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Longitudinal Analysis of Steel-Concrete Composite Box Girder Decks 
Comparison between the Classical Formulations and the Generalized Beam Theory 

 

Luís João Ferreira Vieira  

Abstract 

Asymmetrical loads on box girder bridge decks produce not only bending but also torsion with warping and distortion 

of the cross-section. The latter two may prove to be relevant for the longitudinal analysis and design of the box girder 

but their effects are difficult to assess using shell finite element models. Two alternative bar-type analysis methods are 

presented that preserve the structural significance of each main type of cross-section deformation “mode”: the first 

covers the classical prismatic bar theories of bending and torsion with warping, the beam on elastic foundation analogy 

for the analysis of distortion, also known as “folded plate action”, and a simplified semi-empirical methodology for the 

consideration of shear lag effects. The second refers to a finite element method based on the Generalized Beam 

Theory, which is geared towards the longitudinal analysis of homogenous/composite thin-walled prismatic bars 

including arbitrary in-plane and out-of-plane (warping) deformation. Comparisons are established between the two 

latter methods, in terms of theoretical background and numerical results, using two case studies. Within the analysis of 

the numerical examples, the influence of intermediate diaphragms in the longitudinal behaviour is investigated, referring 

particularly to the participation of torsion and distortion deformation modes. Some insightful notes are given concerning 

the design effects of intermediate diaphragms and the governing load configurations for box girder design. 

1. Introduction  

In light of the modern-day economical demands, designers 

have progressively searched to reduce the overall weight and 

thickness of the concrete walls and steel plates in box girder 

bridge decks, leading almost unavoidably to very slender and 

deformable cross-sections (Pedro, 1995). As a direct 

consequence, the effects of cross-section out-of-plane 

(warping) and in-plane (distortion) deformation have become 

more relevant and can turn out to be very important in the design 

verifications of composite box girders. 

The study of torsion and distortion in composite box girder 

decks is therefore an important issue from a practical 

standpoint, but also a relatively complex one, which is why it is 

usually solved resorting to shell finite element models that do 

not allow a clear identification of the different structural effects 

and also generate a huge amount of data that must be post-

processed by the designer. 

The present work is developed around two alternative 

methods that maintain the structural significance of bending, 

torsion, distortion and shear lag, and may be used in the 

evaluation of the longitudinal stresses. The first relates to the 

classical approaches to obtain the longitudinal equilibrium 

equations and is henceforth designated as the “Classical 

Formulations”. It encompasses the Euler Beam theory for 

bending, the warping torsion theory presented by Benscoter 

(1954) and the folded plate theory based on a beam on elastic 

foundation analogy first introduced by Wright, Abdel-Samed, & 

Robinson (1968) as a way of accounting for distortion in box 

girders. It also contains the simplified method for the 

determination of the non-linear stress distribution brought by 

shear lag effect in bending as presented in B.S.I. (2004). The 

second method involves the use of the Generalized Beam 

Theory (GBT), a recently emerging formulation for thin-walled 

prismatic members which has shown very promising results, 

including for box-girder bridges (Gonçalves & Camotim, 2010), 

but is still generally unknown to designers. In this theory, it is 

considered that the overall response of the beam-type structure 

is described by the superposition of pre-defined cross-section 

deformation modes (including bending, torsion, distortion and 

other modes), whose amplitudes along the longitudinal axis 

constitute the problem unknowns . 

This work sheds some light into these two methods used to 

perform the longitudinal analysis of box girder decks, in terms 

of their formulations and, most especially, of the results they 

provide both in terms of total longitudinal normal stresses and 

in terms of the participation of bending, torsion, distortion and 

shear lag. There is a specific focus in the analysis of steel-

concrete composite box girders with intermediate diaphragms, 

whose relevance in reducing the torsional and distortional 

stresses is well-known but not simple to assess. 

Reference is made to straight, thin-walled, unicellular box 

girders which behave elastically and are symmetric about the 

vertical axis. For the particular case of steel-concrete composite 

bridges, they are assumed to be composed of a reinforced 

concrete upper plate or deck, two steel web plates and one 

bottom plate, also made of steel. In the analysis, the upper 

flange will be taken approximately as a non-cracked and non-

reinforced slab, and the shear connection slip is disregarded. 

2. Overview of Classical Formulations 

The longitudinal analysis of box girders can be performed 

according to the Classical Formulations for bending, torsion and 

distortion. According to the work by Pedro (1995), based on the 

IABSE publication by Schlaich & Scheef (1982), the analysis 

procedure for a thin-walled box girder subjected to a generic 

vertical loading, such as the one presented in Figure 1, can be 

obtained by superposition of the results from the following sub-

analyses: 

1) Longitudinal analysis of the beam assuming a rigid cross-

section. Vertical and torsional loadings derive from direct 

integration along the transverse direction. Torsional and 

bending moment diagrams are obtained, as well as the 

longitudinal stresses in the cross-section due to bending. If 

shear lag effects are to be considered, the modified bending 

stress distribution is obtained using effective widths. 
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2) Transverse analysis: 

2.1) Analysis of the top flange considering it to be rigidly fixed 

at the webs – see Figure 1a1. Vertical loads are 

henceforth replaced by equivalent forces and moments, 

applied at the top of the webs. In this work, it was assumed 

that vertical loads eccentric with respect to the webs are 

carried directly to the nearest point of the web plate, i.e., 

no in-plane load degradation is considered. 

2.2) Analysis of a transverse strip of longitudinal length ∆𝑥 = 1 

as a frame subjected to eccentric forces (𝑚𝐴, 𝑝𝐴), (𝑚𝐵 , 𝑝𝐵) 

– Figure 1a2:  

2.2.1) Division of the applied loads into symmetric (Figure 1b1) 

and anti-symmetric (Figure 1b2) parts  

2.2.2) Calculation of the cross-section symmetric transverse 

bending. For symmetrical loading, the distribution of the 

transverse bending moments is hereby obtained by 

adding these results to those derived in 2.1). The effect 

of rigid body displacement of the cross-section due to 

longitudinal bending is already addressed in 1) 

2.2.3) Division of the anti-symmetrical part into torsional and 

distortional subsystems. The effect of bi-shear in the 

determination of the distortional loads is commonly 

neglected because the error involved in this assumption 

is usually small (Fan & Helwig, 2002) and brings 

significant gains in terms of simplicity. Therefore, the 

torsional response can be given by pure torsional loads 

that are obtained directly through integration of the 

shear flow given by Bredt’s formula.  

The distortional loads for the anti-symmetrical vertical 

loads can be obtained knowing that (i) the sum of the 

vertical components of 𝑝𝑤,𝑃𝑢𝑟𝑒𝑇 and 𝑝𝑤,𝑑 and (ii) the 

distortional system is self-equilibrated. For the anti-

symmetrical nodal moments, the distortional loads are 

obtained considering the transverse frame behaviour 

(Schlaich & Scheef; 1982). 

2.2.4) Finally, the effects of the distortional subsystem can be 

accounted for through a theoretical model of a beam 

supported on elastic springs that is intended to replicate 

the effect of cross-section distortion throughout the 

span. This analogy was originally proposed by Wright, 

Abdel-Samed, & Robinson (1968). Analysing the web 

as a beam on an elastic foundation, one can obtain 

distortional warping stresses to be added up to the ones 

provoked by bending and torsional warping. 

 

 

2.1.  Elastic Bending 

The longitudinal bending stresses can be determined 

according to the Euler-Bernoulli Beam theory. This formulation 

considers that plane sections remain plane and normal to the 

axis (Bernoulli’s Hypothesis) and that sections are free to 

deform in their own plane, i.e. 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 𝜏𝑦𝑧 = 0 (Navier’s 

Hypothesis). 

When dealing with composite steel-concrete box girders it is 

necessary to determine an equivalent homogenized cross-

section, in which the reference material is usually steel (the 

reinforced concrete slab is replaced by an equivalent steel plate 

with a thickness equal to 𝑡𝑡
𝑆 = 𝑡𝑡 𝐸𝑐 𝐸𝑠⁄ = 𝑡𝑡  /𝑛). 

The longitudinal equilibrium equation for bending reads  

𝑑4𝑣

𝑑𝑥4
 𝐸𝐼𝑦 =  𝑝(𝑥), ( 3 ) 

where 𝑣 is the vertical displacement of the beam, 𝐸 is Young’s 

modulus, 𝐼𝑦 is the minor axis moment of inertia and 𝑝 is the 

vertical load. 

The longitudinal normal stresses in steel (𝜎𝑥𝑥)𝑏
𝑆  can be 

obtained as a function of bending moment 𝑀𝑦 and of the vertical 

coordinate with respect to the centre of gravity 𝑧 through   

𝜎𝑏 = 
𝑀𝑦

𝐼𝑦
 𝑧. ( 4 ) 

The stresses in the reinforced concrete components can be 

retrieved by using 

𝜎𝑏
𝐶  =

𝜎𝑏
𝑆

𝑛
. ( 5 ) 

𝑝𝑤,𝑃𝑢𝑟𝑒𝑇 = (
 𝑏𝑤

(𝑏𝑡 + 𝑏𝑏)𝑑
) (𝑝𝑎𝑛𝑡𝑖𝑏𝑡 + 2𝑚𝑎𝑛𝑡𝑖), 

 𝑝𝑡,𝑃𝑢𝑟𝑒𝑇 = (
𝑏𝑡

𝑏𝑤
)𝑝𝑤,𝑃𝑢𝑟𝑒𝑇 , 

𝑝𝑏,𝑃𝑢𝑟𝑒𝑇 = (
𝑏𝑏

𝑏𝑤
)𝑝𝑤,𝑃𝑢𝑟𝑒𝑇 .  

( 1 ) 

𝑝𝑤,𝑑 = (
𝑏𝑏  𝑏𝑤

(𝑏𝑡 + 𝑏𝑏)𝑑
)𝑝𝑎𝑛𝑡𝑖𝑏𝑡 

−(
2𝑏𝑤

𝑏𝑏𝑑
)(

𝛽

1 + 𝛽
+

𝑟𝑡 − 3𝛽 − 2𝛽𝑟𝑏
(𝑟𝑡 + 2)(𝑟𝑏 + 2) − 1

)𝑚𝑎𝑛𝑡𝑖 , 

 𝑝𝑡,𝑑 = (
𝑏𝑏

𝑏𝑤
)𝑝𝑤,𝑑 , 

𝑝𝑏,𝑑 = (
𝑏𝑡

𝑏𝑤
)𝑝𝑤,𝑑 . 

( 2 ) 

Figure 1 – Load subdivision in Classical Formulations 

𝛼𝑡 =  
𝑏3

𝑏𝑡
2𝑏𝑤

𝑡𝑡
𝑡𝑤

 ;  

𝛼𝑏 = 
𝑏𝑏

𝑏𝑤
 
𝑡𝑏
𝑡𝑤

 ;  

 𝛽 =  
𝑏𝑏

𝑏𝑡
 ; 

𝑟𝑡 =
𝑏𝑡

𝑏𝑤
 
𝑡𝑤

3

𝑡𝑡
3

(1 − 𝜈𝑡
2)

(1 − 𝜈𝑤
2)

; 

 𝑟𝑏 =
𝑏𝑏

𝑏𝑤
 
𝑡𝑤

3

𝑡𝑏
3

(1 − 𝜈𝑏
2)

(1 − 𝜈𝑤
2)

 . 

Geometry and auxiliary parameters 
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2.2. Shear Lag Effect 

 The elastic bending theory just presented neglects the 

shear deformability of the cross-section. However, in wide 

flanges, this deformability can lead to a significant change in the 

longitudinal stresses with respect to the ones obtained from 

Euler-Bernoulli beam theory (Chen & Yen, 1980). Due to the so-

called shear lag effect, the stresses increase in regions close to 

web-flange junctions and decrease with the distance to these 

junctions. 

Although some analytical solutions can be found (see for 

example Chen & Yen (1980)), they are usually replaced by a 

more practical and common way of accounting for this effect, 

which consists in making use of a cross-section with effective 

(reduced) widths for the wide flanges (see Figure 2). More than 

one definition can be used for evaluating these parameters. In 

this work, reference is made to the approach followed in B.S.I. 

(2004), which is related to the stress distribution. Here, the 

effective width is considered to be the width that sustains a force 

equal to that in the actual flange, assuming the longitudinal 

stresses to be at the same time constant and equal to the 

maximum longitudinal stress of the non-linear stress distribution 

(Castro, Elghazouli, & Izzuddin, 2007).  

The maximum longitudinal stresses at the top and bottom 

flange-web intersections can be retrieved by taking advantage 

of the results from standard Euler-Bernoulli beam theory: 

𝜎𝑏,𝑆𝐿
𝑡,𝑚𝑎𝑥 = 𝜎𝑏

𝑡
𝑏

2(𝑏𝑒,1 + 𝑏𝑒,3)
,    𝜎𝑏,𝑆𝐿

𝑏,𝑚𝑎𝑥 = 𝜎𝑏
𝑏

𝑏𝑏

2𝑏𝑒,2
.   ( 6 ) 

Finally, the transverse non-linear stress distribution of the 

whole cross-section may be approximately calculated through 

the quartic expressions presented in B.S.I. (2004). 

Even though the normal stress distribution is non-linear, the 

shear lag phenomenon itself nonetheless manifests itself in 

linear elastic problems and depends directly on the shear 

modulus 𝐺. For this reason, and assuming that the ratio 

between the concrete and steel shear moduli is approximately 

equal to the ratio between the corresponding Young’s moduli 

(assumed uncracked concrete), ( 5 ) can still be employed: 

 

 

 

 

 

2.3. Torsion 

In each cross-section, the torsional moment 𝑇 is equilibrated 

by the sum of two twist resisting effects: the uniform or Saint-

Venant torsion (𝑇𝑆𝑉), which is essentially characterized by a 

constant circulatory shear flow in the cross-section, and the 

non-uniform or warping torsion (𝑇𝑤), which is related with the 

development of bi-moment and bi-shear stresses (Kollbrunner 

& Basler, 1969). 

2.3.1. Uniform Torsion 

In closed thin-walled cross-sections, such as the case of 

common box girder bridges, the torsional stiffness is almost 

entirely given by a uniform shear flow (𝑞𝑆𝑉) circulating around 

the closed-contour (the linear through-thickness component of 

the shear stresses may be neglected (Kollbrunner & Basler, 

1969)). This shear flow is given by Bredt’s formula: 

𝑞𝑆𝑉 = 
𝑇𝑆𝑉

2 𝐴0
=

𝑇𝑆𝑉

(𝑏𝑏 + 𝑏𝑡) 𝑑
. ( 8 ) 

The shear flow can be related to the rate of twist as follows 

𝜙,𝑥 =
𝑇𝑆𝑉

𝐺 𝐽
,   

( 9 ) 

𝐽 =
4 𝐴0 

2

∮
𝑑𝑠
𝑡

, ( 10 ) 

being 𝐽 the Saint Venant torsional constant for unicellular box 

girders and 𝐴0  the area enclosed by the mid-section walls. 

It is also possible to define the shape of the warping 

displacements 𝑢 as a function of the rate of twist and of a 

normalized unit warping function 𝑢�̃�(𝑠), with respect to the shear 

centre: 

𝑢(𝑠) = −𝜙,𝑥 𝑢�̃�(𝑠),   ( 11 ) 

𝑢�̃�(𝑠) = ∫ 𝑟
𝑠

0

𝑑𝑠 −
2 𝐴0 

∮
𝑑𝑠
𝑡

∫
𝑑𝑠

𝑡

𝑠

0

. ( 12 ) 

The detailed process for the determination of 𝑢�̃�(𝑠) may be 

found in Kollbrunner & Basler (1969) or in Pedro (1995). 

2.3.2. Warping Torsion 

In common box-girder bridges subjected to torsion there is 

a natural tendency for warping of the cross-section. When the 

warping displacement is constrained, a set of torsional warping 

stresses 𝜎𝑤 is generated, along with corresponding shear 

stresses 𝜏𝑤 to be added to those related to uniform torsion, 𝜏𝑆𝑉. 

The interaction between the these stresses and those obtained 

by Saint-Venant theory alter the displacements on a closed 

cross-section, making ( 11 ) invalid, since 𝜙(𝑥) is strictly 

dependant on Saint-Venant shear flow 𝑞𝑆𝑉. For this reason, it is 

necessary to consider a new auxiliary function 𝜒(𝑥), to be 

dependent on the total shear flow 𝑞 =  𝑞𝑆𝑉 + 𝑞𝑤. As a result, it 

is assumed that  

𝑢(𝑥, 𝑠) =  −�̃�𝑆(𝑠)
𝑑𝜒

𝑑𝑥
  , ( 13 ) 

where 𝜒 is a function to be evaluated by taking its derivative as 

an analogy for the twist angle of the cross section employed for 

uniform torsion.  

Figure 2 – Non-linear distribution of the longitudinal bending 

stresses in top and bottom flanges 

𝑏𝑒,1 = 𝛹1𝑏𝑡/2  ;  𝑏𝑒,2 = 𝛹2𝑏𝑏/2  ;  𝑏𝑒,3 = 𝑘 𝛹3(𝑏 − 𝑏𝑡)/2 

𝑘 = 1 − 0.15  (𝑏 − 𝑏𝑡) 2𝑙⁄  

(
𝑡𝑡
𝑡𝑡

𝑆)
𝑏,𝑆𝐿

=
𝐸𝑠

𝐸𝑐
 
1 + 𝜐𝑐

1 + 𝜐𝑠
=

𝐸𝑠

𝐸𝑐
 
1 + 0.2

1 + 0.3
 ≈

𝐸𝑠

𝐸𝑐
= (

𝑡𝑡
𝑡𝑡

𝑆)
𝑏

= 𝑛. ( 7 ) 
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The stresses are obtained as follows 

 and the corresponding warping shear flow may be deduced as 

𝑞𝑤 = 𝐸
𝑑3𝜒

𝑑𝑥3
 ∫ �̃�(𝑠)𝑡 𝑑𝑠

𝑠

0

, ( 15 ) 

The torsional moment in each cross-section is equilibrated 

by the sum of uniform and non-uniform components,  

𝑇 = 𝑇𝑆𝑉 + 𝑇𝑤 =  𝐺𝐽
𝑑𝜙 

𝑑𝑥
− 𝐸𝐼𝜔

𝑑3𝜒

𝑑𝑥3
, ( 16 ) 

where 𝐼𝜔 is a warping constant defined as 

𝐼𝜔 = ∫(�̃�(𝑠))
2

𝑆

𝑡 𝑑𝑠. ( 17 ) 

On the other hand, the total shear flow and torsional moment 

may also be determined as  

𝑞 = 𝐺𝑡 (
𝜕𝑢

𝜕𝑠
+ 𝑟 

𝑑𝜙 

𝑑𝑥
),  ( 18 ) 

𝑇 = ∫𝑞

𝑆

𝑟 𝑑𝑠 =  𝐺𝐼𝑐
𝑑𝜙 

𝑑𝑥
− 𝐺  (𝐼𝑐 − 𝐽)

𝑑𝜒 

𝑑𝑥
, ( 19 ) 

where 𝑟 represents the distance from the shear centre to the 

wall tangent and  𝐼𝑐 is the shear central second moment of 

inertia 

𝐼𝑐 = ∫𝑟2 𝑡

𝑆

 𝑑𝑠. ( 20 ) 

Eliminating 
𝑑𝜙 

𝑑𝑥
 from ( 16 ) and ( 19 ) and performing 

equilibrium of an infinitesimal segment of beam subjected to 

torsional load 𝑚𝑇(𝑥)  leads to the differential equilibrium 

equation: 

𝐸𝐼𝜔
𝜇

(
𝑑4𝜒

𝑑𝑥4
) + 𝐺𝐽 ( 

𝑑2𝜒 

𝑑𝑥2
) = 𝑚𝑇(𝑥), ( 21 ) 

where 𝜇 is the warping shear parameter given by 

𝜇 = 1 − 
𝐽

𝐼𝑐
.   ( 22 ) 

This parameter is a measure of the cross-sectional 

slenderness. For very thin walls, it approaches unity, meaning 

that the effect of warping shear in torsion, also designated as 

torsion bi-shear, has little expression.  

The torsion behaviour in composite box-girders can be once 

again computed assuming 𝑡𝑡
𝑆 = 𝑡𝑡  𝐺𝑐/𝐺𝑠 ≈ 𝑡𝑡  /𝑛. 

The analytical solutions for these equilibrium equations may 

be found in Maisel & Roll (1974). 

2.4. Distortion 

The distortional loads, 𝑝𝑑, acting on a box girder are 

simultaneously equilibrated by two coupled mechanisms: 

longitudinal bending of the plates, related to loads 𝑝𝑑
𝐿 , and 

transverse deformation of the cross-section, related to loads 𝑝𝑑
𝑇. 

The sum of the two contributions in each plate should render the 

total force, i.e., 

 

The 𝑝𝑑
𝐿  forces may be obtained conducting the longitudinal 

analysis of a segment of box girder (see Figure 3a), ensuring 

that the longitudinal normal stresses at the web-flange 

connections are continuous (see Figure 3b).  

It is possible to define the longitudinal stresses in the 

intersections as a function of the bending moment 𝑚𝑤,𝑑
𝐿 , which 

comes from analysing the web as a beam subjected to 𝑝𝑤,𝑑
𝐿 : 

𝜎2,𝑑 = −
𝑚𝑤,𝑑

𝐿  𝑦𝑡 

2 𝐼𝑤,𝑒
,    𝜎3,𝑑 = 

𝑚𝑤,𝑑
𝐿  𝑦𝑏  

2 𝐼𝑤,𝑒
, ( 24 ) 

where  

𝐼𝑤,𝑒 =  
2𝛽 [(𝛼𝑡 + 2)(𝛼𝑏 + 2) − 1]

(1 + 𝛽)[𝛼𝑡 + 𝛼𝑏𝛽 + 3(1 + 𝛽)]
, ( 25 ) 

𝑦𝑡 = 
(1 + 𝛽)(1 + 𝛼𝑏𝛽 + 2𝛽)

𝛼𝑡 + 𝛼𝑏𝛽 + 3(1 + 𝛽)
𝑏𝑤 , ( 26 ) 

𝑦𝑏 = 𝑏𝑤 − 𝑦𝑡 . ( 27 ) 

The stress diagram for the cross-section is completely 

defined, since it is anti-symmetrical and linear. The longitudinal 

equilibrium equation can be written as a function of the web in-

plane displacements ∆𝑤: 

𝑝𝑤,𝑑
𝐿 = 

𝑑4∆𝑤

𝑑𝑥4
 𝐸𝐼𝑤,𝑒 . ( 28 ) 

The forces 𝑝𝑑
𝑇  are related with the analysis of the cross-

section as an individual frame. They are equivalent to anti-

symmetric diagonal loads which cause transverse bending (see 

Figure 4). 

Applying the unit dummy load method and relating the 

diagonal displacements with the in-plane displacements of the 

web plates, one can arrive at an equilibrium equation that 

relates 𝑝𝑤,𝑑
𝑇  and ∆𝑤 through and equivalent “frame stiffness” 𝑘:  

𝑝𝑤,𝑑
𝑇 = 𝑘 ∆𝑤 ,  ( 29 ) 

where 

𝜎𝑤  (𝑥, 𝑠) =  − 𝐸 �̃�𝑠(𝑠)
𝑑2𝜒

𝑑𝑥2
, ( 14 ) 

Figure 3 – a) Membrane forces and moments acting on the plates 

of a segment of box girder bridge subjected to distortion and b) 

generic distortional warping stresses 

a) 

b) 

𝑝𝑑 = 𝑝𝑑
𝐿 + 𝑝𝑑

𝑇 . ( 23 ) 
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𝑘 =
24 𝑏𝑤

𝑏𝑏
2𝑑2

𝑘1𝑘2𝐸
𝑡𝑤

3

12(1 − 𝜈𝑤)
, ( 30 ) 

𝑘1 = 
[𝛼𝑡 + 𝛽2(𝛼𝑏 + 2) + 2(𝛽 + 1)] (1 + 𝛽)

𝛼𝑡 + 𝛼𝑏𝛽 + 3(𝛽 + 1)
, ( 31 ) 

𝑘2 =
2 + 2𝛽 + 2𝛽2 + 𝑟𝑡 + 𝑟𝑏𝛽2

𝛽[(𝑟𝑡 + 2)(𝑟𝑏 + 2) − 1]
. ( 32 ) 

Replacing ( 28 ) and ( 29 ) into ( 23 ), one can obtain the 

global equilibrium equation for distortion, which is equal to ( 3 ) 

but with an additional term which represents the elastic 

foundation.   

𝑝𝑤,𝑑 =
𝑑4∆𝑤

𝑑𝑥4
 𝐸𝐼𝑤,𝑒 + 𝑘 ∆𝑤 . ( 33 ) 

The solutions to the beam on elastic foundation equation 

have been studied to some extent by Hetenyi (1979), and are 

the basis of the work by Pedro (1995), that compiled and 

synthetized the results for concentrated and uniformly 

distributed loads in both simply supported and fixed-ended 

spans. 

When dealing with composite steel-concrete box girders, it 

is necessary to employ two different equivalent thicknesses. 

This has to do with the fact that in the longitudinal bending of 

the plates, the membrane bending behaviour is prominent, 

whereas the frame behaviour is ruled by transverse bending 

and hence, transverse inertias: 

The longitudinal normal stresses may still be calculated 

employing ( 5 ).  

3. Overview of Generalized Beam Theory 

The longitudinal analysis of thin-walled box girder bridge 

decks may be performed through a finite element model based 

on the Generalized Beam Theory (GBT), which can capture of 

the effects of bending, torsion, distortion and shear lag in the 

longitudinal normal stresses (besides other effects). These 

effects shall be included through appropriate deformation 

modes, whose displacement shapes are pre-determined and 

whose amplitudes along the span are the problem unknowns. 

3.1. Fundamental Formulations 

For each wall of the prismatic member, this theory employs 

Kirchhoff’s assumption for thin plates to express the 

displacement vector, 𝑼, in terms of the wall mid-surface local 

axes (see Figure 5) as 

𝑼(𝑥, 𝑦, 𝑧) = [

𝑈𝑥

𝑈𝑦

𝑈𝑧

] = [
0 �̅�𝑡

�̅�𝑡 0
�̅�𝑡 0

] [
𝜱
𝜱,𝑥

] − 𝑧 [
0 �̅�𝑡

�̅�,𝑦
𝑡 0

0 0

][
𝜱
𝜱,𝑥

]

= 𝜩𝑈 [
𝜱
𝜱,𝑥

], 

( 35 ) 

where the comma indicates a differentiation, 𝜱 = 𝜱(𝑥) is a 

column vector containing the deformation mode amplitude 

functions, 𝜩𝑈 is an auxiliary modal matrix and �̅�, �̅� and �̅� are 

column vectors containing the deformation mode wall mid-line 

displacement components along the 𝑥, 𝑦 and 𝑧 local axes.  

 Several papers have contributed to the definition of the 

deformation modes for arbitrary polygonal shaped cross-

sections, (see for example Gonçalves, Ritto-Corrêa, & Camotim 

(2010), Gonçalves, Bebiano, & Camotim (2014) and Bebiano, 

Gonçalves, & Camotim (2015)).  

The non-null components of the strain vector 𝜺𝑡 =
[ 휀𝑥𝑥  휀𝑦𝑦  휀𝑧𝑧  ] can be subdivided into membrane [ ]𝑀  and flexural 

[ ]𝐹 components: 

𝜺 = 𝜺𝑀 + 𝜺𝐹 = (𝜩𝜀
𝑀 + 𝑧𝜩𝜀

𝐹) [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

] =  𝜩𝜀 [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

], ( 36 ) 

where the auxiliary modal matrices are defined as 

𝜩𝜀
𝑀 =  [

0 0 �̅�𝑡

�̅�,𝑦
𝑡 0 0

0 (�̅�,𝑦 + 𝝂)𝑡 0

] , ( 37 ) 

𝜩𝜀
𝐹 = − [

0 0 �̅�𝑡

�̅�,𝑦𝑦
𝑡 0 0

0 2�̅�,𝑦
𝑡 0

]. ( 38 ) 

The stresses can be easily obtained through a constitutive 

relation operator 𝑪𝒆, which in this case refers to isotropic linear 

elastic materials and, assuming a plane stress. 

{

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

} = 𝑪𝒆 {

휀𝑥𝑥

휀𝑦𝑦

𝛾𝑥𝑦

} =

[
 
 
 
 

𝛼𝐸

1 − 𝜈2

𝜈𝐸

1 − 𝜈2
0

𝜈𝐸

1 − 𝜈2

𝛼𝐸

1 − 𝜈2
0

0 0 𝐺]
 
 
 
 

{

휀𝑥𝑥

휀𝑦𝑦

𝛾𝑥𝑦

}.  ( 39 ) 

Here, 𝛼 is a factor that equals 1 unless wall membrane 

transverse extensions are assumed null (휀𝑦𝑦
𝑀  = 0), in which 

case 𝛼 = (1 − 𝜈2) is adopted for the membrane terms to avoid 

over-stiff solutions. 

 Longitudinal bending (determination of 𝐼𝑤,𝑒) 

(𝑡𝑡
𝑆)𝑑

𝐿 = 𝑡𝑡  𝑛 =  𝑡𝑡
𝐸𝑠

𝐸𝑐
. 

 Transverse bending  (determination of 𝑘) 

(𝑡𝑡
𝑆)𝑑

𝐿 = 𝑡𝑡√𝑛3 . 

( 34 ) 

Figure 5 – Arbitrary thin-walled member geometry and local 

coordinate systems 

a) 

b) 

Figure 4 - a) Equivalent diagonal loads and b) corresponding 

transverse bending moments 
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The GBT equilibrium equation system is obtained from a 

variational principle, such as the Principle of Virtual Work (PTV). 

The internal work may be shown to read 

𝛿𝑊𝑖𝑛𝑡 = − ∫ [

𝛿𝜱
𝛿𝜱,𝑥

𝛿𝜱,𝑥𝑥

]

𝑇

𝐿

[

𝑩 [𝟎] 𝑫𝟐

[𝟎] 𝑫𝟏 [𝟎]

𝑫𝟐
𝑡 [𝟎] 𝑪

] [

𝑑𝜱
𝑑𝜱,𝑥

𝑑𝜱,𝑥𝑥

]𝑑𝑥, ( 40 ) 

where  𝐿 is the length of the member and  𝑩, 𝑪, 𝑫𝟏, 𝑫𝟐 and 𝑫𝟐
𝑡 

are the GBT linear stiffness matrices. Each of them is 

associated with distinct strain components, namely transverse 

extension/bending, primary/secondary warping, membrane/ 

flexural shear and membrane/flexural Poisson effects, 

respectively. Assuming that the transverse extension modes 

shall be discarded from the analysis, these matrices are defined 

as 

𝐵𝑖𝑗 = 𝐵𝑖𝑗
𝐹 = ∫

𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖,𝑦𝑦𝑤𝑗,𝑦𝑦  𝑑𝑦

𝑆

, 

𝐶𝑖𝑗 = 𝐶𝑖𝑗
𝑀 + 𝐶𝑖𝑗

𝐹 = ∫𝐸𝑡𝑢𝑖𝑢𝑗 𝑑𝑦
𝑆

+ ∫
𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖𝑤𝑗 𝑑𝑦

𝑆

, 

𝐷1𝑖𝑗
= 𝐷1𝑖𝑗

𝑀 + 𝐷1𝑖𝑗
𝐹 = ∫ 𝐺𝑡(𝑢𝑖,𝑦 + 𝑣𝑖)(𝑢𝑗,𝑦 + 𝑣𝑗) 𝑑𝑦

𝑆
+

∫
𝐺𝑡3

3
𝑤𝑖𝑤𝑗 𝑑𝑦,

𝑆
  

𝐷2𝑖𝑗
= 𝐷2𝑖𝑗

𝐹 = ∫
𝜈𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖𝑤𝑗,𝑦𝑦  𝑑𝑦

𝑆

. 

 

( 41 ) 

Furthermore, assuming that loads are applied at the walls mid-

plane, the external work can be written as  

where 𝒇𝑡 = [ 𝑓𝑥  𝑓𝑦  𝑓𝑧  ] is the external load vector. 

3.2. Deformation Modes 

The deformation modes employed in this work can be 

subdivided into distinct sets (or families). The first set to be 

considered here (see Figure 7) consists of the so called 

“Vlasov’s modes”, i.e., the modes where Vlasov’s null 

membrane shear strain hypothesis is employed (𝛾𝑥𝑦
𝑀 =  0). It 

includes axial extension (mode 1), major and minor axis 

bending (modes 2 and 3, respectively) and distortion (mode 4).  

  For comparison with the Classical Formulations, it should 

be pointed out that all these modes are orthogonal with respect 

to matrix 𝑪. Furthermore, their respective in-plane 

displacements 𝑣 and 𝑤 are determined performing a frame type-

analysis, in which 𝑢 and 𝑣 are linked through Vlasov’s 

hypothesis. 

A second set comprehends the deformation modes related 

with the shear deformation of the cross-section to torsion and 

distortion (see Figure 6). Mode 5 consists of torsion, i.e., the 

deformed shape of the cross-section when considering a 

constant shear flow circulating around the closed perimeter, 

being orthogonal with respect to 𝑪 against modes 1 through 3 

(hence it does not produce axial force nor bending, but it is not 

orthogonal with respect to distortion). The effect of torsion bi-

shear can be replicated by taking into account an additional 

mode (mode 6), which has the same warping function as that 

associated with mode 5. Even though it is not addressed in the 

Classical Formulations, the effect of bi-shear in distortion may 

also be considered in GBT analysis by including mode 7.  

The last set of deformation modes consists on further shear 

modes that seek to allow for shear lag deformation (see Figure 

8). It contains both symmetric (modes 8 through 11) and anti-

symmetric (modes 12 through 15) warping modes (𝑢𝑘 ≠ 0, 𝑣𝑘 =

𝑤𝑘 = 0) in both top and bottom flanges, allowing to capture 

more accurately the effect of shear lag deformation in each 

plate. Although more modes could be considered, these were 

found sufficient in the analysis of the numerical examples.  

𝛿𝑊𝑒𝑥𝑡 = ∫ [
𝛿𝜱
𝛿𝜱,𝑥

]
𝑡

𝜩𝑼
𝑡  𝒇

𝛺

𝑑𝛺, ( 42 ) 

Figure 7 – Set of Vlasov’s deformation modes 

Warping displacements In-plane displacements 

Mode 2 

Mode 1 

Mode 3 

Mode 4 

Warping displacements In-plane displacements 

Mode 5 

Mode 6 

Mode 7 

Figure 6 – Set of torsion deformation modes 

Figure 8 – Warping displacements of shear lag warping 

modes – Quadratic modes 8 and 12, Cubic modes 14 and 15 and 

Quartic modes 9,10,11 and 13 – (in-plane displacements are 

null).  

Mode 8 - quadratic Mode 9- quartic 

Mode 10 - quartic Mode 11 - quartic 

Mode 12 - quadratic Mode 13 - quartic 

Mode 14 - cubic Mode 15 - cubic 
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3.3. Definition of a Finite Element and Implementation in 

MATLAB 

In the context of longitudinal discretization, for each element, 

the modal amplitude functions contained in the vector 𝜱 can be 

approximated as  

where 𝜳 is the matrix containing the longitudinal shape 

functions, and 𝒅𝒆 is the vector containing the degrees of 

freedom of the element, which are nodal values for the 

amplitude functions and their derivatives. 

As can be seen in ( 35 ), the displacements 𝑼(𝑥, 𝑦, 𝑧) are a 

function of a first derivative with respect to the 𝑥 axis, thus 

requiring 𝐶1 class functions. In this situation, it is possible to 

make use of Hermite’s cubic interpolation functions. For pure 

warping modes 𝑘 (�̅�𝑘 ≠ 0, �̅�𝑘 = �̅�𝑘 = 0), these interpolation 

functions cannot be utilized, because the amplitude is given not 

as a function of 𝛷𝑘 but only of 𝛷𝑘,𝑥 (see ( 35 )) and that would 

lead to a linear dependence of 𝐻1 and 𝐻3. To circumvent this 

issue, in such situations Lagrange’s linear and quadratic 

hierarchic polynomials are employed. 

The combination of the set of these shape functions leads to 

a finite element with three nodes, where the first node (𝑥 = 0) 

is associated with 𝐻1, 𝐻2 and 𝐹1, the second node (𝑥 =
𝑙𝑖

2⁄ ) 

refers strictly to function 𝐹3 and the third and final node (𝑥 = 𝑙𝑖) 

is related to 𝐻3, 𝐻4 and 𝐹2. For a set of 𝑁 deformation modes 

subdivided into warping (𝑁𝑤) and non-warping modes, shape 

function matrix 𝜳 of dimensions 𝑁 ×(4𝑁 − 𝑁𝑤) can be 

organized as 

where �̃� is a diagonal matrix sized after the number of 

associated deformation modes in which each term is equal to 𝑋 

and 𝑃() is the operator for primitivation. 

The element stiffness matrix 𝑲e and the equivalent nodal 

force vector 𝑭e are obtained through integrations along the 

element length 𝑙𝑖 and mid-surface 𝛺𝑒 as follows 

Assembling the global stiffness matrix and force vector, one 

can determine 𝒅 through the global equilibrium system of 

equations, and use the corresponding element nodal 

displacements to compute the longitudinal stresses as  

The transverse discretization is useful only for the 

determination of the deformation modes. The displacements of 

modes 1 through 5 are obtained through numerical program 

GBTUL (available at http://www.civil.ist.utl.pt/gbt/), in which the 

box girder is subdivided into six walls, connected at their 

intersections. Modes 6 and 7 are defined by the warping 

displacements of modes 5 and 4, respectively, and the 

additional shear lag modes can be defined analytically. 

The routine developed in MATLAB allows for the 

orthogonalization of the shear lag modes 8 through 15 with 

respect to matrix 𝑪. This will result in the uncoupling of each 

mode’s participation in the total longitudinal normal stresses. 

4. Theoretical Comparison between Classical 

Formulations and Generalized Beam Theory 

It is possible to put into evidence some of the theoretical 

differences between the two approaches detailed so far. Both 

consider several cross-section deformation modes, which are 

variable along the longitudinal axis of the member. For each 

approach, the modes’ amplitude functions can be determined 

by means of equilibrium equations. Thus, the comparison 

between the two becomes more clear when analysing 

separately each method’s (i) pre-defined deformation modes 

and (ii) established longitudinal equilibrium equations. 

4.1. Comparison of the Cross-section Deformation Modes 

Each cross-section deformation mode 𝑘 is simultaneously 

characterized by its in-plane (𝑣𝑘, 𝑤𝑘) and out-of-plane 

displacements (𝑢𝑘). For the case of minor-axis bending, both 

approaches assume an in-plane rigid body translation of the 

cross-section, which remains normal to the longitudinal axis.  

When dealing with non-uniform torsion accounting for the 

effect of bi-shear, the Classical Formulations consider that the 

warping displacements do not depend only on the in-plane rigid 

body behaviour, i.e., two distinct deformation modes are 

considered, one concerning the rigid body rotation (𝜙(𝑥)) and 

another related to the warping displacements of the cross-

section (𝜒(𝑥)). The deformation field is obtained by the linear 

combination of these two modes. Since the “shape” of the GBT 

warping displacements matches the one in the Classical 

Formulations (𝑢�̃�(𝑠)), the deformation field obtained by their 

linear combination is necessarily the same mode space. 

The definition of the distortional deformation mode in the 

Classical Formulations is based on the combination of the 

longitudinal bending behaviour of the plates with a transverse 

frame-type response. In the longitudinal analysis, Vlasov’s 

hypothesis is implicitly assumed. In the frame analysis, 

transverse extension of the walls is neglected, meaning once 

again that the classical definition of the distortional deformed 

configuration coincides with the one presented in GBT. 

As far as shear lag effects are concerned, the Classical 

Formulations make use of a single global shear lag mode, 

whereas GBT analyses allow for the consideration of a broad 

set of modes. Evidently, this should result in higher accuracy 

when using the GBT-based approach, because the effect of 

shear lag deformability may vary along the plates in a rather 

complex way. Even so, it should be pointed out that the most of 

the GBT shear lag modes were defined as quartic based on the 

classical expressions for shear lag in bending. 

Finally, it should be noted that GBT does not require 

homogenization and therefore, for composite cross-sections, 

the homogenisation procedures employed in the Classical 

Formulations may lead to slight differences. 

4.2. Comparison of the Longitudinal Equilibrium Equations 

The GBT equilibrium equations can be written in the 

differential form as 

As for the Classical Formulations, the equivalent 

expressions for bending, torsion with warping and distortion can 

be obtained from those in ( 3 ), ( 16 ), ( 19 ) and ( 33 ) and 

expressed in matrix form so that  

𝜱(𝑥) = 𝜳(𝑥) 𝒅𝒆, ( 43 ) 

𝜳 = [
𝑯�̃�

0
|

0

𝑃(𝑭�̃�)
|
𝑯�̃�

0
|

0

𝑃(𝑭�̃�)
|
𝑯�̃�

0
|

0

𝑃(𝑭�̃�)
|
𝑯�̃�

0
], ( 44 ) 

𝑲𝒆 = ∫  [

𝜳
𝜳,𝑥

𝜳,𝑥𝑥

]

𝑇

𝑙𝑖

𝑴[

𝜳
𝜳,𝑥

𝜳,𝑥𝑥

]  𝑑𝑥,  ( 45 ) 

𝑭𝒆 = ∫ [
𝜳
𝜳,𝑥

]
𝑡

𝜩𝑈
𝑡 𝒇

𝛺𝑒
𝑑𝛺. ( 46 ) 

𝜎𝑥𝑥 = 𝜎𝑥𝑥
𝑀 + 𝜎𝑥𝑥

𝐹 = 𝐸(�̅�𝑡𝜳,𝑥𝑥)𝒅𝒆 −
𝐸

1−𝜈2
(𝑧�̅�𝑡𝜳,𝑥𝑥)𝒅𝒆  ( 47 ) 

𝑪𝜱,𝑥𝑥𝑥𝑥 − (𝑫𝟏 − 𝑫𝟐 − 𝑫𝟐
𝑡)𝜱,𝑥𝑥 + 𝑩𝜱 = 𝒇𝑥,𝑥 + 𝒇𝑦 + 𝒇𝑧 ( 48 ) 



8 
 

It is possible to notice that the amplitude functions 𝛷𝑘 are 

respectively given in terms of the vertical displacement of the 

cross-section 𝑣, of the warping function 𝜒, of the angle of twist 

𝜙 and of the in-plane displacement of the web ∆𝑤.  

Through the GBT approach, the equivalent system comes 

At this point, it can be concluded that the GBT torsion and 

distortion equations are coupled, as seen by the existence of 

non-diagonal terms in the last three lines of the system of 

equations. In the Classical Formulations these terms are null, 

because (i) several of these coefficients relate to wall flexural 

behaviour, which is often disregarded in more classical 

approaches and (ii) in the determination of 𝑝𝑤,𝑑 the effect of 

torsion bi-shear deformation was neglected. 

In terms of the solutions to these equations, since Kirchhoff’s 

hypothesis was adopted, in GBT formulation the longitudinal 

amplitude functions are always at least of class 𝐶1. The same is 

not always true in Classical Formulations, where in some cases, 

such as in the torsional response case, it suffices that the 

displacements be 𝐶0 continuous. This will lead to additional 

discrepancies in the results for sections near concentrated 

loads, diaphragms and supports. 

In conclusion, even though the cross-section deformation 

modes generally coincide, the Classical Formulations present 

differences with respect to the GBT, which originate differences 

in the longitudinal stress distributions. Recall that shear lag has 

not been considered in this section. 

5. Analysis of Numerical Examples 

5.1. Numerical Example 1 

This first example deals with a simply supported 30 m span 

concrete box-girder deck of constant cross-section acted by a 

mid-span concentrated load 𝑄, and a uniform longitudinal line 

load 𝑞, both applied in one of the web-top slab joints (see Figure 

9a). Diaphragms exist at the support sections only. 

 

The mid-surface longitudinal stresses which are here 

subject of comparison were obtained through (i) the Classical 

Formulations (ii) a GBT displacement-based finite element 

model using 30 elements of equal length and (iii) a shell finite 

element model using 1800 4-node shell elements in the 

commercial program ADINA. Figure 9b presents the cross-

section 𝜎𝑥𝑥
𝑀  diagrams for the mid-span section and the 

longitudinal 𝜎𝑥𝑥
𝑀  diagram for the loaded web-top flange 

intersection line, and Figure 9c shows the modal participations 

for both methods, with respect to the concentrated load. 

The GBT results show very good agreement with those 

obtained with the shell finite element model. The stresses 

obtained following the Classical Formulations appear to be a 

good estimate but deviate more with respect to the FEM stress 

curves, especially for the mid-span concentrated load case. 

It is possible to observe that, in general, the Classical 

Formulations have modal participations similar to those 

obtained in the GBT analysis. Higher discrepancies are noticed 

in terms of the shear lag effects. The results for bending 

coincide and those for torsion with warping including bi-shear 

are very similar. The same does not happen however for the 

distortional mode, in which the GBT formulation generally leads 

to smaller stresses throughout the span. This happens due to 

the reasons explained in section 4, as well as due to the 

inclusion of distortion bi-shear in the GBT approach. 

5.2. Numerical Example 2 

The second case study is a simply supported composite 

steel-concrete box-girder bridge subjected to self-weight and to 

Load Model 1 traffic actions defined in NP EN 1991-2. The 

thickness of both steel and concrete walls is constant along a 

36-meter span (see Figure 9d). Three different situations are 

considered in what regards the diaphragm spacing: every 7.2 

meters, every 12 meters and every 36 meters (corresponds to 

having diaphragms at the end supports only). 

In what regards global verifications, NP EN 1991-2 states 

that the uniformly distributed loads should be applied only in the 

unfavourable part of the influence surface, both longitudinally 

and transversally. Naturally, considering that the entire area of 

the notional lane is loaded will lead to the maximum longitudinal 

bending stresses. However, such would produce null 

longitudinal stresses from torsion and distortion, since the so-

called notional lane is centred with the axis of symmetry.  

For this reason, one should also take into consideration load 

cases 2 and 3 (see Figure 9e), in an attempt to maximize torsion 

and distortion effects, because those situations might be more 

unfavourable. The sum of torsional and distortional stresses due 

to the two load cases and in the two situations with intermediate 

diaphragms are presented in Figures 9f.  

First, comparing the values of these stresses with the 

number of span diaphragms, it is clear the important effect in 

reducing the longitudinal stresses due to torsion presented by 

this transversal restrain of the cross-section deformation. 

Secondly, although not shown here, the influence of torsion 

is negligible, except for sections in the vicinities of the 

diaphragm. Hence, the overall behaviour is governed by the 

distortional response, which is similar to that of a continuous 

beam on an elastic foundation. For this reason, it is possible to 

approximate the mid-span stresses through equivalent fixed-

ended (load case 3) and simply supported (load case 2) spans 

with a length equal to the spacing between diaphragms.  

[
 
 
 
 
𝐸𝐼𝑦 0 0 0

0 𝐸𝐼𝜔 0 0
0 0 0 0

0 0 0 −𝐸𝐼𝑤,𝑒

𝑝 𝑐𝑜𝑠𝜑

𝑝𝑤,𝑑 ]
 
 
 
 

[

𝑣,𝑥𝑥𝑥𝑥
𝜒,𝑥𝑥𝑥𝑥

𝜙,𝑥𝑥𝑥𝑥

∆𝑤,𝑥𝑥𝑥𝑥

] 

+[

0 0 0 0
0 −𝐺(𝐽 − 𝐼𝑐) 𝐺(𝐽 − 𝐼𝑐) 0

0 𝐺(𝐽 − 𝐼𝑐) 𝐺𝐼𝑐 0
0 0 0 0

] [

𝑣,𝑥𝑥

𝜒,𝑥𝑥

𝜙,𝑥𝑥

∆𝑤,𝑥𝑥
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𝑣
𝜒
𝜙
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𝑝
0
𝑚
𝑝
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( 50 ) 
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Figure 9 – a) Geometry and other parameters for NE1 (numerical example 1); b) cross-section and longitudinal stress profiles for NE1; c) modal 
stress participations for concentrated load in NE1; d) Geometry and other parameters for NE2; e) Load cases (LC) in NE2; f) Longitudinal profiles of 
added torsion and distortion stresses for LC2 and LC3 and comparison with equivalent simply supported (SS) and fixed-ended (FE) spans; g) 
Comparison between maximum l stresses of LC1 and LC3; h) Modal participations to the maximum stresses for characteristic combination in NE2 
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These results provide some guidance concerning the 

application of the Classical Formulations for box girders with 

intermediate spans. Although not shown, considering the same 

equivalent spans and boundary conditions did not lead to 

equally satisfactory results, but seemed to offer an upper bound 

for the longitudinal stresses at mid-span. 

Readdressing the subject of the global analysis of the box-

girder bridge subjected to uniform loads, it can be observed that 

load case 3 provides mid-span longitudinal stress which are 

substantially higher than the ones obtained for load case 2. 

There is an increase in about 216% and 212% for the 

configurations with 4 and 2 intermediate diaphragms, 

respectively. Even so, for this example, load case 1 continues 

to govern design for all diaphragm spacing configurations (see 

Figure 9g) and must be considered for the determination of the 

total stresses for the characteristic combination, which depend 

solely on bending and shear lag (see Figure 9h). 

6. Conclusions 

The present works revolves around the longitudinal analysis 

of mainly steel-concrete composite box girder decks, through 

the use of two distinct methods of analysis that allow for a strong 

perception of the structural behaviour: one concerning the so-

called Classical Formulations and another based on the 

Generalized Beam Theory. 

The main conclusions of this work are: 

1. The definition of the cross-section deformation modes in the 

both approaches, is equivalent in terms of the membrane 

displacements of bending, torsion with warping and 

distortion. Some minor differences may occur in composite 

steel-concrete cross-sections due to the simplifications 

pertaining to the homogenization rules used in the Classical 

Formulations. 

2. The shear lag effect in the Classical Formulations is semi-

empirical and entails a single global symmetric shear lag 

mode. GBT allows capturing shear lag through more modes, 

namely symmetric and anti-symmetric modes. 

3. The GBT approach allows obtaining equations which are 

similar to the ones of the Classical Formulations, but more 

complex because they consider (i) several wall flexural 

contributions that are neglected in the latter and (ii) the 

coupling of bi-shear and distortion. 

4. For the Classical Formulations, the shear lag effect in 

numerical example 1 does not show a good agreement with 

the stresses obtained with a shell finite element model, both 

in terms of longitudinal and cross-section diagrams. With the 

GBT approach it was possible to obtain results that agree 

very well with the shell FEM results. For this outcome, the 

presence of anti-symmetric shear lag modes was found to 

be relevant. For the numerical example 2, the shear lag 

effects are not as meaningful because the flanges are 

narrow. 

5. The results of torsion with warping are similar but do not 

coincide. For distortion, longitudinal stress results are further 

apart, due to the additional simplifications considered in the 

Classical Formulations, namely the non-inclusion of 

distortion bi-shear. 

6. The added torsional and distortional longitudinal stress 

profiles (including bi-shear) are similar to those obtained 

conducting the analysis of a continuous beam on an elastic 

foundation, when intermediate diaphragms are considered. 

7. Three different load cases for the uniform loading in 

numerical example 2 were considered, covering the most 

unfavourable design situations: (i) roadway fully loaded, (ii) 

roadway is loaded only on one side of the plane of symmetry 

and (iii) roadway between each diaphragm is loaded only on 

one side of the plane of symmetry, but with the side 

alternating after each diaphragm span. The stresses 

obtained considering the third load case were much higher 

than those obtained in the second. 

8. In overall, the Classical Formulations resort to more 

simplifications than GBT and this affects the accuracy of the 

results, although generally on the safe side. 

9. The consideration of the shear lag effect in GBT is fairly 

simple. GBT is also more versatile and naturally more 

accurate than the use of effective width coefficients. 

10. The Classical Formulations comprise a fast and insightful 

tool, very valuable to obtain a first estimate of the 

longitudinal stresses due to bending with shear lag, torsion 

with warping and distortion. 

11. The Generalized Beam Theory approach shows a great 

potential as a design tool, because it allows analysing the 

modal participation and thus extract conclusions concerning 

the structural behaviour, while being based on a simple and 

broad formulation that can produce very accurate results. 

References 

B.S.I. BS 5400 - Steel, concrete and composite bridges. Code of 

practice for design of composite bridges - Part 3: Code of practice for 

design of steel bridges (2004). 

Bebiano, R., Gonçalves, R., & Camotim, D. (2015). A cross-section 

analysis procedure to rationalise and automate the performance of 

GBT-based structural analyses. Thin-Walled Structures, 92, 29–47. 

Benscoter, S. U. (1954). A theory of torsion bending for multicell beams. 

Journal of Applied Mechanics, 21(1), 25–34. 

Castro, J. M., Elghazouli, A. Y., & Izzuddin, B. A. (2007). Assessment 

of effective slab widths in composite beams. J. Constructional Steel 

Research, 63(10), 1317–27 

Chen, Y. S., & Yen, B. T. (1980). Analysis of Composite Box Girders 

Fritz Laboratory Reports, Nº380-12. 

Fan, Z. T., & Helwig, T. A (2002). Distortional Loads and Brace Forces 

in Steel Box Girders. Journal of Structural Engineering, 128(6), 710–

718. 

Gonçalves, R., Bebiano, R., & Camotim, D. (2014). On the Shear 

Deformation Modes in the Framework of Generalised Beam Theory. 

Thin-Walled Structures, 84, 325–334. 

Gonçalves, R., & Camotim, D. (2010). Steel-concrete composite bridge 

analysis using Generalised Beam Theory. Steel and Composite 

Structures, 10(3), 223–243. 

Gonçalves, R., Ritto-Corrêa, M., & Camotim, D. (2010). A new approach 

to the calculation of cross-section deformation modes in the framework 

of generalized beam theory. Computational Mechanics, 46(5), 759–781.  

Hetenyi, M. (1979). Beams on elastic foundation: Theory with 

applications in the fields of civil and mechanical engineering (11th ed.). 

The University of Michigan Press. 

Kollbrunner, C., & F. Basler, K. (1969). Torsion in Structures. 

Berlin/Heidelberg: Springer-Verlag. 

Maisel, B. I., & Roll, F. (1974). Methods of analysis and design of 

concrete box beams with side cantilevers. Cement and Concrete 

Association. London. (No. 42.494 Tech Rpt.). 

Pedro, J. J. O. (1995). Distorção em tabuleiros de pontes em caixão. 

Influência no comportamento longitudinal.MSc Thesis, UTL. 

Schlaich, J., & Scheef, H. (1982). Concrete Box-Girder Bridges. Vol.1 

IABSE. 

Wright, R. N., Abdel-Samed, S. R., & Robinson, A. R. (1968). BEF 

Analogy for Analysis of Box Girders. Journal of the Structural Division. 


