
Augmentation of Two-stream CNN architectures with
context and attention for action detection and recognition

Pedro Diogo Fernandes de Abreu

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Alexandre José Malheiro Bernardino

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. Alexandre José Malheiro Bernardino

Members of the Committee: Prof. João Manuel de Freitas Xavier

November 2018

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

ii

Acknowledgments

I would like to thank my mom and my dad for their continued support through all these years. To my

grandparents, uncle, aunt and cousins for countless good memories and for fostering in me an interest

in science.

I would like to give a special dedication to my friend and colleague João Antunes for the ideas

concerning the approach in this dissertation and for his invaluable contribution to the work carried out. I

would also like to thank Rui Figueiredo for providing one of the methods used in the dissertation and for

his willingness to help us use it.

I would like to thank my dissertation supervisor Prof. Alexandre Bernardino for his guidance, valuable

suggestions and a large amount of patience to answer all my questions.

I would like to thank all the people I have ever met, friends or not for all the lessons they have ever

taught me.

Lastly, I would like to thank the SPARSIS project, under which I did a research on Sparse Modeling

and Estimation of Motion Fields, with the reference PTDC/EEIPRO/0426/2014 with the support of FCT

(Fundação para a Ciência e Tecnologia).

iii

Abstract

Tasks such as action detection and recognition are a promising step in several areas such as retail,

security, robotics and recommendation systems. Recently, challenging datasets have been introduced,

which are representative of the task of multi-person spatiotemporal action detection and recognition task

with multi-labels. We propose to augment the statof-the-art two-stream CNN architectures for this task.

These architectures are limited in that they try to detect the actions independent of the background and

other humans in the same video. To this end, three novel contributions are presented: attention filtering,

context streams and a combination of both. For attention filtering, with the goal of not only extracting

information from a target but from the image background, we train two-stream CNN architectures with

different kinds of filters applied on RGB and Optical Flow inputs. For context streams, with the goal of

predicting the labels of a target using the labels of the surrounding neighbours, we use dataset labels to

explicitly encode the relationship of classes performed by multiple humans as context features and train

LSTM networks on these features. Finally, we combine these methods by fusing the context streams

with the two-stream approaches trained with attention filtering. Results show the combination of the

first two methods outperforms each of them and that all augmentations improve on a two-stream CNN

baseline.

Keywords

Action Detection, Action Recognition, Multi label datasets, Attention filters, Spatiotemporal context

label relationships, Two-stream Convolutional Neural Networks

v

Resumo

Tarefas como reconhecimento de acções são um passo promissor em várias áreas como vendas,

robótica, classificação de videos e sistemas de recomendação. Recentemente, foram apresentados

datasets dificeis que são representativos da tarefa de detecção e reconhecimento de acções multi-

pessoa e multi-label. Propomos melhorar as arquiteturas two-stream CNN estado-da-arte para esta

tarefa. Estas arquiteturas estão limitadas no facto em que tentam detectar acções independentemente

do background e de outras pessoas no mesmo video. Com este fim, três novas contribuições são

apresentadas: filtros de atenção, streams de contexto e uma combinação de ambos. Para os filtros

de atenção, com o objectivo de não só extrair informação de um target mas também do background,

treinamos arquiteturas two-stream CNN com diferentes tipos de filtros aplicados nos inputs RGB e

Optical Flow. Para as streams de contexto, com o objectivo de prever as labels de um target usando

as labels dos seus vizinhos, usamos as labels do dataset para codificar explicitamente a relação entre

classes executadas por multiplas pessoas como features de contexto e treinamos redes LSTM nestas

features. Finalmente, combinamos estes métodos através da fusão das streams de contexto com as

arquiteturas two-stream treinadas com filtros de atenção. Os resultados mostram que a combinação

dos primeiros dois métodos supera a performance de cada um e todos os melhoramentos superam a

baseline.

Palavras Chave

Detecção de Acções, Reconhecimento de Acções, Datasets Multi-label, Filtros de atenção, Relações

espatiotemporais, Redes Neuronais Convolucionais Two-stream

vii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Concepts . 2

1.2.1 Atomic Actions, Actions and Activities . 2

1.2.2 Action Recognition/Action Detection, Multi-Class/Multi-Label Tasks 3

1.3 Objectives . 4

1.4 Challenges . 6

1.5 Overview of approaches . 7

1.6 Contributions . 9

1.7 Dissertation Outline . 10

2 Related Work 11

2.1 Overview . 12

2.2 Background . 12

2.2.1 2D Convolutional Neural Network (CNN)s . 12

2.2.1.A ResNet . 14

2.2.2 RNN (RNN)s/LSTM (LSTM)s for Sequence-to-Sequence Learning 15

2.2.3 Output layers, loss and cost functions . 16

2.2.3.A Output Layers . 16

2.2.3.B Cross-Entropy Loss . 17

2.2.3.C Categorical Cross-Entropy Loss . 17

2.2.3.D Binary Cross-Entropy Loss . 18

2.2.4 Attention Filters . 18

2.2.5 Balancing Strategies for Imbalanced data . 19

2.3 State of the art . 20

2.3.1 Two-Stream networks and Two-Stream Fusion . 21

2.3.1.A Optical Flow . 21

2.3.1.B Architectures . 22

ix

2.3.2 AVA Action Localization Model . 24

3 Implementation 27

3.1 Overview . 28

3.2 Base Architecture . 29

3.2.1 Generalized Binary Loss Function . 30

3.2.2 Subsampling and Voting Scheme . 31

3.3 Attention . 32

3.4 Context . 33

3.4.1 Context Features . 33

3.4.2 Context Architectures . 35

3.5 Context Fusion . 36

3.5.1 Concatenation Fusion . 36

3.5.2 Class Score Fusion . 37

3.5.3 Two-Pass Testing Scheme . 38

4 Dataset and Metrics 41

4.1 Overview . 42

4.2 AVA . 42

4.2.1 AVA specifications . 43

4.3 miniAVA . 43

4.3.1 miniAVA Context . 44

4.4 Metrics: mean Average Precision (mAP) . 46

5 Experimental Results 49

5.1 Overview . 50

5.2 Baseline . 50

5.3 Attention on individual streams . 51

5.3.1 Attention on RGB streams . 51

5.3.2 Attention on Optical Flow streams . 52

5.4 Two-Stream Fusion . 52

5.5 Testing Context by itself . 53

5.6 Context Fusion . 55

5.6.1 Groundtruth Scenario - Using test labels to generate context 56

5.6.2 Real Case Scenario - Two Pass Testing Scheme 57

5.7 Voting Hyperparameter . 58

5.8 Balancing . 59

x

6 Conclusion 63

6.1 Conclusions and Future Work . 64

xi

xii

List of Figures

1.1 Real examples illustrating each type of task. 4

1.2 A conceptual example with only 3 classes of the distinction between multi-class and multi-

label problems. The AVA [35] dataset is multi-label. Adapted from https://gombru.

github.io/2018/05/23/cross_entropy_loss/ . 4

1.3 Examples of typical action recognition approaches with CNNs as shown in [13]. The

rightmost two approaches tend to be computationally heavy while the leftmost two tend to

lack explicit motion features like Optical Flow. 8

2.1 Multi-Layer Perceptron (MLP) vs CNN. 13

2.2 ResNet[39] architectures. Image adapted from http://jwarndt.com/tensorflowblog.

html. 15

2.3 Left - Conceptual RNN as a recursive model. Right - After unrolling the model, RNNs

can be used for several types of Sequence-to-Sequence Learning we use many-to-one

and many-to-many approaches further in this dissertation. Image adapted from http:

//karpathy.github.io/2015/05/21/rnn-effectiveness/. 15

2.4 Artificial Foveal Vision as described in [4] with Laplacian Pyramid [12] upsampling and

downsampling for K = 4 (4 levels) and an example of a fovea filtered image from the

original paper with f0 = 30 (see 2.9) . 19

2.5 Optical Flow showing the displacement vectors across time at a given point (as explained

in [80]) and an example of TV-L1 [103] optical flow encoded as an RGB image. 21

2.6 Early 2-stream CNN [80] as an example of Class Score Fusion and two-stream inputs. . . 23

2.7 Fusion in 2-stream CNNs as explained in [29], exemplifying several strategies for convo-

lutional and Fully-Connected (FC) fusion. 23

2.8 AVA Localization Model. Note that the I3D [13] streams can easily be replaced with 2D

CNNs using a voting scheme for each frame with results as shown in Table 2.1. 24

xiii

https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://gombru.github.io/2018/05/23/cross_entropy_loss/
http://jwarndt.com/tensorflowblog.html
http://jwarndt.com/tensorflowblog.html
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

3.1 Conceptual pipeline of our approach. In green are the pipeline components we are mostly

focused on, the ones we do not focus on are grayed out. In white are the inputs and

outputs of the pipeline. The switch shows how context features can be generated from

3 different sources (training labels are necessary at training time). In dotted lines are

possible intermediary predictions from the pipeline. 28

3.2 Our proposed two-stream architecture. The input is a single frame and an optical flow

stack and the output is a set of floating point predictions. 29

3.3 Our subsampling method. Each 3s segment is subsampled at 10 frame intervals centered

around a keyframe to obtain 5 frames (including the keyframe). Around each of the 5

extracted frames, 10 consecutive optical flow stacks are extracted from pair-wise frames. 31

3.4 Example of all the attention filters applied to frame of a subsampled segment. For the

fovea filter K = 4 and f0 = 10 and for the Gaussian Background Blur (GBB) filter σ = 10. . 33

3.5 A simple example of context generation with number of backward and forward timesteps

T = 3, neighbours N = 2 and number of classes C = 4. At the end of the procedure

we obtain the context vector for target (x, y, h, w) at time t. The same procedure must be

done for the other targets at other times. 34

3.6 Our two proposed context models: model A encodes the input sequence into yet another

sequence as input to a second LSTM layer, model B outputs two predictions which are

then fused with a FC layer. The predicted labels are merely illustrative. 35

3.7 Our proposed concatenation fusion model for context. Note that the figure shows only the

input of a single frame and that each 3s segment is subsampled to 5 RGB frames. 36

3.8 Our proposed concatenation fusion model for context. Note that the figure shows only the

input of a single frame and that each 3s segment is subsampled to 5 RGB frames. The

predicted labels are merely illustrative. 37

3.9 Our class score fusion model. We omit that each two-stream model (like in Fig. 3.2

also receives the optical flow volume corresponding to its frame according to Fig. 3.4 for

simplicity. The predicted labels are merely illustrative. 38

3.10 Our proposed two pass testing scheme, where the second or n further passes uses the

concatenation fusion method. The switch illustrates that first the predictions of the two-

stream models are used to generate labels which can then be used by our context models

on a further passes. The predicted labels are merely illustrative. 39

3.11 Our proposed two pass testing scheme, where the second or n further passes uses the

class score fusion method. The predicted labels are merely illustrative. 39

4.1 Long-tail [42] distribution of action classes in the AVA [35] dataset (all splits) 42

xiv

4.2 Examples of AVA [35] labeling. In yellow: mutually exclusive pose actions (only 1 per

Bounding Box (BB)), in blue: multi-label human-human actions (0-3 per BB), in red: multi-

label human-object actions (0-3 per BB) . 43

4.3 The distribution of the training, validation and test set of our partition of the AVA dataset.

The colors of the labels reflect the type of action, we use alternative colors to the original

dataset as in Fig. 4.2. 44

4.4 Relative number of BB’s in segments. Notice that the average bounding box per video is

lower on the training set than on the test set and that the test set has a larger amount of

groups. 45

4.5 Co-occurence matrix of the miniAVA Test Set reveals a rich contextual environment even

for our small dataset. For all frames of a given action (as a row) we count the actions of

other actors in the same frames (across the columns), and then we normalize across the

rows. In red are the pose classes, in blue are the human-object classes, in green are the

human-human classes. 46

5.1 AP per class on our miniAVA split for the best two-stream approach (without context) and

the class score fusion of that architecture with the best LSTM model as explained in 3.9.

We show AP per class after changing the voting hyperparameter (which we discuss in the

next experiment). 56

5.2 AP per class on our miniAVA split for the best two-stream approach (without context) and

class score fusion with context. The difference from Fig. 5.1 is that the class score fusion

uses our two pass testing scheme. 57

5.3 Results of an RGB stream trained with GBB attention filter with several values of the voting

hyperparameter on the validation set. This is merely an illustrative example. As seen in

table 5.11 other methods were tested in a similar way. 59

5.4 AP per class on the miniAVA split for the balancing and oversampling experiment. The

model used for the oversampling experiment is the same and the repeated frames are all

GBB filtered so that the only difference between the two is the oversampling strategy. . . 60

5.5 Confusion matrices for the pose classes in the balancing experiment. 61

6.1 Example of action detection labels on UCF101-24. 64

xv

xvi

List of Tables

1.1 Ablation study from [35] showing the difficulty of action recognition vs actor detection in

several datasets. 5

2.1 mAP@0.5IoU for action detection on UCF101-24 and AVA. Note how the difference be-

tween 2D and 3D methods is smaller in AVA, revealing that the larger receptive field and

consequent computational cost may not necessarily be the key for better results. These

results also suggest AVA has a richer temporal context. 25

4.1 Distribution of class categories in the AVA [35] dataset vs miniAVA. 44

5.1 Baseline individual streams and their fusion. 50

5.2 Attention filtering results on individual RGB streams vs baseline (RGB). 51

5.3 Attention filtering results on individual flow streams vs baseline (flow). 52

5.4 Testing of several combinations of streams and their respective attention filters 52

5.5 AP on some noteworthy classes that illustrate why the fovea filter seems to perform best. 53

5.6 Comparison of an MLP model and our proposed LSTM models. 54

5.7 Evaluation of the best context generation and model A vs model B architecture. All these

results use N = 3 (i.e three closest neighbours). The columns are the results across

several values of Number of Hidden Units (NHU). 54

5.8 Evaluation of the best architectures in Table 5.7 (apart from the larger networks) with

context generated as explained in section 3.4.1, with a different number of neighbours. . . 54

5.9 Testing context fusion architectures under a groundtruth scenario. i.e using test labels to

generate context. We can see that the results improve considerable when using class

score fusion but not when using concatenation fusion. 56

5.10 Testing context fusion architectures under a real case scenario, where we do not assume

to have the test labels at testing time. As in Fig. 5.1 we show the results of the best

two-stream approach and then the results of class score fusion with the two pass scheme

demonstrated in Fig. 3.11. We also show the results of an additional pass. 57

xvii

5.11 Results of varying the voting hyperparameter for several approaches. Note that smaller

values of this threshold tend to improve mAP as they allow for more under represented

classes with lower score to be considered in the voting scheme. 58

5.12 mAP Results on balancing using oversampling. 60

xviii

Acronyms

BB Bounding Box

CNN Convolutional Neural Network

IoU Intersection over Union

mAP mean Average Precision

RPN Region Proposal Network

OF Optical Flow

FC Fully-Connected

NHU Number of Hidden Units

MLP Multi-Layer Perceptron

RNN RNNRecurrent Neural Network

LSTM LSTMLong-short term memory Temporal

Segment Network

R-CNN R-CNNRegion-Convolutional Neural

Network

MLD Multi-label dataset

SLD Single-label dataset

BPTT Backpropagation Through Time

SVM Support Vector Machines

RF Random Forests

BB Bounding Box

AP Average Precision

iDT improved Dense Trajectories

FPS Frames Per Second

GBB Gaussian Background Blur

xix

xx

1
Introduction

Contents

1.1 Motivation . 2

1.2 Concepts . 2

1.2.1 Atomic Actions, Actions and Activities . 2

1.2.2 Action Recognition/Action Detection, Multi-Class/Multi-Label Tasks 3

1.3 Objectives . 4

1.4 Challenges . 6

1.5 Overview of approaches . 7

1.6 Contributions . 9

1.7 Dissertation Outline . 10

1

1.1 Motivation

Recently video-based human action detection and recognition has been getting more attention since

it allows for the detection of a larger range of actions and incorporation of contextual information than

inertial sensors [72]. As a consequence video-based human action detection and recognition has many

possible applications in retail, security [91], robotics and as a representative task for video understanding

(i.e to understand human video dynamics): given a video, understand what is being shown, what are the

elements being seen (visually and structurally), and how they relate to each other.

Although object recognition currently gets most of the research spotlight, partly because it is easier to

define and understand, a large commercial payoff would come from accurate human action recognition

and detection: with the amount of videos online increasing everyday (as demonstrated by the Youtube-

8M dataset [2]), a major drawback is the need to analyze video either for improving suggestions or to

check for undesired content by hand.

1.2 Concepts

In this section, we introduce fundamental concepts for the problems we will further discuss. We

separate this section in two parts: in the first one we discuss basic concepts involving atomic, action

and activities and for the second one, we discuss the concepts necessary to understand the problem

we want to solve, namely action recognition opposed to action detection and multi-class opposed to

multi-label tasks.

1.2.1 Atomic Actions, Actions and Activities

While most literature uses a somewhat fluid notion of many of these concepts, it is important to

separate the notions of action, activity and atomic action for humans. These concepts are related hi-

erarchically and it has been noted by [76] that human behaviour in general can be decomposed in a

hierarchy. Furthermore, [9] [94] show how actions can be decomposed into and grouped according to

an action structure that can be learned only from data analysis which supports this claim. However,

since that is not our goal we stick to the three concept hierarchy of atomic action, action and activity.

Firstly, [51] define action as motion created by the human body, which may or may not be cyclic.

According to [62] an atomic action is a movement or performance that can be described more at a limb

level (e.g leg forward) normally with a verb, an action is a sequence of atomic actions, and an activity is

a whole body movement containing a number of subsequent actions. These definitions are the ones we

will stick to. The idea of using verbs for actions is discussed by [97] which introduce verb-only labels as a

means to reduce the ambiguity in many class labels when creating datasets in this field. Normally verb-

2

only labels tend to be associated with atomic actions. Recent datasets, such as Charades/Holywood In

Homes [78], Moments in Time[63], AVA [35] (the one used for our experiments) have as one of its goals

working towards atomic actions with that same intention of reducing ambiguity, while older datasets such

as UCF101 [81], HMDB [57], Sports-1M [52], tend to focus on broader activities. Note that while we are

mostly concerned with atomic actions (i.e very elementary or "fine-grain" actions) in this dissertation we

also want to understand how they interact in more complex patterns.

This idea of actions as sequences and an activity as a sequence of actions is also introduced by [16]

which separates human activities into four levels: gestures, actions, interactions and group activities,

where an action is a sequence of human body gestures or movements and may involve several body

parts, and interactions/group activities are just activities with a meaning.

Similarly to the notion of actions as sequences, which we will discuss further in section 3.4.1 of

this dissertation, the idea of using meaning to categorize actions is also popular, indeed [40] define

action as the most elementary human movement that surrounds interaction with meaning. The meaning

associated with this interaction is called the category of the action. This allows for the separation of

actions into conceptual groups, thus reducing ambiguity when labeling datasets.

1.2.2 Action Recognition/Action Detection, Multi-Class/Multi-Label Tasks

Our task is a supervised learning task. From a computer vision standpoint this means that the

objective is to match an observation (video) with one or more labels of actions, by training a model

with a fixed amount of samples with known labels. It is important to distinguish between recognition

and detection to avoid misunderstandings. Action recognition (classification is a synonym) [51] can be

defined as the task of categorizing an action in a video clip to one or more of the pre-defined set of

actions. On the other hand, action detection [51] (localization/segmentation is a synonym) is the task

of correctly specifying via a boundary (e.g a bounding box) where an action is located throughout the

video. This means that action detection can be both interpreted as spatial and temporal.

Note that this also means there may be simultaneous actions happening for different people as

shown in Fig. 1.1. An easy way to understand this categorization is to ask a key question. For Ac-

tion Recognition (What?), for Action Spatial Detection/Localization (Where?) and for Action Temporal

Detection/Localization (When?). The main difference is that detection implies that the aforementioned

boundary is a target: whether spatial, temporal or both, while action recognition only requires a class

label to be attributed.

The problem of recognition is normally non-binary (in that case it is often called actionness [106]),

that is, it is not simply that of determining if there is an action occurring. Additionally, the provided videos

can be untrimmed without a fixed duration or already trimmed videos of a fixed duration where it is known

that at least one action occurs in that duration [24].

3

(a) Example action recogni-
tion

(b) Example action spatial de-
tection

(c) Example action temporal
detection

Figure 1.1: Real examples illustrating each type of task. Adapted from https://ghassanalregib.com/demos/,
http://www.bu.edu/ids/research-projects/action-recognition/ and https://www.researchgate.net/
figure/An-example-of-temporal-action-detection-The-green-box-denotes-an-instance-of-the_fig1_

314355215 respectively.

Another pertinent question is whether or not a single-person can have multiple labels, that is if a

single person can perform one or more actions at the same time. This distinguishes between Single-

label dataset (SLD)/Multi-class and Multi-label dataset (MLD) [82], and the tasks must adapt accordingly.

In Fig. 1.2 we can see a conceptual example of this distinction.

Figure 1.2: A conceptual example with only 3 classes of the distinction between multi-class and multi-label
problems. The AVA [35] dataset is multi-label. Adapted from

https://gombru.github.io/2018/05/23/cross_entropy_loss/

This is relevant as we can now categorize the task we want to tackle as an multi-label spatio-temporal

action detection and recognition task. We expect most of the datasets for this task to be class imbal-

anced, which means that some classes have many more training and testing samples than other.

1.3 Objectives

Since we believe many recent datasets do not reflect the real complexity of this task [35] [13], our

main goal in this work is to go beyond the common challenges of action recognition and tackle a multi-

4

https://ghassanalregib.com/demos/
http://www.bu.edu/ids/research-projects/action-recognition/
https://www.researchgate.net/figure/An-example-of-temporal-action-detection-The-green-box-denotes-an-instance-of-the_fig1_314355215
https://www.researchgate.net/figure/An-example-of-temporal-action-detection-The-green-box-denotes-an-instance-of-the_fig1_314355215
https://www.researchgate.net/figure/An-example-of-temporal-action-detection-The-green-box-denotes-an-instance-of-the_fig1_314355215
https://gombru.github.io/2018/05/23/cross_entropy_loss/

label multi-person action detection and recognition task in an imbalanced dataset where we can exploit

a rich action structure, as previously described.

Since this type of task is very recent there were few implementations against which we could com-

pare results. The task is similar enough to other tasks, such as action recognition that we could base

our approaches on pre-existing ones. However, most of these action recognition models are large and

the trend is for larger datasets, it becomes unfeasible for single individuals or small teams to approach

these tasks. This was made more difficult due to the amount of computational resources we had avail-

able. As such we opted to try alternative approaches that could extend already existing state of the art

approaches but always with computational feasibility in mind.

The first of these alternative approaches was that, given an actor bounding box, we want to use

pre-processing to filter the image inputs with several possible attention filters, so classifiers can learn

relevant features. This was inspired by the fact that, since we approach an action detection task, we had

to first extract bounding boxes annotations. This means that we could use that explicit information to aid

classifiers by filtering their input.

The second of these approaches is to encode relationships between the actions being performed by

humans across time as features. We believe using these explicit features could aid a classifier. This

approach is inspired by the fact that, as we previously discussed, actions can be divided into categories.

Our main focus was the category of actions that implied some sort of contextual relationship between

humans (e.g give and take, or fight and martial art). The fact that the task is a multi-label multi-person

task should make these contextual relationships much more rich.

That being said, we focused on how to exploit the interactions between the actions being performed

by humans across a time window. Namely we would like to predict the labels of a given bounding box (i.e

a human) given the labels of their neighbours across time. We named this process as trying to encode

context in some sort of features that could be used to train a model. This type of encoding and exploiting

class relationships has been used in the literature [49], but to our knowledge not for this type of task.

mAP@0.5IoU UCF101-24 (2013) JHMDB (2013) AVA (2018)
Action Recognition 76.3% 76.7% 15.6%
Actor Detection 84.8% 92.8% 75.3%
Gap 8.5% 16.1% 59.7%

Table 1.1: Ablation study from [35] showing the difficulty of action recognition vs actor detection in several
datasets.

We want to mention how comparatively difficult the task is when compared to image detection tasks

like pedestrian/human detection (named actor for action tasks). Note how challenging it is as shown

in Table 1.1 and how the trend has been that in more recent datasets the gap between these tasks

has been increasing, meaning that action recognition is much harder than actor detection (i.e extracting

correct bounding boxes, without classifying them). The results obtained on these datasets show how

5

the problems action recognition and by consequence action detection are still far from being solved

and all previous results on smaller and balanced datasets were too optimistic [53]. This means that by

approaching this task on realistic datasets the research community can make further advances in the

field in a fashion similar to how early Deep Learning [34] research used the ImageNet [75] challenge

dataset to advance image recognition [36]. It is also important to note that, due to what was previously

discussed, our main focus lies in action recognition rather than the detection component of extracting

BBs.

1.4 Challenges

Despite the success of Deep Learning [34] architectures in image classification [75], action recog-

nition has been a tougher problem. The task addressed in this dissertation is even tougher due to the

required spatiotemporal localization and multi-label, imbalanced data. The main challenge of multi-label

problems are that the number of possible combinations of valid labels is much higher which increases

ambiguity. We discuss the challenges of imbalanced data further in section 2.2.5. Regarding action

recognition there are several challenges that explain why the problem is so hard:

• Computational Cost. Many of the state-of-the-art approaches are computationally heavy [13]. As

such, most models tend to have a large number of parameters and take a long time to train, making

overfitting likely [88] and architecture optimization difficult. Several ways to reduce this cost exist.

For example, [96] use neural networks that receive only single frames or small volumes of frames

as input and use a voting scheme to agglomerate predictions across frames of video segments.

• Long temporal context. Since the notion of action itself implies a dynamic process occurring over

time [56] it is natural for models to require the capacity to process long frame sequences. As

such, the large required temporal receptive field has two main implications. First, it enhances the

ambiguity between classes as there can be large variations in mode of action performance due to

anthropometric difference in activities like gait or physical shape contributing to larger intra class

variation and lower inter-class variation[70]. Second, designing architectures that can capture

spatiotemporal information that may be cyclic or not involve multiple design options which are

non-trivial to evaluate, for example where to temporally segment long actions.

• Lower quality of data. While it is easier nowadays to obtain high quality image data for classifica-

tion, large amounts of high quality video data for action recognition are still hard to obtain. As such

most datasets, like HMDB51 [57], AVA [35] and more, resort to using data from movies. These

videos tend to have low resolution, occlusions, motion blur and camera-related issues such as

sudden camera angle changes or the movement of the camera being interpreted as motion of the

6

action [96]. Note that this is also related to the first challenge: video datasets tend to be much

larger than image datasets, and often use compression and re-scaling methods to compensate for

this.

1.5 Overview of approaches

We can separate approaches in two categories: before CNNs and after CNNs. Before CNNs, most

pipelines were heavily focused on feature representation and feature encoding. These are often called

handcrafted since the features were often computed via an interpretable, analytical method. These

approaches, of which improved Dense Trajectories (iDT)[93] is a good example, can be broken down

into the following 3 steps:

1. High-dimensional visual features that describe a region of the video are extracted and linked across

time.

2. The extracted features get encoded into a fixed-sized video description via BoVW [18], LLC [54],

FV [69][74] or VLAD [50].

3. A classifier, often Support Vector Machines (SVM) or Random Forests (RF) is trained on the en-

codings.

After the results of CNNs in the domain of image recognition [75], it was believed that the advances

in performance would also transition into action recognition [36]. However, many handcrafted methods

still outperformed CNN-based methods regardless of the growing interest in the use of convolutions

for action recognition over temporal stacks [47]. Many network-based approaches [87] [13] still use an

averaging with iDT predictions in order to improve performance. Early network-based approaches [52]

tried using single 2D CNNs and their results were worse than traditional methods for two reasons: the

learned features did not capture either motion and long temporal context and the UCF101 [81] dataset

was not large or varied enough for the networks to learn such features.

After data-driven approaches became more powerful the use of CNN architectures in action recogni-

tion quickly became the state of the art [87]. More modern action recognition approaches normally differ

in how they employ temporal information [13] and can be separated in categories according to this as

shown in Fig. 1.3.

7

Figure 1.3: Examples of typical action recognition approaches with CNNs as shown in [13]. The rightmost two
approaches tend to be computationally heavy while the leftmost two tend to lack explicit motion features like

Optical Flow.

It should be noted that the rise of CNN approaches brought yet another design choice: there is

also the option of end-to-end training vs feature extraction and classification. End-to-end training often

involves more complex models that need fine-tuning and are prone to issues such as overfitting. On the

other hand, feature extraction and classification involves a 2-step procedure that may be inefficient to

train and test. We explain roughly the idea of the approaches in Fig. 1.3:

• LSTM (e.g Beyond Short Snippets [65], LRCN [20]). The main idea of all these approaches is to

use LSTMs to model sequences [5] of trained features maps extracted with CNNs to capture long

temporal information. Recently, SSN [66] have shown good results on long untrimmed videos and

these approaches still have the largest temporal receptive fields of all approaches. Due to this

reason we also used them in our implementation of the methods in this thesis but without CNN

features.

• 3D-ConvNet (e.g C3D [87] [100]) These types of approaches built on earlier single-stream 2D

approaches [52], but instead used 3D convolutions on video volumes. Two interesting parts of this

work is how they intended to use their large models as feature extractors on other models and how

they interpreted the features extracted, reaching the conclusion that their networks were focusing

on spatial appearance on the first few frames and then constructing motion features in subsequent

frames.

• Two-Stream CNN/ConvNet (e.g Two-Stream [80], Two-StreamFusion [29], TSN [96]). The most

novel addition introduced by this type of network model is the use of an additional 2D CNN trained

on explicit motion features such as optical flow to try and capture short temporal context. Many

aspects of this original approach have been further augmented (e.g ActionVLAD [32], HiddenT-

woStream [107]) and they are particularly attractive due to the possibility of achieving competitive

8

results while using small amounts of computational resources.

• 3D Fused Two-Stream, Two-Stream 3D-ConvNet (e.g I3D [13], S3D [99], R(2+1)D[89]). While

these approaches are currently the state-of-the-art, they extend two-stream approaches by per-

forming 3D convolutions on RGB and Optical Flow stacks. As such, these approaches tend to be

more computationally heavy than all others.

Two main lessons learned when looking at these approaches is that discarding optical flow or any al-

ternative motion features seem to be harmful to performance and so is not allowing the networks to

learn temporal features. Throughout the rest of this dissertation we will focus mostly feature extraction

followed by two-stream CNN classification.

1.6 Contributions

We believe our work is a valid contribution to the specific problem of multi-label imbalanced action

detection and recognition. We would like to separate our contributions into conceptual contributions and

technical contributions:

• Regarding conceptual contributions, we try to bridge the aforementioned gap by introducing a

novel architecture that builds on previous two-stream approaches [80][28][96] to deal with this

type of task. Additionally, our approach also extends two-stream approaches by using additional

mechanisms such as:

– Several attention pre-processing filters for the inputs of the two-stream CNNs, both RGB and

Optical Flow. We provide individual CNN models trained with each of these attention filters.

– Encoding human action interactions as context features and training LSTM neural networks

on these features, with the goal of predicting the actions of a target based on the actions

of their neighbours. Several parameters for this feature generation and several architectures

were tested.

– Network fusion of the previous two improvements, together with a novel testing scheme to

use context generation at test time. Using both mechanisms together outperformed each of

them.

As mentioned, due to the high computational demands of most solutions and large dataset size,

we partitioned the AVA [35] dataset to obtain a small representative set with a similar distribution,

named miniAVA. This also allowed us to iterate faster between architectures. With the resources

available we managed to demonstrate that not only is our approach viable but all our augmenta-

tions improved the original baseline.

9

• As for technical contributions 1 2, we would like to highlight how there is a lack of uniform standards

in the research community and how models are often available in non-compatible frameworks. Not

only that, but to our knowledge we provide the first implementation based on the open source

software Keras [17] (their implementation [28] is based on Matconvnet) of two-stream architectures

for action recognition. Additionally we improved the efficiency of an existing library by the authors

of [27] for the computation of optical flow for the TV-L1 [103] algorithm 3 and we created a library for

conversion of Matconvnet [92] (.mat) and Caffe [48] (.caffe) weights to Keras/Tensorflow [1] (.hdf5)

weights for generic neural networks. We also highlight that most of the available frameworks rarely

have any utilities for multi-label or imbalanced problems and this fact often forced us to extend

already existing frameworks to suit our needs.

1.7 Dissertation Outline

In the remainder of this thesis we propose and explain a complete action detection system. It is

organized in the following manner:

• Chapter 2 is separated in two parts: we address some necessary background and then we present

detailed descriptions of the state-of-the-art methods from [80] [29] and [35] that are relevant to our

implementation.

• Chapter 3 begins with the description of our two-stream multi-label architecture to fuse RGB frames

and optical flow data. Then we explain inter-human class relationship context and attention mech-

anisms and how these can be used to augment the previous architecture.

• Chapter 4 provides a detailed description of the original AVA [35] dataset and our partition of it and

the metrics used in further experiments.

• Chapter 5 presents experimental results that validate our implementation and conclusions are

drawn from the performed experiments that provide insights into how the augmentations improve

the baseline architecture.

• Finally, in chapter 6 a summary of the work carried out in this dissertation is provided, making also

references to future improvements that can be done about the presented implementation.

1https://github.com/pedro-abreu/twostream-attention
2https://github.com/pedro-abreu/action-semantic-lstms
3https://github.com/feichtenhofer/gpu_flow/pull/12

10

https://github.com/pedro-abreu/twostream-attention
https://github.com/pedro-abreu/action-semantic-lstms
https://github.com/feichtenhofer/gpu_flow/pull/12

2
Related Work

Contents

2.1 Overview . 12

2.2 Background . 12

2.2.1 2D CNNs . 12

2.2.2 RNNs/LSTMs for Sequence-to-Sequence Learning 15

2.2.3 Output layers, loss and cost functions . 16

2.2.4 Attention Filters . 18

2.2.5 Balancing Strategies for Imbalanced data . 19

2.3 State of the art . 20

2.3.1 Two-Stream networks and Two-Stream Fusion . 21

2.3.2 AVA Action Localization Model . 24

11

2.1 Overview

In the following section we present a general background of some needed theoretical concepts fol-

lowed by the description of two state-of-the-art architectures relevant to our implementation. We assume

the reader has a basic understanding of linear algebra, machine learning concepts and of the general

concept of shallow 1D neural networks/MLP [64].

2.2 Background

In this section we firstly give a brief theoretical and architectural overview of the state-of-the-art 2D

CNNs and their key aspects for our implementation and a concrete example of the ResNet [39] archi-

tecture. We also briefly mention RNNs and LSTMs and why they are useful for action recognition tasks.

Next, we give an in depth analysis of output layers for neural networks in general and their loss functions

and why they are relevant for multi-label tasks such as ours. Next we analyze an existing attention filter

for pre-processing images for 2D CNNs and also general guidelines for dealing with imbalanced data.

2.2.1 2D CNNs

Traditional methods for recognition of objects or people in 2D images were often based on edge

detection using various 2D filters or kernels. The main idea introduced by the use of convolutional

neural networks was that instead of using 1D vectors as weights for the connections between layers

as in an MLP, the kernels for these filters are the network weights, thus allowing the network to learn

optimal 2D filters [34] and by extension spatial relations encoded in the input features.

Since the input image can have multiple channels (i.e RGB images would have 3) nC and we may

want to use more than a single f × f filter in one layer since they can learn different features. All nF

filters must have the same number of channels nC as the input volume and each filter channel is applied

to its corresponding input channel (the convolution is in truth a volume convolution). These filters are

often small kernels that are applied all over the image. This is often the reason why input images and

filters are depicted as cubes, with the tendency being that of the number of channels increasing as their

width and height decreases as in Fig. 2.1. This encodes features to a suitable vector representation

which is a reason why these networks are so frequently used as feature extractors. These small kernels

can therefore be though of as a sliding cube, for which all channels are added after a per-channel

convolution. The number of filters per layer can be thought of as the next volume’s number of channels

since the outputs of the filters are concatenated in a similar fashion. Given an image of size n × n and

12

nF filters of size f × f all with nC channels, their output volume is obtained by:

(n× n× nC) ~ (f × f × nC)× nF =⇒ (n− f + 1)× (n− f + 1)× nF (2.1)

Figure 2.1: MLP vs CNN. Image adapted from http://blog.christianperone.com/2015/08/
convolutional-neural-networks-and-feature-extraction-with-python/.

Another way of looking at CNNs (or ConvNets) is that they can be seen, in a similar fashion to MLPs,

as function approximators [60] which are arbitrarily complex. Due to the convolution mechanism, CNNs

are capable of learning spatial representations from lower-level features at their earlier layers (such as

edges) to higher-level features (such as ears or eyes in pedestrian detection) at their final layers [102].

Other improvements to CNN architectures like padding and pooling layers have allowed the accuracy

to improve while using less weights. Padding is simply to add extra boundary pixels to an input volume

as one problem visible in equation 2.1 with convolution operations is that the outcome filtered image is

smaller than the original image. A special case of padding is when, knowing the size of the filters f , one

can make the output image have the same size as the original input image by having p = f−1
2 empty

(with value 0) one pixel layers all around the image. This is also often called same convolution.

Pooling layers [34] perform a similar operation to convolutional layers, however where in convolution

an element-wise multiplication and then addition is performed while sliding the kernel, with pooling the

maximum element is picked in the kernel window in the case of max pooling or all elements in the kernel

window are averaged in the case of mean pooling (mean pooling is used less often). All the weights from

the kernels are then added with a bias and an activation function is applied. Many activation functions

exist but recently the ReLU [34] function has been proved to provide faster gradient descent for CNNs.

Besides pooling layers and convolutional layers often at the end of the network the weights are

concatenated in a single large vector and 2 to 3 FC layers like those used in 1D neural networks/MLPs

are used before the output layer. This output layer is intimately linked with the cost function and we

explore it in more detail in section 2.2.3.

Given training labels it is possible to use backpropagation [19] to learn gradients for adjusting weights

using an optimizer. For this optimizer it is necessary to set to a learning rate as it minimizing a cost which

is based on a loss function aggregated over a number of samples as shown in equation 2.2. There are

13

http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/
http://blog.christianperone.com/2015/08/convolutional-neural-networks-and-feature-extraction-with-python/

several optimizers based on gradient descent but the state-of-the-art is the Adam optimizer [55].

As both action recognition and imbalanced data present a larger danger of overfitting than other

tasks, such as balanced image recognition, it is relevant to mention measures that prevent this. While

several measures can be taken to reduce variance, we focus mostly on two: regularization [34] and

dropout [83]. Regularization adds an additional term depending on the pre-existing weights w to the cost

function that is being optimized by backpropagation process. In more precise terms the cost function

can be written as:

J(w) =
1

N

N∑
i=1

L(y
′

i, yi) +
λ

2N

L∑
l=1

‖wl‖2 (2.2)

where λ is a regularization hyperparameter, N are the number of training samples, w are the weights and

L(y
′

i, yi) is the loss function for a single sample. In equation 2.2, since the term is ‖wl‖2 this represents

L2-Regularization, whereas L1-Regularization would have a ‖wl‖ term. A dropout layer is a FC layer

in which for each node in the layer, for each training batch of samples that node is not considered for

back propagation with a uniform probability of p which is the dropout hyperparameter. The number

of nodes that are thus turned off should not be too high. As this is done for every training batch not

only is the network faster to train but in general nodes are trained on a more varied configuration.

Batch normalization [45] is also a possible regularization method however, it has been shown to have a

negative impact [59] on dropout (and vice-versa) and as such we do not use it explicitly on our fusion

process, opting instead for using dropout.

2.2.1.A ResNet

As an example of a 2D CNN architecture we chose the ResNet [39] architecture. This architecture

has been proven to work well for action recognition [28] [36] [30] and is also the one we used in our

implementation. After VGG [79] was deemed not only too deep and slow to converge but was also

was shown to be degrading results due to vanishing or exploding gradients, ResNet was a proposed

alternative. The problem of vanishing or exploding gradients means that while Deep Learning seemed to

suggest adding more and more layers would lead to very small classification errors, very deep networks

not only take much longer to train but also actually see an increase in the classification error after a

large number of layers [34]. ResNet [39] presents a better alternative. The idea is that it is easier to

optimize residual intermediate mappings in deep networks rather than an input to output mapping in a

very deep network. Residual nets introduce a main new innovation, the residual block. The residual

block allows for the output of a layer to be passed further into the network by summation of the gradients

after activation, hence the name residual, which means that when performing backpropagation a given

layer not only depends on the output of the previous layer but on additive residuals of the previous layers.

14

Figure 2.2: ResNet[39] architectures. Image adapted from http://jwarndt.com/tensorflowblog.html.

These networks have several advantages. Lower-level features which might be important for the

classification are more easily propagated throughout the network (i.e easier to keep identity mappings).

The use of residual block helps with the problem of vanishing or exploding gradients thus improving their

classification error, training time and in general networks are able to be deeper [34]. Several iterations

of the architecture were tested by the authors varying only in the number and sequence of blocks used.

Blocks can have different configuration in terms of layers, size of filters and number of filters increasing

as shown in Fig. 2.2.

2.2.2 RNNs/LSTMs for Sequence-to-Sequence Learning

Since human actions can be interpreted as sequences over time and many architectures have done

so as we mentioned in chapter 1 an architecture that was designed to exploit temporal sequences are

RNNs.

Figure 2.3: Left - Conceptual RNN as a recursive model. Right - After unrolling the model, RNNs can be used for
several types of Sequence-to-Sequence Learning we use many-to-one and many-to-many approaches further in

this dissertation. Image adapted from http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

The input to these networks are time sequences of a fixed duration or single timesteps and their

output can also be a sequence or a single timestep as shown in Fig. 2.3. As they are not organized

in sequential layers and neurons are connected to themselves this gives the network a recurrent na-

ture. However, through Backpropagation-Through-Time(Backpropagation Through Time (BPTT)) [34]

it is possible to train them in a similar manner to other networks. This process converts the RNN into

15

http://jwarndt.com/tensorflowblog.html
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

a feed-forward like structure by unrolling it over time as shown in Fig. 2.3, where A are cell memories

which have a more complex structure than the neurons of FC layers in a MLP to account for the temporal

propagation and that their weights are shared.

Due to these reasons training RNNs is more complex as one would have to express the derivative

in backpropagation as a function of itself and the unrolling leads to very long neural networks, which

tend to have the problem of vanishing gradients if sequences are very long [6]. To solve the problem of

vanishing gradients a more efficient architecture was proposed by [41] named LSTM, which was able

to handle longer sequences. The main idea is to alter the main repeating cell (represented as A in Fig.

2.3) to have memory elements.

This memory unit has 3 logistic gates which have learnable associated weights: write, keep and

read. Information gets into the cell whenever its "write" gate is on, information stays in the cell so long

as its "keep" gate is on, information can be read from the cell by turning on its read gate. This means

that the neurons no longer do a multiplication and bias adding operation, but the key is that the LSTM

cell chain (once unrolled) are differentiable and can be backpropagated upon and these tend to have

gradients which are less prone to go to zero.

2.2.3 Output layers, loss and cost functions

For all previously presented architectures an output layer is needed. While most problems are

deemed as multi-class tasks and thus easier to define that is not necessarily the case in the real world.

Therefore it is necessary to understand how to adapt the architectures to deal with different types of

tasks and that is normally done via the output layers and cost functions. The activation functions of

these layers are particularly important as their output is what is used to compute the cost function that

is then backpropagated through the network. A large of the explanation here is based on [34], [46] but

mostly on the implementation we use from the Keras [17] framework.

We stick to the definition that the term loss function is used when talking about a sum of costs over

all training samples as in 2.2 and a cost function is used when referring to the cost applied to a single

sample [58].

2.2.3.A Output Layers

The output layer itself is always a FC layer, but the choice of activation function depends on the

task. For multi-class classification each sample can belong only to one of C classes. Therefore the

architecture will have C output neurons that can be gathered in a vector s (s stands for prediction scores).

The target or ground truth label t will be a one-hot encoded vector with a single positive class and

C − 1 negative classes, since classes cannot occur simultaneously. For these tasks, the function that

is applied to s is the softmax function. It squashes the vector in the range [0.0, 1.0] and all the resulting

16

elements add up to 1. This means that as elements represent a class, these can be interpreted as class

probabilities, thus implying that each score depends on the others. Therefore, for a given class i and all

other classes denoted by j the softmax function is:

f(s)i = softmax(s)i =
esi∑C
j e

sj
(2.3)

On the other hand, for multi-label tasks each sample can belong to more than one of C classes and

the architecture will still have C output neurons. However, the target t will be a binary vector with P

positive classes and C − P negative classes. The task is normally treated as C binary and independent

classification problem where each output neuron decides if a sample belongs to a class or not. Each

output neuron applies the sigmoid or logistic function to each element of s, where the sigmoid or logistical

function is:

f(si) = σ(si) =
1

1 + esi
(2.4)

It is important to note that regardless of the activation function, the output layer is a FC layer as any

other and as such each s = wTh + b. where w are learned weights, h is the input vector and b are bias

terms. Also important is that, in the testing phase, when the loss is no longer required, these activation

functions are also used to get the outputs of the architecture.

2.2.3.B Cross-Entropy Loss

Cross-entropy or (multinomial) logistic loss can be defined more accurately as the negative log-

likelihood. We will focus on variations of cross-entropy. The name comes from the calculation of the

cross-entropy between the training data and the model distribution, or:

L = −
C∑
i

ti log(f(si)) (2.5)

where ti and si are the target and the prediction score for each class i in C and f is the chosen activation

function.

2.2.3.C Categorical Cross-Entropy Loss

This loss is an application of the loss in equation 2.5 with a softmax activation function and is also

called Softmax Loss. In this case the labels are one-hot and as such only the positive class Cp keeps its

term in the loss since tp = 1. Therefore we can discard all other elements of the summation which are

the negative classes and write:

Lc = − log

(
esp∑C
j e

sj

)
(2.6)

17

where sp is the score for the only positive class.

2.2.3.D Binary Cross-Entropy Loss

This loss is an application of the loss in 2.5 with a sigmoid activation function and is also called

sigmoid loss. This loss is computed independently for each vector component (i.e for each class) and

then summed up. This means the the loss computed for every class is not affected by the others. This

sets up a binary classification between 2 conceptual values for every sigmoid activation, where the

negative value is also called the "background class" as it notes the absence of a class. In more precise

terms, for every j classes in C we setup a binary classification problem such that the global loss is:

Lb =

C∑
j

(
−

1∑
i=0

tj,i log(σ(sj,i))

)
=

C∑
j

(−tj log(σ(sj)) + (1− tj) log(1− σ(sj))) (2.7)

Since the activation function does not depend on the scores of the other classes, the gradient in respect

to the score si will only depend on the loss given by its binary problem when its backpropagated.

2.2.4 Attention Filters

The main idea for attention filters is that, given a region in an image (e.g a bounding box), we filter the

image in such way that a classifier learns features related to that region rather than with the surrounding

background. Other approaches to using attention mechanisms exist such as [86] which use optical flow.

However, these approaches often operate at a network-level while here we are mostly concerned with

attention as a pre-processing filtering step before the input is fed to a neural network.

Two naive approaches are possible: the first would be to crop the area outside that region. and the

second would be to simply apply a Gaussian blur with a Gaussian kernel as in 2.8 with an appropriate σ

to everything outside that region. Throughout the rest of this dissertation we will refer to the first one as

Crop filter and the second one as Gaussian Background Blur (GBB). However two arguments against

these approaches can be made. Firstly, for the crop filter, there is no background context which might

help a classifier, for example, an abundance of blue might help a classifier guess "swim" action due to

the presence of water. Secondly, for both the GBB and the Crop filter there are regions where large

contrasts exist, in the crop filter there is a sharp transition from the relevant region to black and in the

GBB there is a sharp transition from the relevant region to a blurred region. Since CNNs tend to learn

edges early in the network as more low-level features [102], we hypothesize this would compromise their

learning. Therefore the ideal would be to have some sort of filter where no artificial edges are introduced.

As such, inspired by human foveal vision [90] and the work of [12] and [4], we use the following fast and

efficient system to replicate this type of filtering which provides a smooth blur transition between the

18

bounding box and the background:

Figure 2.4: Artificial Foveal Vision as described in [4] with Laplacian Pyramid [12] upsampling and downsampling
for K = 4 (4 levels) and an example of a fovea filtered image from the original paper with f0 = 30 (see 2.9)

The procedure can be described as follows. Firstly, a Gaussian pyramid is built with increasing levels

of blur, but same resolution. The image gk+1 can be obtained from gk via convolution with 2D isotopic

Gaussian filter kernels with progressively higher σk = 2k−1σ1 standard deviations for each kth level of

K levels:

G(u, v, σk) =
1

2πσk
e
−u

2+v2

2σ2
k , 0 ≤ k ≤ K (2.8)

where u and v represent the image coordinates. Next, a Laplacian pyramid [12] is computed from the

difference between adjacent Gaussian levels. Finally, exponential weighted kernels are multiplied by

each level of the Laplacian pyramid to emulate a smooth fovea:

k(u, v, fk) = e
− (u−u0)2+(v−v0)2

2f2
k , 0 ≤ k ≤ K (2.9)

where fk = 2kf0 denotes the exponential kernel standard deviation at the k-th level and (u0, v0) are the

the kernel center which defines the fovea focus. The authors [4] use this together with 2D CNNs and

validate its use as a filter.

2.2.5 Balancing Strategies for Imbalanced data

In the literature it is referenced that most MLDs suffer from a high level of imbalance, although

it is a challenge to establish a single metric to quantify this imbalance [15]. Indeed, [105] mention

that the number of positive training instances with respect to each class label for many labels is far

less than its negative counterparts, which may lead to performance degradation for most multi-label

learning techniques or to deceivingly give optimistic results if using the wrong metrics (better stated

as the accuracy paradox [82] when learning the imbalanced distribution). Regardless, most strategies

for addressing class imbalanced datasets can be divided into two categories [37]. Data-level methods

19

alter the training set such that the data is artificially balanced, while classifier-level methods keep the

training set unaltered but adjust the training process of the algorithms to compensate for the imbalance.

An important caveat is that assuming the imbalance is the main cause for this degradation may be

misleading as some inner problems of the imbalance problem such as the lack of data itself [31] from

certain classes can be as impactful as the relative imbalance between the classes, but using data-level

balancing methods tends to help even in this case. Below we present one data-level method and one

classifier-level method which are commonly used[11]:

• Oversampling [37]: This process at its most basic form involves simply replicating randomly se-

lected samples from minority classes until the dataset is balanced (random minority oversampling).

Data augmentation methods can also be used on the replicated samples, however there is always

the eventual chance that even with repetition the data space is still too small for the network to

learn any relevant features.

• Transfer Learning [67] [101]: Transfer Learning is the method of initializing a network or algorithm

with weights learned from another data distribution. This can be seen as a classifier-level method,

however more classical ones are penalized cost or weighting distributions[22]. Transfer learning

has been shown to help with the problem of imbalanced data, since the classifier is not overfitted

on the imbalanced distribution [3]. Fine-tuning, which is a similar idea, is to use these weights

as initialization and then train the network on the new distribution and has the same benefits.

Recent approaches [96] have demonstrated the effectiveness of fine tuning in the problem of action

recognition.

2.3 State of the art

In the following section we discuss two state of the art approaches using two-stream CNNs. The

first [29] is a groundbreaking work on two-stream fusion in action recognition using optical flow, which

improves on earlier two-stream architectures [80]. We explore how these approaches can be competitive

against more complex models and how different types of fusion between streams can be employed. The

second approach we describe is the model provided in the original AVA dataset paper [35] as a baseline.

We discuss how they extend the Faster R-CNN (R-CNN) architecture for the temporal domain. It is

relevant to show this implementation not only to have a reliable benchmark but also to demonstrate how

hard these tasks can be even with large amounts of computational resources available. This approach

is itself a two-stream CNN approach but with several adaptations for the specific task.

20

2.3.1 Two-Stream networks and Two-Stream Fusion

Initially, action recognition architectures used a single 2D CNN with RGB inputs. Inspired by human

neurology [33], a novel approach was introduced in [80] and then extended by [29] [28]. The main

innovation was having two separate CNN streams: one for spatial appearance which receives RGB

inputs and another for motion, which receives Optical Flow (OF) inputs. Then, one of several types of

fusion is performed in order to obtain a final prediction.

2.3.1.A Optical Flow

Given the difficulty of previous deep architectures [52] to learn motion features, [80] explicitly modeled

motion features in the form of stacked (over pair-wise video frames) optical flow vectors as shown in Fig.

2.5. Optical flow computes the displacement vectors between two frames to obtain a representation

of motion. While other features have been suggested to represent motion like Dynamic Images [7]

or Enhanced Motion Vectors [104], optical flow is the one that is still used by most state-of-the-art

approaches.

Figure 2.5: Optical Flow showing the displacement vectors across time at a given point (as explained in [80]) and
an example of TV-L1 [103] optical flow encoded as an RGB image.

Optical flow algorithms can be divided into two types: sparse and dense. Sparse algorithms [77]

use certain key points to calculate displacement vectors, while dense algorithms calculate pixel-wise

displacement as shown in Fig. 2.5. Note that in Fig. 2.5 Red encodes the x direction of the displacement

vectors, Green the y direction and Blue encodes the norm of the vectors, but we only use the first two

channels. Even though OF could be encoded as two grayscale images, this method makes image

retrieval faster. Furthermore, for dense optical flow, we can distinguish algorithms between network-

based and traditional algorithms. Network-based implementations such as FlowNet [21] use neural

networks as function approximators for image to OF mappings. Traditional algorithms such as Farneback

[26], Brock [10] and TV-L1 [103] formulate the optical flow problem as an optimization problem under

a set of constraints and often arrive at an iterative algorithmic solution. While harder to integrate, only

recently have network-based approaches surpassed traditional algorithms [25] [44] and they require

more computational resources to implement. Another advantage of traditional algorithms is how they

21

can compensate camera motion, such as warped flow [96].

As such, we focus mostly on the TV-L1 [103] algorithm since we use it in our implementation and [25]

[13] showed it outperformed other methods (including network-based methods) offering a good balance

of efficiency and accuracy. As discussed in [85], the name of this method comes from the fact that it

is based on the minimization of an optimization function containing a term using the L1 norm and a

regularization term using the total variation (TV) of the flow. This optimization is done for every pair of

sequential input frames. Additionally, the authors introduce an auxiliary variable v to enable a convex

relaxation of the problem and the formulation can be written as:

min
u,v

∑
x∈Ω

(|∇u1|+ |∇u2|) +
1

2θ
|u− v|2 + λ|ρ(v)| (2.10)

Where λ, θ are parameters of the algorithm, u(x) = (u1(x), u2(x)) is the displacement of the point x

from frame t to the next frame t + t, as the point x can move from frame to frame across video frames

and the optical flow must track such displacement. Ω are all the coordinates of all pixels in a frame, ρ(v)

gives the difference in pixel intensity as x moves according to v.

The main feature of this formulation is that it allows discontinuities in the flow field, while being more

robust to noise than classical approaches. The algorithm to solve 2.10 is an efficient numerical scheme,

which is solved by alternate minimization of u and v (a more in depth explanation can be found in [25]).

2.3.1.B Architectures

The first architecture to employ two CNN streams for action recognition [80] is shown in Fig. 2.6. The

input to the spatial stream is a single RGB frame of the video, and the input to the temporal stream are 10

successive optical flow frames centered around the input RGB frame. This means video level prediction

was done by averaging over sampled frames. This leads to the false label assignment problem, that is

the ground truth of each of these clips is assumed to be the same ground truth of the video which may

not be the case if the action just happens for a small duration within the entire video. Nonetheless, most

two-stream architectures have employed a similar assumption in order to use 2D CNNs. Each stream

was pre-trained separately and the output scores of both streams are averaged as seen in Fig. 2.6 which

is called class score fusion. Despite seeming a rudimentary approach, other state-of-the-art methods

have achieved good results with this type of fusion [96] for an even larger number of streams.

22

Figure 2.6: Early 2-stream CNN [80] as an example of Class Score Fusion and two-stream inputs.

Figure 2.7: Fusion in 2-stream CNNs as explained in [29], exemplifying several strategies for convolutional and FC
fusion.

More recently, [29] go beyond the architecture of [80] and explore alternative fusion strategies that

allow for the learning of combined spatial and temporal features. Their work focuses mostly on the fusion

of convolutional layers however the methods they propose can easily be extended for the fusion of FC

layers as shown in 2.7. In other words, the definitions used by [29] for the fusion of convolutional layers

generalizes to FC layers without 2 dimensions and it is possible to see in 2.7 that they used it.

An example of such method is concatenation fusion. While the definition used by [29] is for the

fusion of convolutional layers the same ideas were used for the fusion of fully connected layers was

used. Concatenation fusion does not define a layer with filters itself but leaves this to subsequent fully

connected layers to learn suitable weights. While these results are tested on relatively small networks,

the same authors [28][27] tested their concepts also on deeper architectures like ResNet [39] variations

with similar results.

An example of one of these fusion methods is concatenation fusion, which is also implemented in

the Keras[17] framework. We believe that the definition provided by the Keras [17] framework is easier

to interpret. This layer concatenates a list of inputs, and its action is self-explanatory: it takes as input

a list of layers, all of the same shape except for the concatenation axis, and returns a single layer, the

23

concatenation of all inputs. For the concatenation of FC layers, there is only one axis, the length of the

FC layers.

Note that concatenation fusion does not define a correspondence but leaves this to subsequent (FC)

layers to define by learning suitable (spatiotemporal) filters in those the layers. While these results are

tested on relatively shallow networks, the same authors [28][27] tested their concepts also on deeper

architectures such as ResNet [39] variations with similar results.

2.3.2 AVA Action Localization Model

After the release of the AVA dataset, the authors also released a model using state-of-the-art con-

cepts. They extend the work of [68] by using the I3D architecture. I3D [13] extends the two-stream

models by replacing the 2D convolutions in InceptionNet [84] by 3D Convolutions. The AVA Action Lo-

calization Model uses I3D initialized with Kinetics [53] in conjunction with a modified version of Faster

R-CNN [73], a well known network architecture tailored for object detection which has been also ex-

tended for action detection before in [43] [14].

With the same idea, instead of using Faster R-CNN as a pre-processing step they integrate it in

their framework and use a 2D Resnet50 [39] initialized with ImageNet [75] for the first component of the

network, region proposal. This smaller network, called Region Proposal Network (RPN) has as its only

purpose to compute several hypothetical proposals for regions where the target might be. This means

that even at an intermediary layer these regions can already exist at a more abstract feature level and

the authors use this hypothesis to their advantage. This network has an output feature map from the

conv4 layer which has the same size as the Mixed4e layer of the I3D network, thus allowing them to

perform pooling over these merged volumes and over all timesteps. Then they fuse the two layers after

average pooling as shown in Fig. 2.8.

Figure 2.8: AVA Localization Model. Note that the I3D [13] streams can easily be replaced with 2D CNNs using a
voting scheme for each frame with results as shown in Table 2.1.

A key difference that exists between this and the previous related work we mentioned [29] is that the

24

action labels of AVA are not mutually exclusive and to address this they replace the standard softmax

loss function as shown in equation 2.6 used for UCF101 [81] by a sum of binary sigmoid losses, one for

each class as shown in equation 2.7.

Model Temp + Mode UCF101-24 AVA
2D 1 RGB + 5 Flow 60.1% 13.7%
3D 20 RGB 77.0% 14.5%
3D 20 Flow 71.3% 9.9%
3D 40 RGB + 40 Flow 76.0% 15.6%

Table 2.1: mAP@0.5IoU for action detection on UCF101-24 and AVA. Note how the difference between 2D and
3D methods is smaller in AVA, revealing that the larger receptive field and consequent computational cost may not

necessarily be the key for better results. These results also suggest AVA has a richer temporal context.

25

26

3
Implementation

Contents

3.1 Overview . 28

3.2 Base Architecture . 29

3.2.1 Generalized Binary Loss Function . 30

3.2.2 Subsampling and Voting Scheme . 31

3.3 Attention . 32

3.4 Context . 33

3.4.1 Context Features . 33

3.4.2 Context Architectures . 35

3.5 Context Fusion . 36

3.5.1 Concatenation Fusion . 36

3.5.2 Class Score Fusion . 37

3.5.3 Two-Pass Testing Scheme . 38

27

3.1 Overview

In the following chapter, we explain our base two-stream CNN architecture followed by all the aug-

mentations we add to it. Original videos are split in 3s second segments. We use the TV-L1 [103]

algorithm for computing optical flow, which we store in disk, and we use groundtruth bounding boxes

at training time. We discuss key aspects of the pipeline such as the attention filtering to filter out the

background of frames outside bounding boxes or using labels to generate context features which are

then used to train LSTM architectures. We finalize by talking about how to use the previously introduced

neural network fusion concepts in section 2.3.1.B for context fusion. We also explain a novel testing

scheme necessary for the model to be used in real scenarios where groundtruth test labels are not

available. This novel testing scheme involves generating context features from predicted labels either

from the two-stream architecture or from a previous context fusion. All these conceptual steps can be

summarized in Fig. 3.1 where we illustrate the pipeline of our approach, highlighting the components of

the pipeline we will most focus on.

Figure 3.1: Conceptual pipeline of our approach. In green are the pipeline components we are mostly focused on,
the ones we do not focus on are grayed out. In white are the inputs and outputs of the pipeline. The switch shows
how context features can be generated from 3 different sources (training labels are necessary at training time). In

dotted lines are possible intermediary predictions from the pipeline.

Before we explain our implementation, in Fig. 3.1 we can see that some error propagation from

using Faster R-CNN [73] as a pre-processing step can occur. We do not focus on extending the Faster

R-CNN [73] and we use the provided models trained on the AVA [35] dataset to extract the bounding

box annotations we need for our experiments. We argue this impact is not the main priority when trying

to improve performance by mentioning the ablation study shown in Table 1.1. Furthermore, we note

that the two-stream architecture is tailored for this specific task and as such some aspects of it may not

generalize to all action recognition datasets. These tailored aspects include our subsampling strategy

and our custom loss (generalized binary loss) function.

28

3.2 Base Architecture

We propose a base architecture inspired by recent two-stream approaches such as [29] [28]. Each

stream as shown in Fig. 3.2 is a ResNet50 [39] 2D CNN. We chose a ResNet50 [39] architecture for

each stream for two reasons: we had access to pre-existing weights [29] trained on UCF101 [81] and

this is a modern architecture without some issues of previous deep architectures like VGG [79] or the

large computational cost of even deeper ResNet [39] variations. Each network stream, RGB and OF,

was individually trained on our data.

We fuse these networks using concatenation fusion of their last FC layers and then train a FC layer

so that spatiotemporal features can be learned as shown in 3.2. Since retraining the whole architecture

would be too time consuming, their individually fine-tuned weights are loaded and then the original

layers of both streams are frozen (i.e not updated in backpropagation) so we only train the desired

spatiotemporal filters. This is a concatenation using the FC layer immediately after the last convolutional

layer in the ResNet50 [39] architecture of each stream.

The first reason why we did not employ convolutional concatenation fusion is that would involve

having extra convolutional layers to learn 2D filters and FC layers, despite hypothetically being less

descriptive, are less computationally heavy. Furthermore, the usage of FC layers in CNNs is to detect

specific global configurations of the features detected by the convolutional lower layers. They usually

are used at the end of CNNs at a point when the input has been reduced by the previous convolutional

layers to a compact representation of features. As such, we believe that these compact representations

are enough to learn joint spatiotemporal features from both streams. An additional reason for using

concatenation fusion with FC layers is that we also planned to simultaneously fuse context architectures

(explained in section 3.4.2) with this approach, as shown in Fig. 3.7, and our context architectures are

not convolutional.

Figure 3.2: Our proposed two-stream architecture. The input is a single frame and an optical flow stack and the
output is a set of floating point predictions.

While omitted in Fig. 3.2 we use two intermediate dropout layers (one before the spatiotemporal

FC layer and one after). The two dropout layers imply that the spatiotemporal features learned can be

more robust to overfitting. We opt for dropout values of 0.5. Despite action recognition architectures

29

often having very high values of dropout [96] we also did not want to hinder the performance of our

architecture while trying to compensate for overfit, and therefore chose this value as a compromise. For

the architectures shown in Fig. 3.6 and 3.7 we also use this dropout approach in the same manner.

In order to understand the architecture output layers it is necessary to understand our custom loss

(generalized binary loss) function as described in section 3.2.1. In order to understand the architecture

inputs it is necessary to understand our subsampling and voting scheme as described in section 3.2.2.

3.2.1 Generalized Binary Loss Function

We will first address the output layers and how we compute our loss function. We follow the notation

used previously in section 2.2.3.

At first glance, since our task is a multi-label one and if we followed the example of the provided

AVA Localization Model as described in section 2.3.2 we would have an output layer of C independent

sigmoid activation functions, where C is the number of classes in the dataset. This would mean we

would simply use a binary cross-entropy loss as explained in section 2.2.3.D.

Observing the label structure of the dataset we use (see chapter 4 for further detail) we notice that

the labels are separated in three categories: mutually exclusive pose classes (CP of them), non-mutually

exclusive human-human interaction classes (CH of them) and non-mutually exclusive human-object (CO

of them) interaction classes, such that C = CP +CH +CO. While this means that the task is still a multi-

label task, it implies that the problem is not entirely mutually exclusive as the sigmoids only output layer

used by the AVA Localization Model would suggest.

In our architecture we address this incongruity and we suggest having three separate output layers

after the learned spatio-temporal filters, one of has a softmax activation function (corresponding to the

pose classes) and size CP and the other two each have many sigmoid activation functions for each of

their element vectors and their sizes are respectively CH and CO as shown in Fig. 3.2.

This implies that the loss function cannot only be categorical cross-entropy as in equation 2.6 or

only binary cross-entropy as in equation 2.7 (both are explained in section 2.2.3). Each category must

have its own loss computed, however the whole architecture must minimize a global loss which can be

expressed as:

LGB =

pose classes loss︷ ︸︸ ︷
−αP log

(
esp∑CP
j esj

)
+

human−human classes loss︷ ︸︸ ︷
αH

CH∑
j

(
−

1∑
i=0

tj,i log(σ(sj,i))

)
+

human−object classes loss︷ ︸︸ ︷
αO

CO∑
j

(
−

1∑
i=0

tj,i log(σ(sj,i))

)
(3.1)

where αP , αH and αO are hyperparameters that offer the possibility to weight the contribution of each of

the output layers for this global loss (see loss_weights in the Keras[17] framework). We set αP = αH =

αO = 1.0, thus weighting all of them equally. Updating the weights of each output layer is possible as the

30

encoding of the target labels is done as a binary vector as shown Fig. 3.6 which can then be partitioned

for each of the output layers into smaller vectors. Given this, and since we could not find any type of

similar loss in the literature, we decided to name this loss generalized binary loss.

We used this loss in all other experiments as we believe this assumption better reflects the labeling

structure. Additionally, we believe that in the future, as architectures tend to model more complex tasks,

these types of loss functions will become more relevant.

3.2.2 Subsampling and Voting Scheme

Similarly to the previous discussion, we refer to chapter 4 that discusses the dataset used for this

task in detail, where we can see that what is labeled are 3 second video segments at 30 Frames Per

Second (FPS) centered around a keyframe. This presents two major issues. Intuitively, a receptive field

of 90 frames would be needed and a 3D CNN architecture would be necessary to obtain the labels and

process a single segment at once.

To solve the issue of requiring a large receptive field, we propose a subsampling scheme as shown

in Fig. 3.3. While it is inevitable to lose some information, this makes our implementation much more

computationally feasible. We consider that our sampling is spaced enough that the frames are repre-

sentative of the labeling in each segment. Although informed by the rest of the segment, the labeling is

heavily dependent on the middle-frame or keyframe and our subsampling method reflects this.

Figure 3.3: Our subsampling method. Each 3s segment is subsampled at 10 frame intervals centered around a
keyframe to obtain 5 frames (including the keyframe). Around each of the 5 extracted frames, 10 consecutive

optical flow stacks are extracted from pair-wise frames.

The optical flow frames are pre-computed for every segment and stored in disk, encoded as shown

in Fig. 2.5.

In order to solve the issue of how to obtain predictions from a sequence of frames, we use a voting

scheme. Since our architecture is based on 2D CNNs, to obtain the predictions for a single segment

we pass each frame of our 5 subsampled representative frames and their corresponding optical flow

volumes through one of our architectures (such as the two-stream model shown in Fig. 3.2 for example)

31

and we store all predictions. After having the predictions on each of the subsampled frames, we compute

votes from each stored prediction. As the labels of the dataset are grouped according to mutually

exclusive labels (pose classes) and non-mutually exclusive labels (human-human and human-object

classes) we compute votes in the following manner. For the mutually exclusive predictions we count

the maximum valued prediction as a vote and for all non-mutually exclusive predictions we count any

prediction values above a certain threshold v as valid vote. This v threshold or voting hyperparameter

is a necessary hyperparameter of our architecture and most architectures that have sigmoid activation

functions on their output layers. For the mutually exclusive classes we take the most voted class as

the predicted class for the segment. For each non mutually exclusive class category we take the top 3

most voted classes as the predicted classes for the segment. Note that for the non-mutually exclusive

classes the number of predicted classes can be 0 if no prediction is above the threshold v. Note that as

the predictions for either the mutually exclusive classes and the non-mutually exclusive classes are the

output of the softmax or several sigmoid activation functions their value is between 0 and 1, and so is

v. As previously mentioned, the final labels obtained via this voting scheme are represented as a binary

vector as illustrated in Fig. 3.6.

3.3 Attention

Following the discussion of our subsampling method shown in Fig. 3.3 and our previous discussion

of attention filters in section 2.2.4, we explain what attention filters we used for this task. From Fig.

3.1 we can see that the inputs to the attention filters are a frame (RGB or optical flow) and a bounding

box. Bounding box notations normally differ between (x0, y0, x1, y1) where x0, y0 are top-left corner

coordinates and x1, y1 are the bottom-left corner coordinates, or (x, y, h, w) where x, y are top-left corner

coordinates and h,w are the height and width of the bounding box. We stick to the latter.

Firstly, for the RGB input frames we evaluate three different filters: a crop filter, a GBB filter and a

fovea filter. While the first two were already discussed in section 2.2.4 we adapt the fovea filter to allow

for an elliptical fovea which we believe is helpful, as most BBs tend to be taller than wider. The main

difference is that the fovea exponential kernel weights are now expressed as:

k(u, v, fkx, fky) = e
−
(

(u−u0)2

2f2
kx

+
(v−v0)2

2f2
ky

)
, 0 ≤ k ≤ K (3.2)

where uo = x + w/2, vo = y + h/2 and we define fkx = 2kf0x, fky = 2kf0y with f0x = 1
2w, f0y = 1

2h.

We use K = 4 levels of the Laplacian Pyramid [12] explained previously and f0 = 10. All filters are

exemplified in Fig. 3.4. Note that while the fovea filter seems to blur everything, this blur is very tenuous

near the center of the BB and gets progressively more intense the further the pixels are from the center

of the BB.

32

Secondly, for the Optical Flow input frames we decided to only employ the crop filter. The reason is

that as both GBB and fovea filtering involve blurring, the blurring of motion features would have a possibly

misleading and undesirable interpretation of creating artificial motion vectors in incorrect places.

Figure 3.4: Example of all the attention filters applied to frame of a subsampled segment. For the fovea filter
K = 4 and f0 = 10 and for the GBB filter σ = 10.

3.4 Context

In this section we firstly explain how we generate context features and then how we train LSTM

architectures so that they can learn to predict labels from these features.

3.4.1 Context Features

We define context as the goal of learning the actions of one actor based on the labels of their

neighbours across time. Note that since our task is a multi-person action detection task the labeling is

done in a person-centric manner (i.e labels for each BB) for each keyframe in a long video snippet at

the rate of 1Hz. As previously mentioned, 3s segments centered around these keyframes inform the

labeling. For our context approach a single segment or a keyframe are seen as the same: they consist

of one timestep in terms of context.

Therefore, we need to use features that can encode the labels of an actor’s neighbours over time in

such a way that these can be inputs for a learning task to learn complex inter-human class-relationships.

33

Figure 3.5: A simple example of context generation with number of backward and forward timesteps T = 3,
neighbours N = 2 and number of classes C = 4. At the end of the procedure we obtain the context vector for

target (x, y, h, w) at time t. The same procedure must be done for the other targets at other times.

A simple demonstration of our context generation method can be seen in Fig. 3.5. For all further

discussions, we assume the number of timesteps T used from the past and the number of timesteps T

used from the future are identical. That being said, if we chose the N closest neighbours to an actor and

if our task has C classes, then each timestep has N × C binary features and the length of the context

vector is (T + 1 + T)×N × C.

We identify theN closest neighbours using a pixel-wise Euclidean distance between their BB’s center

and we assume this order is kept throughout the entire context time window. This might lead to identity

switches but we assume those are exceptions. Additionally there can also exist cases where one or

more of the neighbours are no longer in a keyframe. In this case, we assign a sub-vector with 0’s to

the non-existing neighbours and put them at the end of the feature vector from that timestep. Using

the target’s own action labels for input features would likely overfit as the actions for a target tend to be

consistent for a time window and thus the networks would learn a 1 to 1 mapping of repeating those

labels, instead of learning the relationships between the actions being performed which is our main goal

in this section. As such when we retrieve the labels from the past and future we discard the 1st closest

neighbour so we do not the target itself, and we use the N next closest neighbours, as shown in Fig.

3.5.

Since context is generated at a segment/keyframe level and labelling is done at a 1Hz rate, the time

window of the context is in actual seconds (eg. the total time window in Fig. 3.5 is 7 seconds). Note that

our context generation model is flexible enough to use asymmetric context if we so desired, that is using

more past keyframes than future keyframes and this allows our idea to conceptually adapt to problems

where no future context could be used, such as real-time recognition.

34

3.4.2 Context Architectures

Given our previous discussion on the usage of RNNs/LSTMs for sequence modeling in section 2.2.2

their usage for this problem seems ideal. The problem itself is presented in that way: the features for

each timestep of a sequence fed to the network are the number of neighbours and their labels encoded

as a binary vector of size C.

However an issue stands in the way of using a simple out-of-the-box LSTM model: we do not want to

predict labels for each timestep of a sequence nor do we want to predict a label at the start or at the end

of a sequence. Instead, our target label should be an output from the middle of the sequence. Due to the

way the implementation of LSTMs work in the framework we use (Keras [17]) we solved this problem by

having two input LSTM layers: one receives a sequence of the past timesteps and the present timestep

(i.e it must have a T+1 timestep receptive field) and another receives a sequence of the future timesteps

and the present timestep (i.e it also must have a T + 1 timestep receptive field). The present timestep

is used in both inputs since using it only as input in one layer would introduce a bias towards either past

or future timesteps. This involves splitting and reshaping the input context vector. However, this creates

the issue of how to merge the outputs of these two LSTM layers. Since an ideal way is not immediately

clear we propose the two models displayed in Fig. 3.6:

(a) Model A (b) Model B

Figure 3.6: Our two proposed context models: model A encodes the input sequence into yet another sequence as
input to a second LSTM layer, model B outputs two predictions which are then fused with a FC layer. The predicted

labels are merely illustrative.

We call these models model A and model B. Model A represents a type of many-to-many sequence

learning in the two first layers while model B represents a type of many-to-one sequence learning as

previously shown in Fig. 2.3. These architectures are created for prediction so the output of each of

the input layers in model B is in one case the conceptual timestep after the present and in another the

conceptual timestep before the present. The LSTM layer using only future and present input timesteps

can be implemented in the same way as the other layer if the sequence is reversed.

35

In order to train these architectures by themselves, no subsampling or voting scheme is required as

shown in Fig. 3.6: target labels are obtained from a single prediction vector (i.e as if votes were only

cast once). However, since the output layers still have sigmoid activation functions we use the same

hyperparameter v for these networks as we used in the networks before.

3.5 Context Fusion

After presenting the previous two methods, it is intuitive to use them simultaneously. We propose

to explore two ways in which the fusion of our context models and the two-stream models trained with

attention filtering can be made: concatenation fusion and class score fusion. In a first approach we used

groundtruth labels to generate context vectors for our context models to evaluate if context does indeed

help. Additionally, since we cannot use groundtruth test labels to generate context vectors for our context

models in a real scenario, we propose a two-pass testing scheme where this is no longer the case.

3.5.1 Concatenation Fusion

In Fig. 3.7 and Fig.3.8 we show how we propose to use concatenation fusion to train a FC layer that

could not only learn spatiotemporal weight but spatiotemporal context weights. Note that whenever we

refer to concatenation fusion it is implied that it is a FC concatenation fusion. We use the same training

method as used for the model in 3.2, that is all the layers from the original models are frozen and only

the FC layer is trained. As shown in Fig. 3.8, at testing time the context features are at a segment-level

and as such it is assumed that they are the same for every subsampled frame that is used. At training

time each frame and Optical Flow and training context vector is used as an input as shown in Fig. 3.7.

The labels are assumed to be the same for in each segment during training.

Figure 3.7: Our proposed concatenation fusion model for context. Note that the figure shows only the input of a
single frame and that each 3s segment is subsampled to 5 RGB frames.

While conceptually this method can learn shared weights, it is necessary to train the FC layer by using

36

the previously learned models together, which means that easily iterating and testing several types of

combinations of models to fuse is time consuming.

Figure 3.8: Our proposed concatenation fusion model for context. Note that the figure shows only the input of a
single frame and that each 3s segment is subsampled to 5 RGB frames. The predicted labels are merely

illustrative.

3.5.2 Class Score Fusion

In Fig. 3.9 we show our proposed class score fusion method. There are precedents of class score

fusion of CNN streams and LSTMs [98] but with different models. The main idea behind this type of

fusion is that at testing time the predictions from the two-stream model and the context model are aver-

aged for each subsampled frame in a segment. Note that since context operates at a keyframe/segment

level the prediction for every subsampled frame is assumed to be the same, but the predictions for each

frame from the two-stream model differ as shown in 3.9.

37

Figure 3.9: Our class score fusion model. We omit that each two-stream model (like in Fig. 3.2 also receives the
optical flow volume corresponding to its frame according to Fig. 3.4 for simplicity. The predicted labels are merely

illustrative.

This type of fusion has the advantage that it does not require training as it can only be applied at

testing time. While this means it can more easily improved upon, it has the disadvantage that if one

of the two models performs badly it might hinder the global performance. In this type of fusion there is

no adaptive learning of which contributions should be weighted more nor does the option to learn more

complex mixed features exist.

3.5.3 Two-Pass Testing Scheme

In the explanation of the two previous fusion methods an important issue was left unattended, which

was how to generate context features at testing time. According to the example in Fig. 3.5 to generate

context features for a test set we would need to have access to test labels.

38

Figure 3.10: Our proposed two pass testing scheme, where the second or n further passes uses the
concatenation fusion method. The switch illustrates that first the predictions of the two-stream models are used to

generate labels which can then be used by our context models on a further passes. The predicted labels are
merely illustrative.

While for the training and validation procedures we can generate context features for training the

LSTM networks and we can use groundtruth test labels just to verify if context helps in an ideal situation,

in a real scenario it is not possible to have groundtruth labels at test time. As such we propose this novel

testing scheme as a way to solve this problem. As shown, this testing scheme can be used with the

two previously discussed context fusion methods: concatenation fusion as shown in Fig. 3.8 and class

score fusion as shown in Fig. 3.9.

Figure 3.11: Our proposed two pass testing scheme, where the second or n further passes uses the class score
fusion method. The predicted labels are merely illustrative.

This testing scheme can be divided into two conceptual stages. In the first stage or first pass we

use the previously explained two-stream and attention methods to generate predictions on the test set.

These predictions are then used to obtain the predicted labels which are then used to generate context

39

features. These are the inputs to our context models for a second stage using one of the previously

described fusion methods. As shown in Fig. 3.11 and Fig. 3.10 it would be possible to use the outputs

of this procedure for yet another pass. While we test the results of doing this in chapter 5 we focus

mostly on only performing two passes.

If the two-stream model in the first pass was able to perfectly predict the labels of the test set, we

would be in the ideal situation we first described. The main idea is that of using the context models

with their learned weights on the training set as a sort of correction of the predictions generated by the

two-stream models.

40

4
Dataset and Metrics

Contents

4.1 Overview . 42

4.2 AVA . 42

4.2.1 AVA specifications . 43

4.3 miniAVA . 43

4.3.1 miniAVA Context . 44

4.4 Metrics: mAP . 46

41

4.1 Overview

Here we explain the AVA dataset and our partition of it (miniAVA) in more detail. We also explain the

metrics used to evaluate the performance of our implementation on this dataset.

4.2 AVA

The AVA dataset was introduced as part of the ActivityNet [24] challenge as Task B - Spatio-Temporal

Action Localization. This task was further divided into Task 1, which is the task discussed in this dis-

sertation, where only computer vision approaches are accepted and Task 2, where additional provided

features like audio can be used. This is a very recent dataset and is the most representative dataset we

found for our task (multi-label multi-person spatiotemporal action detection and recognition).

Figure 4.1: Long-tail [42] distribution of action classes in the AVA [35] dataset (all splits)

While most difficult datasets used for action recognition and detection [78] [57] [53] for the past years

have allowed the field to progress, there are certain elements lacking in these datasets. AVA was created

to fix this and be purposefully challenging to modern approaches, as shown in Table 2.1 and Table 1.1.

AVA [35] introduces lacking elements such as having person-centric annotated actions with multiple

people in videos and multiple action labels consistent over a series of frames. A key aspect is how

the videos purposefully show actions that transition over time and must be recognized using temporal

context. All actions are atomic actions and as such are mostly described with verb-only labels. Instead

of having activity level labels such as apply lipstick in UCF101 [81]), AVA [35] has labels such as stand

or talk. Another example of the focus in person-centric atomic actions is how no object annotations are

provided and all human-object action labels are not object specific (e.g touch (an object)).

Another way in which the dataset is different, is how it is heavily imbalanced to emulate real data

acquisition, following a Zipfs law [71] distribution as shown in Fig. 4.1. According to the nomencla-

ture of [37], the AVA dataset has an intrinsic imbalance, that is, the action dataspace is itself naturally

imbalanced.

42

4.2.1 AVA specifications

As for technical specifications, the annotations are done at a sampling frequency of 1 Hz, each

sample corresponding to a keyframe. Every person is spatially localized using a groundtruth BB and

labeled separately with attached labels corresponding to one action corresponding to pose, and there

may be additional (0 to 3) actions corresponding to interactions with objects and then (0 to 3) additional

actions corresponding to interactions with other people. An example of this is shown in Fig. 4.2.

Figure 4.2: Examples of AVA [35] labeling. In yellow: mutually exclusive pose actions (only 1 per BB), in blue:
multi-label human-human actions (0-3 per BB), in red: multi-label human-object actions (0-3 per BB)

To provide temporal context, the labels are for short segments of ±1.5s centered on the keyframes.

There are 80 atomic actions labels and the dataset is sourced from the 15th to the 30th minute time

intervals of 192 movies. These are called video snippets. At the sampling rate of 1Hz, this means

15 ∗ 60 = 900 keyframes for a single video snippet or 900 3s segments to classify. At an average rate of

30 FPS, this means 81,000 images per video without counting additional computed features like optical

flow and our generated context features.

4.3 miniAVA

Due to the large size of the dataset we had to downsample it in order to train and test our approaches

in a feasible amount of time. As we downsampled the dataset we had to keep two goals in mind. Firstly,

we wanted to maintain continuity in the samples (i.e have segments from the same 15 minute snippets)

as that would allow us to exploit longer time windows. Secondly, while we reduced the number of classes

as shown in Table 4.1, we wanted to maintain a distribution that still roughly followed Zipfs law [71] for

training, validation and test partitions as shown in Fig. 4.3. We took particular care to make sure there

were at least 20 samples for all classes in the test set. As such we ended up with a partition that was

roughly 10% of the original dataset size. The miniAVA classes are the ones that exist in the first 10%

segments of the partitioned dataset.

43

Class Category miniAVA(30) AVA(80) Mutually Exclusive?
Pose 10 14 Yes
Human-Object 12 49 No
Human-Human 8 17 No

Table 4.1: Distribution of class categories in the AVA [35] dataset vs miniAVA.

While normally the number of samples in the training set is larger than on the validation set, we

kept all splits roughly equal in terms of samples, in order to try to keep a similar class distribution. The

sampling was done from the first segments of the train, validation and test sets of the original AVA which,

while not being an ideal approach, fortunately led to a similar distribution as seen in Fig. 4.3 and ensured

a temporal continuity beyond the 3 second segments is maintained, which would otherwise be lost with

random sampling.

Figure 4.3: The distribution of the training, validation and test set of our partition of the AVA dataset. The colors of
the labels reflect the type of action, we use alternative colors to the original dataset as in Fig. 4.2.

4.3.1 miniAVA Context

Given the discussion in section 3.4.1 it is relevant to ascertain how much information from neighbours

of an actor over a time window can be learned, given that it is possible for segments to only have a single

actor. It is also important to understand how much cross class information is possible to learn in our

partition of the larger AVA. For the first concern, in Fig. 4.4 we can see that in the training and validation

set most segments have only a single actor/BB. This means that the context network (one of the two

models shown in section 3.4.2) is only learning relevant inter-person class relationship information from

a small percentage of the dataset. The test dataset on the other hand seems to have a more balanced

distribution in terms of BBs per frame, despite single actor segments still being heavily represented.

44

This means there are more than enough examples where our context approach can be applied and that

we fortunately have an ideal challenging situation on which to train and then test our models.

Figure 4.4: Relative number of BB’s in segments. Notice that the average bounding box per video is lower on the
training set than on the test set and that the test set has a larger amount of groups.

For the second concern, in Fig. 4.5 we show a matrix that depicts the normalized co-occurrence

of classes in our test set. To obtain this matrix, for a given action (as a row) we count the actions of

other actors in the same segment (along the columns), and then we normalize across the rows. Several

interesting facts can be interpreted from this matrix that reveal the rich temporal context even in our small

partition. For example, the abundance of data in the diagonal reveals that for many classes it is common

for other actors to perform the same action in a segment. Additionally, there are some interesting

interpretable positive co-occurrences, like martial-arts and fight/hit a person and some noticeably null

co-occurrences like stand and watch(e.g TV) or listen to (a person) and fight/hit a person. However,

some seem to be quirks of the particular distribution, like sit and smoke having the highest relative co-

occurrence (nothing actually forces people to smoke and/or sit in a group), which we believe would be

solved by using larger amounts of data. Th original AVA [35] authors also investigated this type of rich

pair-wise cross-class structures using the NPMI index [8]. Note however that a context classifier which

receives input from several other actors such as ours, could theoretically learn beyond pair-wise class

relations which could not be depicted in this matrix or by the NPMI index [8].

45

Figure 4.5: Co-occurence matrix of the miniAVA Test Set reveals a rich contextual environment even for our small
dataset. For all frames of a given action (as a row) we count the actions of other actors in the same frames (across

the columns), and then we normalize across the rows. In red are the pose classes, in blue are the human-object
classes, in green are the human-human classes.

4.4 Metrics: mAP

Similarly to the original dataset, we only use mAP which is evaluated at a frame level and we focus

on that metric. mAP is a metric to measure the accuracy for detection tasks. While several defini-

tions of mAP exist [61] we will stick to that of the PASCAL [23] challenge. Before we introduce these

concepts we must introduce the notion of precision, recall and Intersection over Union (IoU). This last

concept measures how much overlap in area exists between two regions, normally a prediction and the

groundtruth.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

IoU =
A(overlap)

A(union)
(4.3)

where TP are true positives, TN are true negatives, FP are false positives and FN are false negatives

and a true positive only exists if its class matches the ground truth and IoU ≥ 0.5. If we were to plot

Precision(Recall), the idea of AP can be conceptually viewed as finding the area under the curve of the

46

Precision(Recall) curve. While that would imply computing the integral of the curve, [23] introduce the

approximation of computing the average of precision at 11 recall levels (from 0.0 to 1.0):

AP =
1

11

∑
Recalli

Precision(Recalli) (4.4)

Note that the average precision at recall i is taken to be the maximum precision measure at a recall

greater or equal than recall i. This becomes a single value summarizing the shape of the precision-

recall curve. For a problem with C classes mAP can be defined as:

mAP =
1

C

C∑
i

APi (4.5)

where APi is the average precision of class i as computed in 4.4.

47

48

5
Experimental Results

Contents

5.1 Overview . 50

5.2 Baseline . 50

5.3 Attention on individual streams . 51

5.3.1 Attention on RGB streams . 51

5.3.2 Attention on Optical Flow streams . 52

5.4 Two-Stream Fusion . 52

5.5 Testing Context by itself . 53

5.6 Context Fusion . 55

5.6.1 Groundtruth Scenario - Using test labels to generate context 56

5.6.2 Real Case Scenario - Two Pass Testing Scheme 57

5.7 Voting Hyperparameter . 58

5.8 Balancing . 59

49

5.1 Overview

All the following experiments were carried out on systems with a single GTX 1080 Ti and 16-32 GB

RAM, using the Keras [17] framework.

For CNNs and following the recommendations of [95] the training was done for 200 epochs, batch

size is 32 with a learning rate of 0.001 decaying to 0.0001 after 80% of the epochs, while for the LSTMs

the training time was for 100 epochs with a fixed learning rate of 0.001. All streams, apart from context

LSTMs, were ResNet50 [39] networks which were initialized with weights from [28] for the respective

RGB and OF networks trained on the UCF101 dataset. Context models were initialized using He initial-

ization [38]. The input to the networks are 224x224 RGB images, stacks of 10 OF volumes previously

discussed. For the results we use the same benchmarking tools as those provided for the AVA challenge

with minor alterations only to obtain useful plots.

We report the results of several experiments on our miniAVA split of the original dataset that validate

all the previously described augmentations in the implementation. This task, for all experiments, involves

localizing the atomic actions in space and time, achieving the highest mAP (at 0.5 IoU) possible on 3s

segments extracted around 1 FPS keyframes of 15-minute segments. For all experiments we round

mAP to 2 decimal places.

While we discuss the results for all performed experiments, for the sake of brevity we only show

individual graphs, such as AP for individual classes or confusion matrices, for certain experiments where

they aid our discussion.

5.2 Baseline

Description: After extracting optical flow using the TV-L1 [103] algorithm, for our first experiment, we

trained two separate ResNet50 [39] networks, one on RGB frames without any attention mechanisms

and one on the extracted optical flow volumes, also without any attention mechanisms. Then we fused

these two networks in a two-stream architecture using concatenation fusion and fine-tuned a FC layer

to learn spatio-temporal features as shown in Fig. 3.2. The goal of this experiment is to establish a

baseline analog to the one established in the AVA dataset (discussed in section 2.3.2), not only for the

two-stream fusion but also for each of the individual streams. We do not use any context features in this

experiment.

Model mAP@0.5IoU
RGB 5.06%
Flow 5.85%
RGB + Flow 5.00%

Table 5.1: Baseline individual streams and their fusion.

50

Discussion: In Table 5.1 we show the results of this experiment. We note how using only Optical

Flow performs better than RGB. This has been also found to be the case for some implementations

of these types of networks [13] and is often due to the fact that certain actions have very clear motion

patterns and as shown in Fig. 3.4 the lack of background noise may aid the classifier. Furthermore,

we highlight how the baseline of the fusion is lower than both of the fused streams, which suggests that

the spatiotemporal features being learned are not properly using complementary information from both

streams, a result which we improve upon in further experiences. Lastly, we note how in a similar manner

to the original AVA dataset the results are not very impressive (see Table 2.1). We believe that our small

partition is even more challenging as we use less data and the chance of overfitting a small imbalanced

dataset is higher.

5.3 Attention on individual streams

Description: This experiment can be divided into two parts: testing attention filtering applied on

RGB frames and testing attention filtering applied on Optical Flow. For the first part we trained individual

streams on the outputs of crop filtering, GBB filtering and fovea filtering, while for the second part we

trained an individual stream on cropped optical flow. The goal of this experiment is to ascertain whether

attention filtering applied as a pre-processing step for the individual streams can improve their respective

baselines or not.

5.3.1 Attention on RGB streams

Model mAP@0.5IoU
RGB 5.06%
RGB + GBB 5.63%
RGB + Crop 5.19%
RGB + Fovea 5.12%

Table 5.2: Attention filtering results on individual RGB streams vs baseline (RGB).

Discussion: In Table 5.2 we show the results of this experiment. Two main conclusions can be

drawn from these results. One is that the use of all pre-filtering attention mechanisms improve results.

The second is that the filtering techniques we hypothesize would lead to the networks learning artificial

edges (i.e all except fovea filter) perform best. We think this is due to the fact that these artificial edges

seem to be contributing to more accurate prediction of certain over represented classes, particularly

stand, which is the most common class.

51

5.3.2 Attention on Optical Flow streams

Model mAP@0.5IoU
Flow 5.85%
Flow + Crop 5.90%

Table 5.3: Attention filtering results on individual flow streams vs baseline (flow).

Discussion: In Table 5.3 we show the results of this experiment. We note that while we can see a

very small improvement, that may also be due to certain artificial edges. However, the improvement of

this method compared to the baseline is much smaller than in the RGB case, which leads us to believe

that pre-filtering attention mechanisms for Optical Flow not only are not worthy to use but that their score

is truly being extracted from motion features rather than introduced artificial edges.

5.4 Two-Stream Fusion

Description: For this experiment we fuse paired combinations of the streams trained on pre-filtered

inputs from the previous experiment. We fuse them in the same fashion as shown before in Fig. 3.2.

The Keras [17] framework defines a Merge Layer where it is possible to specify a concatenation option
1. We did not fuse RGB and cropped flow as we believe the improvement on the baseline would be

minimal, and we prioritized RGB attention filters over flow attention filters due to the results of the previ-

ous experiments. The goal of this experiment is to find out if the features learned from the RGB stream

trained with attention filters and the features learned from the OF stream trained with attention filters

when fused into spatiotemporal filters, help to improve the original two-stream baseline shown before.

mAP@0.5IoU Flow Flow + Crop
RGB + GBB 3.59% 4.16%
RGB + Crop 5.01% 5.06%
RGB + Fovea 5.94% 4.95%

Table 5.4: Testing of several combinations of streams and their respective attention filters

Discussion: In Table 5.4 we show the results of this experiment. The first result is that cropped flow

seems to worsen results when fused with all other streams except the cropped RGB stream, which is

an interesting result that suggests some synergy in the learned features. We also note how the fovea

filter performs better than all others when fused with unfiltered flow and that it is the only two-stream

approach that improves on all previous experiments. We hypothesize that this might be due to the fact

that the artificial edges introduced by the other filters would harm their performance when later merged

with flow features.
1https://keras.io/layers/merge/

52

https://keras.io/layers/merge/

However, upon analysis we conclude that all two-stream approaches seem to be fitting the distribu-

tion and learning only a few relevant classes. The two-stream approaches using fovea filtering seems

to guess more samples than the others in a few of these small represented classes and in a certain

way, we can confirm our hypothesis: while the fusion of motion features did not provide the large im-

provement we were expecting, it seemed that the features in the approaches with artificial edges are not

complementary with the motion features of the Optical Flow stream.

AP@0.5IoU Stand Listen Touch (an object)
Flow + (RGB + GBB) 53.3% 0.0% 0.0%
Flow + (RGB + Crop) 63.3% 0.0% 0.0%
Flow + (RGB + Fovea) 63.3% 28.4% 6.1%

Table 5.5: AP on some noteworthy classes that illustrate why the fovea filter seems to perform best.

Nonetheless, while this analysis provides valid hints the true validity of our conclusions should be

further investigated by themselves on a more balanced dataset in more detail where their results are not

as impacted by the heavy class imbalance.

5.5 Testing Context by itself

Description: In this experience we analyze how well the context features and the context architec-

tures perform by themselves without fusion with the previous two-stream models. This has the advantage

that the context models we tested were much less computationally heavy and as such we could test the

architectures more extensively. The experiment is separated in two parts. First, as a sanity check, we

try a simple MLP [64] model with the same receptive field as the LSTM models we proposed to confirm

that the LSTM [41] models are superior at encoding sequences. Then we try to find the best context

parameters used to generate the context features, more specifically the number of neighbours and the

time window as previously explained in section 3.4.1. Finally, we also test which is the best architecture

between model A and model B by testing over several values of NHU. We tested larger versions of the

best model A and the best model B (with more NHU) to see if the models required a larger number of

units to learn the complexity of the data. For both our context models (model A and model B) there

are two input LSTM layers, and whenever we refer to NHU we are referencing to the size of each of

these LSTM layers. The second is that the size of the next layer (LSTM layer for model A or FC layer for

model B) is always NHU
2 . Our goal with this experiment is twofold. We want to find out which is the best

LSTM architecture and which are the best context generation parameters (from a limited set) for context

learning.

53

Model NHU T Neighbours mAP@0.5IoU
MLP 128 3 3 4.49%
LSTM A 128 3 3 5.04%
LSTM B 128 3 3 5.00%

Table 5.6: Comparison of an MLP model and our proposed LSTM models.

T Model 32 64 128 256 512 1024 2048
3 A 5.07% 4.99% 5.04% 4.96% 4.80% – –
5 A 4.84% 5.01% 4.97% 4.98% 5.08% 5.09% 5.11%
10 A 4.97% 4.85% 5.00% 4.68% 5.04% – –
T Model 32 64 128 256 512 1024 2048
3 B 4.89% 5.01% 5.00% 4.92% 5.12% 5.08% 5.09%
5 B 4.90% 4.93% 4.94% 4.95% 5.04% – –
10 B 4.76% 4.81% 4.90% 4.92% 4.97% – –

Table 5.7: Evaluation of the best context generation and model A vs model B architecture. All these results use
N = 3 (i.e three closest neighbours). The columns are the results across several values of NHU.

Neighbours Model NHU T mAP@0.5IoU
1 A 512 5 4.94%
2 A 512 5 5.05%
3 A 512 5 5.08%
1 B 512 3 4.93%
2 B 512 3 2.48%
3 B 512 3 5.12%

Table 5.8: Evaluation of the best architectures in Table 5.7 (apart from the larger networks) with context generated
as explained in section 3.4.1, with a different number of neighbours.

Discussion: In Table 5.6, 5.7 and 5.8, we show the results of this experiment, however, even before

analyzing the results we can observe overall that these results are competitive with the two-stream

results, despite this network being much less computationally heavy. We can explain this from the fact

that, unlike what we will see in our context fusion experiment, we use test labels to generate context

features for a test set, which is an idealized, unrealistic situation. Regardless of this since our study is a

comparative one and to confirm a sequence learning model such as an RNN is the correct choice, we

show the results of an MLP architecture and both LSTM models. Even without a large number of hidden

units we can still show that both LSTM models outperform an MLP model. In Table 5.7 we show the

results of varying how many timesteps are used (for looking back in the past and looking forward in the

future) and varying NHU for model A and model B. Additionally, we show how the architectures perform

for a larger NHU for their best time window, which is also advantageous for future experiments where we

want to fuse these networks with the two-stream models that have FC layers with 1024 or 2048 hidden

units.

We can draw several conclusions. The first one is that there is not a significant difference between

54

the best model A architecture or the best model B architecture. However while model B is marginally

better, model A seems to operate better with a slightly higher time window. Finally, from Table 5.8 we can

see both architectures seem to have their best results for 3 nearest neighbours. Evaluation on a longer

time window or more neighbours was not done since we believe actions longer than the time windows

used are rare and so are complex interactions between more than 3 people.

5.6 Context Fusion

Description: In this experience we use the best results from the two previous experiments to test

the architectures using concatenation fusion and class score fusion of context and the two-stream ar-

chitectures as depicted abstractedly in Fig. 3.1 and each of these under a groundtruth scenario testing

scheme or a realistic testing scheme. Given the results and discussion in our previous experiments we

use LSTM model A for the context architecture and we use the two-stream with fovea filtering and optical

flow with no filtering as the basis for this experiment in both class score fusion and concatenation fusion.

The first of these testing schemes is an overly optimistic groundtruth scenario, which uses test labels (i.e

groundtruth) to generate context and the other, which we call real-case scenario, uses the predictions

generated by a first pass through the best of the two-stream architectures to generate context features

for a final pass through the architecture as shown in Fig. 3.11 and 3.10. The goal of this experiment is to

validate two parts of our method. Firstly we want to find out which context fusion method performs best

between, and additionally, we want to confirm that our proposed two pass testing scheme improves the

previous best two-stream CNN approach in a realistic scenario thus making our implementation possible

to be used in the wild, where test labels are not provided.

55

5.6.1 Groundtruth Scenario - Using test labels to generate context

Figure 5.1: AP per class on our miniAVA split for the best two-stream approach (without context) and the class
score fusion of that architecture with the best LSTM model as explained in 3.9. We show AP per class after

changing the voting hyperparameter (which we discuss in the next experiment).

Model mAP@0.5IoU
Best 2-stream (Fovea + Flow) 5.94%
(Groundtruth Context) Concatenation Fusion 5.92%
(Groundtruth Context) Class Score Fusion 9.11%

Table 5.9: Testing context fusion architectures under a groundtruth scenario. i.e using test labels to generate
context. We can see that the results improve considerable when using class score fusion but not when using

concatenation fusion.

Discussion: In Table 5.9 we show the results of this experiment. We also show the results of the

best two-stream model with attention (fovea and flow) as what we want to improve on. We can see that

the class score fusion largely outperforms concatenation fusion. We believe this may be because when

concatenated, the internal feature representations of the LSTM models are too distinct from the two-

stream spatiotemporal features for a FC layer to learn merged features. However, at a class score level

the context predictions are able to correct the two-stream predictions. We can see that the class score

fusion does indeed have a balancing impact, preventing the two-stream architecture from overfitting. We

can see in Fig. 5.1 that it has a significantly higher score on several classes with a smaller representation

in the original dataset than the two-stream approach. Note that while this situation is an idealized

situation the context only use information of labels from neighbours in frames not the actors in the frames

themselves and the context models were only meaningfully trained on a percentage of the training set

56

where more than one person/BB per frame existed as depicted in 4.4.

5.6.2 Real Case Scenario - Two Pass Testing Scheme

Figure 5.2: AP per class on our miniAVA split for the best two-stream approach (without context) and class score
fusion with context. The difference from Fig. 5.1 is that the class score fusion uses our two pass testing scheme.

Model mAP@0.5IoU
Best 2-stream (Fovea + Flow) 5.94%
(Two Pass) Concatenation Fusion 5.91%
(Two Pass) Class Score Fusion 6.24%
(Three Pass) Class Score Fusion 6.28%

Table 5.10: Testing context fusion architectures under a real case scenario, where we do not assume to have the
test labels at testing time. As in Fig. 5.1 we show the results of the best two-stream approach and then the results

of class score fusion with the two pass scheme demonstrated in Fig. 3.11. We also show the results of an
additional pass.

Discussion: In Table 5.10 we show the results of this experiment. Similarly to the last experiment

we can see that using concatenation fusion does not seem to improve the model and we believe the

same reason applies. More interesting are the two results with class score fusion. Even without any test

labels being used, only using the outputs of the previous best two-stream to generate context features,

we can see that there is a small improvement of 0.30% mAP (1.24% mAP over the baseline). While the

improvement may be considered small when comparing to the previous improvement of 3.16% mAP,

consider that the context features in this case are being generated from a classifier with only 5.94%

mAP while in the other case we could theorize an ideal classifier with 100% (which had a 4.11% mAP

57

improvement over the baseline). We can also see in Fig. 5.2 that this improvement is due to the influence

of context to force the model to make valid guesses on under represented small classes (like sit, walk,

hold an object) at the expense of losing some Average Precision (AP) in the over-represented stand

class, thus confirming the effect of negating overfitting to a certain extent we also witnessed in the last

experiment. Additionally, using the results of this approach to yet generate more context features and

testing again (i.e Three Pass in Table 5.10) seemed to yield only marginal improvements.

5.7 Voting Hyperparameter

Description: As described in section 3.2.2 our voting system needs a hyperparameter v to reach a

segment-level consensus on the predictions. We test the optimization of this hyperparameter for two of

the previous experiments on the validation set and then we use their best values on the test set. We test

the best performing single stream attention filtering on an RGB stream (GBB) and the best performing

context fusion method (for the groundtruth scenario) in this fashion. In Fig. 5.3 we show an example

of finding the best voting hyperparameter for the RGB stream with GBB filtered inputs on the validation

set, as this type of tuning on the test set is not a good practice. In all experiments besides this one this

parameter was set to 0.4 as that is also the value adopted by the baseline implementation described in

the original AVA[35]. Our goal is this experiment is to evaluate what impact this hyperparameter has on

the results of the classifiers so that we can use the best hyperparameter for a respective approach.

Model Set v = 0.4 v = 0.2 v = 0.1
RGB + GBB Validation 5.66% 6.42% 6.40%
(Groundtruth Context) Class Score Fusion Validation 4.05% 4.54% 4.60%
(Groundtruth Context) Class Score Fusion Test 9.11% 9.96% 10.3%
(Two Pass) Class Score Fusion Test 6.24% 6.41% 6.66%

Table 5.11: Results of varying the voting hyperparameter for several approaches. Note that smaller values of this
threshold tend to improve mAP as they allow for more under represented classes with lower score to be

considered in the voting scheme.

58

Figure 5.3: Results of an RGB stream trained with GBB attention filter with several values of the voting
hyperparameter on the validation set. This is merely an illustrative example. As seen in table 5.11 other methods

were tested in a similar way.

Discussion: In Table 5.11 we show the results of this experiment. From Fig. 5.1 we can see

that lowering the voting threshold normally tends to make under represented classes achieve higher

AP as this allows smaller values from the sigmoids to count as votes in the voting procedure without

impacting the already predicted. This naturally leads to a higher mAP for smaller values of the voting

hyperparameter. This is true for the two approaches we tested, one of which is our best fusion approach.

This experiment serves only as a demonstration even though optimally we would fine-tune this parameter

for all experiments.

5.8 Balancing

Description: For the final experiment we propose to evaluate the effects of training one of the

RGB streams from a previous experiment on an artificially balanced dataset using oversampling. We

chose this option as [11] mention it tends to be the most effective. A caveat is that simply applying

naive oversampling on a multi-label dataset would lead to disrupting the distribution as mentioned by

[82]. Therefore our oversampling method repeats all labels in the 3s segments that contain under repre-

sented classes. This means that over represented classes will probably also be repeated but the relative

imbalance will be reduced. Our goal is to find out whether the oversampling helps the training process

to improve their score on under represented classes or not. While we expect the overall score might not

improve as the test split is itself imbalanced we expect the AP of certain under represented classes will.

59

Model mAP@0.5IoU
RGB + GBB original dataset 5.63%
RGB + GBB oversampling 4.71%

Table 5.12: mAP Results on balancing using oversampling.

Figure 5.4: AP per class on the miniAVA split for the balancing and oversampling experiment. The model used for
the oversampling experiment is the same and the repeated frames are all GBB filtered so that the only difference

between the two is the oversampling strategy.

60

Figure 5.5: Confusion matrices for the pose classes in the balancing experiment.

Discussion: In Table 5.12 and Fig. 5.4 and 5.5 we show the results of this experiment. In this final

experiment we want to evaluate what impact of balancing via oversampling can have in the classifiers.

Since with our method of oversampling the training set can get considerably larger and thus training time

becomes considerably longer, we chose to use only a demonstrative study on a single RGB stream,

the same as used for demonstration purposes in the last experiment (GBB filter). While the overall

mAP results shown in Table 5.12 seem to indicate that the approach was not successful there are two

important observations to make that support that this result is misleading. Firstly, if we analyze Fig. 5.4

we can see that while oversampling loses AP in more common classes like stand (refer to 4.3 to see

which classes are more frequent) or talk to, we can see that for many others it outperforms the classifier

without oversampling (for example, sit, hold and object, walk and bow at the waist). Interestingly enough,

these improvements happen on all three types of classes which validates our approach even further. If

we focus only on the pose type, since they are mutually exclusive we can easily plot a confusion matrix

for each approach as shown in Fig. 5.5. We can see that while the classifier trained with oversampling

seems to make more mistakes for the most common class which is stand and this may justify the loss

in mAP, the distribution of the predictions is less focused on that single predominant class, and the

classifier can generalize better to other classes.

Therefore we can see that the balancing is indeed working as intended, however, since the testing

set itself is imbalanced the reported global results are that the classifier performs more poorly.

61

62

6
Conclusion

Contents

6.1 Conclusions and Future Work . 64

63

6.1 Conclusions and Future Work

Our objective was to implement an action detection architecture which was not computationally

heavy, provide alternative solutions to the spatiotemporal action detection task and to show valid aug-

mentations of the base two-stream approaches [29] using attention filters and context features (i.e class

and actor relationships). We described several architectures, from the initial two stream architecture

using only attention filtering as shown in Fig. 3.2 to our final approach shown in Fig. 3.9 where we fuse

our custom context features with the two-stream approach.

We believe we have achieved our objectives as we demonstrated improvements on the baseline for

each of the proposed augmentations on the aforementioned architectures. Although these results may

be deemed provisional, as due to computation resource constraints we had to make our own split of the

dataset, we believe it is necessary to conduct further investigation and further testing to truly validate

many of them. Nonetheless, we believe our work stands on its own as a valid proof of concept for further

research on the topic of using alternative features such as context and pre-processing attention filtering

in the field of action detection.

An intuitive future improvement would be to either test our approaches on the larger AVA dataset or

to use our approaches to augment other existing more powerful state of the art architectures, but for both

of these we would need more computational resources. Future work that would not require this would

be to test our attention filtering results on the UCF101-24 [81] dataset thus allowing us to test them on a

balanced, single-label dataset (as shown in 6.1) which would make it easier to analyze certain aspects

of the architectures.

Figure 6.1: Example of action detection labels on UCF101-24. Image adapted from
https://www.researchgate.net/figure/

Action-detection-localisation-results-on-UCF101-Ground-truth-boxes-are-in-green_fig4_305857635.

This last one is particularly attractive as the UCF101-24 partition of the UCF101 dataset is much

smaller than the AVA dataset and even than our miniAVA partition and besides being balanced, our

transfer learning approaches would be much more effective as we have weights for the original UCF101.

Additionally, the UCF101 dataset is older than the AVA dataset and many more results exist for it. An-

other goal would be to make the whole architecture and pipeline more end to end without requiring so

many sequential computational steps, which make its implementation more difficult.

64

https://www.researchgate.net/figure/Action-detection-localisation-results-on-UCF101-Ground-truth-boxes-are-in-green_fig4_305857635
https://www.researchgate.net/figure/Action-detection-localisation-results-on-UCF101-Ground-truth-boxes-are-in-green_fig4_305857635

Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,

Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale

machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 265–283, 2016.

[2] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Apostol (Paul) Natsev, George Toderici, Bal-

akrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale video

classification benchmark. In arXiv:1609.08675, 2016.

[3] Samir Al-Stouhi and Chandan K. Reddy. Transfer learning for class imbalance problems with

inadequate data. Knowl. Inf. Syst., 48(1):201–228, July 2016. ISSN 0219-1377. doi: 10.1007/

s10115-015-0870-3.

[4] Ana Filipa Almeida, Rui Figueiredo, Alexandre Bernardino, and José Santos-Victor. Deep net-

works for human visual attention: A hybrid model using foveal vision. In Anibal Ollero, Alberto

Sanfeliu, Luis Montano, Nuno Lau, and Carlos Cardeira, editors, ROBOT 2017: Third Iberian

Robotics Conference, pages 117–128, Cham, 2018. Springer International Publishing. ISBN 978-

3-319-70836-2.

[5] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. CoRR, abs/1803.01271, 2018.

[6] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is

difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994. ISSN 1045-9227.

doi: 10.1109/72.279181.

[7] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. Action recognition with dynamic image net-

works. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2018. ISSN

0162-8828. doi: 10.1109/TPAMI.2017.2769085.

65

[8] G. Bouma. Normalized (pointwise) mutual information in collocation extraction. In From Form to

Meaning: Processing Texts Automatically, Proceedings of the Biennial GSCL Conference 2009,

volume Normalized, pages 31–40, Tübingen, 2009.

[9] C. Bregler. Learning and recognizing human dynamics in video sequences. In Proceedings of

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 568–

574, June 1997. doi: 10.1109/CVPR.1997.609382.

[10] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical flow

estimation based on a theory for warping. In Tomás Pajdla and Jiří Matas, editors, Computer

Vision - ECCV 2004, pages 25–36, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN

978-3-540-24673-2.

[11] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class imbalance

problem in convolutional neural networks. CoRR, abs/1710.05381, 2017.

[12] P. Burt and E. Adelson. The laplacian pyramid as a compact image code. IEEE Transactions

on Communications, 31(4):532–540, April 1983. ISSN 0090-6778. doi: 10.1109/TCOM.1983.

1095851.

[13] João Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the

kinetics dataset. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 4724–4733, 2017.

[14] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A. Ross, Jia Deng, and

Rahul Sukthankar. Rethinking the faster r-cnn architecture for temporal action localization. CoRR,

abs/1804.07667, 2018.

[15] Francisco Charte, Antonio Rivera, María José del Jesus, and Francisco Herrera. A first approach

to deal with imbalance in multi-label datasets. In Jeng-Shyang Pan, Marios M. Polycarpou, Michał

Woźniak, André C. P. L. F. de Carvalho, Héctor Quintián, and Emilio Corchado, editors, Hybrid Ar-

tificial Intelligent Systems, pages 150–160, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

ISBN 978-3-642-40846-5.

[16] Guangchun Cheng, Yiwen Wan, Abdullah N. Saudagar, Kamesh Namuduri, and Bill P. Buckles.

Advances in human action recognition: A survey. CoRR, abs/1501.05964, 2015.

[17] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[18] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray. Visual

categorization with bags of keypoints. In In Workshop on Statistical Learning in Computer Vision,

ECCV, pages 1–22, 2004.

66

https://github.com/fchollet/keras

[19] Yann Le Cun. A theoretical framework for back-propagation, 1988.

[20] Jeff Donahue, Lisa Anne Hendricks, Marcus Rohrbach, Subhashini Venugopalan, Sergio Guadar-

rama, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for visual

recognition and description. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):677–691, April 2017.

ISSN 0162-8828. doi: 10.1109/TPAMI.2016.2599174.

[21] Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,

Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with

convolutional networks. In Proceedings of the 2015 IEEE International Conference on Computer

Vision (ICCV), ICCV ’15, pages 2758–2766, Washington, DC, USA, 2015. IEEE Computer Soci-

ety. ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.316.

[22] Charles Elkan. The foundations of cost-sensitive learning. In In Proceedings of the Seventeenth

International Joint Conference on Artificial Intelligence, pages 973–978, 2001.

[23] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.

The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):

303–338, Jun 2010. ISSN 1573-1405. doi: 10.1007/s11263-009-0275-4.

[24] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and Juan Carlos Niebles. Activitynet:

A large-scale video benchmark for human activity understanding. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 961–970, 2015.

[25] Lijie Fan, Wen-bing Huang, Chuang Gan, Stefano Ermon, Boqing Gong, and Junzhou Huang.

End-to-end learning of motion representation for video understanding. CoRR, abs/1804.00413,

2018.

[26] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Josef Bi-

gun and Tomas Gustavsson, editors, Image Analysis, pages 363–370, Berlin, Heidelberg, 2003.

Springer Berlin Heidelberg. ISBN 978-3-540-45103-7.

[27] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Spatiotemporal multiplier networks for video action

recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 7445–7454, July 2017. doi: 10.1109/CVPR.2017.787.

[28] Christoph Feichtenhofer, Axel Pinz, and Richard P. Wildes. Spatiotemporal residual networks for

video action recognition. In NIPS, 2016.

[29] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network

fusion for video action recognition. CoRR, abs/1604.06573, 2016.

67

[30] Christoph Feichtenhofer, Axel Pinz, Richard P. Wildes, and Andrew Zisserman. What have we

learned from deep representations for action recognition? CoRR, abs/1801.01415, 2018.

[31] Alberto Fernández, Sara del Río, Nitesh V. Chawla, and Francisco Herrera. An insight into im-

balanced big data classification: outcomes and challenges. Complex & Intelligent Systems, 3(2):

105–120, Jun 2017. ISSN 2198-6053. doi: 10.1007/s40747-017-0037-9.

[32] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic, and Bryan Russell. Action-

VLAD: Learning spatio-temporal aggregation for action classification. In IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, United States, 2017. Project page:

https://rohitgirdhar.github.io/ActionVLAD/.

[33] Melvyn A. Goodale and A. David. Milner. Separate visual pathways for perception and action.

Trends in Neurosciences, 15(1):20–25, 1992.

[34] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, Cambridge,

MA, USA, 2016.

[35] Chunhui Gu, Chen Sun, Sudheendra Vijayanarasimhan, Caroline Pantofaru, David A. Ross,

George Toderici, Yeqing Li, Susanna Ricco, Rahul Sukthankar, Cordelia Schmid, and Jiten-

dra Malik. AVA: A video dataset of spatio-temporally localized atomic visual actions. CoRR,

abs/1705.08421, 2017.

[36] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the

history of 2d cnns and imagenet? CoRR, abs/1711.09577, 2017.

[37] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on Knowledge and

Data Engineering, 21(9):1263–1284, Sept 2009. ISSN 1041-4347. doi: 10.1109/TKDE.2008.239.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceedings of the 2015 IEEE

International Conference on Computer Vision (ICCV), ICCV ’15, pages 1026–1034, Washington,

DC, USA, 2015. IEEE Computer Society. ISBN 978-1-4673-8391-2. doi: 10.1109/ICCV.2015.123.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

770–778, 2016.

[40] Samitha Herath, Mehrtash Tafazzoli Harandi, and Fatih Porikli. Going deeper into action recogni-

tion: A survey. CoRR, abs/1605.04988, 2016.

68

[41] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–

1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

[42] Grant Van Horn and Pietro Perona. The devil is in the tails: Fine-grained classification in the wild.

CoRR, abs/1709.01450, 2017.

[43] Rui Hou, Chen Chen, and Mubarak Shah. Tube convolutional neural network (T-CNN) for action

detection in videos. CoRR, abs/1703.10664, 2017.

[44] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.

Flownet 2.0: Evolution of optical flow estimation with deep networks. CoRR, abs/1612.01925,

2016.

[45] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In ICML, 2015.

[46] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural networks

in classification. CoRR, abs/1702.05659, 2017.

[47] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):221–231, Jan 2013. ISSN

0162-8828. doi: 10.1109/TPAMI.2012.59.

[48] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-

ding. arXiv preprint arXiv:1408.5093, 2014.

[49] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang. Exploiting feature

and class relationships in video categorization with regularized deep neural networks. CoRR,

abs/1502.07209, 2015.

[50] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image

representation. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 3304–3311, June 2010. doi: 10.1109/CVPR.2010.5540039.

[51] Soo-Min Kang and Richard P. Wildes. Review of action recognition and detection methods. CoRR,

abs/1610.06906, 2016.

[52] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-

Fei. Large-scale video classification with convolutional neural networks. In CVPR, 2014.

69

[53] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-

narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew

Zisserman. The kinetics human action video dataset. CoRR, abs/1705.06950, 2017.

[54] Andrea Vedaldi Ken Chatfield, Victor Lempitsky and Andrew Zisserman. The devil is in the

details: an evaluation of recent feature encoding methods. In Proceedings of the British

Machine Vision Conference, pages 76.1–76.12. BMVA Press, 2011. ISBN 1-901725-43-X.

http://dx.doi.org/10.5244/C.25.76.

[55] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,

abs/1412.6980, 2014.

[56] Yu Kong and Yun Fu. Human action recognition and prediction: A survey. CoRR, abs/1806.11230,

2018.

[57] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video database for

human motion recognition. In Proceedings of the International Conference on Computer Vision

(ICCV), 2011.

[58] Quoc V. Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y. Ng. On

optimization methods for deep learning. In Proceedings of the 28th International Conference on

International Conference on Machine Learning, ICML’11, pages 265–272, USA, 2011. Omnipress.

ISBN 978-1-4503-0619-5.

[59] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the disharmony between dropout

and batch normalization by variance shift. CoRR, abs/1801.05134, 2018.

[60] Shiyu Liang and R. Srikant. Why deep neural networks? CoRR, abs/1610.04161, 2016.

[61] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:

common objects in context. CoRR, abs/1405.0312, 2014.

[62] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances in vision-based

human motion capture and analysis. Computer Vision and Image Understanding, 104:90–126,

2006.

[63] Mathew Monfort, Bolei Zhou, Sarah Adel Bargal, Alex Andonian, Tom Yan, Kandan Ramakrishnan,

Lisa M. Brown, Quanfu Fan, Dan Gutfreund, Carl Vondrick, and Aude Oliva. Moments in time

dataset: one million videos for event understanding. CoRR, abs/1801.03150, 2018.

70

[64] Fionn Murtagh. Multilayer perceptrons for classification and regression. Neurocomputing, 2(5):

183 – 197, 1991. ISSN 0925-2312. doi: https://doi.org/10.1016/0925-2312(91)90023-5.

[65] Joe Yue-Hei Ng, Matthew J. Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat

Monga, and George Toderici. Beyond short snippets: Deep networks for video classification.

CoRR, abs/1503.08909, 2015.

[66] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han. Weakly supervised action localization

by sparse temporal pooling network. CoRR, abs/1712.05080, 2017.

[67] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level

image representations using convolutional neural networks. In Proceedings of the 2014 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR ’14, pages 1717–1724, Wash-

ington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-5118-5. doi: 10.1109/CVPR.

2014.222.

[68] Xiaojiang Peng and Cordelia Schmid. Multi-region two-stream r-cnn for action detection. In Euro-

pean Conference on Computer Vision, pages 744–759. Springer, 2016.

[69] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher kernel for large-

scale image classification. In Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors,

Computer Vision – ECCV 2010, pages 143–156, Berlin, Heidelberg, 2010. Springer Berlin Hei-

delberg. ISBN 978-3-642-15561-1.

[70] Ronald Walter Poppe. A survey on vision-based human action recognition. Image and vi-

sion computing, 28(6):976–990, 6 2010. ISSN 0262-8856. doi: 10.1016/j.imavis.2009.11.014.

10.1016/j.imavis.2009.11.014.

[71] David M. W. Powers. Applications and explanations of zipf’s law. In Proceedings of the Joint

Conferences on New Methods in Language Processing and Computational Natural Language

Learning, NeMLaP3/CoNLL ’98, pages 151–160, Stroudsburg, PA, USA, 1998. Association for

Computational Linguistics. ISBN 0-7258-0634-6.

[72] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael L. Littman. Activity recognition

from accelerometer data. In Proceedings of the 17th Conference on Innovative Applications of

Artificial Intelligence - Volume 3, IAAI’05, pages 1541–1546. AAAI Press, 2005. ISBN 1-57735-

236-x.

[73] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object

detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,

71

and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 91–99.

Curran Associates, Inc., 2015.

[74] Douglas A. Reynolds. Gaussian mixture models. In Encyclopedia of Biometrics, 2009.

[75] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.

Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115

(3):211–252, Dec 2015. ISSN 1573-1405. doi: 10.1007/s11263-015-0816-y.

[76] Richard A. Schermerhorn. Midwest and its children. by roger g. barker and herbert f. wright.

evanston, illinois: Row, peterson and company, 1955. 532 pp. 7.50. illustrated. Social Forces, 34

(4):390–391, 1956. doi: 10.2307/2573693.

[77] Tobias Senst, Volker Eiselein, and Thomas Sikora. Ii-lk – a real-time implementation for sparse

optical flow. In Aurélio Campilho and Mohamed Kamel, editors, Image Analysis and Recognition,

pages 240–249, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-13772-3.

[78] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav

Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. CoRR,

abs/1604.01753, 2016.

[79] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. CoRR, abs/1409.1556, 2014.

[80] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recogni-

tion in videos. In Proceedings of the 27th International Conference on Neural Information Pro-

cessing Systems - Volume 1, NIPS’14, pages 568–576, Cambridge, MA, USA, 2014. MIT Press.

[81] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human

actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[82] Konstantin Sozykin, Stanislav Protasov, Adil Khan, Rasheed Hussain, and Jooyoung Lee. Multi-

label class-imbalanced action recognition in hockey videos via 3d convolutional neural networks.

2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD), pages 146–151, 2018.

[83] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014.

72

[84] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.

CoRR, abs/1409.4842, 2014.

[85] Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 Optical Flow Estima-

tion. Image Processing On Line, 3:137–150, 2013. doi: 10.5201/ipol.2013.26.

[86] An Tran and Loong Fah Cheong. Two-stream flow-guided convolutional attention networks for

action recognition. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW),

pages 3110–3119, 2017.

[87] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. C3D: generic

features for video analysis. CoRR, abs/1412.0767, 2014.

[88] Du Tran, Jamie Ray, Zheng Shou, Shih-Fu Chang, and Manohar Paluri. Convnet architecture

search for spatiotemporal feature learning. CoRR, abs/1708.05038, 2017.

[89] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer

look at spatiotemporal convolutions for action recognition. CoRR, abs/1711.11248, 2017.

[90] V. Javier Traver and Alexandre Bernardino. A review of log-polar imaging for visual perception in

robotics. Robotics and Autonomous Systems, 58:378–398, 2010.

[91] Rajesh Kumar Tripathi, Anand Singh Jalal, and Subhash Chand Agrawal. Suspicious human

activity recognition: a review. Artificial Intelligence Review, 50(2):283–339, Aug 2018. ISSN

1573-7462. doi: 10.1007/s10462-017-9545-7.

[92] Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional neural networks for matlab. In Pro-

ceedings of the 23rd ACM International Conference on Multimedia, MM ’15, pages 689–692, New

York, NY, USA, 2015. ACM. ISBN 978-1-4503-3459-4. doi: 10.1145/2733373.2807412.

[93] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In Proceedings

of the 2013 IEEE International Conference on Computer Vision, ICCV ’13, pages 3551–3558,

Washington, DC, USA, 2013. IEEE Computer Society. ISBN 978-1-4799-2840-8. doi: 10.1109/

ICCV.2013.441.

[94] L. Wang, Y. Qiao, and X. Tang. Mining motion atoms and phrases for complex action recognition.

In 2013 IEEE International Conference on Computer Vision, pages 2680–2687, Dec 2013. doi:

10.1109/ICCV.2013.333.

[95] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards good practices for very deep

two-stream convnets. CoRR, abs/1507.02159, 2015.

73

[96] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool.

Temporal segment networks for action recognition in videos. IEEE transactions on pattern analysis

and machine intelligence, 2018.

[97] Michael Wray, Davide Moltisanti, and Dima Damen. Towards an unequivocal representation of

actions. CoRR, abs/1805.04026, 2018.

[98] Zuxuan Wu, Yu-Gang Jiang, Xi Wang, Hao Ye, Xiangyang Xue, and Jun Wang. Fusing multi-

stream deep networks for video classification. CoRR, abs/1509.06086, 2015.

[99] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotem-

poral feature learning for video understanding. CoRR, abs/1712.04851, 2017.

[100] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: region convolutional 3d network for temporal

activity detection. CoRR, abs/1703.07814, 2017.

[101] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in

deep neural networks? CoRR, abs/1411.1792, 2014.

[102] Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas J. Fuchs, and Hod Lipson. Understanding

neural networks through deep visualization. CoRR, abs/1506.06579, 2015.

[103] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime tv-l1 optical flow. In

Proceedings of the 29th DAGM Conference on Pattern Recognition, pages 214–223, Berlin, Hei-

delberg, 2007. Springer-Verlag. ISBN 978-3-540-74933-2.

[104] Bowen Zhang, Limin Wang, Zhe Wang, Yu Qiao, and Hanli Wang. Real-time action recogni-

tion with enhanced motion vector cnns. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2718–2726, 2016.

[105] Min-Ling Zhang, Yu-Kun Li, and Xu-Ying Liu. Towards class-imbalance aware multi-label learning.

In IJCAI, 2015.

[106] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaoou Tang, and Dahua Lin. Temporal action

detection with structured segment networks. In ICCV, 2017.

[107] Yi Zhu, Zhen-Zhong Lan, Shawn D. Newsam, and Alexander G. Hauptmann. Hidden two-stream

convolutional networks for action recognition. CoRR, abs/1704.00389, 2017.

74

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Concepts
	1.2.1 Atomic Actions, Actions and Activities
	1.2.2 Action Recognition/Action Detection, Multi-Class/Multi-Label Tasks

	1.3 Objectives
	1.4 Challenges
	1.5 Overview of approaches
	1.6 Contributions
	1.7 Dissertation Outline

	2 Related Work
	2.1 Overview
	2.2 Background
	2.2.1 2D CNNs
	2.2.1.A ResNet

	2.2.2 RNNs/LSTMs for Sequence-to-Sequence Learning
	2.2.3 Output layers, loss and cost functions
	2.2.3.A Output Layers
	2.2.3.B Cross-Entropy Loss
	2.2.3.C Categorical Cross-Entropy Loss
	2.2.3.D Binary Cross-Entropy Loss

	2.2.4 Attention Filters
	2.2.5 Balancing Strategies for Imbalanced data

	2.3 State of the art
	2.3.1 Two-Stream networks and Two-Stream Fusion
	2.3.1.A Optical Flow
	2.3.1.B Architectures

	2.3.2 AVA Action Localization Model

	3 Implementation
	3.1 Overview
	3.2 Base Architecture
	3.2.1 Generalized Binary Loss Function
	3.2.2 Subsampling and Voting Scheme

	3.3 Attention
	3.4 Context
	3.4.1 Context Features
	3.4.2 Context Architectures

	3.5 Context Fusion
	3.5.1 Concatenation Fusion
	3.5.2 Class Score Fusion
	3.5.3 Two-Pass Testing Scheme

	4 Dataset and Metrics
	4.1 Overview
	4.2 AVA
	4.2.1 AVA specifications

	4.3 miniAVA
	4.3.1 miniAVA Context

	4.4 Metrics: mAP

	5 Experimental Results
	5.1 Overview
	5.2 Baseline
	5.3 Attention on individual streams
	5.3.1 Attention on RGB streams
	5.3.2 Attention on Optical Flow streams

	5.4 Two-Stream Fusion
	5.5 Testing Context by itself
	5.6 Context Fusion
	5.6.1 Groundtruth Scenario - Using test labels to generate context
	5.6.2 Real Case Scenario - Two Pass Testing Scheme

	5.7 Voting Hyperparameter
	5.8 Balancing

	6 Conclusion
	6.1 Conclusions and Future Work

	Bibliography

