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Abstract

This thesis proposes a state estimation methodology that combines (i) a regularization-based
method for solving ill-conditioned load-estimation problems with (ii) a Markov model for restricting
load-variations to probable time-varying load changes. The proposed solution relies upon the capability
to solve sequences of linear inverse problems that are formulated as dependent on loads whose dynamics
are parameterized in non-stationary Markov chains. As a first approach, Markov information is used
to forecast the state vector one step ahead, allowing a simple forward dynamic estimation. Further
on, a fully dynamic formulation of the estimation problem that takes grid loading states as a Hidden
Markov process is presented and solved with the Viterbi Algorithm. Several monitoring contexts under
different grid topologies are finally analyzed with the proposed state-estimation approach.
Keywords: Markov chains, Tikhonov regularization, Dynamic Estimation, Hidden Markov Models

I. Introduction

The intelligent management and control of the
future Smart Grid must rely upon the accurate es-
timation of the present and future electrical states
of the distribution network. Such estimation at
the distribution level is very challenging, since the
customary monitoring infrastructure inhibits access
to real-time widespread information, precluding re-
dundancy, whose existence is at the basis of classical
state estimation approaches.

To solve this problem, forecast measurements de-
rived from historical and/or statistical data about
load consumption and power generation are com-
monly used. These so-called pseudo-measurements
allow reaching network observabillity, but usually
lead to poor accuracy of the state estimation (SE)
results, since this information is not reliable when
compared to the real-time measurements [1].

Despite these difficulties, nowadays there are new
kinds of information that can be used for estima-
tion. A few years ago, utilities started a massive de-
ployment of metering infrastructures and nowadays
one has already access to large volumes of historical
metering data. The proper use of these measure-
ments is key to enhance the performance of distri-
bution system state estimators, allowing SE to play
a key role also at distribution level [1, 2].

This thesis proposes to estimate the present and
future electrical states of distribution grids by com-
bining (i) a regularization-based method for solv-

ing ill-conditioned load-estimation problems with
(ii) a Markov model for restricting load-variations
to probable time-varying load changes. The so-
lution of the proposed estimation problem relies
upon the capability to solve sequences of linear in-
verse problems that are formulated as dependent
on loads whose dynamics are parameterized in non-
stationary Markov chains.

II. Background
1. State Estimation problem

In power systems, the State Estimation problem
consists of identifying the state vector x from avail-
able information of measurements which have some
inaccuracy:

zmeter = h(x) + emeter. (1)

The state vector is usually composed by the volt-
age magnitudes and voltage phase angles for each
bus in the system, and its characterization is impor-
tant since it allows to represent the entire state of
the system at any given time. The measured vari-
ables zmeter can be written as a function of state
variables through a set of non-linear functions h(x),
dependent on Kirchhoff’s laws and grid admittance
matrix Y [3].

2. Weighted Least Squares
Power system SE commonly uses the Weighted

Least Squares (WLS) method to estimate the state
vector x. This allows to minimize the weighted sum
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of squared residuals [4], according to the objective
function:

J(x) = (zmeter − h(x))
T·W·(zmeter − h(x)) , (2)

where W is a diagonal matrix with the inverse of
the variance of the error.

The minimization of Eq. 2 is usually performed
applying iteratively the Gauss-Newton method,
which leads to the following equations to be solved
at each iteration:

∆x =
[
HT

xk ·W ·Hxk

]︸ ︷︷ ︸
G

−1·HT
xk ·W·(zmeter−h(xk)),

(3)

xk+1 = xk + ∆x. (4)

In distribution systems, there is a lack of real time
measurements, therefore the gain matrix G is ill-
conditioned. For this reason, the vector zmeter con-
tains mainly pseudo-measurements, and the weight-
ing matrix is used to reflect the accuracy differ-
ences [5].

3. Tikhonov regularization
Tikhonov regularization is the most commonly

used method of regularization of inverse ill-posed
problems. Consider a linear problem of the form
M · x = b, finding the unknown vector x is an
ordinary least squared minimization problem. In
an under-determined system, solving the inverse-
problem is an ill-posed problem. For this reason,
it is necessary to include a regularization term in
order to give preference to a particular solution with
desirable properties [4, 6]. Therefore, the objective
function of the regularization problem is the one
presented in Eq. 5:

J(x) = ‖M · x− b‖2 + λ ‖β · x‖2 , (5)

where λ is a positive constant chosen to control the
solution vector [7].

The argument x̂ that minimizes the objective
function is the one that verifies ∇xJ = 0, which
yields the Eq. 6:

x̂ = (MT ·M + λβT · β)−1 ·MT · b. (6)

Tikhonov regularization emerges as an alterna-
tive to the WLS method, the traditional tool to
solve ill-posed problems. In the first instance, this
alternative allows to overcome the difficulty of as-
signing weights to different types of measurements,
since the commonly known pseudo-measurements
are incorporated into the regularization term.

4. Dynamic state estimation
Owing to the dynamic nature of system loads,

the static state vector also varies dynamically. This

justifies the use of an algorithm to estimate dynam-
ically the state vector, and that defines the ’best’
representation with time for the system evolution.

Several models were developed to define pseudo
dynamics of the distribution system. Tracking
State Estimation techniques and Kalman filter ap-
proaches are the most common dynamic solutions
proposed in the literature [8, 9]. They rely on the
assumption that time behaviour of the power sys-
tem is a quasi-stationary process, where the non-
linear system model is approximated to a linear
model [10]. But whenever there are large changes
in the load or production profile, the nonlinearities
in the system become important, which results in
the degradation of the performance of these tech-
niques [11].

5. Markov models

The uncertainty of load and generation makes the
dynamics of consumers and production very diffi-
cult to model, since a good characterization of their
behaviour requires a deep knowledge on the exist-
ing correlations and time-dependencies, simultane-
ously [12]. The dynamics can be however repre-
sented as a statistical model, where the underlying
assumption is that it can be well characterized as
a parametric random process, and that the param-
eters of the stochastic process can be determined
(estimated) in a precise, well-defined manner [5, 12].

Figure 1: Trellis diagram for a non-stationary Markov pro-
cess with 3 states (as a simplification) and 96 time periods
that is used to represent the intra-day dynamics of an input
aggregate daily profile with 15min resolution.

In [12], a method to characterize different types
of consumers or energy production technologies as
a Markov process was proposed. The method re-
lies upon generic individual profiles (observed pro-
files) to create a discrete-time stationary Markov
process to parameterize the average volatility and
time-dependency of a particular group. Then, the
aggregate metering data (aggregate profile) is also
used to parameterize a non-stationary Markov pro-
cess, related to previous stationary process, in a way
that reflects the typical intra-day dynamics of that
group of profiles (Fig. 1).

As a result, the dynamics of a given type of load is
parameterized into a set of non-stationary Markov
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transition matrices [atij ], restricting load-variations
to probable time-varying load changes.

6. Hidden Markov Models
The process previously presented results from

a direct observation of the power states over the
time. Despite loads being characterized by Markov
chains, the state of the system cannot be observed
directly in real-time. Instead, the only available
data in real-time are measurement information,
which are functions of the state (combination of ev-
ery loads state). Due to measurements noise, the
association of states and corresponding measure-
ments is stochastic. Reconstructing the unknown
sequence of states from a set of observations is in
fact a SE problem, but since the loads are charac-
terized by a Markov process, the SE problem is a
Hidden Markov problem [13, 14].

A Hidden Markov Model (HMM) is characterized
by:

• The N number of possible states;

• The M number of distinct observation cate-
gories V = v1, ..., vM ;

• The state transition probability distribution
A = [aij ];

• The observation category probability distribu-
tion in state j,
B(vk, j) = P [O(t) = vk|s(t) = j];

• The initial state distribution πi, such that πi =
P[s(1) = i], for i = 1, . . . , N .

In order to find the ”correct” state sequence as-
sociated with the given observation sequence, the
most widely used criterion is to maximize the proba-
bility of a single state sequence (path). The Viterbi
algorithm is the commonly used technique to find
this path [14]. The complete procedure for find-
ing the best state sequence is described later on in
Section 3.

III. Implementation
1. State Estimation by Regularization

State Estimation with regularization methods re-
lies on the assumption that a deviation in the ob-
servable variables corresponds to an update in the
state vector, such that ∆zm = Am · ∆I, where
matrix [Am] depends on the power flow equations.

Every time new measurements values are gath-
ered, the vector ∆zm is recalculated and the result-
ing ∆I is determined, as an ordinary minimization
problem, where ∆I is the new state variable:

Minimize ‖Am · x−∆zm‖2 , (7)

with,

x = ∆I =
[
Ii − I

0

i

]
, ∀i ∈ [1, n]. (8)

Quadratic penalization term

One of the goals when using this method is to en-
sure that the adjustments in each state variable are,
as much as possible, in accordance with their typical
value. This corresponds to minimizing the relative
norm of ∆I instead. Designating by I0 the typical
value of each load, i.e. the pseudo-measurements,
the objective function should be:

J(x) = ‖Am · x−∆zm‖2 + λ

∥∥∥∥diag

(
1

I0

)
· x
∥∥∥∥2 .

(9)
The update step in each iteration is:

∆x̂ = ∆Î =
(
AT

m ·Am + λ.D
)−1

AT
m ·∆zm, (10)

where λ is a number small enough to guarantee that
the residual errors in the measurements are almost
zero and D a diagonal matrix with the inverse of
the Euclidean norm of each current.

D =


1

||I0
1 ||2

· · · 0

...
. . .

...
0 · · · 1

||I0
n||2

 (11)

Proposed penalization term

Although the previous regularization term is the
most intuitive one when the purpose is to mini-
mize the norm of the deviations relative to the ex-
pected value of the injected current, the resulting
updating expression shows that the penalty factor
is not proportional to the expected current, but to
its squared value. The main consequence of this
quadratic penalty factor is that the distribution of
the measurement residuals is not made according
to the intrinsic magnitude of the load, as it was
intended.

To proceed as intended, an alternative approach
is considered, that takes the regularization term
simply as the Euclidean norm of the deviations,
‖∆I‖2. In order to penalize relative deviations from
the expected value, the parameter λ is weighted as
in the following:

λ = λ


1
||I0

1 ||
. . . 0

...
. . .

...
0 . . . 1

||I0
n||

 . (12)

The implemented iterative procedure for both
regularization terms is represented in the following
algorithm:
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Data: Y, Am, Ihist, zmeter, h
for t=1,...,96 do

I(t) = Ihist(t);

[D] = diag
(

1
||I||2

)
;

[λ] = λdiag
(

1
||I||

)
;

while |zmeter − znew| ≤ τ do
h = h(I(t));
∆zm = zmeter(t)− h;
∆I(t) ={

(AT
mAm + λ.[D])−1AT

m∆zm

(AT
mAm + [λ])−1AT

m∆zm
;

I(t) = I(t) + ∆I(t);
V(t) = 1 + ZI(t);
znew = h(I(t))

end

end
Algorithm 1: Algorithm implemented to estimate the in-
jected currents Î with Static State Estimator with Tikhonov
Regularization. The blue equations are only implemented
in the approach with quadratic penalization term (TR1).
The red equations are only implemented in the approach
with linear penalization term, i.e. the proposed solution
(TR2). In each time iteration the procedure must be re-
peated, and the first guess is simply the historical value for
that time instant.

2. Dynamic State Estimation with Markov
Information

As a first approach to make use of Markov in-
formation, one has to solve a tracking-like problem,
where an a priori estimation of the state vector at
instant t can be performed based on the estimation
of the state at t− 1 and the non-stationary transi-
tion probability matrix. Assuming that for a given
instant of time t − 1, each load has an estimated
value of Î1,t−1, ..., În,t−1, the initial guess for time t
is given by the system of Eqs. 13:

Î01,t =
∑Smax

j=1 φ1,t−1→t(S(Î1,t−1), j).Iavg(j)
...

Î0n,t =
∑Smax

j=1 φn,t−1→t(S(În,t−1), j).Iavg(j)

(13)

where φ is a set of 95 transition matrices (Markov
chain) and Iavg(j) is the average value of each load
state.

Once the a priori estimation is performed, the
following step is to correct the prediction with the
measurements gathered (zt+1). To achieve this,
the state estimation problem must be solved as de-
scribed previously [Section 1].

The main features of the iterative procedure im-
plemented are summarized in Algorithm 2.

Data: Y, Am, Ihist,zmeter,
h,φ1,t→t+1,...,φn,t→t+1, Iavg(s)

It=1 = Ihistt=1;
for t=1,...,95 do

while ||zmeter − znew|| ≤ τ do
(...)

end

Î01,t+1 =
∑Smax

j=1 φ1,t→t+1(S(Î1,t), j).Iavg(j);

Î0n,t+1 =∑Smax

j=1 φn,t→t+1(S(În,t), j).Iavg(j);

end
Algorithm 2: Algorithm implemented to get an a priori
estimation for the state vector, based on the estimation of
the previous instant state and Markov information on loads.
The prediction is then corrected with the measurements
gathered, using regularization methods or WLS method.

3. Dynamic State Estimation with Hidden
Markov Model

The SE problem of a distribution network, whose
dynamics of the loads is characterized by a Markov
process, is formulated as a Hidden Markov problem.
The (hidden) states in which one is interested are
the combination of load states of all loads in the
system, and the sequence of observations is the set
of real-time measurements along the day.

Data: π, A, B, O
δ1(i) = P(O1|i).πi;
while t = 2, ..., T do

for j ∈ S do
δt(j) = max

i∈S
[δt−1(i).ai,j ]P(Ot|j).;

ϕt(j) = arg max
i∈S

[δt−1ai,j ];

end

end
S∗(T = 96) = arg max

i∈S
[δT (i)];

for t = 95, ..., 1 do
S∗t = ϕt+1(S∗t+1);

I
∗
1,t = I1,avg(S∗t );

...
I
∗
n,t = In,avg(S∗t )

end

Ihistt = I∗t ;
for t = 1, ..., 96 do

Apply Regularization or WLS method
end

Algorithm 3: Viterbi Algorithm implemented to search the
most likely daily sequence of states, St, given a sequence
of measurements Ot. The prediction is then corrected with
the measurements gathered, using regularization methods
or WLS method.

Attending to this formulation, the Viterbi Algo-
rithm is used to predict the most likely sequence of
states (path). This algorithm resorts to dynamic
programming and allows a Forward / Backward es-
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timation process. Recalling the trellis diagram pre-
sented before (Fig. 1), in the forward process, each
path in the trellis is weighted using the likelihood of
transitions, based on the observation probability of
a given state. At the end, the path with the high-
est final cumulative probability is selected, and in
the backward process the corresponding sequence
of states is recovered (see Algorithm 3).

4. Verification and Illustration for compari-
son
In order to test the performance of state estima-

tors previously presented, an exercise is considered
over a radial grid with two loads (of different types)
and a single measurement of the feeder-current.
Two different cases for the loads are considered: (i)
two loads with same average and standard devia-
tion and (ii) two loads with different averages and
standard deviations. To evaluate the performance
of each method, the sum of the squared error (SSE)
for each load is calculated. Based on the SSE, an
average percentage error is computed as follows:

Errorloadi
[%] =

√
SSEi

Avgloadi
× 96

× 100. (14)

Table 1 summarizes the average state estimation
error obtained for each method and approach.

Table 1: Estimated error, average in time [%].

Static Markov HMM
WLS TR1 TR2 WLS TR1 TR2 WLS TR1 TR2

#1
Load 1 0.91 0.94 0.88 0.74 0.74 0.72 0.72 0.73 0.70
Load 2 0.91 0.94 0.88 0.74 0.74 0.72 0.72 0.73 0.70

#2
Load 1 2.18 1.35 1.37 2.16 1.23 1.14 1.00 0.83 0.81
Load 2 0.73 0.45 0.46 0.72 0.41 0.38 0.33 0.28 0.27

Although the test exercise was quite simple, it
allowed us to draw some interesting conclusions.

First of all, it should be pointed out that regular-
ization methods allow more satisfactory results than
the classic WLS method. Regularization methods
in SE ensure that the adjustments in each state vari-
able are, as much as possible, in accordance with its
typical value. Regularization method with the pro-
posed penalty factor allows us to change the load
according to its expected value, so corrections are
always proportional to the intrinsic magnitude of
the load. This is a more plausible assumption since
it guarantees some balance from the point of view of
effort distribution by the two loads. This is not rel-
evant in the first case, since a homogeneous system
was considered. However, in the second case, the
regularization methods show more accurate results,
in particular the one with the proposed regulariza-
tion term.

The Dynamic State Estimator with Markov In-
formation allows to constantly update the vector
of pseudo-measurements, which in addition to the

typical dynamics of the load (assumed to be char-
acterized in a set of Markov chains) also takes into
account the present situation of the system. Results
clearly show that this process can improve the SE
problem, without greatly increasing the complexity
of the method.

With respect to Dynamic State Estimator with
HMM, the fact that the estimator resorts to the
entire intra-day behavior and dynamics to predict
the state of the system at a given moment pro-
vides more accurate estimation results. Neverthe-
less, the great improvement in the estimation accu-
racy comes with a much higher computational ef-
fort. The SE problem as formulated with HMM
might become intractable for realistic sized grids.

Figure 2 and Figure 3 present a sample of the es-
timation results with Markov Information and with
Hidden Markov process, respectively.
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Figure 2: Dynamic State Estimator with Markov Informa-
tion for a radial grid with two loads of different types and
sizes (Case #2). The blue line represents the true injected
current for each load. The dashed lines represent the esti-
mated currents: the red dashed lines represent the solution
for WLS method; the yellow and purple dashed lines repre-
sent the solution for the Tikhonov regularization with the
quadratic and the proposed penalty term, respectively.
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Figure 3: Dynamic State Estimator with Hidden Markov
Model for a radial grid with two loads of different types and
sizes (Case #2). The blue line represents the true injected
current for each load. The dashed lines represent the esti-
mated currents: the red dashed lines represent the solution
for WLS method; the yellow and purple dashed lines repre-
sent the solution for the Tikhonov regularization with the
quadratic and the proposed penalty term, respectively.

IV. Results

The proposed regularization method and the dy-
namic state estimation approaches were applied to
a more complex grid. The grid was settled to repro-
duce some of the challenges posed to state estima-
tion. Fig. 4 presents the grid topology and a sample
of historical load profiles for each load is presented
in Fig. 5.
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Figure 4: Application Grid topology. The grid consists in
a 9-bus topology, that can be changed from a radial to a
meshed configuration. Real time measurements are mainly
of feeder-currents and bus voltages, and can be placed at
several locations.
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Figure 5: Historical profiles of the Application Grid loads.

Loads have been previously classified into two dif-
ferent typical load profiles. The intra-day dynamics
of each type of loads was previously parameterized
in a set of Markov chains, composed by 95 tran-
sition matrices (15min resolution). Besides type,
each load is also characterized by a specific con-
sumption magnitude: both average consumption
and standard-deviation.

Subsection 1 and Subsection 2 present the results
for the Dynamic State Estimator with Markov In-
formation for radial and meshed configuration, re-
spectively. In Subsection 3, a comparison between
the fully dynamic formulation and a simpler repre-
sentation of load dynamics is performed.

1. Results for the radial configuration

The Dynamic Estimator with Markov Informa-
tion was applied for the radial configuration. Three
different measurement sets (Feeder-current only,
feeder-current and voltage at bus 8, feeder-current
and voltage at bus 7) were considered.
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Figure 6: Residual error in percentage for each load obtained
with Dynamic Estimator with Markov Information for the
radial configuration. The figure compares error for different
combination of real time measurements type and location.
The blue bars corresponds to the results obtained with only
feeder-current measurements. The red and yellow bars corre-
sponds to the error obtained when measuring feeder-current
and voltage at bus 8 and bus 7, respectively.

Note that the results obtained by only measuring
the feeder-current in real-time have an appreciable
accuracy (errors below 3% – see blue bars). Despite
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having nine degrees of freedom, the feeder-current
being a measurement of the aggregation of the nine
loads provides, together with the information on the
dynamics, enough information to carry out a good
estimation.

By adding an extra real-time measurement, ob-
servability of the system is increases and an addi-
tional constraint is added to the SE problem. Re-
sults show that this allows us a better perception of
the state of the system, as expected. Consequently,
the estimation of the state of all the loads is ob-
tained with higher accuracy, and the error decreases
to about 2%.

It should also be noted that the location of the
voltage measurement has impact on the estimator
performance. In this application, a measurement
of voltage at bus 7 allows a better estimation than
measurement at bus 8. This may be due to differ-
ences in size and type of the loads presented in the
measurement bus. Results tend to be better when
the measurement are set to be with larger and less
volatile loads.

2. Results for the meshed configuration
The Dynamic Estimator with Markov Informa-

tion was then applied for the meshed configura-
tion. Four different measurement sets (feeder-
current only, both feeder-currents, feeder-current
and voltage at bus 8, both feeder-currents and volt-
age at bus 8) were considered.
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Figure 7: Residual error in percentage for each load obtained
with Dynamic Estimator with Markov Information for the
meshed configuration. The figure compares error for differ-
ent combination of real time measurements type and loca-
tion. The blue bars correspond to the errors obtained with
only feeder-current measurements. The red bars correspond
to the error obtained when measuring both feeder-current.
The yellow bars correspond to the error obtained measuring
feeder-current and voltage at bus 8. The purple bars cor-
respond to the error obtained when measuring both feeder-
currents and voltage at bus 8.

By adding an extra branch to close the loop,
the state estimation complexity increases. However,
with only one feeder-current measurement, the es-
timation accuracy is considerable and comparable
with the ones obtained for the radial configuration.

Yet, results get significantly better if an extra real-
time measurement is added to the estimator (see
red and yellow bars).

Attending to the results obtained when an ex-
tra measurement is added (comparing red bars with
yellow bars), the second feeder-current allows a bet-
ter estimation, for most of the loads, than an extra
voltage measurement. Results suggest that feeder-
currents are more aggregating variables than bus
voltages, highlighting the importance of measuring
feeder-currents at distribution grids.

3. Forward Estimation vs. Forward/Back-
ward Estimation

The SE problem was formulated as a Hidden
Markov process and then solved using the Viterbi
Algorithm, both for the radial and meshed configu-
ration of the Application grid (see Section 3). The
results are shown in Fig. 8 and Fig. 9, for the radial
and meshed configuration respectively.

Figure 8: Residual error in percentage for each load obtained
using Dynamic Estimator with HMM for the meshed config-
uration. The figure compares the error of HMM formulation
(dark colors) with the error obtained with a simpler represen-
tation of load dynamics (Estimation with Markov Informa-
tion is shown in light colors). The blue bars corresponds to
the results obtained with only feeder-current measurements.
The red and yellow bars corresponds to the error obtained
when measuring feeder-current and voltage at bus 8 and bus
7, respectively.

Since each estimation takes into account not
only the full dynamics of the system, but also the
daily behavior of the observations, it is expected to
achieve a better estimation with Hidden Markov ap-
proach than with Markov information approach. In
general, the results obtained corroborate with the
expectations.

Nevertheless, the estimation improvement comes
with a much higher computational effort. As the
grid size increases, the dimension of the state space
explodes and with it the estimation effort. To avoid
such curse on dimensionality, a simplified version of
the problem was proposed that used Markov infor-
mation to forecast the state vector one step ahead
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only, allowing a simple forward dynamic estimation.
Tests performed with the simplified approach re-
vealed that the accuracy of the estimation could
still be appreciable.

Other aspect to be noted is that, the advantage
of forward-backward over a simple forward estima-
tion become less important as more measurement
variables are added.

Figure 9: Residual error in percentage for each load obtained
with Dynamic Estimator with HMM for the meshed config-
uration. The figure compares the error of HMM formulation
(dark colors) with the error obtained with a simpler represen-
tation of load dynamics (Estimation with Markov Informa-
tion is shown in light colors). The blue bars corresponds to
the results obtained with only feeder-current measurements.
The red bars correspond to the error obtained when mea-
suring both feeder-current. The yellow bars correspond the
error obtained measuring feeder-current and voltage at bus
8. The purple bars correspond the error obtained when mea-
suring both feeder-currents and voltage at bus 8.

V. Conclusions
The main conclusion to be drawn from the work

done is that getting a good representation of sys-
tem dynamics is an effective way to improve state
estimation in distribution networks. Markov chains
allow synthesizing realistic system dynamics, and
that is very important since it allows obtaining
much better pseudo-measurements, essential to im-
prove the solution accuracy of the state estimation
solution.

Another important results of the research con-
ducted is that the regularization method used has
a critical role on the accuracy of estimation. The
proposed regularization method contributes signif-
icantly to the estimation quality since it leads the
solution to be in accordance to the intrinsic magni-
tude of each load.
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