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Resumo

Fish facilities por todo o mundo recorrem a peixes zebra (zebrafish) para efectuar experiências. Ao longo

da sua vida, os peixes zebra são mantidos em aquários e necessitam de ser contados, manualmente,

o que constitui uma tarefa morosa e que está sujeita a erros.

Este trabalho apresenta um sistema automático de contagem de peixes e um algoritmo baseado em

visão computacional para realizar a tarefa. O algoritmo utiliza técnicas standard de visão computacional

como subtração de fundo, isolamento de blobs e compensação de reflexões de forma a realizar uma

contagem mais precisa. Dado que as fish facilities têm múltiplas categorias de peixes, o algoritmo

proposto foi calibrado para garantir os melhores resultados para mais do que uma categoria.

Este projecto inclui também o design, desenvolvimento e implementação de um sistema de hardware

completo com o objectivo de adquirir videos de peixes dentro de aquários. Experiências realizadas em

amostras de video reais demonstram que o algoritmo proposto estima com sucesso o número de peixes

num tanque com uma margem de erro de aproximadamente 15% do número real. Relativamente ao

tempo de execução do algoritmo, concluiu-se que o tempo necessário para estimar o número de peixes

é, em geral, inferior ao tempo que técnicos especializados demoram a realizar uma contagem manual.

Como trabalho futuro, a identicação de diferentes tipos de fenótipos assim como a contagem do

número de macho e fêmeas em aquários, são exemplos de ideias interessantes que podem ser imple-

mentadas neste tipo de aplicações.

Palavras-chave: visão computacional, contagem de peixes zebra, subtração de fundo, opti-

cal flow, momentos de Hu, processamento de imagem
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Abstract

Fish facilities around the world resort to zebrafish to perform experiments. During their lifetime, fish are

maintained in tanks and need to be manually counted representing a time consuming and error prone

task.

This work presents an automatic fish counting setup and a computer vision based algorithm to per-

form the task. The algorithm uses image processing methods such as background subtraction, blob

isolation and mirroring compensation to perform a more precise fish counting.

Since fish facilities have multiple categories of fish, the proposed algorithm was calibrated to guaran-

tee the best results for more than one category. Moreover, this project does also comprise the design,

development and implementation of a full hardware setup for the video recording of fish inside tanks.

Experiments on real video samples show that the proposed algorithm can successfully estimate the

number of fish in a tank with an error margin below 15% of the real fish number inside a tank.

Regarding algorithm execution time, we could conclude that the time needed to output an estimate

of the number of fish in a tank is lower than the manual counting performed by technicians.

In future work, the identification of multiple phenotypes as well as counting the number of male and

female inside tanks, are examples of very interesting ideas which should be implemented in this type of

solution.

Keywords: computer vision, zebrafish counting, background subtraction, optical flow, Hu mo-

ments, image processing
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Chapter 1

Introduction and scope

1.1 Overview

Zebrafish (danio rerio) is a small freshwater fish that is widely used as an animal model in biomedical

research with origins in specific locations across the globe as we can see in Figure 1.1 [1]. Research

Figure 1.1: Geographic Distribution of danio rerio. (www.fishbase.org)

laboratories around the world require a huge number of individuals to perform a great variety of exper-

iments. Those fish are breed and maintained in big fish facilities managing hundreds to thousands of

fish tanks. Usually these tanks are standardized containers (for instance, from 3 to 8 l) which may host

several dozens of animals each.

Obtaining an up to date count of the total number of animals in a fish facility is an essential task,

performed by human technicians who manually extract animals with the help of small fish nets. This
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manual counting process requires a significant amount of time and is error prone. Moreover, handling

animals for counting induces significant stress, with all the harmful consequences that may cause to the

animals and, consequently, affect the scientific experiments they are involved in.

Finding a noninvasive automatic procedure to obtain the precise number of zebrafish in facilities

tanks, avoiding all the disadvantages of manual counting, is a long sought goal of fish facilities managers.

Fish counting automation may be approached using computer vision. In fact, today there are many

examples of complex applications making use of computer vision techniques [2] such as:

• Optical character recognition: reading handwriting and automatic number plate recognition

• Machine inspection: measure tolerances on aircraft wings or inspect steel casting with X-ray vision

• 3D model building: 3D models from aerial photographs

• Medical Imaging: perform long-term studies of brain morphology

• Face detection: to be used in image searching

• Visual authentication: grant people permission for accessing buildings based on morphology fea-

tures

• People tracking: monitor passenger motion in airports.

Some of the previous applications make use of techniques such as optical flow and background subtrac-

tion which have particular interest in this project. Optical flow [3] is highly related to pixel motion and its

variability between frames. Furthermore, it gives a reliable estimation of displacement between different

frames. Background subtraction is specially relevant when, for example, the need for isolating moving

regions in a sequence of images arises. Those techniques will be explained in more detail in Chapter

3. In this fish counting project, since images are two-dimensional, the main difficulties to overcome

are: regions where fish overlap, mirroring effect, i.e., fish reflections on the tanks sides and, mainly, fish

shoaling.

1.2 Environment

Fish facilities usually use zebrafish of the following genotypes: wild type zebrafish from strains AB and

TU, mutant Nacre zebrafish and transgenic fish from multiple lines with TU and Nacre background.

Genotype may be defined as the genetic makeup of an organism that determines specific physical char-

acteristics, phenotype, of an individual. It is important to state that to the different genotypes correspond

different phenotypes.

From this point, we will assume that fish are divided into four different categories with different geno-

type and age: AB/TU fries (30-day old), AB/TU adults (90-day old), Nacre fries (30-day old) and Nacre

adults (90-day old). The physical differences between the categories Nacre and AB/TU can be seen

from Figure 1.2 to Figure 1.5. This type of fish is extremely sensitive when changes in its environment

occur, thus, inflicting too much stress while handling may, in some cases, lead to death.
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Figure 1.2: Nacre zebrafish fries. Figure 1.3: AB/TU zebrafish fries.

Figure 1.4: Adult Nacre zebrafish. [4] Figure 1.5: Adult AB zebrafish. [4]

Fish growth rate depends on factors such as fish density in a tank and feeding. In this project, fish

have an average length (fork lenght) of 1.8±0.16 cm (fries) and 2.5±0.15 cm (90-day old adults) and,

as adults, should not be longer than 3 cm.

At the fish facility, fish are maintained in standard sized tanks with, for instance, 3.5L, as it can be

seen in Figure 1.6, where water temperature is around 28oC (27.94±0.05) and the external temperature

is approximately 25oC.

Figure 1.6: Zebrafish tank type. [5]

Tanks are stored, side by side, in appropriate housing systems, where the water recycling system

makes sure that the water in aquariums is constantly being renewed and the automatic feeding system
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provides the correct periodic feeding for each tank. Figure 1.7 shows an example of a housing system

where that is verified.

In our project, the number of fish per tank may vary from less than a dozen to a maximum number of

35. At ”day zero” fish eggs are placed inside tanks after microscopic larvae counting. Figures 1.8 and

1.9 show the physical features of a zebrafish larva at day zero for the two genotypes. After 30 days, a

manual counting is performed to analyse how many fish survived the first month allowing the extraction

of data to calculate the mortality ratio. This procedure is repeated on the third month when zebrafish are

adults.

To have an idea about the time that the manual counting process usually takes, we can analyse Table

1.1. By analysing the table, we can conclude that there is no relationship between the number of fish

and the time spent to perform the task. In those counts, the lowest value obtained was 28 seconds for

12 fish in a tank. These values can be used as a reference to compare to the time performance of our

algorithm that will be done in Chapter 5.

Fish Number 12 16 18 19 23 23 26 26 27 27 28 28 28 28 29 31

Time [s] 28 40 35 48 58 44 55 78 67 91 53 56 69 52 43 82

Table 1.1: Counting times obtained in 16 different counts for zebrafish fries performed by an accredited
technician.

Figure 1.7: Housing system at the fish facility

Figure 1.8: Nacre zebrafish larva. Figure 1.9: AB zebrafish larva.
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1.3 Results

In this project, an experimental setup for video recording and the development of an algorithm for ze-

brafish counting in tanks that combines background subtraction, blob counting and mirror compensation

are proposed.

Hence, the main results of this project were:

1. Building a full prototype (hardware and software) of a counting device.

2. Counting the number of fish in a tank with a maximum error margin of 15% of the real fish value

inside it given by manual counting.

3. Ensuring that all the procedures regarding the recording of the videos do not cause stress to the

animals (noninvasive technique).

4. Publishing a paper regarding this work in the International Conference on Image Analysis and

Recognition 2016 (ICIAR 2016).

1.4 Report Structure

This report is organized according to the following division of chapters:

• Chapter 1: Introduction and scope - Provides an overview of the project context, defines the

goals and explains how the report is organized. Describes the parameters regarding environment

features.

• Chapter 2: State of the art - An assessment of previous research and methodologies employed,

by different authors, in the development of other projects relevant in this dissertation context.

• Chapter 3: Theoretical Background - Comprises a general theoretical overview and provides

theoretical details regarding the different computer vision and mathematical tools used: back-

ground subtraction, optical flow and Hu moments, respectively.

• Chapter 4: Implementation - Describes the features regarding the video recording setup and

container in terms of structural specifications and illumination. Likewise, detailed information about

the computational hardware specifications and the different steps of the algorithm are given.

• Chapter 5: Evaluation - Represents the discussion of the results obtained using the fish counting

algorithm.

• Chapter 6: Conclusions and Future Work - Finally, the project’s achievements are summarized

and discussed. Recommendations on future work are also made.
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Chapter 2

State of the art

Nowadays there are many different computer vision techniques used in object counting. Since the

purpose of this work is to develop a fish counting system, all of the following approaches represent

different solutions related to this specific problem. Typically, these systems follow common patterns

such as:

• Capturing images (normally video acquisition)

• Extracting features (such as colors)

• Detecting blobs

• Provide a counting based on the blobs detected.

For instance, Y.H. Toh et al. [6] present a method of counting feeder fish through image processing

techniques. A video of a school of fish is acquired and analysed to output a counting number. At some

point filters are applied to background and noise of the image with already identified blobs. The number

of fish contained in one image is estimated taking into consideration the individual area of the blobs in

one frame and the average number of fish over all frames is calculated. It is relevant to take into account

that the setup provided made possible to have a background very easily distinguished from the fish. The

tank in the experiment has, apparently, low-level water (which reduces the chance of having overlapping

fish), there are no referred restrictions regarding luminosity intensity and it is assumed that the fish are

most likely to appear isolated. Considering all the specifications it is possible to count correctly schools

of 5, 10, 15 and 50 fish. This approach is not suitable for our project since the tanks that were used in

our videos had significant differences from the ones used in Toh et al. experiments such as water depth

and volume.

Khanfar et al. [7] suggest the development of algorithms which allow the recognition of fish in the

images and track the locations of individual fish from frame to frame. This work takes as an assumption

that the majority of the fish tend to move against an approximately stationary background and so, that

motion, can be useful in detection. The background is adjusted according to images with no fish. This is

used to calculate a histogram for the pixel amplitude used to define thresholds to be set and then isolate
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regions containing fish. Once it is possible to obtain those regions, an algorithm of edge detection and

region growing are used allowing an accurate counting of the number of fish. Several frames provide

information for tracking: given an identified fish in a well defined location, it is expectable that, in case of

a merging at the next frame in a very close location (for instance another well identified fish), the total

area of the merging equals the sum of the area of the fish in it. It is also considered that the motion

pattern of fish at a frame may be used to determine if regions are likely to merge in the subsequent

frame. The tracking algorithm requires information such as the location of fish, intensity of the region,

length, width and area of the fish. With this information it is possible to calculate an Euclidean distance

used to associate one region in a frame to a region in the next frame. The procedure enabled the

tracking of regions from one frame to the following and then split any new merged regions considering

former positions coordinates and that a region travels with constant velocity. This project was relevant in

the development of ours since, after analysing this work, we adopted the idea that when blobs merge,

the total area of the merging equals the sum of the area of fish in it.

In Fabic et al. [8] work, canny edge detection algorithm is used combined with a coral-blackening

background process. Video is recorded in a coral reef environment, which represent a much more

complex background than, for instance, the one used by Y.H. Toh et al. The main difference introduced

by the project, comparing to the aforementioned references, is that after the detection of each blob, the

Zernike moment [9] of every individual blob is calculated having in consideration a standard predefined

fish template (depending on the type of fish used in the experiment). Zernike moments allow the mapping

of an image using complex Zernike polynomials. The orthogonality between the polynomials makes

possible to represent the properties of an image with no redundancy or information overlapping between

distinct moments. Despite being dependent on the scaling and translation of the object, given a region

of interest, Zernike moments have the advantages of having magnitudes independent of the rotation

angle of an object. Hence, they are used to describe shape characteristics of the objects. Thus, in order

to identify different fish species and count them in every frame, a set of orthogonal Zernike moments is

chosen and applied due to their rotational, translational and scale invariant properties. This work had

particular interest in ours since it considers the creation of fish templates with features for each type of

fish. This was used as a motivation in our work since we decided to do something similar with fish areas

in the different fish categories.

Significant differences regarding the setup environment control are presented by Spampinato et al.

[10] where the videos are recorded in open sea and reflect the changes, for instance, in the luminosity

and water flowing (background variation). Inherent to the image processing tasks are sub-processing

systems consisting of texture and colour analysis, fish detection and fish tracking. The analysis of the

statistical moments of the grey-level histogram is the chosen approach to describe mathematically the

image texture (e.g. brightness and smoothness). In colour analysis hue, saturation and pixels values are

compared to predefined threshold to decide which color one region has in a frame. A moving average

algorithm consisting on frame subtractions is used to provide fish detection analysing moving pixels and

is made between the background image and the current frame. It is claimed that this particular algorithm

has the advantage of giving a good balance between results accuracy and total processing time. On
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the other hand, in scenes with no static background false positives arose and had to be removed using

adaptive gaussian mixture model [11] which modelled each background pixel and classified them based

on the likelihood between the real value of the pixel and the one assigned by the Gaussian Mixture

Model. Combining the two algorithms, it becomes possible to generate an approximation of the number

of fish in a frame by applying a connected component labelling algorithm. Finally the tracking system

uses an algorithm based on the matching of blob features and on a pixel histogram matching. This

approach motivated the usage of gaussian mixture models in the background subtraction algorithm in

our project.

Considering the setup features used in our project, Boom et al. [12] work may have special relevance

due to the applied techniques, video environment and results. For instance, regarding fish detection,

Gaussian Mixture Model (as presented by Spampinato et al. [10]) which allows dealing with multimodal

backgrounds and Adaptive Poisson Mixture Model variant are implemented, as mixture-based algo-

rithms. This procedure models, for each pixel, the distribution of the intensity values typically contained

in the background image. However, the computational processing costs tend to increase exponentially

as more models are added. Adaptive Poisson Mixture Model is used to handle illumination variations. It

is also stated that another algorithm is developed to specifically deal with sudden illumination changes

where the reflectance component (static element) of each frame is separated from its illumination com-

ponent (which is a parameter that varies depending on the light conditions) and the new background

model is then computed as a temporal median of these two components. Each pixel has a list of its

20 most recent intensity values and if the value of a pixel in a new frame matches with a high number

of values on the list, the pixel is considered background in the new frame. The ViBe algorithm is the

responsible for the described verification. All of the above methods are combined and employed by a

trained classifier which has no great interest for our project since our algorithm does not include ma-

chine learning techniques. Filtering is applied to remove noise and isolate blobs. A post-processing

detection module is used to filter bad detections and reduce false positives through the analysis of each

blob by verifying if its shape, texture, motion, structure and segmentation match to expected values from

correctly identified fish. Tracking is based on covariance-based models where the template of a fish is

represented as the covariance matrix of a set of feature vectors computed for each pixel of the object.

Pixel’s (x,y) coordinates, RGB values, hue value and the mean of a grayscale histogram are included

in each vector. Covariance matrices are compared to decide model similarity using Förstner’s distance.

The tracking algorithm is connected to the fish detection since a new fish is only tracked if there is the

indication that a new one is detected. Tracked fish are located in the scene considering that the search

window is based on the fish’ speed and direction in the previous frame. Thus, it is possible to calculate

candidate regions and compute their covariance matrix. In the end, a new location for a fish is set to the

region which, according to Förstner’s distance, is most similar to the fish model.

Our project presents different environment and features (such as fish size) comparing to the ones

presented in the aforementioned references. Nevertheless, as already stated, the references were used

as a motivation to some decisions we made in our project such as the use of background subtraction

with gaussian mixture models and the acquisition of the typical area to create a template for each fish
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category. Combining all these informations we decided to develop an approach specifically for our

application.
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Chapter 3

Theoretical Background

In this chapter we present the theoretical background considered in the implementation of our algorithm.

During the development of this project, the need to clearly distinguished fish from the other elements in

the image emerged. Consequently, including a background subtraction algorithm was considered.

Another relevant aspect that had to be taken into consideration was the fish mirroring on the sides of

the tank and surface. In this way, we searched for a method which could allow the identification of these

situations and, in the end, decided to include the calculation of Hu moments for blobs.

In this section we also discuss optical flow that, in spite of not being used in the final version of the

algorithm, was also applied and can be further explored in future work.

Thus, our final version of the algorithm involves the use of background subtraction for blob isolation

and Hu moments calculation for consequent fish mirroring compensation and blob counting.

3.1 Background Subtraction

Background subtraction is a technique that allows the elimination of static elements in an image which

can be considered as background. Since in our project we need to provide a clear identification of fish

in an image by isolating them, background subtraction is an extremely relevant method to distinguish

between what can be considered as background and foreground (fish).

The contents of this section are strictly based on Zivkovic and Heijden [11][13] works and gives

an explanation of the idea implemented in MOG2 (”Mixture of Gaussians 2”) method implemented on

OpenCV Library. One important feature of this algorithm is that it selects the appropriate number of

gaussian distribution for each pixel. Reynolds defines Gaussian Mixture Model (GMM) as a parametric

probability density function which is represented as a weighted sum of Gaussian component densities

[14]. Likewise, GMMs are commonly used as a parametric model of the probability distribution of con-

tinuous measurements or features in a biometric system. The parameters for the model are estimated

from training using Expectation-Maximization algorithm or, as in this MOG2 implementation, Maximum

A Posteriori (MAP) estimation from a well-trained prior model.

The process of background subtraction is usually related to the identification of what will be defined as
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”intruding objects” in a certain scene which, in this case, correspond to zebrafish in an image. Normally,

a common assumption is that the images in a scene or, in this project, frames in a video without intruding

objects, exhibit an approximately regular behaviour. It is possible to describe this regular behaviour using

mathematical tools to calculate a statistical model of a scene that can be used to detect, in each moment,

which regions in an image do not fit this model.

Taking into consideration that an image is the result of a combination of pixel values (RGB for exam-

ple), it makes sense that each pixel has a probability density function related to the scene model. Thus,

a pixel from a new image will only be considered as background if its new value is well described by its

density function. In fact, given a pixel value, at time t in any color space - ~x (t) - deciding if a pixel is part

of background (BG) or foreground (FG) can be made calculating:

D =
p(BG|~x (t))

p(FG|~x (t))
=
p(~x (t)|BG)p(BG)

p(~x (t)|FG)p(FG)
(3.1)

Uniform distribution is assumed for foreground objects appearance then p(~x (t)|FG) = cFG and p(FG) =

p(BG) since there is, generally, no information about the foreground objects that can be seen or even if

or when they will be present in an image. Given the aforementioned information, one pixel is considered

as background if:

D = p(~x (t)|BG) > cthr(= RcFG) (3.2)

where cthr represents a threshold value.

The background model, p(~x (t)|BG), is estimated from a training set χ, which consequently allows the

definition of the estimated model as p̂(~x|χ,BG) since it depends on the training set. However, features in

an image may rapidly or gradually change, new objects may appear or old ones may be removed. Thus,

a GMM is used so that the set can be update by discarding old samples and adding new ones. For each

t in a time period T , the training set is χT = {x (t), ..., x (t−T )}. As the samples may contain foreground

objects, the estimated density is given by p(~x (t)|χT , BG+FG) and a GMM with M components is used:

p(~x (t)|χT , BG+ FG) =

M∑
m=1

π̂mN (~x, ~̂µm, σ̂
2I) (3.3)

where π̂m represent the estimated mixing weights, ~̂µ1,...,~̂µM correspond to the estimates of the mean

values and σ̂2
1 ,...,σ̂2

M are the estimates of the variances that describe the Gaussian components. For

new data those three estimates are recursively update and if they meet certain criteria, old samples are

discarded and the training set is updated.

In the end, the general steps for this GMM background algorithm are:

• Classify the new sample ~x (t), p(~x (t)|χT , BG) > cthr

• Update p(~x|χT , BG+ FG)

• Update p(~x|χT , BG) to select the components of the GMM belonging to the background
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3.2 Optical Flow

Optical flow is a computer vision technique that makes possible the tracking of objects. During the

development of this project, it was first thought that we could possibly track the different fish in a tank, in

successive frames, in order to compensate fish overlapping.

This technique is presented by Gunnar Farnebäck work, representing a two-frame motion estimation

algorithm [3] and will be next summarized. Specifically, this method uses polynomial expansion which

approximates pixel’s neighbourhoods with polynomials. Quadratic polynomials, particularly, are used

since they give the local signal model that can be expressed in a local coordinate system by:

f(x) ∼ xTAx+ bTx+ c (3.4)

where A is a symmetric matrix, b a vector and c a scalar. The previous coefficients are the result of

weighted least squares fit applied to the signal values in a neighbourhood. Two components compose

the weighting: certainty and applicability, where certainty is connected to the signal values in the neigh-

bourhood and applicability represents the weight of points in the neighbourhood given a certain position.

A neighbourhood of pixels is approximated by a polynomial as a result of polynomial expansion.

Thus, considering the quadratic polynomial:

f1(x) = xTA1x+ bT1 x+ c1 (3.5)

we can put together a new function dependent on a displacement d,

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT1 (x− d) + c1

= xTA1x+ (b1 − 2A1d)Tx+ dTA1d− bT1 d+ c1

= xTA2x+ bT2 x+ c2.

(3.6)

If we equate the coefficients in the quadratic polynomials the result is:

A2 = A1, (3.7)

b2 = b1 − 2A1d, (3.8)

c2 = dTA1d− bT1 d+ c1. (3.9)

The important remark about this equations is that 3.8 can be solved for the displacement d every time

A1 in an invertible matrix (nonsingular):

2A1d = −(b2 − b1), (3.10)

d = −1

2
A−1

1 (b2 − b1). (3.11)

Assuming that an entire signal can be represented by a single polynomial and a global transition by the
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relation between two signals is unrealistic. Thus, we replace the global polynomial in 3.5 with local poly-

nomial approximations. This is done with a polynomial expansion for both images, resulting expansion

coefficients A1(x), b1(x) and c1(x) for the first image, or, in this project, we may refer to the images as

frames, and A2(x), b2(x) and c2(x) for the second image. Then, we settle the approximation:

A(x) =
A1(x) +A2(x)

2
(3.12)

and

∆b(x) = −1

2
(b2(x)− b1(x)) (3.13)

to obtain:

A(x)d(x) = ∆b(x) (3.14)

where the presence of d(x) indicates that the global displacement, d, in equation 3.6 have been replaced

with a spatially varying displacement field. Assuming that the displacement field is slowly varying, we

can (discretely) integrate information regarding a neighbourhood of each pixel. In this way, we can find

d(x) that satisfies 3.14 over a neighbourhood I of x:

∑
∆xεI

w(∆x)||A(x+ ∆x)d(x)−∆b(x+ ∆x)||2. (3.15)

The minimum is obtained for:

d(x) = (
∑

wATA)−1
∑

wAT∆b (3.16)

and this solution exists and is unique unless the neighbourhood exhibits the aperture problem [15]. After

some calculations, it is possible to conclude that the minimum value is given by

e(x) = (
∑

w∆bT∆b)− d(x)T
∑

wAT∆b. (3.17)

This means, in practice, that we compute ATA, AT∆b and ∆bT∆b pointwise and use w to average those

products before solving for the displacement.

The robustness is improved if the displacement field is parametrized by a motion model. We can use

the eight parameter model in 2D [16]

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy, (3.18)

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2 (3.19)

and write the equations as

d = Sp, (3.20)

S =

1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

 , (3.21)
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p = (a1a2a3a4a5a6a7a8)T . (3.22)

If we update 3.15 with the previous equalities we get

∑
i

wi||AiSip−∆bi||2, (3.23)

where i represents the coordinates in a neighbourhood. The solution is then

p = (
∑
i

wiS
T
i A

T
i AiSi)

−1
∑
i

wiS
T
i A

T
i ∆bi (3.24)

It can once more be verified that we can calculate STATAS and STAT∆b pointwise and then average

these values with w.

This method is not restricted to comparing two polynomials at the same coordinates. In case a

priori information regarding the displacement field is known, the polynomial at x in the first signal can

be compared to the polynomial at x + d̃(x) in the second signal, where d̃(x) represents the a priori

displacement field. Having this into consideration, we can replace 3.12 and 3.13 by

A(x) =
A1(x) +A2(x̃)

2
(3.25)

∆b(x) = −1

2
(b2((x̃)− b1(x)) +A(x)d̃(x) (3.26)

where

x̃ = x+ d̃(x). (3.27)

3.3 Hu Moments

During the development of this project, we were able to realize that zebrafish tend to be mirrored in some

areas of the tank such as the right side of the tank and the surface. Since we perform blob counting in

our algorithm, that will be further detailed in Chapter 4, counting blobs resulting from mirroring influence

the final counting estimate. In this way, we used a mathematical tool that allow us to identify those

situations and implement the necessary compensating measures.

Taking that into consideration, in this thesis we compute Hu moments in order to compensate some of

the fish mirroring effects. This mathematical procedure was developed by Ming-Kuei Hu [17] in his work

regarding moment invariants in recognitions patterns. His work presents a theory of two-dimensional

moment invariants for planar geometric figures. There, absolute orthogonal invariants are derived and

are used in our project to get the pattern identification of similar shape independent of size, position

and orientation. The expressions were derived from algebraic invariants applied to the expression that

describes a moment, consisting on groups of nonlinear centralised moment expressions. This resulted

in absolute orthogonal moment invariants that can be used for orientation independent pattern identifi-
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cation. For the second and third moments, six orthogonal invariants are derived:

µ20 + µ02,

(µ20 − µ02)2 + 4µ2
11,

(µ30 − 3µ12)2 + (3µ21 − µ03)2,

(µ30 + µ12)2 + (µ21 + µ03)2,

(µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ21 + µ03)2]

+ (3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)2 − (µ21 + µ03)2],

(µ20 − µ02)[(µ30 + µ12)2 − (µ21 + µ03)2] + 4µ11(µ30 + µ12)(µ21 + µ03),

(3.28)

and one skew orthogonal invariants,

(3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ21 + µ03)2]

− (µ30 − 3µ12)(µ21 + µ03)[3(µ30 + µ12)2 − (µ21 + µ03)2].
(3.29)

This skew invariant is useful in identifying mirror images and is specially relevant for this thesis as well

as the first invariant. In fact, this method can be generalized to accomplish pattern identification not only

independently of position, size and orientation but also independently of parallel projection which is used

in this thesis and will be further detailed in Chapter 4.
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Chapter 4

Implementation

The development of our technique involved the creation of a specific recording setup prototype for this

particular application where environment features, described in Section 1.2, were taken into consider-

ation. After obtaining video sequences with fish, it is then possible to start the video processing and

estimate the number of fish inside the tank. In this chapter we detail the development of the recording

setup, from the first version until the most recent one and relate the theoretical background presented in

Chapter 3 to the developed counting algorithm.

4.1 Danio Recording Setup

This work included the development of a full prototype (hardware and software) of a counting device.

Figure 4.1 shows the first version of the recording prototype, which we call Danio Recording Setup in

honour to the scientific name of the zebrafish danio rerio. This version was made of a standard plastic

Figure 4.1: First version of the Danio Recording Setup with external USB webcam.

box covered, inside, in blue musgami waterproof paper. Moreover, a strip of blue LEDs [18] was fixed to
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the cover of the box to illuminate the tank when closed.

With those specifications, it was possible to generate a blue uniform environment inside the box

which was recorded by an external USB webcam, connected to a computer, from one hole in one side

of the box where the camera fit in.

Given the different physical patterns exhibited by the zebrafish and the fact that the color of the tanks

is bluish, it was thought that a clean blue environment could bring good image contrast and uniform qual-

ity, representing an advantage for video processing. In this way the background subtraction algorithm

can rapidly stabilize and, more effectively, allow the detection of fish in the foreground.

At the very beginning of the project, an already existing setup covered inside by a textured cloth

was used to make the first experiments with background subtraction. We can see an example in Figure

4.2 where a tank is placed inside a container with the textured background and in Figure 4.3 an image

obtained with the first version of the setup exhibiting a clean uniform background pattern. Codification

of images with textured backgrounds is harder than untextured since, in those cases, we can not exploit

spatial redundancy when coding. The result are images with larger size, thus taking longer time to pro-

cess, since we need more bits to code the texture in the image. By using a clean untextured background,

the background subtraction algorithm can rapidly stabilize and, more effectively, allow the detection of

fish in the foreground. The most remarkable disadvantage of this first setup was the variable position of

Figure 4.2: Tank inside a container with textured
background.

Figure 4.3: Image acquired using the first version
of the Danio Recording Setup.

the tank and webcam . Since this was a first approach for the development of the setup, the placement

of the tank inside the container and the webcam at the hole in the box was not always done exactly at the

same place. Hence, whenever we wanted to make new trials, we could not achieve the exact recording

positions which have impact on the algorithm output since it is dependent on the distance between the

camera and the tank. Thus, to ensure the repeatability of the process, we developed a new version of

the prototype.

The most recent version of the Danio Recording Setup is shown in Figures 4.4 a) and b). This

enhanced setup includes structural and hardware diferences comparing to the previous version. This

container is a parallelepiped structure made of acrylic, with the dimensions presented in Figure 4.5 and

is also covered in blue waterproof paper as in the first version for the same reasons. The most important

differences on the inside of the container are the holes carved on the bottom which are intended to fix
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a) b)

Figure 4.4: Latest version of the Danio Recording Setup ( a) on at the fish facility, b) in standby mode).

40cm

30cm

50cm

Figure 4.5: Danio Recording Setup dimensions.

each tank to it making sure that the distance to the camera is always constant and it does not influence

the algorithm output.

This setup also included housing for the tanks. In Figure 4.6 we can see how each tank is fixed to

the bottom. There are three different positions where a tank can be placed in making possible to record

with three different distances to the fish. The same blue LEDs are fixed to a moving piece that was

designed to fit on the top of each tank, at exactly the same place. Hence, the same light intensity per

area in each aquarium is ensured since its distance to the tank is always constant. Moreover, it can be

seen in both Figures 4.4 a) and b), that there is specific hardware selected for both video recording and

user interaction.

In this way, to record the videos, a Raspberry Pi 2, Model B [19] is used with an integrated camera

[20] (Figure 4.7). On the front side of the container there is a fixed touch screen [21] that transforms

the container into an interactive setup for the user, representing an all-in-one recording system. As the

backside of the screen is connected to the Raspberry Pi and camera system, as it can also be seen in

Figure 4.7, it guarantees that the camera is always in the same place and, again, the distance between

the tank and the camera remains constant. Finally, Figures 4.8 and 4.9 show nacre adults and fries

respectively, examples of resulting images obtained by the latest version of the Danio Recording Setup.
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Figure 4.6: Empty tank placed inside the Danio Recording Setup.

Figure 4.7: Raspberry Pi and camera housing.

4.2 Estimating the Number of the Fish

After video recording with the recording setup, the task of image processing begins. The proposed

method, that we next describe in detail, was applied to every frame in a given video and can be generally

summarized in the following steps:

• Background substraction with GMMs and noise removal

• Blob detection and fish count based on pixel area

• Shoaling checking

• Mirroring compensation using Hu moments

The summarized solution can be found on the pseudocode in subsection 4.2.7 where all steps for a

video with, with no shoaling, are considered.
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Figure 4.8: Frame obtained by the lat-
est Danio Recording Setup version for 27
Nacre adult fish.

Figure 4.9: Frame obtained by the lat-
est Danio Recording Setup version for 27
Nacre fries.

It is also important to state that this solution was implemented using Python programming language

as well as OpenCV Library, numpy and matplotlib.

4.2.1 Background Subtraction with Gaussian Mixture Models

Regarding video properties, it is relevant to state that each frame has a size of 640x480, resulting in an

image as shown in Figure 4.8, and is acquired at a frame rate of 25 Hz. Each frame is initially cropped,

obtaining a 490x300 image, so that the tank can be the only region of interest in it, Figure 4.10, reducing

the processing time. Then, the algorithm of background subtraction described in section 3.1, is applied

to the cropped frame with the tank.

As previously described, the background subtraction algorithm uses a GMM background subtraction

scheme [11] [13] that automatically selects specific components, for each pixel in the image. This makes

the differentiation between what is considered as background (blue environment) and foreground (fish

moving between successive frames) possible. This technique allows adaptability during frame variation

to guarantee that the background is consistently subtracted and only foreground variations are able to be

identified. The result, Figure 4.11, is a black and white image, where black represents the background

and white the fish (blobs, from now on).

4.2.2 Noise Filtering

We can see in Figure 4.11 that there is noise (very small white regions) present in the frame and the

areas representing the fish are not closed ones. At this point, a routine of blob dilation is applied resulting

in Figure 4.12. In this image the blobs representing the fish are now closed, however, the noise regions

became larger. To avoid the noise influence in counting, given the image on Figure 4.12, we choose

only the blobs with area above 100 pixel since, in this case, we guarantee that everything in the frame is

most likely to be fish.

The result of this region selection can be found in Figure 4.13 that represents the final stage from

which the counting starts to be done. It is important to state that we could have applied an erosion routine
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Fish Category Reference area [pixel]
AB/TU Fries 150
Nacre Fries 250
AB/TU Adults 500
Nacre Adults 600

Table 4.1: Reference area for one fish in the different categories.

at Figure 4.11 to eliminate the noise and only then apply the dilation, however, this would represent more

processing time.

Figure 4.10: Cropped frame. Figure 4.11: Cropped frame after background sub-
traction.

Figure 4.12: Frame after dilation Figure 4.13: Frame ready to be analysed.

4.2.3 Heuristic Blob Counting

After dilation, a routine for blob contours detection takes place. To define the threshold from which a blob

is considered to represent a fish or multiple fish, video testing was previously performed. In this testing,

5-minute videos (7500 frames) containing only one fish were recorded to obtain the average area (which

will be called reference area from now on) that a fish assumes in the video. The approximated results

are shown in Table 4.1.

With the contours detection routine, we can identify (grey boxes around the blobs in Figure 4.13) and

count blobs larger than 100 pixel (too exclude the noise as previously stated) and count them to obtain

a first estimate of the fish in one frame. Nevertheless, fish overlap resulting in blobs significantly bigger
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than the reference area. In this project we consider that overlapping occurs every time at least two fish

are close enough to form one single blob as in Figure 4.14 for two Nacre adult fish.

Figure 4.14: Two Nacre adult fish overlapping.

Visually, both fish in this frame have approximately the same area and are represented in only one

blob. Lets assume that each of these fish has an area approximately equal to the reference area. In

this case the area of the blob would be two times the reference area, thus, dividing this value for the

reference area we get the number 2. Hence, where we previously counted this blob as one fish, we now

have a correction for this value representing the correct number of fish in this blob. This procedure is

done for every blob with area above the reference area for each category. Different reference areas than

the calculated in the tests are applied as the number of fish increases in the tank. In fact, after testing

in ten 40-second videos for each category and school of fish (different from the ones from where results

were extracted), it was possible to build intervals, as seen from Table 4.2 to Table 4.5, with typical areas

that specific quantities of fish represent. This way, if a frame has a total blob area (sum of the area of

all the blobs in a frame) in one of this intervals, a specific reference area is used to compensate fish

overlapping.

The reference areas that were used to compensate the counting of overlapping fish in frames can

be found from Table 4.6 to Table 4.9. It is important to refer that in the first interval (the one with lesser

number of fish), the reference areas that are used are greater than twice the values at Table 4.1 since

we admit that the number of fish in the tank is low enough to have a sufficient number of frames without

overlapping. In this way, the compensation does not need to be done as intensively as in cases with

more fish. We did also assume that the second intervals represent the typical number of fish where

overlapping compensation needs to start being done more frequently. Thus, the second intervals have

twice the reference areas in Table 4.1.

It is understandable that, for instance, if the number of fish is 35, a blob with the same size as a

case where there are 25 fish in the tank may represent more fish. This is the reason why as the number

of fish increases in the fish intervals, we decrease the value of the reference area used by 100 pixels

(starting at the second interval) so when we divide an overlapping blob area by the reference area the

compensation is greater.

To provide better understanding of the use of the values in these tables, we will describe a practical

example of a tank containing 20 AB/TU adult fish. Initially, there is no information of how many fish are

inside a tank thus, the algorithm calculates, for each frame, the total blob area. In cases were shoaling

does not occur, the total blob area in a frame will be in the interval present in Table 4.4, ]9000, 17000].

Having obtained a number in this interval, we then automatically know that the reference area to be used

for fish overlapping compensation in this frame is, from Table 4.8, 1000 pixel.
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AB/TU Fries
Fish Number Interval Typical area [pixel]

[5, 17] ≤ 4500
[20, 22] ]4500, 5200]
[25, 35] ≥ 5200

Table 4.2: Typical areas for AB/TU fries for the dif-
ferent sizes of the fish school.

Nacre Fries
Fish Number Interval Typical area [pixel]

[5, 12] ≤ 3000
[15, 25] ]3000, 5000]
[27, 35] ≥ 5000

Table 4.3: Typical areas for Nacre fries for the differ-
ent sizes of the fish school.

AB/TU Adults
Fish Number Interval Typical area [pixel]

[5, 12] ≤ 9000
[15, 25] ]9000, 17000]
[27, 30] ]17000, 20000]
[32, 35] ≥ 20000

Table 4.4: Typical areas for AB/TU adults for the dif-
ferent sizes of the fish school.

Nacre Adults
Fish Number Interval Typical area [pixel]

[5, 10] ≤ 9000
[12, 22] ]9000, 17000]
[25, 27] ]17000, 20000]
[30, 35] ≥ 20000

Table 4.5: Typical areas for Nacre adults for the dif-
ferent sizes of the fish school.

AB/TU Fries
Fish Number Interval Reference area [pixel]

[5, 17] 400
[20, 22] 300
[25, 35] 200

Table 4.6: Reference area used for AB/TU fries for
the different sizes of the fish school.

Nacre Fries
Fish Number Interval Reference area [pixel]

[5, 12] 600
[15, 25] 500
[27, 35] 300

Table 4.7: Reference area used for Nacre fries for
the different sizes of the fish school.

AB/TU Adults
Fish Number Interval Reference area [pixel]

[5, 12] 1500
[15, 25] 1000
[27, 30] 900
[32, 35] 800

Table 4.8: Reference area used for AB/TU adults for
the different sizes of the fish school.

Nacre Adults
Fish Number Interval Reference area [pixel]

[5, 10] 1500
[12, 22] 1000
[25, 27] 900
[30, 35] 800

Table 4.9: Reference area used for Nacre adults for
the different sizes of the fish school.

4.2.4 Shoaling Behaviour in Fish

During the development of this project, we could conclude that zebrafish group’s motion tend to vary

between the following ”modes”: randomly spread across the tanks, schooling and shoaling. Fish are

considered to be shoaling if they stay together for social reasons and, in cases where they move coordi-

nated in the same direction, their behaviour is classified as schooling. Zebrafish schools are faster and

less dense than zebrafish shoals. The habituation to a new environment can alter the proportion of time

zebrafish groups spend schooling or shoaling [22].

In Figure 4.15 we can see an example of 22 Nacre adult fish shoaling at the bottom of a tank. For each

frame our algorithm is capable of identifying shoaling at the bottom of the tank and at the at the sides of

the tank. Since in our samples every shoaling that occured was on the bottom of the tank, the figures

on this report illustrate that specific situation.

In order to identify shoaling, after blob counting a frame as for instance the one in Figure 4.15 is

splitted. We can see the two resulting splitted parts of the frame in Figures 4.18 and 4.19. At this point
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Figure 4.15: 22 Nacre adult fish shoaling at the
bottom of a tank.

Figure 4.16: Frame resulting from the analysis of
the 22 Nacre adult fish shoaling at the bottom of the
tank.

we verify if 90% of the total blob area detected in a frame is present at the split part corresponding to the

bottom of the frame. In cases this is verified we are then able to say that shoaling is occuring. As we

Figure 4.17: Frame before splitting and shoaling checking with 35 AB/TU adult fish.

Figure 4.18: Resulting top part of the frame splitting.

can see in Figure 4.19, only 5 blobs are identified by the algorithm when, in fact, there are 35 Nacre adult

fish inside the tank. It is understandable that when this type of situation occurs is very difficult for the

algorithm to make fish overlapping compensation by dividing each blob area by the reference area since

there are multiple layers of fish behind one another. These images are 2D so there is no information

regarding the depth of the shoal to relate to this frames and implement other compensations. In these

situations the total blob area that is detected by the algorithm, in this case for 35 Nacre adult fish, will

be, for instance, inside the interval [5, 12] when in a normal situation with fish spread across the tank, the

area would be in the interval [30, 35]. In this way, the reference area to compensate overlapping would

be, from Table 4.8, 1500 pixel instead of 800 pixel. Thus, we can conclude at this point that the frequent
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Figure 4.19: Resulting bottom part of the frame splitting with 35 AB/TU adult fish.

presence of shoaling in frames may lead to unacceptable results if a significant number of frames verify

its existence.

In this project when frames with shoaling are detected, the counting that is obtained in those frames

is used for the final estimation of the number of fish. We decided to do it (we could have ignored those

frames) just to reflect how shoaling affects the algorithm performance.

4.2.5 Mirrored Counting Compensation

Mirroring compensation is done by calculating each Hu moment for each blob in a frame based on Ming-

Kuei Hu [17] work that presents a theory of two-dimensional moment invariants for planar geometric

figures.

In the recorded videos two areas containing fish mirroring can be detected: the right side of the tank

and the upper part (water surface). Near these regions fish are reflected like in a mirror which may lead

to count some fish twice. We can see an example of a fish mirroring at the surface of the tank in Figures

4.20 and 4.21 with the two blobs inside the red rectangles.

Figure 4.20: One fish mirroring at the top of the
tank.

Figure 4.21: Frame to analyse with one fish mir-
roring at the top of the tank.

Given a frame the algorithm calculates, for each blob, its Hu moments. After analysing frames where

we could visually identify mirroring, we studied how the values obtained for the orthogonal invariants

described in Chapter 3, Section 3.3 behaved. The first orthogonal invariant gives information regard-

ing shape features while the seventh invariant allows the identification of mirroring [17]. In fact, after

analysing frames where reflections occurred, we were able to conclude that the blob that represented

the real fish and the blob belonging to the mirroring had approximately the same value for the first or-

thogonal invariant (differences ≤ 5 × 10−3) and the seventh invariant had approximate absolute value

and opposite signal. We can have a look at these values in Table 4.10. Thus, after calculating every Hu
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Blob representing fish Blob representing the mirroring
First orthogonal invariant 0.589409646739 0.592189044417

Seventh orthogonal invariant 8.44891493114 -8.00010965607

Table 4.10: Example of the first and seventh orthogonal values for a blob representing a fish and another
representing the mirroring in Figures 4.20 and 4.21.

moment for each blob in one frame, we compare the first and the seventh orthogonal invariants of one

blob to the other blob’s invariants. Hence, every time two blobs in a frame verify:

• the difference between their first orthogonal invariants is ≤ 5× 10−3

• the difference between their seventh orthogonal invariants absolute values is ≤ 1 and have oppo-

site signal

we know that the number of reflections detected should be subtracted to the counting done so far. This

correction is the last modification that the algorithm applies to the counting in one frame. After this step

we get the final estimate for one frame and the process repeats itself from the beginning, subsection

4.2.1, until this point.

4.2.6 Outputting the Final Number of Fish in a Video

Having completed all the steps, for each frame of a video, described from subsection 4.2.1 to 4.2.5, we

can provide an estimate for the number of fish in a tank.

Let us denote the estimated number of fish detected in each frame of a video by: fnm, n = 1, ..., N and

m = 1, ...,M , where N and M are the number of videos and number of frames per video, respectively.

The final number of fish in a video, n, is finally given by: F̂n = median(fn1 , f
n
2 , ..., f

n
M ).

Consequently, the error in a video can be calculated:

en =
|F̂n −Kn|

Kn
(4.1)

where Kn represents the real number of fish, which is known a priori. Finally, we can compute the

average error for N videos:

ē =
ΣNn=1en
N

. (4.2)

In this project we decided to use the median instead of, for instance, the mean. This was made

taking into consideration that in certain frames (particularly in the first frames of the video where the

background subtraction algorithm is still stabilizing) the count estimate is significantly higher (or lower in

partial shoaling cases) than the real number of fish. Hence, since median in opposition to mean is less

susceptible to outliers, this measure was chosen. With this outliers filtering, it is possible to guarantee

that, after a certain number of frames, the algorithm tends to converge for a specific counting value.
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4.2.7 Solution Summary

At this point we are able to summarize the different steps of the developed solution through the following

pseudocode:
Data: Video sample

Result: Fish number estimate

load video sample

while there are frames to read do
apply background subtraction to current frame

apply dilation to current frame

find blob contours greater than pixel threshold

perform blob counting to get a first estimation

if fish category is AB/TU fries then
reference area = AB/TU fry average area

end

else if fish category is Nacre fries then
reference area = Nacre fry average area

else if fish category is AB/TU adults then
reference area = AB/TU adult average area

else if fish category is Nacre adults then
reference area = Nacre adult average area

if there are blob areas larger than reference area then

for each blob area do
blob compensation = blob area ÷ reference area - 1

first compensation = blob compensation + first compensation

end

second counting = first estimation + first compensation

end

for each blob do
calculate Hu moment (orthogonal invariants) for mirroring compensation

if other blobs have first and seventh invariants that verify: difference between first

invariants ≤ 5× 10−3 and difference between seventh invariants absolute values is ≤ 1 and

have opposite signal then
mirroring compensation = number of times ’if’ condition is verified

end

end

fish number estimate in frame = second counting - mirroring compensation

estimates in sample.append(fish number estimate in frame)

end

final fish number estimate = median(estimates in sample)
Algorithm 1: Fish counting estimate - procedure summary.
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In the previous algorithm summary, there is no information regarding shoaling detection since we

decided to include shoaling when calculating the estimates to be able to analyse the effect of this be-

haviour in the final results. However, we check if the shoaling occurs by analysing if 90% of the detected

blobs are in a specific region of the tank as previously explained and if we included this procedure in

Algorithm 1 it would be after calculation the Hu moments for each blob.

4.2.8 A Note on Optical Flow

The optical flow technique [3] is based on a two-frame motion estimation algorithm as described in

Chapter 3, Section 3.2. In this method neighbourhoods of both frames are approximated by quadratic

polynomials using the polynomial expansion transform. In the end, displacement fields are derived

from polynomial expansion coefficients by observing the way an exact polynomial transforms under

translation.

Taking this into consideration, an approach using optical flow was initially used after background

subtraction. That was thought since each blob’s displacement vector features gave the possibility to

differentiate between fish overlapping in case they where moving in opposite directions.

The output of the optical flow algorithm applied to one frame consisted on the calculation of a dis-

placement vector, for each different blob. This displacement vector is described by a magnitude and

an angle that represents direction. Consequently, if each blob moves in different directions, each blob’s

displacement vector is represented by distinct values of magnitude and angle. In order to have a visual

representation of this values for each blob, we convert the cartesian values of the magnitude and angle

to polar coordinates, Figure 4.22, in order to express each combination of values as HSV (Hue, Satura-

tion and Value) colors. We can see in Figures 4.23 and 4.24 how HSV color scale varies. Thus, after

the previously stated conversion we get a color for each pair (magnitude, angle). We can see in Figure

Figure 4.22: Polar coordinates. [23]
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Figure 4.23: HSV color distribution. [24]

Figure 4.24: HSV color cone. [25]

4.26 the visual representation of the displacement vector for every blob detected in the original frame,

Figure 4.25.

After obtaining the frame with the optical flow representation, pre-built color intervals were used to

check which colors fit in these intervals and can be found in Table 4.11. In this way, we were able

Hue Saturation Value
Reds [0, 20] [0, 255] [0, 255]
Yellows [21, 35] [0, 255] [0, 255]
Greens [36, 92] [0, 255] [0, 255]
Blues [93, 130] [0, 255] [0, 255]
Purples [131, 180] [0, 255] [0, 255]

Table 4.11: HSV defined color intervals.

to analyse, separately, blobs with the same color (Figure 4.27 to Figure 4.36). This made possible to

differentiate between fish overlapping in cases where fish moved in different directions. Then, even

when crossing in front of each other, fish’ blobs would exhibit different colors. Finally, after splitting all

the colors, we could count how many blobs were in each of the five resulting image and sum them. The

result represents the estimate for a specific frame.

However, after testing, we realized that when there was a significant number of frames where fish
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moved with very low speed, it was impossible to detect them with this method. Processing time would

also increase comparing to the final solution that was previously described since optical flow computation

implicates additional calculations. These were the reasons why optical flow was not further considered

in this algorithm and the final solution remained with the application of background subtraction and the

area compensation as described in subsection 4.2.1.

Figure 4.25: Original frame to apply background
subtraction and then calculate the optical flow.

Figure 4.26: Representation of the optical flow for
each blob in the original frame.

Figure 4.27: Separation of the blobs with blue col-
ors from the optical flow representation.

Figure 4.28: Blobs representing blue regions.

Figure 4.29: Separation of the blobs with red colors
from the optical flow representation.

Figure 4.30: Blobs representing red regions.
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Figure 4.31: Separation of the blobs with green col-
ors from the optical flow representation.

Figure 4.32: Blobs representing green regions.

Figure 4.33: Separation of the blobs with purple
colors from the optical flow representation.

Figure 4.34: Blobs representing purple regions.

Figure 4.35: Separation of the blobs with yellow
colors from the optical flow representation.

Figure 4.36: Blobs representing yellow regions.
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Chapter 5

Evaluation

To begin with, it is important to state that videos with fish were recorded at Champalimaud Centre

for the Unknown Fish Facility and were processed offline. Fish were raised and maintained at the

Champalimaud Fish Platform according to Martins et al. (2016) and manipulated by staff accredited for

animal experimentation by the Portuguese Veterinary Agency (DGAV)[26].

In this implementation we considered the following number of fish in a school for each of the four

categories of genotype vs age: 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35 representing a total of 13

categories. The only exception is AB/TU fries which has 10 categories since there were no tanks with

more than 27 30-day old zebrafish by the time recordings were made.

For each different category and school size we collected 20 videos of 40 seconds each, thus totalling

200 videos for AB/TU fries and 260 for each of the remaining categories.

5.1 Results - Final Solution

After applying the described counting algorithm to those 40 second videos, we obtained the counts

in different 20 trials that can be found in Tables A.1, A.3, A.5 and A.7 in Appendix A. The average

error resulting from the counts can be found in Table 5.1 where acceptable average errors (≤ 15%) are

indicated in green and not acceptable in red.

Let us recall that the estimated number of fish detected in each frame of a video is denoted by: fnm,

n = 1, ..., N and m = 1, ...,M , where N and M are the number of videos and number of frames per video,

respectively. The number of fish is given by: F̂n = median(fn1 , f
n
2 , ..., f

n
M ). The error in a single video is

expressed by equation 4.1 and the average error for N videos is calculated using 4.2 where in this case

N = 20 for each entry of Table 5.1.

Regarding fries’ category, we can see that the highest error observed was 15%, for Nacre fries in a

10 fish tank. For the remaining schools of fish acceptable errors were obtained.

Since fries are significantly smaller than adults, as seen in Figures 4.8 and 4.9 and previously stated

in Section 1.2, overlapping is less frequent and cases where the error is higher (than 15%) correspond

to partial shoaling. Partial shoaling in a video sample may be defined as the occurrence of shoaling only

33



Fish Number

Fish Category 5 7 10 12 15 17 20 22 25 27 30 32 35

AB/TU Fries 4% 13% 7% 10% 4% 9% 7% 9% 4% 3%

Nacre Fries 14% 12% 15% 6% 8% 6% 11% 3% 4% 5% 1% 8% 4%

AB/TU Adults 0% 6% 5% 3% 9% 11% 14% 3% 5% 24% 15% 12% 29%

Nacre Adults 21% 13% 18% 12% 29% 6% 9% 20% 9% 11% 7% 3% 4%

Table 5.1: Average fish count error for each number of fish in the different categories (20 samples per
category) obtained in the final solution.

in portions of a video in such way that there are enough frames where shoaling is not detected leading

to an estimate in the acceptable margin.

5.1.1 Shoaling

In the adult fish category, there were certain fish quantities which did not meet the acceptable margin.

For instance, in the videos with 15 Nacre adult fish the average error is 29% which means that, in

average, approximately 5 fish were not detected in those videos which is far from the real value. This

is due to the significant high number of videos where shoaling occurred. As previously mentioned, fish

shoal particularly in the bottom of the tank and it is extremely difficult for the algorithm to output correct

counts when this behaviour is verified. This occurs for videos with few or many fish when fish are closely

together in multiple layers behind each other. Hence, shoaling justifies the average errors at Table 5.1

that are higher than the 15% margin.

In Figure 5.1 representing 22 adult fish, we can see that for videos where shoaling occurs, the

percentage of total blob area detected in each frame is significantly lower than the case in Figure 5.2

where shoaling does not occur. Thus, it is understandable that if there is less blob area than it should in

Figure 5.1: Frequency and cumulative frequency
histogram for a video with 22 fish shoaling.

Figure 5.2: Frequency and cumulative frequency
histogram for a video with 22 fish without shoaling.

a frame, it will lead to unacceptable results.
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5.1.2 Algorithm Convergence

We can see examples of how the fish count per frame varies within individual videos for fish in the

different categories from Figures 5.3 to 5.6.

Figure 5.3: Counting number for each frame for
27 AB/TU zebrafish fries in a 40-second video
(1000 frames). The red lines represent the ac-
ceptable error margin and the green line is the
real fish number in the tank).

Figure 5.4: Counting number for each frame for
32 adult AB/TU zebrafish in a 40-second video
(1000 frames).

Figure 5.5: Counting number for each frame for
35 Nacre zebrafish fries in a 40-second video
(1000 frames).

Figure 5.6: Counting number for each frame for
35 adult Nacre zebrafish in a 40-second video
(1000 frames).

In those figures, the real fish value inside the tank is represented by the green line and ±15% of the

real fish number correspond to the red lines. It can be verified that the algorithm outputs a number within

the error margin in early frames and maintains the error margin until 1000 frames. Nacre zebrafish tend

to reflect more the light, resulting in bigger blobs for single fish, comparing to the AB/TU category, since

these are darker, which explains the multiple peaks in Figure 5.6. This peaks are not so evident in Nacre

fries, Figure 5.5, due to their small dimensions which, in the ends, compensates the reflection.

From Figure 5.7 to 5.10 we can analyse the variation of the variance for each school of fish in the

different categories (this information can be found in Tables A.2, A.4, A.6 and A.8 in the Appendix A

as well as graphs with the standard deviation from Figure A.1 to A.4). Regarding Nacre, Figure 5.7
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Figure 5.7: Plotted variance values and linear re-
gression for each school of Nacre fries in Table
A.2.

Figure 5.8: Plotted variance values and linear re-
gression for each school of AB/TU fries in Table
A.4.

Figure 5.9: Plotted variance values and linear re-
gression for each school of Nacre adults in Table
A.6.

Figure 5.10: Plotted variance values and linear re-
gression for each school of AB/TU adults in Table
A.8.

and AB/TU fries, Figure 5.8, categories, we can easily verify that the variance values are very low. This

means that the algorithm presented results which were very close to the average error in the 20 different

video samples for each school number. Taking into consideration that all the values in Table 5.1 for

fries are within the acceptable margin and the error variances are very low, we can conclude that the

algorithm performs well in this category. Moreover, if we analyse the regression lines in red, we can

verify that the line slope is positive. This demonstrates that the error’s variance tends to increase with

the increase of the number of fish inside a tank as expected.

In Nacre and AB/TU adult categories, there are some error’s variance values that are significantly

greater than the ones in fries categories. This is due to the fact that adult fish have bigger size which

makes overlapping occur more often leading more frequently to situations where shoaling and partial

shoaling occur. Hence, in some trials (27 AB/TU adult fish, for instance), these behaviours were more

intense than in others leading, for example, to high error values or even no error in some video samples.

These variations lead to the increase of the variance value. There were also cases in which shoaling

occurred similarly in all the video samples, as in 35 Nacre adult category, leading to an average error
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very close to the (wrong) counting values obtaining, consequently, low variance. It was once more

possible, through the analysis of the regression lines, to verify that the slope is positive representing the

same tendency observed in fries categories (variance tends to increase with the increase of the number

of fish inside the tank).

5.2 Mirroring Compensation

In order to emphasize the importance of the fish mirroring compensation (i.e., subtracting blobs repre-

senting fish reflections that were previously counted as fish), we present, in this section, the results of

the algorithm, over the same samples as in the previous section, without the calculation of Hu moments

(mirroring identification). The counting results may be found in Table 5.2. When performing fish counting

Fish Number

Fish Category 5 7 10 12 15 17 20 22 25 27 30 32 35

AB/TU Fries 4% 16% 9% 16% 11% 12% 18% 13% 9% 7%

Nacre Fries 14% 11% 17% 8% 6% 11% 13% 7% 10% 12% 9% 12% 5%

AB/TU Adults 0% 13% 17% 10% 12% 18% 21% 9% 11% 24% 17% 13% 29%

Nacre Adults 21% 13% 18% 17% 29% 18% 16% 20% 13% 12% 15% 9% 7%

Table 5.2: Average fish count error for each number of fish in the different categories without mirroring
compensation (20 samples per category).

with the final version of the algorithm, we can obtain an estimate of the counting equal, above or below

the real number of fish inside the tank. If the estimate, in a frame, is lower than the real value of fish,

the overall counting estimate value tends to decrease and the error of the estimate increases when we

compensate the blobs that represent fish mirroring. On the other hand, if before mirroring compensation

the estimate of the counting is greater than the real value, when we subtract the mirroring counts, the

value of the estimate tends to decrease and converge to the real number of fish inside the tank. Having

this into consideration, we can see in Table 5.2 how the error varies, when comparing to Table 5.1, if the

mirroring compensation was not performed. In fact, we can easily verify that in Table 5.2 we have many

more situations where the 15% error margin was not achieved. For instance, for 20 AB/TU adults we

obtained 14% error margin in Table 5.1, when mirroring compensation is done and in Table 5.2 we can

see that the error increases to 21% representing a value outside the margin.

We can also verify that, for instance in 7 and 15 Nacre fries, the error margin is lower in Table 5.2.

This means that before compensation, the count estimate was below the real number of fish. Only in

this situation can the average error in Table 5.2 be lower than in Table 5.1.

It is also important to verify that the cases which we identified as shoaling in Table 5.1, for instance

27 AB/TU adults and 22 Nacre adults, present the same value in both tables. This is due to the fact

that the blobs that represent the shoaling occurred mostly at the bottom of the tank where no reflections
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are detected. Moreover, since blobs that results from shoaling present, generally, very distinct shape

characteristics among each other, the first condition in Hu moments comparison (shape features in the

first orthogonal invariant) is not verified leading to a situation where reflections can not be identified.

5.3 Algorithm Time Performance

In this section we present examples of execution time of the algorithm in videos with different quantities

of zebrafish. It is possible to find those values in Table 5.3 where times for adults, Table 5.3 a) and fries,

Table 5.3 b), are represented.

Fish Number Execution Time[s]

5 18,2

7 26,4

10 25,5

12 24,4

15 25,2

17 29,5

20 32,4

22 31,9

25 36,6

27 37,8

30 38,1

32 41,3

35 44,9

a)

Fish Number Execution Time[s]

5 14,1

7 15,2

10 17,4

12 17,7

15 17,9

17 19,5

20 23,3

22 23,7

25 24,7

27 28,6

30 29,3

32 28,1

35 28,7

b)

Table 5.3: Examples of the amount of time (in seconds) to run the algorithm in videos with different
number of Nacre zebrafish adults, a) and fries, b).

It is important to state that this examples were obtained in a single 40-second video, for each number

of fish, using an Intel Core i7-4500U CPU @ 1.8GHz - 2.4GHz processor and 8GB of RAM.

We can easily verify that this offline video processing never takes more than approximately 45 sec-

onds. That value is verified in the (Nacre) adults category, as expected, since adult fish are represented

by bigger blobs which demands more time to process.

It is interesting to compare these values to the ones present in Table 1.1 where manual counting times

for zebrafish fries are presented. Fries’ counting is more time consuming comparing to adults counting
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due to the fish’ size. If we compare the two tables, we can see that in Table 1.1 most of the counting

times exceed or is approximately equal to 30 seconds and the decrease in the number of fish does not

always traduce the decrease in the amount of time. Using the information in both tables, we can, finally,

conclude that the time our algorithm takes to run a 40-second video (1000 frames) is acceptable taking

into consideration the manual counting time for fries. Even though adult fish tend to be easier to count

manually than fries, we can also consider the execution time for adults as acceptable since the longer

our algorithm takes to output an estimate is around 45 seconds for 35 fish (only 15 seconds more than

the maximum obtained for the fries).

Other processing was made using an Atom where a 40-second video took approximately 80 seconds

to be analysed and a Raspberry Pi outputted an estimate after approximately 2 minutes.

Finally, it is important to refer that with this solution there is no need to manipulate the fish, then, less

stress will be induced due to manual handling.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Achievements

After the development of this project, we were able to present a noninvasive technique for zebrafish

count in fish facility tanks. It was possible to develop and deliver the production of a full recording setup

prototype as well as the counting software for fish number estimation, guaranteeing an error margin

≤ 15% of the fish number inside the tank.

Regarding the recording prototype, we were able to produce a solution that allows the recording

of videos always at the same conditions (for instance constant luminosity and distance to the camera)

which is very important to guarantee the repeatability of the process.

We were able to implement computer vision techniques and mathematical tools for mirroring compen-

sation during frames analysis, in the algorithm developed in this project, in order to output an estimate

of the number of fish in a tank. At a first stage of this project, including an optical flow technique in

the algorithm was considered. However, after realizing that fish are not detected when their motion is

low and the fact that optical flow implicates more calculations for each frame and, consequently, more

processing time, we decided to drop this idea. Hence, since the algorithm has in its base the counting

of blobs resulting from background subtraction, information regarding the average area that one fish, for

the different categories, represented in 7500 frames was collected. Using this information as a refer-

ence, we were able to build area intervals for different fish quantities and use that area to develop a fish

overlapping compensation method. For the two different phenotypes, Nacre and AB/TU zebrafish reflect

light differently since the latter are physically darker than the first which lead to the usage of different

parameters for blob overlapping compensation.

Regarding performance, the algorithm demonstrated very good results particularly in fish fries cat-

egories, where the average error was always in the acceptable margin defined at the beginning of the

project and the values for the variances of the error in the different video samples were very low.

In some cases, particularly in videos with adult fish, shoaling occurred and affected significantly the

algorithm performance. In fact, the cases where higher errors were verified correspond to samples

where shoaling occurred during almost the entire video sample or partial shoaling could be observed in
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a large number of frames. Due to the significant difference in size between fries and adults, overlapping,

thus shoaling, tend to occur more often in adult fish population. As a matter of fact, all the results

above the error margin were verified in the adults category. Nevertheless, we could conclude that in

cases where shoaling does not occur, this algorithm does also demonstrate acceptable results for adult

zebrafish.

After analysis of graphs such as in Figure 5.3, we could observe that after a few hundreds of frames

the counting estimate was already inside the acceptable error margin which indicates that we may not

need 1000 frames (40 seconds) to output an acceptable estimate.

Finally, despite the extra time that providing and estimate would take, we could also conclude that

it is possible to use a Single-Board Computer (SBC) with an external USB camera (with at least HD

quality) to analyse videos online, i.e, running the algorithm in real time.

6.2 Future Work

Considering an approach with only one camera as in our project and since this algorithm does already

identify shoaling behaviour, frames where shoaling occurred could be skipped and not used in fish

estimation. In this way we would expect to have lower error since partial shoaling and shoaling would

not affect the counting. However, the disadvantage of this process would be the extra waiting time until

we had enough frames without shoaling to provide an acceptable estimate.

Another relevant information that could be used to reduce the error in adults counts is previous

counting records. Since at this Fish Facility zebrafish are not generally added to tanks as time passes,

we could take advantage of the good results obtained in fries categories and use the counting information

obtained after the first 30 days (fries) to limit the maximum number of fish that are likely to be in the tank

after that time (90 days, adults). However, this would be useful to obtain an upper limit but would not,

obviously, solve the shoaling issue.

This algorithm could also be implemented with two cameras: one as used in this project, and another

recording on top of the tank. In this way, we could use the shoaling behaviour identification and the

frame obtained from the top camera to give more accurate counting because we would have information

regarding the depth of the shoal.

Another interesting and useful approach would be to use background subtraction with features de-

tection and extraction algorithms to identify, in each tank:

• how many males or females exist

• in tanks with more than one phenotype understand how many fish exist

• study the relationship between the biomass in each tank (which would implicate fish weighing) and

the average blob areas of fish in videos.

It would also be extremely useful to:

• design an implementation of the algorithm using multithreading techniques to reduce execution

times in devices such as the Raspberry Pi
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• measure the average time in adult zebrafish manual counting

• perform experiences in order to evaluate the manual error counting

• perform an in depth study to evaluate, quantify and compare the stress caused to fish during

manual counting and automatic counting.
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Appendix A

Fish Counting - Extra Tables and

Graphs
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Fish Number V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 Average Error Average Error [%]

5 1 0 1 1 0 1 1 1 2 0 1 1 1 0 0 0 0 1 1 1 0,7 14

7 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 2 1 0 0,85 12

10 1 1 1 2 1 1 2 2 1 2 2 1 1 2 2 1 1 2 2 2 1,5 15

12 0 1 1 1 0 1 1 0 1 0 2 1 0 2 0 0 1 1 1 1 0,75 6

15 1 2 1 2 1 1 1 0 1 1 2 1 1 1 0 2 1 2 2 1 1,2 8

17 1 2 1 1 1 1 0 1 1 1 0 2 2 1 0 0 1 1 1 1 0,95 6

20 2 2 2 2 2 2 3 2 2 2 1 2 2 2 3 3 3 2 2 2 2,15 11

22 1 0 0 1 1 1 2 1 2 1 1 0 0 0 0 0 1 0 0 1 0,65 3

25 1 0 2 1 1 0 1 1 2 1 1 2 1 2 0 1 0 0 1 2 1 4

27 2 2 1 1 1 2 2 1 2 2 1 2 1 1 1 1 1 2 1 1 1,4 5

30 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0,25 1

32 3 3 2 2 3 3 4 2 1 4 3 4 3 2 0 2 2 2 3 2 2,5 8

35 3 0 2 2 2 2 1 3 2 0 0 0 1 0 0 3 2 1 2 3 1,45 4

Table A.1: Absolute error in each of the 20 video samples and average counting error for every school of fish in Nacre fries category, where red represents
average error above 15% of the real fish value and green the opposite.
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Fish Number Variance Standard Deviation

5 0,01 0,09

7 0,04 0,19

10 0,03 0,16

12 0,03 0,18

15 0,004 0,06

17 0,0003 0,02

20 0,002 0,05

22 0,01 0,11

25 0,05 0,22

27 0,03 0,16

30 0,01 0,08

32 0,03 0,16

35 0,24 0,49

Table A.2: Variance and standard deviation in 20 video samples for every school of fish in Nacre fries category.
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Fish Number V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 Average Error Average Error[%]

5 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0,2 4

7 1 0 1 1 1 1 1 2 1 1 0 1 1 1 0 1 2 0 1 1 0,9 13

10 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0,65 7

12 2 2 1 1 1 2 1 1 2 1 1 1 0 1 1 2 1 1 2 1 1,25 10

15 0 0 2 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0,55 4

17 2 2 2 2 2 2 1 2 2 3 1 1 2 1 1 0 1 1 0 2 1,5 9

20 0 2 3 3 1 3 1 3 3 0 0 1 1 0 0 0 1 2 2 1 1,35 7

22 3 3 2 2 3 3 2 1 2 1 4 2 1 1 1 2 2 1 2 2 2 9

25 1 0 0 2 1 0 0 1 2 1 1 1 1 1 2 0 2 0 0 2 0,9 4

27 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0,75 3

Table A.3: Absolute error in each of the 20 video samples and average counting error for every school of fish in AB/TU fries category, where red represents
average error above 15% of the real fish value and green the opposite.
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Fish Number Variance Standard Deviation

5 0,03 0,18

7 0,00 0,03

10 0,03 0,17

12 0,03 0,18

15 0,03 0,16

17 0,03 0,16

20 0,10 0,31

22 0,05 0,22

25 0,06 0,25

27 0,03 0,18

Table A.4: Variance and standard deviation in 20 video samples for every school of fish in AB/TU fries category.
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Fish Number V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 Average Error Average Error[%]

5 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1,05 21

7 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0,9 13

10 1 1 1 0 3 2 2 0 2 3 1 3 4 2 1 2 1 3 1 3 1,8 18

12 0 3 2 0 3 0 0 2 1 4 1 1 1 2 1 0 0 4 0 4 1,45 12

15 4 7 4 4 4 5 2 7 2 1 5 4 2 5 5 2 7 4 7 6 4,35 29

17 1 2 3 0 1 3 2 0 0 0 1 4 1 0 0 0 0 1 1 1 1,05 6

20 2 1 1 3 2 3 3 0 3 0 6 1 4 1 3 0 1 1 2 0 1,85 9

22 9 2 6 7 6 6 1 1 9 8 2 2 1 2 8 3 6 0 8 2 4,45 20

25 2 0 0 4 2 3 0 2 5 4 1 3 5 4 2 1 1 0 1 3 2,15 9

27 3 2 4 4 4 3 5 3 4 0 2 1 4 2 3 1 3 3 4 5 3 11

30 2 1 0 2 1 1 3 3 1 2 2 3 2 2 2 4 2 1 4 1 1,95 7

32 2 1 0 1 0 0 1 3 2 0 0 1 0 2 0 1 1 3 1 1 1 3

35 2 0 2 0 4 2 3 1 2 1 4 1 2 1 1 0 1 1 2 1 1,55 4

Table A.5: Absolute error in each of the 20 video samples and average counting error for every school of fish in Nacre adults category, where red represents
average error above 15% of the real fish value and green the opposite.

54



Fish Number Variance Standard Deviation

5 0,00 0,02

7 0,00 0,03

10 0,10 0,32

12 0,43 0,66

15 0,14 0,38

17 0,00 0,02

20 0,17 0,42

22 1,34 1,16

25 0,04 0,19

27 0,20 0,45

30 0,05 0,21

32 0,05 0,22

35 0,03 0,16

Table A.6: Variance and standard deviation in 20 video samples for every school of fish in Nacre adults category.
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Fish Number V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 Average Error Average Error[%]

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 1 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 1 0 0,4 6

10 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0,5 5

12 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0,3 3

15 1 2 2 1 2 1 2 1 1 2 2 2 1 1 1 2 2 1 1 0 1,4 9

17 2 3 3 2 1 2 2 2 2 2 2 2 2 2 1 3 2 1 1 1 1,9 11

20 4 3 2 3 2 3 2 2 2 3 1 4 4 5 2 2 2 2 4 4 2,8 14

22 0 2 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0 1 0,75 3

25 0 4 2 0 2 0 1 2 0 2 1 0 2 2 1 1 0 1 1 2 1,2 5

27 4 8 6 8 9 8 9 6 9 5 9 9 5 1 8 1 8 9 4 3 6,45 24

30 2 5 3 3 5 4 8 5 4 4 7 1 5 3 7 4 2 9 4 7 4,6 15

32 10 3 2 2 1 3 2 11 9 8 2 3 3 3 2 2 3 3 3 2 3,85 12

35 10 12 11 12 7 8 10 12 10 8 10 10 10 10 12 11 11 11 9 11 10,25 29

Table A.7: Absolute error in each of the 20 video samples and average counting error for every school of fish in AB/TU adults category, where red represents
average error above 15% of the real fish value and green the opposite.
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Fish Number Variance Standard Deviation

5 0,00 0,00

7 0,03 0,16

10 0,03 0,16

12 0,01 0,09

15 0,11 0,33

17 0,04 0,20

20 0,14 0,38

22 0,03 0,18

25 0,10 0,32

27 0,90 0,95

30 0,63 0,79

32 2,06 1,44

35 0,03 0,18

Table A.8: Variance and standard deviation in 20 video samples for every school of fish in AB/TU adults category.
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Figure A.1: Plotted standard deviation for Table A.2.

Figure A.2: Plotted standard deviation for Table A.4.
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Figure A.3: Plotted standard deviation for Table A.6.

Figure A.4: Plotted standard deviation for Table A.8.
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