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ABSTRACT 

The objective of this work was to develop a free and open-source software to support the tasks of space mission analysis 

and orbital mechanics calculations. It is comprised of two modules – a trajectory propagator and a three-dimensional 

Solar System simulator. The software was developed for Windows 7, and programmed in C++11. The distribution is 

made through a website, under the EUPL v.1.1. 

The propagator uses the initial conditions provided by the user either through the graphical interface, or XML input files, 

and propagates the trajectory aided by a Runge-Kutta-Fehlberg 7(8) numerical integrator. The propagator uses a list of 

force systems, based on several central bodies, and selects the most adequate during the computation. The force model 

includes the central body’s gravity field and the perturbation introduced by its 𝐽2 coefficient, third bodies’ gravity fields, 

and the solar radiation pressure. The propagator generates plain-text and NASA SPK output files. 

The simulator is a three-dimensional rendering of the Solar system and allows the user to visualize the trajectory and 

attitude of celestial bodies and spacecraft. The 3D models of the Sun and planets, with day and night textures, atmosphere, 

clouds, and planetary rings, are procedurally generated. It is also possible to load 3D models for more complex geometries. 

A manual camera controlled by the keyboard and mouse was implemented, along with a system of automatic cameras 

parametrized by the user. The simulator is also capable of exporting movies. 

1. INTRODUCTION 

The simulation and analysis of trajectories is required 

throughout the entire lifecycle of every space mission. It 

requires precise ephemerides, reliable physical models, 

and robust propagation algorithms. Computers have 

aided this process since the beginning of the space era 

and their increasing capabilities now allow ordinary 

household computers to be used for space mission 

analysis and design. The birth of three-dimensional 

computer graphics and its ensuing staggering 

improvement, largely driven by the videogame industry, 

contributed to the creation of brand new visualization 

tools for all areas of science. Combining accurate 

trajectory propagation and visualization capabilities 

within the same software suite provides mission 

designers a fully-featured solution, greatly supporting 

their work. 

The objective of this work was to develop a free and 

open-source (FOSS) software package, comprising a 

trajectory propagator module for data generation and a 

three-dimensional simulator module for enhanced data 

analysis The trajectory propagator module is able to 

accurately calculate the trajectory of a spacecraft within 

the Solar System, whereas the simulation module 

displays it in a three-dimensional visually realistic 

environment. Despite being integrated, the modules 

retain the ability to be used on their own and in 

conjunction with existing industry tools. Additionally, 

one of the main design goals was the make the software 

intuitive and usable by someone with the minimal 

amount of training. 

2. SOFTWARE DESIGN 

The software was named SimOrbit, since it is, in its 

essence, an orbital simulator, and SimOrbit is not a 

registered trademark. 

The chosen programming language was C++ as defined 

in its most recent international standard ISO/IEC 

14882:2011 [1]. This choice took into account several 

factors, including the stability and maturity of the 

programming language, familiarity with the standard, 

and availability of third party components. 

Several third party components were integrated in the 

software in order to increase its functionality and reduce 

the development time. Microsoft Direct3D was the 

selected graphics application programming interface 

(API). It is responsible for managing the graphics 

hardware, and rendering the three-dimensional (3D) 

environment, and the graphical user interface (GUI). 

NASA’s Navigation and Ancillary Information Facility 

(NAIF) SPICE Toolkit [2] is the source of spacecraft and 

planetary constants, ephemerides, and orientation data. 

The MPFR [3] and the Multiple Precision Integers and 

Rationals (MPIR) [4] libraries are used for arbitrary 

precision support and also to decrease the computation 

time by using CPU-specific optimizations. The Open 

Asset Import Library (Assimp) [5] powers the 3D model 

loader which enables the simulator to use a wide variety 

to 3D model formats. 
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2.1. Architecture 

The software is comprised of a main application, 

SimOrbit, and two dynamic link libraries (DLL), 

SimOrbit Library and SPICE C++, which interact as 

shown in Figure 2.1. 

 

Figure 2.1 – Very high level layer diagram of the 

software architecture showing the relations between 

components (third party components displayed in 

orange). 

SimOrbit is a modular application, and includes three 

modules – Main Menu, Propagator, and Simulator. The 

SimOrbit Library is part of a framework which 

harmonizes and simplifies the development of modules. 

The framework comprises a set of headers and the library 

itself. The SPICE C++ is a thread-safe C++ wrapper for 

the SPICE Toolkit which takes advantage of C++ 

features, such as function overloading, exceptions, 

vectors and strings to interface with the SPICE Toolkit 

routines 

2.2. Documentation 

The C++ code was documented using XML 

documentation comments. These comments, present in 

file, class, and method headers detail their purpose, input 

and output, possible exceptions thrown, and academic 

source, where applicable. Additional comments are 

present throughout key algorithms explaining their flow. 

The XML documentation comments served as input in 

the creation of Portable Document Format (PDF) and 

HyperText Markup Language (HTML) reference 

manuals. Additionally, a user manual was written, 

describing the general operation of the software. The user 

manual also includes the definitions used throughout the 

software, such as frames of reference and units of 

measurement. 

2.3. Licensing and Distribution 

Since SimOrbit is a free and open-source software it was 

necessary to select a license that ensured the original 

authors retained full ownership, and that any derivative 

works would be distributed in a similar fashion. The 

chosen license was the European Union Public Licence 

(EUPL) v.1.1 [6]. The software and source code will be 

distributed via a website under the domain “simorbit.eu”. 

The website also details the software’s features, along 

with screenshots, and provides a means to contact the 

authors. 

3. PROPAGATOR MODULE 

The first implemented component was the trajectory 

propagator. This component, which has the sole purpose 

of data generation, is be able to calculate the trajectory of 

a single spacecraft within the Solar System. Trajectory 

propagation is done by integrating the equations that 

describe the motion of the spacecraft, starting from a set 

initial conditions. This required the definition of a force 

model, and the implementation of a numerical integrator. 

3.1. Force Model 

The force model takes into account the fundamental 

forces that influence the trajectory of a spacecraft 

travelling through the Solar system [7], and the effect of 

any engine the spacecraft may be equipped with. 

A brief study of space mission scenarios (i.e. use cases) 

was conducted in order to determine which fundamental 

forces and engine types needed to be included for 

accurate propagation of a trajectory. Following the 

study’s conclusions, the central body gravity field, and its 

𝐽2 perturbation, the gravity fields of third bodies, and the 

solar radiation pressure were the implemented 

fundamental forces. Additionally, the study also 

highlighted the necessity of defining a collection of 

different force systems, each valid within a region of 

space, and having the propagator switch between them 

automatically. Furthermore, an engine system was 

developed which allows the user to use instantaneous 

delta-V or constant acceleration engine inputs. 

3.2. Numerical Integrator 

To propagate the initial state a numerical integrator with 

adequate precision was required. The chosen numerical 

method is the Runge-Kutta-Fehlberg 7(8) [3] since it is 

mature, widely used, fast, and sufficiently accurate for 

the task. Furthermore it has local truncation error 

evaluation and self-adjusts the step sized based on it. 

There are, however, instances where it is desirable to 

have added control of the step size, so the algorithm was 

modified to include minimum, maximum, and fixed step 

size constraints. 
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The integrator makes use of the MPIR and MPFR 

libraries to both take advantage of CPU specific 

instruction sets leading to performance increases but also 

to give the user a fine-control of the bit-precision. This 

grants flexibility to the integrator, allowing for its use in 

both time-critical and precision-critical environments. 

3.3. Input and Output 

The trajectory propagation requires the user to provide a 

set of initial conditions, and configure the force model 

and numerical integrator. To facilitate the task a tabbed 

GUI where the user can directly input values and set 

options was implemented, as shown in Figure 3.1. 

 

Figure 3.1 – Screenshot of the propagator module 

general tab filled with valid values. 

The GUI controls allow the user to input data in several 

different formats and units of the International System of 

Units (SI) and the IAU (2009) System of Astronomical 

Constants, where applicable. This prevents the user from 

having to perform unit conversions outside of the 

software, and possibly making a mistake. The propagator 

GUI validates all input values and flags errors as soon as 

the affected control loses focus. Hovering the control 

with the mouse displays a tooltip indicating what the 

error is. 

Since a propagator setup can be modified as the mission 

definition changes, or may need to be shared between 

several people working on the project, the setup can be 

stored and loaded using an Extensible Markup Language 

(XML) document. Additionally, for Earth satellites it is 

also possible to load Two-Line Element (TLE) sets that 

describe the initial conditions. 

To ensure maximum compatibility with third party tools, 

the propagator is able to simultaneously generate two 

output files – a binary NASA SPK, which is the de facto 

standard for planetary and spacecraft ephemerides, and a 

plain-text file. 

3.4. Operation 

The trajectory propagator is the only multi-threaded 

component in the SimOrbit project. The worker thread 

features a controller that manages the output file writers, 

numerical integrator, and force model, and outputs 

progress information to the GUI, as shown in Figure 3.2. 

Graphical User 

Interface

Trajectory Propagator 

Controller

Numerical Integrator Force Model

Force Systems 

Database

Engine

SPICE C++

Output File Writers

 

Figure 3.2 – Thread communication and information 

flow diagram during the operation of the propagator 

module. 

4. SIMULATOR MODULE 

The second implemented component, the simulator 

module, is a three-dimensional realistic rendering of the 

Solar System. This component’s primary purpose is 

spacecraft trajectory, position, and attitude visualization. 

Most mission analysis and design tools that include 3D 

visualization features only provide very basic renderings 

of the Solar System bodies and spacecraft of interest. 

Although this is often enough for a preliminary trajectory 

analysis, it is insufficient to fully understand the scene. 

To ensure the success of a space mission it is necessary 

to know if a spacecraft’s solar panels are illuminated, if 

its instruments and antennas are pointed correctly, if a 

feature being photographed is illuminated, if a lander is 

in view, if there are objects in its path that were not taken 

into account while propagating the trajectory, etc… For 

all these purposes it is necessary to have a rendering of 

the 3D environment that strives to match the reality. 

The main development goal for the simulator module was 

to maximize visual realism. In order to achieve this goal, 

it is able to: 

 Generate or load the geometry for simple objects (i.e. 

ellipsoidal celestial bodies) 

 Load 3D models for more complex objects, such as 

spacecraft, asteroids, and comets; 

 Place the models on their correct positions and 

attitudes; 

 Render the scene using physically-based shading 

techniques. 
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4.1. Generation and Rendering of Celestial Bodies 

To generate the geometry for ellipsoidal celestial bodies 

a procedural generator was developed. This generator is 

able to generate the ellipsoidal shape of the body, 

including features such as atmosphere, clouds, and 

planetary rings, using a combination of information from 

the NAIF kernels and an XML configuration file. Figure 

4.1 shows planet Earth generated and rendered by 

SimOrbit. 

 

Figure 4.1 – Screenshot of the Earth as rendered by 

SimOrbit. 

The planetary shader uses physically-based shading 

techniques, which are algorithms that take into account 

the physical properties of the materials and the lighting 

in order to render images that resemble reality. 

The lighting of a planet is based on the Kelemen-

Szirmay-Kalos bidirectional reflectance distribution 

function (BRDF) model [8]. This model closely 

approximates the Cook-Torrance model [9] but is 

significantly cheaper to evaluate. The classic Blinn-

Phong model [10] was also tested, but proved too glossy 

and unrealistic. 

The colour of the planet’s surface is a combination of 

diffuse and emissive colours and textures. The diffuse 

texture stores the daylight representation of the planet’s 

surface, whereas the emissive texture provides the night-

time colours, such as city lights or auroras. The user can 

also provide a specular map, which controls the specular 

strength (i.e. the reflectivity of the surface), and a tangent 

space normal map which stores the per-pixel normal in 

order to give the illusion of terrain height.

When light travels through the atmosphere of a planet it 

is scattered by its particles, a phenomenon known as 

atmospheric scattering. It is of an extreme importance 

towards a photorealistic rendering of a planet. The 

planetary shader uses the physically based atmospheric 

scattering algorithm proposed by Sean O’Neal [11] to 

calculate the Rayleigh and Mie scattering components 

and render the atmosphere. Figure 4.2 shows Earth and 

Mars atmospheres as rendered by SimOrbit. 

  

Figure 4.2 – Atmospheric scattering examples. Sunrise 

over the Iberian Peninsula on Earth (left); sunset over 

Valles Marineris on Mars (right). 

The software also supports rendering clouds. Cloud 

height information and a texture map containing their 

transparency can be provided. The shader then combines 

this information with the atmospheric scattering 

algorithm and renders photorealistic clouds. However, it 

does not render the cloud’s surface shadow, which was 

found to be of no consequence. 

Finally, the procedural planet generator and shader also 

support planetary rings. These are a flat dual-sided 

anullus centred on the planet, laying on its equatorial 

plane. The inner and outer ring radius are provided by the 

user, along with a texture map storing both their colour 

and transparency. The rings’ illumination presents a very 

complex problem, since these are illuminated by 

backscattered from the planet and the neighbouring ring 

particles, and forward scattered light. A simple model 

was devised attempting to match Saturn’s rings 

renderings to the photos from the Voyager and Cassini 

missions. The model is not physically accurate but 

provides acceptable results. 

4.2. Loading and Rendering of 3D Models 

For more complex geometries, such as spacecraft and 

some asteroids and comets, it is necessary to load 3D 

models containing information regarding their geometry 

and materials. Since 3D models come in a variety of 

formats and it is not trivial to convert between them a 

model loader supporting most common interchange 

formats was included. The loader is powered by the 

Assimp library. 
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Two ways were implemented for associating a 3D model 

with an object – static and dynamic. The static 

associations are listed in an XML file, alternatively the 

user can also load a 3D model dynamically via the GUI. 

Additionally, since there is no guarantee the loaded 

models are correctly scaled, the software requires a 

scaling factor to be entered by the user (e.g. on an asteroid 

model units may represent kilometres, whereas on a 

spacecraft model they can represent inches). This factor 

is defined as the constant that converts model units to 

kilometres, and by omission it has the value of 1. 

The models shader is much simpler than the planetary 

shader, and is based on the Blin-Phong model [10], which 

produces fairly accurate results, as shown in Figure 4.3 

for NASA’s Cassini spacecraft model [12], despite not 

being physically-based. 

 

Figure 4.3 – Screenshot of the Cassini spacecraft model 

as rendered by SimOrbit. 

4.3. Auxiliary Features 

Besides rendering a realistic scene, it is also necessary to 

draw auxiliary features for scientific purposes. Firstly, to 

analyse the evolution of the position of a spacecraft as it 

travels through the Solar System it is necessary to draw 

its trajectory. Secondly, to monitor its attitude it is 

necessary to render local frames of reference. Lastly, to 

know the position of distant objects whose apparent size 

is too small to discern, markers need to be placed, along 

with labels with the object’s name. 

The most useful auxiliary feature that the module renders 

is a trajectory. It is also the most complex, and several 

problems arise while trying to generate and render them. 

Firstly, the graphics API can only draw line segments, 

meaning all trajectories must be reduced to a set of points. 

These are retrieved using an iterative method that divides 

each coverage window (i.e. contiguous time span for 

which ephemeris are known) in segments until a 

tolerance condition is met, or the maximum number of 

trajectory points is reached. Since this is a costly process, 

involving tens of thousands of ephemeris queries, it is not 

possible to do it in real time while rendering. 

Furthermore, the loaded trajectory cannot be adjusted 

when changing reference body, meaning it is always 

drawn with reference to the Sun. 

The frames of reference (Figure 4.4) are invaluable to 

assess the orientation of an object, for example to 

determine its relative orientation to another, or to have a 

general idea of its flight path and lighting angles. They 

are composed by three perpendicular vectors, labelled X, 

Y, and Z, according the orientation of the primary axis of 

the selected frame. 

 

Figure 4.4 – Deimos BODY frame of reference and 

label. 

Since the size of the bodies in the Solar System is 

extremely small when compared to the distance between 

bodies, it becomes necessary to place markers in the 

position of distant bodies in order to have an idea of their 

position. The software accomplishes this by placing four-

point star-shaped markers with the name of their 

associated body in the positions of distant bodies, as 

shown in Figure 4.5. 

 

Figure 4.5 – Sun, Mercury, and Venus markers and 

labels. 

All the auxiliary features are controllable on an object 

basis and can be turned on and off via GUI. Additionally, 

they are rendered with the light positioned at the camera, 

thus ensuring they are always lit, and in chartreuse colour 

since it is widely regarded as the most visible colour. 
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4.4. Cameras 

Controlling the point-of-view of the simulation is 

essential to evaluate all aspects of a scene. Often it is 

necessary to have a camera near a spacecraft, in other 

occasions it is ideal to have it on the surface of a planet, 

or even the top or an orbital plane. To allow the user full 

control over the camera, two control modes are 

implemented – manual and automatic. 

The manual control, provides a camera with five degrees 

of freedom (three-dimensional translation, pitch, and 

yaw) allowing the user to freely explore the scene. This 

camera is controlled in real time by using the keyboard 

for translation and the mouse for rotation as shown in 

Figure 4.6. The roll movement was restricted since it 

would require either a third degree of freedom on the 

mouse, or adding rotation controls to the keyboard. The 

camera vertical direction was defined as the vertical 

direction of the J2000 frame of reference. 
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Figure 4.6 – Manual camera keyboard and mouse 

controls. 

The automatic mode is a “must have” for presentations 

and directing high-quality movies. In this mode the point-

of-view is controlled automatically throughout the 

simulation, based on a list of parametrized cameras. The 

cameras can be added, edited, and deleted via the GUI or 

loaded from one or more XML files. An automatic 

camera is defined by: 

 Time span – The time interval in which the camera 

should be active, defined by a start epoch and 

optionally a stop epoch or duration; 

 Time scale – The time that passes within the 

simulation for every second; 

 Eye position – The position of the camera; 

 Look at position – The position the camera is looking 

at; 

 Up direction – Optional, the direction of the camera 

vertical. 

To facilitate the parametrization of the camera the 

positions and direction are defined by an offset or 

direction from a specific reference body in one of the 

implemented frames of reference. 

The software does not require the cameras time span to 

be contiguous or non-intersecting. Instead, it selects the 

camera based on which cameras are valid for the current 

epoch and gives precedence to the one that has a later 

start epoch. If no camera is defined it stops updating the 

camera parameters until another valid camera is found.  

4.5. Movie Making 

Since the simulator module only renderers the scene on 

the screen, the only possible way of saving its output is 

capturing a movie. Hence, a Windows Media Video 

(WMV) movie maker was implemented. This format was 

selected since it is guaranteed to be compatible with the 

operating systems the software is compatible with. The 

movie maker captures the entire window contents, with 

the exception of the GUI as it serves no purpose in a 

movie. 

In order to capture a movie the user first needs to 

configure it, by selecting the output filename, the 

resolution, and the quality level. The resolution can be set 

to one of three options – Native (the current window 

resolution), HD720 (1280x720), or HD1080 

(1920x1080). The quality level is a discrete value 1 to 

100, where 1 represents the lowest possible quality and 

100 the highest. After the output is configured, capturing 

can be started and stopped by pressing the appropriate 

button on the GUI, or the C key on the keyboard. 

4.6. GUI and Simulation Control 

To enable the user to control the simulation a GUI was 

included. The interface was designed to be as unobtrusive 

as possible, and consists of a semi-transparent, auto-

hiding dialog on the bottom of the window, with tabs to 

control the scene, camera, and movie-making. 

The scene tab allows the user to control all the objects 

being rendered. The user can load kernels containing 

ephemerides and orientation information for objects of 

interest, and load 3D models as desired. Additionally, for 

each object, it is possible to configure and toggle the 

display of auxiliary features. Time control features, 

namely the ability to jump to a specific date, and to slow 

down or fast forward the simulation were also included. 

The camera tab is used to toggle between the manual and 

automatic control modes. It also lists the loaded 

automatic cameras, and provides means to add, edit, and 

delete them. Additionally, it shows the diagram of the 

manual camera keyboard and mouse controls. 

Finally, the movie-making tab allows the user to 

configure the movie writer output filename, quality, and 

resolution and initiate or finish the capture of a movie. 
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5. TRAJECTORY PROPAGATOR 

VALIDATION 

In order to be able to use the trajectory propagator in an 

operational environment it is necessary to perform an 

extensive validation process to ensure there are no errors 

which can compromise a space mission. The validation 

presented in this section is preliminary, and its purpose is 

only to confirm that the force model is capable of 

accurately calculating simple trajectories for which there 

are analytical solutions. 

5.1. Keplerian Orbit 

The most basic test of the trajectory propagator consists 

in verifying the orbital stability of a Keplerian orbit. To 

achieve this all perturbations were disabled, leaving only 

the spherical gravity field of the central body. A set of 

orbital elements, describing an Earth orbit, was chosen, 

and the trajectory was propagated for a duration of 100 

days with a fixed time step of 10 minutes. The orbital 

elements residuals were calculated and plotted for each 

data point. Their mean and standard deviation were 

calculated (Table 5.1), and their normal probability plots 

were generated. The analysis reveals minor, well-

behaved, normally distributed residuals for all elements 

with the exception of the mean anomaly at epoch (𝑀0). 
This suggests the orbit is stable with near-constant orbital 

parameters, as expected, but the mean motion of the 

spacecraft is higher than that of the analytical solution. 

Nevertheless, the accumulated error of 𝑀0 over the 

course of the 100 days is of only 9.2606 × 10−3°, well 

within an acceptable tolerance. 

Table 5.1 – Statistical analysis of the residuals of the 

classical orbital elements during a 100 days propagation 

of a Keplerian orbit. 

Element Mean (𝝁) Standard 

Deviation (𝝈) 

Semi-major axis -3.0337e-03 7.2842e-03 

Eccentricity -4.5622e-08 1.4529e-07 

Inclination 2.5361e-07 1.3024e-06 

Longitude of 

ascending node 

2.2247e-06 4.7369e-06 

Argument of 

periapsis 

9.1730e-07 1.6502e-04 

Mean anomaly 

at epoch 

4.6052e-03 2.6692e-03 

5.2. J₂ Perturbation 

For a satellite orbiting a central body, the 𝐽2 perturbation 

causes a variation of the longitude of ascending node (Ω) 

and the argument of periapsis (𝜔). Two types of orbits 

were used to validate the 𝐽2 contribution – a sun-

synchronous orbit, and a Molniya orbit. Sun-synchronous 

satellites orbit the Earth in a way that they appear to 

always orbit the same position from the perspective of the 

Sun, i.e. the orbital plane rotates at the rate of 0.9856° ∙
day−1. The Molniya satellites are placed in highly 

elliptical orbits with an inclination near 63.4°. At this 

inclination the argument of periapsis is not perturbed by 

the 𝐽2 coefficient of the Earth’s gravitational field, thus 

remaining constant. 

The sun-synchronous satellite AQUA was selected to test 

the variation of the longitude of ascending node. The 

trajectory was propagated for a duration of 100 days with 

a fixed time step of 10 minutes, and the force system was 

configured to only include the Earth’s gravity field. The 

obtained solution diverges from the analytical one as it 

integrates errors over time, however these were 

considered to be within an acceptable tolerance. The 

numerical solution has ∆Ω = 0.9681°𝑑𝑎𝑦−1, whereas 

the analytical solution has a ∆Ω = 0.9915°𝑑𝑎𝑦−1. The 

coefficient of correlation between the solutions is 𝑅 = 1. 

The MOLNIYA 1-81 satellite was selected to test the 

variation of the argument of periapsis, since from all the 

operational Molniya satellites, its inclination was the one 

closest to 63.4°. The trajectory was propagated exactly 

as before. Here the error increases linearly over time, and 

the numerical solution reveals has ∆ω = 0.0007°𝑑𝑎𝑦−1, 

whereas the analytical solution has a ∆ω =
0.0013°𝑑𝑎𝑦−1. The coefficient of correlation between 

the two solutions is 𝑅 = 0.9487. 

Taking into account the results obtained for both the 

AQUA and the MOLNIYA 1-81 satellites, the 𝐽2 

perturbation implementation was considered valid. 

5.3. Third Bodies and Solar Radiation Pressure 

Testing the trajectory perturbations introduced by third 

bodies and the solar radiation pressure is a more complex 

problem, for which no analytical solution exists. Ideally, 

the software should be tested against previously validated 

software, unfortunately due to time constraints that was 

not possible. Nevertheless, it was necessary to verify that 

at least the influence of third-bodies was being taken into 

account and reasonably calculated. 

To verify the influence of third-bodies a trans-lunar 

trajectory was propagated. This is a type of free return 

trajectory which takes a spacecraft from a circular 

parking orbit around the Earth, around the far side of the 

Moon, and back to Earth without requiring any 

propulsion, except that required to initially set the 

trajectory. The Apollo 11 mission trajectory, for which 

an abundance of information is available, was ideal for 

testing.  
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The spacecraft was considered to have a mass of 𝑚 =
43866𝑘𝑔, corresponding to the mass of the Command 

and Service Module (CSM) and the mass of the Lunar 

Module (LM) combined, a projected area of 𝐴 = 27𝑚2 

and a reflectivity of 𝜀 = 0.5. The numerical integrator 

was set up with an initial time step of 1 minute with lower 

and upper bounds of 1 second and 1 hour, respectively, 

and truncation error tolerances of 𝑡𝑜𝑙𝑝𝑜𝑠 = 1 × 10−6𝑚 

and 𝑡𝑜𝑙𝑣𝑒𝑙 = 1 × 10−6𝑚 ∙ 𝑠−1. The trajectory was 

propagated for a duration of duration of 5.8 days, with all 

Earth’s force system perturbations enabled. 

The propagated trajectory, shown in Figure 5.1, is as 

expected. The spacecraft leaves Earth, performs a swing-

by at the Moon, and returns. Despite the lack of 

numerical validation of the trajectory, it is enough to 

verify that the third-body perturbation due to the presence 

of the Moon is being accurately taken into account. 

 

Figure 5.1 – Apollo 11 trans-lunar trajectory as 

propagated by SimOrbit. 

5.4. Engine (Delta-V) 

The engine delta-V inputs were tested by propagating a 

Hohmann transfer, which is a manoeuvre that takes a 

spacecraft from one circular orbit to another, on the same 

plane, using two delta-V impulses. 

It was decided to use the engine to transfer a satellite from 

Low Earth Orbit (LEO) to a Geosynchronous Equatorial 

Orbit (GEO), which has an altitude of 35,786km above 

the equator. The engine was configured with the two 

delta-V inputs, obtained analytically, and the trajectory 

was propagated for the duration of 3 days, starting 1 day 

before the first delta-V. The time step was fixed to 10 

minutes. The resulting trajectory is represented on Figure 

5.2, and is exactly what was expected. 

The semi-major axis error is 𝜀𝑎 = 1 × 10−4𝑘𝑚, and the 

eccentricity error is 𝜀𝑒 = −1.4330 × 10−7, both 

considered to be well within an acceptable tolerance, thus 

validating the engine’s delta-V implementation. 

 

Figure 5.2 – Hohmann transfer orbit from Low Earth 

Orbit (LEO) to Geosynchronous Equatorial Orbit 

(GEO). 

6. PERFORMANCE 

The SimOrbit performance was assessed on an Intel Core 

i7-5600U CPU @ 2.60GHz, with 8GB RAM, and an 

integrated Intel HD Graphics 5500 graphics processor, 

running the Windows 7 Professional 64-bit operating 

system. The display resolution was 2560x1440 pixel. The 

executable used for testing was built with full program 

optimization and for a 64-bit system. 

6.1. Propagator 

To assess the propagator module performance, a 

trajectory propagation of an Earth satellite, with a 

duration of one sidereal year, was used. The force system 

was configured to account for all perturbations (i.e. Earth 

𝐽2 coefficient, Moon and Sun as third bodies, and solar 

radiation pressure). Additionally, a very low-thrust 

constant acceleration engine input was added to be able 

to measure the performance of the engine. The initial 

time step was set to 10 minutes and was left unbounded. 

Firstly, the results of a CPU sampling were analysed. One 

“hot path” was found. The propagator worker thread 

function was responsible for 96.9% of the CPU usage, 

with 73.0% corresponding to the RKF7(8) integrator and 

22.6% to the dynamic force system change algorithm. 

Looking inside the integrator it was found that 64.3% of 

the total CPU usage came from that force model 

implementation. 

To gain a better understanding of what force model 

components were more expensive to compute, several 

performance counters, based on the High Precision Event 

Timer (HPET), were added to the force model code. The 

implemented counters measured how long it took to 

execute the code that calculates each component of the 

acceleration. Analysing the performance counter results, 

shown in Table 6.1, it is obvious the most time 

consuming computations are the central body 𝐽2 and solar 

radiation pressure perturbations. 



 

9 

Table 6.1 – Force model performance counter results. 

Performance Counter Computation Time 

[s] 

Central body GM 4.5101 

Central body J₂ 38.6601 

Third bodies GM 14.5795 

Sun GM 14.1066 

Solar radiation pressure 52.8765 

Engine 6.7374 

Total 133.7283 

6.2. Simulator 

The simulator module testing focused on measuring the 

frames per second (FPS) under different conditions to try 

and assess the individual performance of the shaders, and 

the influence movie capturing had on graphics 

performance. The Direct3D 10 mode was used in the 

tests, since it was supported by the graphics processor, 

and the FPS was measured using the Visual Studio 

Graphics Analyzer. 

The first test was run on windowed mode at 1600x900 

pixel. A sequence of six automated cameras that focused 

on objects being rendered by different types of shaders 

were defined. Each camera was set to be active for a total 

of 30 seconds. The sequence was ran twice, with native 

resolution movie capture off and on. Table 6.2 lists the 

measured average FPS values and the influence of movie 

capturing. 

Table 6.2 – Average FPS measured for different types 

of shaders on a 1600x900 pixel window, with native 

resolution movie capturing off and on. 

Shader Rendering 

[FPS] 

Capturing 

[FPS] 

None 319.4 125.4 

Sun 97.7 59.6 

Planet  247.7 95.7 

Planet with atmosphere 109.4 55.8 

Rings 226.4 106.7 

Model 265.7 100.4 

The worst performance was found on the “Sun” (i.e. the 

Perlin noise implementation) and the “Planet with 

atmosphere” shaders, which is not surprising since both 

are computationally expensive algorithms. Nevertheless, 

the performance of all shaders is very good. Capturing a 

movie at the native resolution caused an average increase 

of 6.9ms in the frame rendering time. 

Subsequently, full screen mode was tested at the 

2560x1440 pixel, commonly known as Quad HD (QHD). 

This test was meant to put as much strain as possible on 

the graphics processor and determine the lower FPS 

limits at which a simulation would run. The camera 

sequence and methodology from the previous test were 

used, and the results are shown in Table 6.3. As expected, 

due to the 2.56 times higher resolution, the FPS are lower 

than those of the previous test, although the relative 

shader performance remains constant. Movie capture at 

this resolution was found to reduce the FPS to very low 

values, where camera movement causes noticeable 

flicker. 

Table 6.3 – Average FPS measured for different types 

of shaders on a 2560x1440 pixel screen, with native 

resolution movie capturing off and on. 

Shader Rendering 

[FPS] 

Capturing 

[FPS] 

None  208.7 39.3 

Sun 56.2 25.4 

Planet 167.9 36.9 

Planet with atmosphere 60.4 31.1 

Rings 153.4 35.6 

Model 175.6 37.2 

7. CONCLUSIONS 

This work was aimed at developing a free and open-

source software package to support mission analysis and 

orbital mechanics calculations. In order to provide an 

integrated solution, enabling a user to generate and 

analyse data, two components were developed – a 

trajectory propagator for data generation, and a 3D 

visualization component. The trajectory propagator is 

able to generate accurate spacecraft trajectory data based 

on a set of initial conditions describing its state (i.e. 

position and velocity) at a reference epoch. It generates a 

binary SPK and plain text output which can be easily 

used by other tools in the mission design and analysis 

process. The 3D visualization component produces a 

visually realistic rendering of the Solar System and 

spacecraft of interest. It also displays auxiliary features 

to aid mission analysis and is able to export movies. 

Although the developed software conforms to the 

specifications, performs adequately, and has been 

preliminary validated, it was found to have some flaws. 

On the propagator module, a very short constant 

acceleration engine input (i.e. with a time span with an 

order of magnitude similar or lower than that of the time 

step) can be leaped over and ignored by the numerical 

integrator. In order to mitigate this problem the software 

resets the initial time step at the start of the engine input, 

but this was found to be inadequate to solve the issue. A 

recommendation was included in the user manual to use 

delta-V inputs, instead of constant acceleration, in these 

cases. The propagator should also be modified to allow 

for the propagation of spacecraft attitude and mass in 

addition to the position and velocity. This would greatly 

improve the accuracy of the solar radiation pressure 

component, and allow for propellant calculations. On the 
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simulator module, loading a spacecraft trajectory is a 

time consuming operation, and for very long or complex 

trajectories, limited by the maximum number of points, it 

does not always produce an accurate representation of the 

reality. This issue needs further studying, possibly 

creating an algorithm that refines the trajectory 

depending on the camera position. Furthermore, also on 

the propagator module, the Sun’s corona shader has the 

lowest performance of all implemented shaders and is not 

physically-based. A study of the corona’s lighting 

properties needs to be performed in order to create a fast 

physically-based algorithm that improves both the visual 

realism and performance of this shader. 

The design and development of the software was a 

challenging endeavour, as it draws knowledge from 

several distinct areas – orbital mechanics, programming, 

computer graphics, optics, and media generation. The 

work also greatly contributed towards understanding the 

difficulties associated with large software projects, and 

their planning and time management requirements. 

Extensive computer programming knowledge, namely in 

the C++11 and High-Level Shading Language (HLSL) 

programming languages, was also acquired. 

Furthermore, the importance of defining requirements, 

establishing standards, and producing appropriate 

documentation was learnt. 

Overall, the software is considered to successfully fulfil 

the proposed objective, allowing a user to accurately 

propagate and visualize the trajectory of spacecraft in a 

visually realistic environment. 
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