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Resumo

Sistemas de reconhecimento facial são cada vez mais relevantes na sociedade actual, sendo maior-

itariamente utilizados como medida de segurança. Desde itens do quotidiano, como os telemóveis e

computadores, até sistemas cuja segurança é crucial, como o controlo de acesso aos aeroportos, são

exemplos da utilidade do reconhecimento facial. Devido à sua popularidade, estes sistemas biométricos

são vulneráveis a uma vasta gama de ataques, que se têm tornado cada vez mais complexos. Assim,

o desenvolvimento de contra-medidas eficazes é necessário.

O objectivo desta tese é o desenvolvimento de uma ferramenta de deteção de intrusões ao nı́vel

do sensor, conhecidas como Ataques de Apresentação (AA). Para este propósito, as contribuições do

estado da arte são revistas de forma a compreender as suas principais limitações e possilidades de

melhoria. Quando comparado com métodos anteriores, o deep learning atinge um alto desempenho,

o que consequentemente tem vindo a aumentar a sua popularidade. Assim, uma abordagem baseada

em transferência de conhecimento usando o modelo de uma rede neuronal previamente treinada é ap-

resentada. Esta rede é então adaptada e optimizada de acordo com o problema. Ao longo do processo,

uma nova abordagem implementando uma camada que se baseia na análise de vı́deo é proposta. Esta

distingue-se da usual análise de frame a frame, sendo usada para classificação de ações, e é con-

hecida como camada de Long Short Term Memory (LSTM). Para além disso, uma comparação com

outros algoritmos do estado da arte é feita, o método proposto atinge uma metade da taxa total de erro

de 1,09%, na base de dados Replay-Attack.

Finalmente, uma conclusão sobre a deteção de ataques a sistemas de reconhecimento facial é

traçada, constatando a razão pela qual este tópico é ainda um problema em aberto, apesar do alto

desempenho atingido por vários algoritmos do estado da arte em bases de dados exigentes.

Palavras-chave: Reconhecimento Facial, Sistemas Biométricos, Ataques de Apresentação,

Transferência de Conhecimento, Rede Neuronal, LSTM
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Abstract

Face recognition systems are increasingly important in today’s society, being mainly employed as a

security measure. Everyday items, such as mobile phones and laptops, or more crucial security systems,

such as the airport access control, are examples of face recognition usages. Due to its popularity,

these biometric systems are vulnerable to a wide range of attacks, which are becoming more and more

complex. Therefore the development of effective counter-measures is necessary.

The objective of this thesis is to develop a tool which detects intrusions at the sensor level, known

as Presentation Attacks (PA). For this, state of the art contributions are reviewed in order to understand

their main limitations and possibilities of improvement. When compared to older methods, deep learn-

ing achieves a high performance, which consequently has increased its popularity. Thus, an approach

based on transfer learning using a pre-trained Convolutional Neural Network (CNN) model is presented.

This network is then adapted to the problem and several steps are taken to optimise it accordingly.

Along the process, a novel approach is proposed by implementing a layer that performs video analy-

sis for action classification instead of the regular frame-by-frame analysis, known as Long Short Term

Memory (LSTM). Furthermore, a comparison against other state of the art algorithms is made, where

the proposed method achieves a half total error rate (HTER) of 1.09% in the Replay-Attack database.

Finally, a conclusion is made about the detection of attacks to facial recognition systems and why

is it still an open problem, even though state of the art methods show a high performance in such

demanding databases.

Keywords: Face Recognition, Biometrics, Presentation Attacks, Transfer Learning, CNN, LSTM
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Chapter 1

Introduction

Biometric recognition is increasingly important in today’s society. The term biometrics refers to metrics

related to human characteristics. In this case, it represents a set of biological and behavioural unique

identifiers which can be used as a form of identification and access control, such as faces, voices,

fingerprints, signatures, gait, among others. Biometric features and processes have been used for quite

some time. Humans can recognize each other by face or voice and even in the animal world some

species use each other’s individual scent in a similar way.

Nowadays the expectations are higher, researchers from many different fields such as image pro-

cessing, computer vision or pattern recognition, have applied several different techniques [1] to improve

the performance of biometric systems [2], this has permitted the use of biometrics in many diverse

activities such as forensics, border and access control, surveillance and on-line commerce.

1.1 Motivation

Face recognition together with fingerprint scanning are among the most used technologies for imple-

menting security measures based on biometrics. However, face recognition systems are the most fre-

quent targets of attacks [1], which proves that there exists a need to build a fail safe system that allows

to securely ”keep the prize” away from intruders.

Right after the fingerprint, the face is the second most largely deployed biometric at world level in

terms of market quota (according to the International Biometric Group (IBG) [3]). It is used worldwide

not only because of the biometric passport (e-passport), which allows people to enter countries by

simply comparing their face with the passport’s picture, but also because of the increasingly presence of

biometric applications for personal computers and mobile phones to an extent of opening/accessing your

personal bank account using face identification [4]. Furthermore, even in developing countries are now

using biometric technologies to create national identification programs. The India Unique Identification

Authority is creating and providing an unique ID for every Indian resident based on facial recognition and

fingerprint scanning in order to replace the old fashioned ID card. For all of the previous reasons, the

face is one of the biometrics where most spoofing-related research has been conducted.

1



Unfortunately, these biometric systems are all vulnerable to different kinds of attacks as it is possible

to see in Figure 1.1, being the focus of this work the Presentation Attack (PA) at the sensor, where a per-

son tries to masquerade as another by creating a fake biometric trait of the user and presenting it to the

sensor, thus posing as the real user. The other type of attacks usually fall on the hacking predicament,

where the biometric sample can be altered mid processing, or different points of the process could be

overridden as the comparator or even the database, for example. This work focuses particularly in trying

to determine if the presented trait originated from a real legitimate client or not. This can be seen as

liveness detection, since this term is quite often used as a close synonym for spoof detection in some

fields, but, usually, liveness detection refers to a more limited problem of sensing vitality signs of the

user, like the heartbeat or eye blinking [5]. In this thesis this term is treated as a subcategory for Pre-

sentation Attack Detection (PAD) methods. It is important to note that this type of attacks depend on

the resolution of the device, or on the type of support used to present the fake copy (handheld or fixed

support), also known as artefact. The external variability, such as illumination or background conditions,

can also heavily influence the outcome.

Figure 1.1: Different points of attacks in a biometric system. [5]

Furthermore, in each scan there exists an extremely vast layer of data, which needs to, ideally, be

processed in a real-time scenario. Several PAD techniques depend on extracting features that are able

to detect a presentation attack, usually simple features are extracted, processed and never connected.

In some cases, correlation of these techniques could lead to an improvement on the overall outcome

[6], this is specially hard to do since it is not possible to determine which techniques can be improved or

not. Nowadays, this task is eased by the uncovering potential of Deep Learning (DL). Such algorithms

are able to extract several distinct features that are deemed important, usually by the algorithm itself,

although the programmer can have some influence, and successfully find correlations between these

in order to produce a successful outcome. Sometimes, to optimize the network used, some features

that are deemed useless to find the correct outcome can be discarded. These Machine Learning (ML)

tools are considered powerful since it speeds up the entire process, can be trained and learn by their
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mistakes, and can even find unexplained/unpredictable connections that help fulfil the task at hand [7].

1.2 Objectives

The objective of this work is to analyse what are the most employed type of attacks in this type of

biometric systems and how can a system be protected against these, building a tool that can successfully

detect said attacks. In order to do this, current state of the art methods are detailedly reviewed and

compared, finding its most common shortcomings which are usually taken advantage by imposters.

This knowledge is then used to develop a software based approach to improve robustness of face

authentication systems to presentation attacks. The presented approach is a deep learning algorithm

which analyses a small sequence of frames instead of the usual single frame analysis done by most

state of the art algorithms, proving that a video analysis is fruitful to the problem.

1.3 Thesis Outline

In the remainder of this thesis, a presentation attack detection method based on deep learning is pro-

posed and explained. The document is organized in the following manner:

• Chapter 2 contains a detailed description of state of the art in the PAD problem, generalising the

different types of attacks to face recognition systems and the preferred techniques to detect these

attacks;

• Chapter 3 presents the proposed algorithm, detailing its architecture and explaining how the used

network was gradually constructed;

• Chapter 4 discusses the used experimental setup in order to fully construct the algorithm. What

type of tools and frameworks are needed and utilised, discussing as well the different databases

employed in training and testing the network;

• Chapter 5 displays the obtained results when using the proposed algorithm in chapter 3, validating

its implementation and comparing with other state of the art methods described in chapter 2;

• Finally, in chapter 6 conclusions are drawn from the carried out work, explaining the obtained

accomplishments and making references to future contributions that can be done.
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Chapter 2

Presentation Attack Detection - State

of the Art

This chapter is divided into three major sections. Firstly, the basic type of presentation attacks and the

pre-requisites of a presentation attack method are reviewed, followed by the several types of different

attacks, where the most are examined, explaining the points of exploitation they seek in the system.

Section 2.1 is subdivided into three subsections where in each, a different type of attack is analysed.

Afterwards, section 2.2 reviews the most used presentation attack detection methods, how are they seg-

mented in several categories depending on their aim, discussing their advantages, disadvantages, being

subdivided depending on the type of analysis: User Interaction, Image Sensor, Contextual Information

and Feature Extraction. Lastly, in section 2.3, it is discussed how the recent use of machine learning

improved PAD methods and why is it used so much nowadays, referencing some methods that were

deemed important as it brought new techniques that try to solve the problem at hand.

As previously mentioned and as it can be seen in Figure 1.1, there are several possible attacks in a

biometric system. These attacks can be divided into two classes [8]: indirect and direct attacks. The first

one is performed inside the biometric system, usually by hackers, who successfully enter the system and

manage to tamper with it, changing the database or bypassing the feature extractor/matcher. Firewalls,

encryption and anti-virus are usually the securities applied to the hardware side of the system in order

to prevent these kinds of attacks.

On the other hand, direct attacks, which are also named as presentation attacks, consist in the

ability to fool the biometric system into recognizing an illegitimate user as a genuine one, by presenting

a synthetic forged version of the original biometric trait to the sensor, which is labelled as 1 in Figure 1.1.

In addition, presentation attacks can be subdivided in two [5]: an active impostor presentation

attack in which the attacker intends to be recognized as a different individual. This can, in turn, have

one of the two objectives, the subject intends to be recognized as a specific user in the system, also

known as impersonation, or it simply wants to pass as any other individual in the database; a concealer

presentation attack in which the user simply does not want to be recognized as someone from the

database of the system, also known as obfuscation. For example in a no flight list, where the imposter
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might be forbidden to fly and can be detected during security check. Thus, the presentation attack can

be conducted on the biometric system with the intent to gain access to the services provided to a real

user or to hide an identity from being revealed.

A Presentation Attack Detection method has the ultimate goal to automatically distinguish between

real biometric traits presented to the sensor and artificially forged artefacts which contain a replicated

biometric trait of the genuine user. All of these methods are expected to fulfil the following pre-requisites

[9]: non-invasive, it should not break the user interaction boundaries; user friendly, ought to work

instinctively with as few user interactions as possible; fast, as it should converge to an acceptable

solution with a high speed; low cost, for implementation sake and world wide accessibility, and good

performance. In the next section the most commonly used Presentation Attacks to biometric systems

are introduced.

2.1 Types of Face Presentation Attacks

Before discussing the different algorithms for PAD, it is important to also introduce and discuss the

different categories and the most common PA techniques. It is essential to fully understand what are the

most common types of presentation attacks, how do they work and what vulnerabilities of the system

they seek. In the following subsections, these attacks are divided in three types: photo, video and mask

attacks. The explanation and difference between these types of intrusions and some examples are also

given. However, it is important to remark that even though these are the most frequent PA’s, there are

several other and/or variations of each discussed attack. This only shows how serious and difficult this

problem is since new ways to overcome protection very much rely on the imagination and effort of the

attackers, each system can be exploited in different ways or have an unknown weakness until now.

The biometric characteristic or object used in a presentation attack is referred to as Presentation

Attack Instrument (PAI) [5]. As it can be seen in Figure 2.1, these instruments can be divided into two

types: (1) Artificial and (2) Human. The first one refers to an artificial means when generating the PAI

and can be subdivided into two more categories, (i) Complete and (ii) Partial; these differ in the way

that the instrument is represented; one shows the complete artificial PAI, for example, a replay-attack,

while the other one simply mimics partial biometric characteristics of the original user, such as make-up.

In (2) it consists of using a human trait as a PAI and can be (i) Lifeless, like a severed body part; (ii)

Altered, including cosmetic surgery to alter a biometric trait; (iii) Non-Conformant, where different facial

expressions or deliberately partial biometric traits are given to the sensor in order to find flaws, as a

covered face; (iv) Coerced, where the genuine subject is presented to the sensor while in distress, being

forced to; (v) Conformant, which includes zero-effort imposter attempts such as the case of twin siblings

[10]. The attacks discussed below are all in the artificial category, this does not mean that other types

cannot be used, it simply states that, due to practicality and technology nowadays, these are the most

common.
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Figure 2.1: Different PA devices according to the International Standard ISO/EIC [5].

2.1.1 Photo Attacks

Photo attacks are carried out by presenting to the sensor a photograph of the original user. Such images

can be printed out on a paper (print attacks), or displayed on the screen of a digital device (digital-photo

attacks) as illustrated in Figure 2.2. There exists also the use of photographic masks, which are high-

resolution printed photographs where the eyes and mouth are cut out; this happens so the impostor can

wear it and portray natural movements, such as the iris movement or eye blinking and mouth twisting, to

mimic natural human behaviours.

Figure 2.2: Spoofing attack with a hand-held photo, also referred to as a digital-photo attack. [11]

Even when a countermeasure can detect a plain photo-attack, the attacker can fool this by simu-

lating facial and head movements by translating, rotating and warping a face print, which poses new

challenges to motion based methods as illustrated in Figure 2.3.

Figure 2.3: Example sequence of a warped photo attack from the CASIA Face Anti-Spoofing Database.

[12]
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2.1.2 Video Attacks

Video Attacks may be also referred to as replay attacks, and this type of intrusions consists in the

attacker replaying a video of the genuine user using a suitable device. These attacks are extremely

difficult to detect, since not only the 2D face texture is captured but also the dynamics and movement

of the genuine user. Even though these types of attacks are a more serious problem when compared

to photo-attacks, high-quality videos of a targeted person are much more difficult to acquire compared

to a frontal face photograph (easily acquired nowadays through social media). However, commercial

animation software [13] can also be used for such a goal, creating an animation from a 2D image,

exhibiting realistic liveness characteristics and motion.

2.1.3 Mask Attacks

In this intrusion type, a 3D mask of the genuine user is created and used to spoof the security system.

There are several types of 3D masks but essentially they all capture completely the 3D model of the

original person in detail so the normal use of depth cues, which can be used as a countermeasure to

the previous two types of spoofing attacks, become ineffective in this kind of attacks. Mask spoofing is

viewed as a high quality technology presentation attack since several resources to create a 3D mask

model of the genuine user are needed, which is not cheap and the higher the quality of such mask the

higher the chances of spoofing the system and more expensive the apparel. An example of such attack

can be seen in Figure 2.4.

There are several types of masks, such as latex or silicone, or even simpler and cheaper synthetic

appliances. The prices of these may range between 30e to 650e, depending on the material and quality

of the artefact [14]. These constraints make this type of spoofing less frequent than the previous two,

but more problematic as they are harder to detect.

Figure 2.4: 3D silicone face mask ordered from www.thatsmyface.com. [11]

As expected, these different variations of attacks all depend on the characteristics, such as the

resolution of the spoofing device or on the type of support used to present the artefact (fixed support or

hand-held). The external variability also influences the conditions of said outcome since it may depend

on the illumination and background circumstances.
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2.2 Presentation Attack Detection Methods

As discussed in the section above, facial recognition systems are vulnerable to various presentation

attacks, through several presentation attack instruments that can be nowadays generated with a high

cost-effectiveness, making identity verification and recognition using facial information among the most

active and challenging areas in computer vision. Even to this day, there are still ongoing major research

challenges as the ageing of subjects, the complete change of facial style (e.g glasses, facial hair) or the

complex outdoor lightning conditions among others. Some algorithms can achieve acceptable levels,

with a low error rate (topic discussed in more detail later on, in section 4.1), and are good enough

for consumer level applications. In this section some of the most used PAD methods are described in

detail focusing on the different types of analysis made by each algorithm, subdividing these in different

categories.

A PAD method can be defined as an automated determination of a presentation attack [5]. As

illustrated in Figure 2.5, PAD methods can apply four different dimensions: User Interaction Support,

Imaging Sensor, Contextual Information and Feature Extraction [15]. The combination of such dimen-

sions is often used in order to achieve a more complete PAD algorithm.

Figure 2.5: Classification of face presentation attack detection (PAD) algorithms. [15]

2.2.1 User Interaction Support

User interaction support may be applied when the user is willing to undergo a more thorough identity

check. These approaches may or may not require interaction with the user itself, which then will often

be used together with an analysis software to achieve a conclusion.

In such scenarios, PAD systems usually employ the so-called challenge response methods, which

consist on presenting to the user several challenges that can be answered voluntarily or not. Voluntary
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challenges would be portrayed as a pre-determined set of movements that are used to obtain several

angles and aspects of the individual. On the other hand, involuntary challenges consist in detecting

natural responses of the human body which can even be influenced by external stimuli or not. One

example of a natural involuntary response may be blink detection, illustrated in Figure 2.6, which consists

in continuously tracking eye movement and blinking that is unconsciously made by the user; this analysis

can be carried out by hardware as well as by a software [16] and the mouth movement can also be taken

into consideration.

Figure 2.6: Eye blink detection as a PAD mechanism in (a) video frames and (b) the corresponding

optical flow. [17]

As for involuntary challenges with stimuli, we have, for example, the natural pupillary response

to changes in illumination, or the tracking of the gaze to predetermined stimuli [18]. Unfortunately,

challenge response systems often fail against replay or mask attacks, with the eye region cut-out, need

dedicated hardware, which increases the computation cost, and some can require frequent, troublesome

user interaction, being often labelled as too intrusive. An in-depth eye scan and recognition could be

made but then the problem would cease to be facial recognition and would transfer to eye verification.

When trying to overcome user intrusion, imaging sensors might be a good option since they only require

a single image analysis.

2.2.2 Imaging Sensor

The type of face analysis that can be applied usually depends on the type of sensor used to capture

the image from the person. Typically, 2D RGB cameras are the most commonly used sensor nowadays,

nevertheless, the recent availability of richer imaging sensors is opening new possibilities for improved

PAD solutions. A low-cost depth sensor, such as the Microsoft Kinect, can be used to verify the existence

of depth in the image which can be used to completely negate some print-attacks [19]. Another way of

acquiring the sense of a depth model of the face is using a Light Field Camera (LFC) which is made up

of several small cameras that capture both the direction and the intensity of incident light rays, rendering

multiple images which, combined, can obtain the model of a face [20], see Figure 2.7. Another interesting

sensor technique is the use of thermal imaging and near infra-red (NIR) images [21] which can be used

to detect artefacts; the latter is used to capture images on a different spectrum, allowing to measure the

reflectance levels of the supposed captured face and being able to distinguish between a real face and
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an artefact since the human face has extremely low reflectance levels in the NIR spectrum.

Figure 2.7: Multiple depth images rendered by a LFC being (a) on a real capture and (b) a print-attack.

[20]

However, these depth sensors are completely powerless against any type of 3D mask attacks.

Thermal imaging also has its flaws since, during capture of an image, it passes through materials, thus

being useless against any type of wearable masks. In addition, NIR imaging is to be only used indoors

in a controlled environment, since the sunlight causes severe perturbation to the sensor.

In conclusion, imaging sensor methods are not frequently used since they can be expensive and

impractical, due to the installation of extra, specific hardware. Ideally, PAD methods would only need the

already used camera system included in the facial capture. With this goal, a variety of other methods

have been proposed, which have a need to be robust and reliable in order to detect any type of attack in

different conditions of acquisition.

2.2.3 Contextual Information

This dimension is related to the possibility of using contextual information, for instance including back-

ground and scenic cues, to detect any presentation attacks. This is possible in scenarios where the

image acquisition is done with a wide field of view camera and the PAD algorithm does not have to

concentrate only on the cropped face region of the subject.

For example, a background analysis is possible. If the sensor is in a fixed location there is a fixed

contextual information that can be used to detect any type of print attacks or handheld photographs.

There may also exist motion in the background, which allows to completely determine any type of print

or even replay attacks if the location in the background is different than usual [22].

2.2.4 Feature Extraction

Lastly, feature extraction schemes do not need user cooperation, have relatively low cost and can be

subdivided into two classes: static or dynamic methods. Dynamic approaches usually take advantage

of the temporal information from a video captured by the sensor by exploiting the motion across video

frames, for example. Therefore, this type of methods require more time as well as more computational
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effort compared to static based methods which only take into consideration a single captured frame by

the sensor.

When taking texture based analysis into consideration, we can analyse micro-textural patterns in

the captured sample and, this way, are able to successfully detect artefacts used in the attacks since

it can find flaws, due to printing defects or due to the low resolution of the used artefacts. A widely

used approach is based on Local Binary Patterns (LBP) [23]. It is a type of visual descriptor used for

classification; it divides the image in groups of pixels and compares each pixel to its neighbours (the

other 8 pixels), if a pixel is greater than its neighbours it is assigned the number 0, else 1, forming the

image histogram. This way, LBP techniques are able to capture the pigments produced due to printing

or the change of reflection caused by the quality of the artefacts, which can be seen in Figure 2.8. As

illustrated, there is a lack of pigments in the printed attacks compared to the bona fide sample, in the

case of an electronic display attack, the sample is better than the previous two although it is visible some

screen reflection. In addition, off-the-shelf methods use LBP analysis and several variations of this base

algorithm, proving to be one of the most effective PAD methods [24]. Even though it is widely used, this

method does fail and lacks robustness due to the change in the acceptance threshold, which logically

depends on the database and type of attack, and is only viable if the artefacts used have noticeable

imperfections or the screens present a reflection, which might not be the case.

Figure 2.8: LBP as a PAD method. (a) is a bona fide image; (b) a laser printed artefact; (c) an ink-jet

printed artefact and (d) a display attack in an iPad screen. [17]

Very similar to LBP methods and as often used, Binarized Statistical Image Features (BSIF) com-

putes a binary code string for each pixel in an image by convolving the acquired sample with a filter and

then binarizing the filter response. This binary code is considered as a descriptor of the image intensity

pattern. In addition, an histogram of the pixel’s code values can be obtained, which characterizes the

textural properties within image subregions [25]. Another texture frequency descriptor, that is also quite

similar to the LBP but specially deals with low quality and blurred images, is the Local Phase Quantiza-

tion (LPQ) [26] which uses the local phase information extracted by the Short Term Fourier Transform

(STFT) calculated in the neighbourhood of each pixel. Then, the basic LPQ features at each pixel are

represented by a vector with the STFT of its neighbours, being each element of this vector quantized
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(to restrict a continuous set of values to a discrete one) and its resulting binary quantized coefficients

are represented by an integer number and collected into a histogram. The decision threshold in these

two previously described techniques is made exactly as LBP, genuine faces present much more textural

properties in the subregions, in case of BSIF, and higher STFT coefficients in case of LPQ.

These previous texture based techniques can be improved in several ways, one very utilized im-

provement is the change in colour space analysis [27]. Although RGB is the colour space used by most

image acquisitions devices, it may not be the most suitable to process since RGB image analysis is

quite limited. There is a high correlation between the three components (red, green and blue) and there

is no separation between the luminance and the chrominance of a picture. This way, a grey-scale texture

analysis was firstly used to detect any textural information of the image and it was found that it works

well when there is enough spatial resolution to capture the face details. However, it fails when low reso-

lution pictures are presented since it cannot distinguish any differences between genuine or fake faces

[28]. Other methods use different colour spaces that preserve the luminance and the chrominance in its

entirety of an image, such as the HSV (Hue and Saturation which have the chrominance information

and Value for the luminance) or Y CbCr (where Y is the luminance, Cb the chrominance blue and Cr the

chrominance red), among others [29]. An example of these colour schemes can be seen in Figure 2.9

Figure 2.9: Example of a real face and the corresponding print and video attacks in RGB, grey-scale

and Y CbCr. [27]

Another type of methods worth mentioning is image quality based analysis, which differs fake faces

from real ones based on a general physical model that describes the recapturing process, uses physical

features and can even mix contextual background information. This concept assumes that when there is

a recapture of a sample, in case of any PA, there is a loss in quality on a textural level, this method might

even be improved if there is a benchmark of a captured image from the sensor to use for comparison.

In depth based analysis most methods use frequency algorithms to detect any 3D shape or part of

the face. Early work was based on a simple Fourier spectrum analysis which assumes that the existence

of a 3D shape leads to a difference in the low frequency region when compared to a simple face print
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that happens due to illumination [30]. With this technique it is possible to identify several parts of the

face, as the mouth and nose, due to the 3D frequency shape as it can be seen in Figure 2.10.

Another method is the eulerian motion magnification [31] that amplifies the frequencies within the

human range and allows to magnify the slight colour and motion modifications in the human face due

to the natural flowing of the blood as is even able to detect any distress the user might be experiencing

because of the increasing cardiac beat.

Figure 2.10: (a) is a live face image, (b) reconstructed by low frequency components. (c) is a fake face

image, (d) reconstructed by low frequency components. (e) is the 3D intensity image of (b) and (f) is the

3D intensity image of (d). [30]

When using a digital screen to present the attack, it is possible to do a high-frequency analysis

which becomes affected by the high brightness of the screen, blurring some pixels. Overall, this makes

the fake images show less detail in the borders due to the high illumination when compared to a real face

image [32]. This is possible by using a Difference of Gaussian (DoG) filter which basically consists in

subtracting a blurred version of the image with another less blurred version of the same image, obtained

applying different gaussian filters. This preserves the spatial information that lies between the range of

frequencies of the two blurred images, detecting the borders which can be seen in Figure 2.11, working

even with bad illumination conditions.

Figure 2.11: The original face with its DoG equivalent (first pair) and the recaptured image with its DoG

correspondence (second pair). A loss in detail can be seen. [32]
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Regarding focus analysis, variable focusing is a good example where the key approach is to utilize

the variation of pixel values between two images sequentially taken with different focus levels. Such

analysis is possible since in real faces focused regions are clear and others are blurred due to the depth

perception. On the other hand, with printed images there is little difference between photographs with

different focus levels. This is possible using the Depth of Field (DoF) [33], which determines the range

of focus variation when comparing the nearest and farthest pixels. In this method, the Sum Modified

Laplacian (SML) is used to measure the focus value and the difference between the summed patterns

of the SML vector in a real face is usually consistent while in a fake face is not.

Lastly and relative only to dynamic systems, optical flow or motion based analysis [34] provides

all the motion information when the difference of motion between two consecutive frames is short. It

analyses and compares the pixels between two frames by calculating the gradient and matching the

same pixels between these two frames. This way it can identify facial features and check for natural

head movements to prevent any print attacks. In Figure 2.12 it is possible to observe crucial optical

flow points. Even though it can be combined with other techniques, such as background analysis, it

is too computationally complex to use in real-time applications, since its computation is for each pixel

and higher resolution pictures present a better result but have a higher number in pixels, and may need

special hardware in order to achieve trustworthy results. Overall dynamic methods that require motion

have a high computational cost and a lack in generality, being only effective against any photo attacks,

assuring the liveness measure of the user.

Figure 2.12: Original images and respective grey scale with marked optical flow points. [35]

It is also not uncommon to find face PAD algorithms combining two or more feature extraction meth-

ods. The combination of some of the previous types of dimensions is also a possibility, these joint

systems are known as multi-biometric systems and may combine different hardware and software tech-

niques. Naively, these fusion techniques were assumed to be the solution to every problem since it is

only logical that the combination of several methods that analyse different biometric traits would increase

the complexity of the system and, therefore, would be much more difficult to counterfeit. This was proven

wrong due to the fact that the robustness of the system would not increase and by simply tricking one

of the uni-modal systems it could be enough to break in [36]. It is also important to make sure that by

fusing several techniques, the analysis of the captured data does not corrupt it or alter it such a way that

changes the outcome of the rest of the techniques, used methods have to be completely independent
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and complement one another. The two most used types of known fusions are at feature-level, where

the features extracted by different, but related, complimentary techniques can be put together in order

to achieve a better performance, and at score-level, where simply the output scores of the different al-

gorithms are fused, trying to complement the disadvantages of a used technique with the advantages

of another, using the average of the scores, for example. For instance, combining face and voice bio-

metrics that cross correlate between lip movement and speech analysis [37]. In addition, almost every

mobile phone or laptop companies nowadays are planning to equip their products with the standard

microphone, camera and with some new emerging complimentary equipment, such as multi-spectral

imaging [38], which can open new possibilities in the future of fusing these different type dimensions

methods.

In conclusion, feature extraction methods are the most used since they can be practical to imple-

ment, requiring only the camera system to detect any attack, and can be made without no user intrusion

whatsoever. Furthermore, each method focuses on solving a specific problem, lacking the robustness

needed. Each algorithm has its strengths and weaknesses but fusing techniques blindly just to comple-

ment their downsides without first checking if they work well together only leads to worse results [36].

Nevertheless, the growth in technology and resources may lead to a higher computational power and a

decrease in the price of hardware equipment, proving that a high computational cost method now or the

combination of several techniques that complement each other might be the solution in a near future.

2.3 Machine Learning in Presentation Attack Detection

Nowadays Machine Learning techniques are being deployed in almost every field of study. This hap-

pens due to the natural high dimensionality of the problems, usually these techniques work in a high-

dimensional space and can identify good solutions or connections out of many candidates, where some

might not even be visible to the human being. In addition, what has been learned by ML can be trans-

ferred and scaled across multiple applications and millions of users, which is a much more practical

approach to integrate expertise into data-intensive problems. Traditional software development uses de-

terministic instructions that are locked in place. This is an exceedingly unrealistic approach to building

relevant products, considering that the environment software operates in is dynamic where the system’s

conditions keep on changing. What is much more realistic is an application that can learn from its envi-

ronment and adapt to the shifting conditions and requirements that must be met, being the most realistic

extension in problem solving and automation capable of dealing with high amounts of data.

For these algorithms to be able to find solutions and connections between data they need to be

trained. There are several types of training, however the most common one, and the only one discussed

in this thesis, is supervised learning. In supervised learning there is a dataset, named training set,

which consists of labelled data, when a given input has an already known output, that is used to train the

algorithm. The objective is to minimize the error, which is defined by the error function later explained,

between the estimated output and the real output so when new inputs are given an acceptable result is

achieved. Furthermore, if the training set is large enough it can be divided into two folds, training and
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validation sets, where the latter is only used to adjust the parameters of the algorithm and to check for

overfitting of the network, where too much of the same training might always lead to the same result.

Machine learning algorithms are frequently used when building a robust anti-spoofing system when

a valid dataset is given and, as previously said, they are often used in two ways: standalone, where all of

the analysis is being relied considerably on the machine learning algorithm, or as a complement to other

algorithms, such as the classification based on several features, which is illustrated in Figure 2.13. In this

type of methods the features are hand-crafted, as in being previously extracted using another technique,

LBP for example, and then the trained classifier finds connections between all, or some, features that

are deemed important by the classifier, performing a decision in whether it is a presentation attack or

not. This is also known as feature classification.

Figure 2.13: Feature extraction and classification done individually.

Usually, for feature classification, the most used classifier is a Support Vector Machine (SVM) [39].

A SVM separates data belonging to different classes, creating a representation of it as points in a

hyperspace, separating each category by an hyperplane. The intriguing aspect about SVMs is that it

can separate non-linear separable data, using the kernel trick. The kernel trick consists in letting the

algorithm operate in a high-dimensional space without needing to compute the coordinates of the data

in said space, but rather by computing the inner products between the data in feature space, which

is much less computational demanding. However, a SVM can only separate two classes, meaning

that when facing a situation with several classes, which is not the case, it has to separate each pair

individually, increasing its computational effort. Another quite similar method to SVMs that can separate

more than two classes at the same time, is the Linear Discriminant Analysis (LDA) [40] technique, which

is also utilized as a dimensionality reduction and classification technique. LDA is not often used since it

assumes that the data is normally distributed and linearly separable, which is not usually the case.

Machine learning methods can also be used in the wholesome of the process, being able to ex-

tract features and classify them accordingly. This type of methods are known as deep learning, as was

previously stated, and can extract end-to-end features directly from raw data. This kind of deep rep-

resentation is discriminative and generalizes well if the training data is sufficiently large. The tool that

is mostly used for deep learning is a Convolutional Neural Network (CNN) [41]. These networks are

a specialization of Neural Networks, which try to resemble the architecture of the human brain, these

networks are constituted by several neurons interconnected, forming layers, as it can be seen in Figure

2.14. The input layer is given data and the network will try to learn and adapt following, similar to SVMs,

a loss function, since each connection has a weight that suffers tuning during the training process and

each neuron has an activation function that simply maps the resulting value accordingly, generating an

17



output response. There are also different types of layers in a network, usually in convolutional layers is

where the computations occur, representing high-level features in the data, and towards the end of the

network there are Fully Connected (FC) layers which provide the learning of non-linear combinations of

said features, classification, generating a meaningful output. A conclusion could be made by analysing

the output feature vector or the CNN may have the capability of fully classifying the input (imposter

or genuine in case of PAs). Usually, Neural Networks in general have the disadvantage of depending

heavily in the training set, more data often meaning better generalization and results.

Figure 2.14: Basic Structure of a neural network.

Regarding PAD methods, early works used CNNs as a simple feature extractor, conducting a back-

ground or temporal analysis [42] to extract important features and then using it as input to a SVM to

determine if the face was either real or fake. More recent methods become more imaginative regarding

machine learning techniques. In Alotabi et al. [43], before using a deep convolutional neural network,

it is first applied a nonlinear diffusion filter which is able to obtain the depth and preserve the boundary

locations that help distinguish a fake image from a real image. Thus, the edges obtained from a flat

image will fade out, whereas those from a real face will remain clearer as it can be seen in Figure 2.15.

Afterwards, the image is given as input to a 5 layered Neural Network where it determines if it belongs

to a genuine or imposter face.

Figure 2.15: (a) the top image is a real face and the bottom a fake one; (b) Normalized face; (c) diffused

image. [43]
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Having a higher emphasis on the data pre-processing, Yang et al. [42] conclude that hand-crafted

texture features techniques are unable to capture discriminative cues between genuine and fake faces.

This way, they rely on the CNN to do an image quality analysis by giving as input a spatial augmented

photograph rather than only the selected face image, displaying also the background so the network can

find discriminative features in the scenario as blurred edges or abnormal specular reflections caused by

the image recapture. Furthermore, they try to implement a temporal analysis as well, by extracting what

they deem a temporal feature from consecutive frames and by giving these consecutive frames together

to the neural network which, unfortunately, showed no improvement (the CNN architecture can be seen

in Figure 2.16). This latter technique was improved by Xu et al. [7] since the temporal structure used

in previous techniques was not fully correct because the CNN architecture itself cannot extract temporal

features and these also exist in pixels that are not in the same plane. A newly layer was introduced, a

Long-Short Term Memory (LSTM) layer, which has the ability to learn long range dependencies from the

input sequences. This way, the problem starts being treated as a video classification, this layer is put on

top of the CNN extracting temporal relations from different video frames.

Figure 2.16: CNN architecture of Yang et. al [42].

Atoum et. al [44] uses a fusion approach. Their architecture is composed by two neural networks,

each one doing their independent classification and afterwards fusing the scores, determining the output.

Firstly there is a Patch-Based CNN where a deep neural network is trained to learn rich appearance

features using different colour spaces, which originates better results when compared to RGB, as it was

previously discussed (see subsection 2.2.4). This network analyses random patches from an image with

the objective of increasing the number of training samples and to maintain the original image resolution

so quality is not lost. Each patch has a score determining how reliable it is. The other CNN does

a Depth-based analysis of each image, a depth label from a 2D image is generated using a method

that can estimate the 3D face shape model and the camera projection parameters based on the face

localization, orientation and geometry. Afterwards these features are given to a SVM which labels the

feature vector, giving it a score as well. The overall architecture of the fusion of these cues and an image

example can be seen in Figure 2.17.
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Figure 2.17: Fusion of a patch-based and depth CNN. Left column shows the output scores of the local

patches for a live image (top) and for a fake image (bottom), where the blue/yellow represent a high/low

probability of a presentation attack. The right column shows the output of the depth estimation, where

yellow/blue represent closer/further points. [44]

As previously discussed, a considerable problem of deep neural networks is that it requires a large

amount of data in order for the system to be robust. This proves true for presentation attack detection

since there are far too many known variants and conditions of attacks to the system, as mentioned

in section 2.1, and not that many training images. To enable the use of deeper networks for PAD

applications, a newly method was introduced by Y. Rehman et al. [45]. Usually, a network is trained

by iterating the whole dataset several times; each time all of the dataset is iterated through the neural

network is denominated as an epoch. With this in consideration, instead of only shuffling the dataset

once, before the whole training process as usual, this method shuffles the dataset before each epoch,

using only part of it for the actual training, increasing the robustness of the algorithm since the training

set varies in every epoch [45], preventing overfitting as well. Unfortunately, the training time and memory

usage severely increase.
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Chapter 3

Proposed Approach

As it was detailed in previous sections, presentation attacks have many variations depending on the

type of attack, what system the imposter is trying to break in, and on lighting or capture conditions of the

used artefact. Therefore, creating a presentation attack detection scheme robust enough to all possible

scenarios proved to be extremely difficult. In the preceding section, the most important state of the

art algorithms were discussed, presenting their advantages and disadvantages when facing each type

of PA. Furthermore, deep learning algorithms proved to be very powerful in determining discriminative

features from data, having, however, several disadvantages as the need for a big training set and taking

a very long time to be properly trained.

In this chapter, an architecture using deep learning is proposed and illustrated in Figure 3.1. To

begin with, a training set with facial images in order to train the network is needed, so several databases

were used, later presented in section 4.2. However, these sets are bestowed as simple videos, therefore

the capture of frames and detection of the correspondence facial region in each frame was needed,

existing several algorithms that allow this. In section 3.1.1 an older, simple method which is the most

used amongst state of the art techniques, is discussed. The Viola-Jones algorithm [46] is a feature-

based machine learning algorithm which is generally used for face or eye detection, being, however,

able to detect any object it was previously trained for. On the other hand, a newer approach would be

using the famous concept of deep learning as it is the method utilized to detect presentation attacks as

well. These are newer methods that present an increase in performance, presented in section 3.1.2.

Afterwards, in section 3.3, the used neural network’s architecture is presented. This network is

adapted to the PAD problem, by applying what is known as Transfer Learning [41], which is introduced

in section 3.2 and allows to use already existing networks trained for similar tasks to newly proposed

problems. This solves some big disadvantages of deep learning and proves fruitful when the training set

of the task at hand is small, in terms of its dimension and robustness, which is often the case with PAD.

Later on, in section 3.4, the modifications done to the neural network so it can be adjusted to the PAD

problem are detailed. Firstly, using the proposed architecture, presented in 3.1, an analysis of single

images is made and later on, that architecture is altered, allowing a full video analysis. In order to do

this a new layer is used, explained in section 3.5, which was added at the end of the network, known
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as Long-Short Term Memory (LSTM) [47], allowing a spatio-temporal analysis of a video, learning long

range dependencies from the input sequences.

Figure 3.1: Architecture of the proposed solution.

3.1 Face Detection

The used network receives as input pre-processed facial images with a fixed size of 224 x 224 pixels.

Therefore, facial regions in an image need first to be identified so they can be used as input to the

network. There are various tools for detecting faces, for example, a deep learning network could be

used as long as there exists high quantity of training data. With a deep learning approach a high

performance in facial detection in every situation is expected to be reached. However, properly training

a neural network takes time and a considerable memory usage, which proves to be inefficient if other

simpler method that perform just as well might be available. When taking this in consideration, a simpler

classifier can be an option. Even though this classifier needs to be trained as well, it has a simpler

architecture, does not need much memory when compared to a neural network and leaves training

faster. Although its performance is expected to be worse than the first approach, it should be only

noticeable in unconstrained capture conditions, such as when faced with sided capturing angles rather

than frontal or partially face occlusion in crowds. When regarding PAD techniques, usually the capturing

software requires the user to be close and frontally facing the sensor so these errors do not occur.

Nonetheless, a comparison between a conventional face detector and one based on deep learning is

presented, discussing their different approaches to the face detection problem.

After detecting the face region in each image, the PAD neural network can now be trained. Since

all of the databases used have a frame rate of 25 frames per second and present several videos, this

will lead to thousands of images with very low variability between consecutive frames. To decrease the

amount of redundant data, as well as to respect the memory usage of the system, the algorithm captures

only a few frames every second, depending on the used database’s size being usually between 3 to 5

frames, since it is enough to perform a complete analysis of the video. Afterwards these images are

resized according to the input of the neural network, with a size of 224 x 224 pixels and, according to the

type of analysis later explained, the colour space might also be converted. Finally and for each dataset,

all images are subtracted by their average facial image previously calculated.
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3.1.1 Face Detection - Haar Cascade Classifier

The Viola-Jones algorithm [46], introduced by P. Viola and M. Jones in the early 2000’s, is a machine

learning algorithm used to detect the eyes and faces in an image. It was a ground breaking technique

since it was fast and computationally cheap, and it was one the first face detection algorithms to run

on simple cameras and mobile phones. In order to do so the algorithm is trained with positive images

(images of faces) and negative images (images without faces). To extract features from each image, a

haar-feature extractor is used. As illustrated in Figure 3.2, each feature is a single value obtained by

subtracting the sum of pixels that lay under the white rectangle from the sum of pixels that lay under the

black rectangle.

During training, the best threshold which classifies the faces to positive or negative is found. To

calculate all features within an image, all possible sizes and locations of each haar-block need to be

used, which increases the computational cost and time drastically. In order to avoid this, the concept of

Cascade of Classifiers is introduced [46]. Instead of applying all of the haar-features on a window, the

features are first grouped into different stages of classifiers, being applied one-by-one. An example of

different haar-features and its employment are illustrated in Figure 3.3. All of the sections of the image

that are not relevant and do not include the face will contain very few number of features and can be

discarded in the early steps of classification, not belonging to a face region.

Figure 3.2: Examples of different haar-feature extractors, or haar-blocks, shown relative to a window. (A)

and (B) show a two-rectangle features, (C) a three-rectangle feature and (D) a four-rectangle feature.

[46]
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Figure 3.3: The top row are the haar-features which are then overlayed on a training face that is in the

bottom row. The first feature measures the difference in intensity between the region of the eyes and the

second compares the eye regions across the bridge of the nose. [46]

3.1.2 Face Detection - Deep Learning

Using neural networks to detect the facial regions has become increasingly more popular due to the

high computational power demonstrated by these, which allows to achieve a high performance in ad-

verse conditions. Usually the chosen approach when regarding the training of the neural network is the

detection of important facial landmarks, which are present in every face, therefore identifying the facial

region of the subject. However, training a neural network to detect faces is usually more computational

expensive when compared to the Viola-Jones classifier, and a vast training set has to be prepared. Face

Recognition CNN [48] is a state of the art face recognition algorithm built with deep learning, achieving

an accuracy of 99.38% on the Labelled Faces in the Wild (LFW) [49] database. This database of face

photographs was designed for studying the problem of unconstrained face recognition. All of its images

were gathered from the web and present different lighting conditions or angles. These conditions are

known as unconstrained since there are no constraints or control of the subjects’ expressions/camera

angle when regarding the conditions on the image capture.

In order to detect facial regions in images, this network uses a feature extraction technique known

as Histogram of Oriented Gradients (HOG) [50]. An image is first converted to black and white and the

gradient of each pixel is calculated. To do this, each pixel is analysed and compared to its neighbours,

analysing in which direction the image becomes darker, as illustrated in Figure 3.4 by an arrow. By

repeating this process for every set of pixels in the image, the arrows display the gradient of an image,

showing the flow from light to dark pixels. This method is preferred rather than analysing each set of

pixels since it is the variation of illumination that allows the identification of the face and not the pixel’s

values.
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Figure 3.4: When taking in consideration the group of selected pixels, the image is getting darker towards

the upper right.

In order to optimise the gradient’s computation, and since only the basic flow of lightness/darkness

is needed at a higher level, pixels are grouped in small squares with 16 x 16 size. The gradient is then

computed, allowing the capture of basic structures from a face, as it can be seen in Figure 3.5.

Figure 3.5: Original image and its HOG transformation, capturing the major features of a face.

Using the HOG technique, a training set can be calculated so that the neural network is able to

find any facial region by choosing the most similar pattern to a HOG facial region, denoted by a yellow

square in Figure 3.5. Even though this technique works well with frontal face detection, it does not work

when the sensor captures faces from different angles. To account for this, each face has to be warped

so that it is always in the same sample place on an image. In order to do this, an algorithm known as

face landmark estimation [51] is used. This algorithm allows to detect 68 specific points, or landmarks,

that exist on every face, then the neural network is trained to detect these landmarks. After knowing

where the eyes and mouth are, the image can be simply rotated and scaled so that it is centred as best

as possible, as it is displayed in Figure 3.6.
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Figure 3.6: Input image with its face landmarks detected together with sample images with the detected

faces.

This way, no matter how the face is turned, the algorithm is able to center the eyes and mouth so

that they are all roughly in the same position in the image. By having the face centered, face detection

using the previously explained HOG technique is possible.

3.2 Transfer Learning

Transfer learning is known as the application of knowledge gained from completing one task to help

solve a different, but related, problem [41]. Machine learning algorithms are typically designed to ad-

dress isolated tasks. During transfer learning, knowledge is leveraged from a source task to improve a

new task; however if the latter does not occur, the transfer method may end up decreasing its overall

performance, being nominated as a negative transfer. A major challenge when applying transfer learning

is to choose which algorithm to adapt to the new problem and how to adapt it without changing any key,

fundamental aspects of the original network which might negatively influence the result. This technique

proves fruitful when both problems are similar and there is not enough robust training data available for

the new problem, which is the case with most PAD methods.

It is important to note that in transfer learning the weights of the previous network, or knowledge,

have to be reused and retuned for the new problem, this is also known as the pre-trained model approach

[52]. This is possible since many research institutions release models trained on large and challenging

datasets that may have a similar objective as the task at hand. This model may be seen as a starting

point and can suffer several alterations from the original scheme in order to adapt the network to this

new problem. Usually, after changing what is necessary, the model’s weights may need to be refined or

tuned in order to completely converge according to the task of interest.

Other different, widely used approach is to reuse only the neural network’s architecture, resetting

the weights and start training from the ground up. This is not known as Transfer Learning and it is often

discouraged since architectures are built in accordance to the proposed objective. By using a randomly

chosen architecture only because it had a high performance in general, it will probably not achieve as a
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high performance in a completely different problem as a neural network built specifically for it.

Figure 3.7: Three ways in which transfer may improve learning. [52]

Ideally, and when applying transfer learning, it is possible to obtain three distinctive benefits from this

technique [52]. As illustrated in Figure 3.7 it might occur: a higher start, where the initial performance

of the algorithm usually has a better starting point than the one that is completely trained from the

ground up, this is mainly due to the similar objectives between the networks; a higher slope, the rate of

improvement of skill during training of the model is steeper than it otherwise would be since we are fine

tuning the weights; and a higher asymptote, where the converged skill of the model is usually higher

than it otherwise would normally be as some previously trained weights might lead to better and faster

converging results. Another aspect to have in consideration is that, since the problems are similar, there

is no need to train the totality of the network. This happens because the first layers have very basic

operations that suit both of the problems, so by tuning these layers the accuracy of the network might

actually decrease. The results regarding this hypothesis can be seen in section 5.2.

There is a huge amount of available neural networks that can be used as a starting point. There

are competitions performed yearly so the upcoming trends in machine learning can be introduced to the

research community and these state of the art neural networks can be shared. Nevertheless, to achieve

the best performance of the algorithm, a network with a similar objective must be found. Some of the

most used networks, such as ImageNet or GoogleNet, could be adapted to this problem. However

these networks deal with image classification problems, such as animals or action classification, and

despite their outstanding results, their original training is not as close to the topic of interest as intended.

Taking this into account, the chosen architecture considered as a starting point to the PAD problem is

the VGG Face descriptor [53], a convolutional neural network used for deep face recognition, introduced

by the Visual Geometry Group of the University of Oxford, which can identify more than two thousand

celebrities. Even though this network identifies the identity of the user and not a presentation attack,

it still deals with faces and its variations, also providing support to anybody that wants to use their

pre-trained model, being, this way, the chosen architecture.
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3.3 VGG Face Descriptor

The deep facial recognition descriptor from the Visual Geometry Group (VGG) is a convolutional neural

network considered ”very deep”, in the sense that it comprises a long sequence of convolutional layers

with several operations [53]. Its ultimate goal is the identification of two thousand, six hundred and twenty

two (2622) people considered celebrities, being its input a face image of size 224 x 224 pixels with the

average face (computed from the training set) subtracted. This network was derived from the VGGNet

[53], a deep learning algorithm which was a runner-up in ImageNet Large Scale Visual Recognition

Competition (ILSVRC) [54] in 2014, and showed that the depth of a network is a critical component for

good performance, surpassing 140M weights as trainable parameters.

Figure 3.8: Architecture of the original VGG Face descriptor.
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Regarding the architecture, and as illustrated in Figure 3.8, the network comprises 13 convolutional

blocks, which and as previously said, are the layers where the computation of high-level features of the

data take place, each containing a linear operator followed by one or more non-linearities such as ReLU

and max pooling. The ReLU (Rectified Linear Unit) is used as an activation function, which decides

whether a neuron should be activated or not or, in other words, decides if the information presented by

the neuron is useful or not. This unit is applied after each convolutional block being ReLU quite used and

accepted as one of the best activation functions for deep learning algorithms [55], which is mainly due

to its high flexibility in order to account for non-linear operations and presenting a good representation of

features. After each 2 or 3 convolutional blocks there is a max pooling function which is a sample-based

discretization process. Its objective is to downsample the input features from the previous layer, reducing

their dimensionality. This way, it is possible to aggregate the information over a small local patch with

reduced dimensions when compared to the previous one, as illustrated in Figure 3.9, leading to faster

computations and lower memory usage since the applied convolutional filters are smaller. However,

by applying too many max pooling layers the features may be severely reduced, losing discriminative

aspects important to the problem and can lead to a decrease in the overall performance of the algorithm.

In order to avoid this, the depth of the layer is usually increased, which is the case.

Figure 3.9: Example of a simple pooling operation. [41]

It is also important to note that throughout the network there are some dropout layers [56] which are

used to avoid overfitting and complex connections between neurons, as it is illustrated in Figure 3.10.

This is possible since, during training, a percentage (previously chosen by the programmer and, in this

case, 50%) of random neurons are deactivated, or dropped-out, usually improving generalisation as it

forces the others neurons to adapt to different changes. These have to fill in for the dropped-out neurons,

avoiding a specific specialization. When conducting tests, the dropout layers are disabled, being only

useful during training.
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Figure 3.10: Dropout model layer. (a) is a standard neural net; (b) resulting neural net when applying a

dropout layer. [56]

The last three blocks are instead called Fully Connected (FC) layers and, as previously said, usually

provide the learning and combination of all of the previous features, matching the size of the input data.

This way, each filter ”senses” the data from the entire image [41]. This happens because all neurons of

the FC layers are activated and chosen as an important factor to make a decision.

The last FC layer has a softmax as an activation function which can be seen as a classification layer

since it calculates the probability of the final feature vector belonging to each class, 2622 in the case of

the original VGG. It is equivalent to a categorical probability distribution where the sum of all probabilities

is 1. The function is represented in equation (3.1), where z represents the features with a vector size

K, being σ the probability output for each class j. Furthermore, the softmax function assumes that the

feature vector only belongs to exactly one class which proves to be true in this case, however, multi label

problems do exist.

σ(z)j =
ezj∑K
k=1 e

zk
, for j = 1, ...,K. (3.1)

3.4 Adapting the VGG-Face Network to PAD

In order to adapt the VGG network to the problem at hand, several factors had to be taken into con-

sideration. The goal is no longer about person identification, but rather presentation attack detection.

Therefore the result of the last layer was changed to a binary output, with the two considered classes

being either a bona-fide sample or a presentation attack. During training, and as previously introduced,

the algorithm optimizes an error function, also known as loss or cost function, which allows the compu-

tation of the network’s weights that lead to the best possible result, the minimum value of the loss. Thus

it is important to choose a function that suits the problem well. Having this in consideration the chosen

loss function was the cross-entropy, or the logarithmic loss, since it measures the performance of a

classification model whose output is binary or a probability between 0 and 1. This function increases as

the predicted probability diverges from the actual label as displayed in Figure 3.11. Binary loss functions

usually achieve similar results, however, cross-entropy is often the preferred since it combines well with
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the softmax classifier.

When other loss functions are used, the training can increase due to weight updating. In a binary

problem, the output is either 1 or 0 and the weights need to be adapted accordingly. However, by

using other loss functions rather than cross-entropy, the weight adjustment factor was found to decrease

constantly while training, which may lead to an increase in training duration or the optimal solution might

never be achieved [57].

Figure 3.11: Cross-entropy function.

To calculate the loss function at each step, during training, it is needed to take into consideration the

respective weights of the network and an optimizer. This optimization algorithm is simply a mathematical

function that helps to minimize the error at every step, updating the weights in the direction of the optimal

solution and applies a major role in the training process of the neural network [41]. Nowadays, the most

used optimizer in neural networks is the Adaptive Moment Estimation, or Adam [58]. This optimizer

is based on a gradient descent which calculates, using an adaptive rate, the ”direction” to where the

function either increases or decreases. In order to do this, it updates the weights that lead to the desired

minimum by calculating the gradient based on the current weights. The particularity of Adam, when

compared to other optimizers, is that it computes individual adaptive rates for different weights of the

network based on its previous values at the expense of memory, while in other optimizers there exists

an unique adaptive rate to update all of the network.

In order to compare this optimizer with others, the authors of Adam used the IMDB movie review

dataset problem [59]. This test consists in predicting the given score to a movie based only on its written

review. By using the same algorithm but only changing its optimizers, the training cost over the dataset

iterations was obtained and is summarized in Figure 3.12, where a lower cost means better efficiency.

This adaptive rate is also known as learning rate, a hyper parameter which controls how much

adjusting do the weights suffer in an epoch. A learning rate too low might never lead to the convergence

of the problem and too high might skip the optimal solution and never converge. This parameter is

also tuned according to training and, for this problem, has the value of 10−5. This rate is achieved
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through experimentation, and values between [10−3, 10−6] were tested. This very low value is due to

the problem of Transfer Learning, as previously discussed, the weights need to be fine-tuned and not

drastically changed, therefore the weight update has to be done smoothly. With the idea of optimizing

the converging efficiency, during training, early stopping was applied. This concludes training earlier if

the performance of the algorithm does not increase within a range of epochs, usually between 10 to 20,

concluding that the algorithm already converged to the optimal solution and that training does not need

to continue, allowing a faster training phase.

Figure 3.12: Comparison of the efficiency of the optimizer Adam with other known optimizers when

facing the IMDB database problem. [58, 59]

It is also important to mention that this is just one adaptation of many of the VGG network. There are

several variations of this network even when regarding other problems such as face detection or recog-

nition. Concerning PAD, techniques discussed previously in section 2.3 mostly use this architecture

and propose new alterations. In [60] VGG is altered only in the fully connected layers so the deep part

features, supposedly richer textures, can be extracted from the network. Other example is the FASNet

network [61], which proposes a presentation attack detection network based on the VGG architecture,

adapting the top layers. These two previous approaches use RGB images and train all of the network.

Other algorithms try to increase the efficiency of training deep learning algorithms using the VGG net-

work for PAD [45]. Even though the architecture is the same, there are many different propositions when

adapting any network to other problems and every one of them leads to different results, it is the changes

done to the network and its training that influence the outcome, being the common architecture just a

starting point.

3.5 Video Analysis

As discussed in previous sections, the analysis of a single image might not be enough to fully detect

any type of fraud (see subsection 2.2.4). Having this in consideration, some techniques analyse a small

32



sequence of frames instead. Traditional neural networks accept a fixed-sized vector as input, a single

frame in this case, and produce an outcome for each. This does not happen with Recurrent Neural

Networks (RNN) since they allow to operate over a sequence of frames, or a small video, as input

vectors.

3.5.1 Recurrent Neural Networks (RNNs)

In a RNN, as illustrated in Figure 3.13, A receives as input xt and outputs a value ht, also known as

state vector, and there are loops which allow the output information to persist several iterations [41]. A

RNN can be thought of multiple copies of the same network, each passing a message to its successor.

Figure 3.13: An unrolled recurrent neural network. [62]

Having this in consideration, these networks are intimately related to sequences and lists. More-

over, RNNs combine the input vector with the state vector to produce a new input, that depends on

previous iterations, calculated in every loop. RNNs can have several architectures, as it can be seen

in Figure 3.14. The one-to-one architecture is the standard neural network without any feedback loops

or memory; one-to-many outputs a sequence, usually used in image captioning where an image can

output a sequence of words, as image description; in many-to-one there is a sequence input, often

being utilized in an action or sentence classification; many-to-many in asynchronous mode is usually

employed in translation, where it first reads the sentence and, according to the context, translates it to

another language; finally, many-to-many in synchronous mode is often applied in video classification

where each frame is labelled, having an output.

Figure 3.14: RNNs architectures. Red rectangles are input vectors, output vectors are blue and green

vectors hold the RNN state, ht. [63]
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However, simple RNNs present a big disadvantage since they become unable to learn any connec-

tion between the presented information when the gap amidst the relevant data and the output increases,

being known as the vanishing gradient problem [47]. When the information presented is too vast, or the

input array is too long, the common RNN cannot find relevant connections between the data due to all

of the noise introduced. One layer that solves this issue is the Gated Recurrent Unit (GRU). However, it

does not allow to control or define a timestep, later explained, exposing the full hidden content without

any control, which is not advantageous in this situation. The presented videos are too large so a limit

in the analysis or grouping into smaller videos is a requirement. A layer that presents this feature and

solves the vanishing gradient problem as well is presented in the following subsection.

3.5.2 Long Short Term Memory (LSTM) Layer

Long-Short Term Memory (LSTM) networks are a special kind of RNN, capable of learning long-term

dependencies [47]. They are the chosen video analysis layer because the typical RNN disadvantage

does not occur as it is able to remember information for long periods of iterations, although presenting a

more complex module, as illustrated in Figure 3.15. The key aspect of LSTMs is the cell state [47], the

horizontal line running through the top of the diagram, which is regulated by structures called gates. A

gate is simply tasked to only let relevant information, learned by means of training, through.

Figure 3.15: LSTM module. Each line carries a vector, from the output of one node to the input of others.

The pink circle represents pointwise operations while the yellow boxes represent normal layers from the

neural network. Lines merging represent concatenation while forking serve as a content copy going

different locations. [62]

The first step of the LSTM is to decide what information is relevant to keep from the previous

iteration. In order to do this, a forget gate layer is used, ft, that is basically a sigmoid function (σ), which

simply analyses ht−1, the previous state, and the new input, xt and outputs a number between 0 and

1 depending on the relevance of the information, for each number in the cell state Ct−1. This is all put

together by W which represents the window of the operation. This can be simplified by the following

equation:

ft = σ(Wf .[ht−1, xt]) (3.2)

Afterwards, new information that is considered important to the problem needs to be stored. For this,
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another sigmoid function (σ) is used to determine which values will be updated, also nominated as

input gate layer, it. Then, a new vector of candidate values, C̃t, is created using the hyperbolic tangent

function, tanh, as presented in the following equation:

it = σ(Wi.[ht−1, xt])

C̃t = tanh(Wc.[ht−1, xt])
(3.3)

Now to update the old cell state, Ct−1, into the new state, Ct, the first is multiplied by ft, forgetting the no

longer important information and adding the new candidate values, it ∗ C̃t, which are scaled according

to their interest to the problem , leading to:

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.4)

Finally, to calculate the output of the LSTM, a sigmoid function is used again to decide what parts of the

cell state belong to the output, and its result is multiplied by a tanh that has the objective of comprising

the values between -1 and 1:

σt = σ(Wo.[ht−1, xt])

ht = σt ∗ tanh(Ct)
(3.5)

Concluding, LSTM generalizes well, allowing a complex spatial and temporal analysis [47] even if

the related inputs are separated by a relevant gap, bearing in mind that too large gaps may introduce

too much noise in real problems.

3.5.3 LSTM Layer Implementation

In order to implement this layer in the already existing architecture, the adapted VGG previously dis-

cussed in section 3.4, the last FC layer was removed from the network, feeding the features directly to

the newly added LSTM layer. These features are given to the LSTM layer which analyses their evolu-

tion over the time period. This time period, also known as timestep, is a new hyper parameter of the

proposed architecture and it is a measure of how many steps does the layer keep in memory in order

to make a decision. In an initial thought, the ideal value for this would be the time, in frames, of the

total video, however such is not possible since the LSTM network cannot find significant relations be-

tween images that are temporally too much apart, meaning that the image content may have suffered

significant changes.

By increasing the timestep, noise is added and more memory is needed while, on the other hand by

decreasing its value, relevant connections between frames are lost. In section 5.4 the optimal timestep

for this problem is discussed. After that timestep has passed, the memory of the LSTM layer is reset,

starting its temporal analysis all over again with a new set of frames. For this to be possible, during

the database pre-processing step, after the face detection and resizing, the frames are grouped into
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sequences and are no longer seen as independent. The input layer of the network has to be altered in

order to receive groups of frames that represent a sequence.

The neural network’s full architecture can be seen in Figure 3.16, where a 224 x 224 face image,

which was previously detected by the Viola-Jones algorithm and pre-processed, is given to the adapted

VGG network. Then, there is the LSTM layer which is followed by a softmax classification layer that

produces an output. The displayed architecture is during N timesteps and has a many-to-one display,

however, in section 5.4 a comparison between the two possible architectures for this problem, many-to-

many and many-to-one, is made.

Figure 3.16: Architecture of the neural network used for Presentation Attack Detection in N timesteps

with a many-to-one architecture. In red are displayed the inputs, in blue the output, in green the RNN

layer and the rest is the adapted VGG network.
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Chapter 4

Experimental Setup and Evaluation

Criteria

In order to perform all the required tests, to evaluate and compare the performance between the pro-

posed solution and state of the art techniques, different tools were used. Section 4.1 presents the

performance evaluation methods utilized, clarifying what are the used error metrics, and detailing how

are they calculated. Furthermore, and so that PAD techniques performance can be assessed, several

databases are used for testing, following the corresponding evaluation protocols. Therefore, a detailed

analysis of each employed database is presented in section 4.2, reporting on the conditions of capture,

what types of attacks they present and the employed capturing sensors.

To develop the proposed PAD system and to process all the needed data, the toolboxes OpenCV

and Keras were used. Open Source Computer Vision Library, or OpenCV [64], is the leading open

source library for computer vision and image processing, being mainly used to support all of the oper-

ations related to imaging, such as the capture and detection of faces and its pre-process. In addition,

Keras [65] is a deep learning library, which runs on top of TensorFlow, and it was developed with a focus

on enabling fast experimentation. This framework has a high modularity and a high-level API (Appli-

cation Programming Interface) in order to provide support to the user while creating its deep learning

algorithm, providing high extensibility, making Keras suitable for advanced research. This latter package

was used to support the development and tuning of the used neural network, allowing highly complex

operations to its completeness.

4.1 Performance Evaluation Metrics

Performance evaluation is an important task in order to assess if the algorithm’s contribution is what

is expected or not. With this in mind, every state of the art technique is evaluated so that it can be

compared. It is also crucial that the means of this assessment and its calculated metrics are the same

to every algorithm and allow a robust and demanding performance analysis. Having this in consideration

the used error metric is the Half Total Error Rate (HTER), later explained. Accuracy is quite used as well
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by other techniques since it is simple to calculate even though it simply states a hit or miss and it does

not provide important key conditions regarding misclassifications.

In order to fully understand the HTER, four major cases need to be considered [66] and summarized

in the confusion matrix presented in Table 4.1:

(i) True Negative (TN) - if the sample provided to the sensor is real (bona-fide) and the user is in the

database, being granted access;

(ii) False Positive (FP) - if the sample provided to the sensor is a bona-fide and the user is signed in

the database, being, however, not granted access due to an algorithm misclassification;

(iii) True Positive (TP) - if it is presented to the sensor a PA which is safely detected by the algorithm;

(iv) False Negative (FN) - if it is presented to the sensor an attack which is not detected by the system,

allowing the imposter to break-in.

According to this, it is possible to conclude that TP and TN show a well functioning of the algorithm,

whereas FN and FP are errors. However, FN is seen as a more alarming error since the access is

granted to the imposter. While in a FP, an attack is detected without being one, so the user needs only

to retake the image assessment process.

Table 4.1: Confusion matrix for Face Presentation Attacks. Being AD - Attack Detected, or signalled by

the algorithm, and AND - Attack Not Detected, or not signalled by the algorithm.

Prediction

Outcome

Actual Value

Bona-Fide PA

AD
False

Positive

True

Positive

AND
True

Negative

False

Negative

Even though false negatives are more important to detect when compared to false positives, the HTER

[66] gives both error types the same weight. It is the used error metric by the scientific community in

PAD, being calculated as the average of the False Acceptance Rate (FAR) and the False Rejection Rate

(FRR), as follows:

HTER =
FAR+ FRR

2
(4.1)

FAR, also known as Attack Presentation Classification Error Rate (APCER) [67], represents the weight

of the False Negatives, or the PAs that were not detected by the algorithm, when compared to all of the
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PAs, and, as previously said, is the error rate that is most alarming, being calculated as follows:

FAR =
FN

FN + TP
=
FN

PA
(4.2)

On the other hand, the FRR, or Bona-Fide Presentation Classification Error Rate (BPCER) [67], repre-

sents the weight of the False Positives that were deemed as intrusions without actually being one, when

compared to all of the samples that are bona-fide and is calculated as:

FRR =
FP

FP + TN
=

FP

Bona− Fide
(4.3)

This way, it is possible to obtain knowledge from key conditions of the algorithm’s performance which are

not available when simply calculating the accuracy and can safely conclude on the overall performance

of the technique.

4.2 Databases

When assessing the effectiveness of PAD techniques, publicly available face spoofing databases are

often used for benchmarking. Several of these have been collected and made available, using different

capturing devices, conditions and operating scenarios. In this section a brief description of each used

database is given, and in Table 4.2 an overall summary of all used databases can be seen. Even though

the following presented databases are not the most recently available, they were selected due to their

difficulty and popularity amongst other state of the art algorithms, so a wide comparison can be made.

The contents of each database consists in recordings of genuine user accesses and several types of

presentation attack attempts.

Table 4.2: Summary of the database characteristics used for presentation attack detection.

Database # Subjects
Acquisition

Devices
# Scenarios

Presentation

Attacks

Genuine/Attack

Samples

Replay-Attack [24] 50 1 laptop 2 high definition print, replay 200/1000

CASIA-FASD [12] 50 3 webcameras 1 warped and cut print, replay 150/450

4.2.1 Replay-Attack

The Replay-Attack database [24] consists in video sequences recorded by the built-in camera of a

MacBook Air 13-inch laptop, with a resolution of 320 x 240 pixels, where all videos, including either

genuine users or spoofing attacks, had the duration of at least 9 seconds. A total of 50 users participated

in this database acquisition, which was recorded under two illumination conditions: controlled, with an

illumination support, providing an homogeneous background; and adverse, where natural illumination
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was used in a more complex background. The presentation attacks presented were: high-resolution

print attacks, where photos and videos were captured using a Canon PowerShot SX150 IS to record

12.1 Mpixel photographs with a 720p quality; mobile display attacks, where photos and videos were

shown on an iPhone 3GS, with a resolution of 480 x 320; and high quality photos and videos displayed

on an iPad screen, with a resolution of 1024 x 768. These artefacts were either held by the attacker or

supported on a fixed stand. All of these previous examples are illustrated in Figure 4.1.

For evaluation and robust testing, the subjects were divided and could only participate in one of three

disjoint subsets, either in training or development, each one with 60 genuine and 300 attack videos, or

in testing, with 80 genuine and 400 attack videos. In the particular case of presentation attack detection

and by following the dataset evaluation protocol, the set for training should be used to train the algorithm,

whereas the development set should be used has a validation and also for hyper-parameter tuning.

Finally, the testing dataset should be used to assess the algorithm’s overall performance.

It is also important to note that this was the primarily used database to fine tune the neural network

and test its alterations, later detailed in chapter 5, since it is the most used database by state of the art

techniques, as well as the most robust since it presents diverse types of attacks with different conditions

among different people.

Figure 4.1: Examples of genuine accesses and spoofing attacks from the Replay-Attack database.

Column from left to right show examples of real accesses, printed photograph, display attack and tablet

attack. Moreover, the top row is from a controlled scenario whereas the bottom is from an adverse

scenario. [24]

4.2.2 CASIA Face Anti-Spoofing

The CASIA Face Anti-Spoofing Database (CASIA-FASD) [12] contains video recordings of genuine

users and PAs generated from high quality videos of the users. This database contains data captured

from 50 subjects whereas the PAs were constructed from the high quality recordings of the genuine

users. Three types of attacks were considered: warped photo attack, where the facial motion is sim-

ulated by bending a photograph, as displayed in Figure 2.3; cut photo attack, or photographic masks,

where the eye regions are cut off and the imposter wears the mask in order to mimic eye blinking or

movement; and replay attacks. When regarding the capture sensors, images were acquired with three

different imaging qualities: low with a long-time used USB camera that degrades image quality; normal,
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using a newly bought USB camera which keeps the original quality; and high, using a Sony NEX-5 cam-

era for recording. These have resolutions of 640 x 480, 480 x 640 and 1280 x 720, respectively. When

it comes to presentation attacks, videos were shown using an iPad with a resolution of 1280 x 720 and

in prints the same Sony high quality camera was used.

The complete image set for a subject is illustrated in Figure 4.2. This resulted in 12 videos per

subject, 3 genuine and 9 fake, resulting in 600 clips in the database. All of these subjects were divided

into disjoint datasets, separating the 50 subjects in training and testing groups, with 20 and 30 subjects,

respectively, for comparison purposes.

Figure 4.2: Complete image set for a subject. The top left images represent the low quality videos, the

bottom left normal quality videos and the right set are the high quality videos. For each set of photos

from left to right: genuine, warped photo attack, cut photo attack and replay attack. [12]
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Chapter 5

Experimental Results

In this chapter a description is given on several testing procedures. This chapter consists of six sections

where the first five correspond of intermediate results, tests in order to fine tune as well as optimize the

algorithm’s performance, and the latter section is where a comparison between the proposed solution

and state of the art techniques is made. Throughout all sections, several graphs from the algorithm’s

training are shown, these represent its accuracy and loss during training, on both the training set and

validation set. As previously mentioned, accuracy represents the correctness of the algorithm. Moreover

loss, in this case cross-entropy, describes how well is the model performing for each respective set.

However, when assessing the network using the testing set, the HTER together with FAR and FRR are

the preferred metrics.

Firstly, in section 5.1 a comparison in performance between the two previously discussed face

detection algorithms is made. Afterwards, in section 5.1 an assessment between the two proposed

face detection classifiers is made. Moreover, in the following section, 5.2 the advantages of Transfer

Learning are assessed by training only parts of the neural network and freezing the rest. Furthermore,

in section 5.3, an analysis when representing the input images in different colour spaces is made to

conclude whether changing the original network’s colour space has an impact in the results. Section

5.4 presents the obtained results when introducing the LSTM layer in the architecture. For this to be

possible new hyper-parameters such as the timestep as well as the network’s architecture have to be

taken into consideration and fully analysed. Finally, in section 5.5, several architecture fusion methods

are taken into consideration. These fusion techniques ideally compensate errors that only happen in the

standalone architectures, by matching features from both architectures it is possible to achieve a better

performance.

After fully tuning the network a comparison between the already used techniques needs to be made,

which is discussed in section 5.6. In this section, the overall performance of the proposed solution is

assessed, using the databases already mentioned in previous sections. Moreover, and to determine

the robustness of the algorithm, demonstrating why PAD is still an open problem, a more demanding

inter-database test is performed.
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5.1 Face Detection

When comparing an older, simpler algorithm as the Viola-Jones to a more complex face detection neural

network it is expected that the latter has an increase in performance. Furthermore it is expected that

the first algorithm fails when adverse conditions are presented, such as bad lighting, and when the

subject is not facing the capturing sensor. To confirm this, a still in-development unconstrained database

was used, which consists of 50 subjects, where for each 36 images were captured. These were taken

under normal lighting conditions, indoors and outdoors with different occlusions, facial and capture angle

variations. A few sample images from this database can be seen in Figure 5.1.

Figure 5.1: Small sample of the captured unconstrained database. Many variations are displayed such

as different levels of zoom, lighting and occlusions by hand or by looking the other way.

The test consisted in running both algorithms through the set of photos and see which one achieved

the best performance. As expected the deep learning algorithm successfully detected all faces present

in every photo while the Viola-Jones algorithm managed only to detect the faces that were front facing

the sensor without any type of occlusion. Some examples where the faces were not detected by the

Viola-Jones algorithm can be seen in Figure 5.2. In Figure 5.1, the face of the subject in the second and

third photographs were also not identified. As shown by both examples, the cases where Viola-Jones is

unsuccessful usually happen when a photograph is captured with adverse lighting conditions and/or the

subject’s face is occluded. If the subject is not frontally facing the camera, as is the case of half-profile

or full-profile pictures, it also remains undetected by the algorithm. On the other hand, the used facial

identification neural network proves to be successful in all of the cases.

Figure 5.2: Small sample of the failed cases when using the Viola-Jones algorithm for face identification.
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When employing face detection in the PAD problem we can conclude that even though the used neural

network achieves a higher performance, PAD sensors require the subject to be facing frontally when

the capture occurs, without any type of occlusion. Therefore, Viola-Jones disadvantages might prove

useful to presentation attack detection as the algorithm does not recognize a face when the previously

explained adverse conditions are met whilst in the high performing neural network all condition variations

prove no challenge to the algorithm. Concluding, both algorithms prove useful depending on the objec-

tive. Furthermore, when the used PAD databases were tested, the Viola-Jones algorithm successfully

detected all the available faces.

5.2 Neural Network Fine Tuning

As it was referred in section 3.2, there is a similarity between face recognition and face presentation

attack detection, which stills needs to identify discriminative features of the face. So, when adapting

the VGG neural network to the PAD problem, we know that initial convolutional layers capture low-level

image features, such as edges, while deeper convolutional layers capture increasingly more complex

details [41]. This way, an hypothesis can be made in which the proposed neural network adaptation

should achieve better performance by only fine tuning the last parts of the neural network instead of

the whole model. In order to confirm this, a test was made in which the entirety of the network was

frozen, meaning that the weights cannot be altered during training, keeping its original values, and,

subsequently, deeper layers were unfrozen and trained, testing the performance of the network to the

PAD problem. Such results can be seen in Table 5.1.

Table 5.1: Performance of the network when only fine tuning some of its layers.

Trained # Parameters Accuracy (%) FAR (%) FRR (%) HTER (%)

Fully Connected (FC) 119,554,050 76.9 40.6 86.4 64.5

FC + 1 conv. block* 126,633,474 81.7 29.3 58.9 44.0

FC + 2 conv. block* 132,533,250 83.0 28.4 50.5 39.5

FC + 3 conv. block* 134,008,578 89.4 14.4 32.0 23.2

Full Network 134,268,738 84.2 21.0 53.0 37.0
*Conv. block represents the group of 2/3 convolutional blocks before the max pooling operation as it was explained in Figure 3.8.

As it is demonstrated by the table, highest performance can be achieved by skipping the training for

the first two convolutional blocks since they present introductory operations and, by tuning the weights

of these convolutional blocks, robustness and performance is lost. In fact, if we train the whole network,

performance decreases, showing the advantages of Transfer Learning and confirming the presented

hypotheses.

When performing training the expected result is that the training loss decreases while accuracy

increases. However, this might not happen in the validation set. Regarding the relation between the

validation accuracy and loss, the latter decreases as the training process takes place, except for some

fluctuations introduced by the optimizer or dropout layers (which introduces random noise as previously
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discussed) whereas the first increases. If the validation loss decreases and the validation accuracy

increases the training process is going well since the lower the loss the higher the robustness of the

network. On the other hand, if the validation loss starts increasing and validation accuracy starts de-

creasing we are in the presence of overfitting. Finally, if both the validation loss and accuracy increase,

then it means that the regularization techniques (e.g dropout) are working against overfitting. This is only

true if afterwards the loss starts decreasing whilst the accuracy increases, else the model is diverging.
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Figure 5.3: Network’s performance of accuracy and loss during training. The first row corresponds to

the training of only the FC layers, the second is of FC + 3 conv. block and third is the whole network.

Curves labelled as ”train” are originated from the training set and ”val” are obtained when validating the

network with the validation set.
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The graphs relative to the training of the neural network are displayed in Figure 5.3. As it can be

seen, training converges fairly quickly in all cases with the highest performance being when freezing

the first two convulotional blocks of the architecture (as it can be seen in Figure 3.8). Even though the

accuracy shows a high performance of the algorithm, above 90% in the validation set, the loss function

presents a high error rate in the same set, which demonstrates a low robustness of the algorithm to other

sets other than training. Furthermore, the calculated error rate in Table 5.1 is too high for the network to

be considered a good solution to the problem. In order to further increase the algorithm’s performance

other colour schemes than RGB were considered and presented in the following subsection.

5.3 Colour Analysis

As discussed in section 2.2.4, performing an analysis in theRGB colour space can be quite limiting since

there is a high correlation between the three channels, leading to a low quality feature extraction. Having

this in consideration, other colour spaces that allow a separation between luminance and chrominance

of a picture were considered. By fully separating these channels, the images are richer in features,

presenting an increase in textural information. This way, a HSV and Y CbCr analysis was performed. To

do this and as previously mentioned, during the dataset pre-processing all images had to be converted

to the corresponding colour space before giving it as input to the neural network. Furthermore, and as

demonstrated in the preceding section, the algorithm achieved better performance when freezing the

first two convolutional blocks of layers of the VGG descriptor. However, in this case, by changing the

colour space the original training of the VGG network might not be fruitful to the problem since its original

weights were trained using only RGB images. By changing the colour space of the training data, all of

the weights might need to be adjusted to this new approach. In the following Table, 5.2, a fine tuning

with different colour spaces analysis is displayed.

Table 5.2: Performance table of different colour spaces. Best values of each space highlighted in bold.

RGB HSV YCbCr

Trained Accuracy (%) HTER (%) Accuracy (%) HTER (%) Accuracy (%) HTER (%)

Fully Connected (FC) 76.9 63.5 93.2 14.6 87.4 27.7

FC + 1 conv. block* 81.7 44.0 96.2 12.4 89.1 22.8

FC + 2 conv. block* 83.0 39.5 95.0 10.5 93.6 13.3

FC + 3 conv. block* 89.4 23.2 96.7 7.0 94.4 11.7

Full Network 84.2 37.0 96.9 6.5 95.7 8.5
*Conv. block represents the group of 2/3 convolutional blocks before the max pooling operation as it was explained in Figure 3.8.

As displayed in the table, when using Y CbCr and HSV a far better performance is achieved, being

the highest value when performing a HSV analysis with only 6.5% of error (while in the RGB analysis

the system presented an HTER of 23.2%). Furthermore, both the best values were obtained when

training the whole network, which confirms the proposed hypothesis. Since the conditions of the current
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training set, the colour space in this case, differ from the original training of the VGG network, all weights

are no longer adapted to these new colour spaces and need tuning. The training graphs of the accuracy

and loss of the model for both colour spaces can be seen in Figure 5.4. As it is possible to visualize, the

validation accuracies are much higher when compared with the previous approach, displayed in the top

row, and the losses are much lower. The solution also converges fairly quicker, taking leverage from the

original network’s weights proving that employing transfer learning still presents its benefits.
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Figure 5.4: Network’s performance of accuracy and loss during training. Top two graphs are from the

RGB colour space, middle is HSV and bottom is Y CbCr. Curves labelled as ”train” are originated from

the training set and ”val” are obtained when validating the network through the validation set.
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In addition, the spike that occurs in the Y CbCr graph, where the highest loss and lowest accuracy

occurs, shows the employed regularization techniques in action to avoid overfitting. The next step is to

add the LSTM layer in the model so a time evolution analysis along a sequence of frames can be made,

this way, the feature extraction will be much richer, extracting the already known features and adding the

new, time and spatial related features.

5.4 Video Analysis

When regarding the analysis of consecutive frames, the usual type of used networks are the Recur-

rent Neural Networks (RNNs), as previously said, they introduce recursive operations and, through this,

allow valuable information to persist throughout several iterations. However RNNs present a disadvan-

tage, nominated as the vanishing gradient, where these networks become unable to learn any relevant

connection between the presented information when the input array is large and the gap between the

relevant data and the output increases. One type of RNN that solves this problem is the Long Short

Term Memory (LSTM) layer.

When applying the LSTM, the RGB colour analysis was not considered and tests were only con-

ducted using the HSV and Y CbCr colour spaces since they presented the most promising results.

During training the best models previously presented in Table 5.2 were used, meaning that the models

with best performance for each colour space were selected. Consequently, they were then frozen and

only the newly added LSTM layer is now being trained. This allows to test how adding the new RNN

influences the system.

To begin with, a tuning of the LSTM layer hyper parameters has to be done. As it was detailed

in section 3.5, a new assessment regarding different timesteps needs to be taken into consideration.

As it was discussed, the timestep value allows to determine for how many frames, or for how long, the

algorithm keeps analysing the video images before making a decision, forgetting previous iterations. If

the timestep value is too low then it would result in a premature decision, which may lead to errors, and

if it is too big it introduces noise, underperforming as well. Secondly, it is also important to experiment

which architecture, discussed in section 3.5, is best for this specific analysis. From the four possible

architectures, presented in Figure 3.14, only two were chosen for this specific problem as they are the

most appropriate for the problem. The first is a many-to-one architecture where a sequence input has

only one output and is often used for classification, as is the case. On the other hand, in a many-to-

many synchronous architecture every input has an output classification, which might also be a possible

solution for the problem. In order to apply these changes to the neural network’s architecture, in the

case of a many-to-many architecture, every output of the LSTM layer had to be given to the softmax,

meaning that every frame produced a decision which had to be combined in the end by a softmax

activation function, rather than having one final output produced only by the final LSTM layer, which is

what happens when using the many-to-one architecture.
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The results when tuning both of these hyper parameters were only obtained for the HSV colour

space, since it had the best performance, and are summarized in Table 5.3. From the table it is possible

to conclude that a many-to-one architecture is the most adequate for the problem as it achieves the

lowest HTER values. This is mainly because this approach is better for action classification, which

is the presented case, to classify whether the sensor is in the presence of a bona-fide sample or a

presentation attack. Better performance is achieved by outputting an answer after analysing the whole

group of frames rather than deciding in each singular frame what action is taking place, since we do have

more information after the process. Regarding the timestep analysis, the best value found is seven, this

shows that by analysing groups of seven frames, which corresponds between a three to five seconds

window in the presented videos, the best possible outcome is achieved.
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Figure 5.5: Network’s performance when adding a LSTM layer with 7 as the chosen timestep with a

many-to-one architecture. Top row is HSV analysis and bottom is Y CbCr.
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Table 5.3: Network’s performance with various timesteps and different architecture. All values are in %

and best highlighted in bold.

Many-to-one Many-to-many

Timestep Accuracy FAR FRR HTER Accuracy FAR FRR HTER

5 98.5 1.6 7.8 4.7 97.8 4.5 6.1 5.3

6 98.8 2.3 4.1 3.2 98.1 4.3 3.9 4.1

7 99.2 0.6 1.6 1.1 98.4 4.0 2.8 3.4

8 97.9 4.3 2.4 3.4 97.7 6.5 3.1 4.8

9 97.1 9.0 3.0 6.0 96.0 11.0 4.4 7.7

After obtaining the hyper parameter values for the timestep as well as the network’s architecture,

tests were also conducted using the Y CbCr colour space and the results with and without the LSTM layer

are summarized in Table 5.4. Furthermore, in Figure 5.5, it is possible to visualise the training graphs of

the models. In this case the accuracy reaches its best value when compared with the previously reported

approaches, and the loss is extremely low (0,1 represents certainties near the 90% as was shown in

Figure 3.11). By analysing both the table and the graph, it is possible to conclude that the LSTM layer

does in fact provide with newer and richer features, allowing a more wholesome and versatile analysis.

Table 5.4: Comparison in both colour spaces with and without the LSTM layer. All values are in %.

HSV YCbCr

Accuracy FAR FRR HTER Accuracy FAR FRR HTER

Without LSTM 96.9 2.3 10.7 6.5 95.7 11.8 5.3 8.5

With LSTM 99.2 0.6 1.6 1.1 99.0 0.5 2.5 1.4

5.5 Fusion Testing

As it was previously introduced in 2.2.4, the combination of two or more feature extraction methods is

often possible, being referred to as multi-biometrics. These fusion systems increase the complexity of

the system and allow, in the best case scenario, to correct mistakes of each standalone techniques. This

is possible because if there is a condition where a method fails, it might no longer fail when combined

with another that performs well in said condition. However, and as previously said, the blind combination

of methods just to increase the complexity of the system often proves unfruitful and it even might reduce

the technique’s performance. This is mainly due to the manipulation of the capture data, used by one

method, which corrupts or alters the same data, leaving it unusable for the other method, ruining the

fusion. So for fusion techniques to be possible, the used methods need to be independent and able to

complement one another.

In a multi-biometric system, fusion can be performed depending on the type of information available,

usually being divided in four modules [68]: sensor, feature extraction, matcher and decision module.
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Consequently, these four modules can lead to four different levels of fusion, as displayed in Figure 5.6,

and explained as follows:

• Sensor level: This fusion happens prior to matching, which usually means that once the matcher

of a biometric system is invoked the amount of information available decreases. This fusion level

refers to the matching of either the same trait acquired from different sensors or from different traits

acquired from the same sensor;

• Feature level: This level of fusion also happens prior to matching and it refers to a combination of

different feature sets extracted from multiple biometric sources or techniques. When the feature

sets are homogeneous, such as multiple measurements of the same person’s hand geometry for

example, a single feature vector might be calculated by combining the weights of each. When the

feature sets are heterogeneous, sets that came from different biometric methods or are simply not

relatable, concatenation is possible;

• Score level: This fusion happens after matching and it refers to the combination of match scores

generated by different methods. The resulting score can further be classified into combination or

classification. In combination, the individual matching scores are combined to generate a single

scalar score, which is used to make a final decision, e.g: probability fusion such as average, sum,

product, etc. On the other hand, in classification a feature vector is constructed using the matching

scores output by the two methods and then classified as accepted or rejected;

• Decision level: In this level of fusion the final decision outputs by each standalone system is

consolidated by different types of techniques. An example could be minutiae based matching,

used in fingerprint biometrics where several algorithms are able to detect key point, minutiae, on

the ridges in fingers. Other can be texture based matching that filters an image and combines with

others.

Figure 5.6: Different levels of fusion techniques in a biometric system. [68]
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In order to conclude if any of the fusion levels introduced above can be employed using the stan-

dalone methods, first an analysis of its errors must be made. By fully analysing the best model’s misclas-

sifications, in each colour space, when using the test set of the Replay-Attack database summarized in

Table 5.5, it is possible to notice that even though the number of errors are small, the majority of samples

where they occur do not match. So, if a fusion of these colour space analysis were to be possible, the

error rate might decrease.

The classification array of each colour space is given by the probabilities of a sample being bona-

fide or a presentation attack. Ideally, in the presence of a bona-fide sample the output vector would be

(1, 0), being the first array position the certainty, between 0 and 1, given by the network that it is in the

presence of a genuine user and the latter the certainty, between 0 and 1 as well, of it being an attack.

In this case with the employed methods, two fusion techniques were experimented. The first fusion

taking place at the score level, since both methods output probability arrays, a fusion of these arrays

might be possible using score combination techniques. The second fusion can happen at the feature

level, where the non homogeneous features, originated from different colour analysis, can be combined

by concatenation. Sensor level and decision level fusion were not taken into consideration since these

levels do not exist or cannot be specified in this architecture. It is also important to mention that the

following fusion methods were performed using the output of the best models in each colour space,

previously presented in Table 5.4.

Table 5.5: Number of misclassifications of each colour space when using the test set in the Replay-

Attack database. There were a total of 360 bona-fide samples and 1080 presentation attack samples.

HSV YCbCr

Bona-fide
Presentation

Attack
Bona-fide

Presentation

Attack

Misclassifications 5/360[1] 10/1080[2] 8/360[3] 11/1080[4]

ID of samples that were misclassified [1]: 66, 68-71; [2]: 485, 1172-1175, 1676, 1768-1771;

[3]: 232-239; [4]: 1136, 1144, 11280-1283, 1464, 1768-1771

5.5.1 Score Level Fusion

A score level fusion approach consists in running the two models independently from one another and

fusing the probabilities of each class that is produced by the softmax classifier. Several score level

methods were used:

• Maximum, being the higher probability of all the four cases, (bona-fide and PA for the two colour

spaces) considered as the correct one;

• Summation, being the two probability vectors summed;

• Product, being the two probability vectors multiplied;
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• Weighted value between cross-misses, this weight corresponds to the reliability of each colour

space and its calculation is based on the errors from each class (bona-fide and PA) in the validation

set, where W1 and W2 is the bona-fide and PA weight, respectively, and CS a colour space. Being

the weights for one of the colour spaces given by the following expressions:

CS1 : W1 = 1− CS1(FN)

CS1(FN) + CS2(FN)
, W2 = 1− CS1(FP )

CS1(FP ) + CS2(FP )
;

CS2 : W1 = 1− CS2(FN)

CS1(FN) + CS2(FN)
, W2 = 1− CS2(FP )

CS1(FP ) + CS2(FP )
;

(5.1)

• Weighted values between correct cases, which represents the confidence for each class, bona-

fide or PA. It is calculated as the number of misclassifications divided by the sum of all existing

cases:

CS1 : W1 = 1− CS1(FN)

CS1(TN)
, W2 = 1− CS1(FP )

CS1(TP )
;

CS2 : W1 = 1− CS2(FN)

CS2(TN)
, W2 = 1− CS2(FP )

CS2(TP )
;

(5.2)

The results of these fusion metrics are displayed in Table 5.6. Even though there is an improvement

when compared to the Y CbCr colour space, the standalone HSV analysis has a higher performance

than any of the fusion results which do not appear to have almost any difference in performance. After a

thorough analysis it is possible to conclude that this happens due to the certainty of the algorithm which

is always above 90%, even when it is the case of it being incorrect. With such high percentages any

score fusion technique will not work well since it only helps in solving cases where there exists some

uncertainty by the network.

5.5.2 Feature Level Fusion

Another method for joining the two colour spaces’ results is at the feature level. This fusion type consists

in joining the two network’s architectures by concatenating the resulting features before giving them to

the softmax classifier, as illustrated in Figure 5.7. This method has the objective of training the classifier

with features from both colour spaces, this way, a more vast analysis can be made, since there are a

more variety of features. In order to do this, and due to insufficient memory, the models had to be run

in parallel and the output features, from the LSTM layer, were saved in both situations. Afterwards, a

new model was created with only the softmax classifier which was trained with the concatenated feature

vector.
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Figure 5.7: Architecture of a feature level fusion by concatenating the resulting features of the LSTM

layer. In red are displayed the inputs, in blue the output, in green the RNN layer and the rest is the

adapted VGG network.

The results are displayed in Table 5.6 and as it can be seen feature level fusion does not increase

the algorithm’s performance. This is mainly due to the high range of the feature vector, while these

are useful and discriminative in their standalone architecture, when concatenating these features they

become redundant, introducing too much noise in a way that any decision can be made. This way, it

can be concluded that fusion techniques do not prove fruitful in this case since the standalone HSV

architecture has the best performance when compared to the considered fusion techniques.
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Table 5.6: Results of both score and feature fusion methods when compared to each standalone colour

analysis.

Accuracy (%) HTER (%)

Standalone HSV 99.2 1.1

Standalone Y CbCr 99.0 1.4

Maximum 98.1 2.7

Summation 99.1 1.2

Product 99.1 1.2

Weighted Cross-Miss 99.1 1.2

Weighted TN/TP 99.1 1.2

Feature level 96.6 3.3

5.6 Comparison with State of the Art Methods

After fully developing and tuning the proposed system, a performance assessment and comparison

against state of the art methods is presented. The algorithms considered for comparison are the ones

reporting the best performance values until this date, proposing mostly textural and/or motion analysis

solutions, or other deep learning algorithms.

Two assessment evaluations were made, firstly each database was used for training and testing

independent from one another, being named as intra-database test. On the other hand, to test the

generalization ability of the proposed solution and others, in terms of robustness, an inter-database test

was performed. In this latter assessment, one database is used to train the algorithm, but testing is

performed with sets from the other database. This type of test allows assessing the full robustness

of the systems in a more demanding cross-database scenario since by changing the databases every

aspect of acquisition is completely altered: conditions, image quality, people, capturing sensor and so

on.

The results of the first test are summarized in Table 5.7. It shows that amongst all of the tested

databases, the algorithm performs well with quite good results when compared to other techniques. By

analysing with more detail the conditions where misclassifications happen, it is possible to conclude that

the majority of errors happen when high quality presentation attacks are given to the sensor, specifically

when photographic masks are presented to the sensor, in the CASIA dataset. In a high quality image,

usually with a high resolution, around 1024 x 720 pixels, the face is detected and then it is resized by

an image with 224 x 224 pixels. This greatly downsamples the target image. With this, rich features that

can identify the attacks are lost together with quality and, by analysing the remainder features it leads to

an attack being incorrectly identified as genuine. An example of this is again the case of photographic

masks, which are prints with a high quality, where both the eyes and mouth are cut out in order to mimic

normal face movements. By downsampling these images the algorithm cannot detect the usual print

attack features, such as the paper reflection and its low image texture when compared to a genuine

face, but can detect movement which influences the system into accepting the sample as genuine.
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Table 5.7: Performance and comparison between state of the art methods.

Methods
Replay-Attack CASIA-FASD

HTER (%)

LBP[24], (2012) 13.80 18.20

LBP - TOP [69], (2012) 7.60 10.60

LBP - GLCM [70], (2013) 7.20 -

Motion [71], (2013) 11.70 26.00

Motion + LBP [72], (2013) 5.10 -

Motion Mag [73], (2014) 0.25 14.40

Deep Learning [74], (2015) 2.10 7.34

Fine-Tuned VGG [60], (2017) 4.30 -

DPCNN [60], (2017) 6.10 -

Nonlinear Diffusion CNN [43], (2017) 10.00 -

FASNet (CNN) [61], (2017) 1.20 -

Patch + Depth CNN [44], (2017) 0.72 2.27

(1)(HSV + YCbCr) LBP [28], (2018) 2.90 6.09

Proposed Method 1.09 10.32

As it is displayed in the previous table, most algorithms present a good performance throughout all of

the chosen databases, which may raise doubts concerning the necessity of the still ongoing investigation

about face presentation attack detection. If there are algorithms that achieve such low error rates then

why is PAD an open problem. In spite of these methods achieving high performance rates when following

each datasets’ set of rules when performing an intra-database test, the same does not apply in the inter-

database test, as displayed in Table 5.8.

Table 5.8: Performance and comparison between state of the art methods in an inter-database test [28].

Replay-Attack

(trained on CASIA-FASD)

CASIA-FASD

(trained on Replay-Attack)

Test on: Dev Test Train Test

Methods HTER (%)

LBP[24], (2012) 44.9 47.0 57.3 57.9

LBP - TOP[69], (2012) 48.9 50.6 60.0 61.3

Motion[71], (2013) 50.2 50.2 47.7 48.2

Correlation[71], (2013) 47.7 48.3 50.2 50.2

Motion Mag[73], (2014) 50.0 50.2 43.8 50.3

Deep Learning[74], (2015) 48.2 48.8 45.7 45.4

(1) + SVM - RBF[28], (2018) 22.5 20.6 47.5 43.9

(1) + SVM - linear[28], (2018) 17.7 16.7 38.6 37.6

Proposed Method 50.5 49.2 44.5 45.3
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This latter table shows that unfortunately all of the state of the art methods, including the proposed

solution, perform poorly when displayed with a more challenging robustness test. By completely chang-

ing all of the conditions in a database, all algorithms fail, which only shows that most of them would

perform poorly in a real world situation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presented a novel approach, utilizing deep learning, to detect attacks to facial recognition

systems. In order to create an acceptable algorithm, the challenges faced by the community were

evaluated, analysing in detail what are the most common type of attacks, how are they performed and

what do they take advantage of when breaking in a system. Moreover, an evaluation of the current state

of the art framework was made, describing the several existing algorithms and its different approaches

when addressing the problem. Techniques were subdivided depending on the type of analysis and

a particular focus was given to methods that use machine learning, also explaining why is it widely

used nowadays and how it can bring improvements to this specific task. As a result an approach was

presented, which adapts to different conditions and variabilities not focusing only on specific attacks but

rather in its training, trying to create a robust model.

Throughout the process of developing the algorithm several milestones were achieved, Transfer

Learning presented as being a good starting method when the problems are similar, allowing to reuse

the original weights to the new task, achieving a high performance with a fast convergence. Either

way, even if the problems are not similar or the training process differs, the architecture can be used as a

starting point to a new network, as it was shown. Regarding colour analysis, and as it was demonstrated,

theRGB colour space has a poor performance when regarding presentation attack detection since there

is a high correlation between the three channels. Therefore, other colour spaces should be taken into

consideration, preferably ones that take the luminance and chrominance of a picture into consideration

as they are better for image recognition, such as Y CbCr and HSV , where the latter achieved the best

performance. Fusing these two colour spaces, either in feature or score level, is possible and it might

prove advantageous in algorithms that present some uncertainty, or when the decision of the algorithm

is unclear and has a low probability output, which is not the case. Instead of performing the usual

single frame analysis, the architecture of the network was altered so that a full video analysis could

be performed. For this, the LSTM layer was used and it proved fruitful to the task, it allowed a spatio

temporal analysis of a picture, analysing its feature evolution throughout the video. This layer has a high
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adaptability to different problems, achieving the best performance in a many to one architecture and with

a timestep of 7, in this case.

The suggested method has acceptable results, presenting a higher performance when compared

to state of the art methods, showing that deep learning can be a good solution to the problem. During

the intra-database test, misclassifications happened mostly when high quality presentation attacks were

captured by the sensor, mainly due to the high loss of texture features when downsampling the target

image. In order to demonstrate why PAD is still an open problem and there is not an accepted solution

by the community, an inter-database test was made. This assessment demonstrated that almost all

proposed state of the art methods have a high error rate when presented with completely new capture

conditions and/or unexpected types of attacks. In the particular case of the proposed method, the

algorithm underperforms in the inter-database test as expected since the testing set differs drastically

from its training, presenting a disadvantage of deep learning. Algorithms based on deep learning work

well within the training set specifications and variations however, if new data outside the training range

emerges, it proves unsuccessful. Presentation attack detection presents an open problem since it has

many variations in every condition possible as well as its wide range of attacks.

6.2 Future Work

When regarding inter-database analysis and since the proposed solution fails most often when the target

image is downsampled, losing rich features that can identify a PA, an analysis without changing the

original image size should be made. In order for this to be possible, the input layer of the network should

accept any image size, instead of the expected 224 x 224 pixel face image. This might be possible by

using the Spatial Pyramid Pooling (SPP) layer [75] instead of the usual max pooling layer. As previously

mentioned, a max pooling layer resizes the number of features in order to reduce their dimensionality,

however both input and output size need to be previously determined values. By using a SPP layer,

the target size is outputted regardless of the input size, having no input size regulation. Although in

theory this seems possible, this layer is still in development showing few practical situations, therefore

its viability needs to be verified before it can be applied. This approach would ideally increase the number

of richer features in the image since there is no initial resizing needed, leaving the facial region of the

image untouched. Other method that might present a solution to the downsampling problem would be

to use patches of the target image instead of resizing the entirety of the image. This way, training data

would increase and the original quality would be kept.

With respect to the robustness of the algorithm when using a test set that greatly differs from train-

ing, the performance decreases in all shown algorithms, presenting to be a deep learning disadvantage

in this particular case. One possible solution may be using generative adversarial networks or adversar-

ial neural networks [76], which generates an increasing dataset with several variations. In this scheme,

there are two neural networks, one called generator, which generates new data instances based on the

training set, while the other, the discriminator, evaluates them for authenticity, trying to assign the correct

label to each new instance. So the generator creates new instances trying to fool the discriminator into
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accepting them as authentic while they are not, training the discriminator for new, different cases. When

comparing to a usual neural network, which outputs a label when analysing the features, an adversarial

network generates features taking the label into consideration, this allows to create different combina-

tions of features that can represent a genuine sample or a presentation attack, being based, however,

on the training set as well. Unfortunately, this type of networks cannot cover all the possible scenario

variations, it may improve the algorithm but probably would not fully fix its miscalculations. These mis-

classifications are not so easily corrected since the algorithm mostly depends on its training. In order to

seclude this, restricting capture conditions should be the most plausible approach, if some of the con-

ditions could be manipulated or controlled, when possible, then the number of various scenarios would

drastically decrease which, by consequence, would increase the algorithm’s performance to disparate

conditions.
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