
1

Hypervisor Board Support Package migration:
SPARC and ARM study case

Luis Murta
Instituto Superior Técnico

Lisbon, Portugal
luismurta-at-tecnico.ulisboa.com

Abstract—The number of space activities using an ARM target
is growing. With both NASA’s High Performance Spaceflight
Computing program and ESA’s DAHLIA board developing
ARM-based radiation hardened boards for deep space flight, and
the beginning of lower earth orbit nano-satellites using consumer-
grade ARM SoCs, a new space market is in its infancy. AIR
is a TSP hypervisor implementing the ARINC 653 standard
developed for ESA’s last generation satellites, running SPARC-
based computers. GMV is now seeking new ARM BSPs for its
hypervisor. With the objective of reducing the time to market,
the method proposed is to migrate the BSP developed for SPARC
to ARM. In the end, this thesis accomplishes a well documented
side-by-side comparison of the two architectures and it succeeds
in broadening the BSP portfolio of AIR with an Arty Z7 board
based on Zynq-7000 SoC by Xilinx.

Index Terms—hypervisor, SPARC, ARM, AIR, virtualization,
Zynq-7000

I. INTRODUCTION

The European Union (EU) has launched the COMPET-1-
2016: Technologies for European non-dependence and com-
petitiveness call [1], under the Horizon 2020 initiative. As a
result of this call, the DAHLIA [2] project, a collaboration
between STMicroelectronics, Airbus Defence and Space, Inte-
grated Systems Development, NanoXplore and Thales Alenia
Space, has been chosen to also create a radiation-hardened
ARM-based System on a Chip (SoC), to be used in future
space missions by Europe. Expected to perform 20 to 40 times
faster than current SoC for space and more than twice as fast
as the LEON4 chip, a quad-core processor based on Scalable
Processor ARChitecture (SPARC) and the lastest innovation
from Gaisler Research, the ARM-based SoC will be able
to run Guidance, Navigation and Control (GNC) algorithms
and handle Global Navigation Satellite System (GNSS) data
and telemetry through integrated peripherals, all on the same
chip [3].

Portugal is also eager to enter this new market, re-
cently demonstrated by the creation of the Portuguese Space
Agency [4] in March 13, 2019. Led by Chiara Manfletti, the
space agency’s President, it defined as the agency’s priority to
implement a shared space strategy with all shareholders and
stakeholders in Portugal’s space market. It is also responsible
for the development of the space port in the isle of Santa
Maria, in Azores [5]. There is also the Infante Project [6],
an 100% Portuguese technology satellite, approved in 2017
by the Agência Nacional de Inovação (ANI), and expected to
launch in 2020, where GMV takes part in the consortium.

Succeeding the emerging market of nano satellites, with
the possibility of new processor architectures appearing in the
space segment, and the introduction of a radiation-hardened
ARM SoC, has captured the attention of GMV into opening
their previously mono-architecture operating system (OS) for
additional processor families, such has ARM, PowerPC and
RISC-V.

With the possibility of multiple ARM processors being
deployed to space on multiple fronts, GMV has a keen interest
in broadening its hypervisor to this architecture.

II. BACKGROUND

Hypervisors are the key enabler of time and space parti-
tioning (TSP) systems. They are relevant in all architectures
that require complete isolation between applications and strong
fault tolerance. Fundamental in the Integrated Modular Avion-
ics (IMA) concept, their predominance in the aeronautical field
has extended to the space domain. But first, the reason for
the need of the hypervisor is presented, followed by a review
on the branch of computing that enables several applications
to run concurrently, with the illusion of complete hardware
availability.

A. Virtualization

In a privileged/non-privileged architecture, all instructions
are available to software running in privileged (supervisor)
mode, whereas only a subset of the instructions are available to
non-privileged (user) programs. The non-privileged programs
in turn make system calls, typically implemented as supervisor
call (SVC) instructions, to the privileged software, usually
an OS kernel, that performs the privileged actions on their
behalf, possibly checking if the calling non-privileged program
has the rights to access the requested functionality. If a non-
privileged program attempts to execute privileged instructions,
an exception is raised and the program flow is disrupted. The
execution jumps to a pre-registered table of exception handlers,
normally controlled by the OS. The set of non-privileged
instructions plus the system calls offered by the privileged
software kernel present an extended view of the system to the
user [7], as shown in Fig. 1.

Although the extended system is replicated for each user
program, only one OS can be running at a time. This means
that it is not only impossible to run more than one OS, but also
denies the possibility of running any program that requires



2

Machine

Operating System

SVC
User ISA
System ISA

Extended Machine View

User ProgramUser ProgramUser Program

Fig. 1. Extended machine view exposed to non-privileged programs

Machine

Virtual Machine Monitor

SVC
User ISA
System ISA

User Program User Program

Virtual Machine

Complete ISA

User Program User Program

Virtual Machine

Operating SystemOperating System

Fig. 2. Virtual machine abstraction to the operating systems

direct access to the privileged instructions. Furthermore, it
occurs the inability to support older applications designed
for older OSs, to modify and test other OSs and to run
test and diagnostic programs that require direct access to
privileged instructions, without taking down the machine and
disconnecting all the users that were logged in [7].

The crucial innovation of virtualization is the introduction
of a virtual machine monitor (VMM) that provides the illusion
of multiple hardware infrastructures. Each virtual machine
(VM) behaves as a replica of the original machine, including
its instruction set architecture (ISA) and system resources,
such as the central processing unit (CPU) state and memory
and input/output (I/O) accesses. This is the first property of
interest when analyzing a VMM, also known as equivalence.
Equivalence can be stated as: any program executing in a
machine without a VMM should behave identically when
running in the same machine virtualized by the VMM. The
only exceptions to this principle of equivalence are the CPU
timings and total resource availability, which can not be
maintained for the second case, since the VMM must split
resources across all replicas. Each OS now operates on top
of a VM instead of a real one, as illustrated in Fig. 2. The
possibility of running more than one OS at once, along with
the illusion of the entire hardware availability, offers a very
robust multi-programming interface, as long as the VMM
manages to run all virtual machines concurrently and keep
complete control of the virtualized resources.

B. Critical instructions

For the VMM to work as expected in a privileged/non-
privileged architecture, without the OS meddling in its execu-
tion, the entire VM must run in user mode, containing both the

OS and user applications, letting the supervisor mode entirely
as the VMM’s playground. The VMM keeps additional infor-
mation on the privileged level of the instructions carried out
by the VMs, if their were executing natively on the machine
without the VMM presence, so that it can be used later by the
VMM to simulate the behaviour of those instruction depending
on their original privilege level [8].

Regardless of being privileged or non-privileged, instruc-
tions can be separated into two different sets according to their
dependency on the present state of the system. The first is the
sensitive instructions set, which groups all instructions that
either change or are dependent on the state of the system. In-
nocuous instructions comprise every other instruction that does
not fall into the previous category and represents the second
set. To respect the second property of a hypervisor, complete
resource control, all sensitive instructions must be run by the
hypervisor and any attempt from user level programs to run
them must raise an exception to the hypervisor. This effectively
prevents the programs running in the underlying VMs to access
or modify resources and time shares not allocated to them.

The third and final property of a hypervisor is efficiency. To
allow an efficient construction of a hypervisor, the grand ma-
jority of instructions need to run natively on the CPU without
hypervisor interference. The instructions that are oblivious to
the machine state and do not alter the system configurations,
the available memory or the I/O resources, can run natively in
hardware, while the other ones must either be executed by the
hypervisor or with its consent, generally being simulated in
supervisor mode taking into account their original privileged
level previously saved by the hypervisor.

This second group of instructions that have consequences on
the forthcoming state of the machine is the same group as the
previously denominated sensitive instruction set. To safeguard
that the sensitive instructions are executed by the hypervisor,
they must be a subset of the privileged instructions [9]. Since
the OS inside a VM is running in user mode, whenever it
executes a privileged instruction, the execution is trapped into
the hypervisor. If the instruction is sensitive, then the hypervi-
sor simulates it in software, updating the respective VM CPU
registers and memory boundaries saved in software structures,
returning back to the OS after handling the exception. This
last property of a hypervisor is the hardest to achieve, as
not all architectures are virtualization friendly, having both
sensitive and non-privileged instructions. The instructions in
the intersection between the sensitive and non-privileged sets
are often called critical instructions. If a sensitive instruction is
not trapped into the hypervisor, then unpredictable behaviour
will ensue, and the second property, complete resource control,
will be void, with a high likelihood of leading the other VMs
to experience faults.

These properties offer an insightful view on what is a
virtualization-friendly architecture, where the last two prop-
erties entail an architecture without critical instructions.

There are two possible solutions to the critical instructions
problem, full virtualization and paravirtualization, either with
its advantages and disadvantages. These do not offer a virtu-
alization as efficient as in the case of Popek and Goldberg’s
efficient hypervisor, where there are no critical instructions,



3

but since there are plenty of typical privileged/non-privileged
architectures that feature such instructions, alternatives had to
be found to host a hypervisor and achieve correct virtualiza-
tion.

The first is not available in the target board support package
(BSP) since it requires hardware modification, so the second
was used, with the added benefit of being the optimal virtu-
alization techniques, despite the added maintenance cost. In
this virtualization method, the guest OS is aware that it is
running inside a VM and is modified (or created from scratch)
to interact with the hypervisor [10], [11]. It accomplishes
the communication with the hypervisor through hypercalls
(HVCs), the equivalent of a SVC when user applications
request the OS to perform an action on their behalf, but in
this case the OS requests something from the hypervisor.
This method eliminates the critical instructions by replacing
them with HVCs and removes the overhead imposed in the
hypervisor from discerning the current context of the sensitive
instruction attempted in the VM, whenever an exception is
raised. The guest OS now has access to an application pro-
gramming interface (API) of HVCs offered by the hypervisor
to help in the virtualization effort.

Replacing sensitive code segments with HVCs removes the
otherwise occurring exceptions with near function behaviour,
with the ability to pass arguments and receive values from
the hypervisor. However, as extended kernel modifications are
warranted and have to be maintained after updates, greater
maintenance costs are associated with it. It also requires the
OS availability for customization and since some OSs are
proprietary they cannot be freely altered.

C. Hypervisor

As a consequence of the success of the IMA architecture
in the aeronautical field, a similar approach has transitioned
into the space domain. The hypervisor in an IMA architecture
can be boiled down into two fundamental notions, TSP and
fault detection, isolation and recovery (FDIR). By taking
advantage of the existing regulations such as the ARINC
653 avionics standard, a framework for the onboard computer
(OBC) OS can be designed using well established and tested
principles [12]. Incorporating these two notions into a type-1
hypervisor creates the foundations for a space-graded hyper-
visor.

1) Time and Space Partitioning: As described in ARINC
653 (Avionics Application Software Standard Interface) - Part
1 - Required Services [13], the central philosophy of an IMA
system is partitioning, where applications are segregated with
respect to space (memory partitioning) and time (temporal
partitioning). This is useful both for fault containment and
for ease of verification, validation and certification. The base
unit of partitioning is a partition. Partitions can range from
a Real Time Operating System (RTOS) plus applications to
a single bare-metal OS and a single-threaded program, each
having their own data, context, permissions, etc. This notion
of partition behaves very much alike that of a VM in the
context of virtualization. Partitions are limited to using only
the system calls defined in the published application executive

(APEX). To circumvent the restricted operations permitted by
the ARINC APEX, the standard allows an optional partition
type, the system partition, that can use additional system
calls to the hypervisor, for instance, to manage I/O device
drivers. The system partition still needs to conform by the
robust temporal and spatial partitioning. The standard also
recognizes the concept of multiple partitions belonging to the
same component, called modules.

The hypervisor is responsible for enforcing the partitioning,
making sure that different partitions are completely contained
from each other spatially and temporally. It is also responsible
for handling any errors that may arise from the partitions
without interfering with other partitions in the system, i.e.,
errors resulting from a partition are handled during that
partition’s time slice.

Temporal partitioning is attained by following a fixed and
cyclic schedule, determined before deployment, which ensures
deterministic behaviour. The schedule uses as the base unit of
time a major time frame. These have a fixed duration, and
are repeated periodically. The major time frame is composed
of smaller frames equal in size, which are allocated for
the partitions. At the end of each minor time frame, the
hypervisor retakes control of the execution and determines
whether the following minor time frame is alloted for the
same partition as the previous. If it is, then is resumes the
partition, and if not, it saves the previous application context
and restores the following one, passing the control to the
succeeding application. The period between each minor time
frame also determines the precision of the wall clock offered
by the hypervisor to the partitions. Each partition has a number
of tasks or processes running during its execution, but each
partition’s processes are managed by that partition scheduler
and are outside of the scope of the hypervisor. Major time
frames are repeated until the board shuts down.

Spacial partitioning is guaranteed with predetermined areas
of memory allocated for each partition at compilation time.
The space partitioning can be enforced by whatever mecha-
nism is present in the available hardware, such as a memory
management unit (MMU) or a memory protection unit (MPU),
or by virtualizing every single store/load instruction, albeit
at great performance costs. During each partition’s execution
time, memory access outside of the assigned memory areas
is prohibited. Communication with other partitions or I/O
devices must be done by requesting ARINC 653 inter-partition
services, such as sampling and queuing ports, provisioned by
the hypervisor.

2) Fault detection, isolation and recovery: The second
major concept of the IMA architecture is FDIR. ARINC 653
defines the existence of a Health Monitor (HM) for monitoring
and reporting errors in the entire system, experienced either in
hardware or raised by the partitions. The HM foresees a HM
table at the hypervisor level with HM callbacks to respond
to pre-defined faults in the system and optional HM tables at
the partition level to handle partition level errors, one for each
partition. The notion of FDIR entails three stages during the
course of a fault.

Starting out with detection, faults may be detected either:
• in hardware, such as memory violations, privileged ex-



4

TABLE I
ARINC HM ERROR LEVELS

Level Impact
process one or more processes in a partition, entire partition in the

worst case
partition only one partition
module every partition in the affected module

ecution violations, overflows, timer interrupts and other
I/Os;

• in the hypervisor, such as configuration errors and missed
deadlines;

• by the partition OS or similar software, such as wrong
sensor readings throwed as errors.

The particular list of all errors is implementation specific, as
well as where they are detected. Every possible error in the
system must be identified prior to the operation of the device
and assigned a specific id.

To help categorize all errors in the system and to determine
the appropriate HM callbacks, ARINC 653 defines three levels
where an error may occur and their inherent impact, shown in
Table I.

It is important to state that errors in the hypervisor are not
provisioned in the ARINC 653. However, these errors must
still be consistently handled in a complete and recoverable
manner, but are outside of the scope of the standard and are
the responsibility of the system integrator.

In addition to the id of the occurring fault, the operational
state of the system is also taken into consideration (such as
module/partition/process initialization, module/partition/pro-
cess execution, partition switching, etc.) for establishing the
level of the fault and the correct HM Table. The operational
state is set and kept up-to-date by the hypervisor between each
exchange in state. The three parameters in combination will
determine the appropriate fault handler to be launched.

After a fault is detected, it must be kept isolated from the
rest of the system. The first stage in a fault isolation after
being detected is the selection of the correct HM callback,
which also determines the degree of isolation of the fault. This
is performed by extracting the error id and operational stage
of where the fault occurred. Using these two parameters, the
correct error level can be derived and the appropriate HM
Table is used along the error id to select the proper HM
callback.

If the HM Table used is the partition level one, then the
fault is handled during that partition time slice, ensuring
isolation from the rest of the system. The entire HM callback
is performed within that partition’s context and will relinquish
control when another partition is due. If the error affects an
entire module and the Module HM table is the one used,
then isolation is kept only within that module’s partition, still
respecting another module’s time slices. All partitions within
the faulty module are affected.

Process level faults are also handled during the erroneous
partition time slice, but are implementation dependent. These
are normally handled by a higher priority task within the
partition OS. If a fault is experienced during the process
error handler, it becomes a partition level fault and is handled

Hardware

BSP

AIR

LIBS LIBS LIBS

POS POS POS

Task
#1

Task
#2

Task
#3

Task
#3

Task
#2

Task
#1

Task
#2

Task
#1

Task
#3

Fig. 3. AIR architecture

appropriately taken into account that it already faulted once
before.

Following the fault detection and isolation comes recovery.
Each entry of the chosen HM Table is accessed through the
error id and the operation state and contains a HM Callback
to recover from the pre-defined fault. There are three staple
actions that can be taken for all levels of errors, stop, restart
and ignore. Additional actions can be implemented through
additional functions to deal with every possible error in the
system.

III. TECHNOLOGIES

A. AIR

On top of the hardware is the BSP for each board. While
this section is also developed in-house, it is intended to be
entirely independent from the hypervisor logic. However, there
is still some intertwine between the BSP and the hypervisor,
being the complete separation one of the objectives of this
work. On top of the BSP is AIR, the hypervisor, where all the
logic related to temporal and spatial separation is performed,
along with the initialization of the system, scheduling, context-
switching and housekeeping. AIR is also referred to as the
Partition Management Kernel (PMK), and the terms are used
interchangeably. On top of AIR are all the partitions that are
scheduled to run during the system’s runtime. The libraries
selected in each partition, including LIBAIR, are built sepa-
rately for each partition, since there is no shared space between
the partitions. The Partition Operating System (POS) is then
left to its own execution, with the ability to schedule tasks,
setup filesystems, etc. The final output of the build process is
structured as in Fig. 3.

Two files are involved in the initialization of AIR in any
board, the start.S and the init.c. The start.S is
an assembly file required in all bare-bones software and is
architecture-dependent and software-independent. As such it
can be seen as part of the BSP box in Fig. 3. It is responsible
for:

• allocating space for the board exception vector, either by
filling the space with dummy function handlers or jumps
to the actual exception handlers;

• clearing the .bss;
• setting up the stack pointers;



5

• invalidate all cache entries, the translation lookaside
buffer (TLB) and other speculative mechanisms;

• configuring the floating-point unit (FPU), if enabled.
After the previous procedures the start.S calls the
pmk_init() function, located in the init.c. From here
onwards, the remainder of the system initialization is carried
from AIR, with the appropriate calls to the BSP where
required.

As a TSP hypervisor, AIR is responsible not only for
maintaining the VMs, but also for enforcing temporal and
spatial isolation. After the initialization is complete, AIR
launches a partition responsible for maintaining the core in
idle and enables preemption.

The temporal correctness is maintained by reserving a timer
for only supervisor access, triggering an interrupt when it
reaches the desired counter value, and auto-restarting, thus
generating interrupts at regular intervals. The timer interrupt is
raised at the beginning of each minor frame and the associated
handler is dispatched. This handler is responsible for saving
the previous partition’s context, checking what partition is allo-
cated for the current minor frame, and restoring the succeeding
application’s context. The overhead introduced by AIR has
been evaluated to 1 ∼ 2% in single core while running on the
ESA Next Generation Microprocessor (NGMP) 1, and grows
inversely proportional to the duration of the minor time frame,
deteriorating in performance for periods of under 0.001 s [14].
There are yet no extensive studies as to the overhead present
in a multicore scenario.

The spatial isolation is preserved using the hardware struc-
tures of the underlying hardware, therefore it is architecture
dependent. So far, AIR has only been developed expecting
a MMU, but it keeps the separation between hypervisor and
BSP by calling generic functions that can be adapted for every
architecture.

In order to respect the ARINC 653 standard, AIR also
realizes the concept of a HM. It follows the same approach
as detailed in section II-C2, and the actual implementation
can be visualized in Fig. 4. After a fault is experienced,
an exception is raised and the execution jumps to the HM
handler. It starts by performing a lookup using the error id
and operational state in the system HM table to determine
the level of the fault. After it has determined the level of
the error, it performs a search in the correspondent HM table
using the error id, finally performing the pre-determined action
for the detected fault. The actions allowed in a module level
error are SHUTDOWN, RESTART and IGNORE, where IGNORE
later calls a function handler specified for the experienced
error. The partition level table also offers the SHUTDOWN
and IGNORE actions, with similar behaviour to the module
HM table, but distinguishes between a COLD START and a
WARM START. Both the COLD START and WARM START can
be seen as a complete reset of the partition, and the equivalent
to the module RESTART, but the information on which of the
two occurred is passed on to the partition, that can later act
differently based on that information.

1http://microelectronics.esa.int/gr740/index.html

Fig. 4. AIR HM procedure

The HM configuration is performed through an extensive
table present in a configuration .xml that is comprised of
the system HM table plus a module HM table and a partition
HM table for each partition. The specific function handlers
related to the IGNORE action are placed inside the partition
files during each partition’s compilation. The error handler is
then responsible for retrieving the operational state of where
the error occurred and the error id through a system call.

IV. ARCHITECTURAL DIFFERENCES

The architectural differences between the two architectures
were distilled from both architectures reference manuals, pre-
sented in Table II.

TABLE II
ARCHITECTURES’ REFERENCE MANUALS

Documents procured Ref.
SPARC The SPARC Architecture Manual Version 8 [15]
GR740 Data Sheet and User’s Manual [16]
ARM ARM® Architecture Reference Manual ARMv7-A and
ARMv7-R edition

[17]

ARM® Compiler armasm User Guide [18]
ARM Architecture Reference Manual Thumb-2 Supplement [19]
Cortex™-A9 Technical Reference Manual [20]
Cortex™-A9 MPCore® Technical Reference Manual [21]
ARM® Generic Interrupt Controller Architecture version 2.0
Architecture Specification

[22]

Zynq-7000 SoC Technical Reference Manual [23]

A. Instruction set architecture

The two processor architectures are designed as reduced
instruction set computer (RISC), making their ISA similar
in nature. A RISC instruction set is typically defined by the
following traits:

• each instruction undertakes a reduced amount of work;
• uniform instruction format and length, leading to simpli-

fied processor logic;
• all general-purpose registers can be used either as source

or destination in all instructions;
• data-access is performed in a limited number of instruc-

tions, with that being their entire objective.
These ISA attributes result in a similar instruction set with an
approximately equal number of instructions between SPARC
and ARM. Nevertheless, while a big set of both architecture’s
instructions share much of the same purpose, their architectural



6

dissimilarities translate into additional instructions on both
sides. Table III presents the encountered instructions that either
perform a behaviour not found in the other architecture or that
realize the same goal differently.

TABLE III
ARCHITECTURE SPECIFIC INSTRUCTIONS

Function SPARC ARM
window management SAVE, RESTORE -
memory barriers FLUSH, STBAR, NOP ISB, DSB, DMB
change instruction set - BX, BLX
change operating mode - CPS
mutual exclusion SWAP LDREX, STREX

B. Stack

The first of the two necessary initializations before jumping
into a C function is the stack initialization. Compiled C code
will assume that the stack pointer (SP) is correctly initialized
and make extensive use of it when jumping between functions,
to pass and use arguments.

Another very important use of the stack is during excep-
tions. Upon entering an exception, the previously executing
application context is dumped into stack memory. This stack
zone is called the interrupt stack frame and holds the necessary
information to resume the application when returning from the
exception. The GNU SPARC compiler always reserves the
necessary space on the stack to be used on the event of an
exception, and this occurs for every register window.

ARM on the other hand, since exceptions always jump to a
operating mode with its own stack, does not need to reserve
this additional space on every procedure entry, instead it can
save the interrupt stack frame on each of the operating modes’
stack.

C. .bss

The second of the two necessary initializations is zeroing
the .bss section. In the C standard statically-allocated variables
without an explicit initializer are expected to hold that value
by the programmer, but when starting up a computer no
assumptions can be made about the initial state of the memory.

Since this step could possibly take a long time depending
on the amount of statically-allocated uninitialized variables,
it is important to consider the size of the data bus and take
advantage of it. Both the GR740 and the Arty Z7 use an
AHB/AXI data bus of 64 bit, so for the best performance
when writing to memory, two registers are stored at a time.
Both SPARC and ARM offer instructions to take advantage of
this characteristic of most modern boards. SPARC offers the
STD/LDD pair to store/load doubles (64 bit variables) to/from
memory. ARM boosts a more powerful version of the previous
instructions, the STM/LDM pair, that can store/load multiple
registers to/from memory. To take advantage of the data bus
size, ARM’s version needs be used with a pair number of
registers. This principle holds true not only in the .bss zeroing,
but everywhere else in the code, with compiled code taking
advantage of both pairs of instructions.

D. Cache, branch predictors and translation lookaside buffer

After both the stack pointers are initialized and the .bss is
cleared, any remaining initialization procedures can be done
in C.

For the same reason the .bss needs to be cleared, so do the
L1 instruction and data caches, branch predictors and TLB
need to be invalidated. As defined in the ARMv7 reference
manual, both the caches, branch predictors and the TLB are
disabled at reset. There is not, however, information on the
starting content of the caches at reset, so they are considered
to not be empty, so they must be cleaned at start-up. All these
hardware structures must have their contents invalidated at
start-up, and only after can they be enabled.

SPARC differs has there is no constraint for the caches
and the TLB to start disabled. The branch predictor is not
programmable in the LEON4 processor. While the SPARC
architecture manual does not specify the initial state of the
cache, the GR740 one does, stating that both caches are
disabled at reset. Nevertheless, to ensure compatibility with
other BSPs, both the caches and the MMU are disabled
during start-up, followed with the cache and the TLB being
invalidated, and only after re-enabled. The L2 caches are
dependent of the board used. The GR740 L2 cache is disabled
after reset and it is invalidated at the same time it is enabled.
The Zynq-7000 SoCs L2 cache is cleared upon reset, but the
entries must still be invalidated before enabling it.

E. Register window

The immense disparity between SPARC’s and ARM’s reg-
ister layouts only comes into play when changing context.
Removing SPARC’s register windows, shown in Fig. 5, only
eases the hypervisor development when directly dealing with
the registers, as the maintenance code on the windows is
removed. The interrupt stack frame is also reduced since it
only has to keep one set of general-purpose registers, plus
the FIQ’s registers 8 through 12 (if used) and the LR, SP and
saved processor state register (SPSR) present in every mode,
with the exception of the shared LR and SP, and inexistence
SPSR, between User and System, up to a total of 29. This
is in contrast with SPARC’s n windows, 8 in the case of the
GR740, with 16 registers each, plus 8 globals, totaling 136. In
both cases, the total number of registers is multiplied by the
level of nesting permitted, per partition context.

While in theory SPARC’s register window improves the
performance when changing context during normal operation
(no hypervisor), by reducing the number of accesses to the
stack when entering/exiting function calls, it introduces a
penalty when virtualization comes into the picture. Besides
the higher space usage, when changing from one partition
to another, all used register windows need to be dumped
into memory. Although AIR increases performance by only
restoring the last used register window and only restoring
additional windows when the partition requires them, the
worst-case execution time (WCET) still comes into play, since
all windows could be requested. ARM’s plain register design
increases the predictability of context switching.



7

l0

o0

i0

o1

i6o7

l7

i7

o3

l3

i3

o4

l4 i4

o5
l5

i5

o6

l6

l1

i1

o2

l2

i2

SAVE
or
Trap

RESTORE
or

RETT

CWP

CWP+1

CWP-1

Fig. 5. SPARC general-purpose register windows

TABLE IV
DIFFERENCE BETWEEN ARCHITECTURES’ SYSTEM CONFIGURATION

Function SPARC ARM
window management CWP + WIM -
exception table base address %TBR cp15
system configuration RDASR/WRASR %ASR17 cp15
cache control ASI 0x2 cp15
cache operations ASI cp15
MMU control ASI 0x19 cp15
MMU operations ASI cp15

F. System configuration and identification

The two architectures access information on the system
differently, with ARM providing a slightly simpler model,
accessing most information through a single coprocessor using
the MRC/MCR instruction pair. SPARC varies between ancil-
lary registers and Address Space Identifier (ASI) accesses.

The accesses to the system configuration are shown in
Table IV.

G. Exceptions, Traps and Interrupts

The vocabulary used by each architecture manuals differs
when exceptions, or traps in the case of SPARC, are referred
to. In essence, they specify the same and can be used inter-
changeably. An exception or trap is an anomalous event that
changes the normal flow of a program and jumps the execution
to a table of predefined handlers. If the handlers do not exist,
unexpected behaviour will ensue.

Synchronous exceptions are the result of instructions that
directly trigger an event on the execution stream. Within the
bounds of this category fall SVCs and undefined instructions,
either by attempted execution of an instruction not available at
that privileged level or an unimplemented instruction, such as
a floating-point operation with the FPU disabled. Precise asyn-
chronous exceptions normally encompass interrupt requests
(IRQs). The state previous to the interrupt is known, but
won’t give any insight as to the interrupt itself. Imprecise

asynchronous exceptions are normally the result of memory
errors. Due to the optimizations present in most present-
day CPUs, such as caches and write buffers, errors when
writing/reading to/from memory are seen with some delay and
the exact instruction that generated the abort cannot be derived
from the state of the computer when the exception is taken.
A common example is a read-only memory area marked as
cacheable and with a write-back policy. Writes to the cache
won’t trigger any error and the exception will only appear
when the cache line gets evicted and written back to memory.

All the aforementioned scenarios point directly to an op-
erating mode in ARM, making the distinction between each
exception type faster but grouping several distinct errors into
one function handler. SPARC on the other hand holds a
256 entries table, with 80 entries reserved for a combination
of undefined instructions, data aborts, the window underflow
and window overflow, and the reset exception, 16 entries for
IRQs and 128 for user determined SVCs. Not all of these
exceptions need to be implemented in a BSP, but they have to
respect the order defined in the architectural standard. While
failed instruction fetches and data errors can cause imprecise
asynchronous exceptions, ARM offers some insight through
the Instruction Fault Status Register and the Data Fault Status
Register, accessible through coprocessor 15. IRQs in ARM
are distinguished later in the interrupt handler through the
Interrupt Acknowledge Register (ICCIAR) available in the
interrupt controller. Finally, SVCs are differentiated by a value
passed in the instruction itself, accessed in the exception
handler through the preferred return address. In T32, the
maximum number of SVCs is restricted to 256, due to the
8 bit encoding (imm8), but the range goes up to 224 in A32
due to the 24 bit encoding of the SVC id.

The major difference going from one architecture to the
other is the use of two tables in ARM for handling any
exception in contrast with the one in SPARC. While the
method employed by ARM introduces an additional level of
redirection, it reduces the initial amount of exception handlers,
possibly negating duplication of the same code. It also reduces
the size of the exception handler table, which is mandatory
for the two architectures, going from 256 entries in SPARC
to only 8 in ARM.

H. Memory Management Unit

Both SPARC’s and ARM’s MMU’s are organized largely
in the same manner, with the exception of SPARC’s reference
MMU proposing three translation levels and ARM’s using only
two. The respective Page Table Entries are referred in each
of the architecture’s manuals, and must be followed for the
TLB to work as expected. However, not much differs in their
implementations and the code developed for ARM is mostly
a repetition of the one for SPARC, adjusting only the Page
Table Entries format.

V. BSP HYPERVISOR-RELATED PROCEDURES

The primary role of the hypervisor is to maintain several
VMs running concurrently. To accommodate this, it requires
two features:



8

void core_context_init(
core_context_t *context, air_u32_t id);

void core_context_setup_idle(core_context_t *context);
void core_context_setup_partition(

core_context_t *context, pmk_partition_t *partition);

Fig. 6. BSP functions to initialize and setup the partitions’ context

1) memory earmarked for each VM context;
2) a mechanism to change context.
The first is allocated for each core and for each partition

during initialization. The space assigned for each core contains
the context of an idle VM, and is the one used when first
booting up the core and on every vacant time slice. The one
for each partition is loaded with the initial parameters specific
to that particular partition. The PMK can use three BSP calls to
setup these contexts, which declarations can be seen in Fig. 6.

Both contexts are composed of:
• CPU id and registers

– on SPARC: processor state register (PSR), Window
Invalid Mask (WIM), Trap Base Register (TBR), cache
control and MMU control;

– on ARM: PSR, VBAR and MMU control.
• Interrupt stack frame pointer.
• Interrupt nesting level.
• Interrupt controller registers.
• FPU context if compiled for it.
• AIR current state information.
• HM event currently being serviced (if one exits).
The second feature of the hypervisor is a mechanism to

change context. The behaviour in SPARC was copied to
ARM. A single timer is used exclusively for the scheduler
interrupt, and is the only one set to the highest priority. Both
architectures allow nested interrupts, so the highest priority
interrupt, if only one, will always be taken. Code segments
with disabled interrupts are only used in first context save
upon entering an exception and during the timer handler.
Never during partitions. Any request by the partition to disable
interrupts is only simulated in the virtualized CPU registers,
never actually taking place.

A. AIR Paravirtualization

AIR follows the paravirtualization approach to achieve
correct virtualization. This approach requires guest OS mod-
ifications, but more importantly for the hypervisor, it must
offer a direct route of communication between the VMs and
AIR. This route is maintained by HVCs to AIR, using the
SVCs available in both architectures. The HVCs available to
the guest OSs can be separated into two main groups:

1) These HVCs are used to implement hardware virtualiza-
tion. The group is composed of:
• disable/enable interrupts;
• disable/enable exceptions;
• disable/enable the FPU;
• get/set the CPU registers;
• get/set interrupt mask;
• return from an HM event.

2) These HVCs are used to either retrieve information from
AIR or to perform more complex procedures using AIR’s
abstractions. The group is composed of:
• get physical address;
• get core id;
• get µs per tick and get elapsed ticks (these two HVCs

can be used to implement timers within the partitions);
• get partition information;
• get schedule information;
• get ports information;
• get HM event;
• print;
• boot secondary core.

Only the first group requires direct migration from one archi-
tecture to the other. The second group of calls interact directly
with the PMK, although some will later require interaction
with the BSP, e.g. when booting secondary core. The ”return
from an HM event” belongs in the first group because its
purpose is to jump to the pre-HM program counter (PC), which
is accessible directly from the BSP.

In this scenario, ARM achieves the lowest disabled inter-
rupts downtime. Since HVCs can be interpreted as normal
function calls, the handler takes advantages of a similar
behaviour of the stack usage of normal function entries/returns.
After the execution enters the Supervisor mode, the preferred
return address and SPSR are saved as per usual. Using ARM’s
unique instruction SRS (Store Return State), the Supervisor
mode can save the preferred return address and the SPSR into
any stack available. By using the System stack, which is shared
with the User mode, it attains nearly identical behaviour to
that of a function. Furthermore, is can now push onto the
System stack the interrupt stack frame before the exception
occurred, since the previous instruction does not use any of
the general-purpose registers. At this point, preemption can be
enabled again, and the exact procedure can happen again, even
though it is extremely unlikely, since HVCs do not use HVCs
again. The timer interrupt can however happen, without loss
of information, as long as the stack is kept coherent. Since the
execution will not return to User mode before all exceptions
are handled, there is no possible way for the stack to become
corrupted. After the HVC is completed, the preferred return
address and SPSR are loaded onto the PC and the current
processor state register (CPSR) through the RFE (Return From
Exception) instruction.

Using the System stack is important in this behaviour,
because it keeps thing clean, all the while saving in space and
time. If the Supervisor stack were used, it would also need to
be saved in memory during a context change. This way, the
System stack is the only one used across the entire partition
time slice.

B. Interrupt virtualization

Also required to complete the virtualization process, is the
virtualization of the interrupts destined to the VMs. For the
hypervisor to maintain control over the system, it must catch
all exceptions, even if these are bound to the VMs. The code
developed is similar in both architectures. First an interrupt is



9

identified about its type by the hypervisor. Afterwards, it can
be checked if it belongs to any of the scheduled partitions. If it
does, the hypervisor recreates the same process of identifying
the interrupt by modifying the appropriate virtualized registers
and when returning to the partition, it resumes execution from
the guest OS’ exception table. The paravirtualized guest OS
can then redo the same procedures used by AIR, but in its
case, by accessing the virtualized information.

The small discrepancy is due to the different exception mod-
els. As identified in the previous chapter, ARM employs an
additional redirection level. As such, the virtualized exception
checks are present across all exception handlers, where in
SPARC all exceptions have the same entry point, and this
code only appears once.

C. Time and space partitioning
After the hypervisor achieves correct and efficient virtual-

ization, the TSP aspect simply boils down to the schedule and
communication protocols used. And the TSP standard is rather
concise on it. The schedule is fixed and cyclic, composed of
minor and major time frames that repeat themselves. There
is no shared memory between VMs. Communication must
be done through queuing and sampling ports supplied by
the hypervisor and the contents must be written from one
VM to the hypervisor and read from the hypervisor to the
receiving VM. Nothing in this implies architectural changes,
since its application is done entirely in the PMK. The only
BSP calls are the writes to and from the hypervisor, that check
if the partitions have the correct permissions to access that
memory and do a memcpy. There are no differences between
architectures in this regard.

D. Health Monitor
The architectural differences in the HM implementation

are derived from the different exception models. The HM is
responsible for all the errors that occur in the system, and
is designed to be generic enough to accommodate different
BSPs. The job of the BSP in this design is to determine the
error id of the fault. For this objective, SPARC installs the
same HM handler in all relevant exceptions and defines the
error via a lookup in a 256 entry vector based on the exception
table entry.

In contrast with SPARC, ARM’s exception table is very
reduced in size, having only three entries for HM errors
(undefined, prefetch and data aborts), and the error id is found
through if-else statements. However, for more detailed error
ids, the instructions that generated the errors must be decoded
according the ARM’s instruction set encoding. To implement
lazy FPU switching, where the FPU is only re-enabled after
a context switch if it is used, the undefined exception faulted
instruction is decoded to determine its identity.

While ARM benefits in size from its simplified HM design
due to its exception model, when entering into detail in the
determination of the error id, it is clear that SPARC has
the advantage. Even with the exception table entries locked
in number to take into consideration future versions of the
architecture, reverse-engineering every instruction in ARM
becomes a very time consuming job.

TABLE V
TIMER TESTS

Nr P. Ticks/Second Schedule
2 10 P1 0.5 s - idle 0.5 s - P2 0.5 s - idle 0.5 s
2 100 P1 0.5 s - idle 0.5 s - P2 0.5 s - idle 0.5 s
2 1000 P1 0.5 s - idle 0.5 s - P2 0.5 s - idle 0.5 s
2 10000 P1 0.5 s - idle 0.5 s - P2 0.5 s - idle 0.5 s

TABLE VI
HEALTH MONITOR TESTS

Nr P. State Schedule
1 Module initialization P1 1 s
1 Partition Execution P1 1 s
2 Partition Execution P1 0.5 s - P2 0.5 s
2 HM execution P1 0.5 s - P2 0.5 s
1 Partition Execution due to FPU error P1 1 s

VI. TESTS

To reliably test a hypervisor that employs paravirtualization,
a paravirtualized OS is required. It was created a barebones
OS, whose sole function is to test the functionalities of the TSP
hypervisor. This OS can run any executable compiled in T32
or A32, as long as it does not have any external dependencies
apart from the GCC libraries.

The OS only runs in single-core and makes extensive use
of the LIBAIR API. The tests were run both on the QEMU
emulator and on the Arty Z7, yielding similar results. Nr P. is
the number of partitions.

A. Timer test

The timer test aims at analysing the behaviour of
the timer HVCs, the air syscall get us per tick and the
air syscall get elapsed ticks. The combination of these two
calls provides a timer for the partition, updated at every minor
timer frame.

This test performs as expected, with higher resolutions
attained for higher ticks per second, but there was a noticeable
delay in the 10000 Ticks/Second test in comparison with the
previous ones. The actual delay needs to be further studied
with timing analysis tools.

B. Health monitor test

The health monitor tests are performed to gauge the re-
sponse of the HM to different kinds of errors in different states
of the program.

The tests performed as expected, always launching the
correct actions from the HM configuration table. The two
partitions tests did not affect each other negatively, and the
errors were successfully contained within the partitions. The
FPU lazy-switch test also performed as expected, with the
partition recovering after an undefined error caused by a FPU
instruction with the FPU disabled, by enabling the FPU and
repeating the instruction.

VII. CONCLUSION

In conclusion, the new BSP for AIR performed innocuously,
yielding the same results as the SPARC one. It maintained



10

the same BSP API calls and performed equivalent procedures
when compared side-by-side. The architectural differences
were mostly felt in virtualizing aspect of the hypervisor,
due to incompatible register and exception models. However,
a similarities were found and the new BSP achieved the
same result through different methods. It improved on the
HVC handling, by providing a lower timer frame where the
interrupts are disabled, thus increase the accuracy of the global
timer. The objective of creating a BSP for a TSP hypervisor
was successful and is currently being used in production and
in proposals for future projects.

In addition to the created BSP, a comparative study between
SPARC and ARM was also performed and can be used as
reference material when migrating from SPARCv8 to ARMv7.

Parallel to the development of the new BSP was also the
development of the toolchain used to compile AIR, which
was reinforced with new templates and script to streamline
the development process.

A. Future work
The most immediate development to be made is the ex-

pansion of the BSP to multicore, accompanied by the a
multiprocessing barebones OS. This would not only bring the
most immediate performance boost, but also adding another
dimension to the scheduling possibilities.

Since this code is expected to run in space, validation and
verification facilities should also be added to speed-up the
process of qualification.

With the attention given to the modularity of AIR, the
addition of new architectures and more interesting BSPs could
also bring more depth into AIR. This case is specially true for
the addition of the ARMv8, that incorporates the Virtualization
Extensions into a more consolidated architecture.

REFERENCES

[1] Technologies for European non-dependence and com-
petitiveness, COMPET-1-2016, Funding & tender op-
portunities, European Commission, Nov. 2015. [On-
line]. Available: https : / / ec . europa . eu / info / funding -
tenders/opportunities/portal/screen/opportunities/topic-
details/compet-1-2016.

[2] DAHLIA Deep sub-micron microprocessor for spAce
rad-Had appLIcation Asic, DAHLIA Consortium, 2017.
[Online]. Available: https://dahlia-h2020.eu/.

[3] J. L. Poupat, T. Helfers, P. Basset, A. G. Llovera, M.
Mattavelli, C. Papadas, and O. Lepape, DAHLIA, Very
High Performance Microprocessor for Space Applica-
tions, Proc. DASIA 2018 - DAta Systems In Aerospace,
to be published, Oxford, May 2018.

[4] Portugal Space, 2019. [Online]. Available: https://www.
ptspace.pt/.

[5] Atlantic International Satellite Launch Programee:
Launch services to Space from the Island of Santa
Maria, Azores, International Call for Interest, ESA,
Luı́sa Ferreira and CEiiA, Sep. 2018. [Online]. Avail-
able: https : / / www . portugal . gov . pt / download -
ficheiros/ficheiro.aspx?v=28d4b86b-9b43-4005-a968-
b4c4730f28a7.

[6] Infante, 2016. [Online]. Available: http://infante.space/.
[7] R. P. Goldberg, “Survey of Virtual Machine Research,”

Computer, vol. 7, no. 6, pp. 34–45, Jun. 1974.
[8] J. P. Buzen and U. O. Gagliardi, “The evolution of

virtual machine architecture,” in AFIPS Conf. Proc.
National Computer Conference and Exposition, New
York, NY, 1973.

[9] G. J. Popek and R. P. Goldberg, “Formal Requirements
for Virtualizable Third Generation Architectures,” Com-
munications of the ACM, vol. 17, no. 7, pp. 412–421,
Jul. 1974.

[10] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali:
Lightweight virtual machines for distributed and net-
worked applications,” University of Washington, Seat-
tle, WA, Tech. Rep. 02-02-01, 2002.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield,
“Xen and the Art of Virtualization,” in SOSP’03 Proc.
19th ACM Symposium on Operating Systems Principles,
vol. 37, Bolton Landing, NY, 2003, pp. 164–177.

[12] N. Diniz and J. Rufino, “ARINC 653 in Space,” in Proc.
DASIA 2015 - DAta Systems In Aerospace, vol. 602,
Edinburgh, 2005.

[13] Avionics Application Software Standard Interface Part 1
- Required Services, Specification 653-2, ARINC, Dec.
2005.

[14] C. Silva and C. Tatibana, “MultIMA - Multi-Core in
Integrated Modular Avionics,” in Proc. DASIA 2014 -
DAta Systems In Aerospace, vol. 725, Warsaw, 2014.

[15] The SPARC Architecture Manual Version 8, SPARC
International, Inc., Campbell, CA, 1991.

[16] GR740 Data Sheet and User’s Manual, Cobham, Jul.
2018.

[17] ARM® Architecture Reference Manual ARMv7-A and
ARMv7-R edition, ARM Limited, Mar. 2018.

[18] ARM® Compiler armasm User Guide, ARM Limited,
Oct. 2018.

[19] ARM Architecture Reference Manual Thumb-2 Supple-
ment, ARM Limited, Dec. 2005.

[20] Cortex™-A9 Technical Reference Manual, ARM Lim-
ited, Jun. 2012.

[21] Cortex™-A9 MPCore® Technical Reference Manual,
ARM Limited, Jun. 2012.

[22] ARM® Generic Interrupt Controller Architecture ver-
sion 2.0 Architecture Specification, ARM Limited, Jul.
2013.

[23] Zynq-7000 SoC Technical Reference Manual, Xilinx,
Jan. 2018.


