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Resumo

O objetivo desta dissertação é investigar o pricing de opções financeiras sob o modelo 2-hipergeomé-

trico de volatilidade estocástica. Este é um modelo analiticamente tratável que foi recentemente intro-

duzido com o intuito de superar uma das principais limitações do famoso modelo de Black e Scholes:

este não reproduz os efeitos de volatility smile e de volatility skew que habitualmente estão presentes

nos preços efetivamente observados no mercado de opções.

Depois de uma breve revisão da teoria básica de pricing de opções sob volatilidade estocástica,

usamos o método de perturbação regular da análise assintótica de equações diferenciais parciais

para deduzir uma fórmula explı́cita e facilmente calculável para a obtenção de preços aproximados

para opções de barreira — uma das categorias mais populares de opções exóticas — sob o modelo

2-hipergeométrico de volatilidade estocástica. A convergência assintótica do método é provada sob

condições de regularidade apropriadas, e um método multi-etapa para melhorar a qualidade da aproxi-

mação é também discutido.

Palavras-chave: Teoria de pricing de opções, Opções de barreira, Volatilidade estocástica,

Análise assintótica, Método de perturbação regular.
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Abstract

The purpose of this thesis is to investigate the pricing of financial options under the 2-hypergeometric

stochastic volatility model. This is an analytically tractable model which has recently been introduced

as an attempt to tackle one of the most serious shortcomings of the famous Black and Scholes option

pricing model: the fact that it does not reproduce the volatility smile and skew effects which are commonly

seen in observed price data from option markets.

After a review of the basic theory of option pricing under stochastic volatility, we employ the regular

perturbation method from asymptotic analysis of partial differential equations to derive an explicit and

easily computable approximate formula for the pricing of barrier options — one of the most popular types

of exotic options — under the 2-hypergeometric stochastic volatility model. The asymptotic convergence

of the method is proved under appropriate regularity conditions, and a multi-stage method for improving

the quality of the approximation is also discussed.

Keywords: Option pricing theory, Barrier options, Stochastic volatility, Asymptotic analysis, Regu-

lar perturbation method.
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Chapter 1

Introduction

Barrier options, which are one of the oldest types of exotic options, have become increasingly popular

in the financial derivative industry because they allow for much more flexible payoff schemes than plain

vanilla options. It is thus important to construct good barrier option pricing models which are able to

reproduce the features observed in real market data.

The simplest model for the pricing of barrier options, and financial derivatives in general, is the Black

and Scholes model, in which the price of all the standard barrier call and put options can be written in

closed form. However, it is widely known that the strong assumptions of this model do not hold true in

the actual financial market. In particular, the constant volatility assumption is clearly incompatible with

the so-called smile and skew patters which are generally present in empirical option prices.

A natural way to address this significant issue is to introduce randomness in the volatility. For this

reason, option pricing under stochastic volatility has been the subject of a great deal of research in

recent years. In this thesis we focus on the 2-hypergeometric stochastic volatility model, an analytically

tractable model which was introduced by Da Fonseca and Martini [1] as a model which ensures that

the volatility is strictly positive — this is an important property which is not present in some other well-

established stochastic volatility models. In a very recent paper, Privault and She [2] demonstrated that,

under this model, a closed-form asymptotic vanilla option pricing formula can be determined through

a regular perturbation method. This is a notable result because their formulas are analytically very

simple, which is rarely the case in models with stochastic volatility: as discussed by Zhu [3], the higher

complexity of these models usually yields the need for rather sophisticated numerical implementations.

The pricing of exotic options under the 2-hypergeometric model has to our knowledge never been

studied in the literature. Motivated by this, we intend to extend the regular perturbation approach of

Privault and She in order to derive an asymptotic pricing formula for barrier-type options.

After going through some essential theoretical notions, we will explain that the key modification is to

introduce a Dirichlet boundary condition in the Cauchy problems which define each of the terms in the

asymptotic expansion. We will show that, for a given class of nonconstant barrier functions, an explicit

asymptotic barrier option pricing formula can indeed be obtained and its asymptotic convergence can

be proved with the help of the Feynman-Kac theorem for Cauchy-Dirichlet problems for parabolic partial
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differential equations (PDEs). As we will see, the latter will be a fundamental tool throughout this thesis.

Given that in general our class of barrier functions does not include constant functions, the choice of a

nonconstant barrier function which approximates a certain constant barrier level will also be discussed.

This thesis is structured as follows:

• Chapter 2 provides a brief introduction to option pricing theory, focusing on barrier options and on

stochastic volatility models. The first section familiarizes the reader with both the martingale and

the PDE approaches for the pricing of vanilla options. In Section 2.2 we define barrier options,

we discuss how the martingale and PDE approaches can be extended to this class of options,

and we formulate a version of the Feynman-Kac theorem which allows us to interchange between

these two pricing approaches. Section 2.3 motivates the study of stochastic volatility models and

indicates how the pricing formulas become modified under these models. Finally, Section 2.4 gives

a brief review of asymptotic expansion techniques for option pricing under stochastic volatility, with

emphasis on the singular and regular PDE perturbation methods.

• In Chapter 3 we address the problem of option pricing under the 2-hypergeometric stochastic

volatility model. Section 3.1 quickly summarizes the asymptotic vanilla option pricing approach of

Privault and She [2]. Then we turn our attention to the barrier option pricing problem which is the

central subject of this work: our asymptotic pricing theory for barrier-type options is developed in

Section 3.2.

• In Chapter 4 we summarize the main conclusions of our work and we indicate some possible

directions for further research.

• Appendix A collects some auxiliary computations from the derivation of the explicit expression for

our asymptotic pricing formula.

• In Appendix B we derive several growth estimates which are necessary for the proofs of our results.

2



Chapter 2

Background

2.1 Basic concepts in option pricing

In this section we will briefly present the fundamental theoretical concepts and results which lead to

the mathematical formulation of the price of a financial option under a Markovian diffusion model. We

closely follow Chapter 2 of Jeanblanc et al. [4], as well as Chapter 3 of Kwok [5].

We consider a model with d financial assets which are traded in continuous time, and whose prices

S1, . . . , Sd are adapted Itô processes modeled by the diffusion equations

dSit = bi(t, St)S
i
t dt+

n∑
j=1

σij(t, St) dW
j
t , i = 1, . . . , n (2.1)

where W 1, . . . ,Wn are independent Brownian motions. The underlying filtered probability space is

(Ω,F , {Ft}t≥0,P), where Ft = σ
(
W i
u, i = 1, . . . , n, 0 ≤ u ≤ t

)
. Moreover, we will make the following

standard assumptions on the financial market:

1. Trading takes place continuously in time;

2. The riskless interest rate r(t) is a deterministic function of time;

3. There are neither transaction costs nor taxes in buying and selling the assets and the options;

4. The assets are perfectly divisible;

5. Short-selling of securities is allowed;

6. There are no riskless arbitrage opportunities.

A very important notion in option pricing theory is that of equivalent martingale measure, which we

now define.

Definition 2.1. A probability measure Q on the space (Ω,F) is said to be an equivalent martingale

measure if:

(i) Q is equivalent to P, i.e, for any A ∈ F , P(A) = 0 if and only if Q(A) = 0;

(ii) The discounted asset prices S̃it := e−
∫ t
0
r(u) duSit are martingales under Q.
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Recall that a portfolio is a (d+ 1)-dimensional predictable process {πt = (π0
t , . . . , π

d
t )}t∈[0,T ], where

πit is the number of shares of asset i held at time t, and T is the predetermined maturity date. Here the

zeroth asset is the riskless asset, whose deterministic price is given by S0
t = e

∫ t
0
r(u) du. The value of the

portfolio π at time t is defined by Vt(π) =
∑d
i=0 π

i
tS
i
t . The portfolio is said to be self-financing if

Vt(π) = V0(π) +

d∑
i=0

∫ t

0

πiudS
i
u

which means that, after the initial investment at time t = 0, no money is added or withdrawn from the

savings account.

We are now ready to state the definition of a complete market.

Definition 2.2. We say that the market is complete if any contingent claim (i.e, any FT -measurable

random variable) is the value at time T of some self-financing portfolio.

Now we state a theorem (Proposition 8.2.1 of Musiela and Rutkowski [6]) which gives us sufficient

conditions for the completeness of the Markovian diffusion model.

Theorem 2.3. Assume that the class of equivalent martingale measures is nonempty. Then, the follow-

ing properties are equivalent:

(i) The Markovian diffusion model (2.1) is complete;

(ii) The inequality d ≥ n holds and the volatility matrix σ(t, St) has full rank for Lebesgue almost every

t ∈ [0, T ], with probability 1;

(iii) A unique equivalent martingale measure Q exists.

The martingale approach for the pricing of European options is based on the following theorem,

whose proof can be found in Subsection 2.2.2 of Jeanblanc et al. [4].

Theorem 2.4. Assume that d = n, the assets pay no dividends, the matrix σ(t, St) =
[
σij(t, St)

]
i,j=1,...,n

is almost surely invertible for all t, and the vector θ(t, St) = σ−1(t, St)(µ(t, St) − r(t)1) (which is called

the risk premium) is almost surely bounded. Then all the properties in the previous theorem hold.

Furthermore, if x = (x1, . . . , xd) are the observed asset prices at time t ∈ [0, T ], then the arbitrage-free

price at time t of any contingent claim Y is given by

f(t, x) = e−
∫ T
t
r(u) du EQ

[
Y
∣∣ St = x

]
.

The dynamics of S under the unique equivalent martingale measure Q are given by

dSit = r(t)Sit dt+

n∑
j=1

σij(t, St)S
i
t dŴ

j
t , i = 1, . . . , n

where Ŵ 1, . . . , Ŵ d are independent Q-Brownian motions.

The next theorem, which is proved in Subsection 2.2.3 of Jeanblanc et al. [4], provides us an alter-

native method for the computation of the price of a path-independent European option (such as a plain

4



vanilla call or put) which consists in finding the solution for a PDE which satisfies a suitable terminal

condition:

Theorem 2.5. In the conditions of Theorem 2.4, assume that Y = φ(ST ). If the observed asset price

is St = x, then the price f(t, x) of the contingent claim Y at time t ∈ [0, T ] solves the terminal value

problem

∂f

∂t
+

1

2

d∑
i,j=1

xixj
∂2f

∂xi∂xj

d∑
k=1

σikσjk(t, x) + r(t)

d∑
i=1

xi
∂f

∂xi
− r(t)f = 0 (2.2)

f(T, x) = φ(x). (2.3)

Remark 2.6. Theorems 2.4 and 2.5, which are valid under the assumption that the assets pay no divi-

dend, can be adapted without difficulties to the case where the assets have a continuously paid deter-

ministic dividend yield rate. As shown in Subsection 3.2.1 of Musiela and Rutkowski [6], in the case of

a single asset (d = n = 1) with dividend yield rate q(t), the martingale formulation of the price of a con-

tingent claim Y is still f(t, x) = e−
∫ T
t
r(u) du EQ

[
Y
∣∣ St = x

]
, but the dynamics of S under the equivalent

martingale measure Q are now given by

dSt =
(
r(t)− q(t)

)
St dt+ σ(t, St)St dŴt.

Correspondingly, the PDE formulation for the path-independent option is now given by the equation

∂f

∂t
+

1

2
σ2(t, x)x2

∂2f

∂x2
+
(
r(t)− q(t)

)
x
∂f

∂x
− r(t)f = 0 (2.4)

whose terminal condition is the same.

For the proof of the equivalence of the martingale and the PDE approaches to the pricing of contin-

gent claims, we can rely on the Feynman-Kac theorem, which is a classical theorem on the stochastic

representation of solutions of parabolic PDEs. For completeness, let us state a version of this theorem

whose proof can be found in Section 6.5 of Friedman [7]:

Theorem 2.7. Assume that:

(i) There exists a constant θ > 0 such that

d∑
i,j=1

aij(t, x)ξiξj ≥ θ|ξ|2 for all (t, x) ∈ [0, T ]× Rd, ξ ∈ Rd;

(ii) The functions aij(t, x), bi(t, x) are bounded in [0, T ] × Rd and uniformly Lipschitz continuous in

(t, x) in compact subsets of [0, T ]× Rd;

(iii) The functions aij(t, x) are Hölder continuous in x, uniformly with respect to (t, x) in Rn × [0, T ];

(iv) The function c(t, x) is bounded in [0, T ] × Rd and uniformly Hölder continuous in (t, x) in compact

subsets of [0, T ]× Rd;

(v) The function h(t, x) is continuous in [0, T ] × Rd, Hölder continuous in x uniformly with respect to

(t, x) ∈ [0, T ]× Rd, and |h(t, x)| ≤ C(1 + |x|k) in [0, T ]× Rd for some constants C, k > 0;

5



(vi) The function φ(x) is continuous in Rd and |φ(x)| ≤ C(1 + |x|k) in Rd for some constants C, k > 0.

Then, the unique solution u of the Cauchy problem

∂u

∂t
+

1

2

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
+ c(t, x)u = h(t, x) in [0, T ]× Rd

u(T, x) = φ(x) in Rd

satisfying

u(t, x) ≤ C(1 + |x|k) for some constants C, k > 0

is given by

u(t, x) = E
[
e
∫ T
t
c(u,Xu) duφ(XT )

∣∣∣ Xt = x
]
− E

[∫ T

t

e
∫ u
t
c(s,Xs) dsh(u,Xu) du

∣∣∣∣ Xt = x

]
.

Here X is the d-dimensional Markovian diffusion process with dynamics

dXi
t = bi(t,Xt) dt+

d∑
j=1

σij(t,Xt) dW
j
t , i = 1, . . . , d. (2.5)

where the matrix σ(t, x) =
[
σij(t, x)

]
i,j=1,...,d

is the nonnegative definite square root of the matrix

a(t, x) =
[
aij(t, x)

]
i,j=1,...,d

.

We point out that many popular models in mathematical finance do not comply with the strong as-

sumptions of the above Feynman-Kac theorem. For instance, the boundedness condition in (ii) fails in

the context of the famous Black and Scholes model (where d = 1, a(t, x) = σ2x2, µ(t, x) = rx and

r, σ > 0 are constants). However, in most cases such difficulties can be overcome if we use a general-

ized version of the Feynman-Kac theorem. (See e.g. Theorem 1 of Heath and Schweizer [8], as well as

the discussion preceding it.)

2.2 Barrier options

2.2.1 What is a barrier option?

Single-asset barrier options are one of the simplest types of the so-called path-dependent options. The

fundamental distinguishing characteristic between vanilla and barrier options is the fact that the payoff

of the latter does not depend only on the value of the underlying asset at maturity, but also on whether

the path of the asset’s price touches a given barrier level during the lifetime of the option.

Options of the barrier type are nowadays quite popular in over-the-counter markets. As reported by

Kwok [5], these options became popular because both buyers and sellers can benefit from the barrier

feature: for instance, an up-and-out call (defined on Table 2.1 below) allows the buyer to reduce the

premium of the option by not paying to cover the unlikely scenario of a large increase in the asset price,

while it insures the seller against unlimited liabilities when the underlying asset’s value rises strikingly.

Barrier options subdivide into two categories: knock-out barrier options, which become worthless if

the asset price hits the barrier before maturity, and knock-in barrier options, which only come to exis-

tence if the asset price hits the barrier prior to the expiration date. Moreover, some barrier options include

6



Table 2.1: The eight types of standard European barrier options

European barrier option Condition Payoff value Payoff time

Down-and-in call
St ≤ H for some 0 ≤ t ≤ T (ST −K)+ T (maturity)

St > H for all 0 ≤ t ≤ T R T (maturity)

Up-and-in call
St ≥ H for some 0 ≤ t ≤ T (ST −K)+ T (maturity)

St < H for all 0 ≤ t ≤ T R T (maturity)

Down-and-in put
St ≤ H for some 0 ≤ t ≤ T (K − ST )+ T (maturity)

St > H for all 0 ≤ t ≤ T R T (maturity)

Up-and-in put
St ≥ H for some 0 ≤ t ≤ T (K − ST )+ T (maturity)

St < H for all 0 ≤ t ≤ T R T (maturity)

Down-and-out call
St > H for all 0 ≤ t ≤ T (ST −K)+ T (maturity)

St ≤ H for some 0 ≤ t ≤ T R(t) t (time of hit)

Up-and-out call
St < H for all 0 ≤ t ≤ T (ST −K)+ T (maturity)

St ≥ H for some 0 ≤ t ≤ T R(t) t (time of hit)

Down-and-out put
St > H for all 0 ≤ t ≤ T (K − ST )+ T (maturity)

St ≤ H for some 0 ≤ t ≤ T R(t) t (time of hit)

Up-and-out put
St < H for all 0 ≤ t ≤ T (K − ST )+ T (maturity)

St ≥ H for some 0 ≤ t ≤ T R(t) t (time of hit)

a rebate, i.e, a compensation which is paid to the holder of a knock-out option when it is canceled, or to

the holder of a knock-in option in case the barrier is not hit before maturity.

Table 2.1 describes the eight types of standard European barrier options. Here S is the asset price

process, K is the strike, H is the barrier level, and R is the (possibly time-dependent) rebate.

According to Section 3.6 of Jeanblanc et al. [4], the barrier options in Table 2.1 can furthermore be

classified as regular or reverse barrier options, depending on whether they are out or in the money

when the barrier is reached, respectively. For instance, a down-and-out call option is a regular barrier

option if K ≥ H; otherwise, it is a reverse barrier option.

A portfolio made of one (zero-rebate) European in-option and one European out-option, both with

the same barrier, strike and maturity, is clearly equivalent to a European plain-vanilla option. Therefore,

there is no loss of generality if only out-options are considered in barrier option pricing problems —

by non-arbitrage arguments, the price of the corresponding in-option is then obtained as the difference

between the price of the corresponding vanilla option and the price of the out-option. This is the so-called

in-out parity relation for barrier options.

If in Table 2.1 we replace the payoffs (ST − K)+ or (K − ST )+ by some function φ(ST ), we obtain

a general (down-and-in, up-and-in, down-and-out or up-and-out) European barrier option. Some impor-

tant particular cases (e.g. for down-and-in options) are the binary down-and-in call, where φ(ST ) =

1{ST>K}, the binary down-and-in put, where φ(ST ) = 1{ST<K}, and the down-and-in bond, where

φ(ST ) = 1. Another possible generalization consists in replacing the constant barrier H by a time-

dependent barrier H(t) — such options are known as time-dependent barrier options.

Replacing the standard one-sided barriers by two-sided barriers, we obtain the so-called double

7



barrier options, which get knocked in or out when the price of the underlying asset hits either the down

or the up barrier. For instance, a double knock-out call has a payoff (ST −K)+ if the price of S does

not hit neither the upper nor the lower barrier; otherwise, a rebate is paid to the holder. The value of the

rebate can depend on which of the boundaries was first hit by the underlying asset; moreover, as in the

case of single barrier options, any payoff function φ(ST ) can be used to define a double barrier option.

2.2.2 Barrier option pricing theory

Under the Markovian diffusion model introduced in Section 2.1 (where we shall now assume, for sim-

plicity, that d = n = 1), Theorem 2.4 allows us to define the price of, say, a down-and-out barrier option

with barrier level H and payoff at maturity equal to φ(ST ) as

fdo(t, x) = e−
∫ T
t
r(u) du EQ

[
φ(ST )1{τtH≥T}|St = x

]
(2.6)

where τ tH := inf{u ≥ t : Su ≤ H} and dSt = r(t)St dt + σ(t, St)St dŴt under the measure Q. The

martingale approach to barrier option pricing consists in computing the expectation in (2.6).

As in the case of path-independent options, the price of a barrier option can also be formulated

through a PDE approach. Indeed, as in Theorem 2.5, the price of the down-and-out barrier option must

satisfy the (one-dimensional version of) PDE (2.2) with the terminal condition (2.3), but now these should

be combined with the boundary condition fdo(t,H) = 0, t ∈ [0, T ] so as to take care of the knock-out

barrier. That is, fdo(t, x) is the solution of the terminal and boundary value

∂fdo
∂t

+
1

2
σ2(t, x)x2

∂2fdo
∂x2

+ r(t)x
∂fdo
∂x
− r(t)fdo = 0, x > H, t ∈ [0, T ]

fdo(T, x) = φ(x), x > H,

fdo(t,H) = 0, t ∈ [0, T ].

The above two formulations of the barrier option price are valid under the assumption that the asset pays

no dividends. In the deterministic dividend yield scenario, the PDE for fdo(t, x) is instead given by (2.4),

whereas the terminal and boundary conditions are not altered.

The adaptation to time-dependent barrier options is straightforward: we just need to redefine the

stopping time in (2.6) as τ tH := inf{u ≥ t : Su ≤ H(u)} and to replace the boundary condition of the

PDE problem by fdo(t,H(t)) = 0.

In order to demonstrate the equivalence of the martingale and PDE barrier pricing approaches,

we can employ the following theorem on the stochastic representation of solutions of Cauchy-Dirichlet

problems for parabolic PDEs:

Theorem 2.8. Let D ⊂ Rd be an open, connected and possibly unbounded set whose boundary ∂D has

the outside strong sphere property, and let λ ∈ (0, 1). Assume that:

(i) For all n > 1, the functions σij(t, x) and bi(t, x) are λ-Hölder continuous in t and Lipschitz continu-

ous in x in the domain {(t, x) : 0 ≤ t ≤ T, |x| ≤ n};

(ii) There existsK1 such that
∑d
i,j=1|σij(t, x)|2+

∑d
i=1|bi(t, x)|2≤ K1

(
1+|x|2

)
for all (t, x) ∈ [0, T ]×Rd;
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(iii) Let B ⊂ D be any bounded, open, connected set. There exists θ(B) > 0 such that

d∑
i,j=1

aij(t, x)ξiξj ≥ θ(B) |ξ|2 for all (t, x) ∈ [0, T ]×B, ξ ∈ Rd,

where a(t, x) =
[
aij(t, x)

]
i,j=1,...,n

:= σσ′(t, x);

(iv) The functions c(t, x) and h(t, x) are λ-Hölder continuous in t and Lipschitz continuous in x in the

domain {(t, x) : 0 ≤ t ≤ T, x ∈ D, |x| ≤ n};

(v) There exists c0 ≥ 0 such that c(t, x) ≤ c0 for all (t, x) ∈ [0, T ]×D;

(vi) There exist constants K2, k > 0 such that |h(t, x)| ≤ K2

(
1 + |x|k

)
for all (t, x) ∈ [0, T ]×D;

(vii) The functions φ(x) and ϕ(t, x) are continuous and satisfy the consistency condition φ(x) = ϕ(T, x),

x ∈ ∂D;

(viii) There exist constants K3, k > 0 such that |φ(x)|+ |ϕ(t, x)| ≤ K3

(
1 + |x|k

)
for all (t, x) ∈ [0, T ]×D.

Then, the unique solution u ∈ C([0, T ]×D) ∩ C1,2,λ
loc ((0, T )×D) of the Cauchy-Dirichlet problem

∂u

∂t
+

1

2

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂u

∂xi
+ c(t, x)u = h(t, x) (t, x) ∈ [0, T ]×D

u(T, x) = φ(x) x ∈ D

u(t, x) = ϕ(t, x) (t, x) ∈ [0, T ]× ∂D

is given by

u(t, x) =E
[
e
∫ τt
t
c(u,Xu) duϕ(τt, Xτt)1{τt<T}

∣∣∣ Xt = x
]

+ E
[
e
∫ T
t
c(u,Xu) duφ(XT )1{τt≥T}

∣∣∣ Xt = x
]

− E
[∫ τt

t

e
∫ u
t
c(s,Xs) dsh(u,Xu) du

∣∣∣∣ Xt = x

]
.

Here τt = inf{u ≥ t : Xu /∈ D}, X is the diffusion process with dynamics (2.5), and C1,2,λ
loc ((0, T ) ×D)

is the space of all functions such that they and all their derivatives up to the second order in x and first

order in t are λ-Hölder continuous. Furthermore, u satisfies the growth estimate

sup
t∈[0,T ]

|u(t, x)| ≤ C(c0,K1,K2,K3, k)
(
1 + |x|k

)
, x ∈ D.

This Feynman-Kac type theorem is proved in an article by Rubio [9]. (As a matter of fact, the theorem

of Rubio is formulated for initial and boundary value problems, but the adaptation to problems with

terminal instead of initial conditions is trivial: one only needs to perform the change of variables u =

T − t.)

It is also worth mentioning that the hedging approach is another method which can also be used

for determining the price of a barrier option. This approach consists in deducing the hedging strategy for

the barrier option, because it can be used to obtain the price of the barrier option through non-arbitrage

arguments. We refer the interested reader to Section 3.6 of Jeanblanc et al. [4].

Remark 2.9. Though our barrier pricing model assumes that the barrier is monitored continuously, in

actual practical implementations the barrier monitoring procedures can be only performed at discrete
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times (e.g. hourly, daily or weekly) — which leads to the so-called discrete barrier options. The problem

of discrete barrier option pricing is clearly less analytically tractable than its continuous counterpart and

goes beyond the scope of this work. For a brief introduction to this topic, see Subsection 4.1.4 of Kwok

[5] and the references therein.

Here we have restricted the discussion to barrier options of the European type, which can only be

exercised at maturity. When one adds to these options an early exercise right, an American barrier

option is obtained. An example is the American down-and-out call, which has payoff (Sτ −K)+ when

it is (optimally) exercised at time τ ∈ [0, T ], and loses its value if the down barrier H is touched by the

asset price. A discussion of pricing models for American barrier options can be found in Subsection

5.2.4 of Kwok [5].

2.3 Stochastic volatility models

2.3.1 Smiles, skews and stochastic volatilities

We start this section with the definition of implied volatility, as formulated by Fouque et al. [10].

Definition 2.10. Let Cobs be the observed price, at time t, of a European call option with strike price K

and maturity T . The implied volatility I is defined as the value of the volatility parameter for which the

price of the option under the Black and Scholes framework matches the observed price of the option,

i.e, I is the solution of

fBS(t, x;K,T ; I) = Cobs

where fBS(t, x;K,T ;σ) denotes the Black and Scholes price at time t and for an initial underlying asset

value x of a European call with maturity T , strike K and volatility σ.

The implied volatility is well-defined due to the monotonicity of the Black and Scholes formula with

respect to the volatility parameter.

If the Black and Scholes option pricing model were realistic, then I would be the same for all Euro-

pean option contracts traded in the market. But, according to Fouque et al. [10], the option price data

observed from financial markets shows that in general I = I(t, x;K,T ). In particular, when market

prices are used to construct a plot of I(K) against the strike K for fixed t, x and T , the resulting curves

usually show the so-called smile or skew effects. The first corresponds to the case where the curve is

U-shaped with a minimum at K ≈ x, whereas the skew effect refers to the situation where the curve is

downward-sloping.

Such smile and skew patterns make clear that some deviation from the Black and Scholes framework

must be introduced if one wants that the option pricing model reproduces the actual market prices.

According to Lipton [11], the simplest approach is to switch to the local volatility model, which assumes

that the underlying asset price is no longer a geometric Brownian motion with constant drift r and volatility

10



σ, but instead it follows the stochastic differential equation (SDE)

dSt = rSt dt+ σ(t, St)St dWt

where σ(t, St) is the local volatility function, which should be chosen in a way that reproduces the

implied volatilities which are observed in the market.

If all European option prices were available from the market, then there would be no difficulties in

choosing the local volatility function because, as shown in Subsection 10.2.4 of Lipton [11], the latter can

be written explicitly in terms of the European call price function and its derivatives. However, in practice

the market prices of options are only known for a limited number of different maturities and strikes, and

the construction of the local volatility function from the discrete data turns out to be very sensitive to the

choice of interpolation scheme.

As mentioned by Kwok [5], the distribution of the returns of the underlying asset typically indicates a

mixture of distributions with different variances. Hence, for the purpose of matching the market data, a

natural alternative strategy is to model the volatility as a stochastic process, which leads to a stochastic

volatility model. The most popular stochastic volatility models are of the form

dSt = µ(t, St)St dt+ h(Vt)St dW
1
t

dVt = a(t, Vt) dt+ b(t, Vt) dW
∗
t

(2.7)

where W 1 and W ∗ are Brownian motions with correlation ρ 6= ±1, and h is a smooth, positive and

increasing function. (More generally, the dynamics for the volatility process V can also contain a jump

component.)

Example 2.11. Some well-known examples of stochastic volatility models, which are presented in Sec-

tion 6.7 of Jeanblanc et al. [4], are:

(1) Hull and White’s model, with dynamics

dSt = µ(t, St)St dt+ VtSt dW
1
t

dVt = aVt dt+ b Vt dW
2
t

where a ∈ R, b > 0 and the Brownian motions W 1 and W 2 are uncorrelated. Note that the stochas-

tic process for the volatility is simply a geometric Brownian motion with constant parameters.

(2) Scott’s model, whose SDEs are

dSt = µ(t, St)St dt+ eVtSt dW
1
t

dVt = κ(a− Vt) dt+ b dW ∗t

where κ, a ∈ R and b > 0. (The Brownian motions may be correlated.) The process for the

log-volatility is known as the Ornstein-Uhlenbeck process.

(3) Heston’s model, with dynamics

dSt = µ(t, St)St dt+
√
VtSt dW

1
t

dVt = κ(a− Vt) dt+ b
√
Vt dW

∗
t
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where κ, a ∈ R, b > 0 and κa > 0. (The Brownian motions may be correlated.) The dynamics for

V ∗t are the dynamics of the so-called Cox-Ingerson-Ross process.

A desirable feature for the volatility process V of a stochastic volatility model is the mean-reverting

property: over time, the drift of V should tend to the long-term mean of the process. A more formal

definition, given by Fouque et al. [12], is as follows: the stochastic volatility model (2.7) has the mean-

reverting property if a(t, Vt) = α(m − Vt), where the constants m and α are the long-term mean and

the rate of mean reversion, respectively. Observe that the drift is positive whenever Vt < m and neg-

ative whenever Vt > m; consequently, V is a process that randomly fluctuates around its mean, thus

replicating the empirical fact that the variances of price processes usually vary within some interval.

In Example 2.11, both Scott’s model and Heston’s model possess the mean-reversion property, while

Hull and White’s model is not mean-reverting.

2.3.2 Option pricing under stochastic volatility

The path-independent and barrier option pricing theory from Section 2.1 and Subsection 2.2.2 does not

apply to stochastic volatility models. Indeed, the number of driving Brownian motions is n = 2 whereas

the number of underlying assets is d = 1, thus Theorem 2.3 tells us that existence and uniqueness of

the equivalent martingale measure does not hold.

In fact, it is generally known that stochastic volatility models are incomplete and, accordingly, infinitely

many martingale measures exist. As shown in Section 2.5 of Fouque et al. [10], if the asset pays no

dividends then for any adapted and suitably regular process {ηt}t≥0 the probability measure Q(η) defined

by

dQ(η)

dP
= exp

{
−1

2

∫ T

0

[(
µ(t, St)− r(t)

h(Vt)

)2

+ η2t

]
dt−

∫ T

0

µ(t, St)− r(t)
h(Vt)

dW 1
t −

∫ T

0

ηtdW
2
t

}
is an equivalent martingale measure. (Here W 2 is a Brownian motion independent of W 1 and such that

W ∗t = ρW 1
t +

√
1− ρ2W 2

t .) Under Q(η) the model (2.7) becomes

dSt = r(t)St dt+ h(Vt)St dŴ
1
t

dVt =
[
a(t, Vt)− b(t, Vt)Λt

]
dt+ b(t, Vt) dŴ

∗
t

(2.8)

where Λt = ρ µ(t,St)−r(t)h(Vt)
+
√

1− ρ2 ηt, Ŵ ∗t = ρ Ŵ 1
t +

√
1− ρ2 Ŵ 2

t , and Ŵ 1
t , Ŵ 2

t are independent Q(η)-

Brownian motions.

For simplicity, let us assume that the process η — which is known as the market price of volatility

risk — is a deterministic function of the processes (meaning that ηt = η(t, St, Vt) and Λt = Λ(t, St, Vt)),

and therefore (2.8) is also a Markovian diffusion model. Then for any choice of the function η(t, St, Vt),

the formula

f (η)(t, x, v) = e−
∫ T
t
r(u) du EQ(η)

[
Y
∣∣ St = x, Vt = v

]
allows us to compute arbitrage-free prices for all contingent claims Y . Furthermore, under appropriate

regularity assumptions, f (η)(t, x) can also be computed through a PDE approach: in the case of a path-

independent claim Y = φ(ST ), the Feynman-Kac theorem (Theorem 2.7) assures that f (η)(t, x, v) is a
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solution of the two-space-dimensional parabolic Cauchy problem

∂f (η)

∂t
+

1

2
h2(v)x2

∂2f (η)

∂x2
+ ρ b(t, v)xh(v)

∂2f (η)

∂x∂v
+

1

2
b2(t, v)

∂2f (η)

∂v2
+

+r(t)x
∂f (η)

∂x
+
[
a(t, v)− b(t, v)Λ(t, x, v)

]∂f (η)
∂v

− r(t)f (η) = 0,

f (η)(T, x, v) = φ(x).

For a barrier option whose barrier H(t, v) may depend on time and also on the volatility, Theorem 2.8

yields that the price is the solution of the corresponding Cauchy-Dirichlet problem with zero boundary

condition at x = H(t, v). Like in the complete model scenario, the adaptation to a dividend-paying

underlying asset is carried out by replacing r(t) by r(t)− q(t) in (2.8) and adapting the PDE accordingly.

Since the market price of volatility risk η(t, St, Vt) cannot be identified within incomplete market mod-

els, one needs to exogenously specify the process η(t, St, Vt) in order to price options and other deriva-

tives under the stochastic volatility model (2.7). As stated by Fouque et al. [10], one possible interpreta-

tion for this is the following: the financial market selects a unique equivalent martingale measure under

which derivative contracts are priced, so the consistent pricing of all contingent claims is fulfilled as long

as we fix the correct market price of volatility risk.

Unfortunately, picking the right market price of volatility risk is nontrivial: according to Lipton [11],

there is in general little guidance in choosing the proper functional form for η(t, St, Vt), so a common

practice is to judiciously choose η(t, St, Vt) in order that the resulting pricing problem is analytically

tractable. For instance, in the Heston model of Example 2.11(3), where the drift term of Vt in (2.8)

becomes
[
κ(a−Vt)− b

√
VtΛ(t, St, Vt)

]
dt, the usual strategy is to pick η(t, St, Vt) such that Λ(t, St, Vt) =

λ
√
Vt for some constant λ ∈ R, as this choice guarantees that the drift of Vt under the equivalent

martingale measure Q(η) is still an affine function of Vt.

2.4 Asymptotic expansion techniques

Given that the majority of stochastic volatility models do not admit exact closed-form analytical solutions,

the literature on asymptotic methods for determining analytical approximations for option prices under

stochastic volatility has grown tremendously in recent years. Basically, these methods consist in rewriting

the model as a perturbed Black and Scholes model (or a perturbed version of some other simple model)

so as to derive a series expansion of the exact stochastic volatility price around the Black and Scholes

price, which should converge when the perturbation parameter tends to zero.

Though here we will focus on the application of asymptotic expansion techniques to stochastic volatil-

ity models, we remark that these methods have been successfully applied to a much broader class of

valuation problems in mathematical finance — see Takahashi [13] and the references given there.

2.4.1 Path-independent options

One of the most popular asymptotic methods for the pricing of path-independent options under mean-

reverting stochastic volatility models is that of Fouque et al. [10, 12], which is based on an asymptotic
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expansion of the pricing PDE around the invariant distribution of the volatility process. Let us consider

the model (2.7) with a(t, Vt) = α(m − Vt). The singular perturbation method of Fouque et al., which

is tailored for the case where the rate of mean-reversion α is large, starts by rewriting the risk-neutral

model (2.8) as

dSεt = r(t)Sεt dt+ h(V εt )Sεt dŴ
1
t

dV εt =

[
1

ε
(m− V εt )− 1√

ε
b(V εt )Λ(V εt )

]
dt+

1√
ε
b(V εt ) dŴ ∗t

(2.9)

where ε is a small parameter and the functions b and Λ are now being assumed to depend only on the

volatility process. (We are writing the superscript ε in the processes S and V just to emphasize the

dependence on the parameter.) Accordingly, the pricing PDE becomes ∂fε

∂t (t, x, v) + Lεfε(t, x, v) = 0,

where

Lε =
1

ε
L0 +

1√
ε
L1 + L2,

L0 =
1

2
b2(v)

∂2

∂v2
+ (m− v)

∂

∂v
, L1 = ρ b(v)h(v)x

∂2

∂x∂v
− b(v)Λ(v)

∂

∂v
,

L2 =
1

2
h2(v)x2

∂2

∂x2
+ rx

∂

∂x
− r Id.

Then, we formally assume that fε(t, x, v) can be asymptotically expanded as fε = f0 +
√
εf1 + εf2 + . . .

and we substitute this expansion into the pricing PDE and into its terminal condition fε(T, x, v) = φ(x).

This yields

1

ε
L0f0 +

1√
ε

(L0f1 + L1f0) +
(∂f0
∂t

+ L0f2 + L1f1 + L2f0

)
+
√
ε
(∂f1
∂t

+ L0f3 + L1f2 + L2f1

)
+ . . . = 0

(f0 +
√
εf1 + εf2 + . . .)(T, x, v) = φ(x)

(2.10)

By equating the terms of order ε−1, ε−1/2, ε0, . . . in (2.10), we obtain the system of PDEs

L0f0 = 0, L0f1 + L1f0 = 0,
∂f0
∂t

+ L0f2 + L1f1 + L2f0 = 0, . . . (2.11)

whose terminal conditions are f0(T, x, v) = φ(x) and fj(T, x, v) = 0 for j = 1, 2, . . .. As shown in

Subsection 4.2.1 of Fouque et al. [12], the functions f0, f1, . . . can be deduced by recursively solving this

system of PDEs. In particular, the zero order term is shown to be equal to the Black and Scholes price

where the volatility equals its average value, and the first order term is the solution of a nonhomogeneous

Black and Scholes PDE with zero terminal condition. Even though the SDE for Vt in (2.9) diverges when ε

tends to zero (and the mean reversion rate tends to infinity), the singular perturbation method converges

in the sense that fε(t, x, v) = f0(t, x, v) +
√
εf1(t, x, v) + o(

√
ε) for fixed (t, x, v) — see Theorem 4.11 in

[12].

The singular perturbation method is clearly inadequate if the mean-reversion rate α is small. In that

case, one may instead use the regular perturbation method of Fouque et al., where the risk-neutral

dynamics (2.8) are rewritten as

dSδt = r(t)Sδt dt+ h(V δt )Sδt dŴ
1
t

dV δt =

[
δ(m− V δt )−

√
δb(V δt )Λ(Vt)

]
dt+

√
δb(V δt ) dŴ ∗t
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where δ is a small parameter. The pricing PDE is now ∂fδ

∂t (t, x, v) + Lδfδ(t, x, v) = 0 with

Lδ = L0 +
√
δL1 + δL2,

L0 =
1

2
h2(v)x2

∂2

∂x2
+ rx

∂

∂x
− r Id, L1 = ρ b(v)h(v)x

∂2

∂x∂v
− b(v)Λ(v)

∂

∂v

L2 =
1

2
b2(v)

∂2

∂v2
+ (m− v)

∂

∂v
.

Writing fδ = f0 +
√
δf1 + δf2 + . . . and equating the terms of order δ0, δ1/2, δ, . . . now gives the system

of PDEs

∂f0
∂t

+ L0f0 = 0,
∂f1
∂t

+ L0f1 + L1f0 = 0,
∂f2
∂t

+ L0f2 + L1f1 + L2f0 = 0, . . . (2.12)

with the same terminal conditions as above, which can also be solved in a recursive way. In particular,

the zero-order term of the regular perturbation method is simply the price of the option in the model

which corresponds to δ = 0, which was not the case in the singular perturbation method. The first-order

approximation which results from the regular perturbation technique satisfies fδ(t, x, v) = f0(t, x, v) +
√
δf1(t, x, v) + o(

√
δ).

Actually, the singular and regular perturbation methods can be combined in the context of multi-factor

stochastic volatility models, where the volatility of St is of the form h(Vt, Zt) and the volatility factors V

and Z follow mean-reverting processes with large and small mean-reversion rates, respectively. We

again refer the reader to Fouque et al. [12].

Asymptotic approaches for approximating option prices under stochastic volatility models are by no

means restricted to PDE perturbation methods: purely probabilistic approaches based on the martingale

formulation of the option pricing problem and on Malliavin calculus techniques can also be used to

derive explicit asymptotic pricing formulas and to prove their convergence. See e.g. the review paper by

Takahashi [13].

2.4.2 Barrier options

The asymptotic techniques discussed so far can also be extended not only to barrier options but also to

other path-dependent contingent claims. In the context of the singular and regular perturbation theory

of Fouque et al., as shown in [14], the adaptation to barrier options is particularly simple, since we just

need to add the boundary conditions fj(t,H, v) = 0, j = 0, 1, 2, . . . to the system of PDEs (2.11). The

function f0 becomes the Black and Scholes barrier option price for the average value of the volatility (or

for the model with δ = 0); the function f1 is the solution of a nonhomogeneous PDE with zero terminal

and boundary conditions; and suitable convergence results can also be derived.

Another important paper in barrier option pricing through asymptotic expansions is that of Kato et al.

[15]. The authors generalize the PDE-based regular perturbation method of Fouque et al. to multidimen-

sional Markovian diffusion processes driven by a perturbed SDE and show that the successive terms in

the asymptotic expansion of the option price can be written through a semigroup representation formula.

Moreover, the convergence of the expansion is proved under certain regularity assumptions.
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Finally, it is also worth mentioning that techniques based on purely probabilistic methods can also be

useful for approximate barrier option pricing: for instance, Shiraya et al. [16] used Malliavin calculus to

provide an approximation of the price of a discrete barrier option under stochastic volatility.
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Chapter 3

Option pricing under the

2-hypergeometric stochastic volatility

model

In this chapter we will tackle the problem of pricing barrier options under the 2-hypergeometric stochastic

volatility — a particular case of the α-hypergeometric stochastic volatility model which was defined by

Da Fonseca and Martini [1] as follows:

Definition 3.1. The α-hypergeometric stochastic volatility model is the Markovian diffusion model

with dynamics

dSt = r(t)Stdt+ eVtStdW
1
t

dVt =
(
a− c

2
eαVt

)
dt+ θ dW ∗t

(3.1)

where S is the asset price process, V is the log-volatility process, W ∗t = ρW 1
t +

√
1− ρ2W 2

t where W 1

and W 2 are independent Brownian motions, and c, α, θ > 0, a ∈ R are constants.

Remark 3.2. (a) The original formulation of the α-hypergeometric stochastic volatility model does not

include the drift term r(t)St dt. We have added this term for reasons to be explained in Subsection 3.2.2.

(b) This model is of the form (2.7) with a(t, Vt) = a − c
2e
αVt , so the volatility process is not mean-

reverting in the sense of the definition given in Subsection 2.3.1. Notwithstanding, it is mean-reverting

in a generalized sense: the drift of Vt is positive whenever Vt < 1
α log

(
c
2a

)
and negative whenever

Vt >
1
α log

(
c
2a

)
, so V is also a volatility process that randomly fluctuates around a mean level.

(c) Like Da Fonseca and Martini [1], we will assume that the model is given directly under a risk-

neutral measure Q. If we make the natural assumption that under the original probability P the model is

also α-hypergeometric,

dSt = µ(t, St)Stdt+ eVtStdW
1

t

dVt =

(
a− c

2
eαVt

)
dt+ θ dW

∗
t ,
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this means that the market price of volatility risk which we are implicitly choosing is η(t, St, Vt) such that

Λ(t, St, Vt) = b1 + b2e
αVt for some constants b1 and b2 (with b2 < c

2θ ). Accordingly, the parameters a and

c in (3.1) can be used to set the market price of volatility risk.

As stated by Da Fonseca and Martini [1], the Heston model (defined in Example 2.11(3)) is highly

analytically tractable, which makes it the most popular stochastic volatility model. Yet the Heston model is

problematic because, as remarked in Subsection 6.5.2 of Henry-Labordère [17], its volatility process can

reach zero in finite time unless the Feller condition 2aκ > b2 is imposed, whereas this condition is usually

not satisfied when the model parameters are estimated from real financial data. The α-hypergeometric

model was designed so as to preserve the analytical tractability properties of the Heston model while

ensuring, by construction, that strict positivity of volatility always holds.

3.1 Vanilla option pricing

The good properties of the α-hypergeometric model spurred Privault and She [2] to investigate the

problem of vanilla option pricing under this model. In this section we present a brief summary of their

asymptotic pricing approach — an approach which we shall adapt to options with the barrier feature in

Section 3.2.

3.1.1 The regular perturbation technique

The asymptotic approach of Privault and She is based on a PDE regular perturbation method where the

drift of the asset price process is taken to be zero (see Remark 3.2(a)). Their first step is to replace the

constant θ in the model (3.1) by εψ(t, Vt), where ε is a small parameter and ψ is a generic function (to

be specified later). We observe that this kind of regular perturbation approach where the parameter ε

only influences the variance of Vt is known as the small vol of vol expansion and is commonly used in

the literature — see for instance Chapter 3 of Lewis [18] or Section 10.10 of Lipton [11].

The risk-neutral dynamics of the model become

dSεt = eV
ε
t Sεt dW

1
t

dV εt =
(
a− c

2
eαV

ε
t

)
dt+ εψ(t, V εt ) dW ∗t .

(3.2)

(As in Section 2.4, it is convenient to make explicit the dependence on ε through the superscripts in

the stochastic processes.) The exact price of a plain vanilla call option under this model is defined

by fε(t, x, v) := E [(SεT −K)+|Sεt = x, V εt = v], where (here and subsequently) the expected value is

taken with respect to the fixed risk-free measure Q; by the Feynman-Kac theorem, fε solves the PDE
∂fε

∂t + (L0 + εL1 + ε2L2)fε = 0 with terminal condition fε(T, x, v) = (x−K)+, where

L0 =
(
a− c

2
eαv
) ∂

∂v
+
x2

2
e2v

∂2

∂x2
, L1 = ρxevψ(t, v)

∂2

∂x∂v
, L2 = ψ2(t, v)

∂2

∂v2
. (3.3)

The series expansion fε = f0 + εf1 + ε2f2 + . . . yields the system (2.12) with the terminal conditions

f0(T, x, v) = (x − K)+ and fj(T, x, v) = 0 for j = 1, 2, . . ., so like in the regular perturbation method
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described in Subsection 2.4.1 the zero-order term is just the price of the option in the model with ε = 0:

f0(t, x, v) := E
[
(St,vT −K)+|St,vt = x

]
where the stochastic process {St,vu }u∈[t,T ] is driven by the equation dSt,vu = St,vu eV

t,v
u dW 1

u and the de-

generate log-volatility process {V t,vu }u∈[t,T ] is the deterministic function of time which solves the ordinary

differential equation dV t,vu = (a− c
2e
αV t,vu ) du with initial condition V t,vt = v; the explicit solution is

V t,vu = v + a(u− t) +
1

α
log

(
1 +

c

2a
eαv(eαa(u−t) − 1)

)
. (3.4)

In our notation we are replacing the (S0
u, V

0
u ) notation of Privault and She by (St,vu , V t,vu ), so as to empha-

size the dependence of the deterministic function V t,vu and the stochastic process {St,vu }u∈[t,T ] on the

initial time t (i.e. on the time for which we are computing the price of the option) and on the initial value of

the volatility. Unambiguously, we will keep using the superscript ε in our notation for the nondeterministic

processes Sε and V ε corresponding to ε > 0.

The process {St,vu }u∈[t,T ] is simply a geometric Brownian motion with zero drift and time-dependent

volatility eV
t,v
u , so the conditional distribution of St,vT given St,vt = x is the lognormal distribution with

parameters µ = log x − 1
2γ

2(t, T, v) and σ2 = γ2(t, T, v), where γ2(t, T, v) =
∫ T
t
e2V

t,v
u du. Hence, the

zero-order term f0 is given by the “Black and Scholes style” option pricing formula

f0(t, x, v) = xN (d+(t, x, v))−KN (d−(t, x, v)) (3.5)

whereN (·) is the cumulative distribution function of a standard normal random variable and d±(t, x, v) =

1
γ(t,T,v)

(
log
(
x
K

)
± 1

2γ
2(t, T, v)

)
, as can be seen in Proposition 1 of [2]. It is important to note that this is

indeed just the usual pricing formula for the plain vanilla call option in the Black and Scholes model with

time-dependent parameters (and with zero interest rate and dividends), as one can check by comparing

with Equation (3.4.14) of Kwok [5].

In the case α = 2 (i.e, under the 2-hypergeometric model) the integral γ2(t, T, v) =
∫ T
t
e2V

t,v
u du can

be given in closed form as

γ2(t, T, v) =
1

c
log
(

1 +
c

2a
e2v(e2a(T−t) − 1)

)
(3.6)

which is convenient: the formula (3.5) for f0(t, x, v) becomes fully explicit, and the same is true for

the first-order term given below. It is for this reason that Privault and She restrict their analysis to

the 2-hypergeometric model; yet it is clear that this asymptotic expansion method applies to any α-

hypergeometric stochastic volatility model.

The first-order term is the solution of ∂f1
∂t + L0f1 = −L1f0 with zero terminal condition. Here the

nonhomogeneity term L1f0 is a known function, because it can be explicitly computed by differentiating

(3.5). Using Heath and Schweizer’s [8] generalized version of the Feynman-Kac theorem (Theorem 2.7),

Privault and She deduce that the solution of the Cauchy problem can be written as

f1(t, x, v) =

∫ T

t

E
[
L1f0(u, St,vu , V t,vu )

∣∣ St,vt = x
]
du.

where V t,vu is the same deterministic function of time and {St,vu }u∈[t,T ] is the same geometric Brownian

motion from above. The expected value inside the time integral can be computed using the lognormal
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distribution of St,vu , and the time integral can also be computed in closed form provided that our choice

for the function ψ in (3.2) is ψ(t, v) = κev for some constant κ. The resulting formula for the first-order

term, which is given in Proposition 2 of [2], is

f1(t, x, v) = −κρK d−(t, x, v)

c2 γ2(t, T, v)
n(d−(t, x, v))

(
ecγ

2(t,T,v) + cγ2(t, T, v)− 1
)

where n(·) is the density of a standard normal random variable.

It is important to point out that, as mentioned by Privault and She, the choice ψ(t, v) = κev is analyti-

cally quite convenient, but its drawback is that the approximation (Sεt , V
ε
t ) no longer belongs to the class

of 2-hypergeometric models. Nevertheless, the numerical results presented by Privault and She demon-

strate the accuracy of their fully explicit approximate solution, thus legitimating this kind of approximation

procedure.

Lastly, we observe that Privault and She have also computed a fully explicit second order expansion,

as well as an asymptotic formula for the estimation of the implied volatility. The reader is referred to

Sections 5 and 6 of [2].

3.1.2 The zero drift assumption

Throughout their paper, Privault and She [2] assume that the interest rate and the dividend rate are zero,

which leads to an equation for Sεt where the drift term is absent. This simplification is due to the fact that,

in the case of vanilla options, the standard model which allows for deterministic time-dependent interest

and dividend rates can be reduced to the zero interest and dividend framework. Let us see why this is

so.

Assume that the risk-neutral interest rate and dividend yield rate are given by the deterministic func-

tions r(t) and q(t) respectively. The following reasoning applies to a very large class of option pricing

models, but for concreteness we take the α-hypergeometric model (3.2) and add the drift term corre-

sponding to nonzero interest and dividend yield rates (cf. Remark 2.6):

dSεt =
(
r(t)− q(t)

)
Sεt dt+ eV

ε
t Sεt dW

1
t

dV εt =
(
a− c

2
eαV

ε
t

)
dt+ εψ(t, V εt )dW ∗t .

(3.7)

In these conditions, the price of a path-independent contingent claim is

fε(t, x, v) := e−
∫ T
t
r(u) duE [φ(SεT )|Sεt = x, V εt = v]

which solves the PDE ∂fε

∂t + Lεfε = 0 with terminal condition fε(T, x, v) = φ(x), where

Lε =
(
a− c

2
eαv
) ∂

∂v
+
x2

2
e2v

∂2

∂x2
+ερxevψ(t, v)

∂2

∂x∂v
+
ε2

2
ψ2(t, v)

∂2

∂v2
+
(
r(t)−q(t)

)
x
∂

∂x
−r(t) Id. (3.8)

Let us first take care of the nonzero dividend. If we let

f∗(t, x, v) = e
∫ T
t
q(u) dufε(t, x, v) = e−

∫ T
t
r∗(u) duE [φ(SεT )|Sεt = x, V εt = v] ,

where r∗(t) = r(t)− q(t), then the PDE for f∗(t, x, v) becomes

∂f∗

∂t
+
(
a− c

2
eαv
) ∂f∗
∂v

+
x2

2
e2v

∂2f∗

∂x2
+ ερxevψ(t, v)

∂2f∗

∂x∂v
+
ε2

2
ψ2(t, v)

∂2f∗

∂v2
+ r∗(t)x

∂f∗

∂x
− r∗(t)f∗ = 0

(3.9)
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with the same terminal condition f∗(T, x, v) = φ(x), so f∗ is the price of the option whose dividend

rate is zero and whose deterministic interest rate is r∗(t). In other words, the price of the option with

continuously paid deterministic dividends is fε(t, x, v) = e−
∫ T
t
q(u) duf∗(t, x, v), where f∗(t, x, v) is the

price of the option with zero dividends and shifted interest rate r∗(t). Hence there is no loss of generality

when Privault and She consider that their underlying asset has zero dividend rate.

Now we take q(t) = 0 in (3.7)–(3.8) and deal with the reduction to the case r(t) = 0. Much like in

Subsection 9.2.1 of Lipton [11], the strategy is to rewrite the pricing equation in forward terms. Define

f̃ε(t, z, v) = e
∫ T
t
r(u) dufε(t, e−

∫ T
t
r(u) duz, v). Then

∂f̃ε

∂t
= e

∫ T
t
r(u) du

(
∂fε

∂t
+ r(t)x

∂fε

∂x
− r(t)fε

)
,

∂f̃ε

∂z
=
∂fε

∂x
,

∂2f̃ε

∂z2
= e−

∫ T
t
r(u) du ∂

2fε

∂x2

where x = e−
∫ T
t
r(u) duz, and therefore

∂f̃ε

∂t
+
(
a− c

2
eαv
) ∂f̃ε
∂v

+
z2

2
e2v

∂2f̃ε

∂z2
+ ερzevψ(t, v)

∂2f̃ε

∂z∂v
+
ε2

2
ψ2(t, v)

∂2f̃ε

∂v2
= 0

f̃ε(T, z, v) = φ(z),

which is the pricing PDE for the α-hypergeometric model with zero interest rate. This shows that the

price fε(t, x, v) of the vanilla option in the model with nonzero interest rate is given by

fε(t, x, v) = e−
∫ T
t
r(u) duf̃ε(t, e

∫ T
t
r(u) dux, v)

where f̃ε is the price in the model with zero interest rate. Accordingly, Privault and She can also assume

without loss of generality that the interest rate is zero in their vanilla option pricing model.

3.2 Barrier option pricing

We are finally ready to develop our asymptotic pricing method for the pricing of barrier options under

the α-hypergeometric stochastic volatility model. We will restrict our attention to the 2-hypergeometric

model and to the zero-rebate down-and-out call (DOC) option described in Table 2.1, but we note that

essentially the same techniques may be used to price other knock-out options (with sufficiently smooth

payoff) in other α-hypergeometric stochastic volatility models.

3.2.1 The regular perturbation technique and the zero-order term in the zero

drift scenario

As we will see in Subsection 3.2.2, the zero drift assumption is too restrictive when the option is of the

barrier type. In any case, it is instructive to start by briefly discussing the simplified case of zero drift.

Let f̂ε(t, x, v) be price of the DOC option in the driftless model (3.2) with α = 2. As explained in Sub-

section 2.4.2, the adaptation of the regular perturbation method from path-independent options to barrier

options simply consists in adding to the PDE problems the usual boundary conditions f̂j(t,H, v) = 0,

j = 0, 1, 2, . . .. In particular, the zero-order term f̂0 in our series expansion f̂ε = f̂0 + εf̂1 + ε2f̂2 + . . . is
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now the price of the DOC barrier option in the (Black and Scholes) model which is obtained by setting

ε = 0:

f̂0(t, x, v) = E
[
(St,vT −K)+1{τtH≥T}

∣∣∣St,vt = x
]
, t ∈ [0, T ] (3.10)

where τ tH := inf{u ≥ t : St,vu ≤ H} and the stochastic process {St,vu }u∈[t,T ] is a driftless geometric

Brownian motion with time-dependent deterministic volatility eV
t,v
u , where V t,vu is given explicitly by (3.4)

with α = 2, i.e,

V t,vu = v + a(u− t) +
1

2
log

(
1 +

c

2a
e2v(e2a(u−t) − 1)

)
. (3.11)

According to Remark 0.3 of Rapisarda [19], the exact closed-form analytical expression for the price

of options with constant barriers in the Black and Scholes model with time-dependent parameters is

known provided that the drift is proportional to the squared volatility. Given that for now we are consid-

ering a driftless Black and Scholes model, we can indeed provide an explicit closed-form expression for

the zero-order term f̂0. Equation (27) of Rapisarda [19] shows that, in the domain t ∈ [0, T ] and x > H,

(3.10) is equivalent to

f̂0(t, x, v) = xN (d1(t, x, v))−KN (d2(t, x, v))−HN (d3(t, x, v)) +
Kx

H
N (d4(t, x, v))

where

d1(t, x, v) =
1

γ(t, T, v)

(
log
( x

K∨H

)
+

1

2
γ2(t, T, v)

)
, d2(t, x, v) = d1(t, x, v)− γ(t, T, v),

d3(t, x, v) = d1(t, T, v) +
2

γ(t, T, v)
log

(
H

x

)
, d4(t, x, v) = d2(t, x, v) +

2

γ(t, T, v)
log

(
H

x

)
.

and γ2(t, T, v) is given in (3.6). (As usual, K ∨H := max{K,H}.)

3.2.2 Barrier options and the zero drift assumption

Unlike in vanilla options, it turns out that we must consider models where the drift is nonzero when

dealing with barrier options, since the zero drift assumption entails some loss of generality.

To explain why this is so, we start by recalling that under deterministic time-dependent interest and

dividend yield rates, the price of the DOC option with constant barrier H is the solution f̂ε(t, x, v) of the

PDE ∂f̂ε

∂t +Lεf̂ε = 0 with terminal condition f̂ε(T, x, v) = (x−K)+ and boundary condition f̂ε(t,H, v) =

0, where Lε is defined by (3.8).

The reduction to the zero dividend case from Subsection 3.1.2 can also be carried out without

difficulties when dealing with barrier options. If we define f̂∗(t, x, v) = e
∫ T
t
q(u) duf̂ε(t, x, v), then f̂∗

satisfies the PDE (3.9) and its terminal and boundary conditions are the same as those of f̂ε, i.e.

f̂∗(T, x, v) = (x −K)+ and f̂∗(t,H, v) = 0; consequently, the aforementioned relation between the op-

tion price under nonzero dividends and the option price under zero dividends and a shifted interest rate

is also valid for barrier-type options.

But unfortunately the method (described in Subsection 3.1.2) for reducing the model with zero divi-

dend and nonzero interest rate to the model with zero interest and dividend rates does not comply with

the existence of boundary conditions. If, mimicking what we did in the path-independent scenario, we
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write f̃ε(t, z, v) = e
∫ T
t
r(u) duf̂ε(t, e−

∫ T
t
r(u) duz, v), we conclude that

∂f̃ε

∂t
+
(
a− c

2
eαv
) ∂f̃ε
∂v

+
z2

2
e2v

∂2f̃ε

∂z2
+ ερzevψ(t, v)

∂2f̃ε

∂z∂v
+
ε2

2
ψ2(t, v)

∂2f̃ε

∂v2
= 0

f̃ε(T, z, v) = (z −K)+

f̃ε(t, e
∫ T
t
r(u) duH, v) = 0.

This is the PDE formulation of the price of a barrier option under the zero drift model, but the barrier is

no longer constant — now we have a curved barrier e
∫ T
t
r(u) duH. If we expand f̃ε(t, z, v) (or equivalently

f̂ε(t, x, v)) in powers of ε, the zero-order term is the price of a barrier option in the Black and Scholes

model with time-dependent deterministic volatility and the curved barrier e
∫ T
t
r(u) duH. But this curved

barrier option pricing problem is not at all trivial, and no explicit representation for its solution is known

from the literature.

The conclusion is that, while it is fine to assume zero dividends in the barrier option pricing problem,

we cannot assume that the interest rate is zero as well, so the relevant pricing PDE is

∂f̂ε

∂t
+
(
a− c

2
e2v
) ∂f̂ε
∂v

+
x2

2
e2v

∂2f̂ε

∂x2
+ ερxevψ(t, v)

∂2f̂ε

∂x∂v
+
ε2

2
ψ2(t, v)

∂2f̂ε

∂v2
+ r(t)x

∂f̂ε

∂x
− r(t)f̂ε = 0

with terminal condition f̂ε(T, x, v) = (x − K)+ and boundary condition f̂ε(t,H, v) = 0. This is a more

difficult pricing problem, because we will need to replace the constant barrier by a time-dependent barrier

in order to derive explicit formulas for the various terms in the asymptotic expansion of the barrier option

price.

Remark 3.3. So as to lighten the notation, we will henceforth assume that the interest rate is constant,

i.e, r(t) = r for all t and therefore
∫ u
t
r(s) ds = r(u − t). Otherwise, it suffices to replace the r(u − t)

terms by
∫ u
t
r(s) ds in the forthcoming formulae. Moreover, we will assume that the function ψ(t, v) is

smooth on the domain [0, T ]× R.

3.2.3 The time-dependent barrier approximation and the asymptotic expansion

in the nonzero drift scenario

We start by claiming that the price of the DOC option with constant barrierH under the 2-hypergeometric

model

dSεt = rSεt dt+ eV
ε
t Sεt dW

1
t

dV εt =
(
a− c

2
e2V

ε
t

)
dt+ εψ(t, V εt )dW ∗t .

(3.12)

is approximated by the price of a DOC option with time and volatility-dependent barrier

ĥ(t, v) := H1 exp
{
−r(T − t) + 1+2β

2 γ2(t, T, v)
}
, (t, v) ∈ [0, T ]× R, (3.13)

for a suitable choice of β ∈ R and H1 = ĥ(T, v). It should be clear that the time and volatility dependence

of the barrier is in the following sense: the option becomes nullified whenever Sεt ≤ ĥ(t, V εt ). This choice

of time and volatility-dependent barrier is motivated by the fact that, to the best of our knowledge, an
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explicit expression for the various terms in the asymptotic expansion of the barrier option price cannot

be obtained unless the barrier function is given by this particular functional form.

This kind of approximation procedure is commonly used in the literature addressing the pricing of

barrier options in the Black and Scholes model with time-dependent parameters (see e.g. Rapisarda

[19], Dorfleitner et al. [20] and Lo et al. [21]). For a suitable choice of the parameters of the barrier

function such as the one indicated in the next paragraph, the approximation is quite good for small

maturities, and for large maturities it is possible to use a multi-stage procedure to improve the quality of

the approximation, as we will demonstrate in Subsection 3.2.7.

Our pricing strategy is based on a small vol of vol expansion which is performed around the noiseless

limit V t
′,v′

t of the log-volatility process V ε. Therefore, if one wishes to compute the price of the option

at time t′ ∈ [0, T ] and the initial log-volatility (i.e, the log-volatility at time t′) is equal to v′, then the

parameters H1 and β should be chosen such that ĥ(t, V t
′,v′

t ) is as close to the constant function H as

possible. The simplest choice is H1 = H and β such that ĥ(t′, v′) = H, i.e. β = r(T−t′)
γ2(t′,T,v′) −

1
2 , but this

choice can be improved by choosing the parameters in some optimal way (cf. page 3 of Rapisarda [19]).

Note that we are considering a barrier function which depends not only on time but also on the

volatility. A consequence of this is that the quality of the approximation will be better or worse depending

on whether the initial log-volatility (i.e, the log-volatility at the time when the option price is computed) is

respectively close or far from its invariant value v′ = log
(
2a
c

)
. In fact, the two cases where (by picking

β = r(T−t′)
γ2(t′,T,v′)−

1
2 ) the barrier function (3.13) can be chosen to be constant are precisely the zero interest

rate case (discussed in Subsection 3.2.1) and the case where the initial volatility equals its invariant value

(i.e, where the noiseless log-volatility function V t
′,v′

t is constant).

Next, we apply the usual regular perturbation technique to the time and volatility-dependent bar-

rier option. The price f̂ε(t, x, v) of the DOC option with barrier function ĥ(t, v) is defined (in the PDE

approach) as the solution of the terminal and boundary value problem

∂f̂ε

∂t
(t, x, v) + Lεf̂ε(t, x, v) = 0, t ∈ [0, T ], x > ĥ(t, v)

f̂ε(T, x, v) = (x−K)+, x > ĥ(T, v)

f̂ε(t, ĥ(t, v), v) = 0, t ∈ [0, T ]

(3.14)

where, much like in (3.3),

Lε = L0 + εL1 + ε2L2

L0 =
(
a− c

2
e2v
) ∂

∂v
+
x2

2
e2v

∂2

∂x2
+ rx

∂

∂x
− r Id,

L1 = ρxevψ(t, v)
∂2

∂x∂v
, L2 =

1

2
ψ2(t, v)

∂2

∂v2
.

(3.15)

If we formally expand the price function f̂ε as f̂ε = f̂0 + εf̂1 + ε2f̂2 + . . ., we end up with the system of

PDEs

∂f̂0
∂t

+ L0f̂0 = 0,
∂f̂1
∂t

+ L0f̂1 + L1f̂0 = 0,
∂f̂2
∂t

+ L0f̂2 + L1f̂1 + L2f̂0 = 0, . . . (3.16)

with the typical terminal conditions f̂0(T, x, v) = (x−K)+ and f̂j(T, x, v) = 0 for j = 1, 2 . . ., and with the

nonconstant boundary conditions f̂j(t, ĥ(t, v), v) = 0 for j = 0, 1, 2, . . ..
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Our goal is to derive the first-order approximation for the option price and to demonstrate that (under

suitable regularity conditions) it converges in the following sense:

f̂ε(t, x, v) = f̂0(t, x, v) + εf̂1(t, x, v) + o(ε). (3.17)

An analogous convergence result was conjectured, without proof, by Privault and She in [2] when dealing

with plain vanilla options. We will give the detailed proof of (3.17) in Theorem 3.12.

3.2.4 The zero-order term in the nonzero interest rate scenario

The zero-order term f̂0(t, x, v), which, as seen above, is defined as the solution of the terminal and

boundary value problem

∂f̂0
∂t

(t, x, v) + L0f̂0(t, x, v) = 0, t ∈ [0, T ], x > ĥ(t, v)

f̂0(T, x, v) = (x−K)+, x > ĥ(T, v)

f̂0(t, ĥ(t, v), v) = 0, t ∈ [0, T ],

(3.18)

is nothing but the option price corresponding to the limiting case ε = 0. The equivalent definition of this

option price under the martingale pricing framework is similar to (3.10): here we have

f̂0(t, x, v) = e−r(T−t)E
[
(St,vT −K)+1{τt

ĥ
≥T}

∣∣∣St,vt = x
]
, t ∈ [0, T ] (3.19)

where τ t
ĥ

:= inf{u ≥ t : St,vu ≤ ĥ(u, V t,vu )} and the process {St,vu }u∈[t,T ] follows a geometric Brownian

motion with constant drift r and time-dependent deterministic volatility eV
t,v
u (where V t,vu is given by

(3.11)).

For a given (fixed) initial time t′ and initial log-volatility v′, by recalling the obvious semigroup property

V
t,V t

′,v′
t

u = V t
′,v′

u (t′ ≤ t ≤ u) we see that

f̂0(t, x, V t
′,v′

t ) = e−r(T−t)E
[
(St

′,v′

T −K)+1{τt
ĥ
≥T}

∣∣∣ St′,v′t = x
]
, t ∈ [t′, T ] (3.20)

where τ t
ĥ

= inf{u ≥ t : St
′,v′

u ≤ ĥ(u, V t
′,v′

u )}. The function f̂0(t, x, V t
′,v′

t ), which only depends on the

variables t and x, is clearly the definition (in the martingale approach) of the price of a DOC option under

a Black and Scholes model where the constant interest rate is r, the dividend rate is zero, the volatility is

given by the (smooth) deterministic function of time eV
t′,v′
t , t ∈ [t′, T ] (which depends on the initial value

v′ = V t
′,v′

t′ ), and the time-dependent barrier function is ĥ(t, V t
′,v′

t ), t ∈ [t′, T ].

We will tackle this problem by resorting to the closed-form analytical solutions which are available on

the literature. Rapisarda [19] and Dorfleitner et al. [20] obtained the exact closed-form solution of the

following terminal and boundary value problem, which defines the price of a DOC time-dependent barrier

option under the Black and Scholes model with constant drift r and time-dependent volatility eV
t′,v′
t :

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = 0, t ∈ [t′, T ], x > ĥt
′,v′(t)

u(T, x) = (x−K)+, x > ĥt
′,v′(T )

u(t, ĥt
′,v′(t)) = 0, t ∈ [t′, T ]

(3.21)
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where

Lt
′,v′

bs :=
x2

2
e2V

t′,v′
t

∂2

∂x2
+ rx

∂

∂x
− r Id, (3.22)

ĥt
′,v′(t) := exp

{
−r

(
γ2(t′, t, v′)

γ2(t′, T, v′)
T +

γ2(t, T, V t
′,v′

t )

γ2(t′, T, v′)
t′ − t

)}(
H1

H0

) γ2(t′,t,v′)
γ2(t′,T,v′)

H0, t ∈ [t′, T ], (3.23)

H0 = ĥt
′,v′(t′) and H1 = ĥt

′,v′(T ) are parameters, and the functions V t
′,v′

t , γ2(t, u, v) are defined by

(3.11) and (3.6) respectively. We emphasize that the constant v′ which defines the initial log-volatility

v′ = V t
′,v′

t′ should be interpreted as a fixed parameter, as the above PDE problem only involves the

variables t and x.

Notice that the barrier function (3.23) can be also written in the reparameterized version

ĥ(β)(t) := H1 exp

{
−r(T − t) +

1 + 2β

2
γ2(t, T, V t

′,v′

t )

}
, t ∈ [t′, T ] (3.24)

provided that β ≡ β(t′, v′) is defined through the equality 1+2β
2 = 1

γ2(t′,T,v′)

(
log
(
H0

H1

)
+ r(T − t′)

)
. (This

parameterization is the one of Rapisarda [19], while the parameterization (3.23) is that of Dorfleitner et al.

[20].) Alternatively, we may simply assume that the parameter β is fixed and use the parameterization

(3.24), under which the initial values H0 ≡ H0(v′) ≡ ĥ(β)(t′) depend on the values of t′ ∈ [0, T ] and

v′ ∈ R.

It is now easy to see why we have chosen the functional form (3.13) for the barrier function ĥ(t, v):

that choice is the one which ensures that ĥ(t, V t
′,v′

t ) is equal to the function ĥ(β)(t) from (3.24). There-

fore the terminal and boundary value problem (3.21) is simply the PDE formulation for the option price

f̂0(t, x, V t
′,v′

t ) from (3.20).

Therefore f̂0(t′, x, v′) can be obtained through Equation (27) of Rapisarda [19]. Replacing (t′, v′) by

(t, v), we obtain the following result:

Proposition 3.4. Let f̂0(t, x, v) be the zero-order term in the first-order expansion (3.17) for the price of

a DOC option with barrier function ĥ(t, v) under the model (3.12). Then

f̂0(t, x, v) =xN (d1(t, x, v))−Ke−r(T−t)N (d2(t, x, v))

−
(
ĥ(t, v)

x

)2+2β

xN (d3(t, x, v)) +

(
ĥ(t, v)

x

)2β
Ke−r(T−t)N (d4(t, x, v))

(3.25)

for t ∈ [0, T ] and x > ĥ(t, v), where

d1(t, x, v) =
1

γ(t, T, v)

(
log
( x

K ∨H1

)
+ r(T − t) +

1

2
γ2(t, T, v)

)
,

d2(t, x, v) = d1(t, x, v)− γ(t, T, v),

d3(t, x, v) = d1(t, x, v) +
2

γ(t, T, v)
log

(
ĥ(t, v)

x

)
,

d4(t, x, v) = d2(t, x, v) +
2

γ(t, T, v)
log

(
ĥ(t, v)

x

)
.

(3.26)

26



3.2.5 The first-order term

The first-order term solves

∂f̂1
∂t

(t, x, v) + L0f̂1(t, x, v) = −L1f̂0(t, x, v), t ∈ [0, T ], x > ĥ(t, v)

f̂1(T, x, v) = 0, x > ĥ(T, v)

f̂1(t, ĥ(t, v), v) = 0, t ∈ [0, T ]

(3.27)

where the operators L0 and L1 were defined in (3.15).

As in the vanilla option framework of Subsection 3.1.1, here the first step towards the computation of

an explicit expression for the first order term is to give a stochastic representation formula for the solution

of this terminal and boundary value problem. In view of the Feynman-Kac theorem for Cauchy-Dirichlet

problems for parabolic PDEs (Theorem 2.8), our candidate solution for (3.27) is

f̃1(t, x, v) = E
[∫ T∧τt

ĥ

t

e−r(u−t)L1f̂0(u, St,vu , V t,vu ) du

∣∣∣∣ St,vt = x

]
(3.28)

where the process (St,v, V t,v) and the stopping time τ t
ĥ

are defined as in (3.19). Notice that we cannot

simply invoke Theorem 2.8 to justify that f̃1(t, x, v) solves (3.27), because not all of its hypothesis are

satisfied: for instance, the ellipticity condition (iii) fails because the differential operator L0 has no term

in ∂2

∂v2 . Notwithstanding, it is indeed possible to prove the desired result through a generalization of

Theorem 2.8:

Lemma 3.5. Assume that K ≥ H1. Then f̂1(t, x, v) = f̃1(t, x, v), i.e, the function f̃1(t, x, v) is the unique

classical solution of the terminal and boundary value problem (3.27).

The proof will be provided in the end of this subsection.

Remark 3.6. The condition K ≥ H1, which for simplicity we will assume throughout the proof of this and

other theoretical results, means that the DOC option is a regular barrier option and guarantees that the

payoff of the option is continuous at the intersection of the terminal and boundary conditions. It is worth

mentioning here that it is in fact well-known that there are additional difficulties in the pricing of reverse

barrier options, and this has been addressed in a number of articles (see e.g. Schmock et al. [22]).

It is natural to conjecture that it should be possible to generalize our theoretical results to the case

of reverse barrier options through some kind of regularization argument where the reverse option is

approximated by some sequence of barrier options with smooth payoffs. Therefore, we will not be

assuming that K ≥ H1 in the explicit computations of the expression for the first-order term, so that

it will also be possible to use our first-order expansion for the (approximate) pricing of reverse DOC

options.

Having established this result, the natural course of action would be for us to compute the expected

value (3.28) using the joint law of (St,vu , τ t
ĥ
). However, to the best of our knowledge the analytical expres-

sion for the joint law of the random variables (St,vu , τ t
ĥ
) is not available in the literature. For this reason,

we instead take an alternative approach where we will take advantage of the known results on the Black
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and Scholes equation with time-dependent coefficients so as to derive the explicit expression for the

first-order term.

With this in mind, we fix an initial time t′ and an initial log-volatility v′. Then we can write

f̂1(t, x, V t
′,v′

t ) = E

[∫ T∧τt
ĥ

t

e−r(u−t)L1f̂0(u, St
′,v′

u , V t
′,v′

u ) du

∣∣∣∣∣St′,v′t = x

]

where τ t
ĥ

= inf{u ≥ t : St
′,v′

u ≤ ĥ(u, V t
′,v′

u )}. We can now invoke again the Feynman-Kac theorem to

obtain the PDE problem associated to this function of the variables t and x:

Lemma 3.7. Assume that K ≥ H1. Then the function f̂1(t, x, V t
′,v′

t ) is the unique solution of the terminal

and boundary value problem

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = −L1f̂0(t, x, V t
′,v′

t ), t ∈ [t′, T ], x > ĥ(t, V t
′,v′

t )

u(T, x) = 0, x > ĥ(T, V t
′,v′

T )

u(t, ĥ(t, V t
′,v′

t )) = 0, t ∈ [t′, T ]

(3.29)

where Lt
′,v′

bs is the differential operator defined in (3.22).

Proof. Combining the closed-form expression (B.29)–(B.33) with the estimates (B.1)–(B.28) in Appendix

B it is easily seen that, for fixed (t′, v′), the function L1f̂0(t, x, V t
′,v′

t ) has no singularities and satisfies

the continuity assumption (iv) of Theorem 2.8, and the estimate (B.34) in Appendix B ensures that

L1f̂0(t, x, V t
′,v′

t ) satisfies the polynomial growth assumption (vi). In addition, the change of variable

y = x− ĥ(t, V t
′,v′

t ) can be used to take care of the time-dependence of the domain. (The details of this

change of variable argument can be found in the proof of Theorem 3.5, given below.) Hence the result

follows from Theorem 2.8.

Note that our twofold use of the Feynman-Kac theorem yields a result which is interesting from a

strictly theoretical point of view: we have shown that in order to eliminate the space variable v from the

original PDE problem (3.27), we just have to replace it by the solution of the ordinary differential equation
dV
dt = a − c

2e
2V , i.e, by the differential equation corresponding to the noiseless limit of the process V ε

around which the small vol of vol expansion is being performed.

Next, we want to eliminate the nonhomogeneity in the problem (3.29) so that it becomes possible

to obtain an explicit expression for the solution of the PDE problem through Theorem 1 of Dorfleitner et

al. [20]. (This theorem provides an integral representation formula for the solution of a general terminal

and boundary value problem for the homogeneous Black and Scholes equation with time-dependent

coefficients, provided that the boundary follows a specific form determined by the coefficients.) With that

in mind, we decompose

f̂1(t, x, v) = f̂
(A)
1 (t, x, v)− f̂ (B)

1 (t, x, v)

where f̂ (A)
1 (t, x, V t

′,v′

t ) is the solution of the nonhomogeneous terminal value problem with no boundary

conditions
∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = −L1f̂0(t, x, V t
′,v′

t ), t ∈ [t′, T ], x ∈ R

u(T, x) = 0, x ∈ R
(3.30)

28



and f̂ (B)
1 (t, x, V t

′,v′

t ) is the solution of the homogeneous terminal and boundary value problem

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = 0, t ∈ [t′, T ], x > ĥ(t, V t
′,v′

t )

u(T, x) = 0, x > ĥ(T, V t
′,v′

T ) (3.31)

u(t, ĥ(t, V t
′,v′

t )) = f̂
(A)
1 (t, ĥ(t, V t

′,v′

t )), t ∈ [t′, T ].

The existence and uniqueness of a classical solution for each of the PDE problems (3.30) and (3.31)

is assured by Theorem 1 of Heath and Schweizer [8] and by Theorem 1 of Dorfleitner et al. [20], re-

spectively. Consequently, the difference between these solutions must be equal to the unique solution

of (3.29).

As in Privault and She [2], we can use the Feynman-Kac formula of Heath and Schweizer [8] to write

the stochastic representation formula for f̂ (A)
1 and, as we will see, it is possible to use the law of the

process {St
′,v′

t }t∈[t′,T ] in order to express the conditional expectation in closed form. Then, Theorem 1

of Dorfleitner et al. [20] allows us to write an explicit integral representation for the function f (B)
1 .

We start by computing L1f̂0, where f̂0 is the first order term whose closed form was given in Propo-

sition 3.4. Differentiating (3.26) we get

∂d1
∂x

(t, x, v) =
∂d2
∂x

(t, x, v) =
1

xγ(t, T, v)
,

∂d3
∂x

(t, x, v) =
∂d4
∂x

(t, x, v) = − 1

xγ(t, T, v)
(3.32)

and also

∂d1
∂v

(t, x, v) =
∂γ

∂v
(t, T, v)

(
1− d1(t, x, v)

γ(t, T, v)

)
,

∂d2
∂v

(t, x, v) = −∂γ
∂v

(t, T, v)
(

1 +
d2(t, x, v)

γ(t, T, v)

)
,

∂d3
∂v

(t, x, v) =
∂γ

∂v
(t, T, v)

(
1− d3(t, x, v)

γ(t, T, v)

)
+

2

γ(t, T, v)

∂ log ĥ

∂v
(t, v),

∂d4
∂v

(t, x, v) = −∂γ
∂v

(t, T, v)
(

1 +
d4(t, x, v)

γ(t, T, v)

)
+

2

γ(t, T, v)

∂ log ĥ

∂v
(t, v).

(3.33)

But

n
(
d1(t, x, v)

)
=

1√
2π

exp

{
− 1

2γ2(t, T, v)

(
log
( x

K ∨H1

)
+ r(T − t) +

1

2
γ2(t, T, v)

)2
}

=
1√
2π

exp

{
log
(K∨H1

x

)
− r(T − t)

}
exp

{
− 1

2γ2(t, T, v)

(
log
( x

K∨H1

)
+ r(T − t)− 1

2
γ2(t, T, v)

)2
}

=
K∨H1

x
e−r(T−t)n

(
d2(t, x, v)

)
and similarly n

(
d3(t, x, v)

)
= x(K∨H1)

ĥ2(t,v)
e−r(T−t)n

(
d4(t, x, v)

)
, so (3.32) yields

∂f̂0
∂x

(t, x, v) =N
(
d1(t, x, v)

)
+ (1 + 2β)

(
ĥ(t, v)

x

)2+2β

N
(
d3(t, x, v)

)
− 2β

(
ĥ(t, v)

x

)1+2β
K

ĥ(t, v)
e−r(T−t)N

(
d4(t, x, v)

)
+

A

γ(t, T, v)

[
n
(
d1(t, x, v)

)
+

(
ĥ(t, v)

x

)2+2β

n
(
d3(t, x, v)

)]
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where A := 1− K
K∨H1

. Differentiating with respect to v and recalling (3.33),

∂2f̂0
∂x∂v

(t, x, v) =
∂γ

∂v
(t, T, v)

[(
1− d1(t, x, v)

γ(t, T, v)

)(
1−A d1(t, x, v)

γ(t, T, v)

)
− A

γ2(t, T, v)

]
n(d1(t, x, v))

+
1 + 2β

x2+2β

∂ĥ2+2β

∂v
(t, v)N (d3(t, x, v))

+
1

x2+2β

[
−A ĥ

2+2β(t, v)

γ2(t, T, v)

∂γ

∂v
(t, T, v)

+ ĥ2+2β(t, v)

{
∂γ

∂v
(t, T, v)

(
1− d3(t, x, v)

γ(t, T, v)

)
+

2

γ(t, T, v)

∂ log ĥ

∂v
(t, v)

}(
1 + 2β − Ad3(t, x, v)

γ(t, T, v)

)

+
A

γ(t, T, v)

∂ĥ2+2β

∂v
(t, v)

]
n(d3(t, x, v))

+Ke−r(T−t)
2β

x1+2β

[
−∂ĥ

2β

∂v
(t, v)N (d4(t, x, v))

+ĥ2β(t, v)

{
∂γ

∂v
(t, T, v)

(
1 +

d4(t, x, v)

γ(t, T, v)

)
− 2

γ(t, T, v)

∂ log ĥ

∂v
(t, v)

}
n(d4(t, x, v))

]
.

(3.34)

Now, according to the Feynman-Kac theorem of Heath and Schweizer [8], the stochastic represen-

tation formula for the unique solution of the terminal value problem (3.30) is

f̂
(A)
1 (t, x, V t

′,v′

t ) =

∫ T

t

e−r(u−t)E
[
L1f̂0(u, St

′,v′

u , V t
′,v′

u )
∣∣∣St′,v′t = x

]
du

=

∫ T

t

e−r(u−t)ρ eV
t′,v′
u ψ(u, V t

′,v′

u )E
[
St
′,v′

u

∂2f̂0
∂x∂v

(u, St
′,v′

u , V t
′,v′

u )

∣∣∣∣ St′,v′t = x

]
du (3.35)

where, as usual, the process {St′,v′u }u∈[t′,T ] follows a geometric Brownian motion with constant drift r and

time-dependent deterministic volatility eV
t′,v′
u ; in particular, for each u ∈ [t, T ] the conditional distribution

of St
′,v′

u given St
′,v′

t = x is the lognormal distribution with parameters µ = log x+r(u−t)− 1
2γ

2(t, u, V t
′,v′

t )

and σ2 = γ2(t, u, V t
′,v′

t ).

Let us now compute the closed-form expression for the expectation inside the time integral in (3.35).

Since the choice of initial time and log-volatility (t′, v′) is arbitrary, we can assume without loss of gener-

ality that t = t′ (i.e, that f̂ (A)
1 is being computed at initial time t′). In Appendix A we compute the expected

values of the type

E
[(
St
′,v′

u

)C(β)

dki (u, St
′,v′

u , V t
′,v′

u )n
(
di(u, S

t′,v′

u , V t
′,v′

u )
) ∣∣∣∣ St′,v′t′ = x

]
and

E
[(
St
′,v′

u

)C(β)

N
(
di(t, S

t′,v′

u , V t
′,v′

u )
) ∣∣∣∣ St′,v′t′ = x

]
which arise when we substitute (3.34) into (3.35). The conclusion is that

f̂
(A)
1 (t′, x, v′) =

∫ T

t′
e−r(u−t

′)ρ eV
t′,v′
u ψ(u, V t

′,v′

u )

×

[
∂γ

∂v

{(
1− A

γ2(u, T, V t
′,v′
u )

)
E1,0 −

1 +A

γ(u, T, V t
′,v′
u )

E1,1 +
A

γ2(u, T, V t
′,v′
u )

E1,2

}

+ (1 + 2β)
∂ĥ2+2β

∂v
(u, V t

′,v′

u )E2
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+

{
−A ∂γ

∂v

ĥ2+2β(u, V t
′,v′

u )

γ2(u, T, V t
′,v′
u )

+ (1 + 2β) ĥ2+2β(u, V t
′,v′

u )

(
∂γ

∂v
+

2

γ(u, T, V t
′,v′
u )

∂ log ĥ

∂v
(u, V t

′,v′

u )

)
+

A

γ(u, T, V t
′,v′
u )

∂ĥ2+2β

∂v
(u, V t

′,v′

u )

}
E3,0

− ĥ2+2β(u, V t
′,v′

u )

γ(u, T, V t
′,v′
u )

{
A

(
∂γ

∂v
+

2

γ(u, T, V t
′,v′
u )

∂ log ĥ

∂v
(u, V t

′,v′

u )

)
+ (1 + 2β)

∂γ

∂v

}
E3,1

+ ĥ2+2β(u, V t
′,v′

u )
∂γ

∂v

A

γ2(u, T, V t
′,v′
u )

E3,2

+ 2βKe−r(T−u)
[
−∂ĥ

2β

∂v
(u, V t

′,v′

u )E4

+ ĥ2β(u, V t
′,v′

u )

{(
∂γ

∂v
− 2

γ(u, T, V t
′,v′
u )

∂ log ĥ

∂v
(u, V t

′,v′

u )

)
E5,0 +

∂γ

∂v

1

γ(u, T, V t
′,v′
u )

E5,1

}]]
du.

(3.36)

where we abbreviated ∂γ
∂v ≡

∂γ
∂v (u, T, V t

′,v′

u ), and the functions Ei ≡ Ei(t′, u, x, v) are given in Equations

(A.4)–(A.13) in Appendix A. The above expression is a one-dimensional integral which is easy to solve

numerically.

As for the function f̂ (B)
1 which we defined as the unique solution of (3.31), formula (A15) in Theorem

1 of Dorfleitner et al. [20] assures that it is given by

f̂
(B)
1 (t′, x, v′) =

1

2

∫ T

t′
er(u−t

′)e2V
t′,v′
u ĥ2(u, V t

′,v′

u )
∂G+

∂w

(
ĥ(u, V t

′,v′

u ), u, x, t′; v′
)
f̂
(A)
1 (u, ĥ(u, V t

′,v′

u ), V t
′,v′

u ) du

where ∂G+

∂w is the partial derivative with respect to w of the Green function

G+(w, u, x, t; v) =
1√

2πγ(t, u, v)w
exp

{
− 1

2γ2(t, u, v)

(
log
(w
x

)
− r(u− t) +

1

2
γ2(t, u, v)

)2
}

×

(
1− exp

{
− 2

γ2(t, u, v)
log

(
ĥ(u, V t,vu )

w

)
log

(
ĥ(t, v)

x

)})
.

(3.37)

The explicit expression for this partial derivative is

∂G+

∂w
(w, u, x, t; v) =

1√
2πγ3(t, u, v)w2

exp

{
− 1

2γ2(t, u, v)

(
log
(w
x

)
− r(u− t) +

1

2
γ2(t, u, v)

)2
}

×

[
log
( x
w

)
+ r(u− t)− 3

2
γ2(t, u, v)

+

(
log
( wx

ĥ2(t, v)

)
− r(u− t) +

3

2
γ2(t, u, v)

)
exp

{
− 2

γ2(t, u, v)
log

(
ĥ(u, V t,vu )

w

)
log

(
ĥ(t, v)

x

)}]
.

In particular, if w = ĥ(u, V t
′,v′

u ) and (t, v) = (t′, v′) then

∂G+

∂w

(
ĥ(u, V t

′,v′

u ), u, x, t′; v′
)

=
2

√
2πγ3(t′, u, v′)ĥ2(u, V t

′,v′
u )

log
( x

ĥ(t′, v′)

)
× exp

{
− 1

2γ2(t′, u, v′)

(
log
( ĥ(u, V t

′,v′

u )

x

)
− r(u− t′) +

1

2
γ2(t′, u, v′)

)2
}
.

Recalling the decomposition f̂1 = f̂
(A)
1 − f̂

(B)
1 and using the arbitrariness of the initial time and

volatility so as to replace (t′, v′) by (t, v), we finally obtain the desired explicit expression for the first-

order term:
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Proposition 3.8. Let f̂1(t, x, v) be the first-order term in the first-order expansion (3.17) for the price of

a DOC option with barrier function ĥ(t, v) under the model (3.12). Assume that K ≥ H1. Then

f̂1(t, x, v) =

∫ T

t

[
E

(A)
β (t, u, x, v)− 1

2
e−r(u−t)e2V

t,v
u ĥ2(u, V t,vu )

∂G+

∂w

(
ĥ(u, V t,vu ), u, x, t; v

)
×

×
∫ T

u

E
(A)
β (u, s, ĥ(u, V t,vu ), V t,vu )

]
ds du

(3.38)

for t ∈ [0, T ] and x > ĥ(t, v), where E(A)
β (t′, u, x, v′) is the integrand of (3.36).

We observe that the numerical computation of the integral in (3.38) is much easier than solving

numerically the associated PDE problem (3.27) or computing the expectation (3.28) via Monte Carlo

simulation. We additionally recall from Remark 3.6 that if K < H1 then (3.38) can also be used to

compute the first-order term of an (in this case formal) asymptotic expansion for the price of the option.

We finish this subsection with the proof of Lemma 3.5:

Proof of Lemma 3.5. To prove the lemma, we need to generalize Theorem 2.8 so as to assure that the

terminal and boundary value problem (3.27) has a unique (classical) solution f̂1(t, x, v) whose stochastic

representation is given by the function f̃1(t, x, v) defined in (3.28).

The hypotheses of Theorem 2.8 which are not satisfied by our problem are the following:

• Time-independence of the domain. In our setting, instead of a domain of the form [0, T ] ×D with

D ⊂ R2 the domain for the spatial variables, we have a domain

D̂ =
{

(t, x, v) ⊂ [0, T ]× R2 : x > ĥ(t, v)
}
⊂ [0, T ]× R2

where ĥ(t, v) is a nonconstant smooth function of time and volatility, so that the spatial domain

Dt = {(x, v) ∈ R2 : (t, x, v) ∈ D̂} depends on time t.

The workaround for this is to make the change of variables y = x− ĥ(t, v): f̃1 satisfies (3.27) if and

only if the function f̃∗1 defined as

f̃∗1 (t, y, v) := f̃1(t, y + ĥ(t, v), v) = E

[∫ T∧τt
ĥ

t

e−r(u−t)L1f̂0
(
u, Y t,vu + ĥ(u, V t,vu ), V t,vu

)
du

∣∣∣∣∣ Y t,vt = y

]
(3.39)

(where Y t,vu := St,vu − ĥ(u, V t,vu ) and τ t
ĥ

= inf{u ≥ t : Y t,vu ≤ 0}) satisfies the terminal and boundary

value problem with constant boundary

∂f̂∗1
∂t

(t, y, v) + L∗0f̂∗1 (t, y, v) = −L1f̂0(t, y + ĥ(t, v), v), t ∈ [0, T ], y > 0

f̂∗1 (T, y, v) = 0, y > 0

f̂∗1 (t, 0, v) = 0, t ∈ [0, T ]

(3.40)

where L∗0 = L0 −
(
∂ĥ
∂t(t, v) +

(
a − c

2e
2v
)
∂ĥ
∂v(t, v)

)
∂
∂x . The spatial domain for this PDE problem

is D = (0,∞) × R. Hence, in what follows we will instead prove the equivalent statement that

the terminal and boundary value problem (3.40) has a unique classical solution f̂∗1 (t, y, v) whose

stochastic representation is given by the function f̃∗1 from (3.39).
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• Linear growth and ellipticity assumptions on b and σ. The coefficients of the partial differential

operator L∗0 are the functions

b(t, y, v) =

r(y + ĥ(t, v))−
(
∂ĥ
∂t(t, v) + (a− c

2e
2v)∂ĥ∂v(t, v)

)
a− c

2e
2v

, σ(t, x, v) =

(y + ĥ(t, v))ev 0

0 0


which clearly satisfy the continuity assumption (i), but do not satisfy neither the linear growth as-

sumption (ii) neither the ellipticity assumption (iii) of Theorem 2.8.

• Polynomial growth assumption on h. The nonhomogeneity term on our PDE problem is

h(t, y, v) ≡ −L1f̂0
(
t, y + ĥ(t, v), v

)
= −ρ

(
y + ĥ(t, v)

)
evψ(t, v)

∂2f̂0
∂x∂v

(
t, y + ĥ(t, v), v

)
where ∂2f̂0

∂x∂v is given by (3.34) with A = 0 (as we are assuming that K ≥ H1).

From the closed-form expression (B.29)–(B.33) given in Appendix B, together with the estimates

(B.1)–(B.28) and the smoothness of the function ψ(t, v), it follows that h(t, y, v) satisfies the con-

tinuity assumption (iv). Furthermore, even though L1f̂0(t, x, v) does not satisfy the polynomial

growth assumption (vi) (due to the presence of terms which grow exponentially in v), our estimate

from Equation (B.34) in Appendix B implies that L1f̂0(t, x, v) satisfies the following polynomial

growth condition in the variable x: for every M0 < M1, there exists k > 0 and a constant K2 such

that ∣∣L1f̂0(t, x, v)
∣∣ ≤ K2(M0,M1)

(
1 + |x|k

)
for all t ∈ [0, T ], v ∈ [M0,M1], x > ĥ(t, v) (3.41)

and therefore∣∣h(t, y, v)
∣∣ ≤ K∗2 (M0,M1)

(
1 + |y|k

)
for all t ∈ [0, T ], v ∈ [M0,M1], y > 0

for some constant K∗2 .

The somewhat long proof of Theorem 2.8 which was presented by Rubio in [9] is organized into

a sequence of auxiliary results from which the main theorem can be deduced. As we will show, it is

possible to show that the theorem is valid despite the failure of the hypotheses mentioned above through

some adaptations to the proofs of the various auxiliary results on Rubio [9]. Therefore, for the sake of

brevity, instead of presenting the full proof, we will merely point out which changes must be considered

in the proofs presented in [9] in order to demonstrate our desired result.

• Remark 2.4 of [9]. In our setting, the stopping time can be written exclusively in terms of the

process {Y t,vu }: indeed, in the notation of Theorem 2.8, τt = inf{u ≥ t : Y t,vu ≤ 0}. So if we

interpret {Y t,vu } as a one-dimensional diffusion process which (unlike the two-dimensional process

{(Y t,vu , V t,vu )}) satisfies the local ellipticity condition, we can use the arguments from [9] to conclude

that the statement holds true.

• Proposition 2.5 of [9]. In our setting, the (degenerate) process {V t,vu } is given in closed form in

(3.11) and the process {Y t,vu } can also be written in closed form as

Y t,vu = (y + ĥ(t, v)) exp

{
r(u− t)− 1

2
γ2(t, u, v) +

∫ u

t

eV
t,v
s dW 1

s

}
− ĥ(u, V t,vu ).
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where y = Y t,vt . (This closed-form formula is trivially obtained from the well-known closed form

for the geometric Brownian motion with deterministic time-dependent coefficients.) From these

closed-form expressions it is clear that (i), (ii) and (iii) hold. In addition, we can obtain a weaker

version of (iv) by invoking a classical result on estimates of the moments of solutions of SDEs

which can be found in Corollary 2.5.12 of Krylov [23]: for fixed v, the process {Y t,vu }, interpreted

as a one-dimensional diffusion process, satisfies the hypothesis of Krylov’s corollary, so we can

conclude that

sup
v∈[M0,M1]

E
[

sup
t≤u≤T

∣∣Y t,vu ∣∣2r ∣∣∣∣ Y t,vt = y

]
≤ C(M0,M1, r)

(
1 + |y|2r

)
for all t ∈ [0, T ], y > 0, M0 < M1 and r ≥ 1. As we will see, this weaker form of property (iv) is

enough for the purpose of proving our lemma.

• Lemma 3.3 of [9]. Since for every fixed v the process {Y t,vu }, seen as a one-dimensional diffusion,

satisfies all the hypothesis of Theorem 2.8, we can prove exactly like in [9] that the stochastic

representation formula satisfies the PDE and the boundary condition. As for the second statement

of the theorem, taking into account our weaker version of Proposition 2.5-(iv) of [9], we obtain

instead the estimate

sup
t∈[0,T ]

v∈[M0,M1]

∣∣f̃∗1 (t, y, v)
∣∣ ≤ C(M0,M1)

(
1 + |y|k

)
for all y > 0, M0 < M1.

• Lemma 3.4 of [9]. We need to show that the lemma is valid under the following weaker growth

condition: there exists C and a constant µ > 0 such that

sup
t∈[0,T ]

v∈[M0,M1]

∣∣u(t, y, v)
∣∣ ≤ C(M0,M1)

(
1 + |y|µ

)
for all y > 0, M0 < M1.

The proof can be carried out using the same argument from [9]: in our framework, the upper

bounds in Equation (3.23) of [9] are instead of the form ec0tC(M0,M1)
(
1 + sup0≤s≤t |Ys|µ

)
and

ec0ttK2(M0,M1)
(
1 + sup0≤s≤t |Ys|k

)
; as these estimates also ensure the applicability of the dom-

inated convergence theorem, the proof can be finished similarly.

• Theorem 4.1 of [9]. (In our problem it coincides with Lemma 4.2, because the terminal and bound-

ary conditions are zero.) The proof can be performed without changes, with the exception of the

sequences of inequalities in Equations (4.9) and (4.36) of [9]. These must be suitably adapted

taking into account our weaker polynomial growth assumption on the nonhomogeneity term and

our weaker version of Proposition 2.5-(iv) of [9]. In the case of Equation (4.9), a straightforward

adaptation leads us to replace the upper bound by

C
(
1 +K(1 +

(
|y|+ α)2k

))
+ C

(
1 +K

(
1 + |y|2k

))
<∞

where the constants also depend on the initial value v for the log-volatility process. This estimate

also assures the required uniform integrability. The adaptations in Equation (4.36) are analogous.

• Theorems 5.1 and 5.3 of [9]. No generalization of these theorems is necessary for our purposes.
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• Theorem 5.4 of [9]. In our setting, we cannot simply invoke Theorem 1.5 in Chapter V of Krylov

[24] to demonstrate the result, because Krylov’s theorem requires the linear growth assumption on

the SDE coefficients b and σ, which does not hold in our problem. However, we can overcome this

difficulty through a localization argument. Let {(tn, xn, vn)} be a sequence such that (tn, xn, vn)→

(t, x, v). Then, the associated sequence of (degenerate) log-volatility processes is given by

V tn,vnu = vn + a(u− tn) +
1

2
log

(
1 +

c

2a
e2vn(e2a(u−tn) − 1)

)
, u ∈ [tn, T ].

Since |vn| ≤M for some constant M , we easily see that

sup
n∈N

u∈[tn,T ]

∣∣V tn,vnu

∣∣ = C <∞ and sup
u∈[t,T ]

∣∣V t,vu ∣∣ ≤ C <∞.

Hence the two-dimensional processes (Y tn,vn , V tn,vn) associated to the initial values (tn, yn, vn),

as well as the two-dimensional process (Y t,v, V t,v) associated to the initial value (t, y, v), are also

the solutions of the SDE where the original coefficients b and σ are replaced by smooth functions

b̃, σ̃ such that

b̃(t, y, v) =

b(t, y, v), if |v| ≤ C

0, if |v| ≥ 2C

σ̃(t, y, v) =

σ(t, x, v), if |v| ≤ C

0, if |v| ≥ 2C

.

The new coefficients b̃ and σ̃ satisfy the linear growth assumption. Therefore, Theorem 1.5 in

Chapter V of Krylov [24] applied to the SDE with coefficients b̃ and σ̃ allows us to reach the desired

conclusion.

Notice that we have not shown that Theorem 4.4 of [9] is valid in our framework. (Nor Theorem 5.5,

which in [9] is just used as a lemma for the proof of the former.) The proofs of these two theorems

strongly depend on the ellipticity condition, which is not satisfied by our coefficient function σ(t, x, v).

The role of Theorem 4.4 in the proof given by Rubio in [9] is to ensure the differentiability of the

stochastic representation formula which defines the candidate solution for the terminal and boundary

value problem. But in our problem we have an alternative way to study the differentiability of the can-

didate solution f̃∗1 (t, y, v) which consists in taking advantage of the computations presented above. In-

deed, if we fix v = v′, the Feynman-Kac theorem in one space dimension assures that f̃∗1 (t, y, v) has one

Hölder continuous derivative in t and two Hölder continuous derivatives in y. (See the proof of Lemma

3.7.) Furthermore, from Lemma 3.7 and the remainder of the proof of Proposition 3.8 — which do not

depend on Lemma 3.5 — we know that f̃∗1 (t, y, v) = f̃1(t, y+ ĥ(t, v), v) where f̃1(t, x, v) is explicitly given

by the right-hand side of (3.38), and it is not hard to show that f̃∗1 (t, y, v) has two Hölder continuous

derivatives in v by explicitly computing the derivative of this expression with respect to v. (See also

Appendix B.5.)

These considerations show that f̃∗1 ∈ C
1,2,λ
loc ((0, T ) × (0,∞) × R). (This set was defined in Theorem

2.8.) Combining these results with our generalized versions of Theorems 3.3, 3.4 and 4.1 of [9], it follows

that f̃1 is the unique classical solution of the terminal and boundary value problem (3.27), as we wanted

to show.

35



3.2.6 Proving the convergence of the asymptotic expansion

Now that we have already derived an explicit expression for our first-order approximation (3.17), it is time

to demonstrate that it converges in the limit ε→ 0.

Throughout this subsection we will assume that the generic function ψ(t, v) in the small vol of vol

model (3.12) is a constant function, ψ(t, v) ≡ θ > 0. In other words, we will be addressing the case

where the approximations belong to the class of 2-hypergeometric models, which is clearly the natural

choice for the approximations because, unlike in the vanilla option framework of Privault and She [2], the

choice of another function ψ(t, v) is not more analytically convenient for the computation of the first-order

term of the barrier option price. (Without loss of generality we will additionally take θ = 1.)

The technique we will use in the proof is inspired by the proof of Theorem 4 of Kato et al. [15]. In the

context of their regular perturbation method for barrier option pricing (which we outlined in Subsection

2.4.2), these authors were able to derive an upper bound of the type∣∣∣f̂ε(t, x, v)−
(
f̂0(t, x, v) + εf̂1(t, x, v)

)∣∣∣ ≤ C(1 + |(x, v)|2m
)
ε2, t ∈ [0, T ], v ∈ R, x ≥ ĥ(t, v).

The fundamental step of their method consisted in associating, by virtue of the Feynman-Kac theorem,

a stochastic representation formula to the remainder term of the first-order expansion.

To obtain this kind of estimate which grows polynomially on the two space variables, Kato et al.

[15] make use of polynomial growth assumptions on some of the parameters of their problem. In our

framework, it will be necessary to replace the polynomial growth assumptions on v by exponential growth

assumptions, and this will naturally lead us to an upper bound for the remainder term which grows

exponentially in v. In other words, it is unsurprising that our convergence result will turn out to be∣∣∣f̂ε(t, x, v)−
(
f̂0(t, x, v) + εf̂1(t, x, v)

)∣∣∣ ≤ C (1 + |x|2m + e2mv
)
ε2, t ∈ [0, T ], v ∈ R, x ≥ ĥ(t, v).

(Clearly, this upper bound is enough for assuring that the o(ε) convergence in (3.17) holds true.)

Let us start by looking into the PDE problem which is satisfied by the remainder term of the first-order

approximation. For ε > 0, we define the remainder term as

f̂ε2 (t, x, v) :=
1

ε2

[
f̂ε(t, x, v)−

(
f̂0(t, x, v) + εf̂1(t, x, v)

)]
. (3.42)

Our claim is that f̂ε2 satisfies the terminal and boundary value problem

∂u

∂t
(t, x, v) + Lεu(t, x, v) = −gε2(t, x, v), t ∈ [0, T ], x > ĥ(t, v)

u(T, x, v) = 0, x > ĥ(T, v)

u(t, ĥ(t, v), v) = 0, t ∈ [0, T ].

(3.43)

where Lε is the partial differential operator from (3.15), and the nonhomogeneity term is the function

gε2(t, x, v) := L2f̂0(t, x, v) + L1f̂1(t, x, v) + εL2f̂1(t, x, v). (3.44)

This claim is easily seen to be true by recalling that the functions f̂ε, f̂0 and f̂1 are the unique solutions

of the terminal and boundary value problems (3.14), (3.18) and (3.27), respectively. It should be noticed

that the nonhomogeneity term is given by −gε2(t, x, v) precisely because we have defined gε2 as the sum
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of the terms which do not cancel out when we take the difference of the PDEs satisfied by the functions

f̂ε, f̂0 and f̂1.

Next, we use a stochastic representation formula to define a candidate solution f̃ε2 for the PDE

problem (3.43):

f̃ε2 (t, x, v) := E

[∫ T∧τt,ε
ĥ

t

e−r(u−t)gε2(u, Sεu, V
ε
u ) du

∣∣∣∣∣ Sεt = x, V εt = v

]
(3.45)

where τ t,ε
ĥ

:= inf{u ≥ t : Sεu ≤ ĥ(u, V εu )}. We emphasize that the process (Sε, V ε) underlying this

stochastic representation formula follows the 2-hypergeometric model (3.12) with ε > 0; in particular,

here V εt is not a deterministic function of time.

We intend to establish a growth estimate for our candidate solution f̃ε2 . As a preliminary step, let us

first obtain an upper bound for the growth of the function gε2 defined in (3.44):

Lemma 3.9. Assume that K ≥ H1 and that ψ(t, v) ≡ 1. Then, the function gε2 satisfies the following

growth condition: for any ε ≥ 0, there exist constants C, k > 0 such that

|gε2(t, x, v)| ≤ C
(
1 + |x|2k + e2kv

)
, t ∈ [0, T ], v ∈ R, x ≥ ĥ(t, v). (3.46)

Proof. This estimate follows from the inequalities (B.43), (B.53) and (B.58), whose proof is given in

Appendix B.

The next lemma provides the tool for transforming our growth estimate for gε2 into a growth estimate

for the candidate solution f̃ε2 :

Lemma 3.10. Let (Sε, V ε) be the diffusion process with dynamics (3.12) and assume that ψ(t, v) ≡ 1.

Then, for any ε ≥ 0, there exist constants C, m > 0 (which may depend on k) such that

E
[

sup
t≤u≤T

(∣∣Sεu∣∣2k + e2kV
ε
u

) ∣∣∣∣ Sεt = x, V εt = v

]
≤ C

(
1 + |x|2m + e2mv

)
, t ∈ [0, T ], x > 0, v ∈ R.

Proof. We first turn our attention to the log-volatility process V ε. If we let Zεt = e2V
ε
t , then Itô’s formula

applied to the log-volatility process in (3.12) shows that the dynamics of the two-dimensional diffusion

process (Sε, Zε) are

dSεt = rSεt dt+ Sεt
√
Zεt dW

1
t

dZεt =
(
2(a+ ε2)Zεt − c (Zεt )2

)
dt+ 2εZεt dW

∗
t .

(3.47)

If the coefficients of the diffusion process Zε satisfied the usual linear growth assumption, then we

could resort to standard theorems on estimates of the moments of solutions of SDEs (e.g. Corollary

2.5.12 of Krylov [23]) to argue that

E
[

sup
t≤u≤T

∣∣Zεu∣∣k ∣∣∣∣ Zεt = z

]
≤ C

(
1 + zk

)
where z = e2v. The quadratic growth of the drift coefficient of Zε obviously hinders a direct application of

this argument but, as we will see, it is still possible to take advantage of this classical result in an indirect

fashion.
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Observe that the term −c(Zεt )2dt in the expression for dZt has a negative effect on the value of the

drift, because c > 0. In these conditions, Theorem IX.3.7 of Revuz and Yor [25] assures the validity of

the following rather intuitive statement: the process Z̃ε defined by the SDE

dZ̃εt = 2(a+ ε2) Z̃εt dt+ 2ε Z̃εt dW
∗
t

— whose volatility coefficient is equal to that of Zε and whose drift coefficient function b̃2(t, z) = 2(a+ε2)z

is always greater than or equal to the drift coefficient function b2(t, z) = 2(a + ε2)z − cz2 of the process

Zε — is almost surely greater than the process Zε, that is, for any t ∈ [0, T ] and z > 0,

Q
[
0 ≤ Zεu ≤ Z̃εu for all u ∈ [t, T ]

∣∣∣ Zεt = Z̃εt = z
]

= 1.

(Recall that throughout all this chapter we are working under the risk-neutral probability Q. The positivity

of the process Z̃ε follows from the fact that it is a geometric Brownian motion.)

Unlike Zε, the process Z̃ε satisfies the assumption on the linear growth of the coefficients, so Corol-

lary 2.5.12 of Krylov [23] allows us to conclude that, for z > 0,

E
[

sup
t≤u≤T

∣∣Zεu∣∣k ∣∣∣∣ Zεt = z

]
≤ E

[
sup

t≤u≤T

∣∣Z̃εu∣∣k ∣∣∣∣ Z̃εt = z

]
≤ C(1 + zk). (3.48)

Now we will derive the upper bound for the price process Sε. As pointed out in Subsection 2.2.1 of

Da Fonseca and Martini’s paper [1], conditionally on x = Sεt , the process Sε can be written in closed

form as

Sεu = x exp

(
r(u− t)− 1

2

∫ u

t

e2V
ε
s ds+

∫ u

t

eV
ε
s dW 1

s

)
= xer(u−t)Mε

u, u ∈ [t, T ]

where Mε
u := exp

(
− 1

2

∫ u
t
e2V

ε
s ds+

∫ u
t
eV

ε
s dW 1

s

)
is a uniformly integrable martingale. Hence

E
[

sup
t≤u≤T

∣∣Sεu∣∣2k ∣∣∣∣ Sεt = x, V εt = v

]
≤ |x|2ke2k|r|TE

[
sup

t≤u≤T

∣∣Mε
u

∣∣2k ∣∣∣∣ Sεt = x, V εt = v

]
≤ C1|x|2kE

[∣∣Mε
T

∣∣2k ∣∣∣ Sεt = x, V εt = v
]

≤ C1|x|2k
(
E

[
exp

{
C2

∫ T

t

e2V
ε
u du

} ∣∣∣∣∣ Sεt = x, V εt = v

])C3

≤ C4 |x|2k(1 + e2C5v)C6

≤ C
(
1 + |x|2m + e2mv

)

(3.49)

where the constants Ci, C and m do not depend on x nor on v. In the second inequality we have used

the well-known Doob’s inequality (see e.g. Theorem 3.12 of Seppäläinen [26]); the third inequality uses

Theorem 1 of Grigelionis and Mackevic̆ius [27], which is a result on the moments of a stochastic expo-

nential; and the fourth inequality follows from a straightforward adaptation of the estimation procedure

from page 13 of Da Fonseca and Martini [1].

Combining (3.48) and (3.49), the lemma follows.

Let us now use the results from Lemmas 3.9 and 3.10 to derive our desired upper bound on the

growth of the function f̃ε2 defined in (3.45): for any ε ≥ 0, there exist constants C, m > 0 which do not
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depend on (t, x, v) such that

|f̃ε2 (t, x, v)| ≤
∫ T

t

e−r(u−t)E
[
|gε2(u, Sεu, V

ε
u )|1{Sεu≥ĥ(u,V εu )}

∣∣∣Sεt = x, V εt = v
]
du

≤ C1e
|r|T

∫ T

t

(
1 + E

[
(Sεu)2k + e2kV

ε
u

∣∣∣Sεt = x, V εt = v
])
du

≤ C2

(
1 + E

[
sup

t≤u≤T

(∣∣Sεu∣∣2k + e2kV
ε
u

)∣∣∣∣Sεt = x, V εt = v

])
≤ C

(
1 + |x|2m + e2mv

)
(3.50)

for all t ∈ [0, T ], x > 0, v ∈ R. It is important here that the estimate is valid for all ε ≥ 0 and not only for

all ε > 0, because that means that we can actually take C and m to be independent of ε ∈ [0, 1], which

is essential for assuring the convergence when ε→ 0.

Now that we have established this upper bound, the only thing that remains to be proved is that

the function f̃ε2 , which we defined as a candidate solution for the terminal and boundary value problem

(3.43), is indeed the unique solution of (3.43). In fact, if we prove this, then it will follow that f̃ε2 equals

the remainder term f̂ε2 defined in (3.42), and the estimate (3.50) for |f̂ε2 (t, x, v)| = |f̃ε2 (t, x, v)| will assure

the convergence of the first-order expansion.

Lemma 3.11. Assume that K ≥ H1 and ψ(t, v) ≡ 1, and fix ε > 0. Then, the function f̃ε2 (t, x, v) defined

in (3.45) is the unique solution of the terminal and boundary value problem (3.43).

Proof. Like in the proof of Lemma 3.5, here we intend to obtain the result through the Feynman-Kac

theorem for parabolic Cauchy-Dirichlet problems (Theorem 2.8).

Let us first perform the change of variable z = e2v and y = x− ĥ(t, v), which will reduce our problem

to one where we need not worry neither about the exponential growth in the variable v nor about the

dependence of the barrier function on time and on the volatility. If we define

u∗(t, y, z) := u
(
t, y + ĥ(t, 12 log z), 12 log z

)
then u(t, x, v) satisfies (3.43) if and only if u∗(t, y, z) satisfies

∂u∗

∂t
(t, y, z) + L∗,εu∗(t, y, z) = −gε2

(
t, y + ĥ(t, 12 log z), 12 log z

)
, t ∈ [0, T ], y > 0

u∗(T, y, z) = 0, y > 0

u∗(t, 0, z) = 0, t ∈ [0, T ].

(3.51)

where, for v = 1
2 log z,

L∗,ε =− ∂ĥ

∂t
(t, v)

∂

∂y
+
(
a− c

2
z
)[

2z
∂

∂z
− ∂ĥ

∂v
(t, v)

∂

∂y

]
+

1

2

(
y + ĥ(t, v)

)2
z
∂2

∂y2
+ r
(
y + ĥ(t, v)

) ∂
∂y
− r Id

+ ερ
(
y + ĥ(t, v)

)√
z

[
2z

∂

∂y∂z
− ∂ĥ

∂v
(t, v)

∂2

∂y2

]

+ ε2
1

2

[
−∂

2ĥ

∂v2
(t, v)

∂

∂y
+ 4z

∂

∂z
+

(
∂ĥ

∂v
(t, v)

)2
∂2

∂y2
− 4z

∂ĥ

∂v
(t, v)

∂2

∂y∂z
+ 4z2

∂2

∂z2

]

=

[
r
(
y + ĥ(t, v)

)
− ∂ĥ

∂t
(t, v)−

(
a− c

2
z
) ∂ĥ
∂t

(t, v)− ε2

2

∂2ĥ

∂v2
(t, v)

]
∂

∂y
+
(
2 (a+ ε) z − c z2

) ∂
∂z
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+

[
1

2

(
y + ĥ(t, v)

)2
z − ερ

(
y + ĥ(t, v)

)√
z
∂ĥ

∂v
(t, v) +

ε2

2

(
∂ĥ

∂v
(t, v)

)2]
∂2

∂y2

+

[
2ερ
(
y + ĥ(t, v)

)
z3/2 − 2ε2z

∂ĥ

∂v
(t, v)

]
∂

∂y∂z
+ 2ε2z2

∂2

∂z2
.

Correspondingly, we write

f̃∗,ε2 (t, y, z) := f̃ε2
(
t, y + ĥ(t, 12 log z), 12 log z

)
=

= E

[∫ T∧τt,ε
ĥ

t

e−r(u−t)gε2(u, Sεu, V
ε
u ) du

∣∣∣∣∣Sεt = y + ĥ(t, 12 log z), V εt = 1
2 log z

]

= E

[∫ T∧τt,ε
ĥ

t

e−r(u−t)gε2
(
u, Y εu + ĥ(t, 12 logZεu), 12 logZεu

)
du

∣∣∣∣∣Y εt = y, Zεt = z

]
.

where the process (Y ε, Zε) is defined as Y εt := Sεt−ĥ(t, V εt ), Zεt := e2V
ε
t , and the stopping time becomes

τ t,ε
ĥ

= inf{u ≥ t : Y εu ≤ 0}. We note that, by Itô’s formula, the original dynamics (3.12) are transformed

into

dY εt =

[
rSεt −

∂ĥ(t, V εt )

∂t
−
(
a− c

2
Zεt

)∂ĥ(t, V εt )

∂v
− ε2

2

∂2ĥ(t, V εt )

∂v2

]
dt+ Sεt

√
Zεt dW

1
t − ε

∂ĥ(t, V εt )

∂v
dW ∗t

dZεt =
(
2(a+ ε2)Zεt − c (Zεt )2

)
dt+ 2εZεt dW

∗
t .

(3.52)

(It is easy to check, by performing the usual computations, that the infinitesimal generator of the diffusion

process (Y ε, Zε) is indeed given by the operator L∗,ε.)

So let us turn to the proof of the equivalent statement that the stochastic representation formula f̃∗,ε2

is the unique (classical) solution of the boundary value problem (3.51). We now verify the assumptions

of Theorem 2.8:

• Assumption on the domain. The domain for the space variables is D = (0,∞)2, which has all the

required properties.

• Assumptions (i), (v), (vii) and (viii). It can be immediately checked that these assumptions hold.

• Assumption (iii). The matrix of the second-order coefficients is

a∗(t, y, z, ε) =

x2z − 2ερx
√
z ∂ĥ(t,v)∂v + ε2

(
∂ĥ(t,v)
∂v

)2
2ερxz3/2 − 2ε2z ∂ĥ(t,v)∂v

2ερxz3/2 − 2ε2z ∂ĥ(t,v)∂v 4ε2z2


(where v = 1

2 log z and x = y + ĥ(t, v)), and its eigenvalues are given by

1

2

[(∂ĥ(t, v)

∂v

)2
ε2 − 2ρε

∂ĥ(t, v)

∂v
x
√
z + x2z + 4ε2z2

±

√((∂ĥ(t, v)

∂v

)2
ε2 − 2ρε

∂ĥ(t, v)

∂v
x
√
z + x2z + 4ε2z2

)2

− 16ε2(1− ρ2)x2z3

]
.

These are bounded away from zero in any bounded open set B ⊂ D because z is strictly positive

(since the open set B does not include the boundary z = 0), as well as x (since y = x − ĥ(t, v) >

0 on B). From the well-known alternative formulation of the ellipticity condition, it follows that

assumption (iii) holds in any open set B ⊂ D.
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• Assumption (iv). As shown in the computations in Sections B.3, B.4 and B.5 of Appendix B, the

functions L2f̂0, L1f̂1 and L2f̂1 have no singularities in the set {(t, x, v) : t ∈ [0, T ], x ≥ ĥ(t, v)}.

Therefore, the nonhomogeneity term h(t, y, z) ≡ −gε2
(
t, y + ĥ(t, 12 log z), 12 log z

)
satisfies the re-

quired continuity property.

• Assumption (vi). By Lemma 3.9,

|h(t, y, z)| ≤ C1

(
1 +

∣∣y + ĥ(t, 12 log z)
∣∣2k1 + |z|k1

)
≤ C

(
1 + |y|k + |z|k

)
, t ∈ [0, T ], y ≥ 0, z ∈ R

where we have used the estimate (B.14) from Appendix B in the second inequality. Thus assump-

tion (vi) holds true.

The only hypothesis of Theorem 2.8 which our problem does not satisfy is in fact the assumption

(ii) on the linear growth of the coefficients of the diffusion process. But we can show that the theorem

nevertheless holds through an adaptation of the proof of Theorem 2.8 given in Rubio [9] — and the

adaptation here is simpler than in the proof of Lemma 3.5 because the ellipticity condition does not fail.

The changes which should now be considered in the proofs presented in [9] are the following:

• Proposition 2.5 of [9]. As shown in Subsections 2.1.1 and 2.2.1 of Da Fonseca and Martini [1], the

unique solution of the diffusion equations (3.47) with initial conditions Sεt = x and Zεt = z is

Zεu =
z exp{2a(u− t) + 2ε(W ∗u −W ∗t )}

1 + cz
∫ u
t

exp{2as+ εW ∗s } ds
, Sεu = x exp

(
r(u− t)− 1

2

∫ u

t

Zsds+

∫ u

t

√
ZsdW

1
s

)
.

Properties (i), (ii) and (iii) are an immediate consequence of these closed-form expressions and

the definition Y εt = Sεt −ĥ(t, V εt ). As for (iv), by Lemma 3.10 and the estimate (B.14) from Appendix

B we have

E
[

sup
t≤u≤T

(∣∣Y εu ∣∣2r +
∣∣Zεu∣∣2r) ∣∣∣∣ Y εt = y, Zεt = z

]
≤ E

[
sup

t≤u≤T

(∣∣Sεu∣∣2r +
∣∣Zεu∣∣2r) ∣∣∣∣ Sεt = y + ĥ

(
t, 12 log z

)
, Zεt = z

]
≤ C1

(
1 +

∣∣y + ĥ(t, 12 log z)
∣∣2k + |z|2k

)
≤ C

(
1 + |y|2k + |z|2k

)
for all t ∈ [0, T ], y > 0 and z > 0, where the constants C and k depend on r. This weaker form of

property (iv) will be enough for our purposes.

• Lemma 3.3, Lemma 3.4 and Theorem 4.1 of [9]. The proofs of these results only use the linear

growth assumption via the properties (i)–(iv) in Proposition 2.5 of [9]. As all the arguments are also

valid if property (iv) is replaced by our weaker version, the proofs can be carried out in the same

manner.

• Theorem 5.4 of [9]. The result which is invoked in the proof given in [9] depends on the linear

growth condition, but it is possible to reach the same conclusion by invoking a different result

which does not depend on that assumption. Theorem 10.6.4 and Remark 10.6.5 of Kuo [28],

which are also valid in a multidimensional setting (see the comment in page 208 of [28]), ensure

that if (tn, yn, zn) → (t, y, z) and (Y n,ε, Zn,ε), (Y ε, Zε) are the solutions of the SDEs (3.52) with
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initial conditions (Y n,εtn , Zn,εtn ) = (yn, zn), (Y εt , Z
ε
t ) = (y, z) respectively, then there is mean-square

convergence in the sense that

E
[(

sup
0≤s≤T

∣∣(Y n,εtn+s, Z
n,ε
tn+s)− (Y εt+s, Z

ε
t+s

)∣∣)2]
−−−−→
n→∞

0.

Since mean-squared convergence implies convergence in probability, the required property fol-

lows.

We note that even though the invoked results from Kuo [28] are formulated for the case where tn is

the same for all equations, these results are easily extended to the case where the initial time also

differs by adding an extra dimension to the diffusion process, as in Equation (2.3) of Rubio [9].

The other auxiliary results in [9] do not require the linear growth assumption (ii), so they are valid in our

setting. It follows that the conclusion of Theorem 2.8 holds for our problem, and the lemma is proved.

We have completed the proof of the following convergence theorem:

Theorem 3.12. Let f̂0(t, x, v) and f̂1(t, x, v) be, respectively, the zero and first-order term in the first-

order expansion (3.17) for the price f̂ε(t, x, v) of a DOC option with barrier function ĥ(t, v) under the

model (3.12). Assume that K ≥ H1 and ψ(t, v) ≡ 1. Then, there exist positive constants C and m which

are independent of ε ∈ [0, 1] such that∣∣∣f̂ε(t, x, v)−
(
f̂0(t, x, v) + εf̂1(t, x, v)

)∣∣∣ ≤ C (1 + |x|2m + e2mv
)
ε2, t ∈ [0, T ], v ∈ R, x ≥ ĥ(t, v).

3.2.7 The multi-stage method

Aiming towards a better approximation between the time and volatility-dependent barrier and a constant

barrierH, we now want to generalize our asymptotic pricing technique to the case of a piecewise-smooth

barrier function which is of the form (3.13) in each subinterval of time.

Specifically, in analogy with Section 3 of Dorfleitner et al. [20], we now subdivide the interval [t′, T ]

into n subintervals defined by t′ = T0 < T1 < . . . < Tn = T and consider the continuous barrier function

defined by

ĥ(n)(t, v) := H1 exp

{
−r(T − t) +

n∑
i=1

1 + 2βi
2

1{t<Ti}γ
2(t ∨ Ti−1, Ti, V t,vt∨Ti−1

)

}
, (t, v) ∈ [t′, T ]× R

(3.53)

which is piecewise of the form (3.13) in the sense that

ĥ(n)(t, v) := ĥ(n)(Ti, V
t,v
Ti

) exp

{
−r(Ti − t) +

1 + 2βi
2

γ2(t, Ti, v)

}
, (t, v) ∈ [Ti−1, Ti]× R.

In particular, if we set βi = β for all i = 1, . . . , n we obtain (3.13). But, of course, the idea here

is to pick β1, . . . , βn so that ĥ(n)(t, v) is closer to the constant barrier H than the single-stage barrier

function ĥ(t, v): our choice of βi should ensure that the barrier function is as constant as possible

in the interval [Ti−1, Ti]. Analogously to Subsection 3.2.3, the simplest choice is H1 = H and βi =

r(Ti−Ti−1)

γ2(Ti−1,Ti,V
t′,v′
Ti−1

)
− 1

2 . Concerning the choice of n (and in particular the choice between the single and
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the multi-stage methods), one should try to find a good compromise between computational speed and

numerical accuracy, depending on the practical problem at hand. As stated in Subsection 3.2.3, for small

maturities it suffices to take n = 1, whereas for higher maturities a greater number of stages may be

necessary.

As we show below, a stepwise PDE approach in the spirit of Lo et al. [21] and Dorfleitner et al. [20]

enables us to derive an explicit formula for the zero and first-order terms of the asymptotic expansion of

the price of the option with barrier function (3.53).

The exact price f̂ (n)(t, x, v) of the option with piecewise-smooth barrier function (3.53), which is the

solution of (3.14) with ĥ(t, v) replaced by ĥ(n)(t, v), can (at least formally) be expanded as

f̂ (n)(t, x, v) = f̂
(n)
0 (t, x, v) + εf̂

(n)
1 (t, x, v) + o(ε)

where the functions f̂ (n)0 and f̂
(n)
1 satisfy (3.16). (Naturally, the nonconstant boundary conditions are

now f̂
(n)
j (t, ĥ(n)(t, v), v) = 0 for j = 0, 1.)

The same argument from the single-stage framework shows that for our fixed initial time t′ and initial

log-volatility v′, the zero-order term is again the price, under the same Black and Scholes model, of

a DOC option whose time-dependent barrier function is ĥ(n)(t, V t
′,v′

t ); that is, f̂ (n)0 (t, x, V t
′,v′

t ) is the

solution of

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = 0, t ∈ [t′, T ], x > ĥ(n)(t, V t
′,v′

t )

u(T, x) = (x−K)+, x > ĥ(n)(T, V t
′,v′

T )

u(t, ĥ(n)(t, V t
′,v′

t )) = 0, t ∈ [t′, T ].

Since the time-dependent barrier function ĥ(n)(t, V t
′,v′

t ) is of the form (3.24) in each subinterval [Ti−1, Ti],

we can use the following multi-stage procedure to obtain the closed-form expression for the zero-order

term f̂
(n)
0 (t′, x, v′):

1. We compute f̂
(n)
0 (Tn−1, x, V

t′,v′

Tn−1
) via the closed-form expression (3.25), where ĥ(t, v) becomes

ĥ(n)(Tn−1, V
t′,v′

Tn−1
) and β is replaced by βn.

2. For i = n − 2, . . . , 0, we use f̂
(n)
0 (Ti+1, x, V

t′,v′

Ti+1
) as the terminal condition for the PDE problem

in the interval [Ti, Ti+1], and we compute the explicit closed-form expression for f̂ (n)0 (Ti, x, V
t′,v′

Ti
)

using the integral representation formula (A11) in Theorem 1 of Dorfleitner et al. [20].

In order to illustrate that the integrals from the representation formula of Theorem 1 of Dorfleitner et

al. [20] can be computed in closed form, let us focus on the case n = 2, where the integral representation

for the zero-order term is

f̂
(2)
0 (t′, x, v′) = e−r(T1−t′)

∫ ∞
ĥ(2)(T1,V

t′,v′
T1

)

1√
2πγ(t′, T1, v′)z

×

× exp

{
− 1

2γ2(t′, T1, v′)

(
log
( z
x

)
−r(T1 − t′) +

1

2
γ2(t′, T1, v

′)

)2
}

×

[
1− exp

{
− 2

γ2(t′, T1, v′)
log

(
ĥ(2)(T1, V

t′,v′

T1
)

z

)
log

(
ĥ(2)(t′, v′)

x

)}]
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×
[
zN
(
d1(T1, z, V

t′,v′

T1
)
)
−Ke−r(T−T1)N

(
d2(T1, z, V

t′,v′

T1
)
)
+

+

(
ĥ(2)(T1, V

t′,v′

T1
)

z

)2+2β2
(
−zN

(
d3(T1, z, V

t′,v′

T1
)
)

+
Ke−r(T−T1)z2(
ĥ(2)(T1, V

t′,v′

T1
)
)2N (d4(T1, z, V

t′,v′

T1
)
))]

dz

= e−r(T1−t′)
∫ ∞
log
(
ĥ(2)(T1,V

t′,v′
T1

)
) 1√

2πγ(t′, T1, v′)
×

× exp

{
− 1

2γ2(t′, T1, v′)

(
w − log x− r(T1 − t′) +

1

2
γ2(t′, T1, v

′)

)2
}

×

[
1− exp

{
− 2

γ2(t′, T1, v′)

(
w − log

(
ĥ(2)(T1, V

t′,v′

T1
)
))

log

(
x

ĥ(2)(t′, v′)

)}]
×

×

[
ewN

(
d1(T1, e

w, V t
′,v′

T1
)
)
−Ke−r(T−T1)N

(
d2(T1, e

w, V t
′,v′

T1
)
)
+

+

(
ĥ(2)(T1, V

t′,v′

T1
)

ew

)2+2β2
(
−ewN

(
d3(T1, e

w, V t
′,v′

T1
)
)

+
Ke−r(T−T1)e2w(
ĥ(2)(T1, V

t′,v′

T1
)
)2N (d4(T1, e

w, V t
′,v′

T1
)
))]

dw.

The above integral can be decomposed into eight summands of the form
∫∞
L

exp
(
−(Aw2 +Bw + C)

)
N (Dw + E)dw, where A > 0, B,C,D,E and L are parameters which do not depend on w; as shown in

Appendix A.3, these can be written in closed form in terms of the bivariate normal cumulative distribution

function. So, by carrying out the decomposition we obtain the following closed-form expression for the

zero-order term:

f̂
(2)
0 (t′, x, v′) =

e−r(T1−t′)
√

2πγ(t′, T1, v′)

8∑
i=1

Ai,1 Υ
(
Ai,2, Ai,3, Ai,4, Ai,5, Ai,6, Ai,7

)
(3.54)

where Υ(A,B,C,D,E,L) is defined in Equation (A.14) of Appendix A, and the parameters Ai,j are

defined in Table 3.1. (It can be verified numerically that this formula coincides with (3.25) in the particular

case β1 = β2 = β, and also that it satisfies the standard monotonicity properties with respect to the

barrier function.)

For higher n, a straightforward inductive argument shows that the integral representation formula for

f̂
(n)
0 (t′, x, v′) can be written in terms of the cumulative distribution function of the n-dimensional normal

distribution.

Regarding the first-order term, which is defined as the solution of

∂f̂
(n)
1

∂t
(t, x, v) + L0f̂

(n)
1 (t, x, v) = −L1f̂

(n)
0 (t, x, v), t ∈ [t′, T ], x > ĥ(n)(t, v)

f̂
(n)
1 (T, x, v) = 0, x > ĥ(n)(T, v)

f̂
(n)
1 (t, ĥ(n)(t, v), v) = 0, t ∈ [t′, T ],

the strategy to obtain an explicit expression for f̂ (n)1 (t′, x, v′) is similar to that from the single-stage

framework: first we use the Feynman-Kac theorem to write out the stochastic representation formula

for f̂ (n)1 (t, x, v); then we fix v = v′ and appeal again to the Feynman-Kac theorem to assert that

f̂
(n)
1 (t, x, V t

′,v′

t ) is the solution of the terminal and boundary value problem (3.29) (with ĥ(t, V t
′,v′

t ) re-

placed by ĥ(n)(t, V t
′,v′

t )); finally, we decompose f̂ (n)1 (t, x, V t
′,v′

t ) = f̂
(A,n)
1 (t, x, V t

′,v′

t )− f̂ (B,n)1 (t, x, V t
′,v′

t )

as in (3.30)–(3.31). We can obtain an explicit expression for f̂ (A,n)1 (t′, x, v′) through a multi-stage proce-

dure:
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Table 3.1: Parameters in the closed-form expression (3.54) for f̂ (2)0 (t′, x, v′)

i Ai,1 Ai,2 Ai,3

1 1 1
2γ2(t′,T1,v′)

− 1
γ2(t′,T1,v′)

[
log x+ r(T1 − t′) + 1

2
γ2(t′, T1, v

′)
]

2 −1 1
2γ2(t′,T1,v′)

− 1
γ2(t′,T1,v′)

[
log
( (ĥ(2)(t′,v′))2

x

)
+ r(T1 − t′) + 1

2
γ2(t′, T1, v

′)
]

3 −Ke−r(T−T1) 1
2γ2(t′,T1,v′)

− 1
γ2(t′,T1,v′)

[
log x+ r(T1 − t′)− 1

2
γ2(t′, T1, v

′)
]

4 Ke−r(T−T1) 1
2γ2(t′,T1,v′)

− 1
γ2(t′,T1,v′)

[
log
( (ĥ(2)(t′,v′))2

x

)
+ r(T1 − t′)− 1

2
γ2(t′, T1, v

′)
]

5 −
(
ĥ(2)(T1, V

t′,v′

T1
)
)2+2β2 1

2γ2(t′,T1,v′)
A3,3 + 1 + 2β2

6
(
ĥ(2)(T1, V

t′,v′

T1
)
)2+2β2 1

2γ2(t′,T1,v′)
A4,3 + 1 + 2β2

7
(
ĥ(2)(T1, V

t′,v′

T1
)
)2β2A4,1

1
2γ2(t′,T1,v′)

A1,3 + 1 + 2β2

8 −A7,1
1

2γ2(t′,T1,v′)
A2,3 + 1 + 2β2

i Ai,4 Ai,5

1 1
2γ2(t′,T1,v′)

[
log x+ r(T1 − t′)− 1

2
γ2(t′, T1, v

′)
]2 1

γ(T1,T,V
t′,v′
T1

)

2 A1,4 +
1

2γ2(t′,T1,v′)
log
(
ĥ(2)(T1, V

t′,v′

T1
)
)2 · log( (ĥ(2)(t′,v′))2

x2

)
1

γ(T1,T,V
t′,v′
T1

)

3 1
2γ2(t′,T1,v′)

[
log x+ r(T1 − t′)− 1

2
γ2(t′, T1, v

′)
]2 1

γ(T1,T,V
t′,v′
T1

)

4 A3,4 +
1

2γ2(t′,T1,v′)
log
(
ĥ(2)(T1, V

t′,v′

T1
)
)2 · log( (ĥ(2)(t′,v′))2

x2

)
1

γ(T1,T,V
t′,v′
T1

)

5 1
2γ2(t′,T1,v′)

[
log x+ r(T1 − t′)− 1

2
γ2(t′, T1, v

′)
]2 − 1

γ(T1,T,V
t′,v′
T1

)

6 A5,4 +
1

2γ2(t′,T1,v′)
log
(
ĥ(2)(T1, V

t′,v′

T1
)
)2 · log( (ĥ(2)(t′,v′))2

x2

)
− 1

γ(T1,T,V
t′,v′
T1

)

7 1
2γ2(t′,T1,v′)

[
log x+ r(T1 − t′)− 1

2
γ2(t′, T1, v

′)
]2 − 1

γ(T1,T,V
t′,v′
T1

)

8 A7,4 +
1

2γ2(t′,T1,v′)
log
(
ĥ(2)(T1, V

t′,v′

T1
)
)2 · log( (ĥ(2)(t′,v′))2

x2

)
− 1

γ(T1,T,V
t′,v′
T1

)

i Ai,6 Ai,7

1 1

γ(T1,T,V
t′,v′
T1

)

[
− log(K ∨H1) + r(T − T1) +

1
2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

2 1

γ(T1,T,V
t′,v′
T1

)

[
− log(K ∨H1) + r(T − T1) +

1
2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

3 1

γ(T1,T,V
t′,v′
T1

)

[
− log(K ∨H1) + r(T − T1)− 1

2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

4 1

γ(T1,T,V
t′,v′
T1

)

[
− log(K ∨H1) + r(T − T1)− 1

2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

5 1

γ(T1,T,V
t′,v′
T1

)

[
log
(

(ĥ(2)(T1,V
t′,v′
T1

))2

K∨H1

)
+ r(T − T1) +

1
2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

6 1

γ(T1,T,V
t′,v′
T1

)

[
log
(

(ĥ(2)(T1,V
t′,v′
T1

))2

K∨H1

)
+ r(T − T1) +

1
2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

7 1

γ(T1,T,V
t′,v′
T1

)

[
log
(

(ĥ(2)(T1,V
t′,v′
T1

))2

K∨H1

)
+ r(T − T1)− 1

2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)

8 1

γ(T1,T,V
t′,v′
T1

)

[
log
(

(ĥ(2)(T1,V
t′,v′
T1

))2

K∨H1

)
+ r(T − T1)− 1

2
γ2(T1, T, V

t′,v′

T1
)
]

log
(
ĥ(2)(T1, V

t′,v′

T1
)
)
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1. In the interval [Tn−1, T ] the function f̂ (A,n)1 (t, x, V t
′,v′

t ) satisfies

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = −L1f̂
(n)
0 (t, x, V t

′,v′

t ), t ∈ [Tn−1, T ], x ∈ R

u(T, x) = 0, x ∈ R
(3.55)

so we can compute f̂ (A,n)1 (Tn−1, x, V
t′,v′

Tn−1
) via the explicit expression (3.36).

2. For i = n− 2, . . . , 0 the function f̂ (A,n)1 (t, x, V t
′,v′

t ) satisfies

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = −L1f̂
(n)
0 (t, x, V t

′,v′

t ), t ∈ [Ti, Ti+1], x ∈ R

u(Ti+1, x) = f̂
(A,n)
1 (Ti+1, x, V

t′,v′

Ti+1
), x ∈ R

(3.56)

where the terminal condition is the function which has been derived in the previous stage. Hence

we can compute the explicit expression for f̂ (A,n)1 (Ti, x, V
t′,v′

Ti
) by combining the Feynman-Kac

theorem of Heath and Schweizer [8] with the known expression for the law of the process St
′,v′ .

After this, the explicit expression for f̂ (B,n)1 (t′, x, v′) is deduced in a similar fashion:

1. In the interval [Tn−1, T ] the function f̂ (B,n)1 (t, x, V t
′,v′

t ) satisfies

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = 0, t ∈ [Tn−1, T ], x > ĥ(n)(t, V t
′,v′

t )

u(T, x) = 0, x > ĥ(n)(T, V t
′,v′

T )

u(t, ĥ(n)(t, V t
′,v′

t )) = f̂
(A,n)
1 (t, ĥ(n)(t, V t

′,v′

t ), V t
′,v′

t ), t ∈ [Tn−1, T ]

so we can compute f̂ (B,n)1 (Tn−1, x, V
t′,v′

Tn−1
) as in the single-stage method.

2. For i = n− 2, . . . , 0 the function f̂ (B,n)1 (t, x, V t
′,v′

t ) satisfies

∂u

∂t
(t, x) + Lt

′,v′

bs u(t, x) = 0, t ∈ [Ti, Ti+1], x > ĥ(n)(t, V t
′,v′

t )

u(Ti+1, x) = f̂
(B,n)
1 (Ti+1, x, V

t′,v′

Ti+1
), x > ĥ(n)(Ti+1, V

t′,v′

Ti+1
)

u(t, ĥ(n)(t, V t
′,v′

t )) = f̂
(A,n)
1 (t, ĥ(n)(t, V t

′,v′

t ), V t
′,v′

t ), t ∈ [Ti, Ti+1]

where once more the terminal condition is the function which has been derived in the previous

stage. Therefore we can obtain an explicit representation for f̂ (B,n)1 (Ti, x, V
t′,v′

Ti
) by resorting to

formula (A15) in Theorem 1 of Dorfleitner et al. [20].

It is worth pointing out that the justification of the validity of the Feynman-Kac theorems is somewhat

more delicate in this multi-stage setting, not only because the barrier function is no longer globally

smooth but also because we need to deal with more lengthy analytical expressions in the verification of

the growth conditions. We will not deal with these technicalities here, but we do note that the natural

strategy to circumvent these difficulties consists in applying the Feynman-Kac theorems sequentially in

each interval [Tn−1, T ], . . . , [t′, T1].
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Chapter 4

Conclusions

In this thesis we successfully achieved our goal of establishing an asymptotic pricing formula for barrier

options under the 2-hypergeometric stochastic volatility model. Moreover, we were able to show that our

small volatility of volatility expansion method, which is based on that of Privault and She [2], is not just

a formal asymptotic technique, as it is indeed possible to prove that it converges when the perturbation

parameter tends to zero.

An important feature of our method is that, taking advantage of the analytical tractability of the 2-

hypergeometric model, we obtain an explicit pricing formula which only requires the numerical evaluation

of a double definite integral. This is much simpler than the computationally intensive methods which are

commonly used for numerically computing option prices under stochastic volatility.

The only drawback of our barrier option pricing technique is the fact that, in general, it requires two

approximation steps: the first concerns the approximation of the constant barrier by a time and volatility-

dependent barrier, and the second is related to the asymptotic nature of our perturbation expansion

method. However, this shortcoming is partly offset by the fact that the multi-stage method can be em-

ployed whenever one needs to improve the quality of the approximation.

In closing, we would like to point out some relevant topics which, due to time and space constraints,

were not covered in this study. It would be interesting to better examine the accuracy of our single and

multi-stage approximations through a numerical comparison with (numerically) exact values obtained

e.g. through Monte Carlo simulation or a finite difference scheme. In particular, such an implementation

would allow us to check if the numerical results endorse our conjecture regarding the validity of the

asymptotic expansion for the case of reverse barrier options (cf. Remark 3.6). Lastly, it would be valuable

to investigate whether the price of other exotic options (including American-type options) under the 2-

hypergeometric stochastic volatility model can also be computed via the small vol of vol expansion

method addressed in this work.
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Appendix A

Auxiliary computations

A.1 The expectation of a function of a normal random variable

If Y ∼ Normal(µ, σ2), then

E
[
(a1Y

2+ a2Y + a3) exp
{
−(a4Y

2 + a5Y + a6)
}
1{Y≤L}

]
=

=

∫ L

−∞
(a1y

2 + a2y + a3)
1√
2πσ

exp

{
−
(
a4 +

1

2σ2

)
y2 −

(
a5 −

µ

σ2

)
y −

(
a6 +

µ2

2σ2

)}
dy

=
1

σ

∫ L

−∞
(b0y

2 + b1y + b2)
1√
2πs

exp

{
− 1

2s2
y2 +

m

s2
y − m2

2s2

}
dy

=
1

σ

∫ L

−∞

(
b0(y −m)2 + (b1 + 2b0m)(y −m) + (b2 + b1m+ b0m

2)
)

× 1√
2π

exp

{
− 1

2s2
y2 +

m

s2
y − m2

2s2

}
dy

=
s2

σ
b0

[
sN

(
L−m
s

)
− (L−m)n

(
L−m
s

)]
− s2

σ
(b1 + 2b0m)n

(
L−m
s

)
+
s

σ
(b2 + b1m+ b0m

2)N
(
L−m
s

)
where

2a4 + 1
σ2 = 1

s2

−a5 + µ
σ2 = m

s2

a1 exp
{
−
(
a6 + µ2

2σ2

)}
= b0 exp

{
−m2

2s2

}
a2 exp

{
−
(
a6 + µ2

2σ2

)}
= b1 exp

{
−m2

2s2

}
a3 exp

{
−
(
a6 + µ2

2σ2

)}
= b2 exp

{
−m2

2s2

}
⇐⇒



m = µ−σ2a5
1+2σ2a4

s2 = σ2

1+2σ2a4

b0 = a1 exp
{
− µ2

2σ2 + (µ−σ2a5)
2

2σ2(1+2σ2a4)
− a6

}
b1 = a2 exp

{
− µ2

2σ2 + (µ−σ2a5)
2

2σ2(1+2σ2a4)
− a6

}
b2 = a3 exp

{
− µ2

2σ2 + (µ−σ2a5)
2

2σ2(1+2σ2a4)
− a6

}
so that

E
[
(a1Y

2 + a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)

}
1{Y≤L}

]
= exp

{
− µ2

2σ2
+

(µ− σ2a5)2

2σ2(1 + 2σ2a4)
− a6

}
×

×

[
σ2 a1

(1 + 2σ2a4)3/2
N

(
1

σ

√
1 + 2σ2a4

(
L− µ− σ2a5

1 + 2σ2a4

))

− σ a1
1 + 2σ2a4

(
L− µ− σ2a5

1 + 2σ2a4

)
n

(
1

σ

√
1 + 2σ2a4

(
L− µ− σ2a5

1 + 2σ2a4

))
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− σ

1 + 2σ2a4

(
2a1

µ− σ2a5
1 + 2σ2a4

+ a2

)
n

(
1

σ

√
1 + 2σ2a4

(
L− µ− σ2a5

1 + 2σ2a4

))

+
1√

1 + 2σ2a4

(
a1

( µ− σ2a5
1 + 2σ2a4

)2
+ a2

µ− σ2a5
1 + 2σ2a4

+ a3

)
N

(
1

σ

√
1 + 2σ2a4

(
L− µ− σ2a5

1 + 2σ2a4

))]
.

(A.1)

Taking the limit L→ +∞ we obtain the particular case

E
[
(a1Y

2 + a2Y + a3) exp
{
−(a4Y

2 + a5Y + a6)
}]

=
1√

1 + 2σ2a4
×

× exp

{
− µ2

2σ2
+

(µ− σ2a5)2

2σ2(1 + 2σ2a4)
− a6

}[
a1

(( µ− σ2a5
1 + 2σ2a4

)2
+

σ2

1 + 2σ2a4

)
+ a2

µ− σ2a5
1 + 2σ2a4

+ a3

]
.

(A.2)

Moreover, a judicious choice of the parameters shows that∫ L

−∞
(c1w + c2) exp

{
−(c3w

2 + c4w + c5)
}
dw =

√
π

c3
exp

{
c24
4c3
− c5

}
E
[
(c1W + c2)1{W≤L}

]
where W ∼ Normal

(
− c4

2c3
, 1
2c3

)
, so (A.1) yields∫ L

−∞
(c1w + c2) exp

{
−(c3w

2 + c4w + c5)
}
dw =

=

√
π

c3
exp

{
c24
4c3
− c5

}[
− c1√

2c3
n

(√
2c3

(
L+

c4
2c3

))
+

(
−c1c4

2c3
+ c2

)
N
(√

2c3

(
L+

c4
2c3

))]
.

(A.3)

A.2 Computation of the expectation in Equation (3.35)

Here we will compute each of the terms of the expectation E
[
St
′,v′

u
∂f̂0
∂x∂v (u, St

′,v′

u , V t
′,v′

u )
∣∣∣St′,v′t′ = x

]
. (All

the expectations below are conditional to St
′,v′

t′ = x, but for brevity we will omit the indication.)

The function E1,0(t′, u, x, v′):

E1,0 ≡ E1,0(t′, u, x, v′) = E
[
St
′,v′

u n
(
d1(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[
St
′,v′

u n

(
1

γ(u, T, V t
′,v′
u )

(
log
( St

′,v′

u

K ∨H1

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]

=
K ∨H1√

2π
E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]

where Y = log
(
St
′,v′
u

K∨H1

)
∼ Normal

(
log
(

x
K∨H1

)
+ r(u− t′)− 1

2γ
2(t′, u, v′), γ2(t′, u, v′)

)
and

a2 = 0, a3 = 1, a4 =
1

2γ2(u, T, V t
′,v′
u )

, a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
, a6 =

(
r(T − u) +

γ2(u,T,V t
′,v′
u )

2

)2
2γ2(u, T, V t

′,v′
u )

.

Using (A.2), we get

E1,0 =
(K ∨H1)γ(u, T, V t

′,v′

u )√
2πγ(t′, T, v′)

exp

{
− 1

2γ2(t′, T, v′)

(
log
( x

K ∨H1

)
+ r(T − t′)

)2

+
1

2

[
r
(
(T − u)− (u− t′)

)
− log

( x

K ∨H1

)
+

1

4
γ2(t′, T, v′)

]}

= e−r(T−u)(K ∨H1)
γ(u, T, V t

′,v′

u )

γ(t′, T, v′)
n
(
d2(t′, x, v′)

)
. (A.4)
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The function E1,1(t′, u, x, v′):

E1,1 = E
[
St
′,v′

u d1(u, St
′,v′

u , V t
′,v′

u )n
(
d1(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[
St
′,v′

u

γ(u, T, V t
′,v′
u )

(
log
( St

′,v′

u

K ∨H1

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

)

× n

(
1

γ(u, T, V t
′,v′
u )

(
log
( St

′,v′

u

K ∨H1

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]

=
1√
2π

(K ∨H1) γ(u, T, V t
′,v′

u )E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]

where we now have

a2 = 2a4 =
1

γ2(u, T, V t
′,v′
u )

, a3 =
r(T − u)

γ2(u, T, V t
′,v′
u )

+
1

2
,

a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
, a6 =

(
r(T − u) + 1

2γ
2(u, T, V t

′,v′

u )
)2

2γ2(u, T, V t
′,v′
u )

,

so that (A.2) gives

E1,1 =
(K ∨H1)γ(u, T, V t

′,v′

u )√
2π
(
1 + γ2(t′,u,v′)

γ2(u,T,V t
′,v′
u )

)
×

(
1

γ2(t′, T, v′)

(
log
( x

K ∨H1

)
+ r
(

(u− t′)− γ2(t′, u, v′)

γ2(u, T, V t
′,v′
u )

(T − u)
))

+
r(T − u)

γ2(u, T, V t
′,v′
u )

+
1

2

)

× exp

{
− 1

2γ2(t′, u, v′)

(
log
( x

K ∨H1

)
+ r(u− t′)− 1

2
γ2(t′, u, v′)

)2

+

(
log
(

x
K∨H1

)
+ r
(

(u− t′)− γ2(t′,u,v′)

γ2(u,T,V t
′,v′
u )

(T − u)
))2

2γ2(t′, u, v′)
(
1 + γ2(t′,u,v′)

γ2(u,T,V t
′,v′
u )

) −
(r(T − u) + 1

2γ
2(u, T, V t

′,v′

u ))2

2γ2(u, T, V t
′,v′
u )

}

= e−r(T−u)(K ∨H1)
γ2(u, T, V t

′,v′

u )

γ2(t′, T, v′)
d1(t′, x, v′)n

(
d2(t′, x, v′)

)
. (A.5)

The function E1,2(t′, u, x, v′):

E1,2 = E
[
St
′,v′

u

(
d1(u, St

′,v′

u , V t
′,v′

u )
)2
n
(
d1(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[
St
′,v′

u

γ2(u, T, V t
′,v′
u )

(
log
( St

′,v′

u

K ∨H1

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

)2

× n

(
1

γ(u, T, V t
′,v′
u )

(
log
( St

′,v′

u

K ∨H1

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]

=
K ∨H1√

2π
E
[
(a1Y

2 + a2Y + a3) exp
{
−(a4Y

2 + a5Y + a6)
}]

with

a1 = 2a4 =
1

γ2(u, T, V t
′,v′
u )

, a2 =
2r(T − u)

γ2(u, T, V t
′,v′
u )

+ 1,

a3 = 2a6 =

(
r(T − u) + 1

2γ
2(u, T, V t

′,v′

u )
)2

γ2(u, T, V t
′,v′
u )

, a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
,

and we use (A.2) to obtain

E1,2 = e−r(T−u)(K ∨H1)
γ(u, T, V t

′,v′

u )

γ3(t′, T, v′)

(
d21(t′, x, v′)γ2(u, T, V t

′,v′

u ) + γ2(t′, u, v′)
)
n
(
d2(t′, x, v′)

)
. (A.6)
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The function E2(t′, u, x, v′):

E2 = E

[(
St
′,v′

u

)−(1+2β)

N

(
1

γ(u, T, V t
′,v′
u )

(
log
( ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]

=

∫ 0

−∞

1
√

2πγ(u, T, V t
′,v′
u )

E

[(
St
′,v′

u

)−(1+2β)

× exp

{
1

2γ2(u, T, V t
′,v′
u )

(
w + log

( ĥ2(u, V t
′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

)2
}]

dw

=

∫ 0

−∞

1
√

2πγ(u, T, V t
′,v′
u )

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]
dw

where Y = log
(
ĥ2(u,V t

′,v′
u )

St
′,v′
u (K∨H1)

)
∼ Normal

(
log
(
ĥ2(u,V t

′,v′
u )

x(K∨H1)

)
− r(u− t′) + 1

2γ
2(t′, u, v′), γ2(t′, u, v′)

)
and

a2 = 0, a3 = 1, a4 =
1

2γ2(u, T, V t
′,v′
u )

,

a5 =
w + r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β, a6 =

(
w + r(T − u) + 1

2γ
2(u, T, V t

′,v′

u )
)2

2γ2(u, T, V t
′,v′
u )

.

Using (A.2), we get

E2 =

∫ 0

−∞

1
√

2πγ(u, T, V t
′,v′
u )

√
1 + γ2(t′,u,v′)

γ2(u,T,V t
′,v′
u )

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

× exp

{
− 1

2γ2(t′, u, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′) +

1

2
γ2(t′, u, v′)

)2

+

+
1

2γ2(t′, u, v′)γ2(u, T, V t
′,v′
u )γ2(t′, T, v′)

(
γ2(u, T, V t

′,v′

u )

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′)

)
− γ2(t′, u, v′)

(
w + r(T − u)

)
+ γ2(t′, u, v′)γ2(u, T, V t

′,v′

u )(1 + 2β)

)2

− 1

2γ2(u, T, V t
′,v′
u )

(
w + r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )
)2}

dw

=
1√

2πγ(t′, T, v′)

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β ∫ 0

−∞
(c1w + c2) exp

{
−(c3w

2 + c4w + c5)
}
dw

where

c1 = 0, c2 = 1, c3 =
1

2γ2(t′, T, v′)
,

c4 =
1

γ2(t′, T, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

)
+ γ2(t′, u, v′)(1 + 2β)

)
+

1

2
,

c5 =
γ2(t′, T, v′)

8
+

1

2

(
log
( H2

1

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

))
+

+
1

2γ2(t′, T, v′)

{(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

))2

− (1 + 2β)

[
γ2(u, T, V t

′,v′

u )

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′)

)
− γ2(t′, u, v′)r(T − u)

]

− (1 + 2β)2γ2(t′, u, v′)γ2(u, T, V t
′,v′

u )

}
.
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By (A.3),

E2 =

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

exp

{
(1 + 2β)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′) + γ2(t′, u, v′)(1 + β)

)}

×N

(
1

γ(t′, T, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

)
+ γ2(t′, u, v′)(1 + 2β) +

1

2
γ2(t′, T, v′)

))
= x−(1+2β) exp

{
(1 + 2β)[−r(u− t′) + γ2(t′, u, v′)(1 + β)]

}
N (q2(t′, u, x, v′)) (A.7)

where q2(t′, u, x, v′) := 1
γ(t′,T,v′)

(
log
(
ĥ2(u,V t

′,v′
u )

x(K∨H1)

)
+r
(
(T−u)−(u−t′)

)
+γ2(t′, u, v′)(1+2β)+ 1

2γ
2(t′, T, v′)

)
.

The function E3,0(t′, u, x, v′):

E3,0 = E
[(
St
′,v′

u

)−(1+2β)

n
(
d3(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[(
St
′,v′

u

)−(1+2β)

n

(
1

γ(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]

=
1√
2π

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]

where Y = log
(
ĥ2(u,V t

′,v′
u )

St
′,v′
u (K∨H1)

)
∼ Normal

(
log
( ĥ2(u,V t

′,v′
u )

x(K∨H1)

)
− r(u− t′) + 1

2γ
2(t′, u, v′), γ2(t′, u, v′)

)
and

a2 = 0, a3 = 1, a4 =
1

2γ2(u, T, V t
′,v′
u )

,

a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β, a6 =

(r(T − u) + 1
2γ

2(u, T, V t
′,v′

u ))2

2γ2(u, T, V t
′,v′
u )

.

Using (A.2), we get

E3,0 =
γ(u, T, V t

′,v′

u )√
2πγ(t′, T, v′)

( K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

×

× exp

{
− 1

2γ2(t′, u, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′) +

1

2
γ2(t′, u, v′)

)2

+

+
1

2γ2(t′, u, v′)γ2(u, T, V t
′,v′
u )γ2(t′, T, v′)

(
γ2(u, T, V t

′,v′

u )

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′)

)
− γ2(t′, u, v′)r(T − u) + γ2(t′, u, v′)γ2(u, T, V t

′,v′

u )(1 + 2β)

)2

− 1

2γ2(u, T, V t
′,v′
u )

(
r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )
)2}

=
γ(u, T, V t

′,v′

u )

x1+2β γ(t′, T, v′)
exp

{
(1 + 2β)

[
−r(u− t′) + γ2(t′, u, v′)(1 + β)

]}
n
(
q2(t′, u, x, v′)

)
. (A.8)

The function E3,1(t′, u, x, v′):

E3,1 = E
[(
St
′,v′

u

)−(1+2β)

d3(u, St
′,v′

u , V t
′,v′

u )n
(
d3(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[(
St
′,v′

u

)−(1+2β)

γ(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

)

× n

(
1

γ(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]
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=
1√
2π

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

γ(u, T, V t
′,v′

u )E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]

where we now have

a2 = 2a4 =
1

γ2(u, T, V t
′,v′
u )

, a3 =
r(T − u)

γ2(u, T, V t
′,v′
u )

+
1

2
,

a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β, a6 =

(r(T − u) + 1
2γ

2(u, T, V t
′,v′

u ))2

2γ2(u, T, V t
′,v′
u )

.

so, invoking (A.2),

E3,1 =
γ2(u, T, V t

′,v′

u )

x1+2β γ2(t′, T, v′)
exp

{
(1 + 2β)

[
−r(u− t′) + γ2(t′, u, v′)(1 + β)

]}
q2(t′, u, x, v′)n

(
q2(t′, u, x, v′)

)
.

(A.9)

The function E3,2(t′, u, x, v′):

E3,2 = E
[(
St
′,v′

u

)−(1+2β) (
d3(u, St

′,v′

u , V t
′,v′

u )
)2
n
(
d3(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[(
St
′,v′

u

)−(1+2β)

γ2(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

)2

× n

(
1

γ(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u) +

1

2
γ2(u, T, V t

′,v′

u )

))]

=
1√
2π

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)1+2β

E
[
(a1Y

2 + a2Y + a3) exp
{
−(a4Y

2 + a5Y + a6)
}]

with

a1 = 2a4 =
1

γ2(u, T, V t
′,v′
u )

, a2 =
2r(T − u)

γ2(u, T, V t
′,v′
u )

+ 1,

a3 = 2a6 =
(r(T − u) + 1

2γ
2(u, T, V t

′,v′

u ))2

γ2(u, T, V t
′,v′
u )

, a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β.

Employing again (A.2),

E3,2 =
γ(u, T, V t

′,v′

u )

x1+2β γ3(t′, T, v′)
exp

{
(1 + 2β)

[
−r(u− t′) + γ2(t′, u, v′)(1 + β)

]}
×

×
[
γ2(u, T, V t

′,v′

u )q22(t′, u, x, v′) + γ2(t′, u, v′)
]
n
(
q2(t′, u, x, v′)

)
.

(A.10)

The function E4(t′, u, x, v′):

E4 = E

[(
St
′,v′

u

)−2β
N

(
1

γ(u, T, V t
′,v′
u )

(
log
( ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )

))]

=

∫ 0

−∞

1
√

2πγ(u, T, V t
′,v′
u )

E

[(
St
′,v′

u

)−2β
× exp

{
1

2γ2(u, T, V t
′,v′
u )

(
w + log

( ĥ2(u, V t
′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )

)2
}]

dw

=

∫ 0

−∞

1
√

2πγ(u, T, V t
′,v′
u )

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)2β

E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]
dw
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where Y = log
(
ĥ2(u,V t

′,v′
u )

St
′,v′
u (K∨H1)

)
∼ Normal

(
log
( ĥ2(u,V t

′,v′
u )

x(K∨H1)

)
− r(u− t′) + 1

2γ
2(t′, u, v′), γ2(t′, u, v′)

)
and

a2 = 0, a3 = 1, a4 =
1

2γ2(u, T, V t
′,v′
u )

,

a5 =
w + r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β, a6 =

(w + r(T − u)− 1
2γ

2(u, T, V t
′,v′

u ))2

2γ2(u, T, V t
′,v′
u )

.

Using (A.2), we get

E4 =

∫ 0

−∞

1
√

2πγ(u, T, V t
′,v′
u )

√
1 + γ2(t′,u,v′)

γ2(u,T,V t
′,v′
u )

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)2β

× exp

{
− 1

2γ2(t′, u, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′) +

1

2
γ2(t′, u, v′)

)2

+

+
1

2γ2(t′, u, v′)γ2(u, T, V t
′,v′
u )γ2(t′, T, v′)

(
γ2(u, T, V t

′,v′

u )

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′)

)
− γ2(t′, u, v′)

(
w + r(T − u)

)
+ γ2(t′, u, v′)γ2(u, T, V t

′,v′

u )(1 + 2β)

)2

− 1

2γ2(u, T, V t
′,v′
u )

(
w + r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )
)2}

dw

=
1√

2πγ(t′, T, v′)

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)2β ∫ 0

−∞
(c1w + c2) exp

{
−(c3w

2 + c4w + c5)
}
dw

where

c1 = 0, c2 = 1, c3 =
1

2γ2(t′, T, v′)
,

c4 =
1

γ2(t′, T, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

)
+ γ2(t′, u, v′)(1 + 2β)

)
− 1

2
,

c5 =
γ2(t′, T, v′)

8
+

1

2

(
log
( H2

1

x(K ∨H1)

)
− r(T − t′)

)
+

+
1

2γ2(t′, T, v′)

{(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

))2

− (1 + 2β)

[
γ2(u, T, V t

′,v′

u )

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′)

)
− γ2(t′, u, v′)r(T − u)

]

− (1 + 2β)2γ2(t′, u, v′)γ2(u, T, V t
′,v′

u )

}
.

By (A.3),

E4 =

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)2β

exp

{
2β

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′) + γ2(t′, u, v′)

(1

2
+ β

))}

×N

(
1

γ(t′, T, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
+ r
(
(T − u)− (u− t′)

)
+ γ2(t′, u, v′)(1 + 2β)− 1

2
γ2(t′, T, v′)

))
= x−2β exp

{
−2β r(u− t′) + γ2(t′, u, v′)(β + 2β2)

}
N (q4(t′, u, x, v′)) (A.11)

where q4(t′, u, x, v′) = q2(t′, u, x, v′)− γ(t′, T, v′).

The function E5,0(t′, u, x, v′):

E5,0 = E
[(
St
′,v′

u

)−2β
n
(
d4(u, St

′,v′

u , V t
′,v′

u )
)]
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= E

[(
St
′,v′

u

)−2β
n

(
1

γ(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )

))]

=
1√
2π

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)2β

E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]

where Y = log
(
ĥ2(u,V t

′,v′
u )

St
′,v′
u (K∨H1)

)
∼ Normal

(
log
( ĥ2(u,V t

′,v′
u )

x(K∨H1)

)
− r(u− t′) + 1

2γ
2(t′, u, v′), γ2(t′, u, v′)

)
and

a2 = 0, a3 = 1, a4 =
1

2γ2(u, T, V t
′,v′
u )

,

a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β, a6 =

(r(T − u)− 1
2γ

2(u, T, V t
′,v′

u ))2

2γ2(u, T, V t
′,v′
u )

.

Using (A.2), we get

E5,0 =
γ(u, T, V t

′,v′

u )√
2πγ(t′, T, v′)

( K ∨H1

ĥ2(u, V t
′,v′
u )

)2β
×

× exp

{
− 1

2γ2(t′, u, v′)

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′) +

1

2
γ2(t′, u, v′)

)2

+

+
1

2γ2(t′, u, v′)γ2(u, T, V t
′,v′
u )γ2(t′, T, v′)

(
γ2(u, T, V t

′,v′

u )

(
log
( ĥ2(u, V t

′,v′

u )

x(K ∨H1)

)
− r(u− t′)

)
− γ2(t′, u, v′)r(T − u) + γ2(t′, u, v′)γ2(u, T, V t

′,v′

u )(1 + 2β)

)2

− 1

2γ2(u, T, V t
′,v′
u )

(
r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )
)2}

=
γ(u, T, V t

′,v′

u )

x2β γ(t′, T, v′)
exp

{
−2β r(u− t′) + γ2(t′, u, v′)(β + 2β2)

}
n
(
q4(t′, u, x, v′)

)
. (A.12)

The function E5,1(t′, u, x, v′):

E5,1 = E
[(
St
′,v′

u

)−2β
d4(u, St

′,v′

u , V t
′,v′

u )n
(
d4(u, St

′,v′

u , V t
′,v′

u )
)]

= E

[ (
St
′,v′

u

)−2β
γ(u, T, V t

′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )

)

× n

(
1

γ(u, T, V t
′,v′
u )

(
log

(
ĥ2(u, V t

′,v′

u )

St
′,v′
u (K ∨H1)

)
+ r(T − u)− 1

2
γ2(u, T, V t

′,v′

u )

))]

=
1√
2π

(
K ∨H1

ĥ2(u, V t
′,v′
u )

)2β

γ(u, T, V t
′,v′

u )E
[
(a2Y + a3) exp

{
−(a4Y

2 + a5Y + a6)
}]

where we now have

a2 = 2a4 =
1

γ2(u, T, V t
′,v′
u )

, a3 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
,

a5 =
r(T − u)

γ2(u, T, V t
′,v′
u )

− 1

2
− 2β, a6 =

(r(T − u)− 1
2γ

2(u, T, V t
′,v′

u ))2

2γ2(u, T, V t
′,v′
u )

.

so, invoking (A.2),

E5,1 =
γ2(u, T, V t

′,v′

u )

x2β γ2(t′, T, v′)
exp

{
−2β r(u− t′) + γ2(t′, u, v′)(β + 2β2)

}
q4(t′, u, x, v′)n

(
q4(t′, u, x, v′)

)
.

(A.13)
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A.3 Writing an integral in terms of the bivariate normal distribu-

tion function

We compute

Υ(A,B,C,D,E,L) :=

∫ ∞
L

exp
{
−(Aw2 +Bw + C)

}
N (Dw + E)dw

=

∫ ∞
L

exp
{
−(Aw2 +Bw + C)

}∫ 0

−∞

1√
2π

exp

{
−1

2
(z +Dw + E)2

}
dz dw

=

∫ ∞
L

∫ 0

−∞

1√
2π

exp

{
−
[(
A+

D2

2

)
w2 +

1

2
z2 +Dzw + (B +DE)w + Ez +

(
C +

E2

2

)]}
dz dw

= e−K
√

2πσ1σ2
√

1− ρ2
∫ ∞
L

∫ 0

−∞

1

2πσ1σ2
√

1− ρ2
×

× exp

{
− 1

2(1− ρ2)

[
1

σ2
1

(w − µ1)2 +
1

σ2
2

(z − µ2)2 − 2ρ

σ1σ2
(w − µ1)(z − µ2)

]}
dz dw

= e−K
√

2πσ1σ2
√

1− ρ2
[
N
(
−µ2

σ2

)
−N2

(
L− µ1

σ1
,−µ2

σ2
; ρ

)]
where N2( · , · ; ρ) denotes the cumulative distribution function of a bivariate normal random variable with

zero means, unit variances and correlation ρ, and the parameters µ1, µ2, σ1, σ2, ρ and K are chosen as

follows: 

A+ D2

2 = 1
2(1−ρ2)σ2

1

1
2 = 1

2(1−ρ2)σ2
2

D = −ρ
(1−ρ2)σ1σ2

B +DE = 1
1−ρ2

(
−µ1

σ2
1

+ ρµ2

σ1σ2

)
E = 1

1−ρ2

(
−µ2

σ2
2

+ ρµ1

σ1σ2

)
C + E2

2 = 1
2(1−ρ2)

(
µ2
1

σ2
1

+
µ2
2

σ2
2
− 2ρµ1µ2

σ1σ2

)
+K

⇐⇒



µ1 = − B
2A

µ2 = BD
2A − E

σ1 = 1√
2A

σ2 =
√
2A+D2
√
2A

ρ = − D√
2A+D2

K = C − B2

4A

.

Returning to the original variables, we get

Υ(A,B,C,D,E,L) =

√
π

A
exp

{
B2

4A
− C

}[
N
(

2AE −BD√
2A(2A+D2)

)
−N2

(
L
√

2A+
B√
2A

,
2AE −BD√
2A(2A+D2)

;− D√
2A+D2

)]
.

(A.14)
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Appendix B

Estimates for the derivatives of the

zero and first-order terms

Here we will carry out the computations which show that the estimates in Equations (3.41) and (3.46)

hold true. We will be assuming that K ≥ H1 (so that A = 0) and that ψ(t, v) ≡ 1.

Remark B.1. Throughout this appendix, the same letters C and k will be used to denote positive con-

stants which may vary from line to line.

B.1 Auxiliary estimates

In this section we collect some estimates for the log-volatility function V t,vu , the integrated variance

function γ2(t, T, v), the barrier function ĥ(t, v) and the auxiliary functions di(t, x, v), as well as their

derivatives with respect to v.

Our starting observation is that if e2v > 2a
c (respectively e2v ≤ 2a

c ) then the function u 7→ V t,vu is

decreasing (resp. increasing) in the interval [t, T ] and therefore e2V
T,v
u ≤ e2V

t,v
u ≤ e2v (resp. e2v ≤

e2V
t,v
u ≤ e2V T,vu ) for u ∈ [t, T ]. So for all 0 ≤ t ≤ u < T and all v ∈ R we have

e2V
t,v
u =

e2a(u−t)e2v

1 + c
2ae

2v(e2a(u−t) − 1)
≤ Ce2v (B.1)

0 <
∂e2V

t,v
u

∂v
=

2e2a(u−t)e2v(
1 + c

2ae
2v(e2a(u−t) − 1)

)2 = 2e−2a(u−t)e−2ve4V
t,v
u ≤ Ce2v (B.2)

∣∣∣∣∂2e2V t,vu∂v2

∣∣∣∣ = e−2a(u−t)
∣∣∣∣−4e−2ve4V

t,v
u + 4e−2ve2V

t,v
u
∂e2V

t,v
u

∂v

∣∣∣∣ ≤ Ce2v (B.3)∣∣∣∣∂3e2V t,vu∂v3

∣∣∣∣ = e−2a(u−t)e−2v

∣∣∣∣∣8e4V t,vu − 16e2V
t,v
u
∂e2V

t,v
u

∂v
+ 4

(
∂e2V

t,v
u

∂v

)2

+ 4e2V
t,v
u
∂2e2V

t,v
u

∂v2

∣∣∣∣∣ ≤ Ce2v (B.4)

0 <
∂V t,vu
∂v

= 1 +
c
2ae

2v(e2a(u−t) − 1)

1 + c
2ae

2v(e2a(u−t) − 1)
≤ 2 (B.5)∣∣∣∣∂2V t,vu∂v2

∣∣∣∣ =

∣∣∣∣ c
ae

2v(e2a(u−t) − 1)

1 + c
2ae

2v(e2a(u−t) − 1)
−

c2

2a2 e
4v(e2a(u−t) − 1)2(

1 + c
2ae

2v(e2a(u−t) − 1)
)2 ∣∣∣∣ ≤ 4 (B.6)
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γ2(t, T, v) =
1

c
log
(

1 +
c

2a
e2v(e2a(T−t) − 1)

)
=

∫ T

t

e2V
t,v
u du

≥

(T − t)e2V
t,v
T = (T − t) e2ve2a(T−t)

1+ c
2a e

2v(e2a(T−t)−1) , if e2v > 2a
c

(T − t)e2v, if e2v ≤ 2a
c

(B.7)

eµγ
2(t,u,v) =

(
1 +

c

2a
e2v(e2a(u−t) − 1)

)µ
c ≤ C(1 + ekv), µ ∈ R (B.8)

0 <
1

γ(t, T, v)
≤

C
1√
T−te

−v
√

1 + c
2ae

2v(e2|a|(T−t) − 1), if e2v > 2a
c

C 1√
T−te

−v, if e2v ≤ 2a
c

≤ C 1√
T − t

e−v(1 + e2v),

(B.9)

0 <
∂γ2

∂v
(t, T, v) =

∫ T

t

∂e2V
t,v
u

∂v
du ≤ C(T − t)e2v (B.10)∣∣∣∣∂jγ2∂vj

(t, T, v)

∣∣∣∣ =

∣∣∣∣∣
∫ T

t

∂je2V
t,v
u

∂vj
du

∣∣∣∣∣ ≤ C(T − t)e2v, j = 2, 3 (B.11)

0 <
∂γ

∂v
(t, T, v) =

1

2γ(t, T, v)

∂γ2

∂v
(t, T, v) ≤ C 1√

T − t
e−v(1 + e2v)(T − t)e2v ≤ C

√
T − t ev(1 + e2v)

(B.12)∣∣∣∣∂2γ∂v2
(t, T, v)

∣∣∣∣ =

∣∣∣∣ 1

2γ(t, T, v)

∂2γ2

∂v2
(t, T, v)− 1

8γ3(t, T, v)

(∂γ2
∂v

(t, T, v)
)2∣∣∣∣ ≤ C√T − t ev(1 + ekv) (B.13)

where the letters C and k denote positive constants whose exact value may change within each inequal-

ity. (We have used the fact that for every constant µ ∈ R the function eµ(T−t) is bounded on the domain

t ∈ [t′, T ].) Furthermore, we also have

0 < ĥµ(t, v) = Hµ
1 exp

{
µ

(
−r(T − t) +

(1 + 2β)

2
γ2(t, T, v)

)}
≤ C exp

{
µ(1 + 2β)

2
γ2(t, T, v)

}
= C

(
1 +

c

2a
e2v(e2a(T−t) − 1)

)µ(1+2β)
2c ≤ C

(
1 + ekv

)
, µ ∈ R,

(B.14)

∣∣∣∣∂ log ĥ

∂v
(t, v)

∣∣∣∣ =
|1 + 2β|

2

∂γ2

∂v
(t, T, v) ≤ C(T − t)e2v, (B.15)

(
ĥ(t, v)

x

)µ
≤

1, if µ ≥ 0

Cx−µ
(
1 + ekv

)
, if µ < 0

≤ C
(
1 + xk + ekv

)
, µ ∈ R, (B.16)

(where this last estimate holds provided that x ≥ ĥ(t, v)) and∣∣∣∣∂ĥµ∂v (t, v)

∣∣∣∣ =
1

2
|µ(1 + 2β)|∂γ

2

∂v
(t, T, v)ĥµ(t, v) ≤ C(T − t)(1 + ekv) (B.17)∣∣∣∣∂2ĥµ∂v2

(t, v)

∣∣∣∣ =

∣∣∣∣µ2 (1 + 2β)
∂2γ2

∂v2
(t, T, v) +

µ2

4
(1 + 2β)2

(
∂γ2

∂v
(t, T, v)

)2∣∣∣∣ĥµ(t, v)

≤ C(T − t)(1 + ekv).

(B.18)

∣∣∣∣∂3ĥµ∂v3
(t, v)

∣∣∣∣ =

∣∣∣∣µ2 (1 + 2β)
∂3γ2

∂v3
(t, T, v) + µ2(1 + 2β)2

∂γ2

∂v
(t, T, v)

∂2γ2

∂v2
(t, T, v)

+
µ3

8
(1 + 2β)3

(
∂γ2

∂v
(t, T, v)

)3∣∣∣∣ĥµ(t, v)

≤ C(T − t)(1 + ekv).

(B.19)
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As for the auxiliary functions di(t, x, v) defined in (3.26), we have∣∣∣∣∂d1∂v (t, x, v)

∣∣∣∣ =

∣∣∣∣∂γ∂v (t, T, v)
(

1− d1(t, x, v)

γ(t, T, v)

)∣∣∣∣ ≤ C(1 + ekv)
(
1 + |d1(t, x, v)|

)
(B.20)∣∣∣∣∂2d1∂v2

(t, x, v)

∣∣∣∣ =

=

∣∣∣∣∂2γ∂v2
(t, T, v)

(
1− d1(t, x, v)

γ(t, T, v)

)
+
(∂γ
∂v

(t, T, v)
)2 d1(t, x, v)

γ2(t, T, v)
− 1

γ(t, T, v)

∂γ

∂v
(t, T, v)

∂d1
∂v

(t, x, v)

∣∣∣∣
≤ C(1 + ekv)

(
1 + |d1(t, x, v)|

)
(B.21)∣∣∣∣∂d2∂v (t, x, v)

∣∣∣∣ ≤ C(1 + ekv)
(
1 + |d2(t, x, v)|

)
(B.22)∣∣∣∣∂2d2∂v2

(t, x, v)

∣∣∣∣ ≤ C(1 + ekv)
(
1 + |d2(t, x, v)|

)
. (B.23)∣∣∣∣∂d3∂v (t, x, v)

∣∣∣∣ =

∣∣∣∣∂γ∂v (t, T, v)
(

1− d3(t, x, v)

γ(t, T, v)

)
+

2

γ(t, T, v)

∂ log ĥ

∂v
(t, v)

∣∣∣∣
≤ C(1 + ekv)

(
1 + |d3(t, x, v)|

) (B.24)

∣∣∣∣∂2d3∂v2
(t, x, v)

∣∣∣∣ =

∣∣∣∣∂2γ∂v2
(t, T, v)

(
1− d3(t, x, v)

γ(t, T, v)

)
+
(∂γ
∂v

(t, T, v)
)2 d3(t, x, v)

γ2(t, T, v)

− 1

γ(t, T, v)

∂γ

∂v
(t, T, v)

∂d3
∂v

(t, x, v)− 2

γ2(t, T, v)

∂γ

∂v
(t, T, v)

∂ log ĥ

∂v
(t, v)

+
2

γ(t, T, v)

∂2 log ĥ

∂v2
(t, v)

∣∣∣∣
≤ C(1 + ekv)

(
1 + |d3(t, x, v)|

)
(B.25)

∣∣∣∣∂3d3∂v3
(t, x, v)

∣∣∣∣ ≤ C(1 + ekv)
(
1 + |d3(t, x, v)|

)
(B.26)∣∣∣∣∂d4∂v (t, x, v)

∣∣∣∣ ≤ C(1 + ekv)
(
1 + |d4(t, x, v)|

)
(B.27)∣∣∣∣∂2d4∂v2

(t, x, v)

∣∣∣∣ ≤ C(1 + ekv)
(
1 + |d4(t, x, v)|

)
. (B.28)

(The derivation of the estimates for d2(t, x, v) and d4(t, x, v) is similar to that of the estimates for d1(t, x, v)

and d3(t, x, v), respectively, and the upper bound for ∂
3d3
∂v3 (t, x, v) is obtained effortlessly after computing

the derivative with respect to v of the expression in (B.25).)

B.2 The function L1f̂0

We are now ready to deduce an upper bound for

L1f̂0(t, x, v) = ρxev

[
∂d1
∂v

(t, x, v)n(d1(t, x, v)) (B.29)

+
1 + 2β

x2+2β

∂ĥ2+2β

∂v
(t, v)N (d3(t, x, v)) (B.30)

+ (1 + 2β)

(
ĥ(t, v)

x

)2+2β
∂d3
∂v

(t, x, v)n(d3(t, x, v)) (B.31)

−Ke−r(T−t) 2β

x1+2β

∂ĥ2β

∂v
(t, v)N (d4(t, x, v)) (B.32)

+Ke−r(T−t)
2β

x1+2β
ĥ2β(t, v)

∂d4
∂v

(t, x, v)n(d4(t, x, v))

]
. (B.33)
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(cf. Equation (3.34) with A = 0 and ψ(t, v) ≡ 1).

Using the estimates (B.1)–(B.28) and the fact that the functions N (y) and |y|n(y) are bounded, we

obtain the following estimates for each of the individual terms (B.29)–(B.33) in the expression for L1f̂0:∣∣∣∣ρxev ∂d1∂v (t, T, v)n(d1(t, x, v))

∣∣∣∣ ≤ Cxev(1 + ekv)
(
1 + |d1(t, x, v)|

)
n(d1(t, x, v)) ≤ C(1 + xk + ekv),∣∣∣∣∣ρev (1 + 2β)

x1+2β

∂ĥ2+2β

∂v
(t, v)N (d3(t, x, v))

∣∣∣∣∣
≤ C ev

x1+2β

∂ĥ2+2β

∂v
(t, v) ≤ C ev

x1+2β

∂γ2

∂v
(t, T, v) ĥ2+2β(t, v) ≤ C(T − t)(1 + xk + ekv),∣∣∣∣ρev (1 + 2β)

x1+2β
ĥ2+2β(t, v)

∂d3
∂v

(t, T, v)n(d3(t, x, v))

∣∣∣∣
≤ Cev ĥ

1+2β(t, v)

x1+2β
(1 + ekv)

(
1 + |d3(t, x, v)|

)
n(d3(t, x, v)) ≤ C

(
1 + xk + ekv

)
,∣∣∣∣∣ρevKe−r(T−t) 2β

x2β
∂ĥ2β

∂v
(t, v)N (d4(t, x, v))

∣∣∣∣∣ ≤ C(T − t)(1 + xk + ekv),∣∣∣∣ρevKe−r(T−t) 2β

x2β
ĥ2β(t, v)

∂d4
∂v

(t, T, v)n(d4(t, x, v))

∣∣∣∣ ≤ C (1 + xk + ekv
)
.

Finally, from the above estimates we conclude that there exists k ∈ N such that

L1f̂0(t, x, v) ≤ C(1 + xk + ekv). (B.34)

B.3 The function L2f̂0

Let us obtain an upper bound for

L2f̂0(t, x, v) =
1

2

∂2

∂v2

(
xN (d1(t, x, v))−Ke−r(T−t)N (d2(t, x, v))

+

(
ĥ(t, v)

x

)1+2β
[
−ĥ(t, v)N (d3(t, x, v)) +

Kx

ĥ(t, v)
e−r(T−t)N (d4(t, x, v))

])

=
1

2

∂

∂v

(
x
∂d1
∂v

(t, x, v)n(d1(t, x, v))−Ke−r(T−t) ∂d2
∂v

(t, x, v)n(d2(t, x, v))

+
1

x1+2β

[
−∂ĥ

2+2β

∂v
(t, v)N (d3(t, x, v))− ĥ2+2β(t, v)

∂d3
∂v

(t, x, v)n(d3(t, x, v))

+ x
∂ĥ2β

∂v
(t, v)N (d4(t, x, v)) + xĥ2β(t, v)

∂d4
∂v

(t, x, v)n(d4(t, x, v))

])

=
1

2

{
x

[
∂2d1
∂v2

(t, x, v)−
(
∂d1
∂v

(t, x, v)

)2
d1(t, x, v)

]
n(d1(t, x, v)) (B.35)

−Ke−r(T−t)
[
∂2d2
∂v2

(t, x, v)−
(
∂d2
∂v

(t, x, v)

)2
d2(t, x, v)

]
n(d2(t, x, v)) (B.36)

− 1

x1+2β

∂2ĥ2+2β

∂v2
(t, v)N (d3(t, x, v)) (B.37)

− 2

x1+2β

∂ĥ2+2β

∂v
(t, v)

∂d3
∂v

(t, x, v)n(d3(t, x, v)) (B.38)

−
(
ĥ(t, v)

x

)1+2β

ĥ(t, v)

(
∂2d3
∂v2

(t, x, v)−
(
∂d3
∂v

(t, x, v)

)2
d3(t, x, v)

)
n(d3(t, x, v)) (B.39)
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+Ke−r(T−t)
1

x2β
∂2ĥ2+2β

∂v2
(t, v)N (d4(t, x, v)) (B.40)

+Ke−r(T−t)
2

x2β
∂ĥ2β

∂v
(t, v)

∂d4
∂v

(t, x, v)n(d4(t, x, v)) (B.41)

+Ke−r(T−t)
(
ĥ(t, v)

x

)2β(
∂2d4
∂v2

(t, x, v)−
(
∂d4
∂v

(t, x, v)

)2
d4(t, x, v)

)
n(d4(t, x, v))

}
. (B.42)

The upper bounds for (B.35) and (B.36) are derived as follows: if we recall the estimates (B.20)–

(B.23) and the fact that the function |y|µn(y) is bounded for any µ ≥ 0 we conclude that∣∣∣∣x∂2d1∂v2
(t, x, v)n(d1(t, x, v))

∣∣∣∣ ≤ Cx(1 + ekv) ≤ C(1 + xk + ekv)∣∣∣∣∣x
(
∂d1
∂v

(t, x, v)

)2
d1(t, x, v)n(d1(t, x, v))

∣∣∣∣∣ ≤ C(1 + xk + ekv).∣∣∣∣Ke−r(T−t) ∂2d2∂v2
(t, x, v)n(d2(t, x, v))

∣∣∣∣ ≤ C(1 + ekv)∣∣∣∣∣Ke−r(T−t)
(
∂d2
∂v

(t, x, v)

)2
d2(t, x, v)n(d2(t, x, v))

∣∣∣∣∣ ≤ C(1 + ekv).

and therefore |(B.35)| , |(B.36)| ≤ C(1 + xk + ekv) on the domain t ∈ [0, T ]. Moreover, by virtue of

the upper bounds (B.24)–(B.28), (B.14) and (B.16) we can likewise conclude that |(B.39)| , |(B.42)| ≤

C(1 + xk + ekv).

The estimates for the remaining terms are obtained analogously. For instance

|(B.38)| ≤ C
(
ĥ(t, v)

x

)1+2β

ĥ(t, v)
∂γ2

∂v
(t, T, v) (1 + ekv)

(
1 + |d3(t, x, v)|

)
n(d3(t, x, v)) ≤ C(1 + xk + ekv),

and the same kind of arguments show that |(B.37)| ≤ C(1 + xk + ekv), |(B.40)| ≤ C(1 + xk + ekv) and

|(B.41)| ≤ C(1 + xk + ekv). Hence

L2f̂0(t, x, v) ≤ C(1 + xk + ekv) (B.43)

for some constants C > 0, k ∈ N, which is the desired conclusion.

B.4 The function L1f̂1

We shall now deduce an estimate for L1f̂1(t, x, v) = ρxev ∂2

∂x∂v f̂1(t, x, v), where f̂1(t, x, v) is given in

Equation (3.38).

Our first step is to claim that f̂1(t, x, v) can be equivalently written as

f̂1(t, x, v) =

∫ T

t

e−r(s−t)
∫ ∞
ĥ(s,V t,vs )

G+(w, s, x, t; v)L1f̂0(s, w, V t,vs ) dw ds (B.44)

where G+(w, s, x, t; v) is the Green function from (3.37). Indeed, the adaptation of formula (4.96) of

Ilyin et al. [29] to the case of an unbounded and time-dependent domain yields that the solution of the

boundary value problem (3.29) admits the integral representation formula (B.44), so the equivalence of

the two formulas follows from our decomposition f̂1 = f̂
(A)
1 −f̂ (B)

1 , combined with the fact that each of the

boundary value problems (3.29), (3.30) and (3.31), associated respectively to f̂1, f̂ (A)
1 and f̂ (B)

1 , has a

unique solution. As we will see, the representation (B.44) is convenient for the estimation of L1f̂1(t, x, v).
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By the Leibniz integral rule,

L1f̂1(t, x, v) = ρxev
∂2

∂x∂v

(∫ T

t

e−r(s−t)
∫ ∞
ĥ(s,V t,vs )

G+(w, s, x, t; v)L1f̂0(s, w, V t,vs ) dw ds

)

= ρxev
∫ T

t

e−r(s−t)
∂

∂v

(∫ ∞
ĥ(s,V t,vs )

∂G+

∂x
(w, s, x, t; v)L1f̂0(s, w, V t,vs ) dw ds

)
.

= ρxev
∫ T

t

e−r(s−t)

(∫ ∞
ĥ(s,V t,vs )

∂2G+

∂x∂v
(w, s, x, t; v)L1f̂0(s, w, V t,vs ) dw (B.45)

+

∫ ∞
ĥ(s,V t,vs )

∂G+

∂x
(w, s, x, t; v)

∂L1f̂0
∂v

(s, w, V t,vs )
∂V t,vs
∂v

dw

)
ds (B.46)

where we took into account the fact that G+(ĥ(s, V t,vs ), s, x, t; v) = 0 = ∂G+

∂x (ĥ(s, V t,vs ), s, x, t; v). Differ-

entiating (3.37) we get

∂G+

∂x

(
w, s, x, t; v

)
=

1√
2πγ2(t, s, v)wx

×

[
1

γ(t, s, v)

(
log
(w
x

)
−r(s− t) +

1

2
γ2(t, s, v)

)
exp

{
− 1

2γ2(t, s, v)

(
log
(w
x

)
−r(s− t) +

1

2
γ2(t, s, v)

)2}
(B.47)

−
(

w

ĥ(s, V t,vs )

)2β
1

γ(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)
× exp

{
− 1

2γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}]
.

(B.48)

Let us first examine the term (B.46). Our claim is that ∂L1f̂0
∂v (t, x, v) ≤ C(1 + xk + ekv). In order to

prove this claim, it is enough to show that the absolute value of the derivative with respect to v of the

terms (B.30) and (B.31) is upper bounded by C(1+xk+ekv), because then the result follows by applying

the same procedure to the terms (B.29), (B.32) and (B.33).∣∣∣∣ ∂∂v (B.30)
∣∣∣∣ =
|1 + 2β|
x2+2β

∣∣∣∣∂2ĥ2+2β

∂v2
(t, v)N (d3(t, x, v)) +

∂ĥ2+2β

∂v
(t, v)

∂d3
∂v

(t, x, v)n(d3(t, x, v))

∣∣∣∣.
Due to (B.18) and (B.16) we have

1

x2+2β

∣∣∣∣∂2ĥ2+2β

∂v2
(t, v)N (d3(t, x, v))

∣∣∣∣ ≤ C(T − t)(1 + xk + ekv)

and using (B.24) it is also easily seen that

1

x2+2β

∣∣∣∣∂ĥ2+2β

∂v
(t, v)

∂d3
∂v

(t, x, v)

∣∣∣∣n(d3(t, x, v)) ≤ C(T − t)(1 + xk + ekv)

so it follows that
∣∣ ∂
∂v (B.30)

∣∣ ≤ C(T − t)(1 + xk + ekv).∣∣∣∣ ∂∂v (B.31)
∣∣∣∣ =

∣∣∣∣∣ 1

ĥ2+2β(t, v)

∂ĥ2+2β

∂v
(t, v)× (B.31) + (1 + 2β)

(
ĥ(t, v)

x

)2+2β
∂2d3
∂v2

(t, x, v)

+

(
∂d3
∂v

(t, x, v)

)2

d3(t, x, v)

∣∣∣∣∣n(d3(t, x, v))

≤ C(1 + xk + ekv)
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where the inequality is straightforwardly obtained through (B.24) and (B.25). Therefore we can plug the

inequality ∂L1f̂0
∂v (t, x, v) ≤ C(1 + xk + ekv) (and also the inequality (B.5)) into (B.46) and conclude that

|(B.46)| ≤ Cxev
∫ T

t

∫ ∞
ĥ(s,V t,vs )

∣∣∣∣∂G+

∂x

(
w, s, x, t; v

)∣∣∣∣(1 + wk + ekV
t,v
s ) dw ds

where
∣∣∂G+

∂x

(
w, s, x, t; v

)∣∣ ≤ |(B.47)|+ |(B.48)| and∫ ∞
ĥ(s,V t,vs )

|(B.47)| × (1 + wk + ekV
t,v
s ) dw

=

∫ ∞
ĥ(s,V t,vs )

(1 + wk + ekV
t,v
s )

∣∣∣∣ 1

γ(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)∣∣∣∣ν×
× 1√

2πγ2(t, s, v)wx
exp

{
1

2γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}
dw

(B.49)

=
1

xγ(t, s, v)
E

[
(1 +W k + ekV

t,v
s )

∣∣∣∣∣ 1

σW

(
logW − µW

)∣∣∣∣∣
ν

1{W>ĥ(s,V t,vs )}

]

where W ∼ Lognormal
(
µW = log x+ r(s− t)− 1

2γ
2(t, s, v), σ2

W = γ2(t, s, v)
)

and ν = 1; by the Cauchy-

Schwarz moment inequality,

≤ C

xγ(t, s, v)

(
E
[
1 +W 2k + e2kV

t,v
s

])1/2
≤ C

xγ(t, s, v)

(
1 + e2kµW+2k2σ2

W + e2kV
t,v
s
)1/2

≤ C

xγ(t, s, v)
(1 + xk + ekv)

where we have used the well-known formula for the moments of a lognormal random variable, as well

as the estimates (B.1) and (B.8). Hence

xev
∫ T

t

∫ ∞
ĥ(s,V t,vs )

|(B.47)| × (1 + wk+ekV
t,v
s ) dw ds ≤ Cev(1 + xk + ekv)

∫ T

t

1

γ(t, s, v)
ds

≤ C(1 + xk + ekv)

∫ T

t

1√
s− t

ds ≤ C
√
T − t(1 + xk + ekv).

Similar computations show that xev
∫ T
t

∫∞
ĥ(s,V t,vs )

|(B.48)|×(1+wk+ekV
t,v
s ) dw ds ≤ C

√
T − t(1+xk+ekv),

and we conclude that

|(B.46)| ≤ C
√
T − t(1 + xk + ekv).

We still need to obtain an estimate for the term (B.45):

∂2G+

∂x∂v

(
w, s, x, t; v

)
=

−2

γ(t, s, v)

∂γ

∂v
(t, s, v)

∂G+

∂x
(w, s, x, t; v) (B.50)

+
1√

2πγ2(t, s, v)wx

[
∂γ

∂v
(t, s, v)

(
1− 1

γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

))

×

(
1− 1

γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)2)

× exp

{
− 1

2γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}
(B.51)
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+

(
w

ĥ(s, V t,vs )

)2β{
β(1 + 2β)

∂γ2

∂v
(s, T, V t,vs )

∂V t,vs
∂v

× 1

γ(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)
−

(
∂γ

∂v
(t, s, v)

[
1− 1

γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
−r(s− t) +

1

2
γ2(t, s, v)

)]

+
2

γ(t, s, v)

∂ log ĥ

∂v
(s, V t,vs )

∂V t,vs
∂v

)

×

(
1− 1

γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)2)}

× exp

{
− 1

2γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}]
.

(B.52)

We have

|(B.45)| ≤ Cxev
∫ T

t

∫ ∞
ĥ(s,V t,vs )

(∣∣(B.50)
∣∣+
∣∣(B.51)

∣∣+
∣∣(B.52)

∣∣)(1 + wk + ekV
t,v
s ) dw ds.

If we observe that 1
γ(t,s,v)

∂γ
∂v(t, s, v) ≤ C(1 + ekv) and recall our previous estimate for the integral

xev
∫ T
t

∫∞
ĥ(s,V t,vs )

∣∣∂G+

∂x (w, s, x, t; v)
∣∣(1 + wk + ekV

t,v
s ) dw ds, we conclude that

xev
∫ T

t

∫ ∞
ĥ(s,V t,vs )

∣∣(B.50)
∣∣(1 + wk + ekV

t,v
s ) dw ds ≤ C

√
T − t(1 + xk + ekv).

In turn,∫ ∞
ĥ(s,V t,vs )

|(B.51)| × (1 + wk + ekV
t,v
s ) dw

≤ Cxev ∂γ
∂v

(t, s, v)

(
1 +

1

γ(t, s, v)

)
×
∫ ∞
ĥ(s,V t,vs )

(1 + wk + ekV
t,v
s )

(
1 +

∣∣∣∣ 1

γ(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)∣∣∣∣3
)

× 1√
2πγ2(t, s, v)wx

exp

{
− 1

2γ2(t, s, v)

(
log
(w
x

)
−r(s− t) +

1

2
γ2(t, s, v)

)2}
dw

≤ C

xγ(t, s, v)
(1 + xk + ekv)

because the estimate we derived above for the integral in (B.49) is valid for any ν ≥ 0, and using also

that ∂γ∂v(t, s, v)
(
1 + 1

γ(t,s,v)

)
≤ C(1 + ekv); consequently,

xev
∫ T

t

∫ ∞
ĥ(s,V t,vs )

∣∣(B.51)
∣∣(1 + wk + ekV

t,v
s ) dw ds ≤ C

√
T − t(1 + xk + ekv).

The inequality xev
∫ T
t

∫∞
ĥ(s,V t,vs )

∣∣(B.52)
∣∣(1 +wk + ekV

t,v
s ) dw ds ≤ C

√
T − t(1 + xk + ekv) is obtained in an

analogous fashion. Hence

|(B.45)| ≤ C
√
T − t(1 + xk + ekv)

and we finally obtain the desired conclusion:∣∣L1f̂1(t, x, v)
∣∣ ≤ C√T − t(1 + xk + ekv). (B.53)
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B.5 The function L2f̂1

Our next goal is to derive an upper bound for

L2f̂1(t, x, v) =
1

2

∂2

∂v2

(∫ T

t

e−r(s−t)
∫ ∞
ĥ(s,V t,vs )

G+
(
w, s, x, t; v

)
L1f̂0(s, w, V t,vs ) dw ds

)

=
1

2

∫ T

t

e−r(s−t)

(∫ ∞
ĥ(s,V t,vs )

∂2G+

∂v2
(
w, s, x, t; v

)
L1f̂0(s, w, V t,vs ) dw (B.54)

+ 2

∫ ∞
ĥ(s,V t,vs )

∂G+

∂v

(
w, s, x, t; v

)∂L1f̂0
∂v

(s, w, V t,vs )
∂V t,vs
∂v

dw (B.55)

+

∫ ∞
ĥ(s,V t,vs )

G+
(
w, s, x, t; v

)∂2L1f̂0
∂v2

(s, w, V t,vs )

(
∂V t,vs
∂v

)2
dw (B.56)

+

∫ ∞
ĥ(s,V t,vs )

G+
(
w, s, x, t; v

)∂L1f̂0
∂v

(s, w, V t,vs )
∂2V t,vs
∂v2

dw

)
ds (B.57)

where we have employed again the integral representation (B.44) for f̂1(t, x, v), as well as the fact that

G+(ĥ(s, V t,vs ), s, x, t; v) = 0 = ∂G+

∂v (ĥ(s, V t,vs ), s, x, t; v). Now we compute the derivative of (3.37) with

respect to v:

∂G+

∂v
(w, s, x, t; v) =

=
1√

2πγ(t, s, v)w

[
∂γ

∂v
(t, s, v)

({
1

γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)
− 1

}

× 1

γ(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)
− 1

γ(t, s, v)

)

× exp

{
− 1

2γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}

+

({
∂γ

∂v
(t, s, v)

(
1− 1

γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

))

+
2

γ(t, s, v)

∂ log ĥ

∂v
(s, V t,vs )

∂V t,vs
∂v

}
× 1

γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)
+

1

γ(t, s, v)

∂γ

∂v
(t, s, v)− ĥ2β(s, V t,vs )

∂ĥ−2β

∂v
(s, V t,vs )

)

×
(

w

ĥ(s, V t,vs )

)2β
exp

{
− 1

2γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}]

Using the estimates we obtained so far, it is easy to see that we can decompose ∂G+

∂v (w, s, x, t; v)

into a sum of terms, each of which with an absolute value that is upper bounded by a function of the type

1 + wk + ekv√
2πγ2(t, s, v)wx

∣∣∣∣∣ 1

γ(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)∣∣∣∣∣
ν

×

× exp

{
1

2γ2(t, s, v)

(
log
(w
x

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}
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or

1 + wk + ekv√
2πγ2(t, s, v)wx

∣∣∣∣∣ 1

γ(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)∣∣∣∣∣
ν

×

× exp

{
− 1

2γ2(t, s, v)

(
log

(
ĥ2(s, V t,vs )

wx

)
− r(s− t) +

1

2
γ2(t, s, v)

)2}

where ν ≥ 0. But we have already established that ∂L1f̂0
∂v (t, x, v) ≤ C(1 + xk + ekv), so we just need to

use the same method from our estimation of (B.46) to conclude that
∣∣(B.55)

∣∣ ≤ C
√
T − t(1 + xk + ekv).

The derivation of the inequality
∣∣(B.57)

∣∣ ≤ C√T − t(1 + xk + ekv) is analogous.

Moreover, if we compute ∂2G+

∂v2 (w, s, t, x; v) by differentiating again with respect to v, we obtain an

expression which we can also decompose into a sum of terms. The absolute value of each of these

summands is again upper bounded by functions of the same type; accordingly, the estimate
∣∣(B.54)

∣∣ ≤
C
√
T − t(1 + xk + ekv) holds as well. (For the sake of brevity we are omitting the lengthy analytical

expression for ∂
2G+

∂v2 (w, s, t, x; v).)

To assure that the same upper bound holds for the term (B.56), it is clearly enough to show that
∂2L1f̂0
∂v2 (t, x, v) ≤ C(1 + xk + ekv). Once again, we show that the absolute value of the second derivative

with respect to v of the terms (B.30) and (B.31) is upper bounded by C(1 + xk + ekv), the other terms

being handled similarly:∣∣∣∣ ∂2∂v2 (B.30)
∣∣∣∣ =
|1 + 2β|
x2+2β

∣∣∣∣∣∂3ĥ2+2β

∂v3
(t, v)N (d3(t, x, v)) + 2

∂2ĥ2+2β

∂v2
(t, v)

∂d3
∂v

(t, x, v)n(d3(t, x, v))

+
∂ĥ2+2β

∂v
(t, v)

{
∂2d3
∂v2

(t, x, v)−
(
∂d3
∂v

(t, x, v)

)2

d3(t, x, v)

}
n(d3(t, x, v))

∣∣∣∣∣∣∣∣∣ ∂2∂v2 (B.31)
∣∣∣∣ =
|1 + 2β|
x2+2β

∣∣∣∣∣∂2ĥ2+2β

∂v2
(t, v)

∂d3
∂v

(t, x, v)

+ 2
∂ĥ2+2β

∂v
(t, v)

{
∂2d3
∂v2

(t, x, v)−
(
∂d3
∂v

(t, x, v)

)2
d3(t, x, v)

}
+ ĥ2+2β(t, v)

{
∂3d3
∂v3

(t, x, v)− 3
∂2d3
∂v2

(t, x, v)
∂d3
∂v

(t, x, v) d3(t, x, v)

+

(
∂d3
∂v

(t, x, v)

)3(
d23(t, x, v)− 1

)}∣∣∣∣∣n(d3(t, x, v))

From the inequalities (B.24)–(B.26) it follows that∣∣∣∣ ∂2∂v2 (B.30)
∣∣∣∣ ≤ C(1 + xk + ekv) and

∣∣∣∣ ∂2∂v2 (B.31)
∣∣∣∣ ≤ C(1 + xk + ekv).

Therefore
∣∣(B.56)

∣∣ ≤ C√T − t(1 + xk + ekv), which allows us to conclude that

∣∣L2f̂1(t, x, v)
∣∣ ≤ C√T − t(1 + xk + ekv) (B.58)

as required.
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