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Abstract

Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease affecting millions of people worldwide
and prominently the elderly. While there is still no cure for AD, its early detection is crucial, as an effective
management of the disease may help prevent the progression to more severe stages. The inherent uncertainty
in the clinical diagnosis of AD has driven a search for biomarkers, where brain imaging, as positron emission
tomography (PET), assumes a key role. For the acquired data to be used for computer aidded diagnosis of AD,
however, it’s usually necessary to perform image registration to a standard spatial coordinate system. This can be
troublesome, as many challenges, including inter-subject anatomical variability, are encountered, so that possible
misclassification errors might result from a poor coordinate transformation. In this work, in the attempt to find
a method robust to such registration errors, and building from the texton-based approach, several methods were
considered and applied on both registered and non-registered datasets. Other feature representations were considered,
namely learned using a stacked sparse autoencoder (SSAE) and the raw voxel intensity values, either extracted
from the whole brain, patches or identified regions of interest. Binary classification among cognitively normal
subjects, AD and mild cognitive impairment (MCI) patients was performed in a dichotomous fashion and conclusions
regarding the accuracy and robustness of the diferent methods were drawn, particularly confirming the robustness
of the texton-based approach applied on the whole brain images and of the learned feature representations using SSAE.
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1. Introduction

Alzheimer’s disease (AD) is an ultimately fatal neurode-
generative disease, and the most common cause of de-
mentia, affecting millions of people worldwide and more
prominently the elderly [1]. It’s usually categorized in
early onset familial AD, with well-defined genetic causes,
or late onset sporadic AD, arising from genetic and envi-
ronmental risk factors, some of which modifiable [2—4]. To
date, two hallmarks of the disease have been established,
namely plaques of accumulated beta-amyloid (Af3) outside
neurons, and neurofibrilliary tangles of hyperphosphory-
lated protein tau inside neurons [1,2,4-6]. Symptoms in-
clude difficulties with memory, language, problem-solving
and other cognitive skills that affect the ability to perform
daily activities, with final loss of bodily functions leading
to death; nonetheless, these vary among AD patients and
differences between early signs and age-related cognitive
changes can be subtle [1,3,7].

Two early stages prior to symptom manifestation are
recognized in AD, namely preclinical AD and mild cogni-
tive impairment (MCI) [1,2,8]. In MCI, cognitive decline
is greater than expected due to aging, but daily activities
can still be performed without notable impairment, not
fulfilling the criteria for dementia. It includes incipient
AD, other causes of dementia and a form of cognitive im-
pairment that doesn’t progress to it, remaining stable or

reverting to normal cognition [1,2,5]. As for the preclinical
state preceding MCI, its existence is speculative, although
evidence includes the presence of genetic risk factors, AD-
like brain images, and abnormal cerebrospinal fluid (CSF)
biomarkers in cognitively normal individuals [1].

Clinical diagnosis of AD can be based on medical and
family history, neurological assessment, blood tests and
neuroimaging, but none can be sufficiently reliable for
the early stage detection desired for therapeutic interven-
tion [1,2]. Concerning neuropsychological assessment, two
tests that are usually performed are the Mini-Mental State
Examination (MMSE), with a cut-off score for dementia of
26 (out of 30, lower values being observed in more severe
stages), and the Clinical Dementia Rating (CDR), where
0 corresponds to no dementia, 0.5 to questionable or very
mild, 1 to mild, 2 to moderate, and 3 to severe dementia,
and MCI is often supported by a global rating of 0.5 on
this scale [2,8-11].

Given the uncertainty in clinical diagnosis of AD, neu-
roimaging, and namely FDG-PET, assumes a key role,
constituting a robust biomarker of neurodegeneration
where hypometabolism can be observed to precede cog-
nitive symptoms and predict the rate of its decline in
individuals who progress to AD with high sensitivity
[1,5,12]. Indeed, despite providing a nonspecific indicator
of metabolism that can be altered for other causes, as is-



chemia or inflammation, there is a characteristic ensemble
of limbic and association regions typically hypometabolic
in AD, found in neocortical association areas as the pos-
terior cingulate, precuneus, temporoparietal and frontal
multimodal association regions, as well as the hippocam-
pus and medial temporal cortices, as illustrated in Figure
1 [12], while, in contrast to other dementia types, the pri-
mary visual cortex, sensorimotor cortex, basal ganglia and
cerebellum are relatively unaffected [12-14]. The abnor-
malities found in AD with FDG-PET mirror those found
with SPECT and MRI, and are reported to be more re-
liable for diagnostic purposes than these [13]. Less se-
vere hypometabolism has been identified in MCI patients,
some later converting to AD, such that it parallels cogni-
tive function along the trajectory of normal, preclinical,
prodromal, and established AD [12].
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Figure 1:

Even if it outpaces therapeutic options, early detection
of MCI is important as it can still have clinically significant
implications, like slowing the rate of cognitive decline, re-
ducing morbidity-affected life years, and improving quality
of life [9]. As mentioned, neuroimaging tools can largely
aid this diagnosis, and by allowing to automatize and pre-
vent it from being affected by inter- and intra-rater relia-
bility from the clinicians, computer aided diagnosis (CAD)
of AD arises as a promising tool. Nonetheless, several pro-
cessing steps are usually required to enable the acquired
brain images to be used, one of them being image registra-
tion to a standard spatial coordinate system, so that each
voxel corresponds to the same anatomical structure across
all subjects [15]. This is a time consuming and trouble-
some step, particularly for deformable image registration,
facing various challenges such as inter-subject anatomi-
cal variability. Many image registration algorithms are
also available, adopting various deformation models and
regularization strategies that give very distinct outcomes,
possibly leading to misclassification errors, namely when
there is prior knowledge of the regions of interest for di-
agnosis and this is affected by a poor coordinate transfor-
mation [15,16]. In this work, in the attempt to develop
a method for CAD of AD that doesn’t require image reg-
istration, different approaches were applied to both reg-
istered and non-registered brain images, drawing conclu-
sions regarding its efficiency, accuracy and robustness.

2. State of the Art

Several neuroimaging modalities have been used for CAD
of AD, namely FDG-PET [16-18], sMRI [19-33], SPECT
[34], DTT [35] and ASL [36], alone or combined for multi-
modal approaches [37-41].

Regardig feature extraction, studies have used either
the whole brain [19,24,25,29,36,37,40,42], voxel-based ap-
proaches [16,23,27,28,32,36,38], regions of interest (ROIs)
[16-18,20,24,26,28,30,31,34,35,39,41-43] or patches of the
brain [21,32,33]. While the former two are intuitive, they
either result in high dimensionality or disregard regional
information. Using ROIs, in turn, representative features
can be extracted from regions affected by AD, although
these must be manually labeled or identified through fea-
ture selection. Alternatively, since the affected areas can
be part of or span over multiple ROIs, patches of the brain
can be used (combined hierarchically [21] or through fea-
ture concatenation [32]), which can efficiently handle the
concerns of high feature dimensionality and sensitivity to
small changes, by considering local information and allow-
ing to extract richer information that might help improve
diagnostic accuracy.

Different feature selection techniques have been applied,
based on relevant statistics of the input data (as t-tests
[21,22,24,27,28,32,38], voxel-based morphometry [28] and
mutual information [16]), wrapper [16,43] or else embed-
ded methods [17,18,27,32,42]. Dimensionality reduction
has also been attained using principal component analy-
sis (PCA) [23,24,31,33], partial least squares (PLS) [23],
independent component analysis on means [29] or by im-
posing thresholds on voxel intensity [23].

As for the features commonly used for CAD of AD,
these include voxel intensities and related statistics [16-
18, 23, 28, 34, 36, 39, 41, 42], volume, shape, density and
thickness of particular regions of the brain [21,22,30,31,36,
39,42, 43]. Texture descriptors of the neuroimaging data
have also been considered, including local binary patterns
[44] and texton-based approaches [16], where the latter
provides a full statistical representation of the responses
to a predefined set of filters, turning the extracted image
models into powerful descriptors.

Several deep learning strategies have emerged in recent
years, providing high-level feature representations which
can be more robust than hand-crafted ones. Amongst the
approaches explored for CAD of AD that have achieved
state of the art performances are convolutional neural
networks (CNNs), usually combined with sparse autoen-
coders (SAE) to find the appropriate set of filters for the
convolutional layer [19,40], multi-instance convolutional
neural networks [32], deep Boltzmann machines (DBM)
[38], which, for multi-modal approaches, can fuse the com-
plementary information without possible loss of correla-
tion, and, similar to the autoencoder (AE), allow for recon-
structing the input data from the hidden representations,
while also resolving uncertainty about intermediate-level
features and creating better data-dependent representa-
tions and statistics for learning, possibly outperforming
it, and finally DenseNets, reported to achieve better per-
formances than CNNs [33].

Since most studies perform voxel-wise comparisons or
investigate brain abnormalities in ROIs, image registra-
tion is a common practice, namely to the Talairach or MNI
space [45]. The former is based on a stereotaxic brain atlas
constructed by the identification of given anatomical land-
marks and brain segmentation into 12 subvolumes, where



a piecewise linear scaling is used to convert each individ-
ual brain image to this space [45,46]. It has faced some
criticism, not only because this scaling performs poorly
comparing to nonlinear transformations, but mostly due
to it being constructed from a single subject, hence not
being representative of the neuroanatomy of the general
population [45]. In light of this, an average brain template
(MNI305) was put up, and later inspired the current stan-
dard MNI template (ICBM152), built by averaging 152
normal sMRI scans linearly matched to MNI305 [46, 47].
Despite this advantage provided by the MNI coordinate
space, the Talairach brain atlas remains widely used in the
literature, due to its construction from a set of anatomical
landmarks [16, 20,24, 31, 43].

Few studies have disregarded image registration, achiev-
ing this either only in the testing stage, or for both train-
ing and testing. Concerning the former, as performed
in [27, 32], landmark-based feature extraction methods
were applied, the landmarks being identified, in the train-
ing stage, on the template image, and, using their respec-
tive deformation fields, directly projected to the linearly-
aligned training image. A shape-constrained random for-
est was then learned to non-linearly map different patches
and its 3D displacement to the detected target landmarks,
which could be applied in the testing stage to estimate a
3D displacement from every voxel to the potential land-
mark position, followed by majority voting. In [33], on the
other hand, non-linear image registration was fully disre-
garded, for which patches within ROIs were identified from
non-registered images and clustered using K-means, and
a deep learning strategy was used to learn features that
were further aggregated for region-level representations,
followed by final image classification.

Regarding classification algorithms, the most widely
used in the literature consist of support vector machines
(SVM) [16, 17, 2129, 31, 34, 36, 38-41, 43], since these
present a good generalization capability, performing well
in high dimensional spaces as in neuroimaging data clas-
sification.  Other strategies have been considered, in-
cluding k-nearest neighbors (k-NN) [16], linear discrimi-
nant analysis (LDA) and Gaussian discriminant analysis
(GDA) [20,30]. Several studies have used ensemble classi-
fiers (including random forests and extremely randomized
trees [18,42]), where multiple "weak” classifiers are com-
bined to improve the generalization ability and robustness
of the model, reducing possible overfitting problems [38].
Regarding classification between AD and cognitively nor-
mal (CN) subjects using image registration, accuracies of
95.7% have been attained [39], while reported values for
sensitivity (specificity) are 98.78% [30] (98.2% [39]). As for
the classification between CN and MCI, the correspond-
ing highest reported values are, respectively, 92.36% [19],
99.58% [38] and 90.40% [21]. For studies that did not
apply the image registration step, or only did so in the
training stage, the highest accuracy presented for CN vs.
AD was, respectively, 89.7% [33] (with 88.0% sensitivity
and 92.6% specificity) and 92.75% [32] (with 93.48% sensi-
tivity and 93.50% specificity). In [33], the performance of
the CAD system in the CN vs. MCI problem was also eval-
uated, reaching accuracy, sensitivity and specificity values

of, respectively, 74.0%, 86.6% and 92.6%.

3. Theoretical Framework

3.1. Feature transformation

The simplest choice of features for image classification
consists of raw voxel intensities, a direct measure of flu-
orodeoxyglucose (FDG) uptake (for the purpose of this
work) detected in each voxel. Additional alternatives were
also considered, namely histogram of textons and stacked
sparse autoencoder (SSAE) feature representations.

Histogram of textons

In this bag-of-features approach, the texture of the images
to be classified is considered. As these have spatially re-
peating properties, there should be several distinct filter
response vectors together with noisy variations of them,
allowing for clustering these into a small set of prototypes,
designated as textons, using an algorithm such as k-means
clustering [48,49]. In this work, the sequential version of
this algorithm was used, performing data assignment and
centroid update one training sample at a time.

After building the texton dictionary from a set of train-
ing images, model extraction is performed (depicted in
Figure 2 for the 2D case), so that each image is repre-
sented by a (normalized) histogram of texton frequencies.
The same procedure is applied on the test set [50].
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Figure 2: Illustration of the model extraction procedure.

Amongst the filter banks commonly used for this ap-
proach are the Maximum Response (MR) sets, where the
filters are rotationally invariant, which constitutes an in-
teresting property for this work, as the images used in one
particular dataset were allowed to appear at any orienta-
tion [50]. In this thesis, an extension to the 3D-MRS filter
bank proposed in [16] was applied, which includes a 3D
Gaussian filter and its Laplacian, 3D edge filters, bar and
plane filters (at 3 triplets of scales and 61 orientations), as
shown in Figure 3 [16].
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Figure 3: Representation of an example of each type of filter in the
3D extension of the MR8 set.
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Some pre-processing steps should be applied for this ap-
proach, namely image intensity standardization, filter nor-
malization to unit /; norm, and normalization of the filter
responses F'(x) according to [50].



SSAE feature representations

The SSAE comprises multiple layers of sparse autoen-
coders in which the outputs of each layer are wired to the
inputs of the successive one. The autoncoder, depicted in
Figure 4, aims to minimize the discrepancy between input
x and reconstruction &, by learning an encoder and a de-
coder, yielding a set of weights W and biases b [51,52]. Tt
consists of an unsupervised learning algorithm, as the label
information isn’t used at any point [53]. Limiting the num-
ber of hidden units or enforcing a sparsity constraint, this
algorithm is forced to learn a compressed representation
of the input, obtaining a low-dimensional, high-level, fea-
ture representation [52,53], similar to applying pre-defined
filters in the previous texton-based approach.
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Figure 4: Representation of the architecture of an AE.

Sparse autoencoders result from enforcing the sparsity
constraint p; = p, where p; is the average activation of
hidden unit j and p the sparsity parameter, typically close
to 0, so that most hidden units’ activations must be near
0 [52]. The overall cost function considers, thus, the devi-
ation between input and reconstruction, a regularization
term to help prevent overfitting (using weight decay [51]),
and one to penalize p; deviating significantly from p, based
on the Kullback-Leibler (K L) divergence [52].

As for the stacked SAE, a greedy layer-wise training ap-
proach can be used, where the network layers are trained
one at a time, sequentially performing forward passes and
backpropagation [37]. After obtaining the optimal param-
eters, the SSAE transforms the input feature vector to a
new feature representation [53]. Particularly for this work,
it transforms the voxel intensities of each input patch to
its new feature representation to be further classified.

3.2. Classification

In the supervised learning methods proposed, SVM, naive
Bayes and the softmax classifier were employed. SVM was
used due to its good generalization capability when han-
dling high dimensional data, while naive Bayes was cho-
sen since its computational cost is considerably lower and,
from its intrinsic assumption, the order in which the fea-
tures are fed into the classifier are irrelevant, an interesting
property for this work as the images are not registered and
so the extracted features may be encountered in different
orders. Regarding SSAE, a softmax classifier was applied.

Support vector machines

The SVM algorithm for classification aims to maximize
the distance between the decision boundary and the clos-
est training patterns (the support vectors), where the solu-
tion hyperplane is derived from a quadratic programming
optimization problem [54,55]. In the simplest, linearly

separable case, the following constraint is satisfied [55]:
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mization problem can be formulated as [54,55]:
min % lwl?, st yi(zi-w+b)—1>0, Vi (2)

and the decision function is given by:
§ = f(z) =sign(z-w+b), §€{-11} 3)
To deal with non-separable data, data points are allowed
on the wrong side of the hyperplane provided that they

suffer a penalty, so that positive slack variables &; are in-
troduced and the optimization problem becomes [54-56]:

1 n
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hence switching to a soft margin. There is a trade-off
between these and hard margins, as the former allows for
errors in the training set but helps prevent overfitting [56].

Since only the inner product between input patterns is
required for computing the separating hyperplane, when
the decision boundary can’t be synthesized as a linear
function of the data, the problem can be solved apply-
ing the kernel trick [54-57]. Available kernel functions in-
clude linear, radial basis function (RBF) and generalized
histogram intersection (GHI), as given by:

KLincaT‘(xiv IJ) = szx] (5)
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where x;;, corresponds to the k-th component of the i-th
training sample and o and S are hyperparameters of the
model [16,54, 55, 58].

Naive Bayes
In general terms, the Bayes classifier builds upon the Bayes
law and assigns an input pattern with feature vector = the
class for which the a posteriori probability P(w;|x) is the
highest, as given by [59-61]:

§ = arg mag P(w|x) (8)

The naive Bayes derives from making a strong indepen-
dence assumption, particularly that all the features are
conditionally independent given the class, yielding [59-61]:

:2[‘):1 P(z;|wy)

P(z)
where the normalization term P(x) isn’t required for clas-
sification as it isn’t class dependent. Even though the con-
ditional independence assumption imposed in naive Bayes
is unrealistic, turning into a suboptimal classifier if it’s
false, it often leads to good results [60].

Pwglz) = X P(wg) ()

Softmax classifier

Concerning the softmax classifier, it generalizes the lo-
gistic regression function to multi-class problems and it’s
typically used in the final layer of deep neural network
architectures, including SSAE. Since it corresponds to a
normalized exponential function, the output value can be
used as an estimator of the conditional probability that
the input pattern belongs to each class, attributing it to
the one that maximizes this value [37].



4. Implementation

4.1. Datasets

Three FDG-PET datasets were used for each class,
as depicted in Figure 5, two of which obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database, and the third generated from those. The (real)
non-registered dataset comprises co-registered, averaged,
standardized images and voxel sizes (reoriented into a
160x160x96 grid) with uniform resolution, not having un-
dergone non-linear warping nor linear scaling, contrary
to the registered images, non-linearly warped to the Ta-
lairach brain atlas of 128x128x60 grid [62]. To obtain the
artificially genereated dataset, 3° to 309° rotations along
the inferior /superior axis were applied on each respective
registered image. By imposing a CDR score of 0, 0.5 and
0.5 or higher, respectively for the CN;, MCI and AD class,
50, 80 and 53 patients were selected for each.

(a) (b) (c)
(d) (e) ()

Figure 5: The (a) registered, (b) generated and (c) non-registered
datasets, for (d) CN, (e) MCI and (f) AD.

4.2. Experimental setup
In the texton-based approach, an extension to the
3D-MRS introduced in 3.1 was used, composed by
Gaussian, Laplacian of Gaussian (LoG), edge, bar
and plane filters, included at 3 triplets of scales:
(0z,04,0.) ={(1,1,1);(2,2,2); (4,4,4)} for Gaussian and
LoG filters; (04,0y,0.) = {(1.5,1.5,0.5);(3,3,1);(6,6,2)}
for the edge and plane filters; and (0g,0y4,0.) =
{(0.5,0.5,1.5); (1,1, 3);(2,2,6)} for the bar filter. The last
3 were replicated with multiple orientations through sys-
tematic sampling of the angles around z and y, ranging
from § to %ﬂ, and 0 to HT”, respectively, from which 9 fil-
ter responses were used as to achieve rotation invariance.
Combined with those from Gaussian and LoG filters, a
15-dimensional filter response vector was obtained. The
pre-processing steps presented in 3.1 were also applied.

A grid-search procedure was used to tune the hyperpa-
rameters associated with the linear, RBF and GHI kernels
through nested cross-validation, using the LIBSVM tool-
box [63] compatible with MATLAB R2016a. 10 folds were
used, avoiding class imbalance, and the allowed hyperpa-
rameter values were such that C € {2710,278 2101
B€{0.1,04,..,1.9} and v € {271,279, ...,23} where ~
corresponds to ﬁ in Equation 6. As for naive Bayes, to
account for the possible occurrence of negligible texton fre-
quencies in the extracted histograms, the log-probability
of occurrence of each feature in either class was considered
and Laplace (additive) smoothing was introduced.

As for SSAE, the Neural Network Toolboxr of MATLAB

R2016a was used. The first SAE (with 100 hidden units,
trained for 400 epochs maximum) was subjected to two
regularization techniques, namely an L2 regularizer for the
network weights (with 0.004 coefficient) and a sparsity reg-
ularizer (with impact parameter 4 and p of 0.15, defined in
3.1). Analogous parameters were set for the second SAE
(with 50 hidden units, trained for 100 epochs maximum),
respectively 0.002, 4 and 0.1. The final softmax classi-
fier was trained for 400 epochs maximum and the whole
stacked neural network was fine tuned using backpropa-
gation with scaled conjugate gradient (SCG) [64], for 100
epochs maximum. The performance function for the SAEs
was the mean squared error (MSE), while cross-entropy
was used for supervised learning.

4.3. Proposed approaches

For each binary classification task, two feature extraction
approaches were considered, namely using the whole brain,
and patches of the brain. This was chosen since, when
disregarding image registration, neither the most discrim-
inative voxels nor ROIs could be directly selected, as its
location would vary, while no prior identification was re-
quired if the features were extracted from the whole brain
or patches appropriately selected for each subject.

To exclude the area surrounding the brain, a mask was
used. Regarding the registered dataset, this consisted of a
pre-defined 128 x 128 x 60 mask in the Talairach space, as
depicted in Figure 6, while in the non-registered dataset it
was created from averaging the brain scans of all subjects,
and keeping the voxels for which the resulting intensity
value was above 0.5 of the maximum, followed by a mor-
phological operation to fill in small regions that were visu-
ally identified as a part of the whole brain area. As for the
generated dataset, the mask for each subject was obtained
from the same affine transform as for the respective brain
image, applied on the Talairach brain mask considered.
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Figure 6: Depiction of (a) sagittal, (b) coronal and (c) axial sections
of the brain mask applied in the registered dataset.

Feature extraction from the whole brain

In this case, both SVMs (with linear, GHI and RBF ker-
nels) and naive Bayes were applied, using the voxel inten-
sitly feature vectors (with SVM) or the texton-based ap-
proach. Only the second approach was tested on the gener-
ated dataset, as the images produced and respective brain
masks had different dimensions, so that the extracted fea-
tures could not be fed into the classifier without further
transformation, as made possible using the texton-based
approach. Several experiments were performed regarding
the number of textons to use for building the dictionary,
ranging from 15 to 10000, employing sequential k-means
(as worse performances were achieved by the original k-
means clustering algorithm).



Feature extraction from patches of the brain

In contrast to the previous method, here, the feature vec-
tors to be fed into the classifiers could not be raw voxel
intensities as these would depend on the order on which
the features were fed and consequently on the anatomical
position from which the patches were drawn, not being ro-
bust to skipping image registration. The features consid-
ered for this section were thus either histograms of textons
or feature representations learned from an SSAE.

The size of the 3D patches was fixed at 73, and the over-
lap between them was set at 75%, considering the trade-off
between computational cost and coverage of the different
regions of the brain, as higher overlap would result in in-
creased number of patches and computational cost.

Patches within ROIs

Unlike the previous approach, this strategy was consid-
ered in the case that image registration would still be per-
formed in training, which, not being ideal, still allows for
avoiding this step when applying the CAD system to di-
agnose novel subjects, saving computational costs. In the
training stage, a patch was labeled as discriminative if it
spanned over one or multiple ROIs [16] as shown in Fig-
ure 7, including lateral temporal, mesial temporal, inferior
frontal gyrus and orbitofrontal, inferior anterior cingulate,
dorsolateral parietal, superior anterior cingulate, posterior
cingulate and precuneous.

(a)

(b) (c)

Figure 7: Depiction of (a) sagittal, (b) coronal and (c) axial sections
of the labeled ROIs in the Talairach brain atlas [16]

Also, as the image resolution differed between registered
and non-registered datasets, to evaluate the performance
of the classifier on the real non-registered dataset, the
ROIs had to be manually identified from the ones in the
Talairach brain atlas, so that this dataset could also be
used in training. A patch was labeled as discriminative
if over 90% of its volume was within the reunion of these
ROIs, and a SSAE combined with softmax classifier was
trained to learn this in the test set. The selected patches
were then used for diagnosis, either with a SSAE and out-
put softmax layer or computing the histogram of textons of
the selected patches’ reunion, followed by applying naive
Bayes or SVM (with linear, RBF and GHI kernels), con-
sidering a dictionary of 1250 textons.

Patches containing discriminative textons

In this approach, the most discriminative textons were
defined as those with higher mutual information ranking.
Since the number of textons to consider was unknown,
it was optimized through nested cross-validation, ranging
between 1, 5, 10 or 15. A patch was selected if its distri-
bution contained, thus, any of these most discriminative
textons and final diagnosis resulted from applying SVM
(with linear, GHI and RBF kernels) or naive Bayes.

Random patch selection

Random patch selection was also evaluated, selecting as
many as the discriminative ones identified in the ROI-
based strategy, particularly 1004, 1250 and 5836 for, re-
spectively, the registered, generated and non-registered
datasets. Final classification was again attained using
SVM (with linear, GHI and RBF kernels) and naive Bayes.

5. CN vs. AD - Results and Discussion

5.1. Whole brain

The final model with the selected hyperparameters was
applied on each respective test set, and the best diagnostic
accuracy results attained are summarized in Tables 1-3.

Table 1: Registered dataset’s best results for CN vs. AD, using
whole brain features. Format: Mean (SEM) [%)].
Registered Dataset | Accuracy [%] | N°textons
VI - Linear 84.36 (4.02) -
VI - GHI 86.18 (3.43) -
Textons - Linear 79.45 (3.40) 300
Textons - GHI 85.36 (3.92) 5000
Textons - RBF 87.27 (3.32) 5000
Textons - N. Bayes | 79.64 (3.63) 7500
Table 2: Generated dataset’s best results for CN vs. AD, using
whole brain features. Format: Mean (SEM) [%)].
Generated Dataset | Accuracy [%)] | N°textons
Textons - Linear 78.55 (3.32) 200
Textons - GHI 85.36 (3.31) 7500
Textons - RBF 86.09 (2.95) 90
Textons - N. Bayes | 75.45 (5.35) 7500

Table 3: Non-registered dataset’s best results for CN vs. AD, using
whole brain features. Format: Mean (SEM) [%)].

Non-Reg. Dataset | Accuracy [%] | N°textons
VI - Linear 76.64 (2.68) -
VI - GHI 76.73 (4.12) -
Textons - Linear 69.91 (3.52) 1000
Textons - GHI 76.82 (4.50) 1500
Textons - RBF 80.64 (4.92) 2500
Textons - N. Bayes | 60.09 (4.75) 7500

The texton-based approach proved to be more robust to
skipping the image registration step, as the raw voxel in-
tensity should be used when each particular feature refers
to the same anatomical position across all subjects, which
is not true in non-registered datasets. The former can,
thus, prove to be more adequate for this application as the
model extracted for each image is a histogram of textons,
where information of the anatomical structure from where
each individual feature originated is disregarded. As for
the fact that in the generated dataset the highest diagnos-
tic accuracy reached was very similar to that of the reg-
istered dataset and better than that of the non-registered
one, it might be due to the dimension of the images be-
ing much higher for the (real) non-registered dataset, so
that an increased number of textons could be required to
enhance the classifier’s performance, as the task of sepa-
rating the two classes is more difficult.



Also, while naive Bayes was slightly outperformed by
SVM in all datasets, since its complexity and computa-
tional cost is significantly lower to that of the SVM, it re-
mains a good alternative, as it can still perform well and
is again robust to skipping the image registration step.

5.2. Patches

Random patch selection

Regarding the use of random patches of the brain, the
results are presented in Table 4.

Table 4: Diagnostic accuracy for CN vs. AD, using randomly se-
lected patches. Format: Mean (SEM) [%].

Registered [%] | Generated [%] | Non-registered [%)]
SVM - Linear 79.45 (5.56) 81.27 (4.84) 70.00 (4.92)
SVM-GHI | 79.55(3.76) | 80.55 (5.27) 69.00 (4.95)
SVM-RBF | 77.64 (4.64) | 78.55 (4.16) 69.18 (5.75)
N. Bayes 68.64 (5.71) | 73.55 (5.36) 66.82 (4.96)

It should be noted that, even though the patches were
selected completely randomly, the classifiers could still
perform well, which might be due to the fact that a suf-
ficient number of patches was selected, so that many of
these could be drawn from regions that are relevant for
the diagnosis. Similar performances were reported for
SVM and naive Bayes, again highlighting the advantages
of the latter, for which the computational cost is extremely
smaller. The fact that this procedure is completely ran-
dom can also explain why better classification results could
be reached in the generated dataset than in the registered
one, so that it can be considered to be robust to skipping
image registration.

Patches containing discriminative textons
Concerning the selection of patches containing discrimina-

obtained regarding patch selection propagates to that that
final classification, as the diagnosis is then performed using
patches within regions that might not be affected by the
disease, possibly reducing the sensitivity of the method.

Table 6: Patch selection accuracy for CN vs. AD, considering pre-
viously identified ROIs. Format: Mean (SEM) [%].

Registered [%)
91.18 (0.13)

Non-registered [%)
79.74 (0.23)

SSAE+Softmax

The selected patches were then fed as input to the fi-
nal classification algorithm between CN and AD. Several
methods were explored in this step, namely using again
an SSAE and softmax classifier at the output layer where
each patch was first classified in either CN or AD, followed
by majority voting to obtain the final diagnosis. Alter-
natively, the histogram of textons on the reunion of all
selected patches was also computed and fed into an SVM
or naive Bayes classification algorithm. Another method
consisted of again attaining the final diagnosis through
majority voting in combination with the histogram of tex-
tons computed for each patch. Nonetheless, due to the ex-
tremely high computational cost associated to the nested
cross-validation procedure for optimization of the hyper-
parameters of the SVM algorithm, and due to the fact
that the final diagnostic accuracy could largely depend on
these parameters such that fixing these could also be mis-
leading, and that naive Bayes could also not perform well
in this task, as initially tested, these results were excluded
from this discussion and hence not presented in Table 7.

Table 7: Diagnostic accuracy for CN vs. AD, considering the selected
patches within ROIs. Format: Mean (SEM) [%)].

tive textons, the results are presented in Table 5. . i Registered [%] | Non-registered* [%]
SVM - Linear (Reunion) 81.45 (3.50) 76.36 (3.64)
Table 5: Diagnostic accuracy for CN vs. AD, using patches with SVM - GHI (Reunion) 76.36 (4.84) 76.36 (3.64)
discriminative textons. Format: Mean (SEM) [%)]. SVM - RBF (Reunion) 77.36 (4.27) 76.36 (3.64)
N. Bayes (Reunion) 62.62 (4.68) 71.82 (3.66)
Registered [%] | Generated [%] | Non-registered [%)] SSAE+Softmax (Maj. Voting) | 89.09 (4.07) 85.45 (5.45)
SVM - Linear | 77.45 (5.29) | 67.00 (5.15) 66.82 (5.79)
SVM - GHI 75.36 (5.22 70.91 (4.91 65.09 (5.25
SVM-RBF | 7255 E5.11§ 7101 53.36; 63,18 55‘293 It can be observed that SSAE followed by softmax per-

While these results are reasonable, these models don’t
outperform the previous seed for random patch selection,
so that further methods should be considered and ex-
plored. In general, however, in theory this should attain
similar performances regardless of the image registration
step, as it doesn’t require any knowledge on the anatom-
ical position from which the patches are drawn and there
is significant overlap between these.

Patches within ROIs

Concerning patch selection, the results from employing
SSAE to learn feature representations of the input patches,
followed by the output softmax classifier layer, are pre-
sented in Table 6. It can be observed that the accuracy
in patch selection using this method was very high re-
garding the registered dataset, while worse performances
were achieved for the non-registered one, as would be ex-
pected being the latter a more difficult classification prob-
lem. Moreover, since the final binary classification be-
tween CN and AD must be preceded by this step, the error

formed very well on the registered dataset, reaching a di-
agnostic accuracy close to the state of the art (around
90%), while the texton-based approach could also lead to
good results, namely using the linear kernel. It is impor-
tant to highlight that, due to the high computational cost
associated to training the full network, the analysis regard-
ing the non-registered dataset was performed using only 2
(and not 10) folds (as indicated by * in Table 7), so that
the results here displayed for the latter dataset, despite
being quite satisfactory, could be positively biased.

6. CN vs. MCI - Results and Discussion

6.1. Whole brain

The selected model was applied on the respective test set

(for each dataset), obtaining the final diagnostic accuracy

results for this binary task summarized in Tables 8-10.
Similar to the previous task, the performance of most

models would improve when considering larger numbers of

textons in the dictionary, so that it could be hypothesized

that better diagnostic accuracy results could have been at-

tained if this was extended beyond 10000; this should also



be particularly the case for the non-registered dataset, as
the dimensions of these images are much greater. However,
this would require a higher computational cost, resulting
in a trade-off between the two.

Table 8: Registered dataset’s best results for CN vs. MCI, using
whole brain features. Format: Mean (SEM) [%)].
Registered Dataset | Accuracy [%] | N°textons
VI - Linear 62.31 (4.50) -
VI - GHI 63.85 (4.87) -
Textons - Linear 67.69 (2.06) 500
Textons - GHI 73.08 (3.85) 10000
Textons - RBF 70.77 (3.20) 10000
Textons - N. Bayes | 67.69 (2.99) 10000
Table 9: Generated dataset’s best results for CN vs. AD, using
whole brain features. Format: Mean (SEM) [%)].
Generated Dataset | Accuracy [%)] | N°textons
Textons - GHI 63.08 (3.20) 7500
Textons - RBF 64.62 (3.84) 7500
Textons - N. Bayes | 66.92 (4.14) 7500

Table 10: Non-registered dataset’s best results for CN vs. AD, using
whole brain features. Format: Mean (SEM) [%].

Non-Reg. Dataset | Accuracy [%] | N°textons
VI - Linear 61.54 (3.24) -
Textons - GHI 61.54 (3.63) 7500

Textons - N. Bayes 60 (3.40) 10000

6.2. Patches

Random patch selection

Regarding the use of random patches of the brain, the
results are presented in Table 11.

Table 11: Diagnostic accuracy for CN vs. MCI, using randomly

selected patches. Format: Mean (SEM) [%].

Registered [%] | Generated [%] | Non-registered [%]
SVM - Linear | 54.62 (4.36) | 43.08 (3.49) 39.23 (0.77)
SVM- GHI | 66.92 (3.81) | 5538 (2.99) 56.92 (3.84)
SVM-RBF | 64.62 (4.17) | 53.08 (5.06) 42.31 (3.85)
N. Bayes 62.31 (3.13) 62.31 (5.19) 59.23 (3.45)

As in the previous classification task, naive Bayes per-
formed similarly to SVM, while significantly reducing the
complexity and computational cost of the problem. How-
ever, the poor performances observed are close to a ran-
dom procedure for binary classification.

Patches containing discriminative textons
Concerning the selection of patches containing discrimina-
tive textons, the results are presented in Table 12.

Table 12: Diagnostic accuracy for CN vs. MCI, using patches with
discriminative textons. Format: Mean (SEM) [%)].

Registered [%] | Generated [%] | Non-registered [%)]
SVM - Linear | 56.15 (3.45) | 49.23 (3.66) 47.69 (3.40)
SVM - GHI 66.92 (3.04) 60.77 (4.51) 62.31 (3.71)
SVM - RBF 57.69 (3.29) 49.23 (4.17) 44.62 (8.01)

The applied algorithms for this approach outperform
the results obtained with the previous seed for random
patch selection slightly, but further techniques should be

considered and explored, although, as mentioned, this
should be able to exhibit similar performances regardless
of the image registration step.

Patches within ROIs

As in the previous binary classification problem, for this
approach two steps were performed, namely patch selec-
tion and final image classification. The attained results
for patch selection are presented in Table 13, where it can
be observed that while the SSAE with softmax classifier
performed very well in the registered dataset, worse per-
formances were achieved for the non-registered one, being
theoretically a more complicated classification problem.

Table 13: Patch selection accuracy [%] for CN vs. MCI, considering
previously identified ROIs. Format: Mean (SEM).

Registered [%)
9155 (0.12)

Non-registered [%)
79.02 (0.12)

SSAE+Softmax

As in the CN vs. AD classification task, the selected
patches were then fed as input to the final classification
algorithm between CN and MCI. Several methods were
explored in this step, as presented in Table 14.

Table 14: Diagnostic accuracy for CN vs. MCI, considering the
selected patches within ROIs. Format: Mean (SEM) [%].

Registered [%] | Non-registered® [%)]
SVM - Linear (Reunion) 73.85 (4.47) 42.31 (3.85)
SVM - GHI (Reunion) 74.62 (3.98) 61.54 (3.44)
SVM - RBF (Reunion) 77.69 (4.51) 42.31 (3.85)
N. Bayes (Reunion) 65.38 (2.63) 46.15 (0)
SSAE-+Softmax (Maj. Voting) 61.54 (0) 61.54 (0)

It can be observed that the method which performed
better was the linear SVM applied to the reunion of se-
lected patches, for the registered dataset, while the SSAE
followed by softmax and majority voting led to the highest
classification accuracy in the non-registered dataset. Once
again, it should be higlighted that only 2 folds (* in Table
7) were used in the non-registered dataset, so that its re-
sults could eventually be positively biased. Also, the prop-
agation of error in patch selection might have led to worse
performances, particularly in the non-registered dataset.

6.3. Summary
Regarding CN vs. AD, the best accuracy results obtained
were 89.09%, 86.09% and 80.63%, respectively for the reg-
istered, generated and non-registered datasets, the former
using patch selection and majority voting by means of
SSAE and the softmax classifier, and the remainder us-
ing textons extracted from the whole brain images, which
proved to be robust to registration errors. High sensitivity
(specificity) values were also obtained, with a maximum
of 90% (88%), 86% (86%) and 77.33% (88%), respectively
for the registered, generated and non-registered datasets.
Concerning the CN vs. MCI problem, being a much
more complicated classification task, the attained results
in terms of both accuracy, sensitivity and specificity were
naturally lower. Regarding accuracy, values of 77.69%,
66.92% and 62.31% were respectively reported for the reg-
istered, generated and non-registered datasets, the former



using patch selection and further classification using his-
togram of textons on the reunion of all patches, while the
remainder using textons extracted from the whole brain
images and patches containing discriminative textons, re-
spectively. For the former method, a value of 100% was
reported for the sensitivity in the registered dataset, al-
though at the cost of a 50% specificity, and so the method’s
performance was not satisfactory. Particularly this corre-
sponds to the case where all MCI patients were correctly
classified, while all the cognitively normal subjects were
misclassified as having the disease (false alarms), mean-
ing that in fact all subjects were classified as having MCI.
Reasonable specificity values, close to 60%, were also re-
ported for the majority of the methods explored in this
classification problem. Nonetheless, considering that it
might be more relevant to accurately predict the diagno-
sis for subjects having MCI or AD, the results obtained
for both methods might in this sense be considered sat-
isfactory, as the majority of these could perform better
considering sensitivity than specificity.

7. Conclusions

In what refers to the achievements of this work, as the
classification algorithms that used both the texton-based
approach with features extracted from the whole brain
and the learned feature representations using the stacked
sparse autoencoder could perform well in each binary clas-
sification problem (although more evidently so for the CN
vs. AD task), regardless of the application or not of the
image registration step, it can be considered that its major
objective, of obtaining a method for CAD of AD robust
to registration errors, was achieved.

Concerning possible approaches to be tested in the fu-
ture, as mentioned throughout this work, it would be of
interest to study how switching from using the 3D-MRS8
filter bank to a set of filters (weights) to be learned by
a stacked sparse autoencoder would influence the perfor-
mance of the models in each classification problem, when
using the same texton-based approach. Further studies
could also be performed to expand the results presented in
this work, namely regarding the influence of the size of the
constructed patches, or else performing majority voting
on the patches selected through SSAE combined with the
softmax classifier, or also considering its application to the
whole brain images. Other deep learning strategies that
have attained state of the art performances could be ex-
plored too, namely combining autoencoders with convolu-
tional neural networks, or else considering deep Boltzmann
machines, amongst many other promising techniques.
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