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Abstract

With an extension up to 35% of total Earth land surface, desertification damages the economic

development of a region or a country through the losses of ecosystem services. The importance given to

these services over the years has increased, resulting in an increasing need of soil information. Remote

sensing comes up as an auxiliary tool to provide meaningful data for some soil characteristics, filling the

existent gap in in situ soil sampling.

The objective of this thesis is to use remote sensing techniques to study topsoil properties in

the semi arid region of Portugal. Using two landsat images from August 2009 covering the regions of

Alentejo and Algarve, a tasseled cap transformation was performed, obtaining the overall brightness

(TC1), greenness (TC2) and wetness (TC3) of the study area. By performing a principal components

analysis between the three generated features and the LUCAS topsoil survey samples, collected in

the summer of 2009, it was concluded that nitrogen and organic carbon are the chemical properties

that correlate more strongly with soil brightness, being nitrogen the one that best explains brightness

variation, according to the linear regression models.

Areas with low brightness have higher concentrations of nitrogen and organic carbon, therefore

higher organic matter content. The presence of organic matter in soils is a good indicator of soil quality,

since it has the ability to store nutrients for plant growth.

Although it has limitations, soil brightness arises as a soil quality indicator that has the possi-

bility to help the decision-makers, for instance in environmental and monitoring planning.

Keywords: Remote Sensing, soil degradation, Landsat imagery, Portugal, soil brightness,

LUCAS survey
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Resumo

Com uma extensão de 35% da superfı́cie total da Terra, a desertificação danifica o desenvolvi-

mento económico de uma região ou Paı́s através da perda progressiva dos serviços dos ecossistemas.

A importância dada a esses serviços tem aumentado ao longo dos anos, resultando numa maior neces-

sidade de informação do solo. A deteção remota surge como uma ferramenta auxiliar no fornecimento

de dados significativos à cerca de algumas caracterı́sticas do solo, preenchendo a lacuna existente com

a amostragem in situ.

O objectivo desta tese é a utilização de técnicas de deteção remota para estudar as pro-

priedades da superfı́cie do solo na região semi-árida de Portugal. Recorrendo a duas imagens Landsat

adquiridas em Agosto de 2009 que abrangem as regiões do Alentejo e Algarve, uma transformação

Tasseled Cap foi realizada, obtendo-se o brilho (TC1), greenness (TC2) e wetness (TC3) da zona de

estudo. Através da análise por componentes principais entre as três bandas geradas e as propriedades

das amostras recolhidas no verão de 2009 no âmbito do estudo LUCAS, concluiu-se que o azoto e o

carbono orgânico são as propriedades quı́micas que melhor se relacionam com o brilho do solo, sendo

o azoto a que melhor explica a sua variação, segundo os modelos de regressão linear.

Áreas com baixo brilho têm maiores concentrações de azoto e carbono orgânico e, portanto,

maior quantidade de matéria orgânica. A presença de matéria orgânica nos solos é um indicador da

qualidade do solo, dado que armazena nutrientes essenciais para as plantas.

Apesar de ter limitações, o brilho do solo surge como um bom ı́ndice da qualidade do mesmo

que pode auxiliar as pessoas responsáveis nas tomadas de decisão, por exemplo em monitorização e

planeamento ambiental.

Palavras-chave: Deteção remota, degradação do solo, imagens Landsat, Portugal, brilho do

solo, estudo LUCAS
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1 Introduction

Desertification is defined as ”land degradation in arid, semi-arid and dry sub-humid areas re-

sulting from various factors, including climatic variations and human activities” (United Nations, 1994). It

is associated with soil properties changes and poor vegetation growth, resulting in soil degradation and

decreases in land potential productivity (D’Odorico et al., 2013). With an extension up to 35% of total

Earth land surface (Zhao, 2014), desertification damages the economic development of a region or a

country through the losses of ecosystem services, such as, carbon sequestration, supply of freshwater,

fibers, wood and food, maintenance of biodiversity, as well recreational and cultural services. The im-

portance given to these services over the years has increased the relevance of soils in the socio-political

agenda, resulting in an increasing need of worldwide soil information. It is essential for agricultural and

environmental planning and monitoring.

Since 2006, EUROSTAT has carried out Land Use/Land Cover Area Frame Surveys (LUCAS)

every three years with the aim of gathering harmonised information in situ on land use and land cover

and their changes over time. With increasing demand for soil data, in 2009 this survey was extended by

the European Commission together with the Join Research Center (JRC) to sample the main properties

of topsoil (coarse, clay, silt, sand, pH in water and in CaCl2, organic carbon, calcium carbonate, nitrogen,

phosphorus, potassium and cation-exchange capacity) (Tóth et al., 2013).

Soil sampling in situ has limitations, such as excessive costs and it is time consuming. More-

over, the inaccessibility of some areas imposes boundaries on the spatial distribution of the samples.

Remote sensing is in a good position to provide meaningful spatial data for studying soil properties on

various spatial scales. It is ”the practice of deriving information about the Earth’s land and water surfaces

using images acquired from an overhead perspective, using electromagnetic radiation in one or more re-

gions of the electromagnetic spectrum, reflected or emitted from the Earth’s surface” (Campbell, 2011).

Remote sensing has numerous applications. It can be used in several Earth science subjects, such as

hydrology, geology or ecology, but it also has military, intelligence, commercial, economic, planning, and

humanitarian applications.

The objective of this thesis is to spatially analyse soil properties in the Alentejo and Algarve

regions using satellite images acquired in the summer of 2009. For such, remote sensing processing

techniques and GIS tools were applied, using ENVI and ArcGIS software, respectively.

In this study it is intended to compare the concentrations of topsoil properties from samples

collected in the study area with a set of specific image features, which are brightness, greenness and

wetness. This features are generated through the application of remote sensing tool, the tasseled cap

transformation.

This thesis is divided in 6 parts. The first part refers to the state of art, where the main studies

and concepts related with the subject of soils and remote sensing are described. In the second part a
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detailed portrayal of the characteristics of the study area is made, as well as the reason for choosing

those regions. The third part focus on the description of the used datasets and the applied methodology.

The fourth part corresponds to the presentation of the results acquired during the study and a thorough

discussion of these is made in the fifth part. Finally, the sixth part refers to the final conclusions of the

study and future work.
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2 State of Art

2.1 Concepts and Characteristics of Soils

Soil is the top layer of the earth’s crust composed by mineral particles, organic matter, water,

air and living organisms (European Commission, 2016; Jenny, 1994). It acts as food and other biomass

producer, regulator of water quality through filtration, a recycling system for nutrients and organic waste

and has the capacity to storage carbon (Voroney, 2006).

The mineral components of soil are sand, silt and clay, and their relative proportions determine

the soil texture. It affects soil behaviour, in particular its retention capacity for nutrients and water. Sand

and silt are grain size fractions, they are the products of the physical and chemical disintegration of

parent material (the original material on which the soil forms), while clay particles are are the products

of the weathering of sand and silt (Scharf, 2016). Sand has, according to the Atterberg Scale(Neves,

2011), the highest particle size range (0.2 to 2 mm) , it resists compaction and increases soil porosity.

Silt has the same properties as sand, however it has a lower particle size range (0.002 to 0.2 mm), with

a higher specific surface area it is more chemical active than sand. But clay, with a very high surface

area (particle range size < 0.002 mm) has a large number of negative charges (Russell, 1957). The

net negative charge of clay is responsible for the attraction of cations (positively charged particles) to

their surfaces. The bonds are weak, so these cations can be exchanged for others that are dissolved in

the solution, sometimes these cations (usually metals) are plant nutrients, like potassium, calcium, and

magnesium. This property is called cation exchange capacity (CEC) and is also responsible for soil’s

ability to filter some environmental contaminants from water (Ketterings et al., 2007). The higher the

CEC, the higher the fertility of that soil.

Nitrogen, phosphorus and potassium are the three major nutrients necessary for plant growth.

Nitrogen is necessary in the formation of proteins and enzymes. It is directly involved in metabolic pro-

cesses that allow the synthesis and energy transfer. Moreover it is part of the chlorophyll molecule,

responsible for photosynthetic processes. Phosphorus is responsible for the development of roots, flow-

ers, seeds and fruits. Potassium increases the resistance of plants to plagues, diseases, dryness and

cold (Neves, 2009a).

Nitrogen exists in the soil system in many forms and transforms very easily form one form to

another. It exists naturally in the soil through biological and atmospheric fixation, deposition of rainwater

and organic matter formation (Lamb et al., 2014). Phosphorus and potassium exist in soil through plants

residues deposition and organic and mineral fertilizers (Neves, 2009b).

For soils to be able to supply nutrients for plant growth, organic matter must be present in

the soil composition. Soil organic matter (SOM) is composed by organic compounds and includes

plants, animal and microbial material, both living and dead (Bot and Benites, 2005). It increases soil
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fertility by providing cation exchange sites and acting as reserve of plant nutrients, mainly nitrogen (N),

phosphorus (P), and sulphur (S), along with micronutrients, which are slowly released upon organic

matter mineralization. Organic matter is also a major source of soil carbon (C). Although the C content

of SOM is known to vary considerably, SOM is typically estimated to contain 58% C, being denominated

as ’soil organic carbon’ (Pribyl, 2010). The remain components are oxygen, hydrogen, nitrogen and a

small percentage of secondary plant nutrients (figure 1) (Neves, 2010).

Figure 1: Chemical composition of organic matter (Neves, 2010)

The mineralization of organic matter is a biological process in which organic substances are

converted to inorganic substances by soil microorganisms. During this processes bacteria digest organic

material and release ammonium (NH+
4 ). Its oxidation, known as nitrification, through nitrifying bacteria,

produces nitrate (NO−
3 ) (Neves, 2007), which is assimilated by plants (Xu et al., 2012).

Compounds such as Ca+
2 , K+, PO2−

4 , CO2, H2O are released through organic matter mineral-

ization and can be assimilated by plants (Neves, 2007).

2.2 Soil Degradation

Soil is increasingly degrading at a global level. Soil degradation refers to the change in the

soil health status resulting in a diminished capacity of the ecosystem to provide goods and services

(FAO 2016). Activities such as deforestation, poor soil and water management practices, agricultural

mismanagement, overgrazing and urbanization contribute to soil degradation (UNEP, 2002). Natural

disasters and climate change are also causes, however human activities can indirectly affect phenomena

such as floods and fires.

Oldeman et al. (1990) estimated that around 23 per cent of all usable land has been affected by

degradation to a point that its productivity is reduced. 910 million ha of land were classified as ‘degraded

soil’, with highly reduced agricultural productivity and 305 million has ’very degraded soil’ (figure 2).
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Figure 2: Levels of Soil Degradation (UNEP and Arnold, 1992)

Erosion, loss of organic matter, compaction, salinisation and soil contamination are some of

the causes of soil degradation (European Commission, 2016).

Desertification concerns land degradation in arid, semi arid and dry sub-humid when a region

becomes increasingly arid, typically losing its bodies of water as well as vegetation and wildlife. When

desertification is reached, the change of land is such that it can no longer recover its original use (FAO,

2016). Given the importance of soils for society, mainly environmental and socio-economic, a lot of effort

in developing monitoring techniques and better understanding soil processes has been made over the

years (Amundsen).

2.3 Remote Sensing of Soils

With the development of technology and the growing accessibility to soil data, digital soil map-

ping appears as a way to create digital maps of soil types and properties. It relies on field and laboratory

observations and, proximal and remote sensing derived soil information (Grunwald, 2010).

Remote sensing, in general terms, is the acquisition of information about an object or phe-

nomenon without making physical contact with the object. Therefore, it is a complement, or even an

alternative to on site observation. Systematic aerial photography was developed for military surveillance

and reconnaissance purposes beginning in World War I (Campbell & Wynne, 2011).

Remote sensing was first used with the objective of Earth observation in 1965, when NASA

started using instruments mounted on planes. In 1970 NASA had green light to build a satellite, which

was the first satellite of the Landsat program, a program with the aim of acquiring optical images of Earth.

Within only two years, Landsat 1 was launched, heralding a new age of remote sensing of land from

space (NASA, 2016a). Applications of remote sensing are numerous and varied, such as surveillance,

agriculture, forestry, weather, biodiversity, and soil quality. However it also has technical constrains: the
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instruments can became uncalibrated, resulting in uncalibrated data; distinct phenomena can look the

same to the sensor; or cloud cover can interfere with the image. Nevertheless, satellite images are freely

available and cover large areas without physically accessing them.

Soil attributes such as texture, organic matter, moisture and mineralogy as well as properties

of local to regional relevance such as iron content, soil salinity and carbonates have been studied by

several authors using remote sensing techniques. Considering the objective and the scope of this study,

important researches related with texture, soil organic carbon and soil moisture were analysed an are

then presented.

Galvão et al. (2008) used Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data to

investigate the relationships between the mineralogical and chemical composition of different soil types

and topography in Campo Verde, Brasil. Regression relationships between the silica/aluminium ratio

and the absorption values calculated from laboratory spectra were used to estimate the Ki index, an in-

dicator of the degree of soil disintegration. Results were plotted over an Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER) showing that several soil properties varied with surface

elevation.

Moreover, soil texture classes, such as silt, sand and clay can be determined using remote

sensing. Apan et al. (2002) concluded that ASTER bands 2 (visible red), 8 (SWIR), and the first

principal component (of bands 1 to 9) are the best layers to use for discriminating soil colour features.

Comparing classified and unclassified images they concluded that red soil corresponded to loamy sand

and black soil to heavy clay, with 83% and 94% correct classification. However, intermediate classes of

soil texture were incorrectly classified, as the percentages of accuracy were low.

Regarding soil carbon, since soil organic matter is mainly concentrated on the topsoil layer, it

is exposed to the sun’s radiation, it is a perfect property to be assessed by remote sensing technology.

Rossel et al. (2006) concluded that considering the visible part of the spectrum the organic carbon

content could be studied using the soil colour as index. Dark soils typically contain more soil organic

matter than pale soils, i.e. higher organic carbon content. However, given the fact that the analysis is

merely qualitative it was not sufficient for studying a wide variety of soils.

For this reason, some researchers used statistical approaches to map organic carbon content

with extensive calibration by soil samples. Selige et al. (2006) used linear regression and Partial Least-

Square Regression (PLSR), obtaining satisfying results for soil organic matter. While Gomez et al.

(2008) make a comparison between the prediction of soil organic carbon using visible and near infrared

spectra collected over 146 sites of the region with a portable spectrometer, and the results obtained

using the Hyperion hyperspectral satellite remote sensor (400–2500 nm). By also performing a PLSR

they observed that the Soil Organic Carbon (SOC) map obtained using Hyperion data shows similarity

with field observations.

Soil moisture is deeply studied by many authors, it can be retrieved from different remote sens-
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ing methods using different data, such as visible, infrared, thermal and microwave data (Ahmad et al.,

2011). Wagner et al. (2007) determined the Soil Water Index (SWI), this index combines ERS (Euro-

pean Remote Sensing) satellite data and METOP data, a series of three polar orbiting meteorological

satellites. Paulik et al. (2014) compared in situ soil moisture data of 664 stations with the SWI data

and obtained a Pearson correlation of 0.54. Moreover, the recently launched Sentinel-1A (2014) and

Sentinel 1B (2016) (ESA, 2016), are characterized by improved spatial, temporal and radiometric res-

olutions. This way soil moisture products will have higher accuracy over grass lands and agricultural

areas, once it will benefit from the ability of the satellites to correct seasonal vegetation effects (Gruber

et al., 2013).

Future research will focus on the improvement of the integration of remote sensing methods

for spatial prediction of soil properties. Proximal sensing and in situ methods will still be seen in the

future, due to remote sensing limitations. However remote sensing will allow the improvement of digital

soil mapping, as well as it will facilitate its development (Mulder, 2011).
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3 Study Area

Using satellite images to study topsoil properties implies that the area to be studied must have

low vegetation cover. Analysing the aridity map of Portugal (figure 3) it is possible to observe that

the south of Portugal, more specifically Alentejo and Algarve have low aridity indexes. Aridity index is

a numerical indicator of the degree of dryness of the climate at a given location. It is calculated by

dividing the precipitation by potential evapotranspiration ( P
EV Tp ) (UNEP, 1997), therefore a low index is

associated with arid area.

Figure 3: Aridity Index in Portugal (IM & INAG 2003)

The south-east of Portugal has an aridity index between 0.34 and 0.5, which, according to

UNEP (1997) corresponds to a semi-arid region. The study area will then cover these particular por-

tuguese regions (figure 4).

Figure 4: Study Area
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The climate of the region is typically warm and dry for a large part of the year with summer

temperatures reaching up to 40o degrees Celsius or more while, winters are relatively moderate but

wetter. In August 2009, the time of year when the satellite images for this study were acquired, the

average temperature in the region was around 26oC (figure 5), reaching maximum temperatures above

34oC (figure 6).

Figure 5: Average temperature for

August 2009 (IPMA, 2009)

Figure 6: Maximum temperature for

August 2009 (IPMA, 2009)

Precipitation is also scarce, especially during summer. Figure 7 shows that for the year of

2009 precipitation was null during August for South of Portugal. The total annual precipitation for the

considered region in the same year (figure 8) is also low when comparing with the rest of the country.

Figure 7: Precipitation in August

2009 (mm) (SNIRH, 2009)

Figure 8: Total Precipitation in 2009

(mm) (SNIRH, 2009)
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Due to its geological characteristics and climate, agriculture is the third activity that most con-

tribute to local economy (INE and PORDATA, 2014). COS 2007 (DGT, 2007), which is the land use

map for Portugal, produced in 2007, has several levels of representation, being 1 the least detailed one

(figure 9). Level 1 is divided in 5 different land use: urban, agricultural and agro-forestry areas, forest

and natural and semi-natural areas, wet zones and water bodies (table 2).

Figure 9: Land Use - Level 1 (DGT, 2007)

Table 1: Level 1 land use legend

Land Use Code Meaning

1 Artificialized territories

2 Agricultural and agro-forestry areas

3 Forests and natural and semi-natural areas

4 Wet zones

5 Water bodies

Agriculture, represented by code 2 (table 2), covers most of the central and east zone of the

study. While natural areas, identified by code 3, are more abundant in the south, west and north part of

the area.

The second level of the land use map gives further details for each land use presented previ-

ously. Figure 10 and figure 11 specifies the characteristics of the agricultural and natural areas, respec-

tively.
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Figure 10: Land use level 2 for

agricultural areas (DGT, 2007)

Figure 11: Land use level 2 for

natural areas (DGT, 2007)

Table 2: Level 2 land use legend for agricultural and natural areas

Land Use Code Meaning

2.1 Temporary Crops

2.2 Permanent Crops

2.3 Permanent Pastures

2.4 Heterogeneous Agricultural Areas

3.1 Forests

3.2 Open forests and shrub and herbaceous vegetation

3.3 Bare areas and with little vegetation

Considering agricultural areas, heterogeneous ones are more frequent, followed by temporary

crops. Regarding natural areas, in the Algarve region, open forest and shrub and herbaceous vegetation

is abundant, while forests are mostly located in the west area.

The geological characterization of the site has a direct influence on the land use. The study

area is covered mainly by cambisols, lithosols and luvisols (Figure 12). However, in the Northwest zone

of the study area, it is possible to observe an abundance of podzols, represented by a dark green color.
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Figure 12: Soils type (APA, 1982)

Luvisols and lithosols represent the majority of the area. It is notice that lithosols are more

represented in the south, in the Algarve region, where land cover is mostly natural, without agricultural

activities. Lithosols are undeveloped soils that are present in regions with steep slope, which makes

it unable to be used for agricultural practices. In this region aridity is lower given the fact that there

is greater amount of rainfall, resulting in higher available superficial water content when compared to

luvisols, but also causing strong water erosion (Nunes and Seixas, 2011).

Luvisols, on the other hand are more developed, they are characterized by a surface accumu-

lation of humus on top of a layer of mixed clay accumulation, therefore it has high levels nutrient ions

available. Cambisols are also observed in the study area, often associated with luvisols, which is the

case. This type of soil has high content of primary minerals, therefore the capacity to store nutrients is

lower. Both cambiosols and luvisols are intensively used for agriculture, explaining why the area that

these soils cover is mostly used for agriculture.

Podzols don’t have great spatial distribution, these are typically found in more humid areas and

are also very fertile (FAO, 2001). However that area is not used for agriculture as intensively as it is in

Baixo Alentejo.
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4 Methodology

This chapter focus on the description of the methodology used for the analysis of the topsoil

properties using satellite images.

4.1 Datasets

Two datasets were used for the research presented in this thesis. Given the fact that the

samples of the LUCAS Topsoil survey were collected during the Summer of 2009 the chosen satellite

images are also from that period. Considering the climatic characteristics of the region, August is one of

the driest months of the year, consequently, the chance of having dense vegetation is low.

The satellite that acquired the datasets is Landsat 5, it was launched March 1st 1984 and

decommissioned June 5th 2013 (USGS, 2014). The data was acquired by the Thematic Mapper (TM)

sensor. TM data are sensed in seven spectral bands simultaneously, each band represents a different

portion of the electromagnetic spectrum (Table 3). A TM scene has a resolution of 30m x 30m in bands

1-5 and 7, while band 6 has a resolution of 120m x 120m (USGS, 2014).

Table 3: TM bands and correspondent wave length (USGS, 2014)

Band Number Wave length (µm)

1 0.45 - 0.52

2 0.52 - 0.60

3 0.63 - 0.69

4 0.76 - 0.90

5 1.55 - 1.75

6 10.41 - 12.05

7 2.08 - 2.35

Different surface materials reflect energy in different wave lengths, therefore each band high-

lights specific features. Band 1, 2 and 3 are respectively blue, green and red. They correspond to

the visible part of the spectrum, when represented simultaneously the image shows its natural colors.

Band 1 allows to distinguish soil from vegetation, while band 2 emphasizes peak vegetation, band 3, on

the other hand, discriminates different types of vegetation, proving to be helpful in studying vegetation

health. Band 4, corresponds to the near infrared (NIR), it emphasizes biomass content and shorelines.

Band 5 represents the short-wave infrared (SWIR), useful to discriminate moisture content of soil and

vegetation. Band 6 is the thermal band, corresponding to higher wave lengths, which means that it can

be used to measure soil temperature. Finally, band 7, which also represents SWIR is used for soil and
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geology mapping (Geospatial Innovation Facility, 2008; USGS, 2015a).

Two TM scenes were selected for this study (table 4). In figure 13 a true color composition of

both scenes is represented. Data was acquired by the satellite on the 21st August 2009 and has 0% of

cloud cover for both images.

Figure 13: Mosaic images represented in true colour (R-3, G-2, B-1), path: 203, row: 33 (top image)

and 34 (bottom image) (USGS, 2009)
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Table 4: Geographic Coordinates for each dataset

Landsat Scene ID LT52030332009233MPS00 LT52030342009233MPS00

Path 203

Row 33 34

Upper left corner
Latitude 39.85588 38.43690

Longitude -8.71826 -9.12948

Upper right corner
Latitude 39.81564 38.40808

Longitude -5.93211 -6.39794

Lower left corner
Latitude 37.94457 36.51969

Longitude -6.01313 -9.12621

Lower right corner
Latitude 37.90696 36.49279

Longitude -8.72571 -6.46350

4.2 Pre-processing

Pre-processing refers to the operations that are performed previous to the data analysis.

The atmosphere influences the amount of electromagnetic energy that is sensed by the detec-

tors of an imaging system, and these effects are wavelength dependent (Chavez, 1988). Especially for

imaging systems such as the Landsat Thematic Mapper (TM) that record data in the visible and near-

infrared parts of the spectrum. The atmosphere affects images by scattering, absorbing, and refracting

light (Chavez,1988). Campbell and Wynne (2011) refer that an observed digital number (DN) value

might be in part the result of surface reflectance and in part the result of atmospheric scattering.

Radiometric pre-processing is a technique that influences the brightness values of an image

in order to correct sensor malfunctions or to adjust the digital values to compensate the atmospheric

degradation described above (Campbell & Wynne, 2011).

The most common radiometric pre-processing method is Dark Object Subtraction (DOS). The

DOS algorithm assumes the existence of ‘dark objects’, which are pixels having zero to very small

reflectance numbers, within a Landsat scene (Song et al, 2001). What this method performs is the

subtraction of the minimum DN value in each band from all the pixels within the scene, creating ‘dark

objects’ with a DN value of zero.

Table 5 represents the values of the digital numbers for each band for both images without

pre-processing.
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Table 5: Basic Statistics of digital number values of the pixels in each band for both images

Row 33 34

Stats Minimum Maximum Mean St Deviation Minimum Maximum Mean St Deviation

Band 1 0 255 84.19 17.77 0 255 75.12 18.06

Band 2 0 255 43.28 11.22 0 255 35.56 14.10

Band 3 0 255 54.76 17.84 0 255 42.24 23.69

Band 4 0 255 72.40 17.78 0 255 52.19 30.91

Band 5 0 255 132.55 40.09 0 255 90.24 61.18

Band 7 0 255 66.13 22.60 0 255 45.06 30.96

It can be observed that, without performing any pre-processing technique, the minimum value

for all the bands is already zero, which means that there isn’t an atmospheric influence in the quality

of the dataset. Consequently, a radiometric pre-preprocessing method, such as DOS, is unnecessary

given the fact that the resultant dataset would be identical as the original.

The reason that the data is already pre-processed is that, as the TM incorporates an internal

calibrator, an exponential-decay model, implemented in 2003 to represent the radiometric response or

gain of each reflective band as a function of time since the launch of the satellite. This model and

coefficients are used to generate a day-specific band-average lookup table (LUT) of detector gains for

use in processing. After the application of the LUT gains, the data are rescaled to a fixed radiance

range (postcalibration dynamic range) represented by LMIN (corresponding to “zero” DN) and LMAX

(corresponding to “255” DN) (Chander et al.,2007).

4.3 Data Processing

Used Interface

For the processing of the data the ENVI (Harris Geospatial, 2015) and ArcGIS software (ESRI,

2011) were used. ENVI is a geospatial imagery analysis and processing software, it is used for several

applications, such as agriculture, mineral resources, environment, oceanography, urbanism and land

cover. ArcGIS is a geographical information system that allows working with maps and geographic

information.

Tasseled Cap Transformation

Using ENVI interface, a Tasseled Cap Transformation was performed for both images.

The tasseled cap transformation was developed by Kauth and Thomas (1976), it was initially

defined for MSS (Multispectral Scanner System) but Crist and Cicone (1984) expanded the technique to
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the six nonthermal bands (1-5 and 7) of the TM.

It is performed by taking “linear combinations” of the original image bands, similar in concept to

principal components analysis. So, each tasseled-cap band (TC) is created by the sum of image’s band

1 times a constant plus image’s band 2 times a constant, and so on. The coefficients used to create the

tasseled-cap bands (Table 6) are derived statistically from images and empirical observations (Campbell

& Wynne, 2011). The tasseled cap generate the same number of bands as the inputs bands, however

the amount of information that a band contains is lesser through the bands. Only the first three bands

contain useful information, while the others are mostly image’s ”noise”.

Table 6: Thematic Mapper Tasseled Cap Coefficients, adapted from Crist and Cicone (1984)

Feature Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Brightness 0.3037 0.2793 0.4743 0.5584 0.5082 0.1863

Greenness -0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800

Wetness 0.1509 0.1973 0.3279 0.3406 -0.7112 -0.4572

The first band (TC1) represents the overall brightness of the image, it is a weighted sum of all

the six bands. The second (TC2) is greenness and is associated with green vegetation, while the last

one (TC3), wetness, is associated with soil moisture.

The current study focus on the soil characteristics, therefore as brightness and wetness define

the ”plane of soils” (Crist and Cicone, 1984), these features will have a bigger influence on the outcome

of the study. These authors demonstrated in their research the behaviour of both features according to

the amount of water in the soil (figure 14).

Figure 14: Relationship between Brightness and Wetness (Crist and Cicone, 1984)

Brightness, off all the features is the one that better represents the information contained in

the image and is directly related with soil. Therefore, the objective is to compare brightness values with

topsoil properties concentrations.
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4.4 NDVI and Land Use

In order to restrict the study area to surfaces without dense vegetation cover the NDVI was

measured.

NDVI is a vegetation index, an indicator that describes the relative density and health of vege-

tation for each picture element, or pixel, in a satellite image.

NDVI is calculated from the visible (VIS) and near-infrared (NIR) light reflected by vegetation

(1). Healthy vegetation absorbs most of the visible light that hits it, and reflects a large portion of the

near-infrared light. Unhealthy or sparse vegetation reflects more visible light and less near-infrared light

(Weier and Herring, 2000).

NDV I =
NIR− V IS

NIR+ V IS
(1)

For Landsat 5, band 4 corresponds to NIR and band 3 to VIS, thus equation (1) can also be

represented as:

NDV I =
Band4−Band3

Band4 +Band3
(2)

Calculations of NDVI for a given pixel always result in a number that ranges from minus one (-1)

to plus one (+1). Areas of barren rock, sand, or snow usually show very low NDVI values (approximately

0.1 or less). Sparse vegetation may result in moderate NDVI values (approximately 0.2 to 0.5). High

NDVI values correspond to dense vegetation (between 0.6 to 0.9) (USGS, 2015b).

After computing the NDVI it was necessary to intersect it with the land use so that the study

area only covers natural areas, eliminating agriculture, urban areas and water bodies. This step was

performed in ArcGIS and only the features with code 3 (Forests and natural and semi-natural areas) in

the land use map were selected and afterwards the ””extract by mask” ” tool between the NDVI raster

and the land use (mask data) was used. The resultant layer is a raster with NDVI values only for the

selected land use.

Finally, using the output raster from the previous step, the pixels with an NDVI value between 0

and 0.1 were selected, in order that the soil was as bare as possible. This feature was then used as a

mask for the ”extract by mask ” tool of the resultant images from the tasseled cap transformation.

The outcome was divided in the different bands and converted to points, so that each band

would have an attribute table with the value of the respective feature of each pixel.
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4.5 Topsoil Survey Samples

The LUCAS (Land Use/Land Cover Area Frame Survey) programme started in 2001 as an area

frame survey, i.e. a visual assessment of the parameters considered relevant for agriculture policies,

using orthophotographs and satellite images (Eurostat,2016).

In 2009, the European Commission extended the LUCAS survey to sample and analyse the

main properties of topsoil in 23 Member States of the European Union. The objective of this topsoil

survey is to build the first database of the soil across the European Union based on a standard sampling

and analytical procedures (Tóth et al., 2013).

A total of 19,967 topsoil samples were collected (figure 15), 476 in Portugal. At each sampling

site around 0.5 kg of topsoil, between 0 and 20 cm depth, were collected. The samples were then

dispatched to a central laboratory for analysis (Tóth et al., 2013). The properties measured for each

sample are represented in table 7.

Figure 15: Total LUCAS Topsoil Survey samples, 2009
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Table 7: Soil parameters of LUCAS Topsoil samples

Parameter Unit

GPS Latitude decimal degrees

GPS Longitude decimal degrees

Coarse %

Clay %

Silt %

Sand %

pH in H2O -

pH in CaCl2 -

Organic carbon g/kg

CaCO3 g/kg

Nitrogen g/kg

Phosphorus mg/kg

Potassium g/kg

Cation-exchange capacity cmol(+)/kg

There is a total of 205 samples collected within the study area (figure 16), of which 71 are from

natural areas (figure 17).

Figure 16: Samples collected within the study area Figure 17: Samples collected in natural areas
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Considering only the samples collected in natural areas, for each of them three buffers were

defined, with 500, 1000 and 1500 meters. The objective of using the buffers is to group the pixels that

are inside each buffer and perform statistical calculations, such as average, maximum, minimum and

standard deviation of brightness, greenness and wetness. The results were then compared with the

values of soil properties of the respective sample, instead of comparing those values with the closest

pixel, to have a representative value of the area covered for each sample.

Each buffer layer was intersect with the point feature layers. The resultant attribute tables were

exported to an excel sheet where statistical calculations were performed.

4.6 Data Analysis

For the analysis of the results the Andad (CERENA 2002a) and SPSS (IBM, 2015) programs

were used.

Andad is a multivariate data analysis software developed by the CERENA research center

(IST). Besides performing univariate and bivariate analysis, it has the capacity of doing multidimensional

data analysis. SPSS is also a software used for statistical analysis, mostly used in social sciences. In

addiction to the already existent tools in Andad, it performs linear regression, factor analysis, cluster

analysis and linear discriminant analysis.

Initially, for each set of buffers, scatter plots for brightness and soil properties and correlation

matrices between those, including greenness and wetness were performed in Andad. By doing this it is

possible to comprehend the relationships and trends between these variables, as well as to understand

which buffers size shows the best correlations between the variables.

Afterwards, using the same software, a principal components analysis was performed. It is

a multidimensional data analysis technique, originally conceived by Pearson in 1901, that transforms

linearly the original amount of variables into a smaller set of uncorrelated variables called principal com-

ponents, which represents most of the information in the original set (Dunteman, 1989). The principal

components are prioritized in descendent order, being the first one with the largest possible variance, i.e.

the largest possible data variability. They compose a system of orthogonal axes where it is possible to

observe graphically the projection of the original data elements that can be easily interpreted (CERENA,

2002b).

The graphics that are presented in the results chapter represent the correlation circle obtained

when performing this statistical analysis. Well represented variables are those that are closer to the

circumference, while variables closer to center are poorly represented. Also, well represented variables

closer to each other means that they are strongly correlated, and variables in opposite points present a

strong negative correlation (Sousa, 2007).
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To conclude the result analysis, using SPSS program, multiple linear regression models were

formulated. In statistics, linear regression is an approach for modelling the relationship between a scalar

dependent variable and one or more explanatory variables (or independent variables) denoted X (Freed-

man, 2009), it helps understand which soil property has the biggest influence in the values of the tas-

seled cap features, more specifically brightness and, on the other hand, if brightness can explain the

variation of some soil properties. That way, firstly, brightness was considered to be the depend variable,

as the soil properties are the independent variables. Not all soil properties were considered, only those

that have a direct influence in the soil fertility, which are the chemical properties. Posteriorly, the con-

trary was performed, chemical properties that present good correlation with brightness were used as

dependent variables to understand if these properties can be explained at the expenses of brightness,

greenness or wetness. The method used to perform the regression was the Stepwise method. This

method chooses the variable that best explain the dependent variable, instead of creating a prediction

model that relates all independent variables (Efroymson, 1960).

4.7 Moving Average

In order to comprehend the difference in the results when neither NDVI or land use are taken

into consideration a moving average (MA) was computed. MA is a filter that helps smoothing the pixel

values by filtering out the ’noise’ from random fluctuations.

Using ENVI software the filter was applied to the three tasseled cap bands. The filter produces

an output image in which the value at a given pixel is a function of some weighted average of the values

of the surrounding pixels. Convolution of a user-selected kernel with the image array returns a new,

spatially filtered image. In image processing a kernel is a small matrix used to apply effects to the

image.

The filter used was the low pass. It preserves the low frequency components of an image,

smoothing it. ENVI’s low pass filter contains the same weights in each kernel element, replacing the

center pixel value with an average of the surrounding values. The default kernel size is 3x3 (Haralick et

al, 1987).

In image processing, kernel corresponds to the convolution matrix, it represents the action area.

For example, if a kernel size of 3x3 is considered, only 9 pixels will be used to calculate the average,

being one the central and 8 the surrounding pixels, while if the size is 5x5, 25 pixels will be used, the

central one and the closest 24. For this case, kernel sizes of 5x5 and 9x9 were chosen, generating two

different outputs. A higher size wasn’t used because of the small size of some of the land cover features.

The same way a smaller kernel size wasn’t considered as the covered area would be small and bad for

local variability.

Once the filter was applied to the bands, the brightness, greenness and wetness values of the
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pixels correspondent to the location where the samples were collected were extracted and compared

with the values of the topsoil properties.

To analyse the results, scatter plots and correlation matrices were calculated to assess the

correlation between brightness and soil properties when applying this method. Principal components

analysis was also performed for both kernel sizes. It allows to observe graphically the relations between

the variables and which are better explained in the new multidimensional space.
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5 Results

This chapter presents the results by applying the previously described methodology.

5.1 Tasseled Cap Transformation

Figure 18 represents the three bands resulted from the tasseled cap transformation. Band 1

(red) corresponds to brightness, band 2 (green) to greenness and band 3 (blue) to wetness.

Figure 18: Tasseled Cap result

This image gives a general idea of the variation of each feature within the study area. There

is a higher incidence of the color orange in the centre and east region of the image, while in the North

and South a light blue is prevalent. In the West area a greenish color is noticeable. The reasons of this

color distribution is better perceived when representing each tasseled cap band individually (figures 19,

20 and 21).
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Figure 19: Tasseled Cap Band 1: Brightness Figure 20: Tasseled Cap Band 2: Greenness

Figure 21: Tasseled Cap Band 3: Wetness
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Regarding brightness (figure 19) it can be observed that there is an evident contrast within the

study area. While the center has a very vivid red, equivalent to higher values, the extremes North and

South are very dark, corresponding to an almost non-existent brightness.

Tasseled cap band 2, greenness is represented by figure 20. As explained previously, green-

ness is equivalent to a vegetation index. Darker areas such as those observed in the picture, in the

Alentejo region, correspond to areas with low vegetation cover, moreover it can be noticed very dark,

almost black, spots in the picture that are related with water bodies where vegetation is non-existent. On

the other hand, zones where a lighter green is observed have a greater vegetation cover, like the ones

noticed in the West and South part of the figure. Likewise, very bright green points that are observed

correspond to agriculture fields. Comparing greenness with the aridity map of Portugal (figure 3), areas

with low vegetation cover correspond to areas with higher aridity index. And as the study area is, in

general, semi arid, the few zones that present higher vegetation density are the ones with lower aridity

index.

Finally, figure 21 represents wetness, the third tasseled cap band. This band contains infor-

mation related with soil moisture. At first glance, comparing with the brightness map the inverse is

observed, i.e, areas with dark blue and consequently lower soil moisture are brighter. This observation

is in agreement with what Crist and Cicone (1984) inferred, wetness and brightness have an inverse

proportionality.

Comparing the three bands simultaneously there is a tendency for high brightness and low

wetness being associated with low greenness, and vice versa. This observation proves in a qualitative

manner what is theoretical expected, that where soil moisture is low, vegetation is also scarce, as well

as the contrary. However, due to spatial distribution of vegetation, areas with higher greenness, and

consequently denser vegetation prevents the analysis of soil properties in those areas by remote sensing

techniques, therefore no conclusions can yet be made regarding soil properties.

Statistics for each feature are represented in table 8.

Table 8: Statistics for each tasseled cap band

Values Brightness Greenness Wetness

Minimum 0 -181.22 -196.23

Maximum 605.20 193.40 199.25

Average 158.494 9.891 -50.224

Standard Deviation 67.284 11.136 41.915

Of the three features, brightness is the one with greater amplitude, approximately 600, while

greenness and wetness values have a range of about 400. Furthermore, the fact that brightness values

are always positive and greenness and wetness values can be negative is due to the coefficients that
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were multiplied by each band. While brightness coefficients are all positive, greenness has negative

coefficients for bands 4 and 5 of the original image, and wetness has for bands 5 and 7 of that same

image.

5.2 Moving Average

After applying the moving average method for the three tasseled cap bands in the study area,

for each kernel size, the principal components analysis result and the correlation matrix is presented

bellow.

Andad has a four-character limit for the identification of the variables on the graphic, that is why

the names of some variables had to be shortened. Brig, gree and wetn, stand for brightness, greenness

and wetness, respectively. While pH1 represents pH in H2O and pH2 in CaCl2.

5.2.1 5x5 Kernel Size

Table 9 shows the correlation values between the tasseled cap features and soil properties.

Table 9: Pearson Correlation values for 5x5 kernel size

Correlation Brightness Greenness Wetness

Brightness 1.000 -0.3805** -0.8283**

Greenness -0.3805** 1.000 0.4915**

Coarse (%) -0.1585* -0.1370 0.1190

Clay (%) 0.0198 -0.0660 0.0872

Silt (%) -0.0067 0.1104 -0.0271

Sand (%) -0.0062 0.1179 -0.0290

pH in H2O 0.2173** 0.0858 -0.1016

pH in CaCl2 0.2141** -0.0951 -0.0995

Organic Carbon (g/kg) -0.3107** 0.1547* 0.2453**

CaCO3 (g/kg) -0.0039 0.1603* 0.0873

Nitrogen (g/kg) -0.1910** -0.0302 0.1251

Phosphorus (mg/kg) 0.2107** -0.0390 -0.1022

Potassium (g/kg) -0.0545 0.0743 0.0931

CEC (cmol(+)/kg) 0.1188 -0.0944 -0.0014

** Correlation is significant at the 0.01 level
*Correlation is significant at the 0.05 level

The first thing that is evident in the table is the correlation between brightness and wetness
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(-0.8283).

Analysing the values for the soil properties, it appears that correlations values with either bright-

ness, greenness or wetness are very low. The property that best correlates with brightness is organic

organic carbon with a correlation value of 0.3107.

The results of the principal components analysis (figure 22) are consistent with these observa-

tions.

Figure 22: Principal Components Analysis for 5x5 Mobile Average

The best represented variables are organic carbon, nitrogen, potassium, clay, cation exchange

capacity, and the pH’s, once these are closer to the circumference. Any soil variable has an evident

correlation with brightness, whether it is positive or negative. Despite greenness and coarse are closer

to each other, no conclusions can be made as these variables are misrepresented.

However, the strong negative correlation between brightness and wetness is well noted, once

these variables are at opposite ends.

Picture 23 represents the scree plot for the 5x5 kernel size. It relates the factors with the

correspondent eigenvalues, which are described in table 10 along with the percentage of explained

data.
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Figure 23: Principal Components Analysis

scree plot, 5x5 kernel size

Table 10: Eigenvalues and percentage of

explanation of the factors, 5x5 kernel size

F Eigenvalue % Explained % Accumulated

1 4.694 31.293 31.293

2 2.737 18.244 49.536

3 1.854 12.360 61.537

4 1.529 10.191 72.087

5 0.959 6.394 78.482

6 0.807 5.380 83.863

7 0.690 4.597 88.460

The higher the eigenvalue, the higher the percentage of explanation. Factor 1 explains 31.293%

of the variability contained in the data, and when combined with factor 2, which is the case of figure 22,

they explain 49.536%.

5.2.2 9x9 Kernel Size

When applying the convolution filter with a kernel size of 9x9 the results don’t differ much from

when a 5x5 size is used.

The computed correlation values are represented in the following table (table 11).

Table 11: Pearson Correlation values for 9x9 kernel size

Correlation Brightness Greenness Wetness

Brightness 1.000 -0.4171** -0.8272**

Greenness -0.4171** 1.000 0.5031**

Coarse (%) -0.1807** -0.1483* 0.1525*

Clay (%) 0.0238 -0.0929 0.1079

Silt (%) -0.0254 0.1221 -0.0064

Sand (%) -0.0045 0.1271 -0.0536

pH in H2O 0.2384** -0.1239 0.1107

pH in CaCl2 0.2311** -0.1290 -0.1080

Organic Carbon (g/kg) -0.3264** 0.1969** 0.2711**

CaCO3 (g/kg) -0.0186 0.1291 0.0740

Nitrogen (g/kg) -0.2041** -0.0529 0.1433*

Phosphorus (mg/kg) 0.2193** -0.0593 -0.1194

Potassium (g/kg) -0.0480 0.0713 0.0977

CEC (cmol(+)/kg) 0.1188 -0.1202 -0.0060
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** Correlation is significant at the 0.01 level
*Correlation is significant at the 0.05 level

When comparing table 11 with table 9 it can be concluded that the correlation values are very

similar. They remain very low for the majority of soil properties and organic carbon continues to be

the one with the best correlation value with brightness (0.3264), although they are still badly correlated.

Once more, brightness and wetness are depend on each other, having a value of correlation of -0.8272.

Figure 24: Principal Components Analysis for 9x9 Mobile Average

The graphic of the principal components analysis for these variables (figure 24) is identical to

the previous one, with the spatial distribution of the variables being the same.

Performing a mobile average to the tasseled cap transformation results was, in general, un-

successful. The reason for this is that no relationship between the soil properties and the tasseled cap

features, mainly brightness was noted.

For the remaining study buffers of 500, 1000 and 1500 meters were applied, this means that for

each sample the area considered to calculate the average and other statistics was a circumference with

radius of 500, 1000 and 1500 meters. In this case when considering a 5x5 kernel size, as the resolution

of the image is of 30 meters, the maximum distance considered to calculate the average is of 60 meters

from the central pixel, and 120 meters for 9x9 size. Considering this, as the area around each sample is

small, the representativity of brightness and the remaining features might be low.

Moreover, the presence of vegetation and land use are not being taken into account, therefore

in some areas there may be dense vegetation cover or human intervention, such as agricultural fields,

pastures or urban zones. This can produce a negative effect on the final results.

The methodology that is applied in the following chapters focus on understanding if conditioning

land use and vegetation density, better results are obtained and there is dependence between brightness
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and topsoil properties.

As for the previous case, the scree plot (figure 25) and the amount of data explained for each

factor (table 12) are represented.

Figure 25: Principal Components Analysis

scree plot, 9x9 kernel size

Table 12: Eigenvalues and percentage of

explanation of the factors, 9x9 kernel size

F Eigenvalue % Explained % Accumulated

1 4.698 31.320 31.320

2 2.834 18.894 50.215

3 1.790 11.930 62.145

4 1.537 10.245 72.390

5 0.972 6.477 78.868

6 0.811 5.404 84.272

7 0.654 4.362 88.635

When considering a higher kernel size the percentages of explained data for each factor, as

well as the eigenvalues, are slightly higher. F1 explains 21.320% and 50.215% when represented with

F2.
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5.3 NDVI and Land Use

NDVI was calculated to restrict the study area to regions with low vegetation cover. Figure 26

represents the results obtained from ENVI software after computing this index.

Figure 26: NDVI values in the study area

NDVI values varies between -1 and 1. West and South regions of the map have higher NDVI

while at East it is lower.

As both, tasseled cap band 2 (greenness) and NDVI are vegetation indexes, it is expected

that the maps show similarities. In fact, comparing figure 20 and 26 it can be observed that the spatial

distribution of vegetation is the same. In fact, the principle behind the calculation of both features is the

same, NDVI subtracts the visible radiation (band 3), to near infrared radiation (band 4), and divides by

the sum of both (1), whereas for greenness modelling, bands 4 and 5 (NIR and SWIR, respectively)

are being multiplied by coefficients with positive value, while for the remaining bands coefficients are
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negative. Moreover coefficients for band 3 and 4, that are precisely the bands used for NDVI computing,

are the highest negative and positive values, respectively.

Although greenness is a quantitative feature, its analysis is qualitative. Instead of NDVI, green-

ness doesn’t have a fixed range of values and so it is not possible to establish classes for vegetation

cover like it is for NDVI. According to the USGS (2015), NDVI values between 0 and 0.1 represent bare

soil, the result of that selection is represented in figure 27.

The study area was also restricted to zones whose land use is natural, without human interfer-

ence in the soil. For that, code 3 (forests and natural and semi-natural areas) of the first level of the land

use map was selected (figure 28).

Figure 27: NDVI between 0 and 0.1 values Figure 28: Natural and semi-natural areas

There is a notorious relation between both figures, natural areas are prominent where NDVI

has values outside the selected range, more specifically above it. Considering the level 2 of land use

(figure 11) most of the natural areas are open forests and shrub and herbaceous vegetation. More

over, NDVI values inside the chosen range overlap agricultural areas. Temperature and precipitation,

combined with the timing of harvest of the different types of crops have a direct influence in the cover of

the agricultural fields.

The result of the intersection of figure 27 and figure 28 with the tasseled cap bands is presented

bellow, in figure 29.

33



Figure 29: Tasseled cap raster considering 0.1 < NDVI < 0 and natural areas

To simplify the visualization of the figure, only brightness and wetness are represented. Green-

ness, on the other hand, is not presented given the fact that once NDVI was restricted to a relatively

small range, greenness ended up by having very low spatial variation.
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5.4 Samples Buffers

The following picture (figure 30) represents the generated buffers for each sample.

Figure 30: Samples buffers

Although the difference from on buffer to another is not easily visible, the important information

extracted from this figure is that independently of the buffer size there is no overlap of buffers.

The tasseled cap bands from figure 29, including greenness were intersect with each buffer

layer and the output were a set of tables with the tasseled cap features values for each pixel that is

inside the buffer and the topsoil properties concentrations for the correspondent sample. The results of

the analysis of these tables are presented in the following sections.
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5.5 Scatter Plots and Correlation Matrices

In this section of the chapter for each buffer it is presented the scatter plots that relate the three

tasseled cap features among them and average brightness with the soil properties retrieved from the

LUCAS topsoil survey. The correlation matrices between all properties and the three features were also

calculated and is then presented, as well as the correlation among the tasseled cap features.

5.5.1 Buffers: 500 meters

For the buffers of 500 meters there is a total of 57 samples that were collected in natural areas

and have pixels of tasseled cap bands inside each buffer (≈ 80 % of total samples).

The following graphics (figures 31, 32 and 33) represent the relations between the average

values of the three features of the tasseled cap transformation, brightness, greenness and wetness.

Figure 31: Scatter plot of brightness with

greenness (buffer 500 m)

Figure 32: Scatter plot of brightness with

wetness (buffer 500 m)

Figure 33: Scatter plot of greenness with wetness (buffer 500 m)
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Average brightness and average wetness are well correlated (figure 31). The same is not

observed for greenness, despite it seems to exist a correlation with brightness (figure 32) and wetness

(figure 33), it is weak.

Figures 34, 35, 36 and 37 represent the scatter plots for the physical properties of the topsoil.

As explained before clay, silt and sand compose the texture of soil, for each sample the sum of these

properties is 100%. Coarse corresponds to large sand particles.

Figure 34: Scatter plot of brightness

with coarse (%) (buffer 500 m)

Figure 35: Scatter plot of brightness

with clay (%) (buffer 500 m)

Figure 36: Scatter plot of brightness

with silt (%) (buffer 500 m)

Figure 37: Scatter plot of brightness

with sand (%) (buffer 500 m)

Analysing these four graphics, at first glance it is observed that for coarse, clay and silt bright-

ness decreases as the proportion of that properties increases. Sand percentage, on the contrary, in-

creases as brightness also increases.

The upcoming graphics consider the chemical properties of the soil, pH in H2O (figure 38) and

in CaCl2 (figure 39), organic carbon (figure 40), CaCO3 (figure 41), nitrogen (figure 42), phosphorus

(figure 43), potassium (figure 44) and CEC (figure 45).
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Figure 38: Scatter plot of brightness with pH

in H2O (buffer 500 m)

Figure 39: Scatter plot of brightness with pH

in CaCl2 (buffer 500 m)

Figure 40: Scatter plot of brightness with

Organic Carbon (g/kg) (buffer 500m)

Figure 41: Scatter plot of brightness with

CaCO3 (g/kg) (buffer 500 m)

Figure 42: Scatter plot of brightness with

Nitrogen (g/kg) (buffer 500 m)

Figure 43: Scatter plot of brightness with

Phosphorus (mg/kg) (buffer 500 m)
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Figure 44: Scatter plot of brightness with

Potassium (g/kg) (buffer 500 m)

Figure 45: Scatter plot of brightness with Cation

Exchance Capacity (cmol(+)/kg) (buffer 500 m)

The chemical properties of the soil that correlate better with brightness are organic carbon

(figure 40) and nitrogen (figure 42). For both it is noted that, although there is some dispersion of the

points, there is a tendency for brightness to decrease with increasing organic carbon and nitrogen.

Phosphorus (figure 43) and CaCO3 (figure 41) in most of the samples have concentrations near

zero, independently of the brightness value, therefore there isn’t correlation. The same is observed for

both pH’s, the random distribution of the samples in the charts proves that brightness isn’t dependent

on these properties.

Analysing the scatter plot for potassium (figure 42) and clay(figure 35), a slight inverse propor-

tionality between these properties and brightness is observed, not as apparent as for organic carbon and

nitrogen. The existence of samples that contain very high potassium concentrations cause a decrease

in correlation.

In the last chart, where the relation between brightness and cation exchange capacity is repre-

sented, it is observed that the relation between both properties is almost non-existent, denoting only a

very smooth negative correlation.

Table 13 presents the Pearson correlation values of the graphs represented above. Correlation

varies between -1 and 1, these values correspond to the best negative and positive correlation possible,

respectively.
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Table 13: Pearson Correlation values for 500 meters buffers

Correlation Average Brightness Average Greenness Average Wetness

Average Brightness 1.000 0.4070** -0.6512**

Average Greenness 0.4070** 1.000 -0.3803

Coarse (%) -0.3559** -0.0389 0.2546

Clay (%) -0.4712** 0.1332 0.3429**

Silt (%) -0.4983** 0.0912 0.1941

Sand (%) 0.5407** -0.1126 -0.2837*

pH in H2O 0.0143 0.3568** 0.0341

pH in CaCl2 -0.0379 0.3095 0.0463

Organic Carbon (g/kg) -0.4973** 0.0018 0.2525

CaCO3 (g/kg) -0.0117 0.3359* 0.1068

Nitrogen (g/kg) -0.5318** -0.0052 0.2471

Phosphorus (mg/kg) 0.0962 0.0628 -0.0980

Potassium (g/kg) -0.3474** 0.2509 0.2280

CEC (cmol(+)/kg) -0.1862 0.2101 0.2287

** Correlation is significant at the 0.01 level
*Correlation is significant at the 0.05 level

Analysing table 13, sand is the physical property with the highest correlation (0.5407) with

brightness, the same is observed for the chemical properties organic carbon (-0.4974) and nitrogen (-

0.5318) proving the analysis made in the previous graphics. Moreover, as wetness is well correlated

with brightness, these three properties are also the ones with the highest correlation value with average

wetness. Wetness is negatively correlated with brightness, therefore properties that are positively corre-

lated with brightness are negatively correlated with wetness, and vice versa. Greenness values, on the

other hand, have very low correlation with all topsoil properties.
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5.5.2 Buffers: 1000 meters

For the buffers of 1000 meters the number of samples that were collected in natural areas and

have pixels of tasseled cap bands inside each buffer, comparing to the 500 meters buffer, increased to

60 (≈ 85 % of total samples).

Figures 46, 47 and 48 relate average brightness, greenness and wetness between each others.

Figure 46: Scatter plot of brightness with

greenness (buffer 1000 m)

Figure 47: Scatter plot of brightness with

wetness (buffer 1000 m)

Figure 48: Scatter plot of greenness with wetness (buffer 1000 m)

As observed for the scatter plots of the 500 meters buffers, brightness and wetness are very

well correlated (figure 47). Greenness, likewise, presents the same behaviour as previously, its val-

ues varies within a small range and don’t show evident correlation with either brightness (figure 46) or

wetness (figure 48).

The following figures, from figure 49 to 60 represent the relation between average brightness

and physical and chemical properties of soil.
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Figure 49: Scatter plot of brightness

with coarse (%) (buffer 1000 m)

Figure 50: Scatter plot of brightness

with clay (%) (buffer 1000 m)

Figure 51: Scatter plot of brightness

with silt (%) (buffer 1000 m)

Figure 52: Scatter plot of brightness

with sand (%) (buffer 1000 m)

Figure 53: Scatter plot of brightness with pH

in H2O (buffer 1000 m)

Figure 54: Scatter plot of brightness with pH

in CaCl2 (buffer 1000 m)

42



Figure 55: Scatter plot of brightness with

Organic Carbon (g/kg) (buffer 1000 m)

Figure 56: Scatter plot of brightness with

CaCO3 (g/kg) (buffer 1000 m)

Figure 57: Scatter plot of brightness with

Nitrogen (g/kg) (buffer 1000 m)

Figure 58: Scatter plot of brightness with

Phosphorus (mg/kg) (buffer 1000 m)

Figure 59: Scatter plot of brightness with

Potassium (g/kg) (buffer 1000 m)

Figure 60: Scatter plot of brightness with Cation

Exchance Capacity (cmol(+)/kg) (buffer 1000 m)

Regarding soil texture, silt (figure 51) and sand (figure 52) show good correlation with bright-

ness. Coarse (figure 49) and clay (figure 50), on the other hand, are not that well correlated with
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brightness, with coarse appearing to have a random behaviour.

The scatter plots that represent chemical properties demonstrate the same trend already ob-

served for 500 meters buffer. Organic carbon (figure 55) and nitrogen (figure 57) remain the properties

that best relate with brightness. Moreover, for both graphics, when comparing with 500 meters buffers,

the dots are less dispersed, noticing a better downward trend.

For the remaining properties the behaviour exhibit in each graphic is the same as previously.

Correlations that may exist are best perceived when analysing table 14.

Table 14: Pearson Correlation values for 1000 meters buffers

Correlation Average Brightness Average Greenness Average Wetness

Average Brightness 1.0000 0.2875* -0.7856**

Average Greenness 0.2875* 1.0000 -0.3244*

Coarse (%) -0.2205 -0.1200 0.2572

Clay (%) -0.4764** 0.1697 0.4420**

Silt (%) -0.5865** 0.0341 0.3969**

Sand (%) 0.6122** -0.0936 -0.4676**

pH in H2O -0.0535 0.3815** 0.0052

pH in CaCl2 -0.1262 0.3426** 0.0762

Organic Carbon (g/kg) -0.5629** -0.0888 0.5058**

CaCO3 (g/kg) -0.0640 0.2959* 0.1581

Nitrogen (g/kg) -0.5890** -0.0363 0.4304**

Phosphorus (mg/kg) 0.0623 0.0602 -0.1305

Potassium (g/kg) -0.3636** 0.2321 0.3059*

CEC (cmol(+)/kg) -0.2188 0.1609 0.2464

** Correlation is significant at the 0.01 level
*Correlation is significant at the 0.05 level

It can be observed that wetness continues to have a very high correlation with brightness (-

0.7856). Concerning greenness, although the relation with the other two features remains low, 0.2875

for brightness and -0.3244 for wetness, when comparing to 500 meters buffer it is higher.

Sand, silt, organic carbon and nitrogen continue to be the properties that show the highest

correlations with brightness, noticing an increase from the previous buffer. The same happens with

wetness, despite clay has a better correlation than silt. In contrast, coarse is the only property for which

correlation with brightness decreased from 500 meters to 1000 meters buffers.

Regarding greenness, once more the correlation values remain very low.
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5.5.3 Buffers: 1500 meters

For the buffers of 1500 meters the number of samples remain the same 60. The relations

between the tasseled cap features for this set of buffers are represented in the following graphics (figures

61, 62 and 63).

Figure 61: Scatter plot of brightness with

greenness (buffer 1500 m)

Figure 62: Scatter plot of brightness with

wetness (buffer 1500 m)

Figure 63: Scatter plot of greenness with wetness (buffer 1500 m)

The same behaviour that is observed in the previous buffers for the relation between brightness,

greenness and wetness is noted in the above figures.

The graphics that relate brightness with soil properties for 1500 meters buffers are then pre-

sented (figures 64 to 75).
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Figure 64: Scatter plot of brightness

with coarse (%) (buffer 1500 m)

Figure 65: Scatter plot of brightness

with clay (%) (buffer 1500 m)

Figure 66: Scatter plot of brightness

with silt (%) (buffer 1500 m)

Figure 67: Scatter plot of brightness

with sand (%) (buffer 1500 m)

Figure 68: Scatter plot of brightness with pH

in H2O (buffer 1500 m)

Figure 69: Scatter plot of brightness with pH

in CaCl2 (buffer 1500 m)
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Figure 70: Scatter plot of brightness with

Organic Carbon (g/kg) (buffer 1500 m)

Figure 71: Scatter plot of brightness with

CaCO3 (g/kg) (buffer 1500 m)

Figure 72: Scatter plot of brightness with

Nitrogen (g/kg) (buffer 1500 m)

Figure 73: Scatter plot of brightness with

Phosphorus (mg/kg) (buffer 1500 m)

Figure 74: Scatter plot of brightness with

Potassium (g/kg) (buffer 1500 m)

Figure 75: Scatter plot of brightness with Cation

Exchance Capacity (cmol(+)/kg) (buffer 1500 m)

When increasing the buffers to 1500 meters, it can be observed that for all properties the set of

samples falls into a lower area of the graph. The change is explained by the decrease of average bright-
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ness for each buffer. However, the displayed behaviour of the properties with the average brightness

appears to be the same.

Table 15: Pearson Correlation values for 1500 meters buffers

Correlation Average Brightness Average Greenness Average Wetness

Average Brightness 1.0000 0.2208 -0.7785**

Average Greenness 0.2208 1.0000 -0.3293*

Coarse (%) -0.3366** -0.0150 0.2981*

Clay (%) -0.5002** 0.2208 0.4952**

Silt (%) -0.5878** 0.1049 0.4089**

Sand (%) 0.6167** -0.1621 -0.4924**

pH in H2O -0.0374 0.3950** 0.0210

pH in CaCl2 -0.1012 0.3750** 0.0830

Organic Carbon (g/kg) -0.5565** -0.0177 0.4849**

CaCO3 (g/kg) -0.0484 0.3546** 0.1542

Nitrogen (g/kg) -0.6250** -0.0442 0.4843**

Phosphorus (mg/kg) 0.0533 0.0882 -0.1172

Potassium (g/kg) -0.4220** 0.2426 0.3545**

CEC (cmol(+)/kg) -0.2394 0.2150 0.2543

** Correlation is significant at the 0.01 level
*Correlation is significant at the 0.05 level

Comparing the correlation for 1500 meters buffers (table 15) with the previous buffers size it is

inferred that the correlation between average brightness and topsoil properties is very similar, slightly

increasing for some properties, such as nitrogen and decreasing for others, like organic carbon. For the

remain properties with high correlation with brightness, silt and sand, no significant change is observed.

Considering the three different sizes of buffers, it can be concluded that larger buffers show

better results regarding the relation between the tasseled cap bands and the topsoil properties. As

the buffers increase the number of pixels inside each, it tends to increase as well, that way brightness,

greenness and wetness are better represented, explaining the improvement of the results. However,

larger buffers can also jeopardize the results, once that in the areas where the further away pixels are,

they may not be related with the topsoil properties measured at a particular sample. For these reason

buffers larger than 1500 meters weren’t considered.
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5.6 Principal Components Analysis

In order to facilitate the interpretation of the results, a principal components analysis was per-

formed for each set of buffers.

Bav, Gav and Wav stand for average brightness, greenness and wetness, respectively, while

pH1 corresponds to the pH in H2O and pH2 to the pH in CaCl2.

5.6.1 Buffers: 500 meters

Figure 76 represent the circle of correlation considering factor 1 and 2 of the principal compo-

nents analysis for the 500 meters buffers.

Figure 76: Principal Components Analysis (axes F1 and F2) for 500 meters buffers

Analysing the graphic of figure 76 variables pH’s, cation exchange capacity, potassium, clay,

nitrogen, organic carbon, silt, sand and average brightness are well represent, because they are near

the circumference. Three groups of variables stand out, which are organic carbon, silt and nitrogen;

pH1, pH2, CEC and CaCO3 and average brightness and sand. The variables of each group are close to

each other, which means that they are strongly positively correlated. On the other hand, variables that

are in opposite locations have a negative correlation. It can also be observed that, average brightness

is negatively correlated with soil properties nitrogen, organic carbon and silt.

Brightness is the best represented feature of the tasseled cap transformation, which is ex-

plained by the fact that it contains most of the information related with soil properties of the images.

It has also a negative correlation with wetness, just like Crist and Cicone (1984) demonstrated in their

research.

It can be observed that phosphorus is near the center of the circumference, which means that
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this variable isn’t well projected in the chosen axes (F1 and F2), therefore factors 3 and 4 are represented

in figures 77 and 78.

Figure 77: Principal Components Analysis

(axes F1 and F3) for 500 meters buffers

Figure 78: Principal Components Analysis

(axes F1 and F4) for 500 meters buffers

When considering the third factor (F3) (figure 77), although phosphorus is further from the

center it is not as well represented as in figure 78, where the fourth and first factors (F4 and F1) are

graphically represented. In this graphic the variable phosphorus is graphically represented near the

circle, however a positive or negative correlation with other variables is not noted as there aren’t any

near phosphorus or in a symmetrical position with it.

The following figure (figure 79) represents the scree plot of the 500 meter buffers principal

components analysis. The graphic relates the factors with the respective eigenvalues.

Figure 79: Principal Components Analysis scree plot, 500 meters buffer

It can be observed that F1 has the highest eigenvalue, followed by the remaining factors, until

F7 that, being the last factor, has the lowest eigenvalue. In other words, the eigenvalue is lower along

the factors. The eigenvalue tells how much variance there is in the data. The percentage of explained
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data in each factor is represented in table 16.

Table 16: Eigenvalues and percentage of explanation of the factors

F Eigenvalue % Explained % Accumulated

1 5.721 38.138 38.138

2 3.154 21.024 59.162

3 1.507 10.050 69.212

4 1.179 7.863 77.075

5 1.010 6.735 87.809

6 0.601 4.004 87.813

7 0.521 3.476 91.289

In this case, it is verified that the first factor explains 38.138% of the variability contained in the

data. Moreover, the graph from figure 76, which is defined the first two factors explains 59.162%, while

graphics from figures 77 and 78 explain 48.188% and 46.001%, respectively.

5.6.2 Buffers: 1000 meters

The correlation circle that regards the first 2 factors of the principal components analysis for

1000 meters buffers is represented in the following figure (figure 80).

Figure 80: Principal Components Analysis (axes F1 and F2) for 1000 meters buffers

Analysing the above figure significant differences from correlation circle with axis F1 and F2

correspondent to the 500 meters buffers (figure 76) aren’t noticed. Most of the variables remain to be

well represented, with brightness showing a positive correlation with sand and negative with wetness,

nitrogen, silt and organic carbon. The same groups of the soil variables that are near each other, and

therefore have a good relation with each other, are also observed.
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Moreover, phosphorus, as previously, isn’t well represented in the this set of axis as it is pro-

jected in the center of the circle. Figure 81 represents the correlation circle considering the third factor

instead of the second.

Figure 81: Principal Components Analysis (axes F1 and F3) for 1000 meters buffers

Analysing the above figure it is noted that phosphorus is better represented, once it is near the

circumference. For this reason it wasn’t necessary to represent the graphic with the following axes. As

it was observed in figure 78, for 500 meters buffers, there isn’t an evident correlation of this variable with

the others, whether it is positive or negative.

The scree plot associated with the principal components analysis of this set of buffer is rep-

resent is figure 82 with the eigenvalues and percentage of explained data for each factor presented in

table 17.

Figure 82: Principal Components Analysis

scree plot, 1000 meters buffer

Table 17: Eigenvalues and percentage of

explanation of the factors, 1000 meters buffers

F Eigenvalue % Explained % Accumulated

1 5.909 39.396 39.396

2 3.138 20.923 60.319

3 1.286 8.572 68.892

4 1.161 7.737 76.629

5 1.081 7.207 83.835

6 0.580 3.867 87.702

7 0.533 3.554 91.255
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For each factor the eigenvalues are slightly larger when comparing with the ones obtained for

the 500 meters buffers. Likewise, the percentage of explained data for F1 is larger, leading to lower

percentages for the remaining factors. Graphic of figure 80, that is defined by F1 and F2, explains

60.319% of the variability of the data and the graphic with axes F1 and F3 (figure 81) explains 47.968%.

5.6.3 Buffers: 1500 meters

Regarding the 1500 meters, figure 83 represents the correlation circle defined by axes F1 and

F2 of the principal components analysis.

Figure 83: Principal Components Analysis (axes F1 and F2) for 1500 meters buffers

The spatial distribution of the variable in the correlation circle is similar as in figures 76 and

80 where the axes are the same, therefore the positive and negative correlations previously observed

between the variables is also perceived when using 1500 meters buffers.

In this case the third factor was also combined with the first (figure 84) in order to have a better

representation of the variable phosphorus in the correlation circle.

Figure 84: Principal Components Analysis (axes F1 and F3) for 1500 meters buffers
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As for the 1000 meters buffers, phosphorus variable is well represented when combining factor

1 and 3. Moreover, once again, no evident correlation of phosphorus with other variables is observed.

Figure 85, represented below, corresponds to the scree plot of this principal components anal-

ysis, with the correspondent eigenvalues and percentage of data variability in table 18.

Figure 85: Principal Components Analysis

scree plot, 1500 meters buffer

Table 18: Eigenvalues and percentage of

explanation of the factors, 1500 meters buffers

F Eigenvalue % Explained % Accumulated

1 5.982 39.885 39.885

2 3.165 21.103 60.987

3 1.402 9.348 70.335

4 1.184 7.893 78.228

5 0.974 6.491 84.719

6 0.551 3.673 88.393

7 0.482 3.216 91.609

As observed in the table above the eigenvalue are the largest of the three set of buffers, as well

as the amount of data variability explained in the first factor (39.885%). Graphic of figure 83 which is

composed by F1 and F2 explains 60.987% of the data variability and graphic of figure 84 (axis F1 and

F3), explains 49.233%.
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5.7 Multiple Linear Regression

The final step of the statistical analysis is to perform a multiple linear regression analysis. In

this section, for each set of buffers, firstly, a predictive model for brightness was produced.

After, the same method was used to predict the concentrations of soil properties as a function

of the tasseled cap features. This allows to perceive if the resultant models are significant. For this,

the chemical properties that have a direct influence in the soil quality, such as nitrogen, organic carbon,

cation exchange capacity, phosphorus and potassium were used as dependent variables in the genera-

tion of the models. For the three set of buffers considered, only nitrogen and organic carbon produced

significant models, once that for the remaining properties no independent variable was selected, which

means that neither of the tasseled cap features explains the behaviour of those properties. Therefore,

only the models for nitrogen and organic carbon are presented.

5.7.1 Buffers: 500 meters

Dependent variable: Average Brightness

Figure 86 shows the variables selected by the model and the method used.

Figure 86: Variable used for the model (500 m buffers); Dependent variable: Average Brightness

In this case, nitrogen is the only variable select, so it can be concluded that off all the chemical

properties of the soil, nitrogen is the one that explains better the brightness values, i.e. brightness

depends more on the nitrogen than any other property.

Figure 87 presents the summary of the fitting quality of the model, or how well the regression

model fits the data.

55



Figure 87: Fitting quality parameters of the model (500 m buffers); Dep. variable: Average Brightness

R represents the multiple correlation coefficient, it measures the quality of prediction of the

dependent variable. For this case R=0.532.

The next column shows the value for R2, it represents the proportion of variance in the depen-

dent variable that can be explained by the independent variable. For this case, the linear regression

explains 28.3% of the variability of the dependent variable.

Figure 88: Linear regression equation coefficients (500 m buffers); Dependent variable: Average Bright-

ness

According to the obtained coefficients (figure 88), the general form of the equation that relates

brightness with nitrogen (g/kg) is:

Brightness = 239.538− 26.072N (3)

Dependent variable: Nitrogen

As nitrogen was demonstrated to be the chemical property that best explains brightness, in this

case it was used in the model as the dependent variable.

When considering only the average brightness, greenness and wetness as independent vari-

ables the selected ones are represented in figure 89.
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Figure 89: Variable used for the model (500 m buffers); Dependent variable: Nitrogen

The variables selected by the model are average brightness and average greenness. Bright-

ness is the variable that best explains nitrogen concentration behaviour, as it is to be expected once the

contrary is observed.

Figure 90 shows the fitting quality of the data.

Figure 90: Fitting quality parameters of the model (500 m buffers); Dependent variable: Nitrogen

In the above figure it can be observed that model 2, which considers average brightness and

greenness, fits the data better than model 1. For model 1, R value equals two 0.532, and 0.580 in model

2. Also, given the R2 in both models, model 1 has 28.3% of explanation of data variability, while model

2 has 33.6%.

When comparing the results of the model summary for model 2 of figure 90 with the results

from figure 87, R and R2 are the same. This can be explained by the fact the variables selected for the

models are same, the only different is that the depend variable in one model is the independent one in

the other and vice-versa.

The following figure (figure 91) represents the coefficients of the linear regression equations.
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Figure 91: Linear regression equation coefficients (500 m buffers); Dependent variable: Nitrogen

Equations (4) and (5), that refer to model 1 and 2 ,respectively, are bellow presented and are

the ones that best quantify nitrogen (g/kg) in function of the tasseled cap features.

Nitrogen = 3.622− 0.011(AverageBrightness) (4)

Nitrogen = 3.713− 0.013(AverageBrightness) + 0.062(AverageGreenness) (5)

Dependent variable: Organic Carbon

Organic carbon is also a property that strongly correlates with brightness. Considering that,

a multiple liner regression model of organic carbon as the dependent variable and the tasseled cap

features as independent ones was generated.

For this case only one variable was selected as it can be verified in figure 92.

Figure 92: Variable used for the model (500 m buffers); Dependent variable: Organic Carbon

Average brightness is the only variable that explains organic carbon variability, once the others

don’t add any information to the model.

The summary of the model quality parameters is represented in figure 93.
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Figure 93: Fitting quality parameters of the model (500 m buffers); Dependent variable: Organic Carbon

R and R2 values are similar to those obtained for the nitrogen model, however they are slightly

lower, inferring that nitrogen variation is better explained by the tasseled cap features than organic

carbon.

Figure 94 represents the model equation coefficients.

Figure 94: Linear regression equation coefficients (500 m buffers); Dependent variable: Organic Carbon

Considering the coefficients the equation that relates organic carbon (g/kg) with brightness is

the following:

OrganicCarbon = 44.129− 0.134(AverageBrightness) (6)

5.7.2 Buffers: 1000 meters

Dependent variable: Average Brightness

Considering the results with buffers of 1000 meters the variable that best explains brightness

values behaviour is, again, nitrogen (figure 95).
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Figure 95: Variable used for the model (1000 m buffers); Dependent variable: Average Brightness

R and R2 values (figure 96) are higher than for buffers with 500 meters. Therefore this model

has a better quality of prediction of brightness, with nitrogen, explaining 34.7% of brightness variability.

Figure 96: Correlation between variable of the model with the dependent variable (1000 m buffers);

Dependent variable: Average Brightness

The resultant coefficients are then presented in figure 97.

Figure 97: Linear regression equation coefficients (1000 m buffers); Dependent variable: Average Bright-

ness

The equation that relates brightness with nitrogen (g/kg) when applying buffers with 1000 me-

ters is:

Brightness = 243.941− 28.359N (7)
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Dependent variable: Nitrogen

For 1000 meters buffers both nitrogen and organic carbon were also used as dependent vari-

ables in the generation of linear regression models considering the independent variables the same as

for 500 meters buffers (brightness, greenness and wetness).

Regarding nitrogen, the selected variable for the model is average brightness, as demonstrated

in the following figure (figure 98). Figure 99 represents the model quality parameters.

Figure 98: Variable used for the model (1000 m buffers); Dependent variable: Nitrogen

Figure 99: Fitting quality parameters of the model (1000 m buffers); Dependent variable: Nitrogen

Such as for smaller buffers, the values o R and R2 when considering nitrogen the dependent

variable are the same as when considering brightness. In this case the variables used in the generation

of the model are the same for both models, as it was noticed in the previous sub-chapter.

According to the obtained coefficients (figure 100), equation 8 relates nitrogen (g/kg) with av-

erage brightness.

Figure 100: Linear regression equation coefficients (1000 m buffers); Dependent variable: Nitrogen

Nitrogen = 3.900− 0.012(AverageBrightness) (8)
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Dependent variable: Organic Carbon

When considering organic carbon as dependent variable, the independent variable selected by

the model is, as previously, average brightness (figure 101). The parameters that reflect its quality are

represented in figure 102.

Figure 101: Variable used for the model (1000 m buffers); Dependent variable: Organic Carbon

Figure 102: Fitting quality parameters of the model (1000 m buffers); Dependent variable: Organic

Carbon

R equals to 0.563 and 31.7% of organic carbon variability is explained by brightness, which is

slightly lower than for nitrogen.

The coefficients (figure 103) and consequent equation of organic carbon(g/kg) (9) are then

presented.

Figure 103: Linear regression equation coefficients (1000 m buffers); Dependent variable: Organic

Carbon

OrganicCarbon = 46.449− 0.147(AverageBrightness) (9)
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5.7.3 Buffers: 1500 meters

When using buffers with 1500 meters two models were generated, the first with nitrogen and

the second with nitrogen and phosphorus (figure 104).

Figure 104: Variables used for the models (1500 meters buffers)

Nitrogen is the variable that better explains brightness behaviour, once it was selected for model

1, however the variable phosphorus also adds information to the model.

The next figure (figure 105) refers to the model quality summary.

Figure 105: Fitting quality parameters of the model (1500 m buffers); Dependent variable: Average

Brightness

R and R2 show higher values for both models when comparing with smaller buffers. For model

1, R=0.625, which indicates a good level of prediction, and for model 2, R value is similar (0.659).

Considering the R2, nitrogen explains 39.1% of the brightness variability, while nitrogen combined with

phosphorus explains 43.5%.
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The coefficients for both models (figure 106) as the correspondent equations considering only

nitrogen (g/kg) and combined with phosphorus (mg/kg) (10 and 11) are presented bellow.

Figure 106: Linear regression equation coefficients (1500 meters buffers)

Brightness = 241.737− 26.096N (10)

Brightness = 242.326− 28.279N + 0.357P (11)

Dependent variable: Nitrogen

As for the previous set of buffers average brightness is the only variable of the tasseled cap

features that explains nitrogen variation, according to figure 107.

Moreover, the quality parameters of the model are also presented in figure 108.

Figure 107: Variable used for the model (1500 m buffers); Dependent variable: Nitrogen

Figure 108: Fitting quality parameters of the model (1500 m buffers); Dependent variable: Nitrogen
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The values of R and R2 are, once more, equal to the linear regression model where brightness

is the dependent variable.

The coefficients of the equation that relates nitrogen (g/kg) with average brightness (12) are

presented in figure 109.

Figure 109: Linear regression equation coefficients (1500 m buffers); Dependent variable: Nitrogen

Nitrogen = 4.499− 0.015(AverageBrightness) (12)

Dependent variable: Organic Carbon

Brightness is once more the only variable that explains organic carbon variation, once that,

according to figure 112, is the only one selected.

Figure 110: Variable used for the model (1500 m buffers); Dependent variable: Organic Carbon

For this model R equals 0.557 and 31% of organic carbon variability is explained by brightness,

as observed in figure 111.

Figure 111: Fitting quality parameters of the model (1500 m buffers); Dependent variable: Organic

Carbon
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Finally, the equation obtained from the model is presented along with the correspondents coef-

ficients (figure 112).

Figure 112: Linear regression equation coefficients (1500 m buffers); Dependent variable: Organic

Carbon

OrganicCarbon = 53.616− 0.178(AverageBrightness) (13)
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6 Discussion

The results of the statistical analysis for buffers of 1000 and 1500 meters showed better results

when compared to the other buffers instead, i.e. larger correlations between variables. Smaller buffers

are not representative of the sample and larger buffers contain unrelated pixels that are no longer corre-

lated with the samples. In this case, it can’t be concluded that buffers of 1500 resulted in better results

than buffers of 1000 meters and vice-versa. Although the models performed from the multiple linear re-

gression seemed to be more significant for the 1500 meters buffers, the principal components analysis

proved that while some soil properties correlate better with brightness for one set of buffers, others show

better correlation for the other.

From the principal components analysis it was concluded that some soil properties are strongly

correlated with each other. It is the case of organic carbon, silt and nitrogen.

In soils, nitrogen occurs in both organic and inorganic forms. A portion of nitrogen exists

in the soil through processes of atmospheric, industrial and biological fixation (Neves, 2009). In this

case, as the study is performed in a natural area, it is assumed that there isn’t application of industrial

products, such as fertilizers. The largest part of organic nitrogen exists in the soil in the form of organic

matter, through decomposition of animals and plants remains (Lamb et al., 2014). Organic matter, as

represented in figure 1 is composed by both organic carbon and nitrogen (Priblyl, 2010; Neves, 2010).

This means that the existence of organic carbon, implies the existence of nitrogen, even if in smaller

amount. This explains the strong correlation that is observed between both properties.

Both pH in water and in CaCl2 correlate with CaCO3, as well K with clay. However, given the fact

that both clay and CaCO3 have, for almost all samples, concentrations near zero, the existent correlation

may not be real, as the there are some samples with very high concentrations value that influence the

results.

Considering brightness, the first tasseled cap band, the one that contains most of the informa-

tion regarding soil, it shown a good correlation with chemical soil properties organic carbon (-0.5565)

and nitrogen (-0.6250). Demonstrating that, when organic carbon and nitrogen in soil increase bright-

ness decreases. Which means that darker areas (low brightness) have higher concentrations of organic

matter and vice versa, as Rossel et al. (2006) concluded.

Silt, unlike organic carbon and nitrogen, is a physical property of the soils. It is part of its texture

along with sand and clay. Due to the fact that the majority of the samples has low percentage of clay, this

property isn’t well represented, as it was concluded in the principal components analysis. Therefore the

soil in the study area is mainly composed by silt and sand. Given the scarcity of clayey soils, silt shows

a good positive correlation with organic carbon and nitrogen. On the other hand, being sand the most

chemical inactive soil, it explains why sand has a strong positive correlation with brightness, denoting

that sandy soils have lower concentrations of chemical compounds and therefore have less potential.
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This result proves that the soil type has an influence in the quality and potentiality of the land it self.

When performing the multiple linear regression, it was concluded that from the soil chemical

properties, nitrogen is the one that best explains the variation of brightness for the three buffers sets.

For the 500 and 1000 meters buffers, any of the remaining soil variables add information to the models,

whereas for the 1500 meters buffers, phosphorus also influences brightness variability. This influence

is very low compared to nitrogen, once that the coefficient for nitrogen is 28.279 and for phosphorus is

0.357. However, when phosphorus is added to the model the fitting parameters are the highest (R=0.659

and R2=0.435).

Nitrogen and organic carbon, both performed significant models when considered as depen-

dent variables. It was observed that the two variables are well explained by brightness, although green-

ness also adds information to the nitrogen model for the 500 meters buffers. Between those two variable,

nitrogen generated models that fit better the data than organic carbon, which is in agreement with what

is observed when brightness is modelled at the expenses of the chemical properties of the soil. The fact

that nitrogen and organic carbon have the highest correlation values with brightness explains why only

for these two properties independent variables were selected.

Nitrogen, as explained before, is perhaps the most important nutrient for soil growth, therefore

its presence in the soil is a good indicator of soil quality (FAO, 2016). Likewise, phosphorus is important

in the development of roots, flowers, seeds and fruits.

Organic matter suffers mineralization processes, that consists on its transformation in simple

compounds. These compounds are Ca+
2 , K+, NH+

4 , PO2−
4 ,NO−

3 , CO2, H2O (Neves, 2010). Plants

assimilate nitrogen through the form of ammonium (NH+
4 ) and nitrate (NO−

3 ) (Xu et al., 2012). Being

brightness a good indicator of nitrogen in soil, it is, consequently an index of organic matter, due to

the relation between organic carbon and nitrogen. Therefore, soil quality can be perceived when using

brightness as an index.

Nevertheless, when generating a linear regression model, although the quality of model and the

coefficient of determination (R2) improve when increasing the buffer sizes, the obtained equations are

not fully representative of the results, as the highest R2 has the value of 0.435, meaning that the model

only explains 43.5% of brightness variability. Therefore, using brightness as a quantitative indicator will

generate results with high level of uncertainty.

Moreover, the obtained results and consequent conclusions in this study apply only for bare

soils in natural areas. Dense or even scarce vegetation will prevent radiation to reach the soil, affecting

brightness. The same way, land use of agriculture and urban type also constitute a limitation to the

correct study of soil properties through brightness. The use of fertilizers and pesticides in agriculture, as

well as the presence of cattle directly influence the chemical composition of soil, specially the amount

of organic matter. Furthermore soils in urban areas are mostly covered by man made infrastructures

and, at the same time, the appearance of shadows is intensified by the existence of tall buildings. For
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these reasons, a set of factors are necessary to be taken into account when studying soil properties with

remote sensing techniques.
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7 Conclusions

The importance of analysis of soil properties using remote sensing has been increasing due

to growing need of better management of the services that ecosystems deliver. The steady population

growth has led to intensive land exploitation and when associated with adverse climate causes soil to

degrade.

The capacity to cover larger and further areas with limited physical access makes remote sens-

ing an increasingly essential tool for decision makers with a very wide range of applications.

In this study it was intended to analyse the topsoil properties of the semi arid region of Portugal,

Alentejo and Algarve, using remote sensing techniques. For this, two Landsat datasets captured in 21st

August of 2009 were used. Through the application of the tasseled cap transformation it was possible to

analyse the spatial variation of brightness, greenness and wetness over the study area. It was concluded

that brightness is lower in areas where wetness, indicator of soil moisture, is higher, this occurs most

notably south and north extremes within the study area.

Using the samples collected in natural areas under the 2009 LUCAS survey it was possible

to comprehend the correlation between brightness and physical and chemical topsoil properties. Con-

sidering only areas with NDVI between 0 and 0.1, and natural land use, buffers of 500, 1000 and 1500

meters were generated around each sample so that concentrations would be compared with a set of pix-

els instead of one. Sand, nitrogen and organic carbon have strong negative correlation with brightness,

being nitrogen the variable that best explains brightness behaviour.

The application of a filter to the brightness band in order to calculate the average value of

the pixels proved that using brightness to assess soil properties without conditioning to land use and

vegetation density leads to inconclusive results. Moreover, when only natural areas with low vegetation

cover are considered the results were solid and reliable.

Nitrogen and organic carbon strongly correlate with each other and, as discussed before, given

the fact that both are constituents of organic matter, they are good indicators of soil fertility, since it

has the ability to store nutrients essential for plants. It is then concluded that soil brightness is a good

qualitative indicator of soil quality: darker areas have larger amount of organic matter and consequently

better soil quality than brighter areas.

However there are also disadvantages associated when applying this technique. Remote sens-

ing is highly dependent on available datasets, weather and sensor calibration. Moreover, being soil the

subject to be studied it is often covered or disturbed by man practices. This may cause difficulties in

analysing the results. Therefore proximal sensing or even sample collecting make good support for

remote sensing.

Soil brightness appears as a qualitative and/or quantitative indicator that has the potential to
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help decision makers understand which areas have the highest potential to be explored and which need

to be protected and more sustainably managed.

For future researches it is proposed the application of the tasseled cap transformation to differ-

ent regions with the same conditions of aridity that may have different land uses and soil types, and, at

the same time, have enough soil data to be used for result validation. This way the outcome could be

compared with what was obtained and concluded in this study, and maybe generalized.
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INE & PORDATA (2016). Valor acrescentado bruto das empresas não financeiras: total e por
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Neves, M. O. (2011). Constituintes do Solo I [Power Point Slides]. Pedology lectures, academic

year 2013/2014. Instituto Superior Técnico, Universidade de Lisboa.
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