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Abstract—Since the development of the Global Positioning
System (GPS), the outdoor localization problem was signif-
icantly overcome due to the availability of outdoor position
estimates. Yet, localization is still a difficult problem under
certain constraints. Currently, in several areas such as cities,
the urban canyon often limits the number of satellites in view
used to obtain a position estimate. In these cases, the GPS
receivers cannot obtain enough satellites signals to compute
an estimate. In these conditions, it is often necessary to rely
on dead reckoning methods to update the position estimate.
Still, corrections to these estimates need to be performed as
its uncertainty increases. In this thesis, we present localization
methods for an Unmanned Ground Vehicle (UGV). The developed
methods intend to decrease the resilience of GPS measurements
by relying on different configurations of wheel odometry and two
Inertial Measurement Units (IMUs) to update the pose estimate.
A set of indoor and outdoor experiments were performed to
assess the accuracy of the proposed methods when comparing
these to an estimate obtained using GPS measurements. Results
showed that our methods do provide a continuously reliable pose
estimate over short distances.

Index Terms—Localization, Odometry calibration, Sensor
modeling, Sensor fusion, Outdoor unmanned ground vehicle

I. INTRODUCTION

Unstructured environments and their unpredictability pose a
serious challenge for robots and humans, not only not knowing
what does the environment look like, but also take into account
the unpredictable behaviors that bodies might take within
it. For the safe and efficient deployment of UGVs, efficient
methods are required to gather as much useful information
from the environment as possible.

The Mohamed Bin Zayed International Robotics Challenge
(MBZIRC) is a robotics competition which started in 2017. It
focuses on enabling technologies for applications in several ar-
eas, these include, disaster response, domestic tasks, transport,
and construction, with the aim of promoting “robots working
autonomously in dynamic, unstructured environments, while
collaborating and interacting with other robots” [1].

Often when performing tasks outdoor GPS localization
estimates are used, yet these are not available everywhere. Al-
though the proposed challenges will be held mostly outdoors,
where GPS signal should be available, its use is discouraged.
The Institute for Systems and Robotics - Lisbon from Instituto
Superior Técnico, along with the Robotics, Vision and Control
Group from the University of Seville applied to jointly partic-
ipate in MBZIRC 2020, and were accepted as a participating
team.

Localization in outdoor environments is still a challenging
task under some constraints [2]. We modify a UGV for
outdoor use and explore localization techniques, avoiding the
use of GPS assisted methods. Such methods are evaluated by
performing real-world experiments in an outdoor environment.
The sensor suite already implemented on the UGV was studied
and upgraded. The selected sensors are investigated and its
noise modeled.

The implemented methods do not rely on GPS measure-
ments. However, an estimate using GPS measurements is
computed in order to obtain a pose reference to which our
methods are compared to.

II. RELATED WORK

Odometry estimates are one of the simplest methods applied
to localization. Odometry methods use an approximate model
of the vehicle and information provided by the wheel encoders.
Using these and the model of the vehicle, the measurements
are integrated providing a continuous position estimate.

Two types of errors affect odometry estimation, systematic
and nonsystematic errors [3]. Systematic errors are the ones
which occur constantly, nonsystematic errors occur randomly.
Unequal wheel diameters, limited encoder resolution, and
sampling rate are some examples of systematic errors in this
application. Slippery floors and skidding are some examples
of non-systematic errors. Due to the non-aleatory nature of
systematic errors, these can be removed from the estimate by
tuning the vehicle model.

One of the most widely known methods for odometry
calibration is UMBmark [3]. This method was proposed as a
simple experiment from which the parameters of a differential
drive robot could be calibrated. The method involves several
steps and the execution of a predetermined path, from which,
the starting and ending position are measured. With those, the
parameters which calibrate the model are computed.

In [4] a different approach is taken by directly measuring
the wheels velocities of a differential drive robot while its
wheels were rotating without any load. Using a tachometer
the real wheels velocities are measured the relation between
these and the estimate provided by the wheel encoders is used
to calibrate both wheels velocities. With measurements from
the robot’s attitude while skid steering, the coefficient between
the effective axle length is estimated.

The method presented in [5] relies on least-squares over
a non-defined trajectory to compute a odometry calibration
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matrix. Using an estimation of the path, provided by the
UGV’s odometry, and a ground truth the calibration matrix
is computed from the estimate and ground truth 2D homoge-
neous coordinates difference in the robot frame. This matrix
minimizes the sum of the squares of the residuals of the
2D homogeneous coordinates difference in the robot frame,
approximating this way the estimated path to the ground truth.
This method was preferred due the availability of a ground
truth provided by a Motion Capture (MOCAP) system and
the possibility of a wide range of motions being used in the
calibration.

There are two types of localization, relative and absolute
[6]. Dead reckoning is a relative localization method, which
relies on a given initial pose of the agent and on information
about how it moved to update its belief. These provide a good
estimate on a per step basis, but when integrating the velocities
over a larger time interval and distance the estimation error
grows without bound [7]. In order to correct drift in dead
reckoning, measurements of the actual pose of the agent are
required. These can be in relation to a map, in case of map
matching, or in relation to a global frame such as the ones
obtained when using GPS.

Multiple methods combine measurements from different
sources to obtain a better estimate. Example of these are
particle filter, Kalman filter, Extended Kalman Filter (EKF)
and unscented Kalman filter [8].

Localization can be thought as a state estimation problem
where the state to be estimated contains the localization of
the agent. EKFs have been extensively used in localization
[9], they are efficient state estimators for nonlinear problems.

In [9], four different estimation architectures which rely
on an EKF are proposed and evaluated for six Degrees Of
Freedom (DOF) pose estimation of a skid steer mobile robot.
The author performs a series of experiments in different
scenarios and determines that the second approach yields
better results. We used the first architecture, this is simpler
than the estimate which yields better results, yet it performed
similarly in terms of return position and attitude error.

III. BACKGROUND

A. Odometry calibration method

Considering the 2D ground truth pose ut and the odometry
estimated pose zt, both at time t, we have:

ut = [xt, yt, θt]
T

zt = [x̂t, ŷt, θ̂t]
T

(1)

Using these, we compute the 2D homogeneous transforma-
tion vectors between t− 1 and t for both of our sequences of
measurements, u0:N−1 and z0:N−1. This is done by computing
the 2D homogeneous transformation matrix for t, At, then
computing the homogeneous transform between t − 1 and t,
Bt, and finally obtaining the 2D homogeneous coordinates,
st, which correspond to the 2D homogeneous coordinates
difference in the robot frame. These series of transformations
are depicted for ut in the sequence of operations in (2).

At =

cos(θt) −sin(θt) xt
sin(θt) cos(θt) yt

0 0 1

 (2a)

Bt = AtA
−1
t−1 (2b)

st = [B0,2t , B1,2t , arctan2(B1,0t , B0,0t)]
T (2c)

With these, two matrices are obtained, U and Z, which are
matrices of dimension 3×N , being each one the concatenation
of the robot frame velocities for ut and zt, respectively. This
is shown for u in (3).

U =

s00 . . . s0t . . . s0N−1

s10 . . . s1t . . . s1N−1

s20 . . . s2t . . . s2N−1

 (3)

The problem was then formulated as a linear system of
equations as in (4), where X is the 3× 3 calibration matrix.

U = XZ (4)

The calibration matrix X was then computed by applying
least-squares minimization as in (5), where N is the number
of 2D poses used in the minimization problem.

min
X

N−1∑
t=0

(XZ:,t − U:,t) (5)

We then calibrate the 2D homogeneous coordinates differ-
ence in the robot frame (6).

Z̃ = XZ (6)

Taking Z̃, we compute the calibrated robot frame velocities
ṽ and ω̃ by differentiating (7).

L̃ =
Z̃

δ
(7)

Where δ represents the measurement’s acquisition period
and the first row of L̃ is the calibrated linear velocities, ṽ, and
the third row contains the calibrated angular velocities, ω̃. The
calibrated trajectory is computed recursively from Z̃ as in (8).

Ct =

cos(Z̃1,t) −sin(Z̃1,t) Z̃0,t

sin(Z̃1,t) cos(Z̃1,t) Z̃1,t

0 0 1

 (8a)

Pt = Pt−1Ct (8b)

z̃t = [P0,2t , P1,2t , arctan2(P1,0t , P0,0t)]
T (8c)

Where the vector z̃t is the calibrated 2D pose at the time
instant t.
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B. Noise models

1) Additive white Gaussian noise model: One of the most
commonly used models is the additive white Gaussian noise
model, which models the noise as an additive element which
is represented as Gaussian white noise, as shown in (9).

r(t) = s(t) + w(t)

w(t) ∼ N(0, σ2)
(9)

Where r(t) represents our measurement, s(t) is the true
value and w(t) the white Gaussian noise with 0 mean and
variance σ2.

2) Additive white Gaussian noise model with proportional
variance: In some cases, the white Gaussian noise variance
tends to increase with the absolute value of the measurement’s
true value. For these cases, a model where the variance is
proportional to the estimated measurement’s absolute true
value is used. The model is depicted in (10).

r(t) = s(t) + w(t)

w(t) ∼ N(0, σ2(t))

σ2(t) = m · |r̂(t)|+b
(10)

Where ˆr(t) represents the true value’s estimate, m is the
slope of the linear regression and b the variance when |r̂(t)|=
0.

IV. METHODOLOGY

A. Odometry velocities calibration

We performed indoor experiments in which the UGV was
driven randomly at varying speeds in order to collect data
encompassing the full range of possible movements. Both the
UGV’s odometry and the MOCAP system’s pose measure-
ments were recorded.

The marker array was attached to the UGV by aligning it
with the UGV’s frame and placed directly above it.

B. Sensor models

1) Calibrated odometry velocities noise model: Some noise
sources add to the noise an element which depends on
the velocities’ absolute estimate value, this relation can be
modeled linearly in the velocities’ absolute true value. We
observed that these elements are large enough to dominate the
overall error behavior. Considering this, we model both of our
calibrated odometry’s velocities, v, and ω, with the additive
white Gaussian noise model with proportional variance.

2) Crossbow IMU noise model: The Crossbow DMU-6X-
003 IMU measures angular velocity and linear acceleration.
Both quantities were modeled using the additive white Gaus-
sian noise model. Due to the lack of a datasheet for this
specific model, the variances were computed assuming that
they are the same at rest and while moving. Crossbow IMU’s
data was recorded for two minutes while at rest and the
measurements’ variance estimated.

In order to better model the real value, the mean of the
white Gaussian noise was not considered 0, but equal to the
estimated bias.

3) MPU IMU noise model: The MPU-6050 IMU measures
angular velocity and linear acceleration. With these measure-
ments, it estimates the IMU’s attitude relative to an inertial
frame. These were modeled after the additive white Gaussian
noise model.

The orientation’s variance about the IMU’s Z axis was
estimated using data collected during indoor experiments.
Considering the MOCAP system measurements, the variance
of the IMU’s attitude estimation is computed from the error
between the two.

For the angular velocity and linear acceleration, we compute
the variance using parameters provided in the IMU’s datasheet.

4) NovAtel GPS receiver noise model: GPS measurements,
in general, contain several sources of noise. These include
ephemeris errors, tropospheric and ionospheric delays, multi-
path signals, etc. The three measurements’ noise was modeled
using the additive white Gaussian noise model but with a
varying variance.

In the message sent by the GPS receiver, along with the
measurements, an estimate of the standard deviation for the
latitude, longitude, and height is provided. The variance for
the three different quantities is computed using this value.

C. Extended Kalman Filter

We use an already available EKF implementation [10].
The estimated state, xt, is defined with dimension 15 × 1.
This encompasses the following fields, 3D pose (position
and orientation), 3D velocities (linear and angular) and linear
accelerations. The 3D pose is defined in the world frame while
the velocities and accelerations are defined in the robot frame.

xt = [xw, yw, zw, γw, βw, αw︸ ︷︷ ︸
World frame

,

vxr
, vyr , vzr , ωγr , ωβr

, ωαr
, v̇xr

, v̇yr , v̇zr︸ ︷︷ ︸
Robot frame

]T
(11)

The next state prediction (µt,Σt) is not a function of the
input ut and the previous state, (µt−1,Σt−1), but only of
the previous state. The state estimate covariance matrix Σt
is computed using the Joseph covariance equation to promote
filter stability [11]. Since the time between each filter cycle
is not constant, the matrix R is scaled by this factor, here
represented by δt, this results in higher prediction uncertainty
for cycles in which the previous happened longer ago.

Algorithm 1 presents the considered EKF implementation
for this problem.

Algorithm 1 Extended Kalman Filter as implemented in
robot localization package.

1: Algorithm Extended Kalman Filter(µt−1, Σt−1, zt)
2: µt = g(µt−1)
3: Σt = GtΣt−1G

T
t +Rδt

4: Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1

5: µt = µt +Kt(zt −Htµt)
6: Σt = (I −KtHt)Σt(I −KtHt)

T +KtQtK
T
t

7: return µt,Σt
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The function g(.) used in the prediction step is a “standard
3D kinematic model derived from Newtonian mechanics” [10],
the model is described in (12).

xwt

ywt

zwt

 =

xwt−1

ywt−1

zwt−1

 +RZYXt−1

vxrt−1

vyrt−1

vzrt−1

 δ
+

1

2
RZYXt−1

v̇xrt−1

v̇yrt−1

v̇zrt−1

 δ2
(12a)

γwt

βwt

αwt

 =

γwt−1

βwt−1

αwt−1

 +RZYXt−1

ωγrt−1

ωβrt−1

ωαrt−1

 δ (12b)

vxrt

vyrt
vzrt

 =

vxrt−1

vyrt−1

vzrt−1

 +

v̇xrt−1

v̇yrt−1

v̇zrt−1

 δ (12c)

ωγrtωβrt

ωαrt

 =

ωγrt−1

ωβrt−1

ωαrt−1

 (12d)

v̇xrt

v̇yrt
v̇zrt

 =

v̇xrt−1

v̇yrt−1

v̇zrt−1

 (12e)

Where RZYXt−1
is a matrix of dimension 3 × 3 defined

as in (13), and RZ , RY , and RX are the rotation matrices of
dimension 3× 3 about Z, Y and X axis.

RZYXt−1
= RZ(αwt−1

)RY (βwt−1
)RX(γwt−1

) (13)

This model represents a body which can move in 3D without
any constraints. This is not ideal for our application since it
does not reflect the unicycle model’s constraints. We addressed
this problem by feeding the filter an estimate for Yr velocity
of 0 with a low variance.

The measurements’ vector size has dimention k × 1, this
value may differ from update to update cycle since sensors
have different acquisition frequencies. As a result, matrix Qt
with dimention k × k and matrix Kt with dimention n × k
also differ.

The measurements model function, h(.), contrasting with
function g(.), is not used in the algorithm since the measure-
ments arrive already transformed, yet matrix Ht still needs
to be defined. The matrix Ht has dimension k × 15, all
its entries are zeros with the exception to one column for
each measurement, which corresponds to the state variable the
measurement will update, meaning that if the measurement i,
updates the state variable j, Hi,j = 1.

D. Localization methods

For the estimates obtained using the EKF, the estimation
was performed for 2D measurements only, xw, yw, αw, vxr ,
vyr , ωαr

, v̇xr
and v̇yr . The rest of the state variables (zw, γw,

βw, vzr , ωγr , ωβr
and v̇zr ) were kept at 0 by forcing this

value and a low variance (1 × 10−6) at every iteration. For
these estimates, the EKF computes an estimate at a frequency
of 30Hz. Note that the odometry and the calibrated odometry
are also only 2D estimates.

Method A is the UGV’s odometry. The estimate is computed
by integrating the wheel encoders values using an approximate
model of the UGV. This model uses a wheel diameter and axes
track approximation.

Method B computed by calibrating the UGV’s odometry.
Method C is the first in which the EKF was used, we

configured it to use:
• the calibrated odometry velocities in Xr, Yr and about
Zr;

• and the MPU IMU attitude about Zr, angular velocity
about Zr and linear accelerations in Xr and Yr.

Method D is built on top of the configuration from the
previous one (method C). In this method we added:

• the Crossbow IMU measurements of angular velocity
about Zr and linear accelerations in Xr and Yr.

Method E is also built on top of the configuration from the
previous one (method D). In this estimate we added:

• the NovAtel GPS receiver’s measurements along Xw and
Yw.

These measurements are converted into metric units by con-
verting the latitude, longitude measurements to values in the
respective Universal Transverse Mercator (UTM) coordinate
system region.

V. HARDWARE

A. Unmanned Ground Vehicle

The UGV used is an ATRV-Jr mobile robot developed by
iRobot, it was previously used in other projects, such as
RESCUE - Cooperative Navigation for Rescue Robots, to
conduct research in navigation and, search and rescue1. The
UGV is steered using differential drive, being modeled after
the unicycle model. Figure 1 illustrates the current condition
of the UGV.

B. Sensors

When localizing a mobile robot with wheel odometry, one
of the biggest difficulties is to keep an accurate heading.
Odometry’s heading drifts very quickly, in order to improve
the localization estimation, a reliable source of heading is
required.

IMUs usually measure linear acceleration, angular velocity
and, less frequently, magnetic field. All this information can
be fused to obtain a heading estimate.

The Crossbow IMU measures linear acceleration and angu-
lar velocity, multiple filters take advantage of this information

1http://rescue.isr.ist.utl.pt/publications.php



5

Fig. 1. ATRV-Jr’s current configuration.

and estimate the IMU’s attitude in relation to an inertial
reference frame. To verify if we could rely on this sensor
to obtain an attitude estimate, we estimate the UGV’s attitude
using the Madgwick filter [12] and a Complementary filter
[13]. Using data collected during an indoor experiment, we
compute the attitude estimate.

In our experiments, the Madgwick filter’s attitude estimation
error grows without bound at an approximately constant rate.
The Complementary filter’s attitude estimation error varies
between approximately −0.5 and 0.61 radians.

In order to obtain a reliable attitude estimate, an MPU-6050
IMU was added. The estimate provided by the MPU IMU
has shown to be more reliable than the ones provided by the
Crossbow IMU.

While not ideal, the MPU IMU attitude estimation’s error
is lower than any of the previous estimates’ error by more
than one order of magnitude. In the same experiment, the
MPU IMU estimate deviates from the real heading at a rate
of approximately 1.22× 10−4[rad/s]. Ideally, an IMU with a
magnetometer should be used. Only with a magnetic north
reference, along the gravity vector is possible to uniquely
define the inertial frame’s three axes and thus eliminate the
existent heading rate error.

At this point, the only state variables for which we have no
measurements are xw, yw, and zw, the position in the world
frame. To address this problem, we added a NovAtel OEM4-
G2 GPS receiver and compute Cartesian coordinates using the
UTM coordinate system.

Figure 2 illustrates the present data flow diagram of the
UGV.

VI. SOFTWARE

Our hardware platform is comprised of several sensors and
systems, in order to interact with all of them in a standard
way we used ROS. To perform our experiments, several ROS
packages were developed, adapted or used as they are.

The following ROS packages were developed solely for this
application:

Fig. 2. Present ATRV-Jr’s data connections’ diagram.

• atrvjr description - contains the description of all the
frames present in the UGV in relation to the UGV’s frame
defined, as usual for robots modeled after the unicycle
model, in the geometric center between the four wheels.
The frames of both IMUs and the NovAtel GPS receiver
are defined in this package.

• atrvjr - contains configuration and roslaunch files, a
method used to start our system with ease.

• host console - provides an interface to basic UGV func-
tionalities, such as turn off the computer and display text
in the rFLEX screen, useful when performing experi-
ments.

• odom calibration - contains the implementation of the
calibration method and to apply the calibration to the
UGV’s odometry.

• xbow6x - has the tools required to connect to the Cross-
bow IMU via serial and parse the incoming measure-
ments.

VII. ODOMETRY CALIBRATION MATRIX

Using the data from the UGV’s odometry and the MOCAP
system poses, the calibration matrix was computed using data
collected during indoor experiment. This matrix is then used
by the odom calibration package to compute the calibrated
odometry. The estimated calibration matrix is shown in (14).

X =

9.47× 10−1 −8.08× 10−3 1.84× 10−4

−2.35 1.49× 10−1 −4.78× 10−1

1.26× 10−1 2.35× 10−2 9.72× 10−1

 (14)

VIII. SENSOR MODELS PARAMETERS

A. Calibrated odometry velocities model parameters

Using data collected during indoor experiments, the ground
truth linear and angular velocities are computed. After com-
puting the odometry velocities, its variance is determined by
sorting them after taking their absolute value and computing
the variance regarding the ground truth velocities in bins of
15 samples.

In Figure 3, we observe the relation between linear and
angular calibrated odometry velocities absolute value and the
measurements’ variance. A linear regression was estimated
between the two.
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(a) Calibrated linear velocity absolute
value’s variance.

(b) Calibrated angular velocity abso-
lute value’s variance.

Fig. 3. Calibrated odometry velocities’ linear fit.

TABLE I
CROSSBOW IMU AXES’ BIAS.

X Y Z
Lin. acc. −1.96× 10−1 −5.74× 10−1 5.63× 10−2 m/s2

Ang. vel. −3.47× 10−2 8.64× 10−2 6.19× 10−2 rad/s

The noise model parameters are defined in (15) for the linear
velocity and in (16) for angular velocity.

mv = 4.92× 10−3 [m/s]

bv = 1.80× 10−3 [(m/s)2]
(15)

mω = 1.64× 10−3 [rad/s]

bω = 3.99× 10−4 [(rad/s)2]
(16)

The regressions’ determination coefficient, R2, for the linear
velocity variance is 0.23, while for the angular velocity is 0.31.
As evidenced in Figure 3, and confirmed by the R2 values the
fitness of the model is very poor.

B. Crossbow IMU model parameters

The Crossbow IMU’s variance is computed using values
from a static experiment, the bias and variance values for the
three axes are shown in Tables I and II, respectively.

The bias values are subtracted to the measurements in
the Crossbow IMU’s driver, making the mean value of the
measurements closer to the true value mean.

C. MPU IMU model parameters

The orientation estimate’s variance is computed from the
error present between the ground truth and the IMU estimate.
Since, in the indoor experiments, we are moving in 2D, only
the variance of α is estimated, and assumed the same for γ

TABLE II
CROSSBOW IMU AXES’ VARIANCE.

X Y Z
Lin. acc. 7.71× 10−3 8.94× 10−3 6.53× 10−3 (m/s2)2

Ang. vel. 5.83× 10−7 1.22× 10−6 1.15× 10−6 (rad/s)2

and β. The estimated variance corresponds to the value of
5.81× 10−2[rad 2].

The variances for the angular velocities and linear accel-
erations are computed from MPU-6050 datasheet’s values.
The gyroscope noise performance is 0.05 [◦/s], the angular
velocity variance is defined in (17).

σω = 0.05 [◦/s]

= 8.73× 10−4 [rad/s]

σ2
ω = 7.62× 10−7 [(rad/s)2]

(17)

The accelerometer power spectral density is
400 [µ g /

√
Hz], where g denotes the gravitational

acceleration. The accelerometer uses a first-order RC
low-pass filter, for which the bandwidth is computed by
B = 1.57 · f−3dB [Hz]. Knowing the filter’s cut off frequency,
42Hz and assuming a flat power spectral density, we compute
the root mean squared noise (RMS) as in (18).

RMS =
√

42 · 1.57 · 400 [µ g /
√
Hz]

= 3.19× 10−2 [m/s2]
(18)

Assuming the noise is approximately Gaussian, the RMS is
approximately the standard deviation. The linear acceleration
variance is defined in (19).

σ2
v ≈ RMS2

≈ 1.02× 10−3 [(m/s2)2]
(19)

The variances are the same for the three IMU axes.

D. NovAtel GPS receiver model parameters
The NovAtel GPS receiver estimates the measurements’

standard deviations internally, the square of these values is
taken to obtain its variance.

IX. EXTENDED KALMAN FILTER

The initial state, µ0 and Σ0, is assumed to be known.
The initial xw and yw are obtained from the first GPS
measurement, and the initial α is obtained from the first MPU
IMU measurement, the rest of the state variables are 0. Its
covariance matrix is defined as in (20), where I is the identity
matrix with dimension 15× 15.

Σ0 = I · 1× 10−9 (20)

The process noise covariance matrix R reflects how much
we trust our model to predict the next state. It is required
to estimate this matrix, but in general, there is no systematic
way to calculate the process noise covariance matrix [14]. The
estimation was done using the knowledge we have about the
process and is the same for every experiment. Meaning that it
was not tuned to obtain a better result in a specific one, but
to best represent the process noise covariance. The matrix R
is determined as in (21).

r = [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.5,

0.5, 0.5, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]T

Ri,i = ri,∀ i ∈ [0, 14]

(21)
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X. RESULTS AND DISCUSSION

A. Outdoor experiments

We conducted several outdoor experiments inside the IST
Alameda Campus. In Figure 4, the experiments’ approximate
path is represented by GPS measurements. These measure-
ments are undersampled and represented by blue dots.

The first and second experiments were conducted far from
any buildings or large trees. For that reason, the measurements
are relatively close to each other and do not show any large
discontinuities.

The first and second experiments were performed approx-
imately under the same conditions. The terrain, Portuguese
pavement, is not smooth, contains loose stones, and an ap-
proximately constant slope.

In the third experiment, the terrain type, and slope changes.
This experiment begins in Portuguese pavement and ends in
asphalt, it also encompasses diverse slopes along the way.

During the fourth experiment, we drove the UGV on asphalt
for the full duration of the test, the slope is approximately
constant and leveled. This terrain is smoother than the Por-
tuguese pavement. As demonstrated further on, this results in
better overall localization estimation for this experiment.

During the outdoor experiments, we do not have access to
a reliable pose ground truth, the collected GPS measurements
act as a position reference but note that the confidence of this
position estimate is low. Also, the GPS measurements do not
provide a reliable attitude estimation.

Table III contains the traveled distance during each ex-
periment. In experiments with a higher traveled distance, we
expect higher pose errors for the estimates A to D, since these
only predict the position but do not update it.

TABLE III
EXPERIMENTS’ TRAVELED DISTANCE.

Experiment Traveled distance [m]
First 141.16
Second 275.04
Third 309.32
Fourth 137.15

The third experiment’s average position errors are the
highest among all experiments, since it is the one with the
largest traveled distance, and its path encompasses the largest
differences in terrain type and slope, which lead to increased
measurements’ noise.

B. Localization methods

The estimates are first compared using the average position
error along the experiment, taking the GPS’s measurement
as a reference. Note that in the figures of estimates C and
D the final position’s 2D standard deviation ellipse is given.
This ellipse represents the 2D position uncertainty with 99%
confidence.

1) Localization method A and B: As usual with UGV’s, our
localization estimation starts with the study of the vehicle’s
odometry (localization method A).

TABLE IV
ESTIMATE A’S AVERAGE POSITION ERROR.

Experiment Average position error [m]
First 5.98
Second 10.74
Third 25.75
Fourth 12.44

The average position error considering the GPS’s measure-
ments is depicted in Table IV.

As expected the error is higher for the experiments with
higher traveled distance, although not true for every experi-
ment. The first experiment has a lower error but a marginally
higher traveled distance than the fourth.

The estimate B is obtained by calibration of the UGV’s
odometry.

Figure 4 depicts the comparison between GPS samples, the
UGV’s odometry (shown in red), and the calibrated odometry
here (shown in green).

(a) First experiment.

(b) Second experiment.

(c) Third experiment.

(d) Fourth experiment.

Fig. 4. Estimate B, calibrated odometry. Undersampled GPS’ samples in blue,
estimate A in red and estimate B in green.

The first, second and fourth experiments finish with almost
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the same pose as they started. For those, we observe that
the calibrated odometry’s last estimate is much closer to the
starting position than the non-calibrated odometry.

The third experiment does not finish with the same pose as it
started. Nonetheless, we observe that the calibrated odometry
is closer to the approximated path given by the GPS samples.

Analyzing the path shape for the experiments, still with
heavy distortion, we see that the overall calibrated path
shape is closer to the GPS samples than the odometry’s path
(estimate A). The average position error taking the GPS’s
measurement is depicted in Table V.

TABLE V
ESTIMATE B’S AVERAGE POSITION ERROR.

Experiment Average position error [m]
First 3.42
Second 8.22
Third 16.37
Fourth 4.96

The error follows the same behavior as in the estimate
A, regarding the traveled distance. The error lowered across
all experiments, but for the fourth experiment the decrease
is especially evident being of approximately 250% when
compared to the one from the previous method. For the rest
of the experiments is of approximately 150%.

2) Localization method C: Estimate C is obtained by
filtering the calibrated odometry velocities and the MPU IMU
measurements. In Figure 5, the filter’s estimate is illustrated
(here shown in magenta), along with the final 2D position’s
uncertainty.

The average position error considering the GPS’s measure-
ments is depicted in Table VI.

TABLE VI
ESTIMATE C’S AVERAGE POSITION ERROR.

Experiment Average position error [m]
First 2.00
Second 4.05
Third 5.67
Fourth 1.40

The use of a reliable heading estimate, along with the
angular velocities and linear accelerations, results in a decrease
in the average position error of more than 350% in the case
of the fourth experiment. For the remaining experiments, the
decrease is above 170%.

It is to note the difference between the first and fourth
experiments’ error. As mentioned earlier, the first experiment’s
traveled distance is only marginally higher than the fourth one,
yet the error is 140% higher than the fourth experiment’s error.
This is due to the exceptionally favorable conditions under
which the fourth experiment was conducted.

3) Localization method D: The estimate D is obtained by
filtering the calibrated odometry velocities, the MPU IMU and
the Crossbow IMU measurements. Its results are shown in
Figure 6.

The overall path is similar to the previous estimate, which is
to be expected since the addition of the Crossbow IMU brings

(a) First experiment.

(b) Second experiment.

(c) Third experiment.

(d) Fourth experiment.

Fig. 5. Estimate C, EKF filtering calibrated odometry and MPU IMU’s
measurements. Undersampled GPS’ samples in blue and estimate C in
magenta.

measurements to state variables which were already being
updated. The average position error considering the GPS’s
measurements is depicted in Table VII.

TABLE VII
ESTIMATE D’S AVERAGE POSITION ERROR.

Experiment Average position error [m]
First 2.01
Second 4.03
Third 5.45
Fourth 1.42

This estimate’s overall path is similar to estimate C’s, this is
also apparent in the experiments’ average position error. These
are similar to the previous estimate’s experiments average
position errors for all the experiments, having marginally de-
creased for the second and third experiments, while marginally
increasing for the first and fourth experiments.

4) Localization method E: The estimate E is obtained by
filtering the calibrated odometry velocities, the MPU IMU,
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(a) First experiment.

(b) Second experiment.

(c) Third experiment.

(d) Fourth experiment.

Fig. 6. Estimate D, EKF filtering calibrated odometry, MPU and Crossbow
IMU’s measurements. Undersampled GPS’ samples in blue and estimate D
in magenta.

TABLE VIII
ESTIMATE E’S AVERAGE POSITION ERROR.

Experiment Average position error [m]
First 0.52
Second 0.44
Third 1.34
Fourth 0.97

the Crossbow IMU and the NovAtel GPS receiver’s measure-
ments. Its results are shown in Figure 7.

The average position error considering the GPS’s measure-
ment is depicted in Table VIII.

The addition of global position’s measurements results in
lower errors across all experiments, the effects of the GPS’s
measurements use are evident in the estimated path.

We note the high error for the third experiment. This occurs
due to the GPS’s measurements higher mean dispersion in the
location where the experiment finished. Estimate E’s final 2D
position’s uncertainty is also much lower than in any of the

(a) First experiment.

(b) Second experiment.

(c) Third experiment.

(d) Fourth experiment.

Fig. 7. Estimate E, EKF filtering calibrated odometry, MPU IMU, Cross-
bow IMU and NovAtel GPS receiver’s measurements. Undersampled GPS’
samples in blue and estimate E in orange.

previous estimates.
Considering all the estimates, this is the one which we

expect to have the lowest pose error.

C. Discussion

Two different metrics are now used to compare all the viable
estimates to estimate E. For position, we use the average
Cartesian distance between Estimate A to D and Estimate E,
for orientation we use the average absolute error between the
two estimates α. These are illustrated in Figures 8(a) and 8(b).

Regarding the position, we find that the experiments’ av-
erage error does not converge to the same value. This in-
dicates that the error is still dependent on the experiment’s
characteristics, such as terrain and traveled distance. Regarding
method D, the average position error is 1.70[m] for the first
experiment, 3.74[m] for the second, 4.95[m] for the third and
0.7[m] for the fourth.

Regarding the attitude, the estimates’ average error behaves
differently than in the position’s error.
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(a) Average position’s error.

(b) Average attitude’s error.

Fig. 8. Position and attitude average error taking estimate E as a reference.

In estimate A, the UGV’s odometry, the experiment with
the highest error is the fourth experiment. This contrasts with
the previous results, where the third experiment is, by a large
margin, the one with the highest errors.

In estimate B, calibrated odometry, all the errors decrease,
with special significance for the fourth experiment. While
these experience’s error decreased significantly, this experi-
ment still has the third highest error. The experiment with the
highest is the third experiment.

In estimate C, the MPU IMU attitude estimate is intro-
duced, lowering the error significantly in both metrics. This
is expected since we identified that heading error significantly
affected the localization estimation.

In the fourth estimate, the Crossbow IMU is introduced.
As observed in the experiments’ figures, this did not change
the path shape significantly. This is reflected in the error,
remaining approximately constant for estimate C and D. The
relevance of this last estimate is in the method robustness.
If for some reason the MPU IMU stops providing measure-
ments, the Crossbow IMU still continues to provide the same
measurements as the MPU IMU with exception to the attitude.

It is to note the difference between the position and at-
titude’s average error. In the position’s error estimation, the
localization estimates are compared against one which uses a
global localization system. This system’s measurements were
not used in the previous estimates, thus estimate A to D’s
position state variables were not updated but only predicted.

In the attitude error estimation, the localization estimates are
compared against estimate E which updates its state using the
same references as D, the IMUs. This results in the different
behavior observed between the position and attitude error for
estimate D.

The fact that the position error highly differs between
experiments, indicates that our approach is not robust enough
for outdoor environments in which we are deprived of global
position measurements.

XI. CONCLUSIONS

We updated the UGV and studied the capabilities of its
previous sensor suite, the sensors which were deprecated were
removed. Working on the existent sensors, we identified the
missing features by evaluating the performance of each one.
Using this information, updated sensors were added and its
capabilities studied.

We conducted real-world experiments in outdoor environ-
ments in which all the data from the sensors is recorded. With
it and using different methods, we obtained several estimates
which performed differently. We assessed their performance
using an estimate which was obtained but comprises GPS’s
measurements, making it an invalid solution for our problem
but a reliable pose estimate.

For accomplishing such solution, we developed several soft-
ware packages, this allowed us to assess and test multiple sen-
sors which data was not available before. The ROS packages
atrvjr description, atrvjr, host console, odom calibration,
and xbow6x were developed during the course of this thesis,
and several other studied and modified.

The obtained results do not serve a wide range of appli-
cations due to its low accuracy, but given the simplicity of
this approach and flexibility, they are a strong foundation for
incorporation of different measurements.

Besides the ones used, there are other sensors which are
commonly used in localization such, scanning laser rangefind-
ers, depth and, RGB cameras. For future work we propose
to assess the performance of a scanning laser rangefinder,
methods such as scan matching can be used to provide a
second source of velocities in 2D. Depth cameras usually use
infrared laser technology these are not reliable outdoor due
to the presence of infrared radiation emitted by the sun, yet
depth information can be obtained from other sensors such as
an array of RGB cameras.

We prepared our method to estimate 3D pose, but due to the
noisy measurements along the Zw axis, specifically from the
IMUs, the estimation diverged along this. With the addition
of other sensors, such as visual odometry, this problem can
be attenuated and a 3D pose estimate obtained. One of the
pose error sources is bad attitude estimation, this has been
addressed with the addition of the MPU-6050 IMU, but an
IMU with a magnetometer must be used to reliably estimate
the attitude over longer periods of time.

The ROS package which has the implementation of the
used EKF also contains another filter which uses most of
the same configuration, but it is based on unscented Kalman
filtering. Due to time constraints, it was not possible to obtain
an estimation using such filter, but improvements in the state
estimation have been reported by others when using such
filter.
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