

1

A SOFTWARE PACKAGE TO SUPPORT MISSION ANALYSIS AND ORBITAL

MECHANICS CALCULATIONS

Jorge Tiago Melo Barbosa da Silva e Vila

Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal, Email: jorge.vila@tecnico.ulisboa.pt

ABSTRACT

The objective of this work was to develop a free and open-source software to support the tasks of space mission analysis

and orbital mechanics calculations. It is comprised of two modules – a trajectory propagator and a three-dimensional

Solar System simulator. The software was developed for Windows 7, and programmed in C++11. The distribution is

made through a website, under the EUPL v.1.1.

The propagator uses the initial conditions provided by the user either through the graphical interface, or XML input files,

and propagates the trajectory aided by a Runge-Kutta-Fehlberg 7(8) numerical integrator. The propagator uses a list of

force systems, based on several central bodies, and selects the most adequate during the computation. The force model

includes the central body’s gravity field and the perturbation introduced by its 𝐽2 coefficient, third bodies’ gravity fields,

and the solar radiation pressure. The propagator generates plain-text and NASA SPK output files.

The simulator is a three-dimensional rendering of the Solar system and allows the user to visualize the trajectory and

attitude of celestial bodies and spacecraft. The 3D models of the Sun and planets, with day and night textures, atmosphere,

clouds, and planetary rings, are procedurally generated. It is also possible to load 3D models for more complex geometries.

A manual camera controlled by the keyboard and mouse was implemented, along with a system of automatic cameras

parametrized by the user. The simulator is also capable of exporting movies.

1. INTRODUCTION

The simulation and analysis of trajectories is required

throughout the entire lifecycle of every space mission. It

requires precise ephemerides, reliable physical models,

and robust propagation algorithms. Computers have

aided this process since the beginning of the space era

and their increasing capabilities now allow ordinary

household computers to be used for space mission

analysis and design. The birth of three-dimensional

computer graphics and its ensuing staggering

improvement, largely driven by the videogame industry,

contributed to the creation of brand new visualization

tools for all areas of science. Combining accurate

trajectory propagation and visualization capabilities

within the same software suite provides mission

designers a fully-featured solution, greatly supporting

their work.

The objective of this work was to develop a free and

open-source (FOSS) software package, comprising a

trajectory propagator module for data generation and a

three-dimensional simulator module for enhanced data

analysis The trajectory propagator module is able to

accurately calculate the trajectory of a spacecraft within

the Solar System, whereas the simulation module

displays it in a three-dimensional visually realistic

environment. Despite being integrated, the modules

retain the ability to be used on their own and in

conjunction with existing industry tools. Additionally,

one of the main design goals was the make the software

intuitive and usable by someone with the minimal

amount of training.

2. SOFTWARE DESIGN

The software was named SimOrbit, since it is, in its

essence, an orbital simulator, and SimOrbit is not a

registered trademark.

The chosen programming language was C++ as defined

in its most recent international standard ISO/IEC

14882:2011 [1]. This choice took into account several

factors, including the stability and maturity of the

programming language, familiarity with the standard,

and availability of third party components.

Several third party components were integrated in the

software in order to increase its functionality and reduce

the development time. Microsoft Direct3D was the

selected graphics application programming interface

(API). It is responsible for managing the graphics

hardware, and rendering the three-dimensional (3D)

environment, and the graphical user interface (GUI).

NASA’s Navigation and Ancillary Information Facility

(NAIF) SPICE Toolkit [2] is the source of spacecraft and

planetary constants, ephemerides, and orientation data.

The MPFR [3] and the Multiple Precision Integers and

Rationals (MPIR) [4] libraries are used for arbitrary

precision support and also to decrease the computation

time by using CPU-specific optimizations. The Open

Asset Import Library (Assimp) [5] powers the 3D model

loader which enables the simulator to use a wide variety

to 3D model formats.

2

2.1. Architecture

The software is comprised of a main application,

SimOrbit, and two dynamic link libraries (DLL),

SimOrbit Library and SPICE C++, which interact as

shown in Figure 2.1.

Figure 2.1 – Very high level layer diagram of the

software architecture showing the relations between

components (third party components displayed in

orange).

SimOrbit is a modular application, and includes three

modules – Main Menu, Propagator, and Simulator. The

SimOrbit Library is part of a framework which

harmonizes and simplifies the development of modules.

The framework comprises a set of headers and the library

itself. The SPICE C++ is a thread-safe C++ wrapper for

the SPICE Toolkit which takes advantage of C++

features, such as function overloading, exceptions,

vectors and strings to interface with the SPICE Toolkit

routines

2.2. Documentation

The C++ code was documented using XML

documentation comments. These comments, present in

file, class, and method headers detail their purpose, input

and output, possible exceptions thrown, and academic

source, where applicable. Additional comments are

present throughout key algorithms explaining their flow.

The XML documentation comments served as input in

the creation of Portable Document Format (PDF) and

HyperText Markup Language (HTML) reference

manuals. Additionally, a user manual was written,

describing the general operation of the software. The user

manual also includes the definitions used throughout the

software, such as frames of reference and units of

measurement.

2.3. Licensing and Distribution

Since SimOrbit is a free and open-source software it was

necessary to select a license that ensured the original

authors retained full ownership, and that any derivative

works would be distributed in a similar fashion. The

chosen license was the European Union Public Licence

(EUPL) v.1.1 [6]. The software and source code will be

distributed via a website under the domain “simorbit.eu”.

The website also details the software’s features, along

with screenshots, and provides a means to contact the

authors.

3. PROPAGATOR MODULE

The first implemented component was the trajectory

propagator. This component, which has the sole purpose

of data generation, is be able to calculate the trajectory of

a single spacecraft within the Solar System. Trajectory

propagation is done by integrating the equations that

describe the motion of the spacecraft, starting from a set

initial conditions. This required the definition of a force

model, and the implementation of a numerical integrator.

3.1. Force Model

The force model takes into account the fundamental

forces that influence the trajectory of a spacecraft

travelling through the Solar system [7], and the effect of

any engine the spacecraft may be equipped with.

A brief study of space mission scenarios (i.e. use cases)

was conducted in order to determine which fundamental

forces and engine types needed to be included for

accurate propagation of a trajectory. Following the

study’s conclusions, the central body gravity field, and its

𝐽2 perturbation, the gravity fields of third bodies, and the

solar radiation pressure were the implemented

fundamental forces. Additionally, the study also

highlighted the necessity of defining a collection of

different force systems, each valid within a region of

space, and having the propagator switch between them

automatically. Furthermore, an engine system was

developed which allows the user to use instantaneous

delta-V or constant acceleration engine inputs.

3.2. Numerical Integrator

To propagate the initial state a numerical integrator with

adequate precision was required. The chosen numerical

method is the Runge-Kutta-Fehlberg 7(8) [3] since it is

mature, widely used, fast, and sufficiently accurate for

the task. Furthermore it has local truncation error

evaluation and self-adjusts the step sized based on it.

There are, however, instances where it is desirable to

have added control of the step size, so the algorithm was

modified to include minimum, maximum, and fixed step

size constraints.

3

The integrator makes use of the MPIR and MPFR

libraries to both take advantage of CPU specific

instruction sets leading to performance increases but also

to give the user a fine-control of the bit-precision. This

grants flexibility to the integrator, allowing for its use in

both time-critical and precision-critical environments.

3.3. Input and Output

The trajectory propagation requires the user to provide a

set of initial conditions, and configure the force model

and numerical integrator. To facilitate the task a tabbed

GUI where the user can directly input values and set

options was implemented, as shown in Figure 3.1.

Figure 3.1 – Screenshot of the propagator module

general tab filled with valid values.

The GUI controls allow the user to input data in several

different formats and units of the International System of

Units (SI) and the IAU (2009) System of Astronomical

Constants, where applicable. This prevents the user from

having to perform unit conversions outside of the

software, and possibly making a mistake. The propagator

GUI validates all input values and flags errors as soon as

the affected control loses focus. Hovering the control

with the mouse displays a tooltip indicating what the

error is.

Since a propagator setup can be modified as the mission

definition changes, or may need to be shared between

several people working on the project, the setup can be

stored and loaded using an Extensible Markup Language

(XML) document. Additionally, for Earth satellites it is

also possible to load Two-Line Element (TLE) sets that

describe the initial conditions.

To ensure maximum compatibility with third party tools,

the propagator is able to simultaneously generate two

output files – a binary NASA SPK, which is the de facto

standard for planetary and spacecraft ephemerides, and a

plain-text file.

3.4. Operation

The trajectory propagator is the only multi-threaded

component in the SimOrbit project. The worker thread

features a controller that manages the output file writers,

numerical integrator, and force model, and outputs

progress information to the GUI, as shown in Figure 3.2.

Graphical User

Interface

Trajectory Propagator

Controller

Numerical Integrator Force Model

Force Systems

Database

Engine

SPICE C++

Output File Writers

Figure 3.2 – Thread communication and information

flow diagram during the operation of the propagator

module.

4. SIMULATOR MODULE

The second implemented component, the simulator

module, is a three-dimensional realistic rendering of the

Solar System. This component’s primary purpose is

spacecraft trajectory, position, and attitude visualization.

Most mission analysis and design tools that include 3D

visualization features only provide very basic renderings

of the Solar System bodies and spacecraft of interest.

Although this is often enough for a preliminary trajectory

analysis, it is insufficient to fully understand the scene.

To ensure the success of a space mission it is necessary

to know if a spacecraft’s solar panels are illuminated, if

its instruments and antennas are pointed correctly, if a

feature being photographed is illuminated, if a lander is

in view, if there are objects in its path that were not taken

into account while propagating the trajectory, etc… For

all these purposes it is necessary to have a rendering of

the 3D environment that strives to match the reality.

The main development goal for the simulator module was

to maximize visual realism. In order to achieve this goal,

it is able to:

 Generate or load the geometry for simple objects (i.e.

ellipsoidal celestial bodies)

 Load 3D models for more complex objects, such as

spacecraft, asteroids, and comets;

 Place the models on their correct positions and

attitudes;

 Render the scene using physically-based shading

techniques.

4

4.1. Generation and Rendering of Celestial Bodies

To generate the geometry for ellipsoidal celestial bodies

a procedural generator was developed. This generator is

able to generate the ellipsoidal shape of the body,

including features such as atmosphere, clouds, and

planetary rings, using a combination of information from

the NAIF kernels and an XML configuration file. Figure

4.1 shows planet Earth generated and rendered by

SimOrbit.

Figure 4.1 – Screenshot of the Earth as rendered by

SimOrbit.

The planetary shader uses physically-based shading

techniques, which are algorithms that take into account

the physical properties of the materials and the lighting

in order to render images that resemble reality.

The lighting of a planet is based on the Kelemen-

Szirmay-Kalos bidirectional reflectance distribution

function (BRDF) model [8]. This model closely

approximates the Cook-Torrance model [9] but is

significantly cheaper to evaluate. The classic Blinn-

Phong model [10] was also tested, but proved too glossy

and unrealistic.

The colour of the planet’s surface is a combination of

diffuse and emissive colours and textures. The diffuse

texture stores the daylight representation of the planet’s

surface, whereas the emissive texture provides the night-

time colours, such as city lights or auroras. The user can

also provide a specular map, which controls the specular

strength (i.e. the reflectivity of the surface), and a tangent

space normal map which stores the per-pixel normal in

order to give the illusion of terrain height.

When light travels through the atmosphere of a planet it

is scattered by its particles, a phenomenon known as

atmospheric scattering. It is of an extreme importance

towards a photorealistic rendering of a planet. The

planetary shader uses the physically based atmospheric

scattering algorithm proposed by Sean O’Neal [11] to

calculate the Rayleigh and Mie scattering components

and render the atmosphere. Figure 4.2 shows Earth and

Mars atmospheres as rendered by SimOrbit.

Figure 4.2 – Atmospheric scattering examples. Sunrise

over the Iberian Peninsula on Earth (left); sunset over

Valles Marineris on Mars (right).

The software also supports rendering clouds. Cloud

height information and a texture map containing their

transparency can be provided. The shader then combines

this information with the atmospheric scattering

algorithm and renders photorealistic clouds. However, it

does not render the cloud’s surface shadow, which was

found to be of no consequence.

Finally, the procedural planet generator and shader also

support planetary rings. These are a flat dual-sided

anullus centred on the planet, laying on its equatorial

plane. The inner and outer ring radius are provided by the

user, along with a texture map storing both their colour

and transparency. The rings’ illumination presents a very

complex problem, since these are illuminated by

backscattered from the planet and the neighbouring ring

particles, and forward scattered light. A simple model

was devised attempting to match Saturn’s rings

renderings to the photos from the Voyager and Cassini

missions. The model is not physically accurate but

provides acceptable results.

4.2. Loading and Rendering of 3D Models

For more complex geometries, such as spacecraft and

some asteroids and comets, it is necessary to load 3D

models containing information regarding their geometry

and materials. Since 3D models come in a variety of

formats and it is not trivial to convert between them a

model loader supporting most common interchange

formats was included. The loader is powered by the

Assimp library.

5

Two ways were implemented for associating a 3D model

with an object – static and dynamic. The static

associations are listed in an XML file, alternatively the

user can also load a 3D model dynamically via the GUI.

Additionally, since there is no guarantee the loaded

models are correctly scaled, the software requires a

scaling factor to be entered by the user (e.g. on an asteroid

model units may represent kilometres, whereas on a

spacecraft model they can represent inches). This factor

is defined as the constant that converts model units to

kilometres, and by omission it has the value of 1.

The models shader is much simpler than the planetary

shader, and is based on the Blin-Phong model [10], which

produces fairly accurate results, as shown in Figure 4.3

for NASA’s Cassini spacecraft model [12], despite not

being physically-based.

Figure 4.3 – Screenshot of the Cassini spacecraft model

as rendered by SimOrbit.

4.3. Auxiliary Features

Besides rendering a realistic scene, it is also necessary to

draw auxiliary features for scientific purposes. Firstly, to

analyse the evolution of the position of a spacecraft as it

travels through the Solar System it is necessary to draw

its trajectory. Secondly, to monitor its attitude it is

necessary to render local frames of reference. Lastly, to

know the position of distant objects whose apparent size

is too small to discern, markers need to be placed, along

with labels with the object’s name.

The most useful auxiliary feature that the module renders

is a trajectory. It is also the most complex, and several

problems arise while trying to generate and render them.

Firstly, the graphics API can only draw line segments,

meaning all trajectories must be reduced to a set of points.

These are retrieved using an iterative method that divides

each coverage window (i.e. contiguous time span for

which ephemeris are known) in segments until a

tolerance condition is met, or the maximum number of

trajectory points is reached. Since this is a costly process,

involving tens of thousands of ephemeris queries, it is not

possible to do it in real time while rendering.

Furthermore, the loaded trajectory cannot be adjusted

when changing reference body, meaning it is always

drawn with reference to the Sun.

The frames of reference (Figure 4.4) are invaluable to

assess the orientation of an object, for example to

determine its relative orientation to another, or to have a

general idea of its flight path and lighting angles. They

are composed by three perpendicular vectors, labelled X,

Y, and Z, according the orientation of the primary axis of

the selected frame.

Figure 4.4 – Deimos BODY frame of reference and

label.

Since the size of the bodies in the Solar System is

extremely small when compared to the distance between

bodies, it becomes necessary to place markers in the

position of distant bodies in order to have an idea of their

position. The software accomplishes this by placing four-

point star-shaped markers with the name of their

associated body in the positions of distant bodies, as

shown in Figure 4.5.

Figure 4.5 – Sun, Mercury, and Venus markers and

labels.

All the auxiliary features are controllable on an object

basis and can be turned on and off via GUI. Additionally,

they are rendered with the light positioned at the camera,

thus ensuring they are always lit, and in chartreuse colour

since it is widely regarded as the most visible colour.

6

4.4. Cameras

Controlling the point-of-view of the simulation is

essential to evaluate all aspects of a scene. Often it is

necessary to have a camera near a spacecraft, in other

occasions it is ideal to have it on the surface of a planet,

or even the top or an orbital plane. To allow the user full

control over the camera, two control modes are

implemented – manual and automatic.

The manual control, provides a camera with five degrees

of freedom (three-dimensional translation, pitch, and

yaw) allowing the user to freely explore the scene. This

camera is controlled in real time by using the keyboard

for translation and the mouse for rotation as shown in

Figure 4.6. The roll movement was restricted since it

would require either a third degree of freedom on the

mouse, or adding rotation controls to the keyboard. The

camera vertical direction was defined as the vertical

direction of the J2000 frame of reference.

A

Left

S

Backward

D

Right

Q

Up

W

Forward

E

Down

Pitch

Up

Pitch

Down

Yaw

Right

Yaw

Left

Figure 4.6 – Manual camera keyboard and mouse

controls.

The automatic mode is a “must have” for presentations

and directing high-quality movies. In this mode the point-

of-view is controlled automatically throughout the

simulation, based on a list of parametrized cameras. The

cameras can be added, edited, and deleted via the GUI or

loaded from one or more XML files. An automatic

camera is defined by:

 Time span – The time interval in which the camera

should be active, defined by a start epoch and

optionally a stop epoch or duration;

 Time scale – The time that passes within the

simulation for every second;

 Eye position – The position of the camera;

 Look at position – The position the camera is looking

at;

 Up direction – Optional, the direction of the camera

vertical.

To facilitate the parametrization of the camera the

positions and direction are defined by an offset or

direction from a specific reference body in one of the

implemented frames of reference.

The software does not require the cameras time span to

be contiguous or non-intersecting. Instead, it selects the

camera based on which cameras are valid for the current

epoch and gives precedence to the one that has a later

start epoch. If no camera is defined it stops updating the

camera parameters until another valid camera is found.

4.5. Movie Making

Since the simulator module only renderers the scene on

the screen, the only possible way of saving its output is

capturing a movie. Hence, a Windows Media Video

(WMV) movie maker was implemented. This format was

selected since it is guaranteed to be compatible with the

operating systems the software is compatible with. The

movie maker captures the entire window contents, with

the exception of the GUI as it serves no purpose in a

movie.

In order to capture a movie the user first needs to

configure it, by selecting the output filename, the

resolution, and the quality level. The resolution can be set

to one of three options – Native (the current window

resolution), HD720 (1280x720), or HD1080

(1920x1080). The quality level is a discrete value 1 to

100, where 1 represents the lowest possible quality and

100 the highest. After the output is configured, capturing

can be started and stopped by pressing the appropriate

button on the GUI, or the C key on the keyboard.

4.6. GUI and Simulation Control

To enable the user to control the simulation a GUI was

included. The interface was designed to be as unobtrusive

as possible, and consists of a semi-transparent, auto-

hiding dialog on the bottom of the window, with tabs to

control the scene, camera, and movie-making.

The scene tab allows the user to control all the objects

being rendered. The user can load kernels containing

ephemerides and orientation information for objects of

interest, and load 3D models as desired. Additionally, for

each object, it is possible to configure and toggle the

display of auxiliary features. Time control features,

namely the ability to jump to a specific date, and to slow

down or fast forward the simulation were also included.

The camera tab is used to toggle between the manual and

automatic control modes. It also lists the loaded

automatic cameras, and provides means to add, edit, and

delete them. Additionally, it shows the diagram of the

manual camera keyboard and mouse controls.

Finally, the movie-making tab allows the user to

configure the movie writer output filename, quality, and

resolution and initiate or finish the capture of a movie.

7

5. TRAJECTORY PROPAGATOR

VALIDATION

In order to be able to use the trajectory propagator in an

operational environment it is necessary to perform an

extensive validation process to ensure there are no errors

which can compromise a space mission. The validation

presented in this section is preliminary, and its purpose is

only to confirm that the force model is capable of

accurately calculating simple trajectories for which there

are analytical solutions.

5.1. Keplerian Orbit

The most basic test of the trajectory propagator consists

in verifying the orbital stability of a Keplerian orbit. To

achieve this all perturbations were disabled, leaving only

the spherical gravity field of the central body. A set of

orbital elements, describing an Earth orbit, was chosen,

and the trajectory was propagated for a duration of 100

days with a fixed time step of 10 minutes. The orbital

elements residuals were calculated and plotted for each

data point. Their mean and standard deviation were

calculated (Table 5.1), and their normal probability plots

were generated. The analysis reveals minor, well-

behaved, normally distributed residuals for all elements

with the exception of the mean anomaly at epoch (𝑀0).
This suggests the orbit is stable with near-constant orbital

parameters, as expected, but the mean motion of the

spacecraft is higher than that of the analytical solution.

Nevertheless, the accumulated error of 𝑀0 over the

course of the 100 days is of only 9.2606 × 10−3°, well

within an acceptable tolerance.

Table 5.1 – Statistical analysis of the residuals of the

classical orbital elements during a 100 days propagation

of a Keplerian orbit.

Element Mean (𝝁) Standard

Deviation (𝝈)

Semi-major axis -3.0337e-03 7.2842e-03

Eccentricity -4.5622e-08 1.4529e-07

Inclination 2.5361e-07 1.3024e-06

Longitude of

ascending node

2.2247e-06 4.7369e-06

Argument of

periapsis

9.1730e-07 1.6502e-04

Mean anomaly

at epoch

4.6052e-03 2.6692e-03

5.2. J₂ Perturbation

For a satellite orbiting a central body, the 𝐽2 perturbation

causes a variation of the longitude of ascending node (Ω)

and the argument of periapsis (𝜔). Two types of orbits

were used to validate the 𝐽2 contribution – a sun-

synchronous orbit, and a Molniya orbit. Sun-synchronous

satellites orbit the Earth in a way that they appear to

always orbit the same position from the perspective of the

Sun, i.e. the orbital plane rotates at the rate of 0.9856° ∙
day−1. The Molniya satellites are placed in highly

elliptical orbits with an inclination near 63.4°. At this

inclination the argument of periapsis is not perturbed by

the 𝐽2 coefficient of the Earth’s gravitational field, thus

remaining constant.

The sun-synchronous satellite AQUA was selected to test

the variation of the longitude of ascending node. The

trajectory was propagated for a duration of 100 days with

a fixed time step of 10 minutes, and the force system was

configured to only include the Earth’s gravity field. The

obtained solution diverges from the analytical one as it

integrates errors over time, however these were

considered to be within an acceptable tolerance. The

numerical solution has ∆Ω = 0.9681°𝑑𝑎𝑦−1, whereas

the analytical solution has a ∆Ω = 0.9915°𝑑𝑎𝑦−1. The

coefficient of correlation between the solutions is 𝑅 = 1.

The MOLNIYA 1-81 satellite was selected to test the

variation of the argument of periapsis, since from all the

operational Molniya satellites, its inclination was the one

closest to 63.4°. The trajectory was propagated exactly

as before. Here the error increases linearly over time, and

the numerical solution reveals has ∆ω = 0.0007°𝑑𝑎𝑦−1,

whereas the analytical solution has a ∆ω =
0.0013°𝑑𝑎𝑦−1. The coefficient of correlation between

the two solutions is 𝑅 = 0.9487.

Taking into account the results obtained for both the

AQUA and the MOLNIYA 1-81 satellites, the 𝐽2

perturbation implementation was considered valid.

5.3. Third Bodies and Solar Radiation Pressure

Testing the trajectory perturbations introduced by third

bodies and the solar radiation pressure is a more complex

problem, for which no analytical solution exists. Ideally,

the software should be tested against previously validated

software, unfortunately due to time constraints that was

not possible. Nevertheless, it was necessary to verify that

at least the influence of third-bodies was being taken into

account and reasonably calculated.

To verify the influence of third-bodies a trans-lunar

trajectory was propagated. This is a type of free return

trajectory which takes a spacecraft from a circular

parking orbit around the Earth, around the far side of the

Moon, and back to Earth without requiring any

propulsion, except that required to initially set the

trajectory. The Apollo 11 mission trajectory, for which

an abundance of information is available, was ideal for

testing.

8

The spacecraft was considered to have a mass of 𝑚 =
43866𝑘𝑔, corresponding to the mass of the Command

and Service Module (CSM) and the mass of the Lunar

Module (LM) combined, a projected area of 𝐴 = 27𝑚2

and a reflectivity of 𝜀 = 0.5. The numerical integrator

was set up with an initial time step of 1 minute with lower

and upper bounds of 1 second and 1 hour, respectively,

and truncation error tolerances of 𝑡𝑜𝑙𝑝𝑜𝑠 = 1 × 10−6𝑚

and 𝑡𝑜𝑙𝑣𝑒𝑙 = 1 × 10−6𝑚 ∙ 𝑠−1. The trajectory was

propagated for a duration of duration of 5.8 days, with all

Earth’s force system perturbations enabled.

The propagated trajectory, shown in Figure 5.1, is as

expected. The spacecraft leaves Earth, performs a swing-

by at the Moon, and returns. Despite the lack of

numerical validation of the trajectory, it is enough to

verify that the third-body perturbation due to the presence

of the Moon is being accurately taken into account.

Figure 5.1 – Apollo 11 trans-lunar trajectory as

propagated by SimOrbit.

5.4. Engine (Delta-V)

The engine delta-V inputs were tested by propagating a

Hohmann transfer, which is a manoeuvre that takes a

spacecraft from one circular orbit to another, on the same

plane, using two delta-V impulses.

It was decided to use the engine to transfer a satellite from

Low Earth Orbit (LEO) to a Geosynchronous Equatorial

Orbit (GEO), which has an altitude of 35,786km above

the equator. The engine was configured with the two

delta-V inputs, obtained analytically, and the trajectory

was propagated for the duration of 3 days, starting 1 day

before the first delta-V. The time step was fixed to 10

minutes. The resulting trajectory is represented on Figure

5.2, and is exactly what was expected.

The semi-major axis error is 𝜀𝑎 = 1 × 10−4𝑘𝑚, and the

eccentricity error is 𝜀𝑒 = −1.4330 × 10−7, both

considered to be well within an acceptable tolerance, thus

validating the engine’s delta-V implementation.

Figure 5.2 – Hohmann transfer orbit from Low Earth

Orbit (LEO) to Geosynchronous Equatorial Orbit

(GEO).

6. PERFORMANCE

The SimOrbit performance was assessed on an Intel Core

i7-5600U CPU @ 2.60GHz, with 8GB RAM, and an

integrated Intel HD Graphics 5500 graphics processor,

running the Windows 7 Professional 64-bit operating

system. The display resolution was 2560x1440 pixel. The

executable used for testing was built with full program

optimization and for a 64-bit system.

6.1. Propagator

To assess the propagator module performance, a

trajectory propagation of an Earth satellite, with a

duration of one sidereal year, was used. The force system

was configured to account for all perturbations (i.e. Earth

𝐽2 coefficient, Moon and Sun as third bodies, and solar

radiation pressure). Additionally, a very low-thrust

constant acceleration engine input was added to be able

to measure the performance of the engine. The initial

time step was set to 10 minutes and was left unbounded.

Firstly, the results of a CPU sampling were analysed. One

“hot path” was found. The propagator worker thread

function was responsible for 96.9% of the CPU usage,

with 73.0% corresponding to the RKF7(8) integrator and

22.6% to the dynamic force system change algorithm.

Looking inside the integrator it was found that 64.3% of

the total CPU usage came from that force model

implementation.

To gain a better understanding of what force model

components were more expensive to compute, several

performance counters, based on the High Precision Event

Timer (HPET), were added to the force model code. The

implemented counters measured how long it took to

execute the code that calculates each component of the

acceleration. Analysing the performance counter results,

shown in Table 6.1, it is obvious the most time

consuming computations are the central body 𝐽2 and solar

radiation pressure perturbations.

9

Table 6.1 – Force model performance counter results.

Performance Counter Computation Time

[s]

Central body GM 4.5101

Central body J₂ 38.6601

Third bodies GM 14.5795

Sun GM 14.1066

Solar radiation pressure 52.8765

Engine 6.7374

Total 133.7283

6.2. Simulator

The simulator module testing focused on measuring the

frames per second (FPS) under different conditions to try

and assess the individual performance of the shaders, and

the influence movie capturing had on graphics

performance. The Direct3D 10 mode was used in the

tests, since it was supported by the graphics processor,

and the FPS was measured using the Visual Studio

Graphics Analyzer.

The first test was run on windowed mode at 1600x900

pixel. A sequence of six automated cameras that focused

on objects being rendered by different types of shaders

were defined. Each camera was set to be active for a total

of 30 seconds. The sequence was ran twice, with native

resolution movie capture off and on. Table 6.2 lists the

measured average FPS values and the influence of movie

capturing.

Table 6.2 – Average FPS measured for different types

of shaders on a 1600x900 pixel window, with native

resolution movie capturing off and on.

Shader Rendering

[FPS]

Capturing

[FPS]

None 319.4 125.4

Sun 97.7 59.6

Planet 247.7 95.7

Planet with atmosphere 109.4 55.8

Rings 226.4 106.7

Model 265.7 100.4

The worst performance was found on the “Sun” (i.e. the

Perlin noise implementation) and the “Planet with

atmosphere” shaders, which is not surprising since both

are computationally expensive algorithms. Nevertheless,

the performance of all shaders is very good. Capturing a

movie at the native resolution caused an average increase

of 6.9ms in the frame rendering time.

Subsequently, full screen mode was tested at the

2560x1440 pixel, commonly known as Quad HD (QHD).

This test was meant to put as much strain as possible on

the graphics processor and determine the lower FPS

limits at which a simulation would run. The camera

sequence and methodology from the previous test were

used, and the results are shown in Table 6.3. As expected,

due to the 2.56 times higher resolution, the FPS are lower

than those of the previous test, although the relative

shader performance remains constant. Movie capture at

this resolution was found to reduce the FPS to very low

values, where camera movement causes noticeable

flicker.

Table 6.3 – Average FPS measured for different types

of shaders on a 2560x1440 pixel screen, with native

resolution movie capturing off and on.

Shader Rendering

[FPS]

Capturing

[FPS]

None 208.7 39.3

Sun 56.2 25.4

Planet 167.9 36.9

Planet with atmosphere 60.4 31.1

Rings 153.4 35.6

Model 175.6 37.2

7. CONCLUSIONS

This work was aimed at developing a free and open-

source software package to support mission analysis and

orbital mechanics calculations. In order to provide an

integrated solution, enabling a user to generate and

analyse data, two components were developed – a

trajectory propagator for data generation, and a 3D

visualization component. The trajectory propagator is

able to generate accurate spacecraft trajectory data based

on a set of initial conditions describing its state (i.e.

position and velocity) at a reference epoch. It generates a

binary SPK and plain text output which can be easily

used by other tools in the mission design and analysis

process. The 3D visualization component produces a

visually realistic rendering of the Solar System and

spacecraft of interest. It also displays auxiliary features

to aid mission analysis and is able to export movies.

Although the developed software conforms to the

specifications, performs adequately, and has been

preliminary validated, it was found to have some flaws.

On the propagator module, a very short constant

acceleration engine input (i.e. with a time span with an

order of magnitude similar or lower than that of the time

step) can be leaped over and ignored by the numerical

integrator. In order to mitigate this problem the software

resets the initial time step at the start of the engine input,

but this was found to be inadequate to solve the issue. A

recommendation was included in the user manual to use

delta-V inputs, instead of constant acceleration, in these

cases. The propagator should also be modified to allow

for the propagation of spacecraft attitude and mass in

addition to the position and velocity. This would greatly

improve the accuracy of the solar radiation pressure

component, and allow for propellant calculations. On the

10

simulator module, loading a spacecraft trajectory is a

time consuming operation, and for very long or complex

trajectories, limited by the maximum number of points, it

does not always produce an accurate representation of the

reality. This issue needs further studying, possibly

creating an algorithm that refines the trajectory

depending on the camera position. Furthermore, also on

the propagator module, the Sun’s corona shader has the

lowest performance of all implemented shaders and is not

physically-based. A study of the corona’s lighting

properties needs to be performed in order to create a fast

physically-based algorithm that improves both the visual

realism and performance of this shader.

The design and development of the software was a

challenging endeavour, as it draws knowledge from

several distinct areas – orbital mechanics, programming,

computer graphics, optics, and media generation. The

work also greatly contributed towards understanding the

difficulties associated with large software projects, and

their planning and time management requirements.

Extensive computer programming knowledge, namely in

the C++11 and High-Level Shading Language (HLSL)

programming languages, was also acquired.

Furthermore, the importance of defining requirements,

establishing standards, and producing appropriate

documentation was learnt.

Overall, the software is considered to successfully fulfil

the proposed objective, allowing a user to accurately

propagate and visualize the trajectory of spacecraft in a

visually realistic environment.

8. REFERENCES

[1] "Information technology – Programming languages

– C++," ISO/IEC Standard 14882:2011, 2011.

[Online].

http://www.iso.org/iso/catalogue_detail.htm?csnum

ber=50372

[2] Charles H. Acton, "Ancillary data services of

NASA's Navigation and Ancillary Information

Facility," Planetary and Space Science, vol. 44, no.

1, pp. 65-70, January 1996. [Online].

http://dx.doi.org/10.1016/0032-0633(95)00107-7

[3] Laurent Fousse, Guillaume Hanrot, Vincent

Lefèvre, Patrick Pélissier, and Paul Zimmermann,

"MPFR: A multiple-precision binary floating-point

library with correct rounding," ACM Trans. Math.

Softw., vol. 33, no. 2, p. Article 13, June 2007.

[Online].

http://dx.doi.org/10.1145/1236463.1236468

[4] MPIR Team. (2014, July) MPIR. [Online].

http://www.mpir.org

[5] Assimp Development Team. (2013) Open Asset

Import Library. [Online].

http://assimp.sourceforge.net

[6] European Commission. (2009, November)

European Union Public Licence - EUPL v.1.1.

[Online]. http://ec.europa.eu/idabc/eupl.html

[7] Oliver Montenbruck and Eberhard Gill, Satellite

Orbits - Models, Methods, and Applications, 1st ed.

Heidelberg, Germany: Springer-Verlag Berlin,

2000.

[8] Csaba Kelemen and László Szirmay-Kalos, "A

Microfacet Based Coupled Specular-Matte BRDF

Model with Importance Sampling," in

EUROGRAPHICS 2001, 2001. [Online].

http://www.fsz.bme.hu/~szirmay/scook.pdf

[9] Robert L. Cook and Kenneth E. Torrance, "A

Reflectance Model for Computer Graphics," ACM

Transactions on Graphics, vol. 1, no. 1, pp. 7-24,

January 1982. [Online].

http:/dx.doi.org/10.1145/357290.357293

[1

0]

James F. Blinn, "Models of light reflection for

computer synthesized pictures," SIGGRAPH

Comput. Graph., vol. 11, no. 2, pp. 192-198, July

1977. [Online].

http://dx.doi.org/10.1145/965141.563893

[1

1]

NVIDIA Corporation, GPU Gems 2: Programming

Techniques for High-Performance Graphics and

General-Purpose Computation, Matt Pharr and

Randima Fernando, Eds. Boston, MA, USA:

Addison-Wesley Professional, 2005. [Online].

http://http.developer.nvidia.com/GPUGems2/gpuge

ms2_frontmatter.html

[1

2]

National Aeronautics and Space Administration.

(2015, May) NASA 3D Resources. [Online].

http://nasa3d.arc.nasa.gov

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
http://dx.doi.org/10.1016/0032-0633(95)00107-7
http://dx.doi.org/10.1145/1236463.1236468
http://www.mpir.org/
http://assimp.sourceforge.net/
http://ec.europa.eu/idabc/eupl.html
http://www.fsz.bme.hu/~szirmay/scook.pdf
http://dx.doi.org/10.1145/357290.357293
http://dx.doi.org/10.1145/965141.563893
http://http.developer.nvidia.com/GPUGems2/gpugems2_frontmatter.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_frontmatter.html
http://nasa3d.arc.nasa.gov/

	1. Introduction
	2. Software Design
	2.1. Architecture
	2.2. Documentation
	2.3. Licensing and Distribution

	3. Propagator Module
	3.1. Force Model
	3.2. Numerical Integrator
	3.3. Input and Output
	3.4. Operation

	4. Simulator Module
	4.1. Generation and Rendering of Celestial Bodies
	4.2. Loading and Rendering of 3D Models
	4.3. Auxiliary Features
	4.4. Cameras
	4.5. Movie Making
	4.6. GUI and Simulation Control

	5. Trajectory Propagator Validation
	5.1. Keplerian Orbit
	5.2. J₂ Perturbation
	5.3. Third Bodies and Solar Radiation Pressure
	5.4. Engine (Delta-V)

	6. Performance
	6.1. Propagator
	6.2. Simulator

	7. Conclusions
	8. References

