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ABSTRACT 

 

Asymmetrical loads on box girder bridge decks cause not only bending but also torsion with warping 

and distortion of the cross-section. The latter two may prove to be relevant for the longitudinal analysis 

and design of the deck but their effects within the overall structural behaviour are difficult to assess using 

shell finite element models. 

The present work is developed around two alternative methods for the longitudinal analysis of steel-

concrete composite box girder decks that preserve the structural significance of each main type of cross-

section deformation: bending, torsion with warping, distortion and shear lag. The first method covers the 

prismatic classical bar theories of bending and torsion with warping, the analogy of a beam on an elastic 

foundation for the analysis of distortion, known as folded plate action, and a simplified semi-empirical 

methodology for the consideration of the shear lag effect. The second refers to a finite element method 

based on the Generalized Beam Theory, which is geared towards the longitudinal analysis of 

homogenous/composite thin-walled prismatic bars. 

Comparisons are established between the two methods in terms of theoretical background and 

numerical results, using two case studies. 

Within the analysis of the numerical examples, the influence of intermediate diaphragms to the 

longitudinal behaviour is investigated, referring particularly to the participation of torsion and distortion 

deformation modes. Some insightful notes are given concerning the design effects of intermediate 

diaphragms, and the governing load configurations for box girders deck design. 

 

 

 

 

 

 

KEYWORDS 

Box girder bridges 

Steel-concrete composite bridges 

Longitudinal analysis 

Classical formulations   

Beam on elastic foundation analogy 

Generalized Beam Theory 



 
 



v 
 

RESUMO 

 

Cargas assimétricas em tabuleiros de pontes em caixão causam não só flexão, mas também 

torção com empenamento e distorção da secção transversal. Estes últimos podem ser bastante 

relevantes para a análise longitudinal de tabuleiros em caixão muito deformáveis, mas os seus efeitos 

não são fáceis de identificar utilizando modelos de elementos finitos de casca. 

O presente trabalho desenvolve-se em torno de dois métodos alternativos para a análise 

longitudinal de tabuleiros em caixão mistos aço-betão que preservam o significado estrutural dos 

principais modos de deformação: flexão, torção com empenamento, distorção e shear lag. O primeiro 

relaciona-se com as teorias clássicas de barras para a flexão e a torção com empenamento, a analogia 

de viga em fundação elástica para análise da distorção e uma metodologia semi-empírica simplificada 

para consideração do efeito de shear lag. O segundo refere-se a um método de elementos finitos 

baseado na Teoria Generalizada de Vigas, que está orientado para a análise longitudinal de barras 

prismáticas homogéneas/mistas de parede fina.  

São estabelecidas comparações entre os dois métodos em termos de fundamentos teóricos e de 

resultados numéricos para dois casos de estudo. 

Na análise de exemplos numéricos é investigada a influência dos diafragmas intermédios para a 

análise longitudinal, com particular foco na participação dos modos de torção e distorção. São tecidas 

algumas considerações acerca dos efeitos dos diafragmas intermédios e das configurações de carga 

condicionantes para o dimensionamento do tabuleiro em caixão.  
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1. INTRODUCTION 

Box girder decks have always been a very popular type of bridge superstructure, mostly due to their 

structural efficiency provided by high torsional and flexural stiffness with respect to self-weight (Schlaich 

& Scheef, 1982; Chen & Yen, 1980). In light of the modern-day economical demands, designers have 

progressively searched to reduce the overall weight and volume of concrete walls and steel plates, 

leading almost unavoidably to very slender and flexible cross-sections (Pedro, 1995). As a direct 

consequence, the effects of cross-section out-of-plane (warping) and in-plane deformation (distortion) 

have become more relevant and should be accounted for. 

In unicellular steel-concrete composite box girders subjected to symmetric loads, the longitudinal 

stresses can usually be very accurately represented by considering the effects of longitudinal bending 

and, eventually, of shear lag effect if the flanges are wide. For asymmetrical loads, however, cross-

section in-plane twisting and deformation take place and generate longitudinal deformation of the plates, 

leading to the development of additional longitudinal normal stresses. These effects can turn out to be 

very important to the design verifications of composite box-girders, given the high magnitude of 

asymmetrical traffic loads of NP EN 1991-2 (European Committee For Standardization, 2005b), 

especially in the cases of (i) high width-to-height slenderness of the deck cross-section and 

(ii) diaphragms which are flexible or fairly distanced throughout the span. 

The study of torsion and distortion in composite bridge decks is therefore an important issue from a 

practical standpoint, which is why it has drawn interest by both researchers and designers. However, 

the analysis of these effects is relatively complex and is usually solved by resorting to shell finite element 

models that do not allow a clear identification of the different structural effects on the overall behaviour 

of the bridge deck. 

The present work is developed around two alternative methods for the longitudinal analysis of a 

composite deck that maintain the structural significance of bending, torsion, distortion and shear lag. 

The first relates to the classical approaches to obtain the longitudinal equilibrium equations and is 

henceforth designated as the “Classical Formulations”. It encompasses the Euler Beam theory for 

bending, the warping torsion theory presented by Benscoter (1954) and the folded plate theory based 

on a beam on elastic foundation analogy first introduced by Wright, Abdel-Samed, & Robinson (1968) 

as a way of accounting for distortion in box girders. It also contains the simplified method for the 

determination of the non-linear stress distribution brought by shear lag effect in bending as presented 

in C; the second method involves the use of the Generalized Beam Theory (GBT), a recently emerging 

formulation for thin-walled prismatic members which has shown very promising results  (Silvestre & 

Camotim, 2002; Camotim, Basaglia, & Silvestre, 2010; Henriques, Gonçalves, & Camotim, 2015), 

including for box-girder bridges (Gonçalves & Camotim, 2010), but is still generally unknown to 

designers. In this theory, it is considered that the overall response of the beam-type structure is 

described by the superposition of pre-defined cross-section deformation modes (including bending, 

torsion, distortion and others), whose amplitudes along the longitudinal span are the unknowns left to 

be determined in the structural analysis. 
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The aim of this dissertation is therefore to shed some light into these two methods used to perform 

the longitudinal analysis of box-girder decks, in terms of their formulations, and most especially into the 

results they provide both in terms of total longitudinal normal stresses and the participations of bending, 

torsion, distortion and shear lag. There is a specific focus on the analysis of steel-concrete composite 

box-girders with intermediate diaphragms, whose relevance on the longitudinal profile of the torsional 

and distortional stresses is well known but not simple to asses. A critical discussion shall be addressed, 

which will try to identify important aspects from a design point of view, namely the importance of 

torsion/distortion and of diaphragm spacing. 

 

The work is divided into seven Chapters, namely the present “Introduction” and seven other 

Chapters: 

- Chapter 2 – Reference is given to some of the main methods of analysis for box-girder bridges, 

namely the Classical Formulation, Finite Strip and Shell Finite Element Methods, and GBT. 

- Chapter 3 – The Classical Formulations for bending, torsion with warping and distortion are 

presented, as well as a simplified methodology for accounting for the shear lag effect. The 

solutions of the equilibrium equations for the bending, torsion with warping and distortion 

problems are presented, considering concentrated and distributed loads for simply supported 

and fixed-end spans. 

- Chapter 4 – Defines the fundaments of the GBT, as well as a GBT-enriched finite element and 

its implementation in MATLAB. 

- Chapter 5 – Presents a theoretical comparison between the methods defined in Chapters 3 and 

4. 

- Chapter 6 – First order analyses are conducted on two numerical examples. The first, 

concerning a simply concrete box-girder bridge, and a second one, regarding a steel-concrete 

composite box-girder bridge subjected to standard roadway actions from NP EN 1991-2. For 

the second example three different situations are considered in terms of diaphragm spacing, to 

allow investigating their influence in the torsional and distortional stresses. A critical comparison 

of the two methods is finally presented, based on the results obtained for the two case studies. 

- Chapter 7 – Presents the main conclusions of the work and some possible future developments. 
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2. STRUCTURAL ANALYSIS METHODS FOR STEEL-CONCRETE 

COMPOSITE BOX GIRDERS 

 

2.1. GENERAL REMARKS 

Box girders are currently amongst the most widespread types of bridge superstructures (Schlaich 

& Scheef, 1982). They are typically composed of an upper plate or deck, a lower plate and two or more 

web plates, forming a unicellular or multicellular configuration, respectively. In the particular case of 

steel-concrete composite box girders, the upper deck takes the form of a reinforced concrete slab 

whereas the webs and bottom flange are usually materialized through steel plates. The existence of a 

closed cross-section provides high torsional stiffness to these structures, which proves to be very useful 

in situations where torsional behaviour is a governing factor, such as curved or skewed support bridges. 

These superstructures are also characterized by having high longitudinal stiffness with respect to their 

self-weight, making it possible to achieve long spans with shallow depths, which are aesthetically 

pleasant and more economical solutions (Schlaich & Scheef, 1982, Pedro, 1995). 

The behaviour of box girders usually involves significant cross-section in-plane deformation 

(distortion), thus requiring methods of analysis entailing the simultaneous consideration of both 

transverse and longitudinal behaviours. Several approaches have been proposed for this purpose, of 

which reference is made to the following: 

1. Classical formulations  

2. Finite strip and shell finite element methods 

3. Generalized Beam Theory 

The following sections briefly describe the main characteristics of the abovementioned methods. 

 

2.2. CLASSICAL FORMULATIONS 

Longitudinal stresses in box girders can be determined according to the so called “Classical 

Formulations” for bending, torsion and distortion. The method described here makes use of a procedure 

that subdivides the complex problem of “folded plate action” into simpler and more understandable 

structural analyses regarding bending, torsion and distortion. The method is considered valid for box 

beams whose length over height slenderness ratios (𝑙/𝑑) are around 4 or higher, if the span lengths 𝑙 

are 1.5 times higher than the deck width 𝑏 and if local disturbance zones resulting from direct force 

application are considered separately (Schlaich & Scheef, 1982). 

For loads applied symmetrically at the cross-section, transverse and longitudinal analyses can be 

carried out independently. Beam flexural behaviour is prominent and may or may not take into account 

the effect of shear deformation of wide flanges, commonly referred to as the shear lag effect. 

On the other hand, in the case of asymmetrical transverse loadings, longitudinal and transverse 

analyses are connected. Eccentric forces cause cross-section in-plane deformation (distortion) and also 

longitudinal bending of the plates, thus generating longitudinal stresses. This effect is known as 

distortional warping. 
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Eccentric loads also induce torsion. Wherever the torsional moment changes, non-uniform torsion 

also adds up to the longitudinal stress profile. This is usually more relevant in sections near warping 

restraining supports or in the vicinity of concentrated eccentric loads. 

Both distortional and torsional warping cause an increase of the maximum longitudinal stresses, 

which may or may not be negligible depending on the case at hand. 

According to the work by Pedro (1995), and based on the IABSE publication by Schlaich & Scheef 

(1982), the analysis procedure for a thin-walled box beam subjected to a generic loading, such as the 

one presented in Figure 2.1, consists of first subdividing the loading according to the following steps: 

1) Longitudinal analysis of the beam assuming a rigid cross-section. Vertical and torsional 

loadings derive from direct integration along the transverse direction. Torsional and bending 

moment diagrams are obtained, as well as the longitudinal stresses in the cross-section due 

to bending. If shear lag effects are to be considered, effective widths are calculated so as to 

determine the modified bending stress distribution. 

 

2) Transverse analysis: 
 

2.1) Analysis of the top flange considering it to be rigidly fixed at the webs – see Figure 

2.1a1. Vertical loads are henceforth replaced by equivalent forces and moments, 

applied at the top of the webs. In the case of dead loads and distributed live loads, 

correspondent forces and moments can be deemed uniform in the longitudinal direction. 

On the other hand, concentrated live loads like those caused by tandem systems are 

carried through the top flange plate in such a way that the longitudinal distribution of 

transverse flexural moments is non-linear. This distribution can be obtained by means 

of influence surfaces or shell/finite strip analysis. As a simplification, one can admit that 

the vertical load is equivalent to the action of a concentrated load plus a moment, 

applied at the nearest point of the web plate. If this approach proves to be excessively 

on the safe side, it is also possible to make use of other simplified models for in-plane 

load degradation according to the specific case study.1 

2.2) Analysis of a strip of longitudinal length 𝑑𝑥 = 1 as a frame subjected to eccentric 

reactions (𝑚𝐴, 𝑝𝐴), (𝑚𝐵 , 𝑝𝐵) – Figure 2.1a2:  

2.2.1) Division of the applied point and line loads into symmetric and anti-symmetrical 

parts 

𝑝𝑠𝑦𝑚 =
𝑝𝐴 + 𝑝𝐵
2

   ;    𝑝𝑎𝑛𝑡𝑖 =
𝑝𝐴 − 𝑝𝐵
2

 ( 2.1 ) 

𝑚𝑠𝑦𝑚 =
𝑚𝐴 +𝑚𝐵

2
   ;    𝑚𝑎𝑛𝑡𝑖 =

𝑚𝐴 −𝑚𝐵

2
 ( 2.2 ) 

                                                   
1 According to a practical example presented by Pedro (1995), it is possible to define the length of uniformly 
distributed vertical loads and moments, applied at the web and equivalent to the action of an eccentrically 
concentrated vertical load. 
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2.2.2) Calculation of the cross-section symmetric transverse bending. For symmetrical 

loading, the distribution of the transverse bending moments is hereby obtained 

by adding these results to those derived in 2.1). The effect of longitudinal bending 

responsible for rigid body displacement of the cross-section was already taken 

into account in 1). 

2.2.3) Division of the anti-symmetrical parcel into torsional and distortional subsystems. 

In addition to shear stresses described by St. Venant’s uniform torsion theory, the 

non-uniform torsional component causes longitudinal stresses in the cross-

section. These torsional warping stresses may be determined following 

Benscoter’s torsion theory, which contemplates torsion bi-shear (Benscoter, 

1954). 

2.2.4) Finally, the effects of distortional subsystem must be accounted for. Results are 

far from exact if the single frame is analysed independently from the remaining 

structure, since part of the load is carried longitudinally, to the neighbouring 

frames. Therefore, there is a direct link between transverse deformation of the 

cross-section and longitudinal bending of the plates, which is obtained through 

equilibrium and compatibility. It is therefore possible to develop a theoretical 

model of a beam supported on elastic springs that is intended to replicate the 

effect of cross-section distortion throughout the span. This analogy was originally 

proposed by Wright, Abdel-Samed, & Robinson (1968). Analysing the web as a 

beam on an elastic foundation, one can simultaneously obtain transverse 

bending moments to be added up to those drawn from 1) and 2.2.2), and 

longitudinal stresses to be added up with the ones provoked by bending and 

torsional warping.  

 

Figure 2.1 – Loading subdivision for a box girder bridge 
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2.3. FINITE STRIP AND SHELL FINITE ELEMENT METHODS 

Finite strip/shell element methods offer a different approach to the resolution of the problem at 

hand. The domain of analysis, in this case the box girder bridge, is subdivided into smaller components 

or ‘elements’ that are interconnected with each other through ‘nodes’ or, in the case of finite strips, ‘nodal 

lines’ (see Figure 2.2). In the classic displacement-based approaches, the problem degrees of freedom 

(DOFs) correspond to the displacements and rotations at these nodes/nodal lines. Then, employing 

interpolation functions for the displacements, elementary stiffness matrices can be constructed. In a 

similar manner, for each element, applied loads are substituted with equivalent nodal forces and 

moments, which can be obtained through either virtual work or minimum total energy principles. At this 

stage, elementary stiffness and load matrices are assembled to form a set of overall equilibrium 

equations, which can be solved with respect to the defined DOFs. Having determined the displacement 

field, longitudinal strains and stresses are calculated through differentiation of the displacement field 

and using the constitutive relations.  

When dealing with shell finite elements, bridge models often involve a very large number of 

elements and generate a high volume of information to be analysed and post-processed. Moreover, a 

higher refinement of the mesh must be adopted in zones of higher disturbance, namely where geometry 

or loading vary rapidly, in order to capture accurately these effects. 

Even for structures having regular geometries and simple boundary conditions, a full shell finite 

element model quickly becomes prohibitive as the DOF numbers increase. The finite strip method may 

be more adequate in some cases, as it takes advantage of the prismatic nature of the superstructure 

and, in some cases, of semi-analytical solutions, to reduce the computational effort. The bridge is divided 

into strips whose displacements along the longitudinal and transverse directions are described by 

trigonometrical (Fourier series) and polynomial functions, respectively. 

Although it was initially meant for straight simply supported beams, it is now possible to apply the 

finite strip method to other cases such as, for example, continuous span bridges or even curved bridges, 

adopting some necessary simplifications. Nonetheless, it presupposes a constant cross-section along 

the longitudinal direction, which presents itself the method’s greatest drawback. 

Further information on the shell finite element method and the finite strip element method can be 

respectively found in Zienkiewicz, Taylor, & Zhu, (2005) and Y.K.Cheung (1976). 

Figure 2.2 – a) Finite strip and b) shell finite element model schematizations 

a) b) 
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2.4. GENERALIZED BEAM THEORY (GBT) 

Generalized Beam Theory, or GBT, provides an intermediate approach between those present in 

shell finite and finite strip element methods and classical beam formulations. It employs a set of plausible 

simplifying hypothesis that permit the development of an efficient thin-walled beam theory considering 

both cross-section in-plane and out-of-plane (warping) deformation. This theory is therefore valid for box 

girder bridges as long as their plates can be classified as thin-walled. 

According to GBT, the deformed configuration of a beam is expressed as a linear combination of 

pre-established cross-section ‘deformation modes’ (see Figure 2.3) whose amplitude functions along 

the member axis are left to be determined. These may include global modes (as those commonly dealt 

with in classical beam theories: axial extension, major and minor axes bending and torsion around the 

shear centre) as well as other configurations such as for example distortion, local-plate, transverse 

extension or shear modes, which are often neglected in classical analyses.   

Figure 2.3 – Deformation modes for a Steel-Concrete composite multicellular box girder. (Gonçalves & 
Camotim, 2010) 



8 

 

Compared to the finite strip and shell finite element methods, GBT offers a clearer insight into the 

overall structural behaviour of a thin-walled beam, since the contribution of the individual modes and 

their relative importance can be readily assessed by inspecting the amplitude functions of the individual 

modes (see Figure 2.4). At the same time, for linear problems, one can usually arrive at sufficiently 

accurate solutions with a fraction of the computational effort involved in equivalent finite strip or shell 

finite element analysis. This is a direct consequence of the imposed simplifying hypothesis to the stress 

and strain fields, which reduce the number of admissible deformation modes and, consequently, the 

number of degrees of freedom. 

Even so, GBT’s simplifying hypothesis are less limiting than those in which Classical Formulations 

are set upon, making it a more general and accurate tool. Furthermore, even though the classical 

approach also offers the possibility to calculate the participation associated with each mode, it is 

somewhat restricted to those few standard deformation modes. A theoretical comparison between the 

two methods shall be addressed in more detail in chapter 5. 

The first step of a GBT-based analysis is the definition of the deformation modes. Several papers 

have contributed in this field for polygonal shaped arbitrary cross-sections, (see for example Gonçalves, 

Ritto-Corrêa, & Camotim (2010), Gonçalves, Bebiano, & Camotim (2014) and Bebiano, Gonçalves, & 

Camotim (2015)). Having determined the deformation modes, as well as their associated stiffness 

properties, one is left to obtain the longitudinal amplitude functions of each mode. This can be done 

either analytically (in particular cases only) or by means of a finite element formulation, similar to the 

one described in Section 2.3. The deformed configuration of the structure is finally obtained by 

superposition of the deformation modes multiplied by their corresponding amplitude functions. Strains 

can be calculated by means of displacement field differentiation and stresses are then obtained using 

the constitutive relations.  

Figure 2.4 – GBT modal decomposition (adapted from Gonçalves (2014)) 

Local Distortion Torsion Bending 
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3. CLASSICAL FORMULATIONS 

3.1. INTRODUCTION 

This chapter presents the analysis methods mostly based on theoretical classical formulations for 

bending, torsion and distortion. Despite the simplifications and complexity of the physical phenomenon, 

they can be more reliable and clearer at a pre-design stage than other methods such as finite strip and 

shell finite element methods which involve sorting through high volumes of data, and therefore are more 

likely to produce errors in the evaluation of their results (Schlaich & Scheef, 1982). 

The chapter is divided in two distinct parts. The first refers to the longitudinal analysis of a box 

girder subjected to bending, where reference is made to the consideration of shear lag effects according 

to the definition of effective widths. Then, the longitudinal and transverse behaviours of the box girder 

acted by eccentric loads are deduced, examining the effects of torsion and distortion. 

This type of approach is guided towards the analysis of homogenous box girders, i.e. box girders 

with a single material, for which steel-concrete composite box girders fall out of scope. The simplest and 

most common way to solve this problem is to use the concept of homogenisation through which the 

heterogeneous cross-section is substituted with one composed of a single material (see Figure 3.1). 

The process of homogenisation depends on the structural phenomenon at hand. Hence, the following 

subchapters include sections dedicated to the homogenisation rules for each separate sub-analysis. 

The reinforced concrete deck is also, by itself, heterogeneous. The existence of reinforcement bars, 

distributed along both the longitudinal and transverse directions, alter the properties of the concrete 

plate. However, according to Chen & Yen (1980), the orthotropic properties of the concrete deck have 

little effect on the flexural stresses. Consequently, in the present dissertation, the upper flange will be 

taken approximately as a non-cracked and non-reinforced slab. This assumption is commonly accepted 

in service conditions of prestressed concrete decks, but it should be well evaluated for the case of 

composite decks, where the slab over the supports may be partially cracked. The behaviour of 

composite box girders is also highly influenced by slip in the steel-concrete interface. This connection is 

usually ensured by steel shear studs, welded to the steel flanges and distributed along the longitudinal 

and transverse direction. In the present study, it is assumed that longitudinal slip does not occur or its 

effect is negligible.  

The following sections are mostly based on the work developed by Pedro (1995), who presented 

nearly identical formulations for the analysis of the distortional warping stresses and applied to concrete 

box girder bridge decks analysis. Additional references are given at each section.  

Figure 3.1 – a) Typical cross-section of a steel-concrete composite box girder and 
 b) equivalent homogenised cross-section 

a) b) 
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3.2. BENDING ANALYSIS FOR BOX GIRDERS 

3.2.1. Elastic bending 

Acting loads on box girder bridges are responsible for the development of longitudinal stresses, 

mostly due to longitudinal bending. The ratio of the cross-sectional dimensions to the span length permit 

it to be considered as slender prismatic bar, thus allowing for elastic bending behaviour to be determined 

according to Euler-Bernoulli theory. 

Following some simplifying hypotheses, it is possible to arrive at the differential beam equation for 

linear elastic bending. These results are valid only for the homogenised box girder in accordance to 

section 3.2.1.3. 

3.2.1.1. Hypotheses  

The hypotheses assumed when analysing the box girder are as follows: 

A1. Prismatic girder; 

A2. Homogenous and isotropic elastic material in accordance with Hooke’s law; 

A3. Plane sections remain plane and normal to the axis of the beam – Bernoulli’s 

Hypothesis; 

A4. Sections are free to deform in their own plane, i.e. 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 𝜏𝑦𝑧 = 0 – Navier’s 

Hypothesis. 

3.2.1.2. Bending equation 

Let us consider a box girder subjected to a total symmetrical vertical load p(x), such as the one in 

Figure 3.2.  

  

Figure 3.2 – Generic box beam cross-section subjected to symmetrical vertical loads on top of the webs 
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Based on Bernoulli’s hypothesis, for an infinitesimal length the longitudinal deformation of any point 

of the cross-section is given by 

 

𝜀𝑥𝑥 = 
𝑧

𝑅𝑧
  , ( 3.1 ) 

where 𝑧 refers to the downwards vertical coordinate relative to the centre of gravity and 𝑅𝑧 is the radius 

of curvature, positive as shown in Figure 3.3. 

In accordance with Hooke’s law, using Navier’s hypothesis and making use of the Young’s modulus 

𝐸, the longitudinal stress due to bending derives as: 

 

𝜎𝑏 = 𝜀𝑥𝑥𝐸 = 
𝐸

𝑅𝑧
 𝑧  . ( 3.2 ) 

Considering that the vertical load will not produce any axial force, 𝑁, it can be shown that the cross-

section region where strain is null, designated as neutral axis, passes through the centre of gravity, 

since  

 
𝑁 = ∫𝜎𝑏

𝐴

𝑑𝐴 = ∫
𝐸

𝑅𝑧
 𝑧

𝐴

 𝑑𝐴 =  
𝐸

𝑅𝑧
∫ 𝑧
𝐴

 𝑑𝐴 = 0  . ( 3.3 ) 

Hence, the longitudinal stresses should solely equilibrate the bending moment 𝑀𝑦 produced by the 

external loading: 

 𝑀𝑦 = ∫𝜎𝑏
𝐴

𝑧 𝑑𝐴 = ∫
𝐸

𝑅𝑧
 𝑧2

𝐴

= 
𝐸𝐼𝑦
𝑅𝑧
  , ( 3.4 ) 

where 𝐼𝑦 is hereby defined as the second moment of inertia around the 𝑦 axis, expressed as  

 𝐼𝑦 = ∫𝑧
2

𝐴

 𝑑𝐴  . ( 3.5 ) 

Combining ( 3.2 ) and ( 3.4 ), the equilibrium equation between bending moment and the 

longitudinal stress at any given point of the cross-section is therefore defined by  

 

𝜎𝑏 = 
𝑀𝑧
𝐼𝑦
 𝑧  . ( 3.6 ) 

Let us now consider the deformed shape of the beam as approximated by Figure 3.3a. From 

differential geometry and assuming that the displacements are small, it can be said that  

 
1

𝑅𝑧
= −

𝑣,𝑥𝑥

[1 + 𝑣,𝑥
2]
3
2

 ≈ − 𝑣,𝑥𝑥 = 
𝑀𝑦
𝐸 𝐼𝑦

  , ( 3.7 ) 

in which 𝑣 is the displacement of the centre of gravity along the vertical 𝑧 axis and 𝑣,𝑥 and 𝑣,𝑥𝑥 are the 

first and second derivatives along the axial direction, respectively. 
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Performing the static equilibrium of an infinitesimal segment of beam subjected to the generic 

vertical load 𝑝(𝑥) (see Figure 3.3b) comes 

 

𝑝(𝑥) = −
𝑑𝑉

𝑑𝑥
  ;    𝑉(𝑥) =  

𝑑𝑀

𝑑𝑥
  . ( 3.8 ) 

Through equations ( 3.7 ) and ( 3.8 ), the simplified Euler-Bernoulli beam equation for bending is 

given as 

 
𝑑4𝑣

𝑑𝑥4
 𝐸𝐼𝑦 =  𝑝(𝑥)  . 

( 3.9 ) 

3.2.1.3. Homogenisation rules for elastic bending in steel-concrete composite box girders 

The Euler-Bernoulli Beam Theory here presented presupposes that the beam is made of a 

homogenous material and therefore cannot be used directly for steel-concrete composite box girders. 

However, through correlation of material stiffness properties, it is possible to transform the steel-

concrete box girder into an equivalent homogenous box girder in which reference is made to one of the 

materials. In common practice, the concrete deck of thickness 𝑡𝑡  is usually replaced by a steel plate of 

thickness 𝑡𝑡
𝑆, as previously shown in Figure 3.1. It is easy to show that (see Calgaro & Virlogeux (1988)), 

the homogenisation coefficient for bending is dependent on the ratio between Young’s modulus of steel, 

𝐸𝑠, and of reinforced concrete, 𝐸𝑐 as follows 

 
(
𝑡𝑡
𝑡𝑡
𝑆)
𝑏

= 
𝐸𝑠
𝐸𝑐
= 𝑛  . ( 3.10 ) 

For plates made from the reference material, in this case steel, equation ( 3.6 ) can be applied 

directly. For the concrete deck however, the homogenisation coefficient should take place such that: 

 
𝜎𝑏
𝐶  =

𝜎𝑏
𝑆  

𝑛
 =   

𝑀𝑦
𝑛 𝐼𝑦

 𝑧  . ( 3.11 ) 

Figure 3.3 – a) Deformed shape of a beam subjected to bending moment and b) static equilibrium of a segment of 
beam subjected to vertical loads 

a) b) 
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3.2.2. Shear lag effect 

The elastic bending theory is exact for pure bending, since the shear forces are null. For common 

situations, however, shear stresses exist that in turn are responsible for cross-section deformation, 

including warping. Plane cross-sections thus no longer remain plane so Bernoulli’s hypothesis and 

consequently the theory are no longer exact, even though they provide a good first approximation. 

When shear deformability of the cross-section is considered, the longitudinal stress diagram in wide 

flanges changes with respect to the one resulting from Euler-Bernoulli beam theory as a result of the 

so-called shear lag effect. As illustrated in Figure 3.4, the stresses increase in regions close to the web-

flange junctions and decrease with the distance to these junctions. The ratio between the maximum and 

mean stresses in the cross-section has been proven to be sufficiently relevant in elastic analysis of 

cross-sections, in the vicinity of concentrated loads and with high ratios of the flange width-to-span 

length (Chen & Yen, 1980)2. It may eventually prove to be especially meaningful for fatigue and 

serviceability verifications (Salama & Nassif, 2011).  

The traditional method of accounting for the effect of shear lag consists in calculating the cross-

section properties using effective (reduced) widths for the wide flanges. More than one definition can be 

used for evaluating these parameters. In this work, reference is made to the approach followed in (B.S.I., 

2004), which is related with the stress distribution. Here, the effective width is considered to be the width 

that sustains a force equal to that in the actual flange, assuming the longitudinal stresses to be at the 

same time constant and equal to the maximum longitudinal stress of the non-linear stress distribution 

(Castro, Elghazouli, & Izzuddin, 2007). Having evaluating these maximum values, one can obtain the 

stresses in the whole cross-section through analytical expressions (Lamas, 1982). 

Calculating effective widths offers a much more practical approach in comparison to determining 

analytical solutions for the normal stress distribution3. These usually involve complex equations and use 

several approximations that limit their application to some typical cases.  

                                                   
2 While assessing effective slab widths in composite beams, Castro, Elghazouli, & Izzuddin (2007) presented clear 
evidence that, if material nonlinearity is taken into account, stress redistribution occurs and the shear lag effect is 
significantly diminished. Similar conclusions were obtained in Henriques, Gonçalves, & Camotim (2015). 
3 Some analytical expressions for the determination of longitudinal stress distributions in composite steel-concrete 
box girders may be found in Chen & Yen (1980).  

Figure 3.4 – Longitudinal bending stresses a) without shear lag effect and b) with shear lag effect 

a) b) 
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3.2.2.1. Effective Width 

The determination of the longitudinal stresses in a span of a box girder considering the shear lag 

effect may be achieved by first considering an equivalent cross-section (see Figure 3.5) with flanges 

reduced to their effective widths, such that 

 𝑏𝑒
𝑏
=

𝜎𝑏
𝜎𝑏,𝑆𝐿
𝑚𝑎𝑥 = 𝛹  , ( 3.12 ) 

in which 𝛹 is the effective width coefficient or ratio, and 𝜎𝑏 and 𝜎𝑏,𝑆𝐿
𝑚𝑎𝑥 are the mean and maximum 

longitudinal stresses, respectively. 

The effective width coefficient mainly depends on the following aspects:  

1. Ratio width/length of the flange segment (𝑏𝑡; 𝑏𝑏; 𝑏 − 𝑏𝑡)/(2 𝑙)  

2. Type of load (concentrated or distributed) 

3. Support conditions 

4. Stiffener ratio 𝛼4 defined by  

 
𝛼 = 

𝐴𝑟
𝐴𝑓
  , ( 3.13 ) 

in which 𝐴𝑟 and 𝐴𝑓 are the cross-sectional areas of the longitudinal  stiffeners and of the corresponding 

flange, respectively, along the width (
𝑏𝑡

2
;
𝑏𝑏

2
;
𝑏−𝑏𝑡

2
). 

Taking into account the previous parameters, c proposes a set of effective width coefficients 𝛹 

which are presented in Table 3.1 and Table 3.25. Although they were obtained for distributed uniform 

loads along the entire span, the code indicates that they should also be employed for standard highway 

or railway loads, including wheel and axle loads. For flange portions projecting beyond an outer web, 

these should also be affected of an additional coefficient 𝑘 = [1− 0.15 (𝑏 − 𝑏𝑡) (2 𝑙)⁄ ]. 

                                                   
4 Research has shown that the extent of shear lag within a flange plate is dependent on the ratio between the axial 
stiffness and the shear stiffness of the plate. The introduction of longitudinal stiffeners increases the axial stiffness 
without changing the shear stiffness so that there is a consequent increase in shear lag (Křistek, 2004). 
5 For composite box girders, the effective cross-section should be calculated in accordance with the same effective 
width coefficients with the exception of concrete flanges under tension which are assumed to be cracked. In such 
cases, the mean effective width 𝛹 should be modified by adding (1 −𝛹)/3 (B.S.I., 2005). 

𝑏𝑒,1 = 𝛹1𝑏𝑡/2 

𝑏𝑒,2 = 𝛹2𝑏𝑏/2 

𝑏𝑒,3 = 𝑘 𝛹3(𝑏 − 𝑏𝑡)/2 

𝑘 = 1 − 0.15
 𝑏 − 𝑏𝑡
2𝑙

 

Figure 3.5 – Effective cross-section for a box girder bridge 
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The effective width ratios 𝛹 for intermediate values of (𝑏𝑡; 𝑏𝑏; 𝑏 − 𝑏𝑡)/(2 𝑙) and 𝛼 may be obtained 

by linear interpolation. The same can be done for intermediate positions in the span. 
 

With the effective cross-section fully defined, the maximum longitudinal stresses at the top and 

bottom flange-web intersections can be retrieved taking advantage of the results from standard Euler-

Bernoulli beam theory so that: 

 
𝜎𝑏,𝑆𝐿
𝑡,𝑚𝑎𝑥 = 𝜎𝑏

𝑡
𝑏

2(𝑏𝑒,1 + 𝑏𝑒,3)
  , ( 3.14 ) 

 
𝜎𝑏,𝑆𝐿
𝑏,𝑚𝑎𝑥 = 𝜎𝑏

𝑏
𝑏𝑏
2𝑏𝑒,2

  . ( 3.15 ) 

Finally, the non-linear stress distribution of the whole cross-section may be approximately 

calculated through the expressions presented in B.S. 5400 Part 3 (2004), where 𝑦 is the distance to the 

web-flange intersection (see Figure 3.6): 

Interior top flange: 

 
𝜎𝑏,𝑆𝐿
𝑡 = 𝜎𝑏,𝑆𝐿

𝑡,𝑚𝑎𝑥 [(
𝑏𝑡 − 2𝑦

𝑏𝑡
)
4

+ 0.25(5 𝛹1 − 1) (1 − (
𝑏𝑡 − 2𝑦

𝑏𝑡
)
4

)] ( 3.16 ) 

Projecting top flange: 

 𝜎𝑏,𝑆𝐿
𝑡 = 𝜎𝑏,𝑆𝐿

𝑡,𝑚𝑎𝑥 [(
(𝑏 − 𝑏𝑡) − 2𝑦

(𝑏 − 𝑏𝑡)
)
4

+ 0.25(5𝑘𝛹3 − 1)(1 − (
(𝑏 − 𝑏𝑡) − 2𝑦

(𝑏 − 𝑏𝑡)
)
4

)] ( 3.17 ) 

Bottom flange: 

 𝜎𝑏,𝑆𝐿
𝑏 = 𝜎𝑏,𝑆𝐿

𝑏,𝑚𝑎𝑥 [(
𝑏𝑏 − 2𝑦

𝑏𝑏
)
4

+ 0.25(5 𝛹1 − 1)(1 − (
𝑏𝑏 − 2𝑦

𝑏𝑏
)
4

)] ( 3.18 ) 

Table 3.1 – Effective width ratio 𝛹 for simply supported beams. (B.S.I., 2004) 

Table 3.2 – Effective width ratio 𝛹 for fixed-ended beams. (B.S.I., 2004) 
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3.2.2.2. Homogenisation rules for elastic bending accounting shear lag in steel-concrete composite box 

girders 

Even though the stress distribution of normal stresses is non-linear, the shear lag phenomenon 

itself is nonetheless a phenomenon that manifests itself even in linear elastic problems (Lamas, 1982). 

The shear stiffness of the cross-sections’ plates in a plane stress state is directly proportional to the 

shear modulus 𝐺. For this reason, when formulating analytical expressions for bending in steel-concrete 

composite box girders accounting with shear deformability, Chen & Yen (1980) assumed that the shear 

behaviour can be translated using an equivalent thickness for the concrete deck such that 

 

(
𝑡𝑡
𝑡𝑡
𝑆)
𝑏,𝑆𝐿

= 
𝐺𝑠
𝐺𝑐
= 
𝐸𝑠
𝐸𝑐
 
1 + 𝜐𝑐
1 + 𝜐𝑠

  . 
( 3.19 ) 

If one takes common values for the Poisson’s ratio for both steel and concrete – assuming the latter 

is uncracked – the equivalence coefficient can be approximated by 

 
(
𝑡𝑡
𝑡𝑡
𝑆)
𝑏,𝑆𝐿

=
𝐸𝑠
𝐸𝑐
 
1 + 𝜐𝑐
1 + 𝜐𝑠

 ≈
𝐸𝑠
𝐸𝑐
 
1 + 0.2

1 + 0.3
 ≈
𝐸𝑠
𝐸𝑐
= 𝑛  . ( 3.20 ) 

Considering the concrete to be uncracked is evidently a limiting hypothesis, namely for regions of 

negative bending moments, where the concrete slab of a composite deck is under longitudinal tension. 

Chen & Yen (1980) have proposed to approximately circumvent this limitation by assuming a partial 

concrete thickness. However, it involves a fair degree of approximation seeing as cracking does not 

develop solely in the longitudinal or transversal direction, making this a more complex phenomenon 

which will not be discussed within the present dissertation.  

Normal stresses in the top plate can be reported back to the original material as follows: 

  

𝜎𝑏,𝑆𝐿
𝐶 =  

𝜎𝑏,𝑆𝐿
𝑆

𝑛
  . ( 3.21 ) 

Figure 3.6 – Non-linear distribution of the longitudinal bending stresses in top and bottom flanges 
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3.3. TORSION-DISTORTION ANALYSIS OF BOX GIRDERS 

Generic moving loads acting on a bridge deck are often asymmetrical with respect to the bridge axis 

and induce not only bending but also torsion and distortion. Torsional behaviour of closed cross-

sectioned elements, such as box girders, can be split into three separate effects (Kollbrunner&Basler, 

1969): 

o Uniform torsion or Saint-Venant torsion 

o Non-uniform or Warping torsion  

o Distortion 

The first two mechanisms develop as a way to transmit an external torque through cross-section 

twisting and warping. Saint-Venant torsion is essentially characterized by a constant circulatory shear 

flow in each cross-section while warping torsion is related with the development of bi-moment and  

bi-shear stresses (Kollbrunner & Basler, 1969). The sum of uniform, 𝑇𝑆𝑉, and non-uniform torsion, 𝑇𝑤 

equals the total torsional moment 𝑇. In generic situations, where these two phenomena coexist and 

neither of them predominates, it is said that the cross-section is subjected to mixed torsion. 

When considering the two previous effects, it is assumed that the cross-sections maintain their in-

plane shape. If this is not valid, then the effects of distortion of the cross-section should be accounted 

for, since the resulting effects can be quite significant. 

This chapter aims at revealing how all three effects correlate to the applied asymmetrical loading, 

arriving in the end to analytical expressions used for the determination of the longitudinal normal 

stresses. Reference is made to straight, thin-walled, unicellular box girders, which behave elastically 

and are symmetrical about the vertical axis. Composite action is once again considered through 

homogenisation of the cross-section. 

The following descriptions and reasonings are mostly based on the work done by Maisel & Roll 

(1974), Chen & Yen (1980), Schlaich & Scheef (1982), Calgaro (1994) and Pedro (1995). 

 
 

3.3.1. Behaviour of a girder subjected to eccentric loading 

Let us start by considering an eccentric loading such as the one in Figure 3.7. 

The loading can be divided into symmetric and anti-symmetrical components as shown in the figure. 

The symmetric part is responsible for longitudinal bending of the whole cross-section, which is handled 

according to the procedures explained in section 3.2. As far as the cross-section goes, it causes an in 

plane vertical displacement as a rigid body (see Figure 3.7a). 

Figure 3.7 – Decomposition of the loading into a) symmetric and b) anti-symmetrical components 

a) b) 
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On the other hand, the box girder’s response to the anti-symmetrical part (see Figure 3.7b) can be 

characterized by the coexistence of three force subsystems, which are related to uniform torsion, non-

uniform torsion and distortion (see Figure 3.8). 

Let us now discuss how to obtain the set of forces of each individual subsystem. The first two may 

be determined following Benscoter’s theory (Benscoter, 1954) for warping torsion, which includes the 

contribution of bi-shear deformation. This formulation is presented in Sections 3.3.2 and 3.3.3.  

Distortional forces on the other hand may only be determined by subtracting the torsional loads to 

the initial loading. Considering the longitudinal variation of torsional plate forces (which only takes place 

if the warping torsion is taken into account) of course results in higher complexity. Because the warping 

torsion shear stresses are usually small, it is fairly common to neglect them whilst determining the 

distortional forces (Fan & Helwig, 2002). Instead, it is assumed that the torsional forces can be obtained 

solely from Saint-Venant torsion theory (see Figure 3.9a). 

These approximate torsional forces, also designated in literature as pure torsional loads, result from 

integration of the shear stresses obtained by means of Bredt’s formula (see Eq.( 3.25 )) along plate 

cross-sectional areas:  

 
𝑝𝑤,𝑃𝑢𝑟𝑒𝑇 = (

𝑏𝑡 𝑏𝑤
(𝑏𝑡 + 𝑏𝑏)𝑑

) (
𝑝(𝑥)

2
) , 

𝑝𝑡,𝑃𝑢𝑟𝑒𝑇 = (
𝑏𝑡
𝑏𝑤
)𝑝𝑤,𝑃𝑢𝑟𝑒𝑇   ,     𝑝𝑏,𝑃𝑢𝑟𝑒𝑇 = (

𝑏𝑏
𝑏𝑤
)𝑝𝑤,𝑃𝑢𝑟𝑒𝑇   . 

( 3.22 ) 

The components of the distortional system (see Figure 3.9b) can be obtained knowing that the 

force system is self-equilibrated and that the sum of the vertical components (in this case of each web 

torsional and distortional forces) must equal 
𝑝(𝑥)

2
, leading to  

𝑝𝑤,𝑑 = (
𝑏𝑏 𝑏𝑤

(𝑏𝑡 + 𝑏𝑏)𝑑
) (
𝑝(𝑥)

2
)  . ( 3.23 ) 

 

  

Figure 3.8 – Decomposition of the anti-symmetrical response into a) uniform torsion b) warping torsion and  
c) distortion  

Figure 3.9 – Approximate decomposition of the anti-symmetrical response into a) pure torsion and b) distortion 

a) b) 

a) b) c) 
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Then, the horizontal forces are calculated by ensuring that resulting moments and forces. By 

calculating the moments at the top and bottom web-flange junctions, one obtains  

𝑝𝑡,𝑑 = (
𝑏𝑏
𝑏𝑤
)𝑝𝑤,𝑑   ,       𝑝𝑏,𝑑 = (

𝑏𝑡
𝑏𝑤
)𝑝𝑤,𝑑   . ( 3.24 ) 

Now that the torsional and distortional loads are defined, it is possible to engage in individual 

considerations regarding uniform torsion, warping torsion and distortion. In what follows, the notation 

’(𝑥)’ is omitted to seek simplicity. Nevertheless, one should be aware that quantities like 𝑞, 𝑢, 𝑇, and 

others vary along the longitudinal direction. 

 
 

3.3.2. Uniform torsion 

Uniform torsion can be simply described as a twist reacting mechanism involving circulatory shear 

flows in the cross-section and linear through-thickness shear stresses. For closed-typed cross-sections, 

such as the case of box-girder bridges, the torsional stiffness is almost entirely given by a uniform shear 

flow circulating around the closed part, and the linear through-thickness shear can usually be 

disregarded.  

By considering that the cross-section is rigid when rotating around its shear centre, it will only 

remain plane if for each plate midline point, the strains are proportional to their perpendicular distance 

to the shear centre Vlasov (1961). For a constant shear flow this would only be possible if the thickness 

decreases in the same proportion as the perpendicular distance to the shear centre increases. This 

condition is not valid for the majority of the situations, meaning that the cross-sections will generally 

warp. 

For Saint-Venant torsion theory, warping displacements can be quantified as a function of the rate 

of twist 𝜙,𝑥, which is assumed constant (the comma indicates a differentiation). Such knowledge will 

come of particular use further ahead in section 3.3.3 when addressing warping torsion, for it is strictly 

correlated with out-of-plane behaviour. 

3.3.2.1. Hypotheses 

When handling Saint-Venant torsional behaviour of a box-girder, four major assumptions are 

usually considered: 

B1. The in-plane cross-section shape is preserved, i.e., cross-sections remain undeformed within 

their plane, rotating around the shear centre and warp perpendicularly to their plane; 

B2. Stresses are directly proportional to strains – Hooke’s law; 

B3. The box girder is prismatic. The thickness of the composing elements may vary along the 

cross-section, but not along the length of the girder. 

B4. The cross-section plates are thin-walled. The variation of shear stresses along the thickness 

and corresponding secondary warping displacements are small and can be neglected. 
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3.3.2.2. Fundamental equations 

Considering only the thin-walled closed cross-section, the torsional system produces a constant 

shear flow circulating along the closed perimeter. This is given by Bredt’s formula: 

 
𝑞𝑆𝑉 = 

𝑇𝑆𝑉
2 𝐴0

=
𝑇𝑆𝑉

(𝑏𝑏 + 𝑏𝑡) 𝑑
  , ( 3.25 ) 

where 𝐴0 represents the area enclosed by the centre line of the walls composing the cross-section.  

The corresponding shear deformation in the mid-surface, is relatable to the tangential and axial 

displacements, 𝑣 and 𝑢, represented in Figure 3.10 such that: 

 
𝛾𝑆𝑉 =

𝑞𝑆𝑉
𝐺 𝑡

=
𝜕𝑢

𝜕𝑠
+
𝜕𝑣

𝜕𝑥
  . ( 3.26 ) 

For small angles, rigid body rotation 𝜙 is correlated with the mid-line tangential displacement by 

 𝜕𝑣

𝜕𝑥
= 𝑟𝜙,𝑥   , ( 3.27 ) 

where 𝑟 represents the perpendicular distance between the shear centre and the closed wall segment 

under consideration and 𝜙,𝑥 is constant as already remarked.  By replacing ( 3.27 ) in ( 3.26 ) it comes 

that 

 
𝑑𝑢 = (

𝑞𝑆𝑉
𝐺 𝑡

− 𝑟𝜙,𝑥)𝑑𝑠  . ( 3.28 ) 

The warping function in any point of the cross section can be determined by integrating 𝑑𝑢 along 

the mid-line of the entire cross-section, starting at an arbitrary point: 

 
𝑢(𝑠) =  𝑢0 +∫

𝑞𝑆𝑉
𝐺 𝑡

𝑠,𝑐𝑒𝑙𝑙

0

𝑑𝑠 − 𝜙,𝑥∫ 𝑟
𝑠

0

𝑑𝑠 . ( 3.29 ) 

Note that 𝑢 is not a funtion of 𝑥 given the hypotheses employed. In this equation, 𝑢0 is the warping 

displacement at the starting point and the first integral applies only to the cell walls and not to the 

cantilevers of the top flange. If one integrates 𝑢 around the closed perimeter and equals this to zero, to 

ensure continuity of the warping displacements, it comes that 

 
∮
𝑞𝑆𝑉
𝐺 𝑡

𝑑𝑠 = 2 𝐴0 𝜙,𝑥   , ( 3.30 ) 

where 2 𝐴0 = ∫ 𝑟
𝑠

0
𝑑𝑠 as a result of geometrical considerations (Calgaro, J. A. Virlogeux, 1988). 

Figure 3.10 – Displacements of the cross-section due to twist 
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Substituting the Saint-Venant shear flow, 𝑞𝑆𝑉, according to ( 3.25 ), one can obtain 

 
 𝜙,𝑥 =

𝑇𝑆𝑉
𝐺 𝐽
  , ( 3.31 ) 

 

𝐽 =
4 𝐴0 

2

∮
𝑑𝑠
𝑡

  , ( 3.32 ) 

being 𝐽 the Saint Venant torsional constant for the unicellular box girder. Considering 𝑢0 = −  𝜙,𝑥𝐶0, one 

can rewrite ( 3.29 ) as 

 

𝑢(𝑠) =  −𝜙,𝑥 (𝜔𝑆(𝑠) −
2 𝐴0 

∮
𝑑𝑠
𝑡

∫
𝑑𝑠

𝑡

𝑠

0

+ 𝐶0)  . ( 3.33 ) 

 

Here 𝜔𝑆(𝑠) is a so-called “sectorial coordinate”, being calculated by integrating the previously defined 

tangential radius 𝑟 around the mid-line, with respect to the shear centre, and starting in an arbitrary point 

of the closed perimeter: 

 
𝜔𝑆(𝑠) =  ∫ 𝑟

𝑠

0

𝑑𝑠 . ( 3.34 ) 

Since the second term between brackets is also a function of an integration along the mid-line, one 

can define an equivalent sectorial coordinate 𝜔𝑆̃: 

 
𝜔𝑆̃(𝑠) =  𝜔𝑆(𝑠) −

2 𝐴0 

∮
𝑑𝑠
𝑡

∫
𝑑𝑠

𝑡

𝑠

0

 . ( 3.35 ) 

Defining a new quantity 𝑢𝑆̃(𝑠), designated as the “normalized unit warping function”, it is possible 

to arrive at a compatibility equation concerning the warping displacement  𝑢(𝑠) and the the rate of twist 

 𝜙,𝑥  for Saint-Venant torsion. The value for the constant 𝐶0 shall be obtained further ahead, in section 

3.3.3.3. 
 

 

3.3.3. Non-uniform Torsion 

 If warping is not constant along 𝑥, normal strains and stresses arise. The pattern of warping 

displacements is such that these torsional warping stresses vary both around the cross-sectional 

perimeter and along the beam, giving way to shear stresses which equilibrate part of the torsional 

moment.  

3.3.3.1. Hypotheses 

The development of a formulation accounting for non-uniform torsion is set on the same 

assumptions mentioned for uniform torsion in 3.3.2.1, along with the following additional premises: 

B5. The longitudinal normal stresses can be calculated disregarding Poisson’s effect; 

 
𝑢𝑆̃(𝑠) = 𝜔𝑆̃(𝑠) + 𝐶0  , ( 3.36 ) 

 𝑢(𝑠) =  −𝜙,𝑥  𝑢𝑆̃(𝑠)  . ( 3.37 ) 
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B6. Normal displacements due to warping 𝑢(𝑥, 𝑠) are obtained from 

 
𝑢(𝑥, 𝑠) =  −𝑢̃𝑆(𝑠)

𝑑𝜒

𝑑𝑥
  , ( 3.38 ) 

where 𝜒 = 𝜒(𝑥) is a function to be determined, where its derivative is employed as an analogy for the 

twist angle derivative present in ( 3.37 ) and 𝑢̃𝑆 is the normalized unit warping function. 

3.3.3.2. Compatibility equation 

As seen in section 3.3.2, the uniform torsion formulation sets a correlation between the Saint-

Venant torsional shear and the warping displacements of the cross-section. When the warping 

displacement varies along 𝑥, a set of torsional warping stresses 𝜎𝑤 is generated, along with 

corresponding shear stresses 𝜏𝑤 to be added to those related to uniform torsion, 𝜏𝑆𝑉. Interference 

between the newly superimposed stresses and those obtained by Saint-Venant theory alter the 

displacements on a closed cross-section, making ( 3.37 ) invalid, since 𝜙,𝑥 is no longer constant. For 

this reason, it is necessary to consider a new auxiliary function 𝜒(𝑥), to be dependent on the total shear 

flow 𝑞 = 𝑞𝑆𝑉 + 𝑞𝑤. As a result, hypothesis B6 is assumed, advocating that the warping displacements 

should follow from ( 3.38 ). 

Having the warping displacements defined, normal strains and stresses can be derived through 

standard compatibility and constitutive relations for linear elements: 

 
𝜀𝑤  (𝑥, s) =

𝑑𝑢

𝑑𝑥
=  − 𝑢̃(𝑠)

𝑑2𝜒

𝑑𝑥2
  , ( 3.39 ) 

 
𝜎𝑤  (𝑥, s) =  − 𝐸 𝑢̃(𝑠)

𝑑2𝜒

𝑑𝑥2
  . ( 3.40 ) 

 

Before being able to write the equilibrium equation, let us completely define the unit warping 

function 𝑢𝑆̃(𝑠). To do so, it is first necessary to determine the position of the shear centre and the value 

of the constant 𝐶0, which take place in the following section. Cross-sectional diagrams for both sectorial 

coordinate 𝜔𝑆(𝑠) and unit warping function 𝑢𝑆̃(𝑠) are schematically illustrated in Figure 3.11, where S is 

the shear centre, and they are usually obtained starting the integrations in point 0 indicated on the 

figure.6.  

                                                   
6 The equations of these functions in each of the segments between point i and i+1 can be obtained by integration 
using equations (3.35) and (3.36) or consulted in Kollbrunner&Basler (1969) or Pedro (1995). 

Figure 3.11 – a) Sectorial coordinate and b) unit warping function diagrams 

a) b) 
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3.3.3.3. Shear centre 

Let us start by considering a segment of a thin-walled cross-section such as the one presented in 

Figure 3.12, where S is the shear centre, G is the centre of mass, A is a generic point along the mid-

line, and P is an initially defined point from which cross-sectional sectorial properties can be calculated. 

The relation between tangential radii 𝑟 and 𝑟𝑃 is given through geometrical considerations and can 

be expressed by: 

 

𝑟 = 𝑟𝑃 + 𝑒𝑧
𝑑𝑦

𝑑𝑠
− 𝑒𝑦

𝑑𝑧

𝑑𝑠
  .  ( 3.41 ) 

 

Performing the integration between an arbitrary starting point of the mid-line and point A, and 

considering ( 3.34 ), comes that  

 
∫(𝑟 −
𝑠

𝑟𝑃)𝑑𝑠 = ∫𝑒𝑧
𝑠

𝑑𝑦 −∫𝑒𝑦
𝑠

𝑑𝑧 ↔ ( 3.42 ) 

 
↔ 𝜔𝑆 = 𝜔 + (𝑒𝑧)𝑦 − (𝑒𝑦)𝑧 + 𝐶0  . ( 3.43 ) 

Using ( 3.35 ), a relation can be established between the equivalent sectorial coordinates calculated 

with respect to the shear centre (𝜔𝑆̃) and to the initially defined point P (𝜔𝑃̃ ): 

 
𝜔𝑆̃ = 𝜔𝑃̃ + (𝑒𝑧)𝑦 − (𝑒𝑦)𝑧 + 𝐶0  . ( 3.44 ) 

For an element subjected to external torque only, equilibrium dictates that 

 

∫𝜎𝑤 𝑑𝐴 = 0
𝐴

  , 

∫𝜎𝑤𝑦 𝑑𝐴 = 0
𝐴

  , 

∫𝜎𝑤𝑧 𝑑𝐴 = 0
𝐴

  . 

( 3.45 ) 

  

Figure 3.12 – Tangential radii for shifted reference points 
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Imposing ( 3.40 ) and ( 3.36 ), one can rewrite the previous system of equations as 

 
∫𝜔𝑃̃  𝑑𝐴
𝐴

+ 𝐶0𝐴 = 0  , 

∫𝜔𝑃̃  𝑦 𝑑𝐴 
𝐴

− 𝑒𝑦 𝐼𝑦 − 𝑒𝑧 𝐼𝑦𝑧 = 0  , 

∫𝜔𝑃̃  𝑧 𝑑𝐴 + 𝑒𝑦 𝐼𝑦𝑧 + 𝑒𝑧 𝐼𝑧 = 0
𝐴

  . 

( 3.46 ) 

The system of equations can be solved with respect to 𝐶0 and to the location coordinates for the shear 

centre: 

 
𝐶0 = −

1

𝐴
 ∫𝜔𝑃̃  𝑑𝐴
𝐴

  , 

𝑒𝑦 = 
𝐼𝑧𝑆𝜔𝑧 − 𝐼𝑦𝑧𝑆𝜔𝑦

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2   , 

𝑒𝑧 = − 
𝐼𝑦𝑆𝜔𝑦 − 𝐼𝑦𝑧𝑆𝜔𝑧

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2   , 

 

( 3.47 ) 

where 𝑆𝑤𝑦 and 𝑆𝑤𝑧 are sectorial products of inertia defined by 

 
𝑆𝜔𝑦 = ∫𝜔𝑃̃  𝑦 𝑑𝐴

𝐴

  , 

𝑆𝜔𝑧 = ∫𝜔𝑃̃  𝑧 𝑑𝐴 
𝐴

 . 

( 3.48 ) 

3.3.3.4. Equilibrium equation 

Normal stresses due to warping follow from equation ( 3.40 ). Establishing equilibrium on an 

infinitesimal wall element – Figure 3.13 – comes that 

 𝑑𝜎𝑤  

𝑑𝑥
𝑡 +

𝑑𝑞𝑤  

𝑑𝑠
= 0  .  

 

  

Figure 3.13 – Equilibrium of an infinitesimal segment of plate subjected to warping torsion 
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By replacing ( 3.40 ) in ( 3.49 ) and subsequently integrating along the mid-line of the cross-section 

one can deduce the expression for a secondary warping shear flow (𝑞𝑤) which is in self-equilibrium. 

 

𝐸 𝑢̃(𝑠)
𝑑3𝜒

𝑑𝑥3
𝑡 =  

𝑑𝑞𝑤  

𝑑𝑠
  , ( 3.49 ) 

 

𝑞𝑤(𝑠) = 𝐸
𝑑3𝜒

𝑑𝑥3
 ∫ 𝑢̃(𝑠)𝑡 𝑑𝑠

𝑠

0

  . ( 3.50 ) 

Having defined the warping shear flow, the warping torsion 𝑇𝑤 can be determined through 

integration, as follows  

 
𝑇𝑤 = ∫𝑞𝑤

𝑆

𝑟 𝑑𝑠 = − 𝐸𝐼𝜔
𝑑3𝜒

𝑑𝑥3
  , ( 3.51 ) 

where 𝐼𝜔 is the warping constant, defined as 

 
𝐼𝜔 = ∫(𝑢̃(𝑠))

2

𝑆

𝑡 𝑑𝑠  . ( 3.52 ) 

The torsion moment is equilibrated through the sum of both uniform and non-uniform contributions, 

addressed in ( 3.31 ) and ( 3.51 ) : 

 

𝑇 =  𝑇𝑆𝑉 + 𝑇𝑤 =  𝐺𝐽
𝑑𝜙 

𝑑𝑥
− 𝐸𝐼𝜔

𝑑3𝜒

𝑑𝑥3
  . ( 3.53 ) 

On the other hand, the torsional moment can also be written as a function of the total shear flow, 

which can be determined taking ( 3.26 ) and ( 3.27 ) into consideration (Calgaro, J. A. Virlogeux, 1988): 

 
𝑞 = 𝐺𝑡 (

𝜕𝑢

𝜕𝑠
+ 𝑟 

𝑑𝜙 

𝑑𝑥
)  , ( 3.54 ) 

 
𝑇 = ∫𝑞

𝑆

𝑟 𝑑𝑠 =  𝐺𝐼𝑐
𝑑𝜙 

𝑑𝑥
− 𝐺  (𝐼𝑐 − 𝐽)

𝑑𝜒 

𝑑𝑥
  , ( 3.55 ) 

where 𝐼𝑐 is the shear central second moment of inertia, 

 
𝐼𝑐 = ∫𝑟

2 𝑡

𝑆

 𝑑𝑠  . ( 3.56 ) 

Eliminating 
𝑑𝜙 

𝑑𝑥
 from ( 3.53 ) and ( 3.55 ) derives the differential equation that relates the warping 

function 𝜒 and the torsional moment:  

 

−𝐸𝐼𝜔
𝑑3𝜒

𝑑𝑥3
− 𝜇𝐺𝐽 

𝑑𝜒 

𝑑𝑥
=  𝜇𝑇  , ( 3.57 ) 

where 𝜇 is the warping shear parameter, given by 

 
𝜇 = 1 − 

𝐽

𝐼𝑐
  . ( 3.58 ) 

This parameter is a measure of the cross-sectional slenderness with respect to torsion. For very 

thin walls it approaches unity, meaning that the effect of “warping shear” in torsion has little expression. 

This effect can also be designated as torsion bi-shear. This has to do with the shape of the unit warping 
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function 𝑢̃ (see Figure 3.11b), in which the two web plates seem to bend with same magnitude but in 

opposite directions. The same analogy makes it possible to define a new quantity 𝐵, designated as 

bimoment or warping moment, through which the longitudinal stresses can be calculated by a “bending 

moment” type equation: 

 
𝜎𝑤  (𝑥, s) =  𝑢̃(𝑥, 𝑠)

𝐵

𝐼𝜔
  , ( 3.59 ) 

 
𝐵 = −𝐸𝐼𝜔

𝑑2𝜒

𝑑𝑥2
  . ( 3.60 ) 

Solving the differential equation ( 3.57 ) with respect to 
𝑑𝜒 

𝑑𝑥
, and applying another derivative, one 

can obtain the bimoment 𝐵 as defined in ( 3.60 ), and afterwards calculate the torsional warping stresses 

according to ( 3.59 ). 

It is possible to write a more generic differential equilibrium equation that relates the warping 

function 𝜒 and a generic torsional load 𝑚𝑇 . Such can be achieved by first performing the static 

equilibrium of an infinitesimal segment of beam (see Figure 3.14): 

 
−𝑇 +𝑚𝑇𝑑𝑥 + (𝑇 +

𝑑𝑇

𝑑𝑥
𝑑𝑥) = 0  , ( 3.61 ) 

which is simplified to  

 
−
𝑑𝑇

𝑑𝑥
= 𝑚𝑇   . 

( 3.62 ) 

Applying a derivative to ( 3.57 ) and using the relation obtained in ( 3.62 ) comes the general 

equilibrium equation  

 𝐸𝐼𝜔
𝜇
(
𝑑4𝜒

𝑑𝑥4
) + 𝐺𝐽 ( 

𝑑2𝜒 

𝑑𝑥2
) = 𝑚𝑇(𝑥) . ( 3.63 ) 

It is interesting to observe that if the function 𝜒(𝑥) would have been taken equal to 𝜙(𝑥), i.e., if bi-

shear had been neglected, one would arrive at a similar equilibrium equation, where the warping shear 

parameter would not take place. This simplified equation corresponds to the so-called von Karman-

Christensen theory of torsion (Murray, 1984): 

 
𝐸𝐼𝜔 (

𝑑4𝜙

𝑑𝑥4
) + 𝐺𝐽 ( 

𝑑2𝜙 

𝑑𝑥2
) = 𝑚𝑇(𝑥) . ( 3.64 ) 

 

  

Figure 3.14 – Equilibrium of an infinitesimal segment of a beam subjected to torsional load 
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3.3.3.5. Homogenisation rules for torsion with warping in steel-concrete composite box girders 

Torsion with warping accounting for bi-shear in composite box girders has been addressed by Chen 

& Yen (1980). Similar to that explained in section 3.2.2.2, the definition of shear flows and stresses may 

be computed using a transformed thickness for the concrete deck so that: 

 𝛾 =  
𝑞

𝐺𝑐  (𝑡𝑡
′)𝑤

= 
𝑞

𝐺𝑠  (𝑡𝑡)𝑆𝑉+𝑊
 ↔ 

↔ (
𝑡𝑡
′

𝑡𝑡
)
𝑆𝑉+𝑤

= 
𝐺𝑠
𝐺𝑐
  ≈

𝐸𝑠
𝐸𝑐
= 𝑛  . 

( 3.65 ) 

Longitudinal stresses in the concrete can be retrieved trough 

 
𝜎𝑤

𝐶 =
𝜎𝑤

𝑆

𝑛
= 𝑢̃(𝑥, 𝑠)

𝐵

𝑛𝐼𝜔
  . ( 3.66 ) 

3.3.4. Distortion 

A box girder subjected to distortional loads responds by deforming its cross-sections in their own 

plane. Due to compatibility of displacements in the web-flange connections, the walls forming the cross-

section undergo displacements in the direction of their mid-lines, which means that, assuming null 

membrane shear strains, warping is produced (i.e., the walls “bend” longitudinally, see Figure 3.15). 

Therefore, each frame’s response lies between those of ‘a freely deformable’ and a ‘rigid’ cross-section, 

where the degree of stiffness relies simultaneously on both longitudinal and transverse behaviours. 

According to Schlaich & Scheef (1982) if the loading changes little in the longitudinal direction and 

transverse deformation is not prevented, cross-sections behave closer to freely distorting frames. On 

the contrary, for concentrated loads or for sections in the vicinity of transverse restraints, the limiting 

case of a fully rigid frame is closer to reality (Schlaich & Scheef, 1982). 

 

Rephrasing, distortional loads, 𝑝𝑑, acting on a box girder are simultaneously equilibrated by two 

coupled mechanisms: 

1) Longitudinal bending of the plates, related to loads 𝑝𝑑
𝐿 

2) Transverse deformation of the cross-section, related to loads 𝑝𝑑
𝑇 

The sum of the two contributions in each plate should render the total force, i.e., 

 𝑝𝑑 = 𝑝𝑑
𝐿 + 𝑝𝑑

𝑇   . ( 3.67 ) 

Figure 3.15 – Compatibility of displacements in the distortion of the cross-section 
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In particular, for each of the plates, and knowing that the distortional subsystem is self-equilibrated, 

it can be concluded that  

 𝑝𝑤,𝑑
𝐿 = 𝑝𝑤,𝑑 − 𝑝𝑤,𝑑

𝑇   , 

𝑝𝑡,𝑑
𝐿 = 𝑝𝑡,𝑑 − 𝑝𝑡,𝑑

𝑇 = −(
𝑏𝑏
𝑏𝑤
) (𝑝𝑤,𝑑 − 𝑝𝑤,𝑑

𝑇 )  , 

𝑝𝑏,𝑑
𝐿 = 𝑝𝑏,𝑑 − 𝑝𝑑,𝑙

𝑇 = −(
𝑏𝑡
𝑏𝑤
) (𝑝𝑤,𝑑 − 𝑝𝑤,𝑑

𝑇 )  . 

( 3.68 ) 

3.3.4.1. Hypotheses 

The following assumptions are considered when addressing distortion of a box-girder deck 

(Schlaich & Scheef, 1982; Pedro, 1995):  

C1. The length of the plates is large compared to their widths (
𝑙

𝑏
> 4); 

C2. The plates are thin-walled; 

C3. The cross-section is symmetrical about the vertical axis; 

C4. The bridge is prismatic, i.e., the cross-section is constant along the entire width; 

C5. The thicknesses of the webs and flanges remain constant in the transverse directions 

– the effect of haunches are neglected;  

C6. End supports are rigid to transverse deformations by means of sufficiently stiff diagrams 

and also prevent torsional rotations; 

C7. The longitudinal connection between plates transmits only shear stresses in the 

longitudinal direction due to a torsional load;  

3.3.4.2. Longitudinal bending of the plates 

At first, let us take into consideration a generic segment of the box girder subjected to distortional 

loads 𝑝𝑑
𝐿, such as those presented in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16 – Forces and moments acting on the plates of a segment of box girder bridge subjected to distortion 
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The loading and cross-section are anti-symmetric and symmetric about the vertical axis, 

respectively, so the response of the box girder will necessarily be anti-symmetric as well (for example 

𝐹1 = 𝐹2 and 𝐹3 = 𝐹4). 

The connection of the plates at the interfaces include equivalent shear flows 𝑓2(𝑥) and 𝑓3(𝑥), whose 

resultants along the longitudinal direction are 𝐹2(𝑥) and 𝐹3(𝑥): 

 
𝐹2(𝑥) =  ∫𝑓2(𝑥)

𝑥

𝑑𝑥  , 

𝐹3(𝑥) =  ∫𝑓3(𝑥)
𝑥

𝑑𝑥  . 

( 3.69 ) 

By establishing equilibrium equations for each plate and considering symmetry one can arrive at 

the internal forces and moments equivalent to the distortional loads and shear forces. Here, 𝑚𝑡,𝑑
𝐿 , 𝑚𝑤,𝑑

𝐿  

and 𝑚𝑏,𝑑
𝐿  are the bending moments provoked by the distortional loads 𝑝𝑡,𝑑

𝐿 , 𝑝𝑤,𝑑
𝐿  and 𝑝𝑏,𝑑

𝐿 , respectively. 

The equations are as follows: 

 
Top flange 

𝑎) 𝑁𝑡 = 0  

𝑏) 𝑀𝑡 = 𝐹2 𝑏𝑡 −𝑚𝑡,𝑑
𝐿   

 

Web 

𝑐) 𝑁𝑤 = 𝐹3 − 𝐹2    

𝑑) 𝑀𝑤 = −(𝐹2 + 𝐹3)
𝑏𝑤

2
+𝑚𝑤,𝑑

𝐿  

 

 

Bottom flange 

𝑒) 𝑁𝑏 = 0 

𝑓) 𝑀𝑏 = 𝐹3 𝑏𝑏 −𝑚𝑏,𝑑
𝐿  

( 3.70 ) 

The stresses at the intersections can be written for each plate as a function of the internal forces 

and moments, and of the inertial properties of the cross-section,  

 
Top flange 

𝑎) 𝜎2,𝑑 = −
𝑀𝑡𝑏𝑡
2𝐼𝑡

 

Web 

𝑏) 𝜎2,𝑑 = −
𝑁𝑤
𝐴𝑤

−
𝑀𝑤𝑏𝑤
2𝐼𝑤

 

𝑐) 𝜎3,𝑑 = −
𝑁𝑤
𝐴𝑤

+
𝑀𝑤𝑏𝑤
2𝐼

 

Bottom flange 

𝑑) 𝜎3,𝑑 =
𝑀𝑏𝑏𝑏
2𝐼𝑏

 

 ( 3.71 ) 

These expressions make use of the following inertias and area: 

 𝐼𝑡 =
𝑏3𝑡𝑡
12

  ;  𝐼𝑤 =
𝑏𝑤

3𝑡𝑤
12

  ;   𝐼𝑏 =
𝑏𝑏
3𝑡𝑏
12

  ;   𝐴𝑤 = 𝑏𝑤𝑡𝑤 ( 3.72 ) 
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By replacing ( 3.70 ) in  ( 3.71 ) it comes that: 

 
Top flange 

𝑎) 𝜎2,𝑑 = −
[𝐹2 𝑏𝑡 −𝑚𝑡,𝑑

𝐿 ]𝑏𝑡
2𝐼𝑡

 

Web 

𝑏) 𝜎2,𝑑 = −
[𝐹3 − 𝐹2]

𝐴𝑤
−
[−(𝐹2 + 𝐹3)

𝑏𝑤
2 + 𝑚𝑤,𝑑

𝐿 ] 𝑏𝑡

2𝐼𝑡
 

𝑐) 𝜎3,𝑑 = −
[𝐹3 − 𝐹2]

𝐴𝑤
+ 
[−(𝐹2 + 𝐹3)

𝑏𝑤
2 +𝑚𝑤,𝑑

𝐿 ] 𝑏𝑡

2𝐼𝑡
 

Bottom flange 

𝑑) 𝜎3,𝑑 =
[𝐹3 𝑏𝑏 −𝑚𝑏,𝑑

𝐿 ]𝑏𝑏
2𝐼𝑏

 

 ( 3.73 ) 

 

Since longitudinal bending of the plates is at hand, taking into account the relation between 

distortional loads from ( 3.68 ), one can write 

 𝑑2𝑚𝑡,𝑑
𝐿

𝑑𝑥2
= 𝑝𝑡,𝑑

𝐿 = −(
𝑏𝑏
𝑏𝑤
) 𝑝𝑤,𝑑

𝐿 = (
𝑏𝑏
𝑏𝑤
) 
𝑑2𝑚𝑤,𝑑

𝐿

𝑑𝑥2
  , 

𝑑2𝑚𝑏,𝑑
𝐿

𝑑𝑥2
= 𝑝𝑏,𝑑

𝐿 = −(
𝑏𝑡
𝑏𝑤
) 𝑝𝑤,𝑑

𝐿 = (
𝑏𝑡
𝑏𝑤
) 
𝑑2𝑚𝑤,𝑑

𝐿

𝑑𝑥2
  . 

( 3.74 ) 

Supposing that the boundary conditions are the same for both web, top and bottom flanges, which 

is generally the case, the relations between plate distortional loads and plate moments is the same: 

 
𝑚𝑡,𝑑
𝐿 = −(

𝑏𝑏
𝑏𝑤
) 𝑚𝑤,𝑑

𝐿   ,𝑚𝑏,𝑑
𝐿 = −(

𝑏𝑡
𝑏𝑤
) 𝑚𝑤,𝑑

𝐿   . 

 

( 3.75 ) 

Therefore, the stresses in ( 3.73 ) can be rewritten as a function of 𝐹2, 𝐹3 and 𝑚𝑤,𝑑
𝐿 : 

 Top flange 

𝑎) 𝜎2,𝑑 = −
[𝐹2 𝑏𝑡 + (

𝑏𝑏
𝑏𝑤
) 𝑚𝑤,𝑑

𝐿 ] 𝑏𝑡

2𝐼𝑡
 

Web 

𝑏) 𝜎2,𝑑 = −
[𝐹3 − 𝐹2]

𝐴𝑤
−
[−(𝐹2 + 𝐹3)

𝑏𝑤
2 +𝑚𝑤,𝑑

𝐿 ] 𝑏𝑤

2𝐼𝑤
 

𝑐) 𝜎3,𝑑 = −
[𝐹3 − 𝐹2]

𝐴𝑤
+ 
[−(𝐹2 + 𝐹3)

𝑏𝑤
2
+𝑚𝑤,𝑑

𝐿 ] 𝑏𝑤

2𝐼𝑤
 

Bottom flange 

𝑑) 𝜎3,𝑑 =
[𝐹3 𝑏𝑏 + (

𝑏𝑡
𝑏𝑤
) 𝑚𝑤,𝑑

𝐿 ] 𝑏𝑏

2𝐼𝑏
 

 ( 3.76 ) 
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Equalling the stresses obtained for the different plates in  ( 3.76 ) and defining a set of geometrical 

quantities, one can derive the following equations 

 
𝐹2 (

3

 𝛼𝑡
+ 2) + 𝐹3 = 3(1 −

𝛽

𝛼𝑡
)
𝑚𝑤,𝑑
𝐿

𝑏𝑤
  , 

𝐹2 + 𝐹3 (
3

 𝛼𝑏
+ 2) = 3(1 −

1

𝛽 𝛼𝑡
)
𝑚𝑤,𝑑
𝐿

𝑏𝑤
  , 

( 3.77 ) 

where 

 
𝛼𝑡 = 

12 𝐼𝑡

𝑏𝑡
2𝐴𝑤

 ;  𝛼𝑏 = 
12 𝐼𝑏

𝑏𝑏
2𝐴𝑤

 ;   𝛽 =  
𝑏𝑏
𝑏𝑡
  . ( 3.78 ) 

The system of equations can be solved with respect to 𝐹2 and 𝐹3: 

 

𝐹2 =
𝛼𝑡(𝛼𝑏𝛽 + 3𝛽 + 1) − (2 𝛼𝑏 + 3)𝛽

2

𝛽[(𝛼𝑡 + 2)(𝛼𝑏 + 2) − 1]

𝑚𝑤,𝑑
𝐿

𝑏𝑤
  , 

𝐹3 =
𝛼𝑏(𝛼𝑏𝛽 + 3𝛽 + 𝛽

2) − (2 𝛼𝑡 + 3)

𝛽[(𝛼𝑡 + 2)(𝛼𝑏 + 2) − 1]

𝑚𝑤,𝑑
𝐿

𝑏𝑤
  . 

( 3.79 ) 

Substituting the shear resultants in  ( 3.76 ), the stresses in the top and bottom edges of the web 

become related to the web moment 𝑚𝑤,𝑑
𝐿   as follows 

 
𝜎2,𝑑 = −

(1 + 𝛽)(1 + 𝛼𝑏𝛽 + 2𝛽)

𝛽[(𝛼𝑡 + 2)(𝛼𝑏 + 2) − 1]

𝑚𝑤,𝑑
𝐿  𝑏𝑤  

2 𝐼𝑤
  , 

𝜎3,𝑑 =
(1 + 𝛽)(2 + 𝛼𝑡 + 𝛽)

𝛽[(𝛼𝑡 + 2)(𝛼𝑏 + 2) − 1]

𝑚𝑤,𝑑
𝐿  𝑏𝑤  

2 𝐼𝑤
  . 

( 3.80 ) 

The position of the neutral axis can now be obtained considering a linear stress diagram in the web, 

which is congruent with the hypothesis taken for the longitudinal bending of the plates. One may then 

define 𝑦𝑡 ad 𝑦𝑏 as the distances measured along the web to the top and bottom edges, respectively: 

 

𝑦𝑡 = 
|𝜎2|

|𝜎2| + |𝜎3|
=  
(1 + 𝛽)(1 + 𝛼𝑏𝛽 + 2𝛽)

𝛼𝑡 + 𝛼𝑏𝛽 + 3(1 + 𝛽)
𝑏𝑤  , ( 3.81 ) 

 
𝑦𝑏 = 𝑏𝑤 − 𝑦𝑡  . ( 3.82 ) 

One can equally write an equivalent second moment of inertia for the web, 𝐼𝑤,𝑒, so that the stresses 

originated from bending of all plates in the cross-section match those obtained from the individual 

analysis of the web plate subjected to 𝑝𝑤,𝑑
𝐿 . Considering a local web referential: 

 
𝜎2,𝑑 = −

𝑚𝑤,𝑑
𝐿  𝑦𝑡  

2 𝐼𝑤,𝑒
  ,    𝜎3,𝑑 = 

𝑚𝑤,𝑑
𝐿  𝑦𝑏 

2 𝐼𝑤,𝑒
  , ( 3.83 ) 

where 

 

𝐼𝑤,𝑒 = 
2𝛽 [(𝛼𝑡 + 2)(𝛼𝑏 + 2) − 1]

(1 + 𝛽)[𝛼𝑡 + 𝛼𝑏𝛽 + 3(1 + 𝛽)]
 𝐼𝑤 . ( 3.84 ) 
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The stress diagram for the cross-section is completely defined, since it is anti-symmetrical and 

linear (see Figure 3.17). The web subjected to 𝑝𝑤,𝑑
𝐿  can be analysed as a beam, for which web in-plane 

displacements ∆𝑤  are retrievable through an equation similar to that derived in 3.2.1.2: 

 
𝑝𝑤,𝑑
𝐿 = 

𝑑4∆𝑤
𝑑𝑥4

 𝐸𝐼𝑤,𝑒   . ( 3.85 ) 

3.3.4.3. Transverse deformation of the cross-section 

In this section, the cross-section is analysed as an individual frame subjected to the distortional 

subsystem 𝑝𝑑
𝑇. This is equivalent to a set of anti-symmetrical diagonal loads applied at the intersections 

(see Figure 3.18a). These can be defined considering the length of the diagonal 𝑔 so that 

 𝑆𝑑 = =
𝑔

𝑏𝑤
 𝑝𝑤,𝑑
𝑇   . ( 3.86 ) 

 

𝑔 = √(
𝑏𝑡 + 𝑏𝑏
2

)
2

+ 𝑑2 ( 3.87 ) 

Solving the statically indeterminate structure, an anti-symmetrical transverse moment distribution 

is obtained (see Figure 3.18b): 

 
𝑚2̅̅ ̅̅ = − 𝑚1̅̅ ̅̅ =

1 + 𝛽(2 + 𝑟𝑏)

2 + 2𝛽 + 2𝛽2 + 𝑟𝑡 + 𝑟𝑏𝛽
2

𝑏𝑏𝑑

𝑔
 (
𝑆𝑑
2
)  , 

𝑚4̅̅ ̅̅ = − 𝑚3̅̅ ̅̅ =
2 + 𝛽 + 𝑟𝑡

2 + 2𝛽 + 2𝛽2 + 𝑟𝑡 + 𝑟𝑏𝛽
2
 
𝑏𝑏𝑑

𝑔
 (
𝑆𝑑
2
)  , 

( 3.88 ) 

where 
 

𝑟𝑡 =
𝑏𝑡
𝑏𝑤
 
𝐼𝑤̅
𝐼𝑡̅
 ;  𝑟𝑏 =

𝑏𝑏
𝑏𝑤
 
𝐼𝑤̅
𝐼𝑏̅
   , ( 3.89 ) 

which makes reference to the transverse moments of inertia per unit length 

 
𝐼𝑡̅ =

𝑡𝑡
3

12 (1 − 𝜈2)
; 𝐼𝑤̅ =

𝑡𝑤
3

12(1 − 𝜈2)
 ; 𝐼𝑏̅ =

𝑡𝑏
3

12(1 − 𝜈2)
  . ( 3.90 ) 

Figure 3.17 – Generic distortional warping stresses 

a) b) 

Figure 3.18 – a) Equivalent diagonal loads and b) corresponding transverse bending moments 

𝜑 
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Applying the unit dummy load method, considering only transverse bending contributions and 

substituting ( 3.86 ) in ( 3.88 ), the diagonal displacement 𝛿 is related to 𝑝𝑤,𝑑
𝑇  by  

 
𝑝𝑤,𝑑
𝑇 =

12 𝑔 𝐸𝐼𝑤̅
𝑏𝑡𝑏𝑏𝑑

2
𝑘2𝛿  , ( 3.91 ) 

 

𝑘2 =
2 + 2𝛽 + 2𝛽2 + 𝑟𝑡 + 𝑟𝑏𝛽

2

𝛽[(𝑟𝑡 + 2)(𝑟𝑏 + 2) − 1]
  . ( 3.92 ) 

At this point, the relations between diagonal deformation of the cross-section and the transverse 

displacement of the plates are still unknown. To calculate them, displacements ∆𝑡, ∆𝑤, ∆𝑏, 𝑚𝑖 and 𝑛𝑖 are 

defined (see Figure 3.19). The first three are measured along the respective top, web and bottom plate 

planes. Displacements 𝑚𝑖 and 𝑛𝑖 are perpendicular to the top/bottom and web plates, respectively, and 

can be expressed in terms of the latter my means of geometric considerations: 

 
𝑚1 = [|∆𝑤| − |∆𝑡|

𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  , 

𝑛1 = [|∆𝑡| − |∆𝑤|
𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  , 

𝑚3 = [|∆𝑤| + |∆𝑏|
𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  , 

𝑛3 = [|∆𝑏| + |∆𝑤|
𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  . 

( 3.93 ) 

According to Figure 3.17, equality of longitudinal stresses at the plate ends dictates that curvatures 

in the web and remaining plates follow a proportionality rule. Assuming the support conditions are the 

same for each plate, the curvatures and displacements between different plates are bound by the same 

absolute ratio. Taking into account ( 3.81 ), the following ratios are deducted: 

 
𝜎2,𝑑
𝐸
= (

1

𝑅𝑡
)
𝑏𝑡
2
=  (

1

𝑅𝑤
)𝑦𝑡     ↔     

|∆𝑡| 

|∆𝑤|
=   

(
1
𝑅𝑡
)

(
1
𝑅𝑤
)
=
2𝑦𝑡
𝑏𝑡

 

𝜎3,𝑑
𝐸
= (

1

𝑅𝑏
)
𝑏𝑏
2
=  (

1

𝑅𝑤
)𝑦𝑏     ↔     

|∆𝑏| 

|∆𝑤|
=
(
1
𝑅𝑏
)

(
1
𝑅𝑤
)
=
2𝑦𝑏
𝑏𝑏

 

( 3.94 ) 

 

  

Figure 3.19 – Auxiliary displacements of the distorted frame 
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Using the previous results in ( 3.93 ) comes: 

 
𝑚1 = |∆𝑤| [1 −

2 𝑦𝑡
𝑏𝑡

𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  , 

𝑛1 = |∆𝑤| [
2 𝑦𝑡
𝑏𝑡

−
𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  , 

𝑚3 = |∆𝑤| [1 +
2 𝑦𝑏
𝑏𝑏

𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  , 

𝑛3 = |∆𝑤| [
2 𝑦𝑏
𝑏𝑏

+
𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

]
𝑑

𝑏𝑤
  . 

( 3.95 ) 

Following geometrical correlations, the diagonal displacements can be expressed as a function of 

the auxiliary normal displacements: 

 
𝛿1 =

𝑛1
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝜃 +
𝑚1
𝑐𝑜𝑠𝜑

  [𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑]  , 

𝛿3 =
𝑛3
𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝜃 +
𝑚3

𝑐𝑜𝑠𝜑
[𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑]  . 

( 3.96 ) 

Here, 𝜃, and 𝜑 respectively represent the angle the diagonal makes with the horizontal and the angle 

the web makes with the vertical. Some helpful trigonometrical relations can be written: 

 

𝑠𝑖𝑛𝜃 =
𝑑

𝑔
 ;  𝑐𝑜𝑠𝜃 =  

𝑏𝑡 + 𝑏𝑏
2𝑔

 ;  𝑠𝑖𝑛𝜑 =
𝑏𝑡 − 𝑏𝑏
2𝑏𝑤

 ;  𝑐𝑜𝑠𝜃 =  
𝑑

𝑏𝑤
 ( 3.97 ) 

The diagonal deformation is a result of the combined diagonal displacements 𝛿1 and 𝛿3. Combining 

the expressions presented in ( 3.96 ) and ( 3.95 ), one can determine it through:  

 
𝛿 = 𝛿1 + 𝛿3 =

2𝑏𝑤
𝛽 𝑔

𝑘1 ∆𝑤   , ( 3.98 ) 

 

𝑘1 = 
[𝛼𝑡 + 𝛽

2(𝛼𝑏 + 2) + 2(𝛽 + 1)] (1 + 𝛽)

𝛼𝑡 + 𝛼𝑏𝛽 + 3(𝛽 + 1)
  . ( 3.99 ) 

Finally, it is possible to write an equation that relates the distortional load and the in-plane 

displacement of a web plate, accounting for the global transverse effect of the frame: 

 𝑝𝑤,𝑑
𝑇 = 𝑘 ∆𝑤   , 

𝑘 =
24 𝑏𝑤

𝑏𝑏
2𝑑2

𝑘1𝑘2𝐸𝐼𝑤̅  . 
( 3.100 ) 

3.3.4.4. Equilibrium equation 

In the previous sections, it was shown how the effect of distortion on a box girder can be determined 

by calculating the displacement of the web, ∆𝑤, and afterwards applying relations to obtain 

displacements, stresses and internal forces and moments throughout the whole cross-section. 

Therefore, it is possible to undertake an individual in-plane bending analysis only of the web plate, 

subjected to 𝑝𝑤,𝑑 = 𝑝𝑤,𝑑
𝐿 + 𝑝𝑤,𝑑

𝑇  and elastically restrained along its span, i.e., considering the web plate 

as a beam on an elastic foundation. Substituting ( 3.85 ) and ( 3.100 ) into ( 3.67 ) comes  

 

𝑝𝑤,𝑑 =
𝑑4∆𝑤
𝑑𝑥4

 𝐸𝐼𝑤,𝑒 + 𝑘 ∆𝑤 ( 3.101 ) 
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This bending equation is equal to that derived in 3.2.1.2 but with an additional term which 

represents the elastic foundation. This simulates the stiffness of the cross-section to transverse 

deformation. Once the displacement field in the web along its axis is determined, the corresponding 

longitudinal bending moments can be found through: 

 
𝑚𝑤,𝑑
𝐿 = −𝐸𝐼𝑤,𝑒

𝑑2∆𝑤
𝑑𝑥2

 ( 3.102 ) 

The distortional warping stresses can then finally be assessed through ( 3.83 ). 

3.3.4.5. Homogenisation rules for distortion in steel-concrete composite box girders 

The previous subsections have handled the effect of distortion on a box girder composed of a single 

material. This can be extended to steel-concrete composite cross-sections by transforming them into 

homogenous cross-sections of equivalent thicknesses, with reference usually being made to steel. 

However, as shown above, distortion involves simultaneous response of the plates to longitudinal and 

transverse bending. For this reason, when accounting for distortion, one needs to take into account two 

separate equivalent thicknesses (Calgaro, J. A. Virlogeux, 1988): 

 

 Longitudinal bending of the plate 

(
𝑡𝑡
𝑆

𝑡𝑡
)
𝑑

𝐿

= 𝑛 = 
𝐸𝑠
𝐸𝑐

 

 Transverse bending 
 

(
𝑡𝑡
𝑆

𝑡𝑡
)
𝑑

𝑇

= √𝑛
3

 

 

 

( 3.103a ) 

 

 

 

(3.104b) 

The longitudinal stresses due to distortion in the steel plates can be determined according to the 

previous reasoning. Stresses in the concrete deck, however, should be reported back to the composite 

cross-section by means of 

 
𝜎𝑑

𝐶 =  
𝜎𝑑

𝑆

𝑛
 ( 3.104 ) 

3.3.5. Loads eccentric with respect to the webs 

Up until this point, all discussions were based upon the principle that the box girder was subjected 

to loadings equivalent to vertical loads applied at the web-deck connecting joints. Unfortunately, this is 

hardly a common case, as eccentricities usually take place. 

Let us now consider a set of generic vertical loads located anywhere along the top flange (see 

Figure 3.21). The equivalent nodal forces and moments 𝑚𝐴 ,𝑚𝐵 , 𝑝𝐴 , 𝑝𝐵 can be calculated by considering 

statically equivalent loads as shown in the figure7.  

                                                   
7 For the interior span, use can be made of the results presented in Table 3.4 concerning the solution of the 
equilibrium equations for elastic bending. Nodal forces and moments for loads applied at the projecting top flange 
segments can be obtained directly through rigid-body diagram. 
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The nodal forces and moments can once again be split into their symmetric and anti-symmetric 

components, as shown in Figure 3.20.  

 

The subdivision of the anti-symmetric parcel leads to pure torsional 

 
𝑝𝑡,𝑃𝑢𝑟𝑒𝑇 = (

𝑏𝑡
𝑏𝑤
)𝑝𝑤,𝑃𝑢𝑟𝑒𝑇   ,    𝑝𝑏,𝑃𝑢𝑟𝑒𝑇 = (

𝑏𝑏
𝑏𝑤
)𝑝𝑤,𝑃𝑢𝑟𝑒𝑇   , ( 3.105a ) 

 

 

 

( 3.106b ) 

 

where 

 

𝑝𝑤,𝑃𝑢𝑟𝑒𝑇 = (
 𝑏𝑤

(𝑏𝑡 + 𝑏𝑏)𝑑
) (
(𝑝𝐴 − 𝑝𝐵)𝑏𝑡

2
+𝑚𝐴 −𝑚𝐵) , 

and distortional subsystem loads (Schlaich & Scheef, 1982),  

 
𝑝𝑡,𝑑 = (

𝑏𝑏
𝑏𝑤
)𝑝𝑤,𝑑    ,    𝑝𝑏,𝑑 = (

𝑏𝑡
𝑏𝑤
)𝑝𝑤,𝑑   , ( 3.106a ) 

 

 

 

( 3.107b ) 

 

where 

 

𝑝𝑤,𝑑 = (
𝑏𝑏 𝑏𝑤

(𝑏𝑡 + 𝑏𝑏)𝑑
) (
(𝑝𝐴 − 𝑝𝐵)𝑏𝑡

2
)− (

𝑏𝑤
𝑏𝑏𝑑

)(
𝛽

1 + 𝛽
+

𝑟𝑡 − 3𝛽 − 2𝛽𝑟𝑏
(𝑟𝑡 + 2)(𝑟𝑏 + 2) − 1

) (𝑚𝐴 −𝑚𝐵) . 

The distortional response can be calculated by conducting the analysis of one of the web plates as 

a beam on elastic foundation subjected to the distortional load presented in ( 3.106a ). For the torsion 

analysis, the external toque may be computed as 

 
𝑚𝑇 = (

(𝑝𝐴 − 𝑝𝐵)𝑏𝑡
2

+𝑚𝐴 −𝑚𝐵)  . ( 3.107 ) 

   

Figure 3.20 – Decomposition of the nodal loads into the pure torsional and distortional subsystems 

Figure 3.21 – Equivalent nodal loads for vertical loading applied at the top flange 
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3.4. SOLUTION OF THE EQUILIBRIUM EQUATIONS 

The solutions of the equilibrium equations for elastic bending, mixed torsion and distortion (see 

Table 3.3) are those that satisfy equilibrium and compatibility for a given loading and boundary 

conditions. This chapter unveils the solutions considering the cases of concentrated loads (𝑄) and 

distributed loads (𝑞). Regarding support conditions for each span, reference will be made to two 

boundary situations: a simply supported beam (see Figure 3.22a) and a beam fixed on both ends (see 

Figure 3.22b).  

Table 3.3 – Equilibrium equations for bending, torsion with warping and distortion 

Loading Equation8 Reference 

Elastic bending 
𝑑4𝑤

𝑑𝑥4
 𝐸𝐼𝑦 =  𝑞(𝑥) ( 3.9 ) 

Torsion with warping 
𝐸𝐼𝜔
𝜇
(
𝑑4𝜒

𝑑𝑥4
) + 𝐺𝐽 ( 

𝑑2𝜒 

𝑑𝑥2
) = 𝑚𝑇(𝑥)  ( 3.63 ) 

Distortion 
𝑑4∆𝑤
𝑑𝑥4

 𝐼𝑤,𝑒 + 𝑘 ∆𝑤= 𝑞𝑤,𝑑(𝑥) ( 3.101 ) 

3.4.1. Elastic bending 

The solution to the Euler-Bernoulli beam equation ( 3.9 ) is of general access within the study field 

(see for example Brazão Farinha & Correia dos Reis (1992)). Table 3.3 presents the results for support 

reactions 𝑅𝐴, 𝑅𝐵, 𝑀𝐴 and 𝑀𝐵, as well as for the bending moment 𝑀(𝑥) in the two case scenarios of 

support conditions illustrated in Figure 3.22. 

 

                                                   
8 For the uniformly distributed load, the notation 𝑞(𝑥) = “𝑞” is used hereafter. 

Figure 3.22 – Loading and support conditions 

a) 

b) 
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9  𝑎4 = 𝑎1 + 𝑎2 2⁄   ,  𝑎5 = 𝑙 − 𝑎4 

Table 3.4 – Solution of the equilibrium equations for bending 

Support 

conditions 
Simply Supported Fixed at both ends 

Type of 

loading 
Concentrated (𝑸) Distributed (𝒒) Concentrated (𝑸) Distributed (𝒒)9 

𝑅𝐴 𝑄
(𝑙 − 𝑎0)

𝑙
 𝑞

𝑎2(2𝑎3 + 𝑎2)

2𝑙
 𝑄

(𝑙 − 𝑎0)
2

𝑙3
(𝑙 + 2𝑎0) 

𝑞
𝑎2
4𝑙3

[4𝑎3𝑙
2 + 2𝑎2𝑙

2 + 4𝑎4𝑎5
2 − 4𝑎4

2𝑎5

+ 𝑎2
2(𝑎4 − 𝑎5)] 

𝑅𝐵 𝑄 − 𝑅𝐴 𝑞𝑎2 − 𝑅𝐴 𝑄 − 𝑅𝐴 𝑞𝑎2 −𝑅𝐴 

𝑀𝐴 0 0 −𝑄𝑎0
(𝑙 − 𝑎0)

3

𝑙2
 −𝑞

𝑎2
12𝑙2

[12𝑎4𝑎5
2 + 𝑎2

2(𝑙 − 3𝑎5)] 

𝑀𝐵 0 0 
−𝑄𝑎0

2
(𝑙 − 𝑎0)

𝑙2
 

 

−𝑞
𝑎2
12𝑙2

[12𝑎4
2𝑎5 + 𝑎2

2(𝑙 − 3𝑎4)] 

 

𝑀(𝑥) 

          Concentrated loading (𝑸): 

 

Distributed loading (𝒒): 

 

𝑀𝐴 +𝑅𝐴𝑥      0 ≤ 𝑥 ≤ 𝑎0 𝑀𝐴 +𝑅𝐴𝑥      0 ≤ 𝑥 ≤ 𝑎1 

𝑀𝐵 +𝑅𝐵(𝑙 − 𝑥) 𝑎0 ≤ 𝑥 ≤ 𝑙 𝑀𝐴 +𝑅𝐴𝑎1 + [2𝑅𝐴 − 𝑞(𝑥 − 𝑎1)]
𝑥 − 𝑎1
2

 𝑎1 ≤ 𝑥 ≤ 𝑎1 + 𝑎2 

  𝑀𝐵 +𝑅𝐵(𝑙 − 𝑥)  
𝑎1 + 𝑎2 ≤ 𝑥 ≤ 𝑙 
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3.4.2. Torsion with warping 

The solution for the problem of torsion with warping takes the general form 

 
𝑑𝜒 

𝑑𝑥
= 𝑐1 cosh(

𝑥

𝜁
) + 𝑐2 senh (

𝑥

𝜁
) + 𝑐3

𝑥

𝜁
+ 𝑐4  , ( 3.108 ) 

where 𝜒 is the function present in ( 3.38 ) that allows for the warping variation along 𝑥; 𝑐1, 𝑐2, 𝑐3 and 𝑐4 

are constants of integration, and 𝜁 is a characteristic length defined by 

 

𝜁 =  √
𝐸𝐼𝜔
𝜇𝐺𝐽

  . ( 3.109 ) 

It should be noticed that the solution includes the contribution of warping shear deformability, taken 

into account through the parameter 𝜇. If this effect is not to be considered, the results may be obtained 

by simply deleting this parameter in equation ( 3.109 ). 

Maisel & Roll (1974) summarizes the solutions for torsional moment produced by the eccentric 

loadings shown in Figure 3.22, in which the distributed load is uniformly extended throughout the whole 

span and the supports A and B do not allow for any rotation of the cross-section. 

The boundary conditions for mixed torsion in the two considered scenarios are: 

 
Simply supported span with no warping restriction at the ends 

𝐵𝐴 = 𝐵𝐵 = 0 

Span fixed at both ends with warping restrained 

𝐵𝐴 = 𝐵𝐵 = 0 

(
𝑑𝜒 

𝑑𝑥
)
𝐴
= (

𝑑𝜒 

𝑑𝑥
)
𝐵
= 0 

( 3.110 ) 

The corresponding torsional moment diagrams can be determined through: 

 
Concentrated load 

𝑇(𝑥) =  −
𝑙 − 𝑎0 

𝑙
𝑀𝑇           0 ≤ 𝑥 ≤ 𝑎0 

𝑇(𝑥) =  
𝑎0 

𝑙
𝑀𝑇           𝑎0 < 𝑥 ≤ 𝑙 

 

Uniformly distributed load 

𝑇(𝑥) = (𝑥 −
𝑙 

2
)𝑚𝑇           0 ≤ 𝑥 ≤ 𝑙 

( 3.111 ) 

Based on the work done by Kollbrunner, Hajdin and Heilig, Maisel & Roll (1974) have compiled a 

set of expressions which contain the analytical solutions presented in Table 3.5. 
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Table 3.5 – Solutions of the equilibrium equation for warping with torsion (adapted from Maisel & Roll (1974)) 

Support 

conditions 
Simply Supported Fixed at the ends 

Type of loading Concentrated (𝑀𝑇) 

Bimoment 𝐵 

𝑀𝑇𝜇𝜁
𝑠𝑖𝑛ℎ

𝑙 − 𝑎0
𝜁

𝑠𝑖𝑛ℎ
𝑙
𝜁

𝑠𝑖𝑛ℎ
𝑥

𝜁
 0 ≤ 𝑥 ≤ 𝑎0 

𝜇 𝜁𝑀𝑇 (𝐶1cosh
𝑥

𝜁
 +𝐶2sinh

𝑥

𝜁
) 0 ≤ 𝑥 ≤ 𝑎0 

𝜇 𝜁𝑀𝑇 (𝐶1cosh
𝑥

𝜁
+𝐶2sinh

𝑥

𝜁
− sinh

𝑥 − 𝑎0
𝜁

) 𝑎0 ≤ 𝑥 ≤ 𝑙 

𝑀𝑇𝜇𝜁
𝑠𝑖𝑛ℎ

𝑎0
𝜁

𝑠𝑖𝑛ℎ
𝑙
𝜁

𝑠𝑖𝑛ℎ
𝑙 − 𝑥

𝜁
 

 

𝑎0 ≤ 𝑥 ≤ 𝑙 

𝐶1 =
(
𝑙 − 𝑎0
𝜇𝜁 − sinh

𝑙 − 𝑎0
𝜁

) (1 − 𝑐𝑜𝑠ℎ
𝑙
𝜁
) − (

𝑙
𝜇𝜁 − sinh

𝑙
𝜁
) (1 − 𝑐𝑜𝑠ℎ

𝑙 − 𝑎0
𝜁

)

2 − 2𝑐𝑜𝑠ℎ
𝑙
𝜁 +

𝑙
𝜇𝜁 sinh

𝑙
𝜁

 

𝐶2 =
(
𝑙 − 𝑎0
𝜇𝜁 − sinh

𝑙 − 𝑎0
𝜁

) sinh
𝑙
𝜁 +

(1 − 𝑐𝑜𝑠ℎ
𝑙
𝜁
) (1 − 𝑐𝑜𝑠ℎ

𝑙 − 𝑎0
𝜁

)

2 − 2𝑐𝑜𝑠ℎ
𝑙
𝜁
+
𝑙
𝜇𝜁
sinh

𝑙
𝜁

 

Type of loading Uniformly distributed (𝒎𝑻) 

Bimoment 𝐵 𝑚𝑇𝜇𝜁
2(1−

𝑠𝑖𝑛ℎ
𝑙 − 𝑥
𝜁

𝑠𝑖𝑛ℎ
𝑙
𝜁

−
𝑠𝑖𝑛ℎ

𝑥
𝜁

𝑠𝑖𝑛ℎ
𝑙
𝜁

) 𝑚𝑇𝜇𝜁
2(1−

𝑙
2𝜁

𝑡𝑎𝑛ℎ
𝑙
2𝜁

𝑠𝑖𝑛ℎ
𝑥
𝜁 + 𝑠𝑖𝑛ℎ

𝑙 − 𝑥
𝜁

𝑠𝑖𝑛ℎ
𝑙
𝜁

) 
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3.4.3. Distortion  

As mentioned in the previous sections, the box girders’ distortional response can be analysed 

through the beam on elastic foundation analogy. A solution for this equivalent problem has been studied 

to some extent by Hetenyi (1946), whose findings serve as the basis for the following deductions and 

results. 

Let us consider an elastically supported finite beam subjected to standard concentrated and 

distributed loads – Figure 3.23a – and a similar beam, subjected to the same loading, but with infinite 

length – Figure 3.23b.  

The first step of the procedure involves the analysis of the beam of infinite length. As a result of this 

analysis, bending moments, shear forces, rotations and displacements are developed at points A and 

B, which correspond to the ends of the beam of finite length. For the two systems to be equivalent, it is 

necessary to introduce in points A and B of the infinite beam a set of additional forces and bending 

moments so that the boundary conditions are fulfilled. For the particular case displayed in Figure 3.23a, 

such conditions take the following form  

 ∑𝐹𝐴 =∑𝐹𝐵 = 0 

∑𝑀𝐴 =∑𝑀𝐵 = 0 

( 3.112 ) 

The solution of the finite-length beam will therefore come as a superposition of the solutions for the 

beam of infinite length subjected to the initial loading – Figure 3.23b – and to the additional “end” loads 

– Figure 3.23c which were calculated by solving the system of equations ( 3.112 ). The generic 

expressions are presented in equations ( 3.113 ) and ( 3.114 ). 

 

Figure 3.23 – Procedure of analysis for a beam on an elastic foundation 

a) 

b) 

c) 
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∆𝑤,𝐴=

𝜆

2𝑘
[𝑅𝑜𝐴𝐴̅(𝑥) + 𝑅𝑜𝐵𝐴̅(𝑙 − 𝑥) + 𝑄𝐴̅(|𝑥 − 𝑎0|) ]  

+
𝜆2

𝑘
[𝑀𝑜𝐴𝐵̅(𝑥) +𝑀𝑜𝐵𝐵̅(𝑙 − 𝑥)]

+
𝑞

2𝑘
{𝑐1[𝐷̅(𝑎1 − 𝑥) − 𝐷̅(𝑎1 + 𝑎2 − 𝑥)]

+ 𝑐2[2 − 𝐷̅(𝑥 − 𝑎1) − 𝐷̅(𝑎1 + 𝑎2 − 𝑥)]

+ 𝑐3[𝐷̅(𝑥 − 𝑎1 − 𝑎2) − 𝐷̅(𝑥 − 𝑎1)]}  , 

( 3.113 ) 

 

 
𝑀𝑤,𝐴 =

1

4𝜆
[𝑅𝑜𝐴𝐶̅(𝑥) + 𝑅𝑜𝐵𝐶̅(𝑙 − 𝑥) + 𝑄𝐶̅(|𝑥 − 𝑎0|) ]

+
1

2
[𝑀𝑜𝐴𝐷̅(𝑥) + 𝑀𝑜𝐵𝐷̅(𝑙 − 𝑥)]

+
𝑞

4𝜆2
{−𝑐1[𝐵̅(𝑎1 − 𝑥) − 𝐵̅(𝑎1 + 𝑎2 − 𝑥)]

+ 𝑐2[𝐵̅(𝑥 − 𝑎1) + 𝐵̅(𝑎1 + 𝑎2 − 𝑥)]

− 𝑐3[𝐵̅(𝑥 − 𝑎1 − 𝑎2) − 𝐵̅(𝑥 − 𝑎1)]}  , 

( 3.114 ) 

where 

 𝑐1 = 1      𝑐2 = 𝑐3 = 0 

𝑐2 = 1      𝑐1 = 𝑐3 = 0 

𝑐3 = 1      𝑐1 = 𝑐2 = 0 

0 ≤ 𝑥 ≤ 𝑎1  

𝑎1 ≤ 𝑥 ≤ 𝑎1 + 𝑎2 

𝑎1 + 𝑎2 ≤ 𝑥 ≤ 𝑙 

( 3.115 ) 

The functions 𝐴̅(𝑥), 𝐵̅(𝑥), 𝐶̅(𝑥) and 𝐷̅(𝑥) are defined according to: 

 𝐴̅(𝑥) = 𝑒−𝜆𝑥(𝑐𝑜𝑠𝜆𝑥 + 𝑠𝑖𝑛𝜆𝑥) , 

𝐵̅(𝑥) = 𝑒−𝜆𝑥𝑠𝑖𝑛𝜆𝑥  , 

𝐶̅(𝑥) = 𝑒−𝜆𝑥(𝑐𝑜𝑠𝜆𝑥 − 𝑠𝑖𝑛𝜆𝑥) , 

𝐷̅(𝑥) = 𝑒−𝜆𝑥𝑐𝑜𝑠𝜆𝑥  

( 3.116 ) 

and  

 

𝜆 =
1

𝐿𝑑
= √

𝑘

4𝐸𝐼𝑤,𝑒

4

 ( 3.117 ) 

The parameter 𝐿𝑑 is the characteristic length for distortion (Schlaich & Scheef, 1982). It relates the 

longitudinal bending stiffness of the beam (𝐸𝐼𝑤,𝑒) with the transverse stiffness of the cross-section (𝑘). 

The solutions for the system of equations presented in ( 3.112 ) are more easily obtained when 

considering the initial loading divided up into its symmetric and anti-symmetrical components: 

 𝑀𝐴
𝑠𝑦𝑚

=
1

2
(𝑀𝐴 +𝑀𝐵)  

𝑀𝐴
𝑎𝑛𝑡𝑖 =

1

2
(𝑀𝐴 −𝑀𝐵) 

𝑅𝐴
𝑠𝑦𝑚

=
1

2
(𝑅𝐴 +𝑅𝐵)  

𝑅𝐴
𝑎𝑛𝑡𝑖 =

1

2
(𝑅𝐴 −𝑅𝐵) 

( 3.118 ) 
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The corresponding symmetric and anti-symmetrical sets of end moments and forces can be 

retrieved by 

 𝑀𝑜𝐴 = 𝑀𝑜𝐴
𝑠𝑦𝑚

+𝑀𝑜𝐴
𝑎𝑛𝑡𝑖  

𝑀𝑜𝐵 = 𝑀𝑜𝐵
𝑠𝑦𝑚

+𝑀𝑜𝐵
𝑎𝑛𝑡𝑖  

𝑅𝑜𝐴 = 𝑅𝑜𝐴
𝑠𝑦𝑚

+ 𝑅𝑜𝐴
𝑎𝑛𝑡𝑖  

𝑅𝑜𝐵 = 𝑅𝑜𝐵
𝑠𝑦𝑚

+ 𝑅𝑜𝐵
𝑎𝑛𝑡𝑖  

( 3.119 ) 

The previous clarifications were directed at the specific case of a beam elastically supported along 

the span and without end supports. For the situations presented in Figure 3.22, the boundary conditions 

can be described as follows, where  ∆𝑤 are the web displacements and  𝜃 the corresponding rotations: 

 

 Simply supported beam 

𝑎) ∆𝑤,𝐴= ∆𝑤,𝐵= 0 

𝑏)∑𝑀𝐴 =∑𝑀𝐵 = 0 

 End-fixed beam 

𝑐) ∆𝑤,𝐴= ∆𝑤,𝐵= 0 

𝑑) 𝜃𝐴 = 𝜃𝐵 = 0 

( 3.120 ) 

   

Following the same procedures, expressions were obtained by Hetenyi (1946) for the values of 

𝑀𝑜𝐴, 𝑀𝑜𝐵, 𝑅𝑜𝐴 and 𝑅𝑜𝐵 in these circumstances. Based on this work, Pedro (1995) compiled and 

synthesized the results for the specific loading and support conditions at hand, which are presented in 

Table 3.6.
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Table 3.6 – Particular solutions for the distortion equilibrium equation (adapted from Pedro (1995)) 

Support 

conditions 
Simply Supported Fixed at both ends 

Type of 

loading 
Concentrated (𝑸) Distributed (𝒒) Concentrated (𝑸) Distributed (𝒒) 

𝑅𝐴 𝑦𝐴 =
𝑄𝜆

2𝑘
𝐴̅(𝑎0) 𝑦𝐴 =

𝑞

2𝑘
[𝐷̅(𝑎1) − 𝐷̅(𝑎1 + 𝑎2)] 𝑦𝐴 =

𝑄𝜆

2𝑘
𝐴̅(𝑎0) 𝑦𝐴 =

𝑞

2𝑘
[𝐷̅(𝑎1) − 𝐷̅(𝑎1 + 𝑎2)] 

𝑅𝐵 𝑦𝐵 =
𝑄𝜆

2𝑘
𝐴̅(𝑙 − 𝑎0) 𝑦𝐵 =

𝑞

2𝑘
[𝐷̅(𝑎3) − 𝐷̅(𝑎2 + 𝑎3)] 𝑦𝐵 =

𝑄𝜆

2𝑘
𝐴̅(𝑙 − 𝑎0) 𝑦𝐵 =

𝑞

2𝑘
[𝐷̅(𝑎3) − 𝐷̅(𝑎2 + 𝑎3)] 

𝑀𝐴 𝑀𝐴 =
𝑄

4𝜆
𝐶̅(𝑎0) 𝑀𝐴 = −

𝑞

4𝜆2
[𝐵(𝑎1) − 𝐵̅(𝑎1 + 𝑎2)] θ𝐴 =

𝑄𝜆2

𝑘
𝐵̅(𝑎0) 𝜃𝐴 =

𝑞

2𝑘
[𝐴̅(𝑎1) − 𝐴̅(𝑎1 + 𝑎2)] 

𝑀𝐵 𝑀𝐵 =
𝑄

4𝜆
𝐶̅(𝑙 − 𝑎0) 𝑀𝐵 = −

𝑞

4𝜆2
[𝐵(𝑎3) − 𝐵̅(𝑎2 + 𝑎3)] θ𝐵 =

𝑄𝜆2

𝑘
𝐵̅(𝑙 − 𝑎0) 𝜃𝐵 =

𝑞

2𝑘
[𝐴̅(𝑎3) − 𝐴̅(𝑎2 + 𝑎3)] 

 

𝑦𝐴
𝑠𝑦𝑚

=
1

2
(𝑦𝐴 + 𝑦𝐵)     

𝑦𝐴
𝑎𝑛𝑡𝑖 =

1

2
(𝑦𝐴 − 𝑦𝐵)   

   𝑀𝐴
𝑠𝑦𝑚

=
1

2
(𝑀𝐴 +𝑀𝐵)  

   𝑀𝐴
𝑎𝑛𝑡𝑖 =

1

2
(𝑀𝐴 −𝑀𝐵) 

𝑦𝐴
𝑠𝑦𝑚

=
1

2
(𝑦𝐴 + 𝑦𝐵)    

𝑦𝐴
𝑎𝑛𝑡𝑖 =

1

2
(𝑦𝐴 − 𝑦𝐵)   

   𝜃𝐴
𝑠𝑦𝑚

=
1

2
(𝜃𝐴 + 𝜃𝐵) 

   𝜃𝐴
𝑎𝑛𝑡𝑖 =

1

2
(𝜃𝐴 − 𝜃𝐵) 

 

𝑅𝑜𝐴
𝑠𝑦𝑚

= 4𝜆𝜉𝐼 [𝑀𝐴
𝑠𝑦𝑚

𝐵̅(𝑙) − 2𝜆2𝐸𝐼𝑤,𝑒𝑦𝐴
𝑠𝑦𝑚[1 + 𝐷̅(𝑙)]] 

𝑀𝑜𝐴
𝑠𝑦𝑚

= −2𝜉𝐼 [𝑀𝐴
𝑠𝑦𝑚[1 + 𝐴̅(𝑙)] − 2𝜆2𝐸𝐼𝑤,𝑒𝑦𝐴

𝑠𝑦𝑚[1 + 𝐶̅(𝑙)]] 

𝑅𝑜𝐴
𝑎𝑛𝑡𝑖 = −4𝜆𝜉𝐼𝐼 [𝑀𝐴

𝑎𝑛𝑡𝑖𝐵̅(𝑙) + 2𝜆2𝐸𝐼𝑤,𝑒𝑦𝐴
𝑎𝑛𝑡𝑖[1 − 𝐷̅(𝑙)]] 

𝑀𝑜𝐴
𝑎𝑛𝑡𝑖 = −2𝜉𝐼𝐼 [𝑀𝐴

𝑎𝑛𝑡𝑖[1 − 𝐴̅(𝑙)] − 2𝜆2𝐸𝐼𝑤,𝑒𝑦𝐴
𝑎𝑛𝑡𝑖[1 − 𝐶̅(𝑙)]] 

𝑅𝑜𝐴
𝑠𝑦𝑚

= 8𝜆2𝐸𝐼𝑤,𝑒𝜉𝐼 [𝜃𝐴
𝑠𝑦𝑚

𝐵̅(𝑙) − 𝜆2𝑦𝐴
𝑠𝑦𝑚[1 − 𝐶̅(𝑙)]] 

𝑀𝑜𝐴
𝑠𝑦𝑚

= −4𝜆𝐸𝐼𝑤,𝑒𝜉𝐼[𝜃𝐴
𝑠𝑦𝑚[1 + 𝐴̅(𝑙)] − 2𝜆𝑦𝐴

𝑠𝑦𝑚
𝐵(𝑙)] 

𝑅𝑜𝐴
𝑎𝑛𝑡𝑖 = −8𝜆2𝐸𝐼𝑤,𝑒𝜉𝐼 [𝜃𝐴

𝑎𝑛𝑡𝑖𝐵̅(𝑙) + 𝜆2𝑦𝐴
𝑎𝑛𝑡𝑖[1 + 𝐶̅(𝑙)]] 

𝑀𝑜𝐴
𝑎𝑛𝑡𝑖 = −4𝜆𝐸𝐼𝑤,𝑒𝜉𝐼[𝜃𝐴

𝑎𝑛𝑡𝑖[1 − 𝐴̅(𝑙)] + 2𝜆𝑦𝐴
𝑠𝑦𝑚

𝐵(𝑙)] 

 𝜉𝐼 =
1

2

𝑒𝜆𝑙

cosh𝜆𝑙 + cos𝜆𝑙
 𝜉𝐼𝐼 =

1

2

𝑒𝜆𝑙

cosh 𝜆𝑙 − cos 𝜆𝑙
 𝜉𝐼 =

1

2

𝑒𝜆𝑙

sinh 𝜆𝑙 + sin 𝜆𝑙
 𝜉𝐼𝐼 =

1

2

𝑒𝜆𝑙

sinh 𝜆𝑙 − sin𝜆𝑙
 

 𝑅𝑜𝐴 = 𝑅𝑜𝐴
𝑠𝑦𝑚

+ 𝑅𝑜𝐴
𝑎𝑛𝑡𝑖          𝑅𝑜𝐵 = 𝑅𝑜𝐵

𝑠𝑦𝑚
+𝑅𝑜𝐵

𝑎𝑛𝑡𝑖 𝑀𝑜𝐴 = 𝑀𝑜𝐴
𝑠𝑦𝑚

+𝑀𝑜𝐴
𝑎𝑛𝑡𝑖         𝑀𝑜𝐵 = 𝑀𝑜𝐵

𝑠𝑦𝑚
+𝑀𝑜𝐵

𝑎𝑛𝑡𝑖 
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4. GENERALIZED BEAM THEORY (GBT) 

4.1. GENERAL CONSIDERATIONS 

The analysis of a box girder bridge, either composite or non-composite, can be executed by making 

use of GBT, i.e., Generalized Beam Theory. This theory has been proven to be an elegant and insightful 

approach for the structural analysis of thin-walled prismatic members such as the ones considered here 

(Gonçalves & Camotim, 2010; Gonçalves, R., Ritto-Corrêa, M., & Camotim, D., 2010). 

GBT analysis makes possible to allow for global load-carrying mechanisms, such as longitudinal 

bending, torsion and distortion, as well as other global/local structural responses. Any of these can be 

considered within the analyses as an individual cross-section deformation mode, whose amplitude 

function is the unknown and generally varies along the longitudinal direction. The amplitude functions 

are determined by solving the resulting equilibrium equations. 

This chapter introduces the fundamental principles of this theory, first developed by Schardt (1989) 

as a continuation of the pioneering work done by Vlasov (1961), and subject of further intensive research 

by Camotim and co-workers, as well as the procedure followed for the implementation of a GBT 

displacement-based finite element. At the same time and whenever possible, comparison is made 

between this approach and that presented in Chapter 3, concerning the Classical Formulations. 

It should be noted that unlike in the Classical Formulations, in GBT there is no need to homogenise 

the cross-section, as long as the elastic properties of each wall are properly defined. Although explicit 

consideration of the effects of steel reinforcement and of shear connection slip have been considered 

in other GBT formulations (Gonçalves & Camotim, 2010; Henriques, Gonçalves, & Camotim, 2015), 

they are not included in the present work. 

 

4.2. FUNDAMENTAL FORMULATIONS 

The definition of the fundamental equations in GBT begins by setting up reasonable simplifying 

hypotheses. This will allow for the development of a thin-walled beam theory which is efficient and, at 

the same time, sufficiently accurate. 

 

4.2.1. Hypotheses  

D1. Small displacements; 

D2. Fibres normal to the mid-plane of the walls remain undeformed and perpendicular 

to the mid-plane in the deformed configuration – Kirchhoff’s thin-plate hypothesis; 

D3. Homogenous and isotropic elastic materials in accordance with Hooke’s law; 

D4. The walls are subjected to a plane stress state; 

D5. The loads are applied at the mid-plane of the walls only. 
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4.2.2. Equilibrium equations 

Let us first consider the reference configuration presented in Figure 4.1, in which x, y and z are the 

local axes of each wall segment along the longitudinal, cross-section mid-line and thickness directions, 

respectively. 

The displacement field of each wall can be taken generically as 

 

𝑼(𝑥, 𝑦, 𝑧) = [

𝑈𝑥
𝑈𝑦
𝑈𝑧

]  . ( 4.1 ) 

According to the small displacements hypothesis, the strain tensor components result directly as 

 𝜀𝑥𝑥 = 𝑈𝑥,𝑥    , 

𝜀𝑦𝑦 = 𝑈𝑦,𝑦   , 

𝜀𝑧𝑧 = 𝑈𝑧,𝑧   , 

𝛾𝑥𝑦 = 𝛾𝑦𝑥 = 𝑈𝑥,𝑦 +𝑈𝑦,𝑥    , 

𝛾𝑥𝑧 = 𝛾𝑧𝑥 = 𝑈𝑥,𝑧 +𝑈𝑧,𝑥    , 

𝛾𝑦𝑧 = 𝛾𝑧𝑦 = 𝑈𝑦,𝑧 +𝑈𝑦,𝑥    , 

( 4.2 ) 

which can be put together in matrix form as: 

 

𝜺(𝑥, 𝑦, 𝑧) =

[
 
 
 
 
 𝜀𝑥𝑥

𝛾𝑥𝑦
2

𝛾𝑥𝑧
2

𝛾𝑦𝑥 𝜀𝑦𝑦
𝛾𝑦𝑧
2

𝛾𝑧𝑥
2

𝛾𝑧𝑦
2

𝜀𝑧𝑧 ]
 
 
 
 
 

  . ( 4.3 ) 

According to Kirchhoff’s hypothesis, one has  

 
𝜀𝑧𝑧 = 𝛾𝑥𝑧  = 𝛾𝑦𝑧 = 0   , ( 4.4 ) 

meaning that the strain tensor can be reduced to a column vector: 

 

𝜺(𝑥, 𝑦, 𝑧) = {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
}  . ( 4.5 ) 

Figure 4.1 – Arbitrary thin-walled member geometry and local coordinate systems 
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At the same time, Kirchhoff’s assumption allows for the displacement field of each wall to be written 

as a function of the local mid-surface displacements 𝑢, 𝑣 and 𝑤, which are measured respectively along 

𝑥, 𝑦 and 𝑧 directions: 

 

𝑼(𝑥, 𝑦, 𝑧) = [

𝑢(𝑥, 𝑦) − 𝑧𝑤,𝑥(𝑥, 𝑦)

𝑣(𝑥, 𝑦) − 𝑧𝑤,𝑦(𝑥, 𝑦)

𝑤(𝑥, 𝑦)

]  . ( 4.6 ) 

In turn, these displacements can also be expressed as a sum of two uncoupled components, one 

regarding the membrane component and another regarding the flexural component (see Figure 4.2). 

 

𝑼(𝑥, 𝑦, 𝑧) = [

𝑢(𝑥, 𝑦)

𝑣(𝑥, 𝑦))
𝑤(𝑥, 𝑦)

]

⏞      
𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

+ [
−𝑧 𝑤,𝑥(𝑥, 𝑦)

−𝑧 𝑤,𝑦(𝑥, 𝑦)

0

]

⏞        
𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙

  .  
( 4.7 ) 

Consequently, the strain tensor can be equally written as the sum of membrane [ ]𝑀 and flexural [ ]𝐹 

deformations, 

 𝜀𝑥𝑥
𝑀 = 𝑢,𝑥   ;   𝜀𝑥𝑥

𝐹 = −𝑧𝑤,𝑥𝑥   , 

𝜀𝑦𝑦
𝑀 = 𝑣,𝑦  ;  𝜀𝑦𝑦

𝐹 = −𝑧𝑤,𝑦𝑦   , 

𝛾𝑥𝑦
𝑀 = 𝑢,𝑦 + 𝑣,𝑥   ;   𝛾𝑥𝑦

𝐹 = −2𝑧𝑤,𝑥𝑦  . 

( 4.8 ) 

Let us now take special attention to the mid-surface displacements. According to GBT, the 

deformed configuration is expressed as a linear combination of the cross-section deformation modes, 

whose amplitude functions vary along the longitudinal direction. Therefore, one can define 

 
𝑢(𝑥, 𝑦) =∑𝑢̅𝑘(𝑦)𝛷𝑘,𝑥(𝑥)  , 

𝑣(𝑥, 𝑦) =∑𝑣̅𝑘(𝑦)𝛷𝑘(𝑥) , 

𝑤(𝑥, 𝑦) =∑𝑤̅𝑘(𝑦)𝛷𝑘(𝑥)  , 

( 4.9 ) 

where 𝑘 = 1, …, 𝐷, 𝐷 is the number of deformation modes, 𝑢̅𝑘, 𝑣̅𝑘 and 𝑤̅𝑘 are the deformation mode 

displacement components and 𝛷𝑘 are their amplitude functions along the axis of the beam. 

The definition of the deformation modes, i.e., 𝑢̅𝑘, 𝑣̅𝑘 and 𝑤̅𝑘, is itself a very specific and somewhat 

complex problem, which has been the subject of several works, as previously mentioned. Ideally, the 

procedure to be used should determine a hierarchic set of cross-section deformation modes, where the 

Figure 4.2 – Membrane and flexural components for displacement 𝑈𝑥 
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“participation factor” of each mode decreases with the order of the mode within the set. At the same 

time, the procedure should ensure that only the first few modes are suitable for arriving at a sufficiently 

accurate deformed configuration (Gonçalves et al., 2010). As a result of this line of investigation, a 

freeware program entitled GBTUL was developed and made available at http://www.civil.ist.utl.pt/gbt/, 

allowing for a rapid calculation of the deformation modes for arbitrary cross-sections. 

It should be noted that in ( 4.9 ) the expression for the displacement 𝑢 contains a first order 

derivative 𝛷𝑘,𝑥. This is adopted to make it possible to accommodate Vlasov’s assumption (null 

membrane shear strains 𝛾𝑥𝑦
𝑀 = 0 ↔ 𝑢̅,𝑦 + 𝑣,𝑥 = 0), which is common in GBT analysis since it leads to 

significant computational savings without sacrificing accuracy. However, it should be noted that adopting 

𝛷𝑘,𝑥 can be done without any loss of generality (Gonçalves et al., 2010).  

Incorporating ( 4.9 ) in ( 4.7 ) leads to  

 

𝑼(𝑥, 𝑦, 𝑧) =

[
 
 
 
 
 ∑𝑢̅𝑘(𝑦)𝛷𝑘,𝑥(𝑥)

∑𝑣̅𝑘(𝑦)𝛷𝑘(𝑥)

∑𝑤̅𝑘(𝑦)𝛷𝑘(𝑥) ]
 
 
 
 
 

+

[
 
 
 
 −𝑧∑𝑤̅𝑘(𝑦)𝛷𝑘,𝑥(𝑥)

−𝑧∑𝑤̅𝑘,𝑦(𝑦)𝛷𝑘(𝑥)

0 ]
 
 
 
 

  , ( 4.10 ) 

which can be rewritten in matrix grouping modal displacements and amplitudes 𝑢̅𝑘, 𝑣̅𝑘, 𝑤̅𝑘, 𝛷𝑘 and 𝛷𝑘,𝑥 

into vectors 𝒖̅, 𝒗̅, 𝒘̅, 𝜱 and 𝜱,𝑥, respectively: 

 

𝑼(𝑥, 𝑦, 𝑧) = [
0 𝒖̅𝑡

𝒗̅𝑡 0
𝒘̅𝑡 0

] [
𝜱
𝜱,𝑥
] − 𝑧 [

0 𝒘̅𝑡

𝒘̅,𝑦
𝑡 0

0 0

][
𝜱
𝜱,𝑥
] = 𝚵𝑼 [

𝜱
𝜱,𝑥
]  . ( 4.11 ) 

By taking ( 4.8 ) into account, the strain tensor can be defined as a function of an auxiliary matrix 

𝚵𝜺 such that 

 

𝜺(𝑥, 𝑦, 𝑧) = [

0 0 𝒖̅𝑡

𝒗̅,𝑦
𝑡 0 0

0 (𝒖̅,𝑦 + 𝝂)
𝑡 0

] [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

] − 𝑧 [

0 0 𝒘̅𝑡

𝒘̅,𝑦𝑦
𝑡 0 0

0 2𝒘̅,𝑦
𝑡 0

] [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

] =  𝚵𝜀 [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

]  . ( 4.12 ) 

Stresses can be easily obtained through a constitutive relation operator 𝑪𝒆, which in this case refers 

to isotropic linear elastic materials: 

 

{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦
} = 𝑪𝒆 {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} = [

𝛼𝐸

1−𝜈2

𝜈𝐸

1−𝜈2
0

𝜈𝐸

1−𝜈2

𝛼𝐸

1−𝜈2
0

0 0 𝐺

] {

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
}  .  ( 4.13 ) 

Here, 𝛼 is a factor that equals 1 unless wall membrane transverse extensions are assumed null (𝜀𝑦𝑦
𝑀  =

0), in which case 𝛼 = (1 − 𝜈2) is adopted for the membrane terms to avoid over-stiff solutions.  

One should be aware that a plane stress state is assumed, which is mildly inconsistent with the 

plane strain state of ( 4.5 ) for materials with non-null Poisson ratio. 
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The equilibrium equations are then derived applying the Principle of Virtual Work which, assuming 

that loads 𝑓 are applied at the walls mid-surface, results in the following equation system: 

 

𝛿𝑊𝑖𝑛𝑡 + 𝛿𝑊𝑒𝑥𝑡 = − ∫𝛿𝜺
𝑡𝝈

𝑉

𝑑𝑉 +∫𝛿𝑼𝒕𝒇
Ω

𝑑Ω = 0  , ( 4.14 ) 

where 𝑉 is the initial volume of the bar and Ω is its mid-surface. Taking into account the strain and 

stresses from ( 4.12 ) and ( 4.13 ), the virtual work equation becomes  

 

− ∫ [

𝛿𝜱
𝛿𝜱,𝑥

𝛿𝜱,𝑥𝑥

]

𝑇

𝚵𝜀
𝑡

𝑉

𝑪𝒆 𝚵𝜀  [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

]𝑑𝑉 +∫𝛿𝑼𝑡𝒇
Ω

𝑑Ω = 0  . ( 4.15 ) 

Knowing that the amplitude functions are by definition variable only along the longitudinal axis, the 

previous expression can be further developed into 

  

− ∫ [

𝛿𝜱
𝛿𝜱,𝑥

𝛿𝜱,𝑥𝑥

]

𝑇

𝐿

𝑴 [

𝜱
𝜱,𝑥

𝜱,𝑥𝑥

]𝑑𝑥 +∫𝛿𝑼𝑡𝒇
Ω

𝑑Ω = 0  , ( 4.16 ) 

where 𝐿 is the member length and 𝑴 is an auxiliary matrix defined as 

 

𝑴 = ∫ ∫ 𝚵𝜀
𝑡𝑪𝒆 𝚵𝜀  𝑑𝑧 𝑑𝑦

𝑡/2

−𝑡/2𝐴

  . ( 4.17 ) 

in which 𝐴 refers to the cross-section area 

Through consideration of ( 4.12 ), this matrix can be reformulated as an agglutination of the GBT 

linear stiffness matrices 𝑩, 𝑪, 𝑫𝟏, 𝑫𝟐 and 𝑫𝟐
𝑡 , each of them associated with distinct strain components, 

namely transverse extension/bending, primary/secondary warping, membrane/flexural shear and 

membrane/flexural Poisson effects, respectively.  

 

𝑴 = [

𝑩 [𝟎] 𝑫𝟐
[𝟎] 𝑫𝟏 [𝟎]

𝑫𝟐
𝑡 [𝟎] 𝑪

] ( 4.18 ) 

 
𝐵𝑖𝑗 = 𝐵𝑖𝑗

𝑀 +𝐵𝑖𝑗
𝐹 = ∫

𝐸𝑡

1 − 𝜈2
𝑣𝑖,𝑦𝑣𝑗,𝑦 𝑑𝑦

𝑆

+ ∫
𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖,𝑦𝑦𝑤𝑗,𝑦𝑦 𝑑𝑦

𝑆

 

𝐶𝑖𝑗 = 𝐶𝑖𝑗
𝑀 + 𝐶𝑖𝑗

𝐹 = ∫
𝛼𝐸𝑡

1 − 𝜈2
𝑢𝑖𝑢𝑗  𝑑𝑦

𝑆

+ ∫
𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖𝑤𝑗 𝑑𝑦

𝑆

 

𝐷1𝑖𝑗 = 𝐷1𝑖𝑗
𝑀 + 𝐷1𝑖𝑗

𝐹 = ∫𝐺𝑡 (𝑢𝑖,𝑦 + 𝑣𝑖)(𝑢𝑗,𝑦 + 𝑣𝑗) 𝑑𝑦
𝑆

+ ∫
𝐺𝑡3

3
𝑤𝑖𝑤𝑗 𝑑𝑦

𝑆

 

𝐷2𝑖𝑗 = 𝐷2𝑖𝑗
𝑀 +𝐷2𝑖𝑗

𝐹 = ∫
𝜈𝐸𝑡

1 − 𝜈2
𝑢𝑖𝑣𝑗,𝑦 𝑑𝑦

𝑆

+ ∫
𝜈𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖𝑤𝑗,𝑦𝑦  𝑑𝑦

𝑆

 

( 4.19 ) 

At the same time, the second term of ( 4.16 ), which concerns the external work, may also be 

developed according to ( 4.11 ), leading to  

  

 

𝛿𝑊𝑒𝑥𝑡 = ∫ [
𝛿𝜱
𝛿𝜱,𝑥

]
𝑡

𝚵𝑼
𝑡  𝒇

Ω

𝑑Ω. ( 4.20 ) 
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4.2.3. Deformation modes and additional simplifying hypothesis 

For some beam type-problems, two additional assumptions may be employed. These introduce 

further kinematic constraints that are intended to reduce the number of admissible deformation modes 

(and hence DOFs) without jeopardizing the accuracy of the results: 

E1. Transverse membrane strains are discarded (𝜀𝑦𝑦
𝑀 =  0) 

E2. Membrane shear strains are null (𝛾𝑥𝑦
𝑀 =  0 ) - Vlasov’s assumption10. 

The first hypothesis immediately leads to discarding transverse extension modes and is acceptable 

in most beam-type problems, such as those of box-girder bridge decks acted by standard vertical loads. 

As a result of this hypothesis, 

 

 𝑣,𝑦 = 0 ↔ 𝑩
𝑴 = 0 , ( 4.21 ) 

 and for the membrane terms 𝛼 = (1 − 𝜈2) ,  ( 4.22 ) 

meaning that ( 4.19 ) should be rewritten as 

 
𝐵𝑖𝑗 = 𝐵𝑖𝑗

𝐹 = ∫
𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖,𝑦𝑦𝑤𝑗,𝑦𝑦 𝑑𝑦

𝑆

 

𝐶𝑖𝑗 = 𝐶𝑖𝑗
𝑀 + 𝐶𝑖𝑗

𝐹 = ∫𝐸𝑡𝑢𝑖𝑢𝑗  𝑑𝑦
𝑆

+ ∫
𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖𝑤𝑗  𝑑𝑦

𝑆

 

𝐷1𝑖𝑗 = 𝐷1𝑖𝑗
𝑀 +𝐷1𝑖𝑗

𝐹 = ∫𝐺𝑡(𝑢𝑖,𝑦 + 𝑣𝑖)(𝑢𝑗,𝑦 + 𝑣𝑗) 𝑑𝑦
𝑆

+ ∫
𝐺𝑡3

3
𝑤𝑖𝑤𝑗  𝑑𝑦

𝑆

 

𝐷2𝑖𝑗 = 𝐷2𝑖𝑗
𝐹 = ∫

𝜈𝐸𝑡3

12(1 − 𝜈2)
𝑤𝑖𝑤𝑗,𝑦𝑦  𝑑𝑦

𝑆

 

 

( 4.23 ) 

Assumption E2 on the other hand is not admissible when dealing with closed-type cross-section 

members, because of the significant role played by membrane shear deformation in the torsional 

response. It is also not satisfactory if vertical shear is important or when shear lag effects are relevant.  

Despite the fact that assumption E2 cannot be enforced in all deformation modes, it is still 

advantageous to employ it in order to subdivide the deformation modes into distinct sets (or families). 

The first set to be considered here consists of the modes where assumption E2 is valid, i.e., the 

so-called “Vlasov’s modes”. It should be noted that, due to the kinematic restraints given by putting 

together assumptions E1 and E2, the warping mid-plane displacements 𝑢𝑘 are necessarily linear. These 

modes are depicted in Figure 4.3 and correspond to: 

Mode 1. Axial extension 

Mode 2. Major axis bending 

Mode 3. Minor axis bending 

Mode 4. Distortion 

                                                   
10 Similarities can be constructed between Vlasov’s hypothesis for the cross-section walls and Bernoulli’s 
hypothesis for bending in beams. 
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For comparison with Classical Formulations, it should be pointed out that all these modes are 

orthogonal with respect to matrix 𝐶. This means that the axial extension mode does not cause any 

bending moment nor the “bimoment” associated with distortion and vice-versa. Furthermore, their 

respective in-plane displacements 𝑣 and 𝑤 are determined performing a frame type-analysis, in which 

𝑢 and 𝑣 are linked through Vlasov’s hypothesis. 

A second set comprehends the deformation modes related with the shear deformation of the cross-

section to torsion and distortion. As mentioned previously, these modes do not comply with Vlasov’s 

assumption. Mode 5 (see Figure 4.4) consists of the deformed shape of the cross-section when 

considering a constant shear flow circulating around the closed perimeter and is orthogonalized with 

respect to 𝐶 against modes 1 through 3 (hence it does not produce axial force nor bending, but it is not 

orthogonal with respect to distortion).  

As seen in section 3.3.3, if bi-shear is to be considered, the warping displacements are no longer 

strictly correlated to the in-plane twist. This effect can be replicated by taking into account an additional 

mode (mode 6), which has the same warping shape function as that associated with torsion. Although 

not addressed in the Classical Formulations approach, the same can be said for the influence of  

distortion “bi-shear”, which is related to mode 7. 

Mode 5. Torsion (cell shear flow) 

Mode 6. Torsion warping (allows for torsion bi-shear) 

Mode 7. Distortion warping (allows for distortion “bi-shear”) 

Figure 4.3 – Set of Vlasov’s deformation modes 

Warping displacements In-plane displacements 

Mode 2 

Mode 1 

Mode 3 

Mode 4 
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The last set of deformation modes consists on further shear modes that seek to allow for shear lag 

deformation (see Figure 4.5). It contains both symmetric and anti-symmetric warping modes (𝑢𝑘 ≠

0, 𝑣𝑘 = 𝑤𝑘 = 0) in both top and bottom flanges, allowing to capture more accurately the effect of shear 

lag deformation in each plate. Although more modes could be considered, these were found sufficient 

in the analysis of numerical examples, to be discussed in Chapter 6. 

Mode 8. Quadratic in projecting top flange (symmetric) 

Mode 9. Quartic in projecting top flange (symmetric) 

Mode 10. Quartic in interior top flange (symmetric) 

Mode 11. Quartic in bottom flange (symmetric) 

Mode 12. Quadratic in projecting top flange (anti-symmetrical) 

Mode 13. Quartic in projecting top flange (anti-symmetrical) 

Mode 14. Cubic in interior top flange (anti-symmetrical)  

Mode 15. Cubic in bottom flange (anti-symmetrical)  

 

 

 

 

 

 

  

Figure 4.4 – Set of torsion/distortion shear deformation modes 

Figure 4.5 – Warping displacements of shear lag warping modes (in-plane displacements are null)  

Mode 5 

Mode 6 

Mode 7 

Warping displacements In-plane displacements 

Mode 8 Mode 9 Mode 10 

Mode 11 Mode 12 Mode 13 

Mode 14 Mode 15 
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4.3. DEFINITION OF A FINITE ELEMENT 

The solution for the structural problems here presented may be approximated by means of a finite 

element based on GBT. Just as in other finite element models, discretization and interpolation 

procedures play a major role in both efficiency and accuracy. Two types of discretization are performed: 

i. Transverse discretization, which influences the definition of the deformation modes. For 

the purposes of this dissertation, it suffices to consider a subdivision of the cross-section 

in six walls, connected at their intersections11 (see Figure 4.6). Such discretization 

makes it possible to obtain directly from GBTUL modes 1 through 5 presented in the 

previous section. Modes 6 and 7 are defined by the warping displacements of modes 5 

and 4, respectively. The additional shear lag modes can be defined analytically. 

ii. Longitudinal discretization, where the total length of the member, 𝐿, is divided into 𝑛 

smaller elements of given lengths 𝑙𝑖. In GBT analyses it is customary to consider equal 

length elements (𝑙𝑖 = 𝑙 = 𝐿/𝑛), even though h-refinement can also be performed. In the 

direct application of this method to the analysis of box girder bridges, it is mandatory to 

discretize in such a way that the element nodes coincide with sections of discontinuity, 

as is the case of intermediate supports or diaphragms.  

In the context of the longitudinal discretization, for each element, the modal amplitude functions 

contained in the vector 𝜱 can be approximated as  

  𝜱(𝑥) = 𝜳(𝑥) 𝒅𝒆 ( 4.24 ) 

where 𝜳 is the matrix containing the longitudinal shape functions, and 𝒅𝒆 is the vector containing the 

degrees of freedom of the element, which are nodal values for the amplitude functions and their 

derivatives. 

As can be seen in ( 4.11 ), the displacements 𝑼(𝑥, 𝑦, 𝑧) are a function of a first derivative with 

respect to the 𝑥 axis, thus requiring 𝐶1 class functions. This also holds in the y direction, but the 

deformation modes are directly calculated ensuring this compatibility. In this situation, it is possible to 

make use of Hermite’s cubic interpolation functions (see Figure 4.7a), defined as  

 
𝐻1 = 2(

𝑥

𝑙𝑖
)
3

− 3(
𝑥

𝑙𝑖
)
2

+ 1    ,  𝐻2 = 𝑙𝑖 ((
𝑥

𝑙𝑖
)
3

− 2(
𝑥

𝑙𝑖
)
2

+
𝑥

𝑙𝑖
)  , 

 

𝐻3 = −2(
𝑥

𝑙𝑖
)
3

+ 3(
𝑥

𝑙𝑖
)
2

  ,       𝐻4 = 𝐿𝑖 ((
𝑥

𝑙𝑖
)
3

− (
𝑥

𝑙𝑖
)
2

)  . 

( 4.25 ) 

  

                                                   
11 According to GBTUL notation, the discretized nodes can be designated as i) natural nodes, if they are placed at 
the wall connections or outstands, or as ii) intermediate nodes, if they are located within the walls. 

Figure 4.6 – Discretization of the cross-section into natural nodes and wall segments (extracted from GBTUL). 
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The amplitude function for mode 𝑘 can then be approximated through  

 
𝛷𝑘(𝑥) = 𝐻1(𝑥)𝛷𝑘(0) + 𝐻2(𝑥)𝛷𝑘,𝑥(0) + 𝐻3(𝑥)𝛷𝑘(𝑙𝑖) + 𝐻4(𝑥)𝛷𝑘,𝑥(𝑙𝑖) ( 4.26 ) 

For pure warping modes (𝑢̅𝑘 ≠ 0, 𝑣̅𝑘 = 𝑤̅𝑘 = 0), these interpolation functions cannot be utilized, 

because the amplitude is given not as a function of 𝛷𝑘 but only of 𝛷𝑘,𝑥 (see ( 4.11 ) ) and that would 

lead to a linear dependence of 𝐻1 and 𝐻3. To circumvent this issue, in such situations Lagrange’s linear 

and quadratic hierarchic polynomials are frequently employed (see Figure 4.7b),  

 
𝐹1 = 1− (

𝑥

𝑙𝑖
)  ,  𝐹2 = (

𝑥

𝑙𝑖
)  , 𝐹3 = 4((

𝑥

𝑙𝑖
) − (

𝑥

𝑙𝑖
)
2

)  , ( 4.27 ) 

So, that the amplitude of warping modes results from 

 

𝛷𝑘,𝑥(𝑥) = 𝐹1(𝑥)𝛷𝑘,𝑥(0) + 𝐹2(𝑥)𝛷𝑘,𝑥(𝑙𝑖) + 𝐹3(𝑥)𝛷𝑘,𝑥 (
𝑙𝑖
2
) . ( 4.28 ) 

The analytical expression for the function 𝛷𝑘 related with warping modes can then be defined 

through the operator for primitivation 𝑃( ):  

𝛷𝑘(𝑥) = 𝑃(𝐹1(𝑥))𝛷𝑘(0) + 𝑃(𝐹2(𝑥))𝛷𝑘(𝑙𝑖) + 𝑃(𝐹3(𝑥))𝛷𝑘 (
𝑙𝑖
2
)  , ( 4.29 ) 

The combination of the set of these shape functions leads to a finite element with three nodes, 

where the first node (𝑥 = 0) is associated with 𝐻1, 𝐻2 and 𝐹1, the second node (𝑥 =
𝑙𝑖
2
⁄ ) refers strictly 

to function 𝐹3 and the third and final node (𝑥 = 𝑙𝑖) is related to 𝐻3, 𝐻4 and 𝐹2. For a set of 𝑁 deformation 

modes subdivided into warping (𝑁𝑤) and non-warping modes, shape function matrix 𝛹 of dimensions 

𝑁 ×(4𝑁 −𝑁𝑤) can be organized as 

 

𝜳 = [
𝑯𝟏̃

0
|

0

𝑃(𝑭𝟏̃)
|
𝑯𝟐̃

0
|

0

𝑃(𝑭𝟑̃)
|
𝑯𝟑̃

0
|

0

𝑃(𝑭𝟐̃)
|
𝑯𝟒̃

0
]  , ( 4.30 ) 

where 𝑿̃ designates a diagonal matrix sized after the number of associated deformation modes in which 

each diagonal term is equal to function 𝑋. The vector 𝒅𝒆 is defined in accordance with 𝜳 as 
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𝒅𝒆 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛷1(0)
⋮

𝛷𝑁−𝑁𝑤(0)

𝛷𝑁−𝑁𝑤+1(0)

⋮
𝛷𝑁(0)

𝛷𝑁+1,𝑥(0)

⋮
𝛷2𝑁−𝑁𝑤 ,𝑥(0)

𝛷2𝑁−𝑁𝑤+1 (
𝑙𝑖

2
)

⋮

𝛷2𝑁 (
𝑙𝑖

2
)

𝛷2𝑁+1(𝑙𝑖)
⋮

𝛷3𝑁−𝑁𝑤(𝑙𝑖)

𝛷3𝑁−𝑁𝑤+1(𝑙𝑖)

⋮
𝛷4𝑁(𝑙𝑖)

𝛷4𝑁+1,𝑥(𝑙𝑖)

⋮
𝛷4𝑁−𝑁𝑤,𝑥(𝑙𝑖) ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  , 

( 4.31 ) 

Using ( 4.24 ) and setting up one equation per each virtual variation in equation ( 4.20 ), one obtains, 

for each element 

 

(∫  [

𝜳
𝜳,𝑥

𝜳,𝑥𝑥

]

𝑇

𝑙𝑖

𝑴[

𝜳
𝜳,𝒙

𝜳,𝑥𝑥

]𝑑𝑥 )𝒅𝒆 = ∫ [
𝜳
𝜳,𝑥
]
𝑡

𝚵𝑈
𝑡 𝒇

Ωe

𝑑Ω ( 4.32 ) 

In this expression it is possible to identify both the element stiffness matrix 𝑲e and the equivalent nodal 

force vector 𝑭e 

 

𝑲𝒆 = ∫  [

𝜳
𝜳,𝑥

𝜳,𝑥𝑥

]

𝑇

𝑙𝑖
𝑴[

𝜳
𝜳,𝑥

𝜳,𝑥𝑥

]  𝑑𝑥  , ( 4.33 ) 

 

𝑭𝒆 = ∫ [
𝜳
𝜳,𝑥
]
𝑡

𝚵𝑈
𝑡  𝒇

Ωe
𝑑Ω  , ( 4.34 ) 

which must be assembled, as usual, to obtain the global equilibrium system of equations, expressed in 

its most general form: 

 
𝑲𝒅 = 𝑭  . ( 4.35 ) 

Finally, having obtained the vector 𝒅𝒆 for each element, the longitudinal normal stresses can be 

computed from ( 4.12 ) and ( 4.13 ), leading to  

 

𝜎𝑥𝑥 = 𝜎𝑥𝑥
𝑀 + 𝜎𝑥𝑥

𝐹 = 𝐸(𝒖̅𝑡𝜳,𝑥𝑥)𝒅𝒆 −
𝐸

1−𝜈2
(𝑧𝒘̅𝑡𝜳,𝑥𝑥)𝒅𝒆  . ( 4.36 ) 
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4.4. IMPLEMENTATION IN MATLAB 

The beam finite element introduced was implemented in MATLAB (The MathWorks Inc., 2014). A 

main routine was developed which can be subdivided into the following sections: 

Section 1) Initial parameters: 

Input data is established concerning geometry, constitutive parameters, loading (concentrated 

loads, line loads, area loads and self-weight specifications), support conditions and internal 

diaphragm locations. It is assumed that the box-girder bridge cross-section is divided into six walls 

as presented previously in Figure 4.6, of constant thickness, elastic properties and density. The 

loads are all assumed to be vertical and applied at the mid-surfaces and are defined by their 

magnitude and their relevant coordinates in a global 𝑋𝑌𝑍 referential (see Figure 4.8). 

 

Section 2) Model definitions:  

Involves aspects related to longitudinal discretization and selection of deformation modes. 

Each element’s walls are defined by their end-nodes’ (𝑋, 𝑌, 𝑍) coordinates. The loads are then 

subdivided according to their location in terms of finite element and wall (see Figure 4.9) and new 

coordinates are calculated, this time with respect to the local axes already illustrated in Figure 4.1. 

In this section it is also possible to define which deformation modes are to be considered in the 

analysis.12 

Section 3) Definition of deformation modes and GBT matrices: 

First, global deformation modes 1 through 5 are extracted from the output files of the GBTUL 

program (𝑢̅1,…, 𝑢̅5,𝑣̅1,…, 𝑣̅5 and 𝑤̅1,…, 𝑤̅5). Afterwards, the warping displacements of modes 8 

through 15 in each wall are defined analytically. 

                                                   
12 As discussed before, GBT formulation allows for a user-defined consideration of the deformation modes to be 
included in the analysis. For example, it is possible to analyse the box-girder bridge as a beam with in-plane rigid 
cross-section simply by withdrawing from the set of active deformation modes all those containing transverse flexure 
(𝐵𝑘 ≠ 0). 

Figure 4.8 – Global referential and general load specific coordinates 
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 The individual participation of these modes that intend to allow for shear lag may only be 

clearly analysed if they are uncoupled with each other and with global modes 1 through 5. This can 

be done by following the Gram-Schmidt orthogonalization process with respect to matrix 𝐶 (see 

Figure 4.10, mode 8 is initially coupled with axial extension and minor axis bending). It should be 

noted that by the end of this process, modes 1 through 4 should remain unaltered for they are 

orthogonal with respect to matrix 𝐶 (recall section 0). Mode 5 however has necessarily changed 

(torsion is coupled with distortion) and therefore should be re-extracted from GBTUL. Warping 

shear modes for accounting bi-shear in torsion and distortion (modes 6 and 7) are added 

subsequently, so that they do not take part in the orthogonalization process. 
 

In order to ensure that the analysis of modal participations is not biased by the scale of each 

modal shape functions 𝑢̅𝑘, 𝑣̅𝑘 and 𝑤̅𝑘, a normalization procedure is followed. Seeing as the goal is 

to study the longitudinal normal stresses, each mode is normalized so that the maximum warping 

displacement equals one.  

Having the deformation modes fully defined, the GBT linear stiffness matrices 𝑩, 𝑪, 𝑫𝟏 and 

𝑫𝟐 are obtained using MATLAB’s symbolic calculation commands.  

  

Figure 4.10 – Comparison of mode 6 before and after orthogonalization procedure 

Figure 4.9 – Subdivision of the loads into each element and wall 

Mode 8 

Mode 8 

Ortogonalized 

Warping displacements In-plane displacements 
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Section 4) Building of the global force vector and stiffness matrix 

Calculates the element stiffness matrix and equivalent nodal forces as defined in ( 4.33 ) and 

( 4.34 ) using once again MATLAB’s symbolic tools. Special notice should be given to the 

decomposition of the vertical self-weight load on the webs into the respective local axes. 

The global stiffness matrix and force vector are then assembled following the superposition 

rule illustrated in Figure 4.11. In this routine, allowance was given to the definition of load cases to 

be solved separately. 
 

Section 5) Selection of active DOF’s: 

Each DOF is first attributed to the respective deformation mode. Then, a subset of these DOF’s 

is restrained according to user input (as mentioned in Section 3) and/or boundary conditions (e.g. 

rigid body movements at the supports or distortion in sections where diaphragms exist). This can 

be achieved simply by eliminating the corresponding DOF columns and lines from the global 

stiffness matrix and force vector. 

Section 6) Solving of the equilibrium equations: 

Solves the system of linear equilibrium equations and obtains the approximated longitudinal 

nodal amplitudes for each deformation mode.  

Section 7) Calculation of longitudinal stresses: 

Computes and stores the stresses obtained in start and end nodes of every element with 

respect to every single deformation mode and load case. It also makes possible a procedure for 

averaged stress smoothing. For visualization purposes, the stresses in each wall are assessed for 

nine different locations equidistant along the 𝑦 axis and exported to a Microsoft Excel spreadsheet.  

Figure 4.11 – Assembly of global stiffness matrix and force vector for a member discretized in three elements 
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5. THEORETICAL COMPARISON BETWEEN CLASSICAL 

FORMULATIONS AND GBT 

Along the previous chapters, two distinct methods of analysis were presented. The first relates to 

the employment of classical solutions for bending, torsion with warping and distortion, as well as a 

simplified methodology for the consideration of shear lag effect in bending. The second entails the use 

of GBT, an emergent theory dedicated to the study of thin-walled structures, as basis for definition of a 

finite element model. 

This chapter seeks to put into evidence some of the theoretical differences between both of these 

approaches, discussing the effects they may have on the results for longitudinal stresses in steel-

concrete composite box-girder bridges. 

At first, it should be noted that both approaches consider a variety of cross-section deformed 

configurations, previously referred to in GBT formulations as “deformation modes”, which are variable 

along the longitudinal axis of the member. For each approach, the modes’ amplitude functions can be 

determined by means of equilibrium equations. Thus, the comparison between the two methods 

becomes more clear when analysing separately each method’s (i) pre-defined deformation modes and 

(ii) established longitudinal equilibrium equations. 

Of course, this comparison can only be made for the deformation modes that are simultaneously 

contemplated in both approaches, namely bending (GBT modes 2 and 3), distortion (GBT mode 4) and 

torsion with warping accounting for bi-shear (GBT modes 5 and 6). 

The effect of shear lag in Classical Formulations is considered through semi-empirical adjustment 

of the bending results and not through additional equilibrium equations. This implicates that the same 

comparison cannot be performed. Even so, some considerations can be woven concerning the cross-

sectional shape of the classical shear lag mode and GBT modes 8 through 11. 

The remaining GBT modes (7 and 12-15) are not present in the classical approach, but allow for 

the analysis to grow in precision with the enrichment of the deformation mode field, since they allow for 

the effects of bi-shear in distortion and also anti-symmetrical shear lag in the top and bottom flanges. 

 

5.1. COMPARISON OF CROSS-SECTION DEFORMATION MODES 

Each cross-section deformation mode is simultaneously characterized according to its in-plane (𝑣𝑘 

and 𝑤𝑘) and out-of-plane displacements (𝑢𝑘). For the case of minor-axis bending, both Classical 

Formulations and GBT assume a rigid body translation of the cross-section in its own plane, which 

remains normal to the longitudinal axis (following Vlasov’s hypothesis as a generalization of the Euler-

Bernoulli hypothesis). 

When dealing with torsion with warping accounting for the effect of bi-shear, Classical Formulations 

consider that the warping displacements do not depend only on the in-plane rigid body behaviour. That 

is to say, two distinct deformation modes are considered, one concerning only the rigid body rotation 

(governed by function 𝜙(𝑥)) and another related solely to the warping displacements of the cross-

sections walls, whose amplitude function is equal to 𝜒(𝑥). The deformation field is obtained by the linear 
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combination of these two modes. Since the “shape” of the warping displacements predicted in GBT 

matches the one in Classical Formulations (given by 𝑢𝑆̃(𝑠) and illustrated in Figure 3.11), the 

deformation field obtained by linear combination is necessarily the same mode space (see Figure 5.1).  

 

 

 

 

 

 

 

 

The definition of the distortional deformation mode in the Classical Formulations was based on the 

combination of the longitudinal bending behaviour of the plates with a transverse frame type of response. 

In the longitudinal analysis, Vlasov’s hypothesis was assumed implicitly when stating that each plate 

would behave as an Euler-Bernoulli beam subjected to in-plane loads. In the frame analysis, transverse 

extension of the walls was neglected, meaning once again that the classical definition of the distortional 

deformed configuration coincides with the one presented for the GBT-based approach. 

As far as shear lag effect in bending is concerned, the Classical Formulations make use of a single 

global shear lag mode, whereas GBT analyses allow for the consideration of a broader set of modes. 

Evidently, this should result in higher accuracy when performing the GBT-based approach, because the 

effect of shear lag deformability may vary along the plates. Even so, it should be pointed out that the 

most of the GBT shear lag modes were defined as quartic based on the classical expressions for shear 

lag in bending (see equations ( 3.16 ) to ( 3.18 ) ). 

It should be noted that for composite cross-sections, the homogenisation procedure may lead to 

slight differences in the cross-section deformation modes due to some of the adopted simplifications. 

 

5.2. COMPARISON OF THE EQUILBRIUM EQUATIONS 

Establishing the comparison between differential equilibrium equations, the GBT equilibrium 

equations from ( 4.20 ) can be rewritten in the differential form as  

 
𝑪𝜱,𝑥𝑥𝑥𝑥 −𝑫𝜱,𝑥𝑥 +𝑩𝜱 = 𝒇𝑥,𝑥 + 𝒇𝑦 + 𝒇𝑧 ( 5.1 ) 

with 

 𝑫 = 𝑫𝟏 −𝑫𝟐 −𝑫𝟐
𝑡 ( 5.2 ) 

Figure 5.1 – Representation of the equality of torsional displacement fields in a) GBT formulation  
b) Classical Formulations 

= 

Warping displacements In-plane displacements Warping displacements In-plane displacements 

a) b) 
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As for the Classical Formulations, the equivalent expressions for bending, torsion with warping and 

distortion can be obtained from those in ( 3.9 ), ( 3.53 ), ( 3.55 ) and ( 3.101 )13, and expressed in matrix 

form so that: 

 

 

[
 
 
 
 
𝐸𝐼𝑦 0 0 0

0 𝐸𝐼𝜔 0 0
0 0 0 0

0 0 0 −𝐸𝐼𝑤,𝑒
𝑝 cos𝜑

𝑝𝑤,𝑑 ]
 
 
 
 

[

𝑣,𝑥𝑥𝑥𝑥
𝜒,𝑥𝑥𝑥𝑥
𝜙,𝑥𝑥𝑥𝑥
∆𝑤,𝑥𝑥𝑥𝑥

] + [

0 0 0 0
0 −𝐺(𝐽 − 𝐼𝑐) 𝐺(𝐽 − 𝐼𝑐) 0
0 𝐺(𝐽 − 𝐼𝑐) 𝐺𝐼𝑐 0
0 0 0 0

] [

𝑣,𝑥𝑥
𝜒,𝑥𝑥
𝜙,𝑥𝑥
∆𝑤,𝑥𝑥

]

+

[
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 𝑘
𝑝 cos𝜑

𝑝𝑤,𝑑 ]
 
 
 
 

[

𝑣
𝜒
𝜙
∆𝑥

] = [

𝑝
0
𝑚
𝑝

] 

( 5.3 ) 

 

Through careful inspection, it is possible to notice correspondence with the system of equations 

presented in ( 5.1 ), where the amplitude functions 𝛷𝑘 are respectively given in terms of the vertical 

displacement of the cross-section 𝑣, of the warping function 𝜒, of the angle of twist 𝜙 and of the in-plane 

displacement of the web ∆𝑤.  

An equivalent system, obtained with the GBT approach, can then be sought: 

 

[
 
 
 
 
𝐶𝑣𝑣 0 0 0

0 𝐶𝜒𝜒
𝑀 0 𝐶∆𝑤𝜒

𝑀

0 0 𝐶𝜙𝜙
𝐹 𝐶∆𝑤𝜙

𝐹

0 𝐶𝜒∆𝑤
𝑀 𝐶𝜙∆𝑤

𝐹 𝐶∆𝑤∆𝑤 ]
 
 
 
 

[

𝑣,𝑥𝑥𝑥𝑥
𝜒,𝑥𝑥𝑥𝑥
𝜙,𝑥𝑥𝑥𝑥
∆𝑤,𝑥𝑥𝑥𝑥

] +

[
 
 
 
 
0 0 0 0
0 𝐷𝜒𝜒

𝑀 𝐷𝜙𝜒
𝑀 0

0 𝐷𝜒𝜙
𝑀 𝐷𝜙𝜙 𝐷∆𝑤𝜙

𝐹

0 0 𝐷𝜙∆𝑤
𝐹 𝐷∆𝑤∆𝑤

𝐹
]
 
 
 
 

[

𝑣,𝑥𝑥
𝜒,𝑥𝑥
𝜙,𝑥𝑥
∆𝑤,𝑥𝑥

]

+ [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝐵∆𝑤∆𝑤

𝐹

] [

𝑣
𝜒
𝜙
∆𝑥

] = [

𝑝
0
𝑚
𝑝

] 

( 5.4 ) 

 

At this point, several conclusions can be withdrawn. The first is that in both approaches, if only 

these four modes are considered, the effect of bending is independent from torsion and distortion. 

Secondly, the GBT torsion and distortion equations are coupled, as seen by the existence of non-

diagonal terms in the last three lines of the system of equations (𝐶∆𝑤𝜒
𝑀, 𝐶𝜒∆𝑤

𝑀, 𝐶∆𝑤𝜙
𝐹, 𝐶𝜙∆𝑤

𝐹, 𝐷𝜙𝜒
𝑀, 

𝐷𝜒𝜙
𝑀, 𝐷∆𝑤𝜙

𝐹 and 𝐷𝜙∆𝑤
𝐹). In the Classical Formulations these terms are null, because i) several of these 

coefficients relate to wall flexural behaviour, which is often disregarded in more classical approaches 

and ii) in the determination of 𝑝𝑤,𝑑 it was assumed that 𝜒 coincided with 𝜙 for uncoupling purposes, 

which corresponds to neglecting torsion bi-shear deformation. 

Finally, since Kirchhoff’s hypothesis was adopted, in GBT formulation the longitudinal amplitude 

functions are always at least of class C1. The same is not always true in Classical Formulations, where 

in some cases, such as in the torsional response case, it suffices to consider that the displacements are 

𝐶0 continuous. This will lead to some additional discrepancies in the results for sections near 

concentrated loads, diaphragms and supports. 

                                                   
13 𝜑 is the angle of inclination of the web with respect to the vertical axis. 
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In conclusion, even though the cross-section deformation modes generally coincide, the Classical 

Formulations present differences with respect to the GBT approach in terms of the equilibrium equations 

for torsion with warping accounting for bi-shear and distortion. These might lead to differences in the 

longitudinal stress distributions, as will be discussed in the following chapter.   
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𝐸 = 34.5 𝑀𝑃𝑎 

𝜈 = 0.15 

 

 𝑄, 𝑞 

6. ANALYSIS OF NUMERICAL EXAMPLES 

6.1. GENERAL CONSIDERATIONS 

This chapter presents analyses made on two different case studies of box-girder bridges. The first 

relates to a concrete box-girder bridge, whose classical results for bending, torsion and distortion are 

published in Maisel & Roll (1974) and can be confronted with those obtained in this work.  

As it will be shown, for the case of a concentrated mid-span load, this box girder’s wide flanges and 

low cross-section height-to-width ratio (𝑑/𝑏) make the shear lag and torsion/distortion effects very 

relevant for the determination of the longitudinal stresses. For this reason, this example was also found 

suitable for calibrating the GBT shear lag modes (symmetric and anti-symmetric) by comparing the 

stress distribution in the GBT finite element analyses with those obtained through a shell finite element 

model developed in the software ADINA (Bathe, 2016). 

Having calibrated the GBT shear lag modes, analyses were then conducted on a second example. 

This refers to a 36-meter span composite steel-concrete box-girder bridge deck, loaded with standard 

road traffic, as defined in NP EN 1991-2. Three distinct situations were considered with respect to cross-

section diaphragms: spaced every 7.2 meters (four intermediate diaphragms), spaced every 12 meters 

(two intermediate diaphragms) and spaced at 36 meters (i.e. diaphragms only at the end support 

sections). 

According with standards, the uniform variable load representative of road traffic should be placed 

in the most unfavourable configurations in both longitudinal and transverse configurations (which, as it 

will be shown, depends on the distribution of diaphragms along the span). Consequently, the most 

unfavourable load cases are placed to obtain the maximum longitudinal stresses for the joint action of 

bending, torsion and distortion. At the same time, design notes are  obtained regarding the evaluation 

of distortion effects for box girders with intermediate diaphragms. 

Finally, the longitudinal stresses for the design scenario are obtained through both Classical 

Formulations and GBT method. 

6.2. NUMERICAL EXAMPLE 1 

This first example deals with a simply supported 30 m span concrete box-girder bridge of constant 

cross-section (see Figure 6.1), acted by a concentrated load 𝑄 = 1000 kN placed at mid-span, and a 

uniform longitudinal line load of 50 kN/m, both applied in one of the web-top slab joints. Diaphragms are 

only at the end support sections. 

 

 

 

 

 

 

Figure 6.1 – Loading, geometry and material properties  (adapted from Maisel & Roll (1974)) 
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The mid-surface longitudinal stresses which are here subject of comparison were obtained through 

i) the Classical Formulations ii) a GBT displacement-based finite element model using 30 elements of 

equal length and iii) a shell finite element model using 1800 4-node shell elements in the commercial 

program ADINA. Figure 6.2 presents the cross-section diagrams for the mid-span section as well as the 

longitudinal diagram for 𝜎𝑥𝑥
𝑀  in the intersection line of the top flange with the loaded web. 

The GBT results show very good agreement with those obtained with the shell finite element model. 

The stresses obtained following the Classical Formulations appear to be a good estimate but deviate 

more with respect to the FEM stress curves, especially for mid-span concentrated load case.  

 

-2500

-2000

-1500

-1000

-500

0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

𝜎
𝑥
𝑥

[k
P

a]

x [m]

Shell Classical Formulations GBT

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

𝜎
𝑥
𝑥

[k
P

a]

x [m]

Concentrated load 

Figure 6.2 – Stresses at mid span and longitudinal stress diagram obtained  

by Classical Formulations, GBT and Shell FEM (ADINA) 

Uniform line load 

C
o
n
c
e
n
tr

a
te

d
 l
o
a
d
 

U
n
if
o
rm

 l
in

e
 l
o
a
d

 



65 

 

As explained previously, it is possible to evaluate the participation of each mode in  the global 

response. Figures 6.3 and 6.4 show the relevant modal contributions for both the Classical Formulations 

and GBT along the span. To make them more readable, the participations of bi-shear in torsion and 

distortion were added to the torsion and distortion modes, respectively. For the same reason, the 

stresses resulting from shear lag modes were combined into symmetric and anti-symmetric shear lag 

components.  

The individual participations for all modes (in the case of GBT) can also be consulted in Annex 1, 

and all equivalent diagrams for the case of the uniform load can be found in Annexes 2, 3 and 4. 

It should be pointed out that the classical formulations results for bending, torsion and distortion for 

the case of the concentrated load coincide with the ones published in Maisel & Roll (1974) and are 

included in Annex 5. 

Figure 6.3 – Modal stress participations for the concentrated load according to Classical Formulations 

 Figure 6.4 – Modal stress participations for the concentrated load according to GBT 
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The differences in the modal participations obtained with the two methods are further illustrated in 

Figures 6.5 to 6.7. 

Figure 6.5 – Bending stresses at the web-top flange intersection obtained by the Classical Formulations and GBT 

Figure 6.6 – Shear lag stresses at the web-top flange intersection obtained by Classical Formulations and GBT 

Figure 6.7 – Torsion and distortion stresses at the web-top flange intersection by Classical Formulations and GBT 
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It is possible to observe that, in general, the Classical Formulations have similar longitudinal profiles 

to those obtained in the GBT analysis. Higher discrepancies are noticed in terms of the shear lag effects, 

which is understandable due to the fact that the first approach is fairly simplified in order to provide a 

more practical approach to designers. The results for bending coincide and those for torsion with 

warping including bi-shear are very similar. The same does not happen however for the distortional 

mode, in which the GBT formulation results in smaller stresses throughout the span. The explanations 

for these differences have been discussed in Chapter 5. Another source of divergence comes from the 

inclusion of distortion bi-shear in the GBT approach. 

 

6.3. NUMERICAL EXAMPLE 2 

The second case study is a simply supported composite steel-concrete box-girder bridge. The 

thickness of both steel and concrete walls is constant along a 36-meter span (see Figure 6.8). Three 

different situations will be considered in what regards diaphragms: spaced every 7.2 meters, spaced 

every 12 meters and spaced every 36 meters (corresponds to having only diaphragms at the end 

supports). 

The existence of internal diaphragms poses a serious issue in the application of Classical 

Formulations, due to the uncertainty in the specification of the boundary conditions for the problem of 

distortion and even to identify the spans for torsion and distortion. Hence, the box-girder bridge 

subjected to eccentric loads shall be analysed first through GBT and afterwards reference shall be given 

on how to apply the Classical Formulations. 

 

  

Figure 6.8 – Cross-section of the composite steel-concrete box girder bridge 

S355 NL 

 𝐸𝑆 = 210 𝑀𝑃𝑎  
𝜈𝑆 = 0,3  
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3 
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Some simplifications were considered to obtain the cross-section of the structural system (see 

Figure 6.9)  

The box-girder bridge was considered to be loaded with: 

1. Permanent actions: 

o Self-weight of the structural system – as a simplification, the contribution of the internal 

diaphragms was considered by considering an increment of the steel weight of the 

box girder of 15% (𝛾𝑠 = 77×1,15 = 88,55 𝑘𝑁/𝑚
3 ; 𝛾𝐶 = 25 𝑘𝑁/𝑚

3);  

o Self-weight of safety barriers (total of 1 𝑘𝑁/𝑚) and kerbs (𝛾𝐶×0.15 = 3,75𝑘𝑁/𝑚
2); 

2. Traffic actions: 

o Load Model 1 NP EN 1991-2 – one-axle with two concentrated loads (𝑄𝑘 = 300𝑘𝑁)14 

and uniformly distributed load (𝑞𝑘 = 9𝑘𝑁/𝑚
2) in notional lane 1 (Figure 6.10).  

                                                   
14 For spans greater than 10 meters and dealing with global longitudinal verifications, NP EN 1991-2 (2005) allows 

the replacement of the standard two-axle concentrated loads (tandem system) by an equivalent one-axle with only 
two concentrated loads. 

Figure 6.9 – Simplified composite cross-section 

Figure 6.10 – Division of the carriageway into notional lanes 
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In what regards global verifications, NP EN 1991-2 also states that the uniformly distributed loads 

should be applied only in the unfavourable part of the influence surface, both longitudinally and 

transversally. Naturally, considering that the entire area of the notional lane is loaded will lead to the 

maximum longitudinal bending stresses. However, such would also produce null longitudinal stresses 

from torsion and distortion, seen as the notional lane is centred with the box girders axis of symmetry. 

It may happen that when considering only an eccentric part of the vertical load, the increase in torsional 

and/or distortional stresses outweighs the decrease in bending stresses. Therefore, two distinct load 

case arrangements were initially considered (see Figure 6.11).  

The maximum longitudinal stresses along the span, obtained by analysing both load cases for each 

diaphragm spacing configuration can be observed in Figure 6.12. As expected, for the load  

case 2, the increase in diaphragm spacing gives rise to higher maximum distortional stresses. However, 

the increase in stresses due to torsion and distortion does not compensate the decrease in bending 

stresses caused by considering only half of the total load, meaning that load case 1 is governing for 

obtaining the maximum longitudinal stresses. It should be pointed out that this conclusion only holds for 

the current box-girder example; and may not hold for other cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another important conclusion can be drawn from a closer look at the combined effects from torsion 

and distortion for the load case 2 (Figure 6.13). In fact, the longitudinal evolution of stresses due to 
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Figure 6.11 – Variable uniform load arrangements considering two internal diaphragms 

Figure 6.12 – Comparison between maximum longitudinal stresses of load cases 1 and 2 
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torsion and distortion, for the configurations with intermediate diaphragms, suggest the existence of 

behaviour similar to that of a continuous beam over several “supports” (in this case diaphragms). 

Analogous results have been presented by Pedro (1995) while analysing the longitudinal stresses 

obtained in a similar roadway bridge by means of a shell finite element model. And, comparing the 

values of these stresses with the number of span diaphragms, it is clear the important effect in reducing 

the longitudinal stresses due to torsion presented by this transversal restrain of the box-girder 

deformation. 

Finally, separating the effects of torsion and distortion (see Figure 6.14), it becomes clear that the 

combined behaviour is overall ruled by distortion, except for sections in the vicinities of the intermediate 

diaphragms, where the torsional warping stresses peak. 

 

 

 

 

 

 

 

 

 

 

 

Given these results, two additional notes can be discussed. The first is that since the distortional 

warping stresses predominate over the torsional ones, the theoretical model that might be better suitable 

to describe the results of Figure 6.13 is that of a continuous beam on an elastic foundation, where the 

supports are placed at the locations of the intermediate diaphragms. 
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Figure 6.13 – Maximum positive stresses due to combined torsion and distortion participations 

Figure 6.14 – Maximum stresses due to torsion and distortion effects  
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The second interesting result is that, if the distortional response is close to that of a continuous 

beam, then a third load case considering alternating load eccentricities may reveal itself to be even more 

unfavourable (see Figure 6.15).  

Through simple analogy with the continuous beam, one might predict that, for load case 2, the 

stresses in the central span between diaphragms come closer to the situation of a beam with fixed ends, 

with a span length equal to the distance between diaphragms. Similarly, for load case 3, a simply 

supported span would be more adequate. 

These are in line with the conclusions of the results presented in Figure 6.16, in which the stresses 

in the box-girder are compared with the ones from equivalent spans, obtained also through the GBT 

finite element model. For load case 3, due to symmetry conditions, the simply supported scenario 

matches perfectly, while, for load case 2, slight differences exist, especially when considering a higher 

distance between intermediate diaphragms. 
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Figure 6.15 – Additional loading arrangement considering two internal diaphragms 

Figure 6.16 – Comparison of the combined torsional and distortional stresses with equivalent simply supported 
(SS) and fixed-ended models (FE) (GBT) 
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These results provide some guidance concerning the application of the Classical Formulations for 

box girders with intermediate spans. Considering the same spans and boundary conditions does not 

lead to equally satisfactory results (see Figure 6.17), but seems to offer an upper limit to the longitudinal 

stresses at mid-span. 

Readdressing the subject of global analysis of the box-girder bridge subjected to uniform loads, it 

can be observed that load case 3 provides mid-span longitudinal stress which are substantially higher 

than the ones obtained for load case 2. There is an increase in around 216% and 212% for the 

configurations with 4 and 2 intermediate diaphragms, respectively. Even so, load case 1 continues to 

be the most unfavourable for all diaphragm spacing configurations (see Figure 6.18).   
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Figure 6.17 –  Comparison of the combined torsional and distortional stresses with equivalent simply supported 
(SS) and fixed-ended models (FE) (Classical Formulations) 
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Figure 6.18 – Comparison between maximum longitudinal stresses for load cases 1 and 3 
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Given this results, for the present box-girder design, all traffic loads should be symmetric with 

respect to the vertical axis15.The most unfavourable longitudinal normal stresses are obtained by 

considering only the effects of bending and, eventually, of symmetric shear lag (see Figure 6.19). 

The in-service longitudinal analysis is performed considering the caracteristic design combination, 

given by (EN 1990-A2 (European Committee For Standardization, 2005a)): 

 ∑𝐺𝑘,𝑗
𝑗≥1

"+"Qk,1  ( 6.1 ) 

where 𝐺𝑘 and 𝑄𝑘 are the permanent loads and traffic loads, respectively.   

                                                   
15 For global verifications, the tandem system here replaced by equivalent one-axle loads should be considered 
circulating centred in its respective notional lane NP EN 1991-2. 
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Figure 6.19 – Characteristic stresses at mid-span and longitudinal stress diagram for the web-bottom flange 
connection obtained by Classical Formulations and GBT approach 
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The differences in the obtained results come from both shear lag and also bending (see Figure 

6.20). In the first numerical example (section 6.2), the bending contributions matched unmistakenly. 

Here slight differences exist due to the process of homogenisation (the flexural parcel of the classical 

bending stiffness should be calculated with a thickness 𝑡𝑡
𝑆 =

𝑡𝑡

√𝑛
3  ≠

𝑡𝑡

𝑛
 ). 

6.4. CRITICAL COMPARISON BETWEEN THE CLASSICAL FORMULATIONS AND 

GBT  

The work presented up to this point aimed to extensively explain two different approaches, one 

corresponding to the Classical Formulations and another based on GBT-based finite elements. Here, 

the two are geared towards the longitudinal analysis of both homogenous and composite box-girder 

bridges. 

Having addressed in Chapters 5 and 6 some comparisons in terms of theoretical fundaments and 

numerical examples, now a more critical comparative overview of the two methods are done, based on 

the results for the previously two case studies. 

 

Starting with the Classical Formulations, the main advantage is its strong physical meaning, i.e., the 

separation of the global analysis into simpler, more understandable, sub-analyses of the  

load-carrying mechanisms. However, it is clear it entails some aspects that can be considered less 

positive:  

a) the first is the level of simplifications that may be required in terms of the definition of the 

cross-section geometry; With a growing level of geometry complexity, the definition of the 

classical modes can become very complex (as an illustrative example one cannot consider 
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Figure 6.20 – Comparison of bending and shear lag modal participations to the maximum positive stresses 
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the definition of the distortional mode for the composite box-girder bridge analyses in case 

study 2 including the top steel flange width below the concrete slab). 

b) A second drawback has to do with loss of accuracy resulting from some of the simplifying 

hypotheses assumed, especially regarding the torsion/distortion behaviour. 

c) The third inconvenient is the need of several expressions (and coefficients in terms of the 

shear lag effect) that depend on the type of loading (concentrated or distributed) and 

boundary conditions. This has to do with the fact that the solutions to the equilibrium 

equations are obtained analytically and not by means of a finite element analysis. 

d) Finally results in terms of longitudinal normal stress distributions are generally slightly higher 

with respect to results from GBT method. 

 

Nevertheless, from a design point of view, and despite these inconveniences, this approach can 

still prove to be a fast and insightful tool, very valuable to obtain at least a first estimate of the longitudinal 

stresses due to bending with shear lag, torsion with warping and distortion. 

 

The Generalized Beam Theory approach presents itself as somewhat of an upgrade of the first 

method, because it still maintains the possibility of analysing the participation of the several  

load-carrying mechanisms while considering a simpler, broader and less simplified formulation. Other 

strong aspects of this formulation are that: 

a) Heterogeneous cross-sections, for instance composed by two materials, can be considered 

without adding any additional simplifications.  

b) Also, more complex cross-sections can be considered quite easily, using the GBTUL program. 

c) The same can be said for the subset of deformation modes, which can grow far beyond the 

scope of the Classical Formulations and thus capture other phenomena.  

d) From a modal analysis standpoint, it was central to the determination of the effect of 

intermediate diaphragms to the modal participations of torsion and distortion, but the awareness 

of an elastically supported continuous beam behaviour comes more in the classical formulation 

for distortion. 

e) About longitudinal normal stress distributions, they are very accurate and in line with shell 

element model normal stresses. 

Referring finally to the designer’s point of view, the GBT displacement-based finite element model 

developed in this work could be appealing, since it has provided results that are in very good agreement 

with those obtained with shell finite element models and at the same time made it possible to obtain 

significant insight into the mechanics of the problems addressed. 
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7. CONCLUSIONS AND FUTURE DEVELOPMENTS 

7.1. CONCLUSIONS 

The present dissertation revolves around the longitudinal analysis of both concrete and steel-

concrete composite box girder decks, through two distinct methods of analysis that allow for a strong 

perception of the structural behaviours: one concerning the Classical Formulations and another based 

on the Generalized Beam Theory (GBT). 

In Chapter 2, a brief reference was given to common methods used in the determination of 

longitudinal normal stresses, which among other aspects allowed to clarify the modal abilities of the 

Classical Formulations and of the GBT, when compared to the finite strip and shell finite element 

methods. 

In Chapter 3, the classical theories for bending, torsion with warping and distortion were explained, 

including specific rules that enabled the analysis of steel-concrete composite box girders. The non-

uniform torsion theory presented in this chapter uncouples the warping displacements from the in-plane 

rigid-body twist, meaning that it takes into account bi-shear deformation. Distortion is handled through 

the analogy of a beam on an elastic foundation, which considers the stiffness contributions given by 

longitudinal bending of the plates and by transverse frame behaviour. The effect of shear lag was also 

discussed by referring to a simplified methodology involving effective widths, whose accuracy was 

assessed.  

The subdivision of the applied loading into the loads specific to each type of structural response 

reveals slight simplifications, namely concerning the determination of the distortional loads. Even 

though, the effect of bi-shear in torsion is taken into account in the calculation of the torsional warping 

stresses, its influence on distortion is dismissed.  

The fundamental formulation of GBT was exposed in Chapter 4, considering the simplification 

hypotheses that are deemed necessary and sufficient for the analysis of box-girders subjected to 

standard vertical loads. The deformation field considered included bending, torsion with warping, torsion 

bi-shear, distortion, distortion bi-shear and both symmetric and anti-symmetric shear lag modes in the 

top and bottom flanges. 

This chapter also encompassed the definition of a GBT-enriched finite element and its 

implementation in a developed MATLAB program that contains, among other aspects, a simplified 

interface for load input, the ability to normalize and/or orthogonalize the shear lag deformation modes 

and to include intermediate diaphragms. 

In Chapter 5, a theoretical comparison was established between the two methods. It was possible 

to clarify some of the complexities found in the Classical Formulations and also discuss the differences 

found in both cross-section deformation modes and longitudinal equilibrium equations. From this 

comparison some conclusions were drawn: 

1. The definition of the cross-section deformation modes in terms of membrane 

displacements is equivalent in bending, torsion with warping and distortion. Some minor 
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differences may occur in composite steel-concrete cross-sections due to the simplifications 

pertaining to the homogenisation rules. 

2. The shear lag effect in these Classical Formulations is semi-empirical and entails a single 

global symmetric shear lag mode. GBT allows capturing shear lag through more modes, 

namely symmetric and anti-symmetric modes. 

3. The GBT approach allows obtaining equations which are similar to the ones in Classical 

formulations, but more complex because they consider (i) several wall flexural 

contributions that are neglected in Classical Formulations and (ii) the coupling of bi-shear 

and distortion. 

 

The analysis of two numerical examples was conducted in Chapter 6. In the first one, the shear lag 

modes were compared with shell FEM results and both total and modal results were subject of 

comparison between the Classical Formulations and GBT results. The second numerical example refers 

to a composite steel-concrete box girder bridge subjected to standard road traffic loads. It also covers 

the effect of various intermediate diaphragm configurations in both total and modal stresses. From these 

case studies, some additional conclusions can be drawn: 

4. The longitudinal bending stresses in homogenous box girders are the same for both 

approaches. Small differences exist in composite steel-concrete box girders due to the 

simplification rule concerning homogenisation of the cross-section in bending employed in 

the Classical Formulations. 

5. The Classical Formulations’ shear lag effect in numerical example 1 does not show ideal 

agreement with the stress results from a shell finite element model, both in terms of 

longitudinal and cross-section diagrams. With the GBT approach it was possible to obtain 

results that agree very well with the shell FEM results. For this outcome, the presence of 

anti-symmetric shear lag modes was found relevant. For the numerical example 2, the 

shear lag effects are not as meaningful because the flanges are very narrow. 

6. The results of torsion with warping are similar but do not coincide. For distortion, 

longitudinal stress results are further apart, due to the additional simplifications considered 

in the Classical Formulations and to the non-inclusion of distortion bi-shear. 

7. The added torsional and distortional longitudinal stress profiles (including bi-shear) are 

similar to those obtained conducting the analysis of a continuous beam on an elastic 

foundation, when intermediate diaphragms are considered. 

8. In light of the torsion/distortion behaviour observed in load case 2, three different load 

cases for the uniform loading were, covering the most unfavourable design situations: 

(i) the roadway is fully loaded, (ii) the roadway is loaded only on one side of the plane of 

symmetry and (iii) the roadway loading between each diaphragm is loaded only on one 

side of the plane of symmetry, but the side alternates after each span diaphragm. 

9. It was observed that in the vicinity of diaphragms a rapid torsional and distortional warping 

stress variation occurs due to the coupling conditions of torsion, torsion bi-shear, distortion 

and distortion bi-shear. 
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Having performed comparisons between formulations and numerical results, at the end of Chapter 

6 an overall critical comparison between the two methods led to the general main conclusions 

concerning the abilities each model as a design tool: 

10. The increase in detail in the definition of the cross-section is easy to address in the GBT 

approach and is not simple in the Classical Formulations. Similarly, in the application of 

GBT, the existence of heterogeneous cross-section poses no problem, but for the Classical 

Formulations, some simplified homogenisation rules are required. 

11. In overall, the Classical Formulations resort to more simplifications than GBT and this 

affects the accuracy of results, generally on the safe side. 

12. The implementation of a GBT-based finite element avoids the need for several analytical 

solutions that depend on the type of loading and boundary conditions, as happens in 

Classical Formulations. 

13. The consideration of the shear lag effect in GBT analysis is fairly simple. GBT is also more 

versatile and naturally more accurate than the use of effective width coefficients. 

14. The Classical Formulations comprise a fast and insightful tool, very valuable to obtain a 

first estimate of the longitudinal stresses due to bending with shear lag, torsion with warping 

and distortion. 

15. The GBT approach shows a great potential as a design tool, because it combines the 

possibility to analyse the participation of several deformation modes/structural behaviours 

while being based on a simple, broad and simplified formulation that can produce very 

accurate results. 

 

7.2. FUTURE DEVELOPMENTS 

In light of the promising results shown by the GBT-based finite element approach in the analysis of 

composite box girders, some of the possible extensions to this work include adding several aspects that 

need to be considered when analysing a steel-concrete composite bridge deck, namely: 

 The influence of the construction stages; 

 The existence of longitudinal stiffeners on the bottom flange and on the steel webs; 

 The contribution of transverse stiffeners typically adopted in girder decks; 

 The consideration in the analysis of the plate instabilities of the webs, due to shear and 

bending moments, and of the compressed bottom flange near the intermediate supports. 
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ANNEX 1. INDIVIDUAL GBT MODE PARTICIPATIONS FOR THE 

CONCENTRATED LOAD IN NUMERICAL EXAMPLE 1 
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ANNEX 2. CLASSICAL AND GBT STRESS PARTICIPATIONS FOR THE 

DISTRIBUTED LOAD IN NUMERICAL EXAMPLE 1  
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ANNEX 3. COMPARISON OF MODAL STRESS PARTICIPATIONS FOR THE 

UNIFORM LINE LOAD IN NUMERICAL EXAMPLE 2 FOLLOWING 

CLASSICAL FORMULATIONS AND GBT APPROACH 
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ANNEX 4. INDIVIDUAL GBT MODAL STRESS PARTICIPATIONS FOR THE 

UNIFORM LINE LOAD IN NUMERICAL EXAMPLE 2 
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ANNEX 5. COMPARISON OF LONGITUDINAL STRESSES OBTAINED 

THROUGH CLASSICAL FORMULATIONS FOR NUMERICAL EXAMPLE 1 

WITH PUBLISHED RESULTS FROM MAISEL & ROLL (1974) 

 

Problem 
Cross-section points (see 

Figure 3.11) 

Stresses in Maisel & 

Roll [MPa]16 

Stresses in 

Classical 

Formulations 

[MPa] 

Bending 
1, 2, 5, 6 -2.46 -2.449 

3,4 4.53 4.512 

Torsion with 

warping 

1 0.44 0.448 

2 -0.44 -0.448 

3 0.50 0.488 

4 -0.50 -0.488 

5 0.37 0.342 

6 -0.37 -0.342 

Distortion 

1 0.37 0.362 

2 -0.37 -0.362 

3 1.53 1.521 

4 -1.53 -1.521 

5 -0.73 -0.726 

6 0.73 0.726 

 

                                                   
16 The small differences between these published results and those obtained in this work vary solely due to the 

non-consideration of the reduction to the mid-line in 𝐼𝑥𝑥 and 𝐼𝑦𝑦, and to the small numerical errors which are 

observed in Maisel & Roll (1974). Replicating the calculations described by the authors, the values are a complete 
match. 


