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Abstract

Face recognition systems are increasingly important in today’s society, being mainly employed as a security
measure. Everyday items, such as mobile phones and laptops, or more crucial security systems, such as airport access
control, are good examples of its usage. Due to its popularity, these biometric systems are vulnerable to a wide range
of attacks, which are becoming more and more complex. Therefore the development of effective counter-measures
is necessary. The objective of this thesis is to develop a tool which detects intrusions at the sensor level, known
as Presentation Attacks (PA). For this, state of the art contributions are reviewed in order to understand their
main disadvantages and possibilities of improvement. An approach based on transfer learning using a pre-trained
Convolutional Neural Network (CNN) model is presented. This network is then adapted to the problem and several
steps are taken to optimise it accordingly. A novel approach is proposed by implementing a layer that performs video
analysis for action classification, known as Long Short Term Memory (LSTM). The proposed solution achieves a half
total error rate (HTER) of 1.09% in the Replay-Attack database. Finally, a conclusion is made about the detection
of attacks to facial recognition systems and why is it still an open problem, even though state of the art methods

show a high performance in such demanding databases.
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1. Introduction

Face recognition together with fingerprint scanning are
among the most used technologies for implementing secu-
rity measures based on biometrics. However, face recog-
nition systems are the most frequent targets of attacks
[14], which proves that there exists a need to build a fail
safe system that allows to securely "keep the prize” away
from intruders.

This security measure is used worldwide not only be-
cause of the biometric passport (e-passport), which al-
lows people to enter countries by simply comparing their
face with the passport’s picture, but also because of
the increasingly presence of biometric applications for
personal computers and mobile phones to an extent of
opening/accessing your personal bank account using face
identification [12]. Furthermore, the India Unique Iden-
tification Authority is implementing an ID system for
every Indian resident based on facial recognition and fin-
gerprint scanning.

Unfortunately, these biometric systems are all vulner-
able to different kinds of attacks, being the focus of this
work the Presentation Attack (PA) [1] at the sensor,
where a person tries to masquerade as another by cre-
ating a fake biometric trait of the user and presenting
it to the sensor. This work particularly on trying to
determine if the presented trait originated from a real
legitimate client or not.

Overall, these attacks can be divided in three types
[14]: photo, video and mask attacks. Photo attacks
are carried out by presenting to the sensor a photograph
of the original user. They can be printed on paper (print
attacks), where the eyes and mouth region can be cut-
out so the imposter can wear it as a 2D mask, mimicking
natural face behaviour such as eye-blinking. Or it can

be displayed on a screen (digital-photo attacks); Video
attacks, or replay attacks, consist in the attacker pre-
senting to the sensor a video of the genuine user, where
the dynamics and the movement of a specific user are
presented; Finally, in mask attacks, a 3D mask of the
genuine user is created and used to spoof the system.
There are several types of 3D masks but they all aim
to capture the 3D model of the original person in de-
tail, with rich textures, so that the use of any depth,
thermal or some feature analysis techniques may become
ineffective. As expected, all previous discussed attacks
depend on the resolution of the device, or on the type
of support used to present the fake copy (handheld or
fixed support). External variability, such as illumina-
tion or background conditions, can also heavily influence
the outcome. The objective of this work is to propose a
method robust enough to detect these attacks, fast and
non-intrusive, being able to be deployed without needing
additional hardware.

2. Related Work

Techniques that detect the previous mentioned attacks
are known as Presentation Attack Detection (PAD) tech-
niques [1]. The key goal of a PAD system is to automat-
ically distinguish between a normal access, referred to as
bona-fide, and any type of attack presented to the sen-
sor from the imposter. As it can be seen in Figure 1,
PAD methods can be separated in four dimensions: User
Interaction Support, Imaging Sensor, Contextual Infor-
mation and Feature Extraction [35]. The combination of
such dimensions is often used in order to achieve a more
complete PAD algorithm.

e User Interaction Support - This dimension can
be applied when the user is willing to undergo a more
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Figure 1: Classification of face presentation attack de-
tection (PAD) algorithms. [35]

thorough identity check. In such scenarios, PAD sys-
tems usually employ the so called challenge response
methods. Voluntary challenges would be portrayed
as a pre-determined set of movements that the user
has to fulfill. On the other hand, involuntary chal-
lenges consist in detecting natural responses of the
human body, such as natural pupillary response to
external stimuli using illumination [38]. Or blink
detection, eye or mouth movement [27]. Unfortu-
nately, these systems often fail against replay or
mask attacks, need dedicated hardware, which in-
creases the computational cost, and are often la-
belled too intrusive.

e Imaging Sensor - This type of face analysis is re-
lated to the selected sensor. Typically, 2D RGB
cameras are the most commonly used sensor nowa-
days. Nevertheless, the recent availability of richer
imaging sensors is opening new possibilities for PAD
solutions. The Kinect [13], Lightfield Cameras [35],
thermal imaging and near infra-red cameras [46] are
recent sensors that have been employed to PAD.
However, these are not so frequently used since they
can be expensive and require additional hardware.

e Contextual Information - This dimension is re-
lated to the possibility of using background or scenic
cues or motion to detect a presentation attack [43].

e Feature Extraction - This dimension does not re-
quire user cooperation, has relatively low cost and
can be subdivided into two classes: dynamic, which
takes advantage of the temporal information or mo-
tion, and static, which only takes into consideration
the analysis of a single image. Textural based meth-
ods exploit the textural patterns presented by the
used artefact, some examples are LBP, BSIF and
LPQ [26, 17, 29]. Quality based methods explore
the image quality characteristics in order to detect
the bona-fide sample or an artefact used for the at-
tack. Learning based methods derive features by
modelling and learning relationships between images
and/or sequences. Depth/focus based techniques
explore different depth information between images
captured from different sensors [18, 31, 19], as well
as frequency analysis by using the Fourier Trans-
form, Euler motion magnification [5] or Difference of

Gaussian (DoG) [31]. Finally, motion based meth-
ods explore the movements of the user, such as eyes
or mouth, as well as calculating the optical flow be-
tween consecutive frames [37], which provides all the
required motion information in order to detect a PA.

When reviewing PAD methods, feature extraction
techniques are the most used since they are practical to
implement, requiring only the camera system to detect
any attacks, as well as not requiring any user interac-
tion. Nevertheless, as each method focuses on solving a
specific problem, the overall system may lack the robust-
ness to detect all types of attacks. Due to this, fusion
between several techniques is possible, being referred to
as multi-biometrics. However, blindly fusing methods
without first determining if they are compatible just to
increase the system’s complexity may lead to worse re-
sults [7].

Furthermore, several PAD techniques depend on a
hand-crafted feature extraction, usually simple features
are extracted and analysed. However, some are processed
and never connected. Nowadays, this task is eased by the
uncovering potential of Deep Learning (DL). Such algo-
rithms are able to extract several distinct features that
are deemed important, and successfully find correlations
between these in order to produce a successful outcome.
Learnable feature based PAD techniques often use Con-
volutional Neural Networks (CNN)[22] that do not re-
quire fixed, hand crafted features. Instead, these CNN
based algorithms learn what features are important by
using input data as training.

The remarkable success of these CNNs in the Im-
ageNet competition [33] has attracted a multitude
of researchers in the computer vision community to
investigate the full potential of these networks. Usually,
early CNN based algorithms consist in using a CNN
network as a simple feature extractor, using afterwards
a Support Vector Machine (SVM) or other conventional
classifier [44], or a simple CNN with low depth. Other
works such as [25, 24, 32], simply propose a simple
adapted neural network architecture to detect presen-
tation attacks. However, more recent works tend to
complement a CNN with other techniques. In [2] a
nonlinear diffusion filter is first applied to the input data
and in [44] background information is also provided, in
order to obtain depth cues. [42] proposes a very basic
implementation, without any optimization, of a LSTM
layer to perform a temporal analysis from a sequence of
frames and a fusion approach is proposed by [4], where
a deep neural network learns rich patch-colour features
while other outputs a depth map of an image, then the
scores of these are fused together. In this work, a deep
learning time analysis CNN network is proposed.

3. Proposed Architecture

The overall architecture of the proposed deep learning so-
lution can be seen in Figure 2. Given an example video
containing a face image access, the objective is to de-
tect the facial region, pre-process and compile it into a
sequence of frames, giving it as input to the CNN and, af-
terwards, introducing the video analysis layer, producing
a decision. For this to be possible, the following processes
have to be taken into account.
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Figure 2: Architecture of the proposed solution.

3.1. Face Detection

The used architecture receives as input a facial image
with a fixed size of 224x224 pixels. Therefore, facial re-
gions in an image need to be first detected. When re-
garding the PAD problem, the user needs to be frontally
facing the sensor, without any type of occlusion. Accord-
ingly, a simple classifier, as the Viola-Jones [40], can be
used.

The Viola-Jones [40] algorithm, introduced in the early
2000’s, was a ground breaking technique since it was fast
and computationally cheap, being the first face detection
algorithm to run on simple cameras and mobile phones.
In order to do so the algorithm is trained with positive
images (images of faces) and negative images (images
without faces). Haar-features [39] are extracted from
each image by several haar-blocks. Each block is divided
in a black and white segment that covers part of the
image. Then, a single value per block is obtained by
subtracting the sum of pixels that lay under the white
from the sum of pixels that lay under the black, an ex-
ample can be seen in Figure 3. During training, the best
threshold which classifies the faces to positive or negative
is found.

Figure 3: The top row are the haar-features which are
then overlayed on a training face. [39]

3.2. VGG-Face Descriptor
The used CNN is the VGG-Face Descriptor [30] intro-
duced by the Visual Geometry Group, which is a net-
work created for identity recognition, being nominated
as "very deep” as it comprises a 16 layer network, 13 con-
volutional blocks plus 3 fully connected layers, with over
140M of weights. However, this model can be adapted
to the PAD problem by using the pre-trained model ap-
proach, a network that was previously trained for a simi-
lar problem, and can now be retrained, taking advantage
of its original weights. This proves advantageous when
both problems are similar and there is not enough robust
training data available for the new problem, which is the
case with most PAD methods. This model may be seen
as a starting point for the transfer learning process, with
the original model suffering several alterations in order
to adapt the network to PAD.

In order to adapt the VGG network, illustrated in Fig-
ure 4, to the PAD problem several factors had to be
taken into consideration. The result of the last layer
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Figure 4: Architecture of the original VGG Face descrip-
tor.

was changed to a binary output, either bona-fide or a
presentation attack. The chosen loss function was the
cross-entropy, or logarithmic loss, which increases as the
predicted probability diverges from the actual label. The
used optimizer was Adam, or the Adaptive Moment Esti-
mation [20], which is based on a gradient descent having
the particularity of computing individual adaptive rates
for different weights of the network, while other optimiz-
ers usually have a unique adaptive rate. This adaptive
rate, or learning rate, has the value of 107°. This low
value is due to the application of transfer learning. As
the original network also dealt with a similar problem,
face analysis, weights need to be fine-tuned and not dras-
tically changed, therefore weight updating needs to be
done smoothly. With the idea of optimizing the converg-
ing efficiency during training, early stopping was applied.
This concludes training earlier if the performance of the
algorithm does not increase within a range of epochs,
usually between 10 to 20, concluding that the algorithm
already converged to the optimal solution.



3.3. Video Analysis

The analysis of a single image might not be enough to
fully detect any type of fraud. Having this in consider-
ation, a method is proposed where instead a small se-
quence of frames is analysed with the objective of action
classification, bona-fide or presentation attack. For this
to be possible, a type of Recurrent Neural Networks was
utilized, the Long Term Short Memory (LSTM) layer
[16]. LSTM networks are capable of learning long-term
dependencies and were the chosen video analysis layer
since they are able to remember information for long pe-
riods of iterations.

This layer was implemented in the proposed architec-
ture by removing the last VGG layer, feeding its fea-
tures directly to the LSTM which then will analyse their
evolution over a period of time. This period, known as
timestep, is a hyper parameter of the proposed archi-
tecture and it is a measure of how many steps does the
LSTM need to keep in memory in order to make a de-
cision. The ideal value would be the size of the video,
however, a value too large introduces noise, as well as
memory problems, deeming the LSTM network useless.
There are also several possible architectures when using
the LSTM layer, but only two were deemed important to
experiment. A many-to-one architecture is when, during
a timestep, each LSTM cell gives the output vector to the
following layer and only the last layer produces the final
output, given then to the softmax layer for classification.
This architecture is often used when dealing with an ac-
tion classification problem, which is the case. On the
other hand, a many-to-many architecture is also possi-
ble, where, during a timestep, every LSTM cell produces
an output which is combined at the end and given to the
softmax layer, which is often used for video classification,
where every frame produces a label. The algorithm’s ar-
chitecture is displayed in Figure 5.
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Figure 5: Architecture of the neural network used for
Presentation Attack Detection. In red are displayed the
inputs, blue the output, green the RNN layer while the
rest is the adapted VGG network.

4. Experimental Setup

When assessing the effectiveness of PAD techniques, pub-
licly available face spoofing databases are often used for
benchmarking. Several of these have been collected and
made available, using different capturing devices, condi-
tions and operating scenarios. The used databases were

the Replay-Attack [9] and the CASIA-FASD [45] which
are composed by video recordings of genuine accesses and
presentation attacks. Even though the used databases
are not the most recently available, they were selected
due to their difficulty and popularity amongst other state
of the art algorithms, so a wide comparison can be made.
The contents of each database consists in recordings of
genuine user accesses and several types of presentation
attack attempts.

4.1. Replay-Attack

The Replay-Attack database [9] consists in video accesses
recorded by a built-in camera of a MacBook Air 13-inch
laptop, with a resolution of 320x240 pixels. 50 users
participated in this database acquisition, creating three
disjoint datasets: train, validation and test, leading to
200 genuine accesses and 1000 attack samples. These
were captured under two lighting conditions: controlled,
with an illumination support in an homogeneous back-
ground; and adverse, with natural lighting and a more
complex background, as seen in Figure 6. The presen-
tation attacks are: high-resolution print attacks, where
photos and videos were captured using a Canon Power-
Shot SX150 IS with 720p; mobile display attacks, using
an iPhone 3GS with a resolution of 480x320; and high
quality photos and videos displayed on an iPad screen,
with 1024x768 resolution. These artefacts were held by
the imposter or by a fixed stand.

Figure 6: Examples of accesses from the Replay-Attack
database. From left to right: real accesses, printed pho-
tograph, display attack and tablet attack. The top row
is from a controlled scenario whereas the bottom is from
an adverse scenario. [9]

It is also important to note that this was the primarily
used database to fine tune the neural network and test
its alterations, since it is the most used database by state
of the art techniques, as well as the most robust since it
presents diverse types of attacks with different conditions
among different people.

4.2. CASTA-FASD

The CASTA-FASD [45] database contains captured data
from 50 subjects where the PAs were constructed from
the high quality recordings of the genuine users. Several
attacks were considered: warped photo attack, where the
facial motion is simulated by bending a printed photo-
graph; photographic masks; and replay attacks. Video
accesses were acquired with three imaging qualities: low,
with a long-time used USB camera that degrades im-
age quality; normal, using a newly bought USB camera
which keeps the original quality; and high, using a Sony
NEX-5 camera for recording. These have resolutions of
640x480, 480x640 and 1280x720, respectively. Presenta-
tion attacks were shown using an iPad with a resolution



of 1280x720 and in prints the same Sony camera was
used. The complete image set is illustrated in Figure 7.
There are 12 videos per subject, 3 genuine and 9 fake,
resulting in 600 clips.
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Figure 7: Complete image set for a subject. The top
left images represent the low quality videos, the bottom
left normal quality videos and the right set are the high
quality videos. For each set of photos from left to right:
genuine, warped photo attack, cut photo attack and re-
play attack. [45]

5. Results

The experiments follow the protocols associated with
each used database. For each, the training set is used to
learn the CNN model, the validation set used to check the
overall performance of the algorithm and convergence,
and the testing set is used for evaluation purposes using
the HTER [34]. For the image processing OpenCV [§]
is used and for the CNN+LSTM optimization, training
and testing Keras [3] is used. All of the used databases
present a frame rate of 25 images/s, this leads to thou-
sands of images with very low variability between consec-
utive frames. To decrease the amount of redundant data
as well as to respect the memory usage of the system,
the algorithm captures only a few frames per second, de-
pending on the database’s size usually being around 3 to
5 frames, as it is enough to perform a complete analysis
of the video. Afterwards these images are resized accord-
ing to the input of the neural network, with a fix size of
224x224 pixels and, according to the type of analysis, the
colour space might be converted and frames are grouped
into a timestep series. All images are also subtracted by
their average corresponding facial image.

5.1. Neural Network Fine Tuning

Before applying the LSTM layer, experiments were done
in order to optimize the neural network to the PAD prob-
lem as well as to check if either the novel video analy-
sis layer has any impact as a presentation attack detec-
tion method. First off, when applying Transfer Learning,
there exists a similarity between the original network’s
objective, face identification, and PAD, as in both cases
the CNN still needs to identify discriminative features of
the face. So, when adapting the VGG CNN to PAD, we
know that initial convolutional layers capture low-level
image features, edges for example, while deeper convo-
lutional layers capture increasingly more complex details
[22]. This way, an hypothesis can be made in which the
proposed neural network adaptation should achieve bet-
ter performance by only fine-tuning the last parts of the
neural network instead of the whole model as the first
layers do not need any weight tuning. In order to con-
firm this, a test was made in which the entirety of the
network was frozen, meaning that the weights cannot be
altered during training, keeping its original values and,
subsequently, deeper layers were unfrozen and trained,
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testing the performance of the network.

Furthermore, performing an analysis in the RBG
colour space can be quite limiting since there is a high
correlation between the three channels, leading to a low
quality feature extraction. Having this in consideration,
other colour spaces that allow a better separation be-
tween luminance and chrominance were considered. By
fully separating these channels, the images are richer in
features, presenting an increase in textural information.
This way, a HSV and Y C,C, analysis was performed.
These results can be seen in Table 1.

As it is demonstrated by the table, a higher perfor-
mance can be achieved when using other colour spaces
rather than RGB. Also, but only when working in the
RGB colour space, performance increases by skipping
training for the first two convolutional blocks, as they
present introductory operations and don’t need further
tuning, confirming the proposed hypothesis. However,
this does not happen in HSV or YC,C,. This is be-
cause the original network was trained using only RGB
images therefore the weights are not adapted/trained for
the colour space changes, thus needing tuning as well. So,
in this latter case, best performance is achieved when all
of the network is trained.

5.2. Video Analysis
When applying this layer only the model that achieved
the best performance, presented in Table 1, is used,
therefore meaning that the chosen model performs a
HSV colour analysis. As it was previously discussed,
when applying the LSTM layer, a tuning of the newly in-
troduced hyper parameter, timestep, requires to be done.
This parameter allows to determine for how many frames,
or for how long, the algorithm keeps analysing the video
images before making a decision, forgetting previous it-
erations. If the timestep value is too low then it would
result in a premature decision, which may lead to er-
rors, and if it is too big it introduces noise, underper-
forming as well. Secondly, it is also important to exper-
iment with which architecture the best performance is
achieved, many-to-one or many-to-may as previously ex-
plained. Results to all these experiments are displayed
in Table 2 and the graphs extracted during the training
of the neural network can be seen in Figure 8.
According to Table 2, it is possible to conclude that
a many-to-one architecture is the most adequate archi-
tecture for the problem. This is mainly because this
approach is better for action classification, which is the
case. Better performance is achieved by outputting an
answer after analysing the whole group of frames rather
than deciding in each singular frame what action is tak-
ing place, since we do have more information after the
process. Regarding the timestep analysis, the best value
found is seven, this shows that by analysing groups of
seven frames, which corresponds between a three to five
seconds window in the presented videos, the best possible
outcome is achieved.

5.3. Comparison with State of the Art

After fully developing and tuning the proposed system,
a performance assessment and comparison against state
of the art methods is presented. The algorithms con-
sidered for comparison are the ones reporting the best
performance values until this date, which propose mostly



Table 1: Performance table of different colour spaces. Best values of each space highlighted in bold.

RGB HSV YC,C.
Trained Accuracy (%) HTER (%) Accuracy (%) HTER (%) Accuracy (%) HTER (%)
Fully Connected (FC) 76.9 63.5 93.2 14.6 87.4 27.7
FC + 1 conv. block* 81.7 44.0 96.2 12.4 89.1 22.8
FC + 2 conv. block* 83.0 39.5 95.0 10.5 93.6 13.3
FC + 3 conv. block* 89.4 23.2 96.7 7.0 94.4 11.7
Full Network 84.2 37.0 96.9 6.5 95.7 8.5

*Conv. block represents the group of 2/3 convolutional blocks before the max pooling operation as it was explained in the VGG
architecture.

Table 2: Network’s performance with various timesteps and different architecture. All values are in % and best

highlighted in bold.

Many-to-one

Many-to-many

Timestep Accuracy FAR FRR HTER Accuracy FAR FRR HTER

98.5 1.6 7.8
98.8 2.3 4.1
99.2 0.6 1.6
97.9 4.3 24
97.1 9.0 3.0
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4.7 97.8 4.5 6.1 5.3
3.2 98.1 4.3 3.9 4.1
1.1 98.4 4.0 2.8 3.4
3.4 97.7 6.5 3.1 4.8
6.0 96.0 11.0 44 7.7
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Figure 8: Network’s performance when adding a LSTM
layer with 7 as the chosen timestep with a many-to-one
architecture.

textural and/or motion analysis solutions, or other deep
learning algorithms.

Two assessment evaluations were made, the first one
where each database was used for training and testing
independent from one another, being named as intra-
database test. On the other hand, to test the general-
ization ability of the proposed solution and others, in
terms of testing with completely new data, an inter-
database test was performed. In this latter assessment,
one database is used to train the algorithm, but testing
is performed with sets from the other database. This
type of test allows assessing the full robustness of the
systems in a more demanding cross-database scenario,

since by changing the databases every aspect of acqui-
sition is completely altered: conditions, image quality,
people, capturing sensor and so on.

The results of the first test are summarized in Table 3.
It shows that amongst all of the tested databases, the al-
gorithm performs well with quite good results when com-
pared to other techniques. By analysing with more detail
the conditions where misclassifications happen, it is pos-
sible to conclude that the majority of errors happen when
high quality presentation attacks are given to the sensor,
specifically in the case photographic masks are presented
to the sensor, in the CASIA dataset. In a high quality
image, usually with a high resolution, around 1024x720
pixels, the face is detected and then it is resized by an
image with 224x224 pixels. This greatly down-samples
the target image. With this, rich features that can iden-
tify the attacks are lost together with quality and, by
analysing the remainder features it leads to an attack
being incorrectly identified as a genuine user. An ex-
ample of this is again the case of photographic masks,
which are prints with a high quality, where both the eyes
and mouth are cut out in order to mimic normal face
movements. By down-sampling these images the algo-
rithm cannot detect the usual print attack features, such
as the paper reflection and its low image texture when
compared to a genuine face, but can detect movement
which influences the system into accepting the sample as
genuine.

As it is displayed by Table 3, most algorithms
present a good performance throughout all of the cho-
sen databases, which may raise doubts concerning the
necessity of the still ongoing investigation about face pre-
sentation attack detection. If there are algorithms that
achieve such low error rates then why is PAD an open
problem. In spite of these methods achieving high per-
formance rates when following each datasets’ set of rules
when performing an intra-database test, the same does
not apply in the inter-database test, as illustrated in Ta-



Table 3: Performance and comparison between state of
the art methods.

Replay CASIA

Methods Attack FASD
HTER (%)
LBPP! (2012) 13.80 18.20
LBP - TOP M (2012) 7.60 10.60
LBP - GLCM 1, (2013) 7.20 -
Motion 19 (2013) 11.70 26.00
Motion + LBP 21 (2013) 5.10 -
Motion Mag ¢! (2014) 0.25 14.40
Deep Learning 28], (2015) 2.10 7.34
Fine-Tuned VGG 24, (2017) 4.30 -
DPCNN 24 (2017) 6.10 -
Nonlinear Diffusion CNN 2| (2017) 10.00 -
FASNet (CNN) [251 (2017) 1.20 -
Patch + Depth CNN | (2017) 0.72 2.27
(1)(HSV + YCbCr) LBP 23] (2018)  2.90 6.09
Proposed Method 1.09 10.32

ble 4. This latter table shows that unfortunately all of
the state of the art methods, including the proposed so-
lution, perform poorly when displayed with a more chal-
lenging robustness test. By completely changing all of
the conditions in a database, all algorithms fail, which
only shows that most of them would perform poorly in a
real world situation.

6. Conclusions and Future Work

6.1. Conclusions

This works presents a novel approach, utilizing deep
learning, to detect attacks to facial recognition systems.
In order to create an acceptable algorithm, the challenges
faced by the community were evaluated, analysed in de-
tail as to what are the most common type of attacks.
Moreover, an evaluation of the current state of the art
framework was made, describing the several existing al-
gorithms and its different approaches when addressing
the problem. Techniques were subdivided depending on
the type of analysis and a particular focus was given to
methods that use machine learning. As a result an ap-
proach was presented, which adapts to different condi-
tions and variabilities not focusing only on specific at-
tacks but rather in its training, trying to create a well
prepared model.

Throughout the process of developing the algorithm
several milestones were achieved, Transfer Learning pre-
sented as being a good starting method when the prob-
lems are similar, allowing to reuse the original weights
to the new task, achieving a high performance with a
fast convergence. Either way, even if the problems are
not similar or the training process differs, the architec-
ture can be used as a starting point to a new network,
as it was shown. Regarding colour analysis, and as it
was demonstrated, the RGB colour space has a poor
performance when regarding presentation attack detec-
tion since there is a high correlation between the three
channels. Therefore, other colour spaces should be taken
into consideration, preferably ones that take the lumi-
nance and chrominance of a picture into consideration as

they are better for image recognition, such as Y C,C,. and
HSV, where the latter achieved the best performance.
Instead of performing the usual single frame analysis,
the architecture of the network was altered so that a full
video analysis could be performed. For this, the LSTM
layer was used and it proved fruitful to the task, it al-
lowed a spatio temporal analysis of a picture, analysing
its feature evolution throughout the video. This layer
has a high adaptability to different problems, achieving
the best performance in a many to one architecture and
with a timestep of 7, in this case.

The suggested method has acceptable results, present-
ing a higher performance, in most cases, when compared
to state of the art methods, showing that deep learn-
ing can be a good solution to the problem. During the
intra-database test, misclassifications happened mostly
when high quality presentation attacks were captured by
the sensor, mainly due to the high loss of texture fea-
tures when downsampling the target image. In order
to demonstrate why PAD is still an open problem and
there is not an accepted solution by the community, an
inter-database test was made. This assessment demon-
strated that almost all proposed state of the art methods
have a high error rate when presented with completely
new capture conditions and/or unexpected types of at-
tacks. In the particular case of the proposed method,
the algorithm underperforms in the inter-database test
as expected since the testing set differs drastically from
its training, presenting a disadvantage of deep learning.
Algorithms based on deep learning work well within the
training set specifications and variations however, if new
data outside the training range emerges, it proves unsuc-
cessful. Presentation attack detection presents an open
problem since it has many variations in every condition
possible as well as its wide range of attacks.

6.2. Future Work

When regarding inter-database analysis and since the
proposed solution fails most often when the target image
is downsampled, losing rich features that can identify a
PA, an analysis without changing the original image size
should be made. In order for this to be possible, the in-
put layer of the network should accept any image size,
instead of the expected 224x224 pixel face image. This
might be possible by using the Spatial Pyramid Pooling
(SPP) layer [15] instead of the usual max pooling layer.
A max pooling layer resizes the number of features in
order to reduce their dimensionality, however both input
and output size need to be previously determined val-
ues. By using a SPP layer, the target size is outputted
regardless of the input size, having no input size regula-
tion. Although in theory this seems possible, this layer
is still in development showing few practical situations,
therefore its viability needs to be verified before it can be
applied. This approach would ideally increase the num-
ber of richer features in the image since there is no initial
resizing needed, leaving the facial region of the image un-
touched. Other method that might present a solution to
the downsampling problem would be to use patches of
the target image instead of resizing the entirety of the
image. This way, training data would increase and the
original quality would be kept.

With respect to the robustness of the algorithm when



Table 4: Performance and comparison between state of the art methods in an inter-database test [23].

Replay-Attack CASIA-FASD
(trained on CASTA-FASD) (trained on Replay-Attack)
Test on: Dev Test Train Test
Methods HTER (%)
LBPP! (2012) 44.9 47.0 57.3 57.9
LBP - TOPI (2012) 48.9 50.6 60.0 61.3
Motion!*l, (2013) 50.2 50.2 47.7 48.2
Correlation!'?!, (2013) 47.7 48.3 50.2 50.2
Motion Mag!®, (2014) 50.0 50.2 43.8 50.3
Deep Learning[?®!, (2015) 48.2 48.8 45.7 45.4
(1) + SVM - RBF?3 (2018) 225 20.6 47.5 43.9
(1) + SVM - linear®®, (2018) 17.7 16.7 38.6 37.6
Proposed Method 50.5 49.2 44.5 45.3
using a test set that greatly differs from training, the per- [4] Y. Atoum, Y. Liu, A. Jourabloo, and X. Liu. Face Anti-

formance decreases in all shown algorithms, presenting to
be a deep learning disadvantage in this particular case.
One possible solution may be using generative adversar-
ial networks or adversarial neural networks [36], which
generates an increasing dataset with several variations.
In this scheme, there are two neural networks, one called
generator, which generates new data instances based on
the training set, while the other, the discriminator, eval-
uates them for authenticity, trying to assign the correct
label to each new instance. So the generator creates new
instances trying to fool the discriminator into accept-
ing them as authentic while they are not, training the
discriminator for new, different cases. When comparing
to a usual neural network, which outputs a label when
analysing the features, an adversarial network generates
features taking the label into consideration, this allows
to create different combinations of features that can rep-
resent a genuine sample or a presentation attack, being
based, however, on the training set as well. Unfortu-
nately, this type of networks cannot cover all the possi-
ble scenario variations, it may improve the algorithm but
probably would not fully fix its miscalculations. These
misclassifications are not so easily corrected since the al-
gorithm mostly depends on its training. In order to se-
clude this, restricting capture conditions should be the
most plausible approach, if some of the conditions could
be manipulated or controlled, when possible, then the
number of various scenarios would drastically decrease
which, by consequence, would increase the algorithm’s
performance to disparate conditions.
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