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ABSTRACT 

One of the most promising emerging 3D representation paradigms 

is the point cloud model, notably due to the new set of applications 

enabled, from immersive telepresence to 3D geographic 

information systems. Recognizing the potential of this 

representation model, MPEG has launched a standardization 

project to specify efficient point cloud coding solutions [1]. This 

project has given rise to the so-called Video-based Point Cloud 

Coding (V-PCC) standard, which projects a dynamic point cloud 

geometry and texture into a sequence of images to be coded with 

HEVC. In V-PCC, this projection is always performed using the 

same projection planes, independently of the point cloud. This 

paper proposes a more flexible coding solution, which adopts the 

V-PCC architecture but selects a different set of projection planes 

more adapted to the characteristics of the point clouds, to obtain a 

better compression performance. In this paper, this tool is applied 

to static point clouds but it may be extended to dynamic point 

clouds. The experimental results show an improvement of the 

geometry compression performance regarding V-PCC, especially 

for medium to larger rates. 

Index Terms— Point Clouds, Video-based Point Cloud 

Coding, Projection Planes, Static Point Clouds. 

1. INTRODUCTION 

With the increased popularity of 3D-based applications, notably in 

gaming, the interest in point cloud representation has significantly 

increased. A point cloud is a set of points defined by their 3D 

coordinates (x,y,z), corresponding to the so-called geometry, which 

may be complemented with attributes, such as color, normal 

vectors, reflectance, among others. Point cloud coding involves 

coding at least its geometry, and optionally some attributes, and 

may target still frames, i.e. static point clouds, or a sequence of 

point cloud frames, i.e. dynamic point clouds. This type of 3D 

model is able to efficiently represent the visual data while 

providing the functionalities required for many applications such 

as geographic information systems, cultural heritage, and 

immersive telepresence. Typically, 3D data acquisition solutions 

can produce 3D+t spatio-temporal models with millions of 3D 

points per second and, thus, it is critical to have available efficient 

point cloud coding solutions to enable the targeted applications. 

Recognizing the industry need to have efficient coding 

solutions, which should enable the storage and transmission of 3D 

data, notably point clouds, JPEG and MPEG have launched 

standardization projects to specify new, appropriate coding 

formats. In January 2017, MPEG has issued a Call for Proposals 

on Point Cloud Compression (PCC) [1], which targets the efficient 

representation of static objects and scenes, as well as dynamic and 

real-time environments, represented using point clouds (PC). 

Following this call, two  PC coding solutions have been 

developed, notably Video-based Point Cloud Coding (V-PCC) [2] 

for dynamic content and Geometry-based Point Cloud Coding (G-

PCC) [3] for static and dynamically acquired content. JPEG has 

launched the JPEG Pleno project which also targets PC coding but 

it is still at an earlier stage.   

V-PCC has adopted a coding paradigm where the PC is 

segmented into smaller parts, close to surface component, which 

are projected onto a set of planes to derive the so-called geometry 

and texture maps. These maps may be coded as independent 

images (intra mode) or a correlated sequence of images (inter 

mode) using an available video coding standard, e.g. HEVC. The 

V-PCC 3D to 2D projection is performed using always the same 

set of projection planes without adapting them to the PC 

characteristics. This may cause some occlusions during the 

projection, as well as a larger geometry map variance.  

In this context, this paper proposes a variation of the V-PCC 

coding solution for static PC where the projection planes are 

flexible in number and orientation and are thus able to adapt to the 

PC characteristics, targeting improving the final rate-distortion 

(RD) performance. The obtained results show promising gains for 

geometry coding. 

To achieve its objectives, this paper is organized as follows: 

Section 2 reviews the most relevant PC coding solutions; Section 3 

describes V-PCC overall architecture; Section 4 details the 

proposed solution; Section 5 presents performance assessment; and 

Section 6 closes this paper with some final remarks. 

2. RELATED WORK 

The most popular PC coding solutions, notably at the start of the 

MPEG PCC project, was clearly the Point Cloud Library (PCL) 

solution [4]. In this solution, the PC is organized as an octree, 

which is a tree data structure, where each branch node has up to 

eight children – one for each sub-octant (also called voxel), 

starting from the initial node associated to the full PC bounding 

box. The color of each voxel is the average color of its points. 

However, other PC coding solutions are available in the literature. 

In [5], Zhang et al. proposed a graph-based coding solution (later 

extended by Cohen et al. [6]), which still uses an octree structure, 

but improves the rather simple PCL-attributes coding. In the 

proposed solution blocks of k×k×k voxels are assembled to create 

a graph structures. For each graph structure, a graph-based 

transform is derived to be applied to the corresponding set of 

colors within the respective block. In [7], Mekuria et al. extended 



the PCL-based coding solution by mapping the vertex color into an 

image grid and encoding the corresponding blocks with the most 

popular image coding standard, JPEG.  

Another coding solution, closely related to V-PCC, has been 

proposed by Golla et al. [8], where the PC is segmented into 

chunks of data and each chunk is further sub-divided into an octree 

structure. Each voxel, including multiple points, is represented as a 

patch, which is characterized by its reference position, size and 

orientation. To represent the patch geometry, height and occupancy 

maps are generated, accounting for the represented points original 

geometry offsets from the patch reference position, and for the 

holes in the geometry, i.e. pixels in the height maps that do not 

correspond to points, respectively. Likewise, additional maps may 

be generated for texture and other attributes. The height and 

attribute maps are encoded using a standard image coding 

standard, e.g. JPEG, while the occupancy maps are encoded with 

lossless JBIG2 [9]. 

3. VIDEO-BASED POINT CLOUD CODING (V-PCC) 

Since the solution proposed in this paper is a V-PCC improvement, 

it is appropriate to briefly review this emerging PC coding 

standard. 

The original PC is decomposed into the minimum necessary 

number of patches with smooth boundaries. This is achieved by 

first computing the normals at every point and clustering these 

normals into six clusters according to the maximization of the dot 

product to one of six pre-defined projection planes, each with a 

different orientation along the 3D axis (X, -X, Y, -Y, Z and -Z 

respectively). The patches are defined by applying a connected 

component extraction procedure [2], and after projected to 

generate the 2D patch depth maps, which represent the PC 

geometry. The set of patches (geometry and texture) are after 

packed into a single 2D map using a packing strategy which tries 

to iteratively insert patches in a W×H grid, while minimizing the 

unused space, and ensuring that every T×T block (e.g. 16×16) in 

the grid is associated with one single patch, where T, W and H are 

user-defined parameters. The result is a so-called occupancy map, 

indicating for each packing grid block (B0×B0 pixels) if it belongs 

or not to a PC patch.  

Next, the image generation process takes place, where the 

strategic insertion of patches to a 2D grid performed during the 

packing process is exploited to construct the geometry image (from 

the patches depth maps) and texture image. As the decoded point 

clouds may be lossy (regarding the number of points and their 

positions), the texture generation process must have ‘access to’ the 

reconstructed geometry to compute the colors associated with the 

re-sampled points. Naturally if dynamic PC coding is targeted, one 

geometry image and one texture image are generated for each PC 

frame and the correlations among the 2D frame sequence are 

exploited by HEVC. It is worth mentioning that the reconstructed 

geometry goes through a smoothing process to avoid 

discontinuities that may exist at the patch. 

Between the patches in the depth and texture map, there are 

empty spaces that are filled by a so-called padding process, which 

will generate a piecewise smooth image for video compression. 

The occupancy maps dictate which pixels correspond to points. 

The successive generated geometry and texture maps/images are 

coded as video frames using the HEVC video coding standard. 

While the texture video is YUV420 with 8-bit depth, the geometry 

video is monochromatic and also with 8-bit depth. Finally, all 

generated coded streams are multiplexed into a single compressed 

bit stream. 

4. PROPOSING V-PCC WITH ADAPTIVE PLANE 

PROJECTIONS  

This section proposes a so-called Adaptive Plane Projection for V-

PCC (AP2V-PCC) tool. Since V-PCC uses a set of six pre-defined 

planes for the initial points clustering and later a set of three pre-

defined projection planes (intimately related to the respective 

clustering planes) to project the geometry and texture into the 2D 

depth and texture maps, there is no consideration in this process on 

the specific PC characteristics. If the PC set of normals is not well 

aligned with the global coordinate system (x,y,z) and, as a 

consequence, with the clustering and projection planes, the angular 

differences between the V-PCC projection planes and the 

respective clusters set of normals may be large, meaning that the 

projection planes are not well adapted to the input data. This has 

two main consequences: i) the projected geometry map values will 

have a larger variance, which potentially increases the geometry 

rate; and ii) some points may be occluded during the projection, 

which has a negative impact both in objective and subjective 

qualities.  

Bearing these issues in mind, the proposed AP2V-PCC approach 

adopts an adaptive plane projection paradigm, where the three V-

PCC fixed planes are replaced by more ‘friendly’ planes in the 

sense that: i) reduce the depth maps variance since the PC main 

surfaces should be more aligned/parallel to the adaptive projection 

planes and, therefore, potentially reduce the geometry rate; ii) 

reduce the number of points overlapping in the same geometry map 

pixel, since the angular difference between the points and their 

projection plane is reduced. 

4.1. AP2V-PCC Architecture and Walkthrough 

The AP2V-PCC approach implies significant changes in the 

patch generation process, which are illustrated in Figure 1. The 

novel tools regarding the initial V-PCC patch generation process, 

i.e. K-Means Clustering, Adaptive Planes Selection and 

Coordinates Transformation, and Adaptive Resolution Control, are 

highlighted in red and detailed in the next sub-section. The AP2V-

PCC patch generation process is now described 

The normals are calculated for each point by applying 

Principal Component Analysis (PCA) over the 16 closest 

neighbors and assigning the vector with lower variance as the 

respective point normal. The calculated normals are then 

segmented into K (user-specified) clusters according to the 

maximization of the dot product to one of the K clusters normal 

centroids. Then, the just created clusters are segmented into 

sub-clusters of points that are spatially connected (and 

belong to the same cluster). The sub-clusters with less than 16 

points are filtered, since the encoded metadata of these sub-clusters 

would be very expensive in terms of bits per point when compared 

to sub-clusters with more points. 

Next, the projection plane is chosen for each sub-cluster, and 

the respective local coordinate system is calculated. In practice, the 

projection plane is defined by setting an appropriate (Δ) depth axis, 

which in this case is computed as the average sub-cluster set of 

normals. The tangent (S) axis is computed as S = Δ × (0;-1;0), 

while the bi-tangent is computed as R = Δ × S. The coordinates 

transformation has some drawbacks, such as the fact that the 

coordinate values are initially expressed as floating-point values 

but must be rounded to fir the regular grid. The rounding leads to  



 

Figure 1 - Adaptive Plane Projection Patch Generation architecture, with the new modules highlighted in red. 

some geometry distortion, which is mitigated by multiplying all 

sub-clusters 3D local coordinate values by an expansion factor. 

Finally, the sub-clusters are converted into patches that 

represent their geometry. This is achieved by projecting the 3D 

local coordinates to depth maps composed of two layers (D0 and 

D1) to accommodate possible occluded points, where the 

difference between the same pixel on the two layers can only be up 

to 4. If multiple points fall into the same pixel, the one with lowest 

depth falls on the first layer, while the point with second lowest 

depth falls on the second layer, if it respects this difference; the 

other points are simply not projected. After all the segmented sub-

clusters are converted to patches, all patches are converted back to 

3D points, thus generating a reconstructed PC. 

The distance between each original point and the closest one 

in this reconstructed PC is calculated. The original points for 

which this distance is greater than 1 are considered missed points, 

meaning that they are poorly represented by the selected patches. If 

after reconstructing the 3D points from the patches, no missed 

points exist, then the patch generation is over, and the list of 

patches goes to the packing module. Otherwise, the missed points 

are given to the 3D sub-clustering module so that new patches can 

represent them. These iterations continue until there are no more 

missed points or all the sub-clusters have been filtered. 

4.2. Main Tools 

The main tools are now detailed: 

• K-Means Clustering - To avoid selecting clusters which 

are biased by the V-PCC six pre-defined clustering planes, the V-

PCC clustering module is replaced by a K-Means based clustering 

process, which segments the points into a user-specified number of 

clusters, K, considering the normals previously estimated (as for V-

PCC). Each resulting cluster is characterized by its number of 

points, and its normal centroid, which corresponds to the average 

of the normals associated to the clusters points. The K-means 

clustering algorithm was adopted from Rosetta Code [10], which 

minimizes the distance of each point to its cluster centroid. 

Considering our target, the clustering follows a different criterion, 

notably maximizes the internal product between each point normal 

and the respective cluster normal centroid to obtain normal adapted 

clusters. 

• Adaptive Plane Selection and Coordinates 

Transformation – A projection plane is defined by the normal 

vector to it, which in this case is the depth axis (Δ). Thus, defining 

Δ axis is the same as defining the projection plane, and in AP2V-

PCC, it is computed as the average of the sub-cluster set of 

normals. While the corresponding depth coordinate value (δ) will 

be the coded geometry value, s/S (tangent) and r/R (bi-tangent) 

coordinates/axes will be horizontal and vertical axes of the 

projected image, respectively. The calculation of the tangent axis 

(S) is inspired from the solution in [8], so that the sub-clusters 

have a similar orientation when they are projected into the 

projection plane compared to their orientation in the usual point 

cloud rendering. This similar orientation leads to an efficient 

packing of patches but also better compression with standard 2D 

video codecs (as the DCT transform basis functions are aligned 

with the patch direction). To achieve this, it is desirable that S and 

R are horizontally and vertically aligned with the PC typical 

orientation. Thus, the S axis is determined as S = Δ × (0;-1;0), 

since the point clouds are typically oriented vertically in the Y-

axis; naturally, R is calculated as R = Δ × S. 

• Adaptive Resolution Control - The global to local 

coordinate system transformation has some consequences, since 

the obtained coordinate values are no longer grid aligned; notably, 

the local coordinate system values have to be initially expressed 

with floating-point precision and later rounded to fit a regular grid 

to be coded by a standard video codec. In turn, the rounding 

process in the local coordinate system will increase the geometry 

distortion by itself, as well as cause some possible point 

overlapping into the same 3D bin of the local coordinate system, 

which during the projection are only counted as a single point, thus 

increasing the geometry distortion even more. To address this 

problem, this module increases the 3D local coordinates resolution, 

reducing the geometry distortion caused by rounding as the 3D 

bins will be smaller. The resolution increase is a user-defined 

parameter, the so-called expansion factor (EF), equal for all sub-

clusters. In this context, each point local coordinate value is 

multiplied by this parameter after the respective local coordinate 

transformation. 

4.3. Additional Tools 

With the increase of resolution and the fact that the occupancy map 

precision is set to 4 (it decreases the bitrate drastically when 

compared to a precision of 1 or 2), the number of duplicate points 

increases significantly, which will penalize the performance of the 

recoloring module, as well as generate multiple decoded points in 

the same position when only one can be displayed. Thus, two 

additional tools were introduced outside the scope of the Patch 

Generation architecture, notably: Recoloring pre- and post-

processing, extending the V-PCC recoloring module; and 

duplicates removal, which is included as a final step of the decoder 

module. Both tools are now described: 



• Recoloring Pre and Post-Processing - At the encoder 

after reconstructing the point cloud geometry (R), which has 

floating-point precision, from the respective reconstructed 

geometry image and occupancy map, a filtered version (F) is 

created, where the duplicates are merged: F will have 1 point per 

filled 3D position. Next, F is recolored from the original point 

cloud and all points in the same position (duplicates) in R get the 

same color of that position in F. After, all the encoding of V-PCC 

is followed. The result is that at the decoder, all duplicates will 

have the same color. 

• Duplicates Removal – At the decoder, the 

reconstruction of the point cloud is performed in the same way, but 

the geometry must be rounded, since the original content is 

represented with integers. This leads to the same effect where 

different points in the same position have different colors. Thus, 

for each decoded position the average color is calculated, and all 

points within the same position are merged into a single decoded 

point, being assigned the just-calculated average color.  

5. PERFORMANCE ASSESSMENT 

5.1. Test Conditions 

The test material has been selected from the MPEG dataset [11], 

notably Loot, Redandblack, Soldier and Longdress. 

The AP2V-PCC RD performance is compared to V-PCC and 

G-PCC, under the so-called MPEG Common Test Conditions 

(CTC) [12] with some additional quantization points to better 

cover the rate range.. The selected QPs are presented on Table 1, 

where R1 to R5 are already contemplated in the MPEG CTC [12]. 

Table 1 – QPs for RD performance assessment [12]. 

 
The quality metrics used for RD performance comparison were 

geometry D1 PSNR (P2Point) and geometry D2 PSNR (P2Plane), 

and color PSNR as defined in the MPEG  CTC [12]. Following 

some optimization studies, the AP2V-PCC parameters have been 

set to K=12 and EF=1.6 to obtain the best geometry RD 

performance. G-PCC results were taken from [13]. 

5.2. RD Performance Evaluation and Informal Subjective 

Assessment 

The geometry D1 PSNR and color Y PSNR RD performance for 

frame 1550 of Redandblack are depicted in Figure 2. The results 

for the other test PC show similar trends. 

 

Figure 2 – Geometry D1 PSNR (left); Y Component PSNR (right) RD 

performance for frame 1550 of Redandblack sequence. 

From Figure 2 and remaining results, it can be concluded that 

both AP2V-PCC and V-PCC outperform G-PCC, in terms of D1 

geometry, and Y color. Thus, the BD-rate and BD-PSNR are only 

computed for AP2V-PCC, taking V-PCC as a reference on Table 

2.  

Table 2 – AP2V-PCC BD-rate and BD-PSNR regarding V-PCC for 

geometry and colour. 

 
From the Y RD charts and Bjontegaard tables, it is clear that 

the color quality does not benefit as much from the adaptive plane 

projections as the geometry. The geometry RD performance gains 

are achieved at the price of increasing the geometry images and 

occupancy map resolutions, and this effect is also propagated to 

the texture maps (since they all have the same resolution). Since 

rate has been invested on increasing the resolution, to achieve a 

comparable/similar total rate, the AP2V-PCC color QP must be 

larger than for V-PCC thus penalizing the color quality. Although 

this compensates for geometry, it does not compensate for color, in 

an RD sense, which naturally leads to a trade-off between the 

geometry and color qualities. 

To informally assess the subjective quality, the Loot PC is 

used, since it shows the main trade-offs of AP2V-PCC versus V-

PCC. Rendered PCs are presented in Figure 3 for AP2V-PCC and 

V-PCC when using a low and a high rate 

 

Figure 3 – Frame 1200 of Loot sequence [11]: a) Original; b) AP2V-PCC 

for 0.25 total bpp; c) V-PCC for 0.24 total bpp; d) AP2V-PCC for 1.47 

total bpp; e) V-PCC for 2.00 total bpp. 

For the lower rates, the color of AP2V-PCC coded PC is rather 

blurred, when compared to V-PCC, since the quality of the color is 

penalized when the same total rate is used. However, V-PCC has 

many more noticeable holes, since this solution has a lot more 

missed points. Moreover, for the larger rates, there is a V-PCC 

artefact that stands out, namely at the ear, which has a lot of holes 

caused by the high angular difference between the ear estimated 

normals to the fixed projection plane. Since AP2V-PCC uses 

adaptive planes, the angular difference is lower and the ear does 

not have noticeable holes. 

6. FINAL REMARKS 

This paper proposes a PC coding solution which extends the 

MPEG V-PCC solution by adapting the projection planes for the 

geometry and texture. This should allow obtaining better RD 

performance trade-offs between geometry and color. The trade-offs 

compensate for larger rates as proven by the informal subjective 

quality analysis. Future work should consider selecting AP2V-

PCC parameters jointly optimized for geometry and texture, 

expansion factors optimized to each sub-cluster as well as 

extending the proposed solution to dynamic PCs. 
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