and the interior nodes stores keys and pointers to other nodes.

Clients cache the inner nodes of the tree locally. This works because B+tree have a large fan-out

and relatively few inner-nodes. Caching the tree allows the clients to search in the tree locally and only

need to contact the leaf node, and so reducing the number of messages needed. However, the cache

of the client becomes outdated as the tree is dynamic and changes over time as the nodes are split or

merged due to insertion, deletion or replication. To solve this problem each node holds a fence interval,

that is the lowest and the highest value key that the node contains, before fetching from the leaf node

the client request a fence interval test, if the key is in the fence interval the client can proceed with the

operation. If not the client goes up the tree to test the parent nodes until it finds a node that contains

the wanted key, at the same time the client updates its tree locally in the cache, due to the nature of this

type of trees the upper nodes rarely change and in the majority of time it can rebuild only a part of the

cache without needing to fetch the whole tree again. When the client finds the node that satisfies the

fence interval, it starts going down the tree and updating its local cache until reaching the leaf node.

Unlike a normal B+tree that split due to a tree node being overfull or empty, the Yesquel also slips

overloaded nodes. This operation is called load splits. Yesquel estimates the workload of the node

by keeping track of the number of accesses to partitions. If a node is overloaded, the node is split

according to the estimated workload as each node receives approximately half of the workload. However

is possible that one key is extremely popular, and no optimal split could be done, so the key is replicated

and the node is split according to that key, to the lower bits of the key are attached random numbers

and the client when searching for key also attaches some random generated number allowing to split

the load between replicated keys.

Each client has a query processor making processing capacity increase linearly with the number of

clients, which allows the system to scale well even with a high number of clients.

Yesquel’s read-only transaction do not block or abort. To improve latency, the client acts as the

transaction coordinator. As the state of the coordinator is irrelevant for the transaction outcome, the

system can recover from fails by running periodically a function that checks the pending transaction and

aborts them in cases of detecting falling servers or coordinator. Yesquel uses physical clocks to order
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operations similarly to the clock-Si, however, uses a much stronger 2PC with locking for write operations.

Making Yesquel perform very poorly in write-heavy workloads.

2.4.9 ChainReaction

ChainReaction [19] is a geo-distributed key-value data store that offers causal+ consistency, as the name

suggests it was developed on top of chain replication [24]. ChainReaction supports causal read-only

transactions. However in contrast to other systems such as COPS that assume linearizability inside the

datacenter. That is all the reads are performed in the tail of the chain. In contrast, ChainReaction allows

the read operation in the middle of the chain without breaking causal consistency and so improving the

overall throughput.

The client tracks its causal history by maintaining a table with one entry for each item viewed during

the client session. This entry contains the item’s version and the chain index vector. The chain index

vector contains an identifier that captures the position on the chain from where this item was last read,

one entry per datacenter. All the read operation that the client does must have this metadata attached

to the request.

The client update request must contain the key of the object, the new value, and a compression of

all the read objects by the client since the last update. This update is forwarded to the chain head node

that assigns a new version number to the update and then propagates to the following nodes. When the

update is replicated at k nodes then the update is denominated as a k-stable update. Only then, that the

update result is returned to the client with the new version number and index of the last node that turned

the update k-stable. When the update reaches the tail of the chain, it is denominated DC-Write-Stable.

After the chain head assigns a new version number to the update, this update is scheduled for

replication and then propagated in batches to the other datacenters. To ensure that the update respects

the causal history of the client, it is only visible after all the versions of the objects that this update

depends are DC-Write-Stable in that datacenter.

When the client issues a read operation to the local datacenter and the chain length of the datacenter

is equal to the chain index entry, every node in that chain can answer the request without needing to

wait for a remote update. Otherwise, the request could be answered by all the nodes until the one that is

specified in the chain index. However, as the updates are propagated asynchronously, it is possible that

the item version that the client wants to read is not yet present in the head of the chain. So the head of

the corresponding object in that datacenter needs to wait for the remote update or redirect the client to

a datacenter that has that version number of the object.

The implementation of read-only transaction uses a sequencer process per datacenter. This se-

quencer is used to order all the put operation and reads that are part of a read-only transaction. The se-

quence number process maintains a different sequence number for each chain. To ensure that the client
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read objects respecting causal+ consistency even when updates are applied concurrently and without

blocking update operations, ChainReaction keeps multiple versions of the same object. When the client

issues a read transaction, it first must request the sequence number for each chain that contains the

targeted objects. This sequence number is assigned by the sequencer and issues an individual read

for the heads of the chain that contain the objects. The object returned has the last update sequence

number, lower than the number assigned to the transaction.

Due to the asynchrony of the system is possible that the sequencer will order a put operation before

the transaction and the value is not yet available in the head of the chain. This could be mitigated by

stalling the read transaction until the write becomes visible or a timeout occurs leading to a transaction

abort. It is also possible that the client has a dependency on an object read in a different datacenter that

is not yet visible. In this case, the transaction is aborted and retried in a two-phase procedure. First, all

the dependencies that have failed are verified by using a blocking read operation that blocks until the tail

of the chain contains the object makes visible the version from which the client is dependent. Afterward,

it reissues the transaction, and it is guaranteed to succeed, it is important to note that this case is very

slow compared to the normal version.

2.4.10 Wren

Wren [25] is a distributed key-value storage system that extends the ideas behind Cure [5]. Cure en-

forces causality and atomicity at the cost of potentially blocking read operations. For example, the

snapshot assigned to the client’s transaction may be ”in the future” concerning the snapshot installed by

a server from which T read an item. Also, Eiger’s second-round read suffers from the same problem.

As the client can read a partially committed value that is still pending at the other partitions, instead

of blocking the reads, Eiger issues a commit check to the coordinator to know which versions it can

safely return. Wren avoids blocking by providing to a transaction a snapshot that only includes writes of

transactions that have been installed at all partitions.

Each partition holds two timestamps. One LST such that all transactions with a commit timestamp

lower than or equal to LST have been installed at all partitions. The other is responsible for tracking

the remote updates received from the replicated partitions in remote datacenters. The last one is called

Remote Stable Time (RTS). Periodically partitions in the same datacenter exchange the lowest prepare

timestamp minus one and the latest commit timestamp received from a replicated partition. LST and

RTS are set to the minimum received from all local partitions.

The read transaction fallows the logic as Cure. However, as the clients are assigned snapshots

slightly in the past, it does not satisfy Monotonic Reads as the snapshot assigned to the client will not

contain the client’s latest writes. To avoid blocking clients until it is snapshot becomes visible, Wren

exploits the fact that the only client dependencies that may not be in the local stable snapshot are the
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Table 2.1: Systems that offer causal consistency. R represents the number of read rounds and V the number of
rounds that return values. NBR and WTX respectively represent non-blocking reads and write trans-
actions. N represents the number of partitions, M the number of data center and ts the physical clock
value.

System R V NBR WTX Metadata Size Strategy Concistency
Ramp [21] ≤ 2 ≤ 2 X X O(k) Explicit Check MAV
ChainReaction [19] ≥ 1 ≥ 1 7 7 O(M) Sequencer Causal
Orbe [18] 2 1 7 7 O(N x M) Stabilization Causal
GentleRain [20] 2 1 7 7 1 ts Stabilization Causal
COPS [14] ≤ 2 ≤ 2 X 7 O(|deps|) Explicit Check Causal
Cure [5] 2 1 7 X O(M) Stabilization TCC
Eiger [8] ≤ 3 ≤ 2 X X O(|deps|) Explicit Check TCC
Wren [25] 2 1 X X 2 ts Stabilization TCC
FastCCS ≤ 2 ≤ 2 X X O(N) Stabilization TCC
Yesquel [23] 1 1 7 X O(k) Explicit locks SI
Clock-SI [22] 2 1 7 X 1 ts Stabilization SI

items that the client wrote. Therefore, Wren implements a client-side cache that contains the client’s

more recent writes. As the LST progresses and the client writes become visible, it can safely remove

the writes from the cache. This solution presents several problems, namely, storage and computation

overhead, to maintaining the cache.

The write transaction follows the same logic as Cure.

2.5 Comparison

The implementation of different forms of transactions in systems with low consistency has been much

studied in recent years, and it is possible to find different approaches to the problem in the literature, that

were described in detail in Chapter 2. In this section, we will compare and discuss how the concepts and

ideas presented in the related work have inspired us in the design of FastCCS. However, this comparison

is not trivial due to different systems having different types of consistency and transaction isolation

guarantees, so to make a reasonable comparison between the systems, this section will be subdivided

into comparing the different techniques, the types of transactions and consistency guarantees. Table 2.1

summarizes the information of this comparison.

Strategies can be classified into four broad categories according to the technique they use to en-

sure that the transaction is performed in a consistent cut, namely: stabilization, serialization, explicit

dependency check, and explicit locks. Next, we will briefly discuss each of these techniques.

• The strategy in which the coherent cut is obtained by stabilization, do it by ordering the transactions

in total order, based on a timestamp. A partition can satisfy a read operation made by a transaction

that executes at the instant t when it knows that it has already become aware of the effect of all

write transactions that were executed with timestamp lower than t. Systems such as Orbe [18],
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GentleRain [20], and Cure [5], use physical clocks as the timestamp to order the transactions.

Using the physical clock has the advantage of them monotonically increasing without the presence

of events. Unfortunately, since it is impossible to synchronize clocks with complete accuracy,

partitions need to exchange information to know which timestamps are in the past of all other

nodes. Moreover, it is possible due to clock skew that a client reads a value that the timestamp is

the ”future” for some partition, forcing the partition to stall the operation until its clock catches up.

Wren [25] uses similar strategies though using hybrid clocks.

• In systems where the consistent cut is obtained by serialization, a centralized component is used,

which takes cognizance of all transactions, and orders them in full. This solution has the disadvan-

tage of creating a bottleneck in the system, which limits the scalability of the system. One of the

systems that implement this strategy is ChainReaction [19].

• Systems that use explicit consistent cut verification require that all write transactions to be asso-

ciated with metadata that captures the client’s causal past. System like COPS [14], Eiger [8] and

Ramp [21] use this strategy. However, the client must piggyback causal dependency information

and execute expensive dependency checks across partitions.

• Systems that use explicit locks to read from consistent cut significantly limit the throughput of

write operations due to the need to abort transactions in the presence of a deadlock or concurrent

accesses to the same data items. Making them incompatible with high availability. One of the

systems that implement this strategy is Yesquel [19].

Some systems try to pursue general-purpose transactions. In their pursuit of general transactions,

these systems all choose consistency models that cannot guarantee low-latency operations. These

include Yesquel and Clock-SI. Other systems such as Wren and Cure, try to give the give to the client a

much weaker form of general-purpose transaction guaranteeing only TCC. In these types of transactions,

the client is responsible for caching its writes and execute all read operations from a specific snapshot.

However, the pre-set of the snapshot has a cost. In this case, one round of communication and was

previously shown [7] this cost is not negligible.

Other systems take one step back and implement only read transactions without implementing any

write transactions. Some of these systems are ChainReaction, Orbe, GentleRain, Cops. Dropping write

transactions for lower latency introduces several artifacts that make it more difficult for programmers to

reason about. These types of transactions are incompatible with TCC.

Eiger and Ramp have a much moderate approach. These systems separate read from write trans-

actions. Thus, they can optimize read transactions without introducing too much latency. More, over it is

compatible with TCC.
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Now we will discuss how FastCCS places in the related work. The goal of this thesis is to create

a system that satisfies the following goals. Our system must support scalable and low latency trans-

actions. Making two strategies incompatible with our requirements. Explicit locks as this strategy are

incompatible with low latency and serialization due to the limitation of the scalability. We opted not to

use explicit dependencies as it would introduce too much metadata overhead at the client-side [5], due

to the client needing to piggyback its operations. So, we chose stabilization as a strategy to be imple-

mented. However, trying to avoid some downfalls of previous systems that implemented this strategy

with physical clocks. We opted to use logical vector clocks that avoids blocking the client reads due to

clock skew.

For the type of transaction, as we mentioned, one of our goals is low latency. General transactions

have the disadvantage of requiring two rounds of communication. Moreover, as we FastCCS typical

workload would be read-heavy, it would introduce unnecessary latency; however, as we want to provide

TCC to avoid some anomalies related to write operations. Thus, we opted for read-only and write-only

transactions, as they are compatible with TCC.

Summary

This chapter has introduced the consistency guarantees that apply individual read and write operations

and those that apply to transactions. Usually, distributed storage systems prefer weak consistency

models, as they offer the lowest impact on performance. However, they are difficult to reason with, even

more, when interacting with multiple objects simultaneously that lead to unexpected behaviors. While

many cloud stores offer different forms of consistency, few apply this consistency over an operation that

interacts with multiple keys. In the next chapter, a novel system that extends TCC is proposed, aimed at

offering low latency and high throughput.
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This chapter introduces FastCCS, that offers low latency Transactional Causal Consistency while

preserving system concurrency. Section 3.1 expresses the goals that need to be fulfilled. Section 3.2

overviews the design of FastCCS, highlighting each component and their interaction. Section 3.2.2

describes the system metadata. Section 3.3 details the different protocols used in FastCCS. Section 3.4

provides a proof of correctness for our algorithms. The library used by clients to access the distributed

key-values store when using FastCCS is described in Section 3.5. Section 3.6 describes how partitions

are implemented in FastCCS. Section 3.7 describes how the system limits the number of old versions.

Section 3.8 describes the behavior of FastCCS in the case of failing partitions or network partitions.

Finally, Section 3.9 describes the implementation of the system.

3.1 Goals

In many cloud applications, read operations dominate the workload of the system [7]. For example,

99.8 % of Facebook distributed database operations [26] are reads and the latency of those operations

is particularly important because a client request can lead to thousands of reads and some of these

reads need to be done in sequence, and the critical path can reach dozens of reads [27].

Therefore, it is crucial to offer an algorithm that supports non-blocking read operations with as fewest

as possible rounds of communication.

FastCCS focuses on providing read and write transactions for cloud application without increasing

significantly the overall latency experience by the user compared to eventual consistency, however pro-

viding to the client higher consistency guarantees.

3.2 Design

This section starts with a small introduction of the different system components, and then it overviews

the metadata that is used in the system to implement TCC.

3.2.1 System Components

Clients connect to a nearby datacenter, and applications strive to handle requests entirely within that

datacenter. Inside the datacenter, client requests are served by a front-end web server. Front-ends

serve requests by reading and writing data to and from storage tier nodes.

In order to scale, the storage cluster in each datacenter is typically partitioned across 10s to 1000s

of machines. As a primitive example, Server 1 might store and serve user profiles for people whose

names start with ‘A’, Server 2 for ‘B’, and so on.
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Figure 3.1: FastCCS architecture.

As a storage system, FastCCS’ clients are the front-end web servers that issue read and write oper-

ations on behalf of the human users. When we say, “a client writes a value”, we mean that an application

running on a web or application server writes into the storage system. The architecture is represented

in Figure 3.1.

3.2.2 Metadata

In the recent works was proven that it is impossible to achieve one round read transaction while support-

ing TCC or as they were called in the literature fast transaction without compromising availability [28].

Thus, the read transaction protocol needs at least two rounds of communication always to return a con-

sistent causal view over multiple keys. The optimal solution is to, in the majority of cases, only needing

one round of communication and the second round for the cases that it fails. The success rate of the

first round will influence the overall latency that the client experiences. So we can derive a two-step

algorithm in which the first part is optimistic, that reads the most recent available values, then has a

function that verifies if the first round was successful or not. The second part is for the times that the

optimistic read fails. The more metadata that the system stores with the versions, the more precise is

the assessment if the first round was successful. For example, if the system stores little metadata, the

system could conclude that the first round was unsuccessful and need to execute a second round that

would introduce more latency, even if, in reality, the result was causally consistent. This is called a false

dependency. Moreover, the metadata needs to be precise enough to determine the second round read

condition, or else, more rounds would be needed to return a consistent result. On the other end of the

spectrum, the system could store more metadata that would reduce the false dependencies at the cost

of a heavier first round and more storage overhead. Other solutions may include fetching more than one
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version of the keys in the first round, the more versions that are fetched, the lower the probability of the

second round occurring, however, with the cost of more expensive first-round reads. It becomes clear

that exits a balance between the number of rounds of communication and the size of the metadata.

FastCCS implements more precise metadata with the intent to reduce to the minimum the number

of second rounds without too large sized metadata that would detriment the overall performance of the

system. We will now describe the metadata implemented in FastCCS.

FastCCS attaches to each read or write transaction a timestamp, that is materialized in the form

of a vector clock of size N . Where N is the number of partitions in a datacenter, every time a write

transaction changes the value of a key, it is created a new version of that key, which is stored with the

commit timestamp of that transaction. The client also maintains a vector clock timestamp vc of size N

of the last operation that it performed. This vector clock tracks the client’s causal past. When a new

version of a key is created, it is passed by three states of knowledge: pending, confirmed, visible. A

timestamp associated with a pending transaction is temporary and will be updated when the transaction

is confirmed. A key passes to the state of visible when all the keys in that write transaction are confirmed

in all participating partitions. Every partition i keeps a sequence number that is incremented every time

that a new version of a key is created in that partition. This sequence number is denominated as sni.

Every partition i also maintains snapshot vector clock timestamp svci of size N , where every entry holds

the maximum value of snj observed by the partition i, denominated as snapshot vector clock. Every

key modified by a transaction with a commit timestamp lower or equal to the snapshot vector clock, are

guaranteed to be confirmed in all the partitions. Every partition i updates the value of the entry svci[i]

every time a transaction is confirmed in that partition. Moreover, partitions periodically exchange the

value entry of svci[i]. Every time that the snapshot vector clock is updated, the partition checks if there

exists transactions in the state confirmed with a commit timestamp lower or equal than the svci and

passes them to the visible state accordingly.

3.3 Protocols

In this section, there is a detailed description of FastCCS’s protocols, accompanied by algorithms 1

and 2, which are referenced through the text. The algorithms show the pseudocode for the protocols

that run in the client proxy and partitions, respectively. Figure 3.2 depicts the execution flow of a write-

only transaction, where the client cw issues a write transaction TW to keys a and b, that are installed

respectively in partition pA and partition pB . Figure 3.3 depicts the execution flow of a read-only trans-

action, where the client cR issues a read transaction TR to keys a and b, that are installed respectively

in partition pA and partition pB .
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Algorithm 1 Client code

. State kept by the client
1: vcc
. Handles a read transaction request

2: function READ ONLY TRANS(requests)
. Round 1

3: for r ∈ requests do . Send first round requests in parallel
4: send 〈 multiget slice r, vcc 〉 to r.p
5: receive 〈 multiget slice val[r] 〉 from r.p

6: repeat← ∅
7: for r ∈ requests do
8: vccmax(val[r].ctm[k], vcc[k]),∀k ∈ N
9: for r′ ∈ requests do

10: if val[r].svc < val[r′].ctm then
11: repeat← repeat ∪ r
12: break
13: if repeat = ∅ then
14: return val
15: else

. Round 2
16: for r ∈ repeat do . Send second round requests in parallel
17: send 〈 multiget slice by time r, vcc 〉 to pi
18: receive 〈 multiget slice by time resp val[r] 〉 from pi

19: return val
. Handles a write transaction request

20: function WRITE ONLY TRANS(requests)
21: cp← CHOSE RANDOMLY COORDINADOR PARTITION(request)
22: for r ∈ requests do . Send requests in parallel
23: send 〈 transactional batch mutate r, vcc, cp, SIZE(requests), txid 〉 to r.p
24: receive 〈 transactional batch mutate resp ct 〉 from r.p
25: if ct 6= ∅ then
26: vcc ← ct

3.3.1 Write-Only Transactions

The write transaction T is executed in two rounds of communication, in the following way. Let P(T )

be the set of partitions that store keys modified by T . In the first round, the client chooses one of the

partitions as the transaction coordinator as cp ∈ P(T ) (Algorithm 1, line 21). The client sends to each

partition ∀i ∈ P(T ) the new value of the modified keys and the coordinating identifier of the transaction,

the vcc and the number of participants in the transaction (Algorithm 1, line 23) (Figure 3.2, step 1) and

waits for the responses (Algorithm 1, line 24). Each partition, upon receiving this message, increments

its sequence number sni (Figure 3.2, step 2) and creates a new pending version of the key to which it

assigns a temporary commit timestamp cti where cti[j] = −1, i 6= j and cti[i] = sni (Algorithm 2, line 18 -

line 21). If the partition is the transaction coordinator, the partition waits for the other partitions to respond

to P(T ) otherwise the value of sni is returned to the coordinator (Algorithm 2, line 26) (Figure 3.2, step

3).
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Algorithm 2 Partition pi code

. State kept by the partition
1: svc, sn, pending, versions
. Handles a read transaction request

2: upon receive 〈 multiget slice r, vcc〉 from c do
3: resp← ∅
4: ctm← ∅
5: svci[k]← max(svci[p], vcc[p]),∀p ∈ N
6: for key ∈ r do
7: version← {w ∈ versions[key] ∧ svc ≥ w.ct}
8: ctm[p]← max(ctm[p], version.ct[p]),∀p ∈ N
9: resp← resp ∪ version

10: send 〈 multiget slice resp resp, ctm, svc 〉 to c
. Handles a second round read transaction request

11: upon receive 〈 multiget slice by time r, vcc〉 from c do
12: svci[k]← max(svci[p], vcc[p]),∀p ∈ N
13: for key ∈ r do
14: version← {w ∈ versions[key] ∧ vcc ≥ w.ct}
15: ctm[p]← max(ctm[p], version.ct[p]),∀p ∈ N
16: resp ∪ version

. Handles clients write transaction request
17: upon receive 〈 batch mutate r, vcc, cp, size, txid〉 from c do
18: ct[j]← vcc[j], i 6= j,∀p ∈ N
19: ct[i]← INCREMENT AND GET(sn)
20: versions[r.key]← versions[r.key] ∪ 〈r.value, ct〉
21: pending ← pending ∪ 〈txid, 〈r, ct, c〉〉
22: if cp = pi then
23: prepared = ∅
24: pending[txid]← pending[txid] ∪ 〈size, prepared〉
25: else
26: send 〈 prepared ct[i],txid 〉 to cp
27: upon receive 〈 prepared snt, txid〉 from pj do
28: pending[txid].ct[pj ]← snt
29: pending[txid].prepared← pending[txid].prepared ∪ pj
30: if SIZE(pending[txid].prepared) = pending[txid].size then
31: for pj ∈ pending[txid].prepared do
32: send 〈 commit pending[txid].ct, txid 〉 to pj
33: COMMIT LOCAL(txid)
34: send 〈 batch mutate resp pending[txid].ct 〉 to pending[txid].c

35: upon receive 〈 commit ct, txid〉 from cp do
36: COMMIT LOCAL(txid)
37: send 〈 batch mutate resp ∅ 〉 to pending[txid].c
38: function COMMIT LOCAL(txid)
39: wait for svc[i] + 1 = ct[i]
40: for key ∈ pending[txid].r do
41: version← w ∈ versions[key] ∧ w.ct[i] = ct[i]
42: version.ct← ct
43: pending ← pending \ txid
44: svc[i]← ct[i]
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Figure 3.2: FastCCS write transaction. The numbers represent the steps in the algorithm. The client cW issues a
write transaction TW to partitions pA and pB .

The second round begins when the coordinator receives a response from all partitions (Algorithm 2,

line 33) (Figure 3.2, step 4). The coordinator creates a commit timestamp for the ctT transaction, where

ctT [i] = max(vcc[i], sni),∀i ∈ P(T ). The coordinator sends this value to all partitions in P(T ) (Figure 3.2,

step 5). Receiving the value of ctT , the partition passes all versions of keys modified by transaction T

to the committed state, associating with these versions the value of the final timestamp. Finally, each

partition waits until svci[i] + 1 ≥ ctT [i] (Algorithm 2, line 39) (Figure 3.2, step 6), at which point it is sure

that all transactions with a commit timestamp lower than ctT are already committed in the partition i.

When this condition is met, a response is sent to the client (Figure 3.2, step 7). The write transaction is

considered terminated when the client receives a response from all the participating partitions, ensuring

that all values that the transaction wrote are already committed on all partitions. The coordinator sends

the transaction ctT to the client. The client adopts ctT as its new client timestamp (vcc = ctT ) (Figure 3.2,

step 8).

3.3.2 Read-Only Transactions

The read transaction T runs in at most two rounds of communication as follows. Let P(T ) be the set of

partitions that store keys read by T .

In the first round, the client sends to each i ∈ P(T ) partition the keys it wants to read , along with

its vcc (Figure 3.3, step 1) and waits for a response from all partitions in P(T ). Each partition, upon

receiving this message, updates its snapshot vector clock by making svci[k] = max(svci[k], vcc[k]),∀k ∈
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Figure 3.3: FastCCS read transaction. The numbers represent the steps in the algorithm. The client cR issues a
read transaction TR to partitions pA and pB .

N (Algorithm 2, line 5). This is possible since vcc represents the maximum timestamp the client has

ever seen, and if the effects of a transaction are already visible it means that the transaction has already

been committed on all partitions and thus making possible to advance svc to vcc safely. This ensures

that all transaction effects that the client has observed in the past will be visible, thus ensuring atomicity

and causality.

Partitions return newer versions with ctT ≤ svc, svc, and the maximum commit timestamp read ctm,

where ctm[k] = max(ctm[k], ct[k]),∀k ∈ N (Algorithm 2, line 5) (Figure 3.3, step 2).

When the client receives a response from all partitions. Client checks if svci ≥ ctj ,∀i, j ∈ P(T )∧i 6= j

(Algorithm 1, line 10)(Figure 3.3, step 3) and updates its vcc = max(ctmi[k], vcc[k]),∀i ∈ P(T ) ∧ ∀k ∈ N

(Figure 3.3, step 4). If the condition is met, the client ends the transaction and returns the values. If the

condition is not met, the client has read of a snapshot that may or may not be consistent. Therefore, the

client must start a second round of read operations on partitions that did not meet the previous condition

by sending their new vcc (Figure 3.3, step 5). Partitions receiving a request from the second reading

round return the latest versions with ctT ≤ vcc, and update their snapshot vector clock similar to the first

round (Figure 3.3, steps 6 and 7).

The second round ensures that a coherent causal snapshot will be returned. Moreover, the stabi-

lization protocol ensures that all versions that the client read in the first round are already installed on all

partitions, so it is not necessary to block reads until the new version is installed. Since the client reads

versions that satisfy ctT ≤ vcc, no extra rounds of communication will be required because the reads

returned in the first round have a ctT ≤ vcc.
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3.3.3 Stabilization

For the write transaction effect to become visible, the commit timestamp of the transaction must be lower

or equal to the snapshot vector clock. For that reason, it is essential to implement an algorithm that

guarantees the progression of the snapshot vector clock. FastCCS implements the following algorithm.

Each partition i is responsible for updating its snapshot vector clock locality svci. Let T be a write

transaction that modified one or more keys stored in partition i and which sequence number assigned to

the transaction in that partition is svci[i]+1. When the write transaction T goes from pending state to the

confirmed state and the sequence number assigned is svci[i] + 1, the partition increments its value of

svci[i]. Periodically, each partition i exchanges between all the other partitions its value of svci[i]. When

a partition j receives the value of svci[i], j updates its svcj to svcj [i] = max(svcj [i], svci[i]). Also the

clients help to progress the svc when they present their client timestamp, this is possible because the

client only observes versions that are committed in all partitions so the partition if receives a ct > svc

can safely update the svc to the ct. It is important to note that how partitions propagate their svc entry

does not influence the correctness of the algorithm and it is even possible that only the clients help to

progress the snapshot vector clock, with the cost of greater visibility latency.

3.4 Correctness

We provide an informal proof that FastCCS implements TCC by showing that the snapshot read by a

transaction is causally consistent and respects the atomicity of committed transactions. This proof is

based upon the proof presented in [5].

Proposition 1. If an update u2 depends on an update u1, then u2.ct > u1.ct.

An update u2 depends on u1 if the client’s previous read transaction of u2 read from a snapshot that

contains u1. From Alg. 1 line 8, the following inequality holds: vcc ≥ u1.ct. Since the commit vector clock

entry for each participating partition is generated by a sequence number sn attributed by the partition

to that transaction and sn is monotonically increasing. Moreover, from Alg. 2 line 18 all entries in the ct

corresponding to the not modified partitions will be equal to the entries of the vcc corresponding to that

partitions. It’s guaranteed that if the u2 updates keys in the same partition as u1, from Alg. 2 line 19 the

sequence number will be greater than the sn attributed to u1 in that partition, and for the keys updated in

different partition from u1 will be equal or greater than the vcc, as the commit timestamp is greater than

vcc and, vcc is greater than u1.ct, so u2.ct > u1.ct.

Proposition 2. A partition snapshot vector clock svci implies that the partition pi has received all updates

with commit vector clock ≤ svci.

Now we show that there are no pending updates with ct ≤ svci. When updating svci[i], the partition

i finds the minimum prepared time stamps from the transactions in the prepared phase. As sni is
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monotonically increasing and the svci[i] represents the minimum prepared time minus 1 (Alg. 2 line 39

and line 44), it is guaranteed that future transactions will receive a commit time which is greater than

or equal to this minimum prepared timestamp, guaranteeing that the partition has already committed all

updates for the snapshot svci.

Proposition 3. Reads return values from a causally consistent snapshot.

Proposition 1 and 2, together guarantee that by including all updates in a partition which have a com-

mit vector clock ≤ snapshot vector clock, the read returns values from a causally consistent snapshot.

This is true even when reading from multiple partitions because it reads from the same snapshot.

Proposition 4. Reading from a snapshot respects atomicity.

Atomicity is not violated even though updates are made visible independently by each partition.

All updates from a transaction belong to the same snapshot because they receive the same commit

vector clock. The visibility of an update is delayed until the same snapshot is available in all (accessed)

partitions, thus reading all or no updates from a transaction.

FastCCS implements TCC, as every transaction reads from a causally consistent snapshot (Propo-

sition 3) that includes all effects (Proposition 4) of its causally dependent transactions.

3.5 Client Library

This library is responsible for handling the splitting, routing, and re-assembly of the transactional re-

quests. As the transaction can span multiple partitions, the client library is responsible for splitting the

client’s request, and so hiding the internal structure of the replicas by forwarding requests to the correct

partitions. For knowing the correct partition, it uses a hashing function that is provided by Cassandra [29].

Moreover, to hide the internal algorithm of the transaction and to give an illusion to the client that the

transaction is executed as a single operation. The client library is responsible for the re-assembly of the

client request, and in case of Eiger [8] and FastCCS to check if the first round of parallels reads was

successful.

Also, the client library keeps track of the causal dependencies of the client to avoid introducing false

dependencies between thread-of-execution done on behalf of different clients. Each client has a unique

id that it uses to communicate with the client library so that the dependencies of different clients (e.g.,

operations done on behalf of c1 are not entangled with operations of c2). This unique id is also used to

generate the transaction id, by simply appending the unique client id to a sequence number.
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3.6 Data Partitions

Partitions store the keys and the values associated with those keys. Given that FastCCS relies on the

second round of the algorithm to return a consistent snapshot, it is possible that the targeted snapshot

was overwritten by concurrent write transactions, forcing the transaction to execute more rounds of reads

to return a consistent snapshot. So, to allow the transaction always to return a consistent snapshot

and to mitigate possible race conditions between write and read transactions, the system must keep

old versions of the values. To satisfy this requirement, partitions implement multi-version concurrency

control (MVCC) [1], making that if the partition needs to update a value of the key, it will not overwrite

the previous value instead will create a new version of that key.

3.7 Garbage Collection of Obsolete Versions

To limit the number of versions that are maintained in the system, partitions need to implement some

sort of garbage collection mechanism in order to delete versions that are no longer necessary. One

way to garbage-collect old versions is as follows. Partitions periodically exchange among them the

lower snapshot read by any active transaction; versions that are older than this snapshot can be safely

deleted. However, this approach requires more communication among partitions, increasing the overall

load on the network. Furthermore, in the presence of network partitions, garbage collection may stall,

because partitions would not be able to compute the lower snapshot. FastCCS implements the garbage

collection mechanism proposed in Eiger [8] that circumvents these problems by assuming that servers

can have their physical clocks loosely synchronized. This garbage collection strategy limits old versions

in two ways. First, the transaction has a timeout that specifies its real-time duration. If the timeout fires,

the client library restarts the transaction. Thus, servers only need to store values that were overwritten

during this timeout period. Second, the partition only retains values that could be requested in the

second round. Thus, a server only keeps versions that are newer than those returned in a first-round

within the timeout duration. This mechanism requires nodes to maintain additional metadata for each

version of the data, namely the last time at which that version has been accessed.

3.8 Faults

In this section, we examine the behavior of FastCCS in the face of faults. In a cloud environment, faults

of components such as servers, network equipment, or even power outage are common [3]. So the

design of the system needs to take in to account these types of scenarios.

Single server failures are common, FastCCS mitigates single server failures by creating logical
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servers composed by multiple physical servers. This can be implemented by running a Paxos [30]

group. For example, three server Paxos groups can withstand one server failure in the group.

If a client fails during the read transaction, this operation does not change the state of the system,

and the client does not hold any meaningful state. So the system can proceed normally.

If a client fails during the write transaction depending on which state the write transaction is, there

are two different outcomes to the write transaction. First, if the client fails during the first communication

round and only a portion of the targeted partitions receive the write operation, after the timeout of the

transaction triggers, the coordinator sends an abort operation to the participating partitions. If a non-

coordinating partition that already voted for the commit timestamp and the timeout triggers. The partition

sends a check commit to the coordinating partition to confirm if it is safe to abort the transaction. Second,

if the client fails after the first communication round the write proceeds as usual, and will be committed.

If a network partitioning occurs between the servers running the partitions, the client reads will con-

tinue to return results, however returning stale results. Clients executing write transactions will stall until

the partition is resolved.

3.9 Implementation

In order to evaluate the proposed system, it needs to be compared to other solutions that employ different

techniques. The chosen ones were: Eiger [8], for offering read and write transaction with multiple rounds

of reads (at most three) and Wren [25] for comparing if two round of reads has a higher overhead than

reading in at most two rounds although with higher metadata overhead. In addition to the causally

consistent systems, FastCCS is also compared with a system that only offers eventual consistency

as these types of storage systems are predominant in cloud applications. It is expected that eventual

consistency should offer the best latency, as it makes updates visible as soon as they are received and

only needs one round to satisfy read transactions without any metadata that normally be used to enforce

consistency. We have implemented FastCCS as a modification of Eiger’s fork of Cassandra. Wren has

also been implemented by modifying Eiger’s fork of Cassandra. For Eiger, we have just used the original

code. For eventual consistency, we used the original fork of Cassandra from which Eiger is based. Our

prototype of FastCCS added and modified 3000 lines of Java code to the existing 75000 lines of code in

Cassandra. Alongside the implementation of the prototypes in Cassandra, we have also implemented

all four prototypes in PeerSim. This implementation uses approximately 2000 lines of Java code. As

described in the next chapter, simulations are used in the evaluation to estimate the performance of the

algorithms in settings with large numbers of nodes.

40



Summary

This chapter has addressed the design an implementation of FastCCS, a cloud store that offers TCC

without introducing high latency overhead while preserving the causal consistency of the system, by

introducing a protocol which supports non blocking read transactions with as few rounds of communi-

cation as possible. The next chapter presents a comprehensive evaluation of the proposed solution’s

prototype.
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This chapter describes the experimental setting we have used to assess the performance of FastCCS

in comparison with other systems previously proposed in the literature and presents the results that we

have obtain from our experiments. The chapters starts by stating the main goals of the evaluation exer-

cise (Section 4.1). Next, Section 4.2 describes the experimental setting that we have used to conduct

the experiments. The presentation of the experimental results starts in Section 4.3, with the analysis

of each system operation latency experienced by the client. Then, Section 4.4 explores the impact that

each system has in the throughput, when compared to eventual consistency. Section 4.5 looks on how

each system can scale horizontally with the increase in the number of partitions. Finally, Section 4.6

discusses the bottlenecks observed in different systems.

4.1 Goals of the Evaluation

The main goal of the evaluation is to understand the impact of implementing causal consistent transac-

tions and how it affects the performance of the system compared to other alternatives that offer lower

consistency guarantees and no isolation levels between transactions such as eventual consistency. We

evaluate different qualities such as operation latency, throughput, and scalability.

The evaluation also aims at understanding how FastCCS performs when compared to other sys-

tems that have been previously proposed in the literature, namely: Eiger [8], Wren [25], and a system

that offers only eventual consistency. The latter works as a common baseline, as it provides the best

achievable result for each test, giving insights regarding the overheads imposed by the systems that

offer stronger guarantees.

4.2 Experimental Setting

In our evaluation, we use two different experimental testbeds that complement each other, namely, we

perform experiments using simulations and we perform experiments in a real deployment on Amazon

Web Services (AWS) [31]. Simulations allow us to experiments with system sizes that we cannot afford

to deploy in AWS. The AWS deployment allow us to assess the performance of FastCCS in a realistic

setting, and also to offer some form of validation of the results obtained using simulations.

Simulations have been performed using PeerSim [32], which was augmented with some modules

that help in increasing the fidelity of the results. Namely, PeerSim has been configured with extensions

that simulate First In, First Out (FIFO) point-to-point channels with configurable network latency and

finite bandwidth. Each node has a bandwidth limit of 1 Gb/s, and each message is randomly delayed

with an average value of 0.5 ms (latency observed between servers in an AWS data center [33]). Since

the performance of the various algorithms depends fundamentally on the number of rounds and the
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Table 4.1: Parameters of the dynamic workload generator.

Parameter Default Range
Keys/Read 5 2-64
Keys/Write 5 2-64
Partitions 8 2 - 64
Value Size (B) 128 2 - 1024
Write fraction 0.05 0.01-0.5

need to wait for a causal cut, to speed up simulations we do not aim at capturing CPU utilization or

overhead of the disk access time. This allow us to quickly obtain results that approximate well enough

the real setting. However, as we will note later, in some systems, the CPU can also be a bottleneck, in

particular in systems that have to manage large amounts of metadata. These effects are only captured

in the real deployment.

For the real deployment we have built a prototype of our system using Cassandra, a well known key-

value store which is very used in the industry. For running the experiments, the prototype was deployed

in AWS. In these deployments, each partition run within m4.2xlarge instance with 8 vCPUs and 32 GB

of memory. Each client machine runs a client library that issues read and write transactions eagerly.

In order to benchmark the proposed architecture we used the a modified version of the stress test of

Cassandra. The modifications we have introduced were the minimum necessary to make it work with

the new client library.

Unless specified, the experiments presented in this chapter have as default parameters presented in

Table 4.1. Clients populate the key-value store before running the experiments. The experiments run in

five trials of 1 minute, and we have ignored the first and last quarters of each trial to avoid experimental

artifacts.

Clients are configured to execute requests to the system in closed-loop, waiting for the response

to the previous request before placing a new request. When a client issues an operation, it chooses

with a certain probability whether it corresponds to a write or read transaction (different experiments

can use different read/write ratios). The keys accessed by each request are selected using a Gaussian

distribution (the number of keys accessed also varies with the experience).

4.3 Latency

The first experiment compares the latency observed by the clients when they perform read and write

operations using different systems. It is expected that read operations present a lower overall latency

when compared to write operations. In fact, our target systems have been designed to optimize the

latency of read operations, which are assumed to be the most frequent operations.

Figure 4.1 depicts the Cumulative Distributed Function (CDF) of the latency observed by the clients
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Figure 4.1: Cumulative distribution function for each system’s read and write latencies.

for both read and write operations. These numbers have been collected using the deployment on AWS.

We start by discussing the performance of reads. Not surprisingly, the lowest latency if offered by a

system that offers only eventual consistency. This can be explained by the fact that this system is the one

that requires less metadata and less coordination (operations only need one round of parallel requests to

return a result). Interestingly, FastCCS closely follows the performance of an eventual consistent system

for read operations. This happens because FastCCS implements a good tradeoff between metadata

and accuracy: it does not require clients to maintain complex dependency trees but avoids most false

positives, and therefore allows most reads to execute in a single communication round. Eiger has less

precise metadata compared to FastCCS, which leads to more false dependencies which, in turn, often

generate a second round of reads. Moreover, in Eiger, a write transaction becomes visible as soon as

the partition receives the commit, so the second round of reads may target a pending commit value; the

partition needs to issue a request to the coordinator of that transaction to confirm if it is safe to return

the new version. Eiger also needs to maintain a dependency tree in the client, which adds additional

overhead in the client, that introduces even more latency. Finally, Wren presents a read latency that is

higher than all the other systems because it always needs two rounds to offer causal consistent.

Looking at the latency of write operations, the tradeoff implemented by FastCCS becomes clearer.

In order to favor read transactions, FastCCS sacrifices write latency, as the client waits for the update of

the write transaction to be installed in all partitions. Thus, FastCCS is particularly well suited for read-

heavy workloads, where slower write operations are not able to have a significant impact on the overall

throughput significantly, as we will see next.
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Figure 4.2: Read throughput as a function of Tx length: AWS vs simulations.

4.4 Throughput

This section analyzes the throughput achieved by the different systems. We measure throughput as the

number of transactions executed by the client per second. We presents the results using absolute values

and also results normalized with regard to the throughput achieved by the eventually consistent system;

the later makes easier to assess the overhead incurred when one increase the consistency guarantees

to TCC. Furthermore, in this section we present results obtained both using simulations and the real

deployment on AWS. This allows us to assess how accurate is our simulation environment.
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4.4.1 Effect of Tx Lenght on Read Transactions

Figure 4.2 presents the throughput of the different systems, when executing transactions with a write/read

ratio of 0.05, as a function of the objects accessed in each read transaction. As in can be observed,

FastCCS is able to closely follow the performance of system that only offers eventual consistency, with

a penalty in the order of 10%. Both Eiger and Wren are much worse. For transactions that touch a small

number of items, the number of communication rounds of each protocol dominates the performance

and, therefore, Wren exhibits a poor throughput. However, for transactions that touch a lot of objects,

the performance of Wren starts approximating the performance of other systems, even surpassing Eiger

for long transactions. This is due to a combination of three factors.

• First, a large number of keys is penalizing for Eiger. In fact, in Eiger, when more keys are accessed

in the first round it becomes more likely that the first round will return an inconsistent view, which

subsequently increases the likelihood of reading from a key that has a pending version, which

subsequently increases the number of commit checks. Moreover, if the number of keys per request

increases, the second round is more expensive as more keys will need to be returned in the second

round of reads.

• Second, as the number of keys increase, the costs associated with CPU utilization and with disk

access time start to become dominant, and the overhead of the additional round introduced by

Wren becomes less relevant.

• Third, we have also noticed that as the read transaction size influences the number of dependen-

cies in the client, and this dependency tree is only cleared when the client issues a write transac-

tion. Moreover, as the client has a low probability of issuing a write transaction, the overhead of

maintaining the dependency tree increases, which negatively influences the client’s performance.

In the case of FastCCS, when the read transaction size increases, the second round also becomes

more likely and more expensive as it needs to return more values. However, as the probability of the

second round due to false positives is low, and there is no need for a third round, FastCCS is still able to

offer overall better performance than Eiger.

The figures obtained with the simulated environment show that the simulator can capture with rea-

sonable accuracy the performance of the different systems for small transactions. For large transactions,

the simulator no longer provides an accurate estimate of the performance; this is due to the fact that the

simulator is not able to simulate CPU or disk usage.
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Figure 4.3: Write throughput Tx length: AWS vs simulations.

4.4.2 Effect of Tx Lenght on Write Transactions

Figure 4.3 presents the throughput of the different systems, when executing transactions with a write/read

ratio of 0.05, as a function of the objects accessed in each write transaction. We recall that FastCCS has

been optimized for read transactions. Therefore, its performance on write transactions is substantially

worse than that of a system that only offers eventual consistency. Nevertheless, FastCCS is still able to

offer a better performance than Eiger and Wren. Note that when the size of write transactions increases,

the probability of having more partitions participating in the transaction increases, leading to a higher

probability of having the first round of reads to return inconsistent view. Moreover, the higher number

of participating partitions drastically increases the number of commit checks that need to be performed,

which further increases latency.
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Figure 4.4: Read throughput as a function of the item size: AWS vs simulations.

When looking at the simulations results, it can be observed that the relative performance of Wren is

again underestimated by the simulator. As before, the CPU and disk overheads, which are not accurately

captured by the simulator, affect equally all systems, reducing the negative impacts that result from the

coordination overhead.

4.4.3 Effect of the Item Size

Figure 4.4 presents the throughput of the different systems, when executing transactions with a write/read

ratio of 0.05, as a function of the size of objects accessed in each transaction (all transactions access 5

objects). As in previous experiments, FastCCS is the system that better approximates the performance

of a eventually consistent system. It is interesting to note that, for very large items, the costs involved
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Figure 4.5: Throughput as a function of the write/read ratio: AWS vs simulations.

in the coordination become less relevant when compared with data transfer and disk access times.

Therefore, for object sizes bigger than 512 bytes the performance of FastCCS, Eiger, and Wren start ap-

proximating the performance of an eventual consistent system. The results obtained with the simulation

are roughly consistent with the results obtained with AWS although, as in the previous cases, the fact

the simulator considers the communication overhead but not the disk access overhead, penalizes Wren

(and, in a smaller extent, FastCCS) which perform comparatively better in practice than the simulations

predict.
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4.4.4 Effect of the Write/Read Ratio

Figure 4.5 presents the throughput of the different systems, when executing transactions with different

write/read ratios (all transactions access 5 objects of 128 bytes).

The figure unveils an interesting limitation of Eiger. For residual write ratios (for instance, 0.01%),

Eiger and FastCCS have almost the same number of second-round reads. Therefore, one could expect

that both systems would exhibit the same performance, as predicted by our simulations. In reality,

the throughput of Eiger is 10% lower that that of FastCCS in the AWS deployment. The cause for this

difference lies in the way Eiger keeps dependencies in the client. Eiger maintains a tree of dependencies

that can only be purged when a write transaction is executed. For small ratio of write transactions the

dependency tree keeps increasing and the CPU utilization at the client becomes a bottleneck.

The figure also shows throughput of FastCCS decreases, as the percentage of write transaction

increase. This is due to the higher write transaction cost and a higher probability of a second round. In

fact, it is possible to observe that for large write/read ratios, Wren eventually outperforms the FastCCS.

This happens because write operations terminate earlier in Wren. Interestingly, the simulations can

also capture this fact, despite the limitations in accuracy previously discussed. Nevertheless, for most

realistic write/read ratios, FastCCS outperforms both Eiger and Wren.

4.5 Scalability

The ability to distribute the data across different servers is essential for scalability. Thus, all cloud storage

systems split the data into logical partitions and then let a different set of servers handle each partition.

If a transaction accesses data that are in different partitions, coordination among different servers is

required. This experiment focuses on understanding how the system can scale horizontally. We do so

by studying the effect of the number of partitions on the system throughput.

Given that the number of communication rounds used by each protocol has a direct impact on the

achievable throughput, we also show the average number of communication round used by the different

systems. For these experiments, we have been able to deploy the system on AWS using up to 64

partitions. Unfortunately, we could not afford to run experiments on a real deployment using a larger

number of machines, as this was outside our budget. Therefore, we resorted to simulations to estimate

the performance of the system in scenarios that go up to 1024 machines.

4.5.1 Horizontal Scaling

We start by showing that FastCCS is able to horizontally scale and sustain additional clients as more

servers are added to the system. For this experiment, we augmented the number of partitions and
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Figure 4.6: Normalized throughput of FastCCS changing the total number of Partitions (AWS) and proportionally
changing the number of clients and keys. Bars are normalized against 1 partition.

augmented proportionally the number of clients, such that the operations submitted byN client machines

are fully loading N partitions. Moreover, we proportionally increase the number of keys to avoid any

artifacts due to an increase in concurrency between clients. Transactions always access 5 objects

selected at random.

Figure 4.6 shows the throughput for FastCCS as we scale the number of partitions from 1 to 64 (note

that both axes are in log scale). The bars show the throughput normalized against the throughput of

1 partition. FastCCS scales out as the number of partitions increases. However, this increase is not

linear from 1 to 8 partitions. The configuration with 1 partition has the benefits of batching: all operations

that involve multiple keys are executed on a single machine. As the number of partitions increases, the

transactions span across multiple partitions, and thus the system is no longer able to exploit batching

effectively. This effect was also present in the original evaluation of Eiger [8].

As we increase the number of partitions, the differences due to lack of batching no longer become

relevant. In fact, in a system with many partitions, most transactions tend always to access 5 different

partitions. Nevertheless, the ability of the system to scale perfectly is limited due to a number of over-

heads that are associated with the maintenance of multiple partitions, such as background stabilization

procedures or increased size of metadata. Next, we describe a number of experiments that provide

some insights for the causes of the observed impairments to horizontal scaling.

4.5.2 Partition Overhead

In order to better understand the sources of overhead that become visible when many partitions are

used, we have run a series of experiments where we increase the number of partitions while keeping

the workload constant. Figure 4.7 shows the results obtained with the deployment at AWS. We have

performed two experiments. In the first experiment (4.7(a)), we fixed the total number of partitions to
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Figure 4.7: Changing the Number of Partitions (AWS).

8, and we varied the number of partitions accessed by each transaction. In the second experiment

(4.7(b)), transaction access 5 objects at random, and we have changed the total number of partitions

(note that, the higher the total number of partitions is, the more likely is that a transaction touches 5

different partitions).

We start by discussing the effect on the number of partitions accessed by each transaction. Naturally,

even the eventual consistent system degrades its performance as the number of partitions accessed by

a given transaction increases, as more servers need to be contacted. This happens because Cassandra

maintains a number of background bookkeeping tasks that become heavier with the number of nodes

increase. Still, not surprisingly, the eventually consistent system is the one that is less affected by an

increase in the number of partitions, and it does not require nodes to coordinate, and the amount of

metadata maintained is minimal. The performance of FastCCS, Eiger, and Wren follow a similar trend

when the number of partitions accessed by each transaction increases. Because these protocols require

more coordination among partitions, the effect of using a larger number of partitions is more noticeable

than in an eventually consistent system. For instance, with Eiger, because the metadata used to capture

causal dependencies has low accuracy, the number of times the protocol requires a second or even a

third round of communication. FastCCS has the same coordination overhead as Eiger but, due to more

precise metadata, it is less likely to require a spurious second round of reads.

We now discuss the effect of changing the total number of partitions. In this experiment, we have

kept the workload constant across all experiments. When there are few partitions, served do not have

enough capacity to serve all the clients’ requests. Therefore, the throughput of the system is limited by

the lack of capacity of the servers. As we increase the number of partitions, we are able to distribute the

load of the clients among different servers, and the throughput increases. This growth stops when the
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Figure 4.8: Changing the Number of Partitions (Simulations).

number of partitions reaches 16. In this scenario, the capacity of the servers is no longer a bottleneck,

and adding more servers does not provide any help (we recall that the workload is fixed). From this

point, we can start observing the effect of some amount of overhead that is induced by having a large

number of partitions. This overhead as two main sources: one source are background activities, such

as the stabilization protocol used by FastCCS and Wren, and another source is the increased size of the

metadata (for instance, larger vector clocks). The combined effect of these two factors slows down the

system when the workload remains constant (naturally, the larger system could sustain a higher peak

workload, but this is not depicted in these plots). Note, however, that even the eventually consistent

system experiences this effect, given that the underlying key value store also has some bookkeeping

tasks whose overhead increases with the number of servers.

In order to estimate the performed of the system for a higher number of partitions, we needed to

resort to simulations. The results are depicted in Figure 4.8. Note that, as before, we assume that the

workload is fixed. Thus, the maximum throughput is bounded by the number of clients. Therefore, adding

more partitions only increases the overhead generated by background tasks, such as the stabilization

protocols, and larger metadata (i.e., larger clocks). The simulations show a trend that is aligned with

the results obtained with the real experiment. However, as we have seen in previous experiments, the

results from the simulator are an upper bound on the real performance, because the simulator is not

considering CPU utilization, which also increases as the metadata increases.

We have also measured the average number of rounds required by read operations in the different

systems, as the number of partitions grows (Figure 4.8(b)). This is interesting because it highlights that

the overhead induced by a large number of participants manifests in different ways for different protocols.

For Eiger, the loss of performance can be mainly attributed to the fact that the average number of rounds
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increases with the number of partitions, which affects the throughput of the system. Thus, because Eiger

uses less metadata than FastCCS, it needs to perform a second round more often. FastCCS, instead,

does not suffer from this problem. Most reads can be performed in one round, no matter how large is

the system. Unfortunately, this positive feature is obtained at the cost of using more metadata, which

grows linearly with the system size. This amount of metadata also affects negatively the performance of

the system (even if the results are still better than Eiger).

4.6 Discussion

The hypothesis that motivated the design of FastCCS was that the number of rounds required per read

operation has a significant impact on the performance of systems offering TCC. Therefore we expected

to outperform previous systems if we could reduce the average number of rounds required by read

operations. Our experimental results broadly confirm that our hypothesis was correct. In FastCCS, most

reads are performed in a single round, while in Eiger, depending on the scenarios, from 20% to 50%

of the reads require more than one round, and with Wren, all reads require two rounds. Experimental

results show that the resulting performance of the different systems is inversely proportional to the

average number of rounds. FastCCS is the system that better approximates the performance of a

weakly consistent system and, in some favorable cases, such has read-heavy scenarios, that are the

most frequent in most cloud based applications, presents a small overhead, that can be as low as 6%.

Other systems, and Wren in particular offer much larger penalties.

Our experimental evaluation also provides interesting insights into the effect of metadata size on the

performance of systems that implement TCC. FastCCS is able to reduce the average number of rounds

by using more metadata. The size of this metadata grows linearly with the number of partitions used in

the system, and, for a large number of partitions, the cost of processing and transferring the metadata

has a negative impact on performance. In our experiments, for most scenarios, FastCCS was still able

to outperform other solutions despite this drawback. However, this suggests that further research is

needed to understand what is the best tradeoff between metadata size and the number of rounds.

Interestingly, our evaluation has also unveiled that the amount of metadata keep at the client proxy,

even if it is not exchanged with a server, can also be an impairment to performance. Eiger maintains at

each client a dependency tree to ensure that the values returned in the first round of read are causal

consistent with the causal past of the client. The cost of maintaining this tree can be large and negatively

impacts Eiger performance in read-heavy scenarios. Highlighting the tradeoff between the amount of

metadata and the final performance is quite subtle in real systems, due to the conflicting forces involved.
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Summary

In this chapter, we have presented the experimental evaluation of FastCCS, detailing the tests that were

conducted in order to assess its performance. The results show that FastCCS has the potential to reduce

latency compared to other systems in the literature with little overhead (5%) compared with eventual

consistent systems. This section also discussed some limitations of current TCC implementations and

FastCCS limitations that may justify the observed results. The next chapter ends this thesis by reporting

the most important findings, as well as sharing some ideas for future work.
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5.1 Conclusions

Stronger consistency models ease the life of programmers, making it more easy to reason about. How-

ever, as stated by Amazon and Google, the increase in user perceived latency leads to a concrete

revenue loss. For example, Amazon estimates that a 100ms latency increase leads to 1% revenue

loss [34]. So it is important to find consistency models that can offer low latency. This thesis has de-

scribed the design, implementation, and evaluation of FastCCS. By using more precise metadata, we

showed that FastCCS reduces the number of communication rounds needed to implement TCC. In

fact, to our knowledge, FastCCS is the first system that implements TCC with at most two rounds of

communication, reducing the overall latency that the client experiences.

An experimental evaluation compares FastCCS with other two state of the art solutions, as well as

an eventual consistent system. When compared with other solutions that implement TCC, FastCCS

outperforms all the other system, that confirms that a lower number of rounds positively influence the

overall throughput of the system.

5.2 System Limitations and Future Work

Although this work was focused on experiments within one datacenter, in a real setting, partitions would

be replicated across multiple datacenters. It would be interesting to develop FastCCS further to introduce

replication or even partial replication and to study what modification would be necessary to satisfy thous

requirements. Finally, as mentioned in Section 4.5.2, the increase of the metadata, limits in some ways

scalability by partitioning. It would be interesting to study the effects of vector clock compression and

how it would affect the overall performance of the system.
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