
ADAPTIVE PLANE PROJECTION FOR VIDEO-BASED POINT CLOUD CODING

Eurico Manuel Rodrigues Lopes

Electrical and Computer Engineering

Instituto Superior Técnico

Lisbon, Portugal

eurico.lopes@tecnico.ulisboa.pt

ABSTRACT

One of the most promising emerging 3D representation paradigms

is the point cloud model, notably due to the new set of applications

enabled, from immersive telepresence to 3D geographic

information systems. Recognizing the potential of this

representation model, MPEG has launched a standardization

project to specify efficient point cloud coding solutions [1]. This

project has given rise to the so-called Video-based Point Cloud

Coding (V-PCC) standard, which projects a dynamic point cloud

geometry and texture into a sequence of images to be coded with

HEVC. In V-PCC, this projection is always performed using the

same projection planes, independently of the point cloud. This

paper proposes a more flexible coding solution, which adopts the

V-PCC architecture but selects a different set of projection planes

more adapted to the characteristics of the point clouds, to obtain a

better compression performance. In this paper, this tool is applied

to static point clouds but it may be extended to dynamic point

clouds. The experimental results show an improvement of the

geometry compression performance regarding V-PCC, especially

for medium to larger rates.

Index Terms— Point Clouds, Video-based Point Cloud

Coding, Projection Planes, Static Point Clouds.

1. INTRODUCTION

With the increased popularity of 3D-based applications, notably in

gaming, the interest in point cloud representation has significantly

increased. A point cloud is a set of points defined by their 3D

coordinates (x,y,z), corresponding to the so-called geometry, which

may be complemented with attributes, such as color, normal

vectors, reflectance, among others. Point cloud coding involves

coding at least its geometry, and optionally some attributes, and

may target still frames, i.e. static point clouds, or a sequence of

point cloud frames, i.e. dynamic point clouds. This type of 3D

model is able to efficiently represent the visual data while

providing the functionalities required for many applications such

as geographic information systems, cultural heritage, and

immersive telepresence. Typically, 3D data acquisition solutions

can produce 3D+t spatio-temporal models with millions of 3D

points per second and, thus, it is critical to have available efficient

point cloud coding solutions to enable the targeted applications.

Recognizing the industry need to have efficient coding

solutions, which should enable the storage and transmission of 3D

data, notably point clouds, JPEG and MPEG have launched

standardization projects to specify new, appropriate coding

formats. In January 2017, MPEG has issued a Call for Proposals

on Point Cloud Compression (PCC) [1], which targets the efficient

representation of static objects and scenes, as well as dynamic and

real-time environments, represented using point clouds (PC).

Following this call, two PC coding solutions have been

developed, notably Video-based Point Cloud Coding (V-PCC) [2]

for dynamic content and Geometry-based Point Cloud Coding (G-

PCC) [3] for static and dynamically acquired content. JPEG has

launched the JPEG Pleno project which also targets PC coding but

it is still at an earlier stage.

V-PCC has adopted a coding paradigm where the PC is

segmented into smaller parts, close to surface component, which

are projected onto a set of planes to derive the so-called geometry

and texture maps. These maps may be coded as independent

images (intra mode) or a correlated sequence of images (inter

mode) using an available video coding standard, e.g. HEVC. The

V-PCC 3D to 2D projection is performed using always the same

set of projection planes without adapting them to the PC

characteristics. This may cause some occlusions during the

projection, as well as a larger geometry map variance.

In this context, this paper proposes a variation of the V-PCC

coding solution for static PC where the projection planes are

flexible in number and orientation and are thus able to adapt to the

PC characteristics, targeting improving the final rate-distortion

(RD) performance. The obtained results show promising gains for

geometry coding.

To achieve its objectives, this paper is organized as follows:

Section 2 reviews the most relevant PC coding solutions; Section 3

describes V-PCC overall architecture; Section 4 details the

proposed solution; Section 5 presents performance assessment; and

Section 6 closes this paper with some final remarks.

2. RELATED WORK

The most popular PC coding solutions, notably at the start of the

MPEG PCC project, was clearly the Point Cloud Library (PCL)

solution [4]. In this solution, the PC is organized as an octree,

which is a tree data structure, where each branch node has up to

eight children – one for each sub-octant (also called voxel),

starting from the initial node associated to the full PC bounding

box. The color of each voxel is the average color of its points.

However, other PC coding solutions are available in the literature.

In [5], Zhang et al. proposed a graph-based coding solution (later

extended by Cohen et al. [6]), which still uses an octree structure,

but improves the rather simple PCL-attributes coding. In the

proposed solution blocks of k×k×k voxels are assembled to create

a graph structures. For each graph structure, a graph-based

transform is derived to be applied to the corresponding set of

colors within the respective block. In [7], Mekuria et al. extended

the PCL-based coding solution by mapping the vertex color into an

image grid and encoding the corresponding blocks with the most

popular image coding standard, JPEG.

Another coding solution, closely related to V-PCC, has been

proposed by Golla et al. [8], where the PC is segmented into

chunks of data and each chunk is further sub-divided into an octree

structure. Each voxel, including multiple points, is represented as a

patch, which is characterized by its reference position, size and

orientation. To represent the patch geometry, height and occupancy

maps are generated, accounting for the represented points original

geometry offsets from the patch reference position, and for the

holes in the geometry, i.e. pixels in the height maps that do not

correspond to points, respectively. Likewise, additional maps may

be generated for texture and other attributes. The height and

attribute maps are encoded using a standard image coding

standard, e.g. JPEG, while the occupancy maps are encoded with

lossless JBIG2 [9].

3. VIDEO-BASED POINT CLOUD CODING (V-PCC)

Since the solution proposed in this paper is a V-PCC improvement,

it is appropriate to briefly review this emerging PC coding

standard.

The original PC is decomposed into the minimum necessary

number of patches with smooth boundaries. This is achieved by

first computing the normals at every point and clustering these

normals into six clusters according to the maximization of the dot

product to one of six pre-defined projection planes, each with a

different orientation along the 3D axis (X, -X, Y, -Y, Z and -Z

respectively). The patches are defined by applying a connected

component extraction procedure [2], and after projected to

generate the 2D patch depth maps, which represent the PC

geometry. The set of patches (geometry and texture) are after

packed into a single 2D map using a packing strategy which tries

to iteratively insert patches in a W×H grid, while minimizing the

unused space, and ensuring that every T×T block (e.g. 16×16) in

the grid is associated with one single patch, where T, W and H are

user-defined parameters. The result is a so-called occupancy map,

indicating for each packing grid block (B0×B0 pixels) if it belongs

or not to a PC patch.

Next, the image generation process takes place, where the

strategic insertion of patches to a 2D grid performed during the

packing process is exploited to construct the geometry image (from

the patches depth maps) and texture image. As the decoded point

clouds may be lossy (regarding the number of points and their

positions), the texture generation process must have ‘access to’ the

reconstructed geometry to compute the colors associated with the

re-sampled points. Naturally if dynamic PC coding is targeted, one

geometry image and one texture image are generated for each PC

frame and the correlations among the 2D frame sequence are

exploited by HEVC. It is worth mentioning that the reconstructed

geometry goes through a smoothing process to avoid

discontinuities that may exist at the patch.

Between the patches in the depth and texture map, there are

empty spaces that are filled by a so-called padding process, which

will generate a piecewise smooth image for video compression.

The occupancy maps dictate which pixels correspond to points.

The successive generated geometry and texture maps/images are

coded as video frames using the HEVC video coding standard.

While the texture video is YUV420 with 8-bit depth, the geometry

video is monochromatic and also with 8-bit depth. Finally, all

generated coded streams are multiplexed into a single compressed

bit stream.

4. PROPOSING V-PCC WITH ADAPTIVE PLANE

PROJECTIONS

This section proposes a so-called Adaptive Plane Projection for V-

PCC (AP2V-PCC) tool. Since V-PCC uses a set of six pre-defined

planes for the initial points clustering and later a set of three pre-

defined projection planes (intimately related to the respective

clustering planes) to project the geometry and texture into the 2D

depth and texture maps, there is no consideration in this process on

the specific PC characteristics. If the PC set of normals is not well

aligned with the global coordinate system (x,y,z) and, as a

consequence, with the clustering and projection planes, the angular

differences between the V-PCC projection planes and the

respective clusters set of normals may be large, meaning that the

projection planes are not well adapted to the input data. This has

two main consequences: i) the projected geometry map values will

have a larger variance, which potentially increases the geometry

rate; and ii) some points may be occluded during the projection,

which has a negative impact both in objective and subjective

qualities.

Bearing these issues in mind, the proposed AP2V-PCC approach

adopts an adaptive plane projection paradigm, where the three V-

PCC fixed planes are replaced by more ‘friendly’ planes in the

sense that: i) reduce the depth maps variance since the PC main

surfaces should be more aligned/parallel to the adaptive projection

planes and, therefore, potentially reduce the geometry rate; ii)

reduce the number of points overlapping in the same geometry map

pixel, since the angular difference between the points and their

projection plane is reduced.

4.1. AP2V-PCC Architecture and Walkthrough

The AP2V-PCC approach implies significant changes in the

patch generation process, which are illustrated in Figure 1. The

novel tools regarding the initial V-PCC patch generation process,

i.e. K-Means Clustering, Adaptive Planes Selection and

Coordinates Transformation, and Adaptive Resolution Control, are

highlighted in red and detailed in the next sub-section. The AP2V-

PCC patch generation process is now described

The normals are calculated for each point by applying

Principal Component Analysis (PCA) over the 16 closest

neighbors and assigning the vector with lower variance as the

respective point normal. The calculated normals are then

segmented into K (user-specified) clusters according to the

maximization of the dot product to one of the K clusters normal

centroids. Then, the just created clusters are segmented into

sub-clusters of points that are spatially connected (and

belong to the same cluster). The sub-clusters with less than 16

points are filtered, since the encoded metadata of these sub-clusters

would be very expensive in terms of bits per point when compared

to sub-clusters with more points.

Next, the projection plane is chosen for each sub-cluster, and

the respective local coordinate system is calculated. In practice, the

projection plane is defined by setting an appropriate (Δ) depth axis,

which in this case is computed as the average sub-cluster set of

normals. The tangent (S) axis is computed as S = Δ × (0;-1;0),

while the bi-tangent is computed as R = Δ × S. The coordinates

transformation has some drawbacks, such as the fact that the

coordinate values are initially expressed as floating-point values

but must be rounded to fir the regular grid. The rounding leads to

Figure 1 - Adaptive Plane Projection Patch Generation architecture, with the new modules highlighted in red.

some geometry distortion, which is mitigated by multiplying all

sub-clusters 3D local coordinate values by an expansion factor.

Finally, the sub-clusters are converted into patches that

represent their geometry. This is achieved by projecting the 3D

local coordinates to depth maps composed of two layers (D0 and

D1) to accommodate possible occluded points, where the

difference between the same pixel on the two layers can only be up

to 4. If multiple points fall into the same pixel, the one with lowest

depth falls on the first layer, while the point with second lowest

depth falls on the second layer, if it respects this difference; the

other points are simply not projected. After all the segmented sub-

clusters are converted to patches, all patches are converted back to

3D points, thus generating a reconstructed PC.

The distance between each original point and the closest one

in this reconstructed PC is calculated. The original points for

which this distance is greater than 1 are considered missed points,

meaning that they are poorly represented by the selected patches. If

after reconstructing the 3D points from the patches, no missed

points exist, then the patch generation is over, and the list of

patches goes to the packing module. Otherwise, the missed points

are given to the 3D sub-clustering module so that new patches can

represent them. These iterations continue until there are no more

missed points or all the sub-clusters have been filtered.

4.2. Main Tools

The main tools are now detailed:

• K-Means Clustering - To avoid selecting clusters which

are biased by the V-PCC six pre-defined clustering planes, the V-

PCC clustering module is replaced by a K-Means based clustering

process, which segments the points into a user-specified number of

clusters, K, considering the normals previously estimated (as for V-

PCC). Each resulting cluster is characterized by its number of

points, and its normal centroid, which corresponds to the average

of the normals associated to the clusters points. The K-means

clustering algorithm was adopted from Rosetta Code [10], which

minimizes the distance of each point to its cluster centroid.

Considering our target, the clustering follows a different criterion,

notably maximizes the internal product between each point normal

and the respective cluster normal centroid to obtain normal adapted

clusters.

• Adaptive Plane Selection and Coordinates

Transformation – A projection plane is defined by the normal

vector to it, which in this case is the depth axis (Δ). Thus, defining

Δ axis is the same as defining the projection plane, and in AP2V-

PCC, it is computed as the average of the sub-cluster set of

normals. While the corresponding depth coordinate value (δ) will

be the coded geometry value, s/S (tangent) and r/R (bi-tangent)

coordinates/axes will be horizontal and vertical axes of the

projected image, respectively. The calculation of the tangent axis

(S) is inspired from the solution in [8], so that the sub-clusters

have a similar orientation when they are projected into the

projection plane compared to their orientation in the usual point

cloud rendering. This similar orientation leads to an efficient

packing of patches but also better compression with standard 2D

video codecs (as the DCT transform basis functions are aligned

with the patch direction). To achieve this, it is desirable that S and

R are horizontally and vertically aligned with the PC typical

orientation. Thus, the S axis is determined as S = Δ × (0;-1;0),

since the point clouds are typically oriented vertically in the Y-

axis; naturally, R is calculated as R = Δ × S.

• Adaptive Resolution Control - The global to local

coordinate system transformation has some consequences, since

the obtained coordinate values are no longer grid aligned; notably,

the local coordinate system values have to be initially expressed

with floating-point precision and later rounded to fit a regular grid

to be coded by a standard video codec. In turn, the rounding

process in the local coordinate system will increase the geometry

distortion by itself, as well as cause some possible point

overlapping into the same 3D bin of the local coordinate system,

which during the projection are only counted as a single point, thus

increasing the geometry distortion even more. To address this

problem, this module increases the 3D local coordinates resolution,

reducing the geometry distortion caused by rounding as the 3D

bins will be smaller. The resolution increase is a user-defined

parameter, the so-called expansion factor (EF), equal for all sub-

clusters. In this context, each point local coordinate value is

multiplied by this parameter after the respective local coordinate

transformation.

4.3. Additional Tools

With the increase of resolution and the fact that the occupancy map

precision is set to 4 (it decreases the bitrate drastically when

compared to a precision of 1 or 2), the number of duplicate points

increases significantly, which will penalize the performance of the

recoloring module, as well as generate multiple decoded points in

the same position when only one can be displayed. Thus, two

additional tools were introduced outside the scope of the Patch

Generation architecture, notably: Recoloring pre- and post-

processing, extending the V-PCC recoloring module; and

duplicates removal, which is included as a final step of the decoder

module. Both tools are now described:

• Recoloring Pre and Post-Processing - At the encoder

after reconstructing the point cloud geometry (R), which has

floating-point precision, from the respective reconstructed

geometry image and occupancy map, a filtered version (F) is

created, where the duplicates are merged: F will have 1 point per

filled 3D position. Next, F is recolored from the original point

cloud and all points in the same position (duplicates) in R get the

same color of that position in F. After, all the encoding of V-PCC

is followed. The result is that at the decoder, all duplicates will

have the same color.

• Duplicates Removal – At the decoder, the

reconstruction of the point cloud is performed in the same way, but

the geometry must be rounded, since the original content is

represented with integers. This leads to the same effect where

different points in the same position have different colors. Thus,

for each decoded position the average color is calculated, and all

points within the same position are merged into a single decoded

point, being assigned the just-calculated average color.

5. PERFORMANCE ASSESSMENT

5.1. Test Conditions

The test material has been selected from the MPEG dataset [11],

notably Loot, Redandblack, Soldier and Longdress.

The AP2V-PCC RD performance is compared to V-PCC and

G-PCC, under the so-called MPEG Common Test Conditions

(CTC) [12] with some additional quantization points to better

cover the rate range.. The selected QPs are presented on Table 1,

where R1 to R5 are already contemplated in the MPEG CTC [12].

Table 1 – QPs for RD performance assessment [12].

The quality metrics used for RD performance comparison were

geometry D1 PSNR (P2Point) and geometry D2 PSNR (P2Plane),

and color PSNR as defined in the MPEG CTC [12]. Following

some optimization studies, the AP2V-PCC parameters have been

set to K=12 and EF=1.6 to obtain the best geometry RD

performance. G-PCC results were taken from [13].

5.2. RD Performance Evaluation and Informal Subjective

Assessment

The geometry D1 PSNR and color Y PSNR RD performance for

frame 1550 of Redandblack are depicted in Figure 2. The results

for the other test PC show similar trends.

Figure 2 – Geometry D1 PSNR (left); Y Component PSNR (right) RD

performance for frame 1550 of Redandblack sequence.

From Figure 2 and remaining results, it can be concluded that

both AP2V-PCC and V-PCC outperform G-PCC, in terms of D1

geometry, and Y color. Thus, the BD-rate and BD-PSNR are only

computed for AP2V-PCC, taking V-PCC as a reference on Table

2.

Table 2 – AP2V-PCC BD-rate and BD-PSNR regarding V-PCC for

geometry and colour.

From the Y RD charts and Bjontegaard tables, it is clear that

the color quality does not benefit as much from the adaptive plane

projections as the geometry. The geometry RD performance gains

are achieved at the price of increasing the geometry images and

occupancy map resolutions, and this effect is also propagated to

the texture maps (since they all have the same resolution). Since

rate has been invested on increasing the resolution, to achieve a

comparable/similar total rate, the AP2V-PCC color QP must be

larger than for V-PCC thus penalizing the color quality. Although

this compensates for geometry, it does not compensate for color, in

an RD sense, which naturally leads to a trade-off between the

geometry and color qualities.

To informally assess the subjective quality, the Loot PC is

used, since it shows the main trade-offs of AP2V-PCC versus V-

PCC. Rendered PCs are presented in Figure 3 for AP2V-PCC and

V-PCC when using a low and a high rate

Figure 3 – Frame 1200 of Loot sequence [11]: a) Original; b) AP2V-PCC

for 0.25 total bpp; c) V-PCC for 0.24 total bpp; d) AP2V-PCC for 1.47

total bpp; e) V-PCC for 2.00 total bpp.

For the lower rates, the color of AP2V-PCC coded PC is rather

blurred, when compared to V-PCC, since the quality of the color is

penalized when the same total rate is used. However, V-PCC has

many more noticeable holes, since this solution has a lot more

missed points. Moreover, for the larger rates, there is a V-PCC

artefact that stands out, namely at the ear, which has a lot of holes

caused by the high angular difference between the ear estimated

normals to the fixed projection plane. Since AP2V-PCC uses

adaptive planes, the angular difference is lower and the ear does

not have noticeable holes.

6. FINAL REMARKS

This paper proposes a PC coding solution which extends the

MPEG V-PCC solution by adapting the projection planes for the

geometry and texture. This should allow obtaining better RD

performance trade-offs between geometry and color. The trade-offs

compensate for larger rates as proven by the informal subjective

quality analysis. Future work should consider selecting AP2V-

PCC parameters jointly optimized for geometry and texture,

expansion factors optimized to each sub-cluster as well as

extending the proposed solution to dynamic PCs.

7. REFERENCES

[1] MPEG 3DG and Requirements Subgroups, “Call for

proposals for point cloud compression V2,” Doc. ISO/IEC

JTC1/SC29/WG11/N16763, Hobart, AU, Apr. 2017.

[2] V. Zakharchenko, “Algorithm description of mpeg-pcc-

tmc2,” ISO/IEC JTC1/SC29/WG11 MPEG2018/N17767,

Ljubljana, Slovenia, Jul. 2018.

[3] K. Mammou, P. A. Chou, D. Flynn, and M. Krivokuća,

“PCC Test Model Category 13 v3,” ISO/IEC JTC1/SC29/WG11

N17762, Ljubljana, Slovenia, Jul. 2018.

[4] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M.

Beetz, and E. Steinbach, “Real-time compression of point cloud

streams,” ICRA’2012, Minnesota, USA, May 2012.

[5] C. Zhang, D. Florencio, and C. Loop, “Point cloud

attribute compression with graph transform,” ICIP’2014, Paris,

France, Oct. 2014.

[6] R. A. Cohen, D. Tian, and A. Vetro, “Attribute

compression for sparse point clouds using graph transforms,”

ICIP’2016, Arizona, USA, Sep. 2016.

[7] R. Mekuria, K. Blom, and P. Cesar, “Design,

implementation, and evaluation of a point cloud codec for tele-

immersive video,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 27, no. 4, pp. 828–842, Apr. 2017.

[8] T. Golla and R. Klein, “Real-time Point Cloud

Compression,” IROS’2015, Hamburg, Germany, Oct. 2015.

[9] P. G. Howard, F. Kossentini, B. Martins, S.

Forchhammer, and W. J. Rucklidge, “The emerging JBIG2

standard,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 8, no. 7, pp. 838–848, Nov. 1998.

[10] “Rosetta Code - K-means++ Clustering.” [Online].

Available: http://rosettacode.org/wiki/K-

means%2B%2B_clustering. [Accessed: 25-Sep-2018].

[11] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i

Voxelized full bodies - a voxelized point cloud dataset,” ISO/IEC

JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document

WG11M40059/WG1M74006, Geneva, Switzerland, Jan. 2017.

[12] S. Schwarz, G. Martin-Cocher, D. Flynn, and M.

Budagavi, “Common test conditions for point cloud compression,”

ISO/IEC JTC1/SC29/WG11 N17766, Ljubljana, Slovenia, Jul.

2018.

[13] D. Flynn, “PCC TMC13v3 performance evaluation and

anchor results,” ISO/IEC JCTC1/SC29/WG11 W17768, Ljubljana,

Slovenia, Jul. 2018.

