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Abstract

There is an ever-growing multitude of contexts in which humans and robots interact. To achieve safe,

reliable, and meaningful interaction between agents, the ability to anticipate each others actions is key.

A body of literature suggests electroencephalography (EEG) signals may provide a window into the

processes that precede action in humans, allowing movement to potentially be predicted before motion

begins. This thesis compares between different approaches to the task of action anticipation from EEG

signals by leveraging the versatility of Convolutional Neural Networks (CNNs). Additionally, the use of

gaze features, shown in previous research to exhibit specific patterns during action anticipation, is ex-

plored as a complement to EEG to reach this goal. A novel metric to quantify time advantage provided

by an action anticipation system while providing insight into classifier confidence level is also proposed

and evaluated in this work. Results indicate shallow, fully-convolutional architectures are able to achieve

an accuracy of 88.00% (13.81% standard deviation) in action anticipation epoch classification, consis-

tently classifying epochs as preceding action with a time advantage of 120 milliseconds, with minimal

EEG signal processing, in an end-to-end approach. Leveraging gaze features and using a hybrid CNN

classifier, can improve accuracy to 93.14% (15.18% standard deviation) in this task. Ultimately, this the-

sis demonstrates the viability of the use of EEG signals for action anticipation in a physical human-robot

interaction setting, describing and testing classifiers capable of anticipating human action from these

readings in an accurate and timely manner.

Keywords

Collaborative Interaction, Brain-Computer Interfaces, Vision for Robotics, Cooperation and Coordination,

Neural Systems.
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Resumo

O número de contextos em que humanos interajem com robots está em constante crescimento. De

forma a alcançar interações segura, fiáveis, e eficazes entre agentes, a capacidade de anticipar as

ações de outrém é fundamental. Um corpo de literatura sugere que sinais eletroencefalográficos (EEG)

podem revelar informação sobre os processos que precedem a motricidade humana, permitindo que

movimentos sejam potencialmente antecipados antes de serem iniciados. Esta tese compara as difer-

entes abordagens ao desafio de antecipação de ação através de sinais EEG fazendo-se valer da versa-

tilidade de Redes Neuronais Convolucionais (RNCs). Para além disso, o uso de caracterı́sticas do olhar,

demonstradas previamente em literatura como precedentes de ação, é explorado como complemento

ao EEG para alcançar este objetivo. Uma nova métrica para quantificação vantagem temporal provi-

denciada por um sistema de antecipação de ação, fornecendo informação sobre o nı́vel de confiança do

classificador, é também proposta e analisada neste trabalho. Os resultados indicam que RNCs atingem

valores de exatidão de 88.00% (desvio padrão 13.81%) na classificação de perı́odos de antecipação de

ação, consistentemente classificando estes perı́odos como precedendo ação com uma vantagem tem-

poral de 120 milisegundos, numa abordagem end-to-end. Fazendo uso combinado de caracterı́sticas

de olhar humano com EEG, através de um classificador CNN hı́brido, resultados para esta tarefa as-

cendem a exatidões de 93.14% (desvio padrão 15.18%). Em última análise, esta tese demonstra a

viabilidade do uso de sinais EEG para antecipação de ação em contextos de interação fı́sica humano-

robot, produzindo classificadores capazes de antecipar ação humana de uma forma exata e atempada.

Palavras Chave

Colaboração, Interfaces Cérebro-Computador, Visão para Robótica, Cooperação e Coordenação, Sis-

temas Neuronais.
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Chapter 1

Introduction

1.1 Motivation

The ubiquitous presence of technology in modern life has sparked an interest in understanding how hu-

mans and machines can interact in productive, safe, and ful�lling ways. Robots provide a new frontier for

human-machine interaction. In recent decades, robots have become more common and more capable

of performing a wide range of tasks: automated guided vehicles move packages around warehouses;

industrial robots assemble complex machinery, such as cars; educational robots provide children with

an introduction to programming and logic; service robots spare users the work of performing tedious

chores. These are but a few examples from the universe of potential applications.

As scenarios of human-robot interaction grow in number, so does the need to address the technical,

ethical, economical, and sociological questions behind them. A constant area of research in this �eld is

the search for new ways for humans and robots to collaborate in order to complete a task.

Early industrial robots were large, heavy, and often dangerous to be around, with little to no aware-

ness of their surroundings, and no way to meaningfully interact with human colleagues. However, the

ever-growing need for more productive and safer work environments has meant robotics must seek to

move from simple automation and coexistence, to active and responsive collaboration.

To this end, it is important to explore the necessary components for collaboration between agents.

Vesper et al. [1] de�ne and explore a minimal framework for joint action between agents. They establish

three essential components for collaboration: representation of an agent's own tasks and goals; mon-

itoring of the environment and task success; and prediction of a partner's immediate actions and how

they might affect the agent. Under this framework, the task of anticipating a person's actions becomes

an essential part of human-robot collaboration – but it also remains particularly dif�cult to execute.

To address this problem, robotics has traditionally focused on the use of Computer Vision to predict
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which action(s) a person may take at a given moment. This approach, however, comes with its own

set of challenges, such as object occlusion, camera movement, and the inherent dif�culty of attempting

to discern intention by using a sensor designed to detect action. Nevertheless, new Computer Vision

based methods have produced gradually better results for a number of action anticipation datasets.

But what if a sensor was capable of detecting action intention before its onset? Electroencephalography

(EEG) provides us with a way of doing just that. EEG is a functional imaging technique with high temporal

resolution, and has been shown to detect changes in brain waves preceding action by over 1 second [2].

Mobile EEG headsets and caps are now more common than ever; they are also relatively inexpensive,

non-invasive, and considerably easier to set up than when �rst introduced. As a result, EEG signals

offer a promising source of data for achieving action anticipation in human-robot interaction applications.

Modern Deep Learning techniques, such as transformers, can support multi-modal data, making EEG

signals a potentially interesting complement to the current Computer Vision based methods.

1.1.1 Human-Robot Interaction Settings

To better understand how Human-Robot Interaction (HRI) may bene�t from improved action anticipation,

it is important to look at the contexts in which humans and robots coexist and cooperate. The constantly

increasing collaborative settings in with humans and robots participate can provide insight into the chal-

lenges HRI systems may face, how these hurdles were overcome in the past, and the mechanisms we

can utilize to improve HRI.

Exploring HRI settings poses an interesting question from the very start: what exactly constitutes

a human-robot interaction? On a deeper level, the answer to this question depends on how we de�ne

what a robot actually is. Generally, robots are de�ned as machines, often programmable, capable of

carrying out repeated tasks of variable complexity; they perceive their environment through sensors,

and interact with it through actuators. The higher the level of abstraction used to interpret this de�nition,

the more ambitious the prospect of developing a unifying framework for HRI becomes. We will moderate

our ambition, and pare the level of abstraction, by de�ning a robot as a machine that can move and

physically interact with humans in ways that may be helpful in an industrial, therapeutic, or recreational

setting. Machines that fall under this de�nition are usually designated cobots (collaborative robots),

which the International Federation For Robotics (IFR) separates into two main groups: industrial robots,

and service robots (for both professional and domestic purposes), both of which have the potential for

use in a cooperative way.

The �nal step in de�ning HRI is to establish a more precise de�nition of what constitutes an interac-

tion between humans and robots in a speci�c setting. In the context of collaborative, industrial robotics,

we will de�ne interaction as the manipulation, in short succession, of the same object by a human and a

robot. This contrasts with the broader de�nitions of HRI that could be proposed in other contexts, such
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as social robotics, where humans could touch and manipulate the robot itself, or otherwise in�uence its

action through non-physical interfaces, like voice commands.

For industrial robots, the degree to which they interact with their human collaborators can be used to

place them into one of four distinct categories [3], as shown in Figure 1.1.

Figure 1.1: Industrial robot categories based on interaction with human collaborators.

As we move from coexistence to responsive cooperation, the technical challenges behind HRI grow,

but so does productivity.

Industrial robots can move at high speeds and use considerable force, making unintended contact

with human workers very dangerous. A safer collaborative industrial environment can be achieved

through two paths: adjust robot design, speed, and force, in order to reduce impact of potential accidents

and make movement more predictable and easier to avoid; or equip robots with sensors and software

that attempt to maintain safe interaction, taking human worker behaviour into account.

As for service robots, their applications are numerous. The design diversity among this type of

devices is also very high: while industrial robots often resemble the human arm, service robots may

be vacuum cleaners, humanoid therapists, logistics operators, educational toys, among a host of other

con�gurations. Understanding how they may bene�t from early action anticipation thus warrants a closer

look at the contexts in which these robots can be deployed.

In [4], Garcia et al. explore modern trends in robotics, focusing on the emerging interest in suiting

human social needs. The most common application of service robotics is in the medical �eld, perform-

ing tasks ranging from assisting medical professionals, to rehabilitation work with patients. Regarding

medical assistance robots, such as the da Vinci [5] remote surgery robot, Garcia et al. identify effec-

tive human-robot interfacing as one of the main challenges: as surgeons have their hands occupied,

other channels to exchange information between them and the robot must be explored, such as the

use of voice, or integration of heads-up displays. In this case, action anticipation could serve as an

interaction facilitator in a high pressure environment (something Vesper et al. refer to as ”coordination

smoother” [1]).

Garcia et al. also explore rehabilitation robots in their article, which have not seen as much devel-

opment as other applications, in part due to the dif�culty of establishing effective, rewarding HRI. This

�eld encompasses a range of very distinct applications, from prosthetics to mental health therapy, all of

which rely on close interaction between the patient and the robot, potentially bene�ting from early action

anticipation. Another issue that must be taken into account in this �eld is inclusiveness, as patients will
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often suffer from conditions that may hinder their movement, facial expression, or verbal communication,

among other indicators that could otherwise be used to coordinate interaction and cooperation.

Service robots are also used for domestic applications, though generally bene�ting from a greater

degree of independence. Some are small, easily programmable, educational robots; others, automatic

vacuum cleaners or cooks; there are even recreational robots. The stakes for domestic use are not as

high as in other applications, but closer interaction and cooperation would still make these robots more

appealing and capable companions. As a result, even in a low pressure environment, action anticipation

could still improve the quality of HRI.

1.2 Problem Statement

Having de�ned Human-Robot Interaction as the successive manipulation of the same object by a human

and a robot, and establishing action anticipation as playing a fundamental role in cooperation between

agents, the motivation behind a system capable of accurately, and in a timely manner, predicting human

limb motion becomes clear.

According to previous works [2, 6–8], brain regions responsible for motor action exhibit distinct re-

sponses prior to motion onset, both during imagined and executed movement. Additionally, pupil dilation

and other gaze features have also been shown to provide useful information to predict human action [9].

Thus, given the prevalence of human-robot interaction scenarios, and having identi�ed EEG signals

as potentially providing useful information for action anticipation a physical HRI context, this thesis aims

to answer the following questions:

• How do end-to-end EEG-based action anticipation approaches compare to those that employ fea-

ture extraction based on signal characteristics identi�ed in literature?

• Does the use of gaze information signi�cantly improve the performance of a classi�er for this task,

compared to using only EEG?

• Can classi�cation performance be maintained using imagined, rather than executed, motion?

• How much time advantage can an EEG-based action anticipation system provide, relative to move-

ment onset?

1.3 Objectives And Contributions

The main objective of this thesis is to serve as a basis for the comparison of Machine Learning method-

ologies that use EEG signals to anticipate action, by providing a comparison between different Deep
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Learning, Convolutional Neural Network (CNN)-based approaches to the task of action anticipation from

EEG signals. The resulting action anticipation model should also be capable of anticipating action within

a short amount of time (within 100 milliseconds of action onset). By answering the stated research

questions, this work provides insight into how these signals may be integrated into a robot's control and

decision system to improve human-robot interaction. This document should, thus, provide a foundation

to research aiming to use EEG to coordinate action between humans and robots, as well as an additional

data-point in the growing �eld of research that is EEG-based action anticipation.

The main contributions of this thesis are:

• Describing and implementing an experimental human-robot interaction protocol for action antici-

pation research using EEG;

• Proposing a novel metric that combines classi�cation time advantage with a measure of its con-

sistency;

• Obtaining a dataset for action anticipation that combines time-labelled EEG signals and gaze in-

formation;

• Proposing, testing, and comparing the performance of sole EEG with hybrid EEG + gaze classi-

�ers.

1.4 Organization of the Document

This thesis is organized as follows: Chapter 2 provides a background on EEG signal analysis, action an-

ticipation, human-robot interaction, and current State-of-the-Art approaches to this problem. Chapter 4

describes the methodology used to analyse and classify data, as well as validate the approach and the

results. Chapter 3 details the experimental protocol followed to obtain the dataset to support this thesis,

the materials used, and the dataset used to validate our methodology. Chapter 5 presents the results of

data analysis and classi�cation. A discussion of the �ndings is done in Chapter 6. The thesis concludes

with Chapter 7, offering a brief summary of the document, the procedure followed to tackle the titular

problem, and the main �ndings, �nally referencing potential limitations and suggesting paths of further

research on this topic.
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Chapter 2

Background

This chapter provides a background for the rest of the document, contextualizing the problem, presenting

the tools used in research, and analyzing current literature on the subject. We begin with a description of

basic concepts in electroencephalography and Brain-Computer Interface (BCI) systems, in section 2.1;

then, a short tutorial on methods used in EEG signal analysis is presented, in section 2.2; this is followed

by a brief overview of Human-Robot Interaction and its challenges, with section 2.3; the fundamental

concepts behind CNNs and a motivation for their use are described in section 2.4; �nally, literature on

State-of-the-Art systems is presented and reviewed in section 2.5.

2.1 Electroencephalography Overview

The human brain possesses billions of neurons in constant communication with each other. The electro-

chemical impulses sent between the terminals and synapses of communicating neurons can be detected

at the scalp through the use of EEG.

This functional imaging technique offers a much higher temporal resolution (in the hundreds of hertz)

than its counterparts, such as Magnetoencephalography (MEG) or Functional Magnetic Resonance

Imaging (fMRI), making it particularly well suited for the detection, processing and use of brain signals

in time sensitive applications, such as human-robot interaction.

Through electroencephalography, it is possible to measure the involvement of speci�c regions of the

brain when performing some brain function, such as face processing, memory recollection, or coordinat-

ing motor execution, to name a few.

Analysis of scalp level electrical signals led to the discovery of brain waves: oscillatory voltages

originating from speci�c regions of the brain, which can be associated with a number of different states,

actions, and emotions, as presented in table 2.1.

With regards to motor intention execution, the most notable of these brain waves is the � rhythm,
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Band Frequency Related functions/ states Brain location

Delta (� ) 0-4 Hz Deep dreamless sleep, unconsciousness Frontal (adults), Posterior (children)

Theta (� ) 4-8 Hz Deep relaxation, drowsiness Thalamic Region

Mu (� ) 8-12 Hz Motor action, motion visualization Sensorimotor Cortex

Alpha (� ) 8-15 Hz Day dreaming, relaxed Posterior (occipital/parietal)

Beta (� ) 16-30 Hz Active thinking, focus, panic Frontal and Parietal

Gamma ( ) 30-100 Hz Combination of senses, higher mental activity Somatosensory Cortex

Table 2.1: Brain waves - frequency, functional information, and location.

measured between 8 to 13 hertz, and usually detected over sensorimotor cortex. When humans per-

form or imagine movement, groups of neurons in the sensorimotor region desynchronize, leading to a

disruption in the � rhythm dubbed Event-Related Desynchronization (ERD). By analyzing the EEG sig-

nals from this region, a computer can then detect motor action intention, regardless of whether it was

actually executed or simply imagined (the latter phenomenon is the basis for Motor Imagery (MI) BCI

paradigms, further described in section 2.1.2).

Electroencephalography can also be used to detect other, non-oscillatory, phenomena that occur as

responses to speci�c stimuli or events: Evoked Potentials (EPs) and Event-Related Potentials (ERPs).

The �rst usually present a lower latency, and are associated with lower-level cognitive processes when

compared to the latter. These present as relatively short, low amplitude waves or patterns that appear

after a person is subject to a stimulus. Due to their consistency, they are the base for BCI paradigms such

as Steady-State Visual-Evoked Potential (SSVEP) and P300 (named for a component of event-related

potentials that exhibits a positive peak about 300 milliseconds after stimulus).

2.1.1 Action Anticipation from EEG Signals

In 1965, Kornhuber & Deecke published their �ndings regarding the detection of a readiness poten-

tial preceding voluntary movement [10]. This Bereitschaftspotential (BP), referred to using the original

German term, is made up of two main components: early BP, beginning approximately 1.5 seconds

before movement onset, has a very low amplitude; late BP starts 0.5 seconds before action and exhibits

greater positivity, making it easier to detect. This potential can be detected in electrodes placed over the

Supplementary Motor Area (SMA) and Primary Motor Area (PMA).

Since the BP presents a very low amplitude, in an environment where noise, interference and move-

ment artifacts are prevalent, state-of-the-art action anticipation systems based on EEG signals tend to

focus on analysis of ERD in the � rhythm in across central electrodes.

When designing a study on action anticipation, one must also consider the Contigent Negative Varia-

tion (CNV), a negative surface potential that occurs between an initial stimulus and an imperative action
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Figure 2.1: Bereitschaftspotential as illustrated by Kornhuber & Deecke. Source: [10]

command. The CNV is in�uenced by a number of factors, such as subject attention, predictability of

stimulus, and its intensity. While both CNV and the BP represent preparation for an ensuing action,

there is no consensus in literature as to whether they are the same component [2]. As such, the ex-

perimental design for [voluntary] action anticipation based on the bereitschaftspotential must attempt to

minimize the CNV so as to not confound movement preparation with anticipation of a ”Go” stimulus.

Before movement onset, it is also possible to identify Event-Related Spectral Perturbation (ERSP)

starting at roughly the same time as the BP, even in people suffering from certain neurological condi-

tions, such as Parkinson's disease [11]. These phenomena consist of contralateral-dominant � ERD

and � Event-Related Synchronization (ERS) before movement onset. Due to the larger amplitude of the

� and � rhythms, exploring these in conjunction with the readiness potential leads to improved action

anticipation and classi�cation results [12]. Some studies have also found evidence of embedded  ERS

during self-paced movement [13], although analysis of high frequency EEG components often requires

a high Signal-to-Noise Ratio (SNR), which is unrealistic outside laboratory settings.

2.1.2 Brain-Computer Interfaces

With the goal of closing the control loop connecting the human brain and computers, BCIs were devised

based on an array of consistent neurophysiological responses to stimuli, that can be detected using

functional imaging. These systems are generally implemented with the goal of conducting research on

human cognition and sensory-motor functions [14], as well as rehabilitation of patients suffering from

neurological disabilities [15]. Electroencephalography-based BCI systems generally follow one of three

main paradigms:

Motor Imagery: This paradigm resorts to a higher-level cognitive response by the subject. In MI-

BCI, the participant is asked to imagine motor action, such as moving a speci�c arm or leg; the

subject's EEG signals are then epoched (divided into speci�c time-windows), processed, and clas-

si�ed using a Machine Learning pipeline to decode the action taken, generally based on � ,� band-

power at central electrodes; and a render of the action the system detects is then presented to the

user on a screen, closing the feedback loop. This process has been found to promote neural plas-

ticity and restore neurological function to victims of brain damage resulting from strokes [16], as
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functional imaging has demonstrated a strong association between neural activation during MI and

motor preparation. Due to the relatively high cognitive workload, MI experiments require consider-

able user focus and mental effort, potentially tiring the participant and degrading results during long

sessions [17].

P300/ERP: Exploring a lower-level cognitive response to stimuli, the P300 paradigm makes use of

the consistent ERP response to certain stimuli to replace or augment motor function in users. During

P300-BCI, subjects are presented with frequent, irrelevant stimuli, and infrequent, but relevant or

desired, stimuli - hence being often referred to as an ”oddball paradigm”. Upon exposure to the target

stimulus, a Machine Learning pipeline attempts to detect the P300 ERP and inform the subject of this

event. For example, a grid with random letters may be presented to the user, who is asked to focus

on speci�c letters to construct a word or sentence; the rows and columns of the matrix then �ash

in random order, eliciting a P300 response when they contain the target letter; the system is tasked

with translating these signals into the desired sequence [18]. As a result, users become capable of

writing without the need to move their upper limbs or using their voice.

Steady-State Evoked-Potentials: Due to their high signal-to-noise ratio and artifact resilience, Steady-

State Evoked-Potentials form the basis of a BCI paradigm that can deliver a high information rate,

and even be used in situations where a subject's consciousness is impaired. These EPs are referred

to as ”steady-state” because user's are presented with stimuli at frequencies high enough that the

transient responses to individual stimuli overlap, generating a sinusoidal, steady-state response. The

stimuli used for these BCI systems are generally visual, resorting to lights or screens �ashing be-

tween 3:5� 75 Hz, but auditory stimuli can also be used, and are usually applied to detect the effects

of general anesthesia on the brain [19]. During SSVEP experiments, participants may be asked to fo-

cus their gaze upon one of several targets, each �ashing at a speci�c frequency, upon hearing some

cue, or with the goal of carrying out a task; the EEG signal may then be analysed to identify which

target the user was focused on, as waves of the corresponding frequency, as well as its multiples,

will be detected. These detections may then be used by the BCI system to perform tasks such as

controlling a robotic arm [20], or write a sentence [21].

While the applications of these paradigms may not always coincide, it can be helpful to visualize

some of the differences between them, as done in Figure 2.2.

2.2 Analysis of Electroencephalography Signals

While the applications of different BCI paradigms may differ, as well as speci�c system implementa-

tion details, certain considerations related to EEG signal analysis must always be made, informing the

methodology proposed in Chapter 4.
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Figure 2.2: Comparison between main Brain-Computer Interface paradigms.

Designing an EEG signal analysis and classi�cation pipeline requires a mindful examination of the

following aspects: spatial �ltering and source localization; noise and artifact removal; and the window-

ing/epoching performed on the signal.

2.2.1 Spatial Filtering and Source Localization

Generally, EEG setups are comprised of 16 to 32 electrodes placed over the scalp. In order to reduce

the dimensionality of data the algorithm has to handle, the most relevant channels may be selected

through spatial �ltering [22]. There are several ways of performing this action, ultimately obtaining a

more robust, lower dimensionality dataset.

The simplest �lters that can be applied to this effect are a Common Average Referencing (CAR) ,

where average potential of all electrode channels is subtracted from each channel to average the model

error and prevent biasing towards a speci�c region [23], and Laplacian Filters , calculated by estimating

the second-derivative with surrounding electrodes, which act as spatial high-pass �lters that identify

regions of interest [24].

There are also more complex methods to tackle these issues:

Principal Component Analysis (PCA) computes the principal components of the signal, of which

we can select the dimensions that explain the highest variance, yielding a lower dimension signal

without signi�cant loss of information [25];

Independent Component Analysis (ICA) decomposes the signal into non-Gaussian components,

with the goal of isolating independent signal sources, and thus being capable of removing in-band

noise and Electrooculography (EOG)/Electromyography (EMG) artifacts, which appear as compo-

nents distinct from EEG [26];

xDAWN is a spatial enhancement algorithm that improves Signal to Signal-plus-Noise Ratio (SSNR)
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for better ERP detection [27];

Canonical Correlation Analysis (CCA) works on epoched datasets by calculating the linear trans-

formations that maximize correlation, improving performance for Visual-Evoked potential (VEP),

SSVEP and ERD event detection, and allowing for muscle artifact removal [28];

Common Spatial Pattern (CSP) consists of breaking down EEG signals into subcomponents that

maximize variance between data classes, aiding in binary classi�cation problems. This is often com-

bined with a �lter bank that extracts motor-relevant brain wave frequencies to decode EEG signals.

This approach, the Filter Bank Common Spatial Pattern (FBCSP), is generally considered the stan-

dard, traditional approach to decode motor action/MI [29].

Additional sensors, such as EOG or EMG sensors, can be placed around the eyes and jaw muscles

to improve detection and removal of disruptive artifacts caused by movement by identifying these events.

The placement of electrodes over the scalp also raises the issue of source localization, as each

electrode will receive signals originating from all regions of the brain, rather than only those directly

underneath it. This issue is compounded by the non-linearity of the mediums through which the electrical

signals travel to reach the electrode, as well as the inter-subject variability of signal source locations due

to differences in the brain sulci. This problem is known as volume conduction, and may raise issues when

attempting to apply simple channel selection methodologies based on functional imaging literature, such

as naively selecting the C3 � Cz � C4 electrodes when performing MI. As mentioned above, ICA can

be helpful in isolating signal sources, alleviating this issue; it can also be useful to visually inspect and

compare a subject's bandpower spatial distribution for the different experimental conditions, focusing on

changes in regions related to the brain function exercised in the experiment.

Figure 2.3: Standard 10-20 system for electrode placement in EEG.
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2.2.2 Noise and Artifact Removal

EEG sensors are designed to pick up very low amplitude voltage across the scalp surface, since EEG

signals at this location are usually in the 10-100 microvolts range [30]. This means, along with the

desired EEG signals, the sensors will detect a host of other sources: power grid interference in the 50-

60 Hz range, EOG and EMG activity, and EEG signals from distant parts of the brain, known as volume

conduction [31]. In order to extract useful information from this data, it is thus necessary to preprocess

the signals in order to reduce noise.

Figure 2.4: Power spectral density analysis of an EEG recording from [32]. A large peak around 50 Hz is noticeable
from power grid interference.

The simplest type of noise to deal with is out-of-band noise. Since movement anticipation often

involves a study of the � and � bands, a simple bandpass �lter can be applied for each respective

frequency range (8-12 Hz and 16-30 Hz). This way, noise outside these ranges, such as the result of

power grid interference, is dampened.

After applying a bandpass �lter, it is still necessary to deal with in-band noise. As mentioned in

section 2.1, � activity occurs in the same frequency range as the � waves that precede movement; due

to volume conduction, the sensors placed above the sensorimotor cortex will detect these � waves, and

bandpass/spatial �lters will not remove them. ICA is often used to deal with these problems, and can be

applied in this case to deal with in-band noise from undesired sources. ICA is also useful for EOG and

EMG artifact removal, as these can be isolated as different sources and �ltered.

For ERP or Slow-Cortical Potential (SCP)-based paradigms, relevant electric potentials may often

be dif�cult to detect and distinguish from background noise or other potentials. To solve this problem,

ERP/SCP analysis usually calculates a grand-average across trials, revealing the underlying waveform

generated by the stimuli, and facilitating the detection of relevant components, such as the P300.

13



Figure 2.5: EOG artifacts present in dataset [32], visible as large, sudden amplitude changes in EEG signal, high-
lighted in a red box.

2.2.3 Windowing/Epoching

Certain features which are important for event detection, such as bandpowers during MI trials, require

an analysis of frequency-domain features, rendering the direct application of Machine Learning algo-

rithms for time series classi�cation inadequate. Additionally, if the system is to be implemented in an

“online” (real time) setting, the system must be capable of basing its decisions on the segments of data

it receives, keeping its memory usage reasonable. As such, it is often necessary to split the data into

epochs and calculate features that can be handled by the Machine Learning pipeline. Alternatively,

time-frequency decomposition can be applied to retain both time and frequency information, using a

moving window to generate an input for the Machine Learning classi�er. By providing the classi�er with

only a segment of the entire EEG signal, data dimensionality is also reduced, improving classi�cation

performance and reducing the amount of computing resources used.

The primary choice for this step relates to the length of the epoch time window. Intuitively, one may

believe this interval should be shortened as much as possible; it should, at the very least, be shorter

than the minimum interval between stimuli, and allow the system to classify the data in as little time as

possible. There are, however, lower bounds to epoch length: �lters often generate edge effects that

can strongly impact the data for short time windows; if the window is too short, it may also span such a

small portion of the wavelength that noise or other artifacts supersede the useful data. To diminish these

effects, the epoch length chosen for action anticipation systems is in the 250 to 500 millisecond range,

in order to span few wavelengths in the � band, and thus provide maximum time gain without affecting

data/prediction quality.

Epoching also allows for the representation of the data in each epoch within a low dimensional feature

space, or to extract frequency-domain information. In order to do this, useful features can be generated

from the time data of each epoch based on known characteristics of EEG signals that anticipate move-

ment. The Fast-Fourier Transform (FFT) or the Welch method can be used to calculate the power of
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the � and � bands, which can then be used to create a combination of different features (such as band

power ratios), or as features themselves. Ultimately, the set of features used to represent the epoch

data should be tailored to the speci�c system that is being designed, based on functional imaging and

neurophysiology literature, so as to maximize classi�er performance.

2.3 Human-Robot Interaction

In order to better understand the role action anticipation plays in the context of HRI, it is important to

study the main challenges behind achieving safe, productive, and ful�lling interaction between humans

and robots. We may separate these problems into two distinct, but not independent, branches: physical

HRI, concerning the safety, ef�ciency, and reliability of mechanical robotic systems, and the cognitive,

social aspect of robotics, studying the psychology behind HRI, and how humans may relate to robots, as

well as how the latter may be perceived as displaying affection and personality. Having de�ned HRI as

a strictly physical phenomenon in the context of this thesis, a deeper look at the challenges of physical

HRI is in order.

2.3.1 Physical Human-Robot Interaction

A wide range of issues must be considered when developing physical robotic systems made to interact

with humans. These robots must not only be safe and reliable, but also be perceived as such by their

human counterparts. However, the unpredictability of anthropic environments makes modelling every

possible world state impossible, and requires robots to behave with at least some degree of autonomy,

requiring careful design and control.

In their “Atlas of physical Human-Robot interaction” [33], de Santis et al. portray dependability in

physical HRI as the interplay between 5 key attributes: safety, reliability, availability, integrity, and main-

tainability. Of these, safety, in particular, relies on an accurate anticipation and modelling of human

action. For physical HRI to be safe, collisions must be avoided, even at the cost of risking task comple-

tion. To achieve this, changes to the mechanical design of the robots may be made, such as using lighter

materials, or applying compliant transmissions; however, safety can also be improved by equipping the

robot or its environment with adequate sensors, with the goal of obtaining a model of human behaviour

that can inform the robot's control and decision systems.

Robot reliability in physical HRI can also bene�t from integration of action anticipation into the control

and decision system: more accurate information about human action can improve fault-handling by

allowing the robot to identify potential changes in its environment and the objects it is manipulating. By

potentially preventing unsafe robot actions, access to this information can also avoid triggering fail-safe
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mechanisms that lower robot uptime, and may have a downstream negative effect in the production

process.

Ultimately, a physical HRI system is made safer and more reliable through the coexistence of proac-

tive and reactive behaviours. To enable the former, action anticipation systems are fundamental.

2.4 Machine Learning for Action Anticipation

Machine Learning consists of the design, training, and evaluation of models capable of representing

patterns “hidden” within data, dispensing the need for explicit development of algorithms and models to

solve speci�c problems.

One common application of Machine Learning methods is to solve the task of data classi�cation,

extracting patterns from data and attempting to label them as belonging to some target class. When the

target classes are de�ned a priori, and the classi�cation of a set of data points is known, we are in the

presence of a supervised learning classi�cation problem.

The challenge of action anticipation from EEG can be cast as a Machine Learning classi�cation

problem: in this case, we want to label a speci�c segment of data (an epoch) as either preceding action

or not. The Machine Learning model is trained on classi�ed epochs, with the goal of learning which

features can be used to distinguish action anticipation epochs from resting epochs.

Neural networks are machine learning models inspired by the functioning of the brain, consisting

of interconnected nodes (neurons) that perform speci�c operations, altered over a learning process to

produce an optimized output. In its most basic con�guration, neural networks present fully connected

layers, through which an input is forward propagated to obtain a classi�cation decision, and the resulting

error is backpropagated in order to train the neurons, using gradient descent.

Though capable of expressing complex patterns, these networks suffer from a severe curse of dimen-

sionality, as a large dimensionality input, such as an image, will have each of its features correspond

to a single neuron in the input layer (in the case of an image, this corresponds to each pixel). Then,

as layers are sequentially added, each fully connected, the number of links between neurons becomes

unmanageable, and training quickly becomes impossible, as each neuron must update its weight with in-

formation from all neurons in the following layer, demanding thousands of computations. Because these

networks consist of such layer stacks, this area of Machine Learning is referred to as Deep Learning.

2.4.1 Convolutional Neural Networks

As a solution to the problem of high dimensionality in image analysis and classi�cation, Convolutional

Neural Networks (CNNs) were developed, inspired by human vision processing, introducing specialized

layers capable of interpreting and classifying images and other large inputs with much fewer training
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parameters than a fully-connected Neural Network using each pixel value as an input feature. An added

bene�t of a simpler model is the prevention of over�tting, which may occur when an overly complex

model fully learns its training dataset, but becomes less capable of correctly classifying data outside this

set.

A key difference in the structure of a CNN is that its neurons organize in a three-dimensional scheme:

height by width by depth1. CNNs consist of a sequence of three types of layers: convolutional layers,

pooling layers, and fully-connected layers.

Convolutional layers determine the output after applying a convolution to their input with a trainable

kernel (also called �lter). This kernel is a small matrix of weights spread along the input depth, �ltering

the input image into an activation map. For each kernel in the layer, an output will be produced, which is

then stacked to form the output volume. An important assumption is made here: a feature that is useful

in some region of the image is assumed to be useful anywhere else in the image. It is this assumption

that allows each depth slice of the input to simply be convolved with a kernel, massively reducing the

number of free parameters, as all neurons in the same depth layer will share the same weights. To each

kernel is also associated a bias, with the same spatial dimensions as the output.

Formally, take a layer input X of dimensions hin � win � n (height by width by depth), out of a set

of T training examples: X 2 f X t for t = 1 ; :::; Tg. To each layer, an arbitrary number d of kernels K is

associated, as well as bias vectors B , producing an output volume Y. So as to clarify notation, different

terms will be used to iterate over speci�c dimensions of different vectors: i is reserved to iterate over our

output depth; j is used to iterate over our input depth (in RGB images, usually referred to as channels);

t will be used to address some sample from the set of examples used to train our model.

Each kernel is a hkrnl � wkrnl window initialized with random values. Our feedforward propagation

expression, for each output volume layer i , is as follows:

Yi = B i +
nX

j =1

X j � K ij ; i = 1 ; :::; d (2.1)

where � denotes the convolution operator. It must be noted that most implementations of CNNs resort to

cross-correlation, rather than convolution, as the convolution “�ips” the image and kernel along spatial

dimensions, which results in additional coding complexity; as a result, learnt kernel parameters are also

be mirrored in networks using convolution, but these implementations remain functionally equivalent,

differing only in terms of notation. The dimensions of the resulting volume after feedforward propagation

are given by the following expressions:

hout =
hin � hkrnl

2
; wout =

win � wkrnl

2
(2.2)

1Unlike usual terminology for Neural Networks, this ”depth” is the third dimension of the activation volume, or output, of a
convolutional layer, rather than the number of layers in the model.
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As a result, the number of convolutional layers an image can pass through is limited, since its size

will decrease with each such operation. When the �nal output is produced, the error is backpropagated

through the network and used to update the kernel values with some variant of gradient descent. Gra-

dient descent uses the gradient of some loss function L(�) relative to a neuron's output to update its

value. In its stochastic form, gradient descent computes the gradient at a single sample, and updates

the parameter using this result as an approximation of the overall gradient:

pt +1  pt � �
@Lt
@pt

(2.3)

evaluated at some sample t, where p is some parameter (in the context of convolutional layers either the

kernel K or the bias B ), and � is a learning rate. This learning rate must be adjusted to yield adequate

results: if � is too high, gradient descent may diverge due to numerical instability; if � is too low, the

algorithm will be slow to converge. A solution to this problem was proposed by Kingma et al. in 2014

with “Adam” [34], a method which makes use of exponentially decaying in�uence of previous �rst and

second order gradients to update the parameters:

mp
t +1  

� 1

1 � � 1
mp

t +
@Lt
@pt

(2.4)

vp
t +1  

� 2

1 � � 2
vp

t +
@2L t

@p2t
(2.5)

pt +1  pt � �
mp

t +1q
vp

t +1 + �
(2.6)

where eq. (2.4) and eq. (2.5) are �rst and second order momentum terms for each parameter, respec-

tively, and � is a small value to prevent dividing by 0. Note the superscript p, as each term corresponds

to a speci�c parameter, rather than momentum being shared across all trainable parameters.

Since each convolutional layer will receive the gradient of the loss function L relative to the output,

it is necessary to compute the gradients relative to the kernel and the bias, as well as relative the input,

since this value must be propagated to shallower layers. To do this, we may use the chain rule, yielding

the following results:

@L
@Kij

=
@L
@Yi

@Yi
@Kij

= X j �
@L
@Yi

; i = 1 ; :::; d; j = 1 ; :::; n (2.7)

@L
@Bi

=
@L
@Yi

@Yi
@Bi

=
@L
@Yi

; i = 1 ; :::; d (2.8)

@L
@Xj

=
dX

i =1

@L
@Yi

full (� )K ij ; i = 1 ; :::; d; j = 1 ; :::; n (2.9)
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where full (� ) denotes the full convolution operator. We may also de�ne three hyperparameters to

optimize the performance of our CNN: depth, stride, and zero-padding. Depth, or the number of kernels

in each layer, may be decreased in order to reduce the number of neurons, and thus model complexity,

but an overly shallow output may not be able to express complex patterns. The stride de�nes how the

kernel is placed along the input image: for example, if the stride is (2; 2), the kernel will be successively

centered at every two pixels along the input, rather than one. This parameter may be adjusted to

produce larger activation, with a low stride, or decrease the image dimensions, by using a high stride.

Finally, zero-padding pertains to the padding of the input border with 0's, allowing for dimensionality to

be controlled. This is particularly useful to ensure the kernel is adequately placed over the entire input.

As a result, the output dimensions in eq. (2.2) become:

hout =
hin + zvert � hkrnl

1 + svert
; wout =

win + zhor � wkrnl

1 + shor
(2.10)

where z represents the total amount of zero-padding along a given dimension, and s represents the

stride length along a direction.

When designing a CNN, it is also important to be mindful of the concept of receptive �eld. Intuitively,

each neuron's receptive �eld can be seen as their �eld of view of the input: as convolutional layers

operate upon their input, each neuron in the following convolutional layer will receive information from

a neighbourhood of pixels; as these layers stack, neurons further from the original input will have an

increasingly wider ”�eld-of-view” of it. If the receptive �eld is too small, larger features may be missed

by the model. This concept is illustrated in �g. 2.6.

Figure 2.6: Illustration of a neuron's receptive �eld. Highlighted in green, the receptive �eld of the neuron in layer
2.

Convolutional layers may be following by activation layers in order to introduce non-linearity in the

model, allowing for more complex features to be expressed by relatively shallow networks. This is

commonly done using a Recti�ed Linear Unit (ReLU) layer, which has been shown to result in faster

training in CNNs compared to other options without sacri�cing generalization accuracy [35]. With ReLU,

negative activation values are set to 0, while positive activation values are preserved.

Pooling layers aim to reduce the dimensionality of the representation within the neural network. To
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do this, a speci�c operation, such as calculating the maximum, or average, is applied to a neighbourhood

of pixels. Due to the destructive nature of this operation, and considering convolutional layers also

reduce the dimensions of their input, use of pooling must be done with care. Use of pooling layers

summarizes features and reduces the computational burden on deeper layers of the network. The

operation of these layers may also make the backpropagation of the loss gradients unclear, though this

can be solved by once again applying the chain rule. In the case of an average pooling layer, this

becomes:
@L
@X

=
@L
@Y

@Y
@X

=
1
P

@L
@Y

(2.11)

where P represents the pool size. This gradient is propagated to the units which were pooled together.

In the case of max-pooling, the value of @Y=@Xmust be calculated locally: for the maximum, this value

is equal to 1; for the minima, it is 0. As such, in this case, the gradient is only backpropagated to the

units selected by the max-pooling operation. The pooling size and stride are de�ned when designing

the CNN, and are not trainable parameters.

Fully-connected layers are responsible for producing decisions based on the activation maps gen-

erated by convolutional and pooling layers. Within these layers, neurons have access to all activations

in the previous layer. The �nal layer, constituted of as many neurons as there are target labels, outputs

the �nal classi�cation result.

Generally, the structure of a CNN is as follows: the input image is fed to a stack of convolutional

layers, followed by ReLU, and a pooling layer; this layer sequence may be repeated several times. The

resulting activations are then used as input to one or several fully-connected layer, and the �nal output is

generated by a fully-connected output layer with sigmoid or softmax activation. An example is shown in

�g. 2.7, a diagram of AlexNet [36], a major development in Computer Vision and use of GPU-accelerated

Machine Learning.

Figure 2.7: Diagram of the structure of AlexNet, designed by Krizhevsky et al. in 2012 [36].
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2.5 Related Work

2.5.1 Research on Action Anticipation from EEG Signals

For this subsection, we will analyze literature documenting several different EEG based approaches to

action anticipation. Planelles et al. [6] provide a comparison of different classi�ers for detecting motor

intention (detecting a reaching motion before movement onset) from ERD where little pre-processing

is performed. Lew et al. [7] explore the detection of self-paced reaching movement intention before

action onset using the BP and complementary EOG and EMG sensors. Finally, Buerkle et al. [8] detail

an approach using a more sophisticated, deep learning technique, Long Short-Term Memory (LSTM)-

Recurrent Neural Network (RNN), to classify upper-limb motor intention before movement.

It should be noted that comparison of results between studies must be done with care: experimental

paradigms may be different, and certain performance measures may not be very meaningful. For ex-

ample, when using a moving window across an EEG recording, the resulting classi�cation dataset will

generally be very unbalanced, making accuracy a poor way to evaluate performance, especially as a

means of comparison to an epoch-based post-hoc analysis that may feature balanced classes.

Evaluating Classi�ers to Detect Arm Movement Intention from EEG signals [6]

Planelles et al. present a methodology to detect and anticipate arm movement based on the sums

of three frequency bands involved in ERD with [6]. One second windows before movement onset,

and during a resting state, were selected and analysed. Spatial �ltering was then performed using

a Laplacian algorithm, and a band-pass Butterworth �lter was then applied. The FFT was used to

process the signal windows, extracting the sums of three frequency bands from 8 to 30 Hz as features

for classi�cation.

The resulting features were used as inputs to different classi�ers common in BCI applications (k-

Nearest Neighbour, Na�̈ve Bayes, and Support Vector Machines (SVMs)) in order to compare their

performance. SVMs offered the best performance, with a True Positive Rate of 70% and False Positive

Rate of 28%.

This approach is able to achieve a good classi�cation accuracy in action anticipation from EEG

signals using very basic features and traditional (i.e. not Deep) Machine Learning models, with little

pre-processing. However, the False Positive Rate is notably high, potentially rendering a physical HRI

system based on this methodology unreliable; while the simplicity of this approach is noteworthy, more

sophisticated techniques have shown potential to result in a better performance.
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Detection of self-paced reaching movement intention from EEG signals [7]

Lew et al. evaluate the detection of self-paced reaching movement intention using EEG signals in [7].

In this study, the basis for action anticipation is the BP. Notably, great care went into the removal

of movement artifacts, resorting to additional EOG and EMG sensors to this effect, removing EEG

channels with a high correlation to EOG and EMG components before performing CAR. The signal is

then processed with a narrow-band zero-phase non-causal IIR �lter from 0:1 to 1 Hz. After this, channels

were selected using a grand-average of the slow-cortical potential, with manual and automatic selections

being compared in the study.

Classi�cation was done using a Linear Discriminant Analysis (LDA) using a subsampled ( 256to 8 Hz)

EEG signal in 500 millisecond windows.

The average True Positive Rate achieved with this approach was 81 � 11 %. It should also be

noted that this study included stroke patients, highlighting the versatility and robustness of an EEG

signal based approach to action anticipation when working with subjects suffering from neurological

disabilities. This method does present drawbacks, however: basing action anticipation solely on the BP

requires considerable efforts to remove noise and artifacts, as well as complementary sensors for EOG

and EMG, using signal analysis techniques not possible in an on-line classi�cation setting; the speci�city

of the method is also low, although the authors argue this measure could be improved by including more

null trials during training.

EEG based arm movement intention recognition towards enhanced safety in symbiotic Human-

Robot collaboration [8]

Buerkle et al. explore a deep learning approach to the problem of action anticipation using EEG signals

in [8]. In this study, the authors make use of an LSTM-RNN to analyze and classify EEG data with

minimal pre-processing.

To this end, data was split into left/right arm, trial-long epochs. Visual inspection of the EEG channels

was conducted in order to select the channel(s) that presented a noticeable potential before movement

onset, in accordance with literature on BP localization. Unsupervised labelling is then performed to

estimate the actual intentional phase, and clustering results are inspected for false-positives.

The LSTM was then trained and tested using a moving window, with a classi�er trained for each

arm and individual separately. To evaluate performance, a semi-online setup is used, where the LSTM

receives a stream of recorded data, and prediction accuracy and time advantage are recorded.

Ultimately, the authors report an accuracy of 84:98 to 92:08%, and a time advantage (time between

prediction is made and movement onset) of 53 to 513 msfor this classi�cation approach. Recall the

caveat issued during the introduction of this section: accuracy is not a necessarily insightful metric

in this scenario, due to the unbalanced nature of the classi�cation dataset, an may provide an overly
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optimistic idea of performance. This methodology also presents some drawbacks, such as using visual

inspection to pick EEG channels, rather than data-based spatial �ltering, and reliance on manual label

correction after clustering. Nevertheless, the time advantage evaluation and novelty of this approach

warrant consideration when exploring potential ways of anticipating action from EEG signals.

2.5.2 Convolutional Neural Networks in EEG action decoding

Due to their powerful, automatic feature extraction from raw data, CNNs are particularly interesting for

the task of EEG signal decoding and classi�cation. While it may be dif�cult to understand which features

CNN classi�ers have learnt from their training, in part due to the presence of artifacts and signal non-

stationarity, methods have been devised to ”lift the veil” of these Deep Learning methods. Generally,

EEG signal decoding using Deep Learning can be done using three different ways to input data [37]:

using the raw EEG signal, in all its channels, after applying minimal pre-processing (end-to-end ap-

proach); performing some transformation to the EEG signal, such as time-frequency decomposition; or

by transforming and selecting only some of the EEG channels.

Schirrmeister et al. [38] make use of recent advancements in EEG analysis using Deep Learning

techniques to propose and end-to-end approach for decoding and visualization of these signals. Their

study focuses on the exploration of CNNs architectures for action/MI decoding, contributing to literature

with novel visualization methods to identify features learned by the CNNs, and performance metrics on

par with traditional approaches based on FBCSP.

In this study, authors seek to analyze the impact of CNN design choices and training strategies on

performance. Training methodologies, such as batch normalization, and ”cropped training”, where the

models are trained on crops of trials, rather than their entire duration, were also evaluated.

Among the most notable �ndings, CNNs demonstrated accuracy as high as FBCSP, with marked

improvement when applying batch normalization and exponential linear units; and the proposed visual-

ization method for feature importance revealed the CNNs were capable of identifying meaningful features

in the �; �;  bands.

Tabar & Halici identify the limited number of studies exploring Deep Learning approaches to BCI as

opening an avenue of research [39]. Since their study was published, in 2016, this �eld of research has

expanded, but their approach remains an interesting basis for this thesis.

In their publication, the authors investigate the use of CNNs and Stacked Auto-Encoders to classify

MI in the BCI competition IV dataset 2b [40], making use of the Short-Time Fourier Transform (STFT)

to preserve temporal, frequency, and spatial information for classi�cation. This transform was applied

to each separate EEG channel to create a stack of ”images” to be given as input to a CNN, which then

performed convolution and pooling over the temporal dimension. Ultimately, their results show the use

of this Deep Learning methodology improved classi�cation results relative to traditional approaches.
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Generally, feature extraction and classi�cation is based on expected signal characteristics, with

pipelines and classi�er architectures tailored to speci�c paradigms. Lawhern et al. address this by

proposing, testing, and comparing a CNN con�guration against other State-of-the-Art models across

multiple paradigms [37].

The proposed CNN architecture, named ”EEGNet”, makes use of depthwise and separable convo-

lutions to construct and EEG-speci�c model. By extracting features from the raw signal, this method

avoids multiplying feature dimensionality, keeping a lower number of trainable parameters than alterna-

tive methodologies, and dispensing the need for parameter regularization.

Finally, authors demonstrate that ”EEGNet” offers State-of-the-Art performance metrics across mul-

tiple BCI paradigms, presenting better generalization than other reference methods.

2.5.3 Action Anticipation Using Computer Vision

The most common action anticipation models are those based on Computer Vision, partly due to the

low-cost, ubiquity, and ease to setup of cameras compared to other sensors. Furthermore, in recent

years, advancements in Deep Learning methodologies, and the appearance of large vision datasets,

has accelerated developments in this �eld.

Computer Vision models for action anticipation are generally context speci�c: the models are trained

on videos where humans perform speci�c tasks, and learn to anticipate actions as part of their ac-

tion ”choreography”, such as the sequence of movements a person makes when preparing breakfast.

By making use of cameras, which can be mounted around the environment within which humans and

robots are expected to interact, Computer Vision-based approaches offer the possibility of incorporating

additional information that may be useful to the robot, such as identifying which objects their human

counterparts will interact with, people entering or leaving the area, or changes to the environment that

do not result from human or robotic action.

A vision based approach also offers some challenges: models have to be trained not just to classify

action, but often to hallucinate future actions in order to anticipate them; their context dependence also

leaves them unprepared for unexpected action or movements. As a result, Computer Vision-based

action anticipation bene�ts from comparison with other approaches, such as EEG-based, to potentially

provide a useful complement.

In summary, the �eld of Computer Vision presents a wide range of capable, sophisticated solutions

to the problem of anticipating human action. However, their inherent limitations suggest there is room for

combining them with EEG-based approaches to inform robotic agents in a timely and accurate manner.

24



2.5.4 Action Anticipation using Gaze Features

When interacting in a shared environment, humans interact through both verbal, and non-verbal cues,

such as through their gaze, or certain movements, implicitly communicating their ensuing actions to

those around them. This has been shown by Cannon et al. [41], who demonstrate action anticipation

involves the representation of self-produced action, resulting in prospective gaze when performing motor

tasks. As a result, human gaze encodes information that can be used to anticipate action in a collabo-

rative environment. As an example, prospective human gaze has been studied as a way to make action

more legible and predictable in the work performed by Ferreira et al. [42], where a model of human inter-

action based on gaze and motion information is used to replicate action anticipation cues with a robot,

facilitating interaction with humans.

While the use of prospective gaze features shows promise for action anticipation, it comes with

limitations: by modelling human action and gaze based on interaction with objects within a speci�c

environment, these features may become context-speci�c. For example, Ferreira et al. estimate motion

trajectories associated with speci�c actions and analyze the gaze patterns preceding them; if object or

robot placement changed, their model would have to be updated accordingly. As a result, using gaze to

attempt to anticipate action requires careful consideration of which features are measured and modelled.

A particularly context-independent prospective gaze feature is pupil diameter, as well as features

derived from it. According to Kahneman [43], changes in pupil diameter re�ect cognitive load due to

links between ocular muscles and neurotransmitters, and changes in pupil diameter have been shown

to be a valid measure of cognitive load in response preparation [44]. Based on these �ndings, Naber et

al. [45] demonstrate analysis of pupil diameter allows visual task performance to be anticipated by as

much as 500 ms.

Combining pupil diameter information with EEG is not a novel idea: Rozado et al. [9] explore features

derived from pupil diameter readings during MI-BCI as a way to improve performance, �nding trial mean

diameter to signi�cantly distinguish action anticipation and baseline trials. By combining EEG and pupil

diameter features using a hybrid classi�er, the authors were also able to improve performance relative

to using only either method in isolation.

To summarize, the use of gaze features, and pupil diameter in particular, shows promise as a po-

tential complement to EEG signals for the purpose of action anticipation in an interaction setting, as

demonstrated by literature identifying prospective gaze features, and successful use of hybrid EEG+gaze

classi�ers for similar tasks.
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2.5.5 Literature gap

A review of the literature on this topic reveals several gaps and avenues of research worth exploring.

Papers on action anticipation do not, for instance, explore the potential of CNNs for the task of action

anticipation from EEG, which achieve State-of-the-Art performance in a number of BCI applications, as

described in Section 2.5.2. The ability of these classi�ers to anticipate MI task execution is also not

investigated, despite BCI systems being most used in neurorehabilitation applications that could bene�t

from this capability. The use of pupil diameter features, which can be readily available through the use

of an eye-tracker headset, has been shown to improve MI-BCI classi�cation performance, warranting

a study on the use of such features for action anticipation, identi�ed in literature as exhibiting changes

during response preparation [44]. Finally, application of an action anticipation system in HRI would

bene�t from a clear characterization of the time advantage it provides, often overlooked in research on

this topic, or evaluated by making a decision on what the balance between classi�cation con�dence and

anticipation should be, hamstringing downstream research.

By seeking an answer to our research questions, we wish to plug these gaps, clarifying the potential

of CNNs for action anticipation using EEG signals; analyzing their capability to anticipate MI tasks;

studying how pupil diameter features may be used in complement to EEG data; and producing a metric

to describe system performance that allows further research on HRI to tailor system behaviour for each

speci�c application.
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Chapter 3

Experiments

To obtain multimodal data to develop and support this thesis, a human-robot interaction experiment was

conducted. During this experiment, subjects interacted with a robotic arm in a pick-and-place task, while

their EEG signals and eye movements were recorded. Timed visual cues were shown to the participants

during the experiment, allowing for a period of action anticipation to be isolated, analyzed, and eventually

classi�ed. This section describes the experiment objectives 3.1, the experimental protocol that was

carried out (3.2), the materials used (3.3), as well as a dataset obtained from a similar experiment, used

to validate the analysis and classi�cation pipeline (3.5).

3.1 Experiment objectives

To adequately support this thesis and help answer its research questions, this experiment seeks to ful-

�ll the following goals: �rst, it should provide a clear anticipation window to be used during classi�er

training; second, a condition during which participants perform an MI task must be undertaken, so that

the performance of classi�er anticipation of these tasks can be investigated; third, subjects must be

equipped with sensors capable of producing a multi-modal dataset, including EEG signals and gaze fea-

tures, namely pupil diameter; lastly, as action anticipation is being explored in the context of collaborative

HRI, the task should require participants to interact with a robot in sequential object manipulation.

3.2 Experiment Design

Five subjects were recruited to take part in the experiment, each providing their informed consent (con-

sent form in Chapter A). The experiment consisted of two conditions: Motor Imagery (“NOMOVE”), and

Motor Execution (“MOVE”), both performed during the same session. During each condition, subjects

27



performed a total of 16 trials, with 8 trials for each arm, in a randomized order. The order in which sub-

jects performed each condition was also random: the initial condition was randomly selected, its trials

were performed in succession, and then followed by the other condition's trials. For this experiment,

participants were wearing an EEG cap, as well as an eye tracker.

Figure 3.1: Photo of the experimental setup. Note: the screen presenting visual cues is occluded by the robotic
arm in this image. Personal identifying details and background have been blurred.

Participants were sat in front of a robotic arm, behind which was a computer screen displaying

“Graz” paradigm cues [46], and were asked to remain motionless, with each hand placed forward, upon

a table in front of them. An object was placed centrally, between the robot and the subject, with markers

indicating its 3 possible positions: 'L'- left, 'C'- central, 'R'- right. Before each experiment, a trial run

was conducted during which study participants could prepare for the experimental tasks, ensuring they

understood the experimental paradigm and could interact safely with the robot.

Figure 3.2: Cross on screen cue presented to
subjects.

Figure 3.3: Right-side arrow movement cue presented to
subjects.

Experiments began with a 15 second baseline/setup wait. During each trial, lasting 18 seconds, a
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cross would appear on screen to signal the start for 4 seconds (�g. 3.2); a red arrow would then point

to either side of the screen for 1 second (�g. 3.3); subjects were instructed to, upon disappearance

of the arrow, place the object in front of them in the marker corresponding to the side the arrow had

pointed, using the arm on that side, during Motor Execution condition, or imagine the aforedescribed

movement, during Motor Imagery. The robot would then pick up the object on that side, and place it on

its central position once again, coinciding with the end of the trial; during Motor Imagery condition, the

object remained in its central position for the duration of the trials. Trials were followed by an inter-trial

period lasting 4 seconds. Each condition lasted for around 8 minutes. A diagram of the experiment trial

event sequence is show in Figure 3.4.

Figure 3.4: Diagram of experiment trial event sequence.

3.2.1 Limitations and Applicability for Action Anticipation

For the purposes of this thesis, it is important to analyse the limitations of this experimental design and

validate the applicability of results for the purpose of action anticipation from EEG signals.

Potential limitations, as well as an evaluation of their potential impact, and how it was mitigated, is

done below:

Arrow timing and action anticipation: During analysis and classi�cation, the time period during

which the red arrow is presented is labelled as the action anticipation stage, when the participant

is preparing to perform their task, and phenomena like BP, ERD occur. Over the course of the

experiment, there is a possibility that subjects may sometimes begin their task as a reaction to the

arrow appearing, rather than waiting for it to disappear, as they were instructed. However, even in

these cases, neurophysiological phenomena that precede action will take place during the action

anticipation-labelled epoch, allowing for analysis and classi�cation.

Contingent Negative Variation: This phenomenon, a negative slow surface potential, occurs dur-

ing periods between a ”warning” stimulus and an imperative ”go” stimulus. While it was initially

posited that the CNV and the BP were components of the same phenomenon, some research has
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indicated this may not be the case [47]. As a result, the experimental design could be eliciting an

undesired response similar to BP. To attenuate this, the inter-stimulus interval, between the ap-

pearance of the cross on the screen and the red arrow, was increased to 4 seconds, reducing the

amplitude of the CNV [48], as well as the potential for temporal overlap.

Realism and action anticipation: The experiment performed by the participants was synchronous

(i.e., not self-paced), and involved relatively simple, slow tasks, which is unrealistic in most anthropic

settings. However, the BP, and � � � ERD, are also present during self-paced ”praxis” (day-to-

day) movements [49], making results obtained from this experiment applicable even in more realistic

scenarios.

3.3 Materials

The following materials were used during the experiments:

• Brain Products GmbH actiCAP 32 electrode cap [50], with gel-based active electrode system;

• Brain Products GmbH LiveAmp 32 wireless signal ampli�er [51], with a 500 hertz sampling fre-

quency, 32 electrode channels + 3 accelerometer channels (built into the ampli�er);

• Kinova Gen3 ultra lightweight robot arm;

• PupilLabs Pupil Core eye tracker [52], with 120 hertz binocular eye camera, wide-angle lens world

camera.

The robotic arm was controlled using a Python script via the Kinova Kortex-API. Graz paradigm

visual cues and timing markers were generated using neuXus [53]. Ampli�er readings were relayed to a

LabStreamingLayer [54] stream using the LiveAmp LSL Connector app, and eye tracker data was sent

to an LSL stream using the Pupil Capture LSL plugin. Data streams for the ampli�er, eye tracker, and

neuXus markers were recorded from LabStreamingLayer streams using LabRecorder, and stored as an

eXtensible Data Format (XDF) �le, synchronized over the local LSL clock.

3.4 Subject Description and Remarks

A total of 5 subjects were recruited for this experiment. A description with no personal identifying infor-

mation is presented in table 3.1:

Notable remarks made by participants after condition trials, as well as other noteworthy comments

regarding the experimental setup for each session, are presented below:
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# Sex at birth Prior MI experience Handedness (EHI [55]) Known neurological conditions Condition order
1 Male Yes Right (92) None NOMOVE ! MOVE
2 Male No Right (87) None MOVE ! NOMOVE
3 Male Yes Right (76) None NOMOVE ! MOVE
4 Male No Right(87) None MOVE ! NOMOVE
5 Female No Right (100) None NOMOVE ! MOVE

Table 3.1: Description of subjects who participated in the experiment.

Subject 1: Subject talked halfway through NOMOVE condition trials, asked for protocol to be clari-

�ed; after clari�cation, moved ahead with the rest of the recording for this condition. Subject noted

no considerable tiredness, loss of focus during either condition.

Subject 2: Electrodes displayed high impedance, experiment was carried out after visual inspection

of EEG signal showed signals without excessive artifacts or noise. Subject noted no considerable

tiredness, loss of focus during either condition.

Subject 3: Issues with excessive noise in P7 electrode, was designated as a “bad” channel during

analysis and classi�cation. Subject noted no considerable tiredness, loss of focus during NOMOVE

condition, but reported losing focus during MOVE condition.

Subject 4: Computer monitor was moved to the right side of the subject, as otherwise they were

unable to clearly see the arrow cues. Subject noted no considerable tiredness, loss of focus during

either condition.

Subject 5: Both conditions had to be run a second time, as recordings were corrupted due to a con-

�guration issue. Subject noted no loss of focus during either condition, but reported being mentally

tired after both conditions.

3.5 Validation Dataset Experiment Description

The ”MI EEG Dataset during Arm Control” was obtained by Farabbi et al. [32] to support a thesis on robot

control using a BCI system [56]. As explored in chapter 2, action anticipation phenomena occur even

during MI, making a dataset such as this a valid proxy for studying action anticipation using EEG. For

this reason, this dataset was used to validate prototypes of the data analysis and classi�cation pipeline.

For this experiment, 12 healthy subjects with no prior BCI experience were recruited. All of them were

right-handed, apart from 1 ambidextrous individual. Each subject participated in 3 sessions, lasting up

to 2 hours, over the course of 3 consecutive days.

Across from each subject was a Baxter Robot [57], as well as a computer screen, and a small object

between the robot and the participant. EEG and acceleration information was collected using a Brain

Products 32-channel actiCAP [50] with active electrodes and LiveAmp 32 ampli�er [51], for a total of 32

EEG channels and 3 acceleration channels, sampled at 250 Hz.

Subjects underwent 3 different conditions: resting, �rst-person MI, and third-person MI, with each
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MI condition split into a training phase and a testing phase. During the resting condition, participants

were asked to keep their eyes open for 2 minutes while the screen presented a green cross and an

upward pointing arrow, and then keeping their eyes closed for 2 minutes. For the active conditions, each

trial lasted for 2 seconds of baseline and 4 seconds of MI task (total 6 seconds), preceded by a green

cross appearing on the screen and a beep-sound 1 second before task onset. An arrow then appeared

on screen pointing to either the right or left, indicating the subject should imagine the respective arm

reaching for the object between them and the robot. A total of 40 trials were conducted for each session,

evenly split between training and testing phases, and between right and left arm movement (in random

order).

3.5.1 Purpose of Validation Dataset

The goal of the use of this dataset, within the scope of this thesis, is to provide a starting point and

validate the signal processing and classi�cation pipeline. To perform action anticipation, EEG time-

frequency features were extracted and used to train a classi�er, in a similar way to what would be done

to generate an MI-BCI model for this validation dataset. This dataset was used during the prototyping

stages of the action anticipation classi�cation pipeline, serving as a placeholder until the experimental

design was set and its dataset was produced.
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Chapter 4

Methodology

This chapter describes the methodology applied to develop an action anticipation classi�cation pipeline

from EEG signals and gaze information. The chapter is divided into three sections: section 4.1 de-

scribes the pre-processing applied to EEG and gaze data, the classi�cation models implemented, and

how model parameters were selected; section 4.2 details the data analysis steps taken to obtain in-

sightful features from EEG and gaze data, and how these relate to the task of action anticipation; �nally,

section 4.3 brie�y outlines the work done with a validation dataset for prototyping.

4.1 Time Series Classi�cation

The time series action anticipation classi�cation pipeline can be divided into two stages: data pre-

processing (section 4.1.1), to prepare data for classi�cation through noise �ltering and feature genera-

tion/extraction, and classi�er training and evaluation (section 4.1.3). To answer the research questions

proposed in section 1.2, the following approach was taken:

• Two types of features were used as the basis for EEG signal based classi�cation: STFT features,

and �ltered EEG signals. This allows for a comparison between approaches leveraging generated

features based on literature (STFT), and end-to-end approaches (EEG signal).

• Classi�ers were trained with EEG-only features, gaze-only features, and combined into a hybrid

classi�er, so the effect of integrating gaze features into the system can be evaluated.

• The same pipeline was applied to motor execution and motor imagery task anticipation, to explore

how well this methodology may perform when applied in systems where the user performs MI,

such as during rehabilitation.

• A novel time advantage metric was proposed and evaluated using the trained classi�ers.
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4.1.1 Data Pre-processing (EEG)

To prepare EEG data for classi�cation, the following steps were followed: a one-pass, zero-phase,

non-causal highpass �lter was applied at 0.1 hertz to remove baseline drift; a one-pass, zero-phase,

non-causal notch �lter was applied at 50 hertz to remove grid interference; Common Average Refer-

encing was applied, in order to prevent the signal from being biased towards speci�c areas over the

scalp; Independent Component Analysis was then performed on the signal to remove muscle artifact

components.

ICA operates under the assumption that signal sources are independent, and have non-Gaussian

distributions; the method then estimates signal independent sources by maximizing component non-

Gaussianity, avoiding the stricter condition of component statistical independence. The algorithm em-

ployed in our pre-processing was FastICA, proposed by Hyvärinen & Oja [58], which begins by whitening

data. Take as the original signal a matrix X 2 RM � S (M channels, S samples), which is �rst centered

around 0 by subtracting the mean from each channel:

x ij  x ij � 1=S
SX

j 0=1

x ij 0; for i = 1 ; :::; M j = 1 ; :::; S (4.1)

The matrix is then whitened, so its components are uncorrelated, and have unit variance:

E f XX T g = Q� Q� 1 (4.2)

X  � � 1=2QT X (4.3)

where Ef XX T g represents the eigenvalue decomposition of the covariance matrix of X .

The goal of ICA is to estimate an unmixing matrix W 2 RM � N which projects X into N independent

components. FastICA does this by using an iterative process for each column w of W :

Algorithm 4.1: FastICA.

while n < N do
wn  random vector
while wn not converged do

wn  
1
S

X g(wn
T X )T �

1
S

g0(wn
T X )1Swn

wn  wn �
P n � 1

j =1 (wn
T w j )w j

wn  
wn

jjwn jj

W  [w1; :::; wn ]

where 1S represents a column vector of length S �lled with 1's, and g(u) = tanh u,
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g0(u) = 1 � tanh2(u). This algorithm ensures columns of the unmixing matrix are orthonormal. Con-

vergence of wn is usually de�ned as wn � wn � 1 > 1 � � for an arbitrary, small value � . This algorithm

may also be adapted to only calculate enough components to explain a given percentage of total signal

variance, rather than a �xed amount. In our pre-processing, decomposition into enough components to

explain 99% of signal variance was performed, and muscle artifact removal was conducted, based on the

work by Dharmaprani et al. [59], as implemented in the mne-python package. To identify muscle artifact

components, Dharpramani et al. propose the consideration of three metrics: component peripherality

– how much power concentrates around edge electrodes – which is greater in muscle components;

spatial smoothness – how balanced the power distribution is over the scalp – which is lower in muscle

components; and Power Spectral Density (PSD) slope between 7 and 75 Hertz, which is higher in the

presence of muscle artifacts. A measure of these three factors is computed using logistic regression,

and compared to a threshold. The value chosen for this threshold in our pre-processing was 0.8.

Removal of artifacts using ICA using a low threshold may render the classi�ers less robust to artifacts

if applied in an online setting, where this process is not performed; additionally, since M signals are

reconstructed using the linear combination of the N Independent Components estimated, application

of CSP, which requires the signal matrix to be full rank, is no longer possible (generally, M > N ).

The option to perform ICA in spite of these �aws is justi�ed by the low number of samples available

for classi�er training: the presence of EOG and EMG artifacts could corrupt a considerable number of

samples, skewing results, and attempting to high-pass �lter these artifacts could result in a loss of useful

slow cortical potentials, such as the BP. An attempt to balance all of these factors is behind the threshold

decision mentioned above.

The signal was then epoched, selecting the intervals spanning [0; 1] (containing action anticipation)

and [� 1; 0] (no action anticipation) seconds relative to arrow cue appearing on screen (described in

section 3.2).

The epochs were then processed using a STFT, preserving temporal information. The STFT of a

discrete time signal x(n), using a window w(n), and time step m, is computed as follows:

STFTf x(n)g(w; m) = X (w; m) =
1X

n = �1

x(n)w(n � m)e� j!n (4.4)

The spectrogram representation of this transform is then obtained by squaring the magnitude of the

STFT. The STFT was applied to each channel separately, using a sine window of 64 samples in width,

with a time step of 16 samples between windows, resulting in a 32 channel by 33 frequencies by 31 time

steps image for each epoch.

Before the features were given as input to the Machine Learning models, they were normalized

using a Min-Max scaler (for CNNs), applied to each individual channel and across the time dimension of

a given sample, to range [0; 1], or using a Z-score scaler (for MLP), applied to each sample, also across
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the time dimension.

The use of CNNs also motivates the introduction of a second approach, with no feature extraction

step. Since Deep Learning classi�ers are capable of identifying and extracting useful features, these

can potentially select features on their own (end-to-end approach). Comparing these two classi�cation

pipelines should provide an answer to the �rst research question proposed in our problem statement

(section 1.2).

A diagram summarizing the pre-processing pipelines is presented in Figure 4.1.

Figure 4.1: Diagram of the two data pre-processing pipelines.

4.1.2 Data Pre-processing (vision)

Prior to classi�cation, vision pupillometry data was also pre-processed. Since the eye-tracker used in our

experiments (see chapter 3) only transmits data from one eye at a time, an assumption was made that

pupil diameter is the same for both eyes, and thus a unique value for this measurement could be obtained

by combining data from both eyes. The resulting time series was also heavily corrupted by noise and

artifacts. To mitigate this issue, the following steps were taken: the top envelope of the diameter measure

was estimated based on local (within a 10 sample range) maxima, and any outliers (at least two standard

deviations from mean) were dropped from the time series; then, the signal was recreated at a constant

50 Hz frequency using Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpolation; and the

resulting signal was �ltered using an Exponentially Weighted Moving Average with an � value of 0.1.

The pre-processed signal was then divided into epochs as done with EEG signals. In addition to this,

36



the three most relevant pupillometry features identi�ed by Rozado et al. [9] during their study on BCI-

system performance improvement using pupil diameter information were also computed and appended

to the signal: the diameter mean, derivative, and maximum for each epoch.

Figure 4.2: Pupil diameter estimation (bottom, in orange) from eye tracker signal (top two plots).

4.1.3 Classi�cation Models

The classi�cation models described, trained, and evaluated in this thesis were implemented in Python

(version 3.11.4) using the tensor�ow package (v2.12.0) (keras backend) for the Deep Learning classi-

�ers. Pre-processing (according to section 4.1.1) was done using the mne-python (v1.4.2) and scipy

packages. The computer running the models was equipped with an Intel Core i7-8565U processor (4

cores, 8 logical threads, 1.8 GHz base clock to 4.6 GHz turbo clock) and 16 GB of RAM, with the Win-

dows operating system1. All models were coded and trained ab initio through the tensor�ow package.

The following classi�ers were evaluated (names used to refer to them henceforth and in �gures in

quotation marks): “MLP” - Multilayer Perceptron; “CNN” - Deep CNN; “CNN shallow” - Shallow, fully

convolutional CNN. In addition to these, EEGNet [37] was also tested using raw EEG information, under

the denomination “CNN EEGNet”.

So as not to allow for models to grow unreasonably large, and provide a fair comparison, a maximum

training duration was imposed at 5 minutes per subject/condition pair. This (arbitrary) limitation at such

a low time limit was made for the following reasons: �rst, system ef�ciency, which may sometimes be

overlooked due to the increasing prevalence of highly capable computing systems, is still a major consid-

1Current tensor�ow versions (post v2.10) do not support GPU use with native Windows.
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eration to be made when working on embedded systems, such as robot control and decision systems;

second, training classi�ers in a shorter amount of time allows for more options, with regards to parameter

selection, to be explored and evaluated, as will be described in further detail in this section 4.1.4.

The MLP classi�er was tested to offer a baseline to compare the more sophisticated, State-of-the-

Art CNNs against. This classi�er features fewer hyperparameters, and is generally easier to implement.

However, due to its simplicity, it tends to deal poorly with the high dimensionality of EEG data, and can

be prone to over�tting when training with few examples, so the use of a dropout layer was tested. This

layer sets a percentage of the units in the previous layer to be “ignored” during each training run, during

both forward and backpropagation, leading the remaining neurons to learn more robust features, and

thus reducing the effects of over�tting.

MLP
keras Layer Parameters(s) Observations
Input n/a
Flatten n/a
Dense U units ReLU activation
Dropout D r dropout rate
Dense U units ReLU activation
Dropout D r dropout rate
Dense 1 unit Sigmoid activation (output)

Table 4.1: MLP implementation.

Three CNN architectures were tested: a `standard' CNN, with fully-connected layers after a convolu-

tional block (novel); a shallow, fully-convolutional CNN, based on the shallow architecture proposed by

Schirrmeister et al. [38]; and, for raw EEG signal classi�cation, the State-of-the-Art EEGNet architecture,

as proposed by Lawhern et al. [37].

CNN
keras Layer Parameter(s) Observations
Input
Conv2D F �lters, k � k kernel ReLU activation
Dropout D r dropout rate
MaxPooling2D 2x2 pool size
Conv2D F �lters, k � k kernel ReLU activation
Dropout D r dropout rate
MaxPooling2D 2x2 pool size
Flatten n/a
Dense U units ReLU activation
Dropout D r dropout rate
Dense U units ReLU activation
Dropout D r dropout rate
Dense 1 unit Sigmoid activation (output)

Table 4.2: CNN classi�er implementation.
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CNN shallow
keras Layer Parameter(s) Observations
Input
Conv2D F �lters, k � k kernel ReLU activation
MaxPooling2D 10x10 pool size
Flatten n/a
Dense 1 unit Sigmoid activation (output)

Table 4.3: CNN shallow classi�er implementation.

The “CNN EEGNet” classi�er was implemented as proposed by Lawhern et al. [37].

CNN EEGNet
keras Layer Parameter(s) Observations
Input
Conv2D F 1 �lters, (1, sfreq/2) kernel
BatchNormalization
DepthwiseConv2D (32,1) kernel size Depth multiplier D
BatchNormalization
Activation eLU activation
AveragePooling2D (1,4) pooling stride
Dropout 0.5 dropout rate
SeparableConv2D F 1 � D �lters, (1,16) kernel
Activation eLU activation
Dropout 0.5 dropout rate
Flatten n/a
Dense 1 unit Sigmoid activation (output)

Table 4.4: CNN EEGNet classi�er implementation.

Additionally, the “Adam” optimizer, such as described in section 2.4, was used with a binary cross-

entropy loss. Each classi�er was trained for a single condition (MOVE/NOMOVE) and subject. The

trained models were saved, and then evaluated on a validation set of EEG epochs, randomly sampled

from all epochs (20% validation split). Model performance was evaluated based on 4 different metrics:

accuracy, precision, recall, and F1-score (harmonic mean of precision and recall), over 30 total runs for

each condition. For each model parameter, a performance analysis was conducted, in order to select

the most adequate values, as described in further detail in section 4.1.4.

Gaze Classi�cation

Action anticipation classi�cation from gaze was done using pupil diameter as obtained in section 4.1.2.

The MLP, CNN, and CNN shallow classi�ers were tested on this task. Since this is a single time feature,

classi�cation models have to be slightly adjusted: CNN-based classi�ers used a 1-dimensional convo-

lution, rather than 2-dimensional. Classi�er architectures remained otherwise unchanged, with model

parameters once again selected based on classi�cation performance metrics.
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Hybrid Classi�cation

To understand the potential of introducing gaze features, namely pupil diameter, as a complementary

signal to EEG for action anticipation, the deep learning classi�ers, MLP, CNN, and CNN shallow, were

extended to allow for the parallel classi�cation of EEG and gaze data.

To do this, CNN-based classi�ers were redesigned to feature two parallel convolutional blocks, whose

output was �attened and used as input to the fully-connected dense layers. The MLP classi�er was

redesigned into two parallel fully-connected towers, whose output is given to a single unit to generate

the classi�cation label. A diagram clarifying the �nal hybrid classi�er architectures is presented in �g. 4.3.

Figure 4.3: Diagram of hybrid classi�cation models MLP (left), CNN (middle), CNN shallow (right). Activation,
dropout layers omitted for better visual clarity.

Model parameters for each tower were retained from the previous parameter selection (section 4.1.4)

for each type of feature.

4.1.4 Model Parameter Selection

Model parameters were selected based on “per-parameter” performance evaluation: for each parameter,

an evaluation was conducted on the MOVE condition (all subjects), and the parameter with the highest

sum of accuracy and F1-Score was selected.

An alternative to this approach is the use of a grid search methodology for parameter selection,

where all parameter combinations are tested to select the best performing set; however, this method

requires considerably more computation time, and does not produce a clear picture of how performance

changes with each parameter.
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A key concept in model parameter selection is the “bias-variance” trade-off, the con�ict that occurs

when trying to minimize model generalization error. By increasing model complexity, the “bias” of the

model, that is the errors it makes by not correctly establishing patterns present in training data, de-

creases; in contrast, the model “variance”, the error due to sensitivity to small changes in the training

data, increases. When a model is too complex, suffering from excessive “variance”, the model is said to

be over�tting; in the opposite situation, with a high “bias” due to low complexity, the model is under-�tting.

To achieve a balance between these quantities, model parameter selection should evaluate performance

as complexity increases, identifying the point at which the model begins over�tting (drop in performance)

or reaches a state of diminishing returns (classi�cation performance increases more slowly than com-

plexity).

4.1.5 Time Advantage Estimation

The task of action anticipation seeks to provide a robotic control and decision system with a time advan-

tage relative to the onset of human motion. However, in literature, examples of a unifying time advantage

metric are scarce, and generally context-speci�c. Still, it would be useful to have a measurement of how

soon, and how reliably, a classi�er can anticipate motor action. The Total Time Advantage (TTA) a clas-

si�cation system has, relative to movement onset, can be thought of as the difference between the time

advantage of the earliest sample the classi�er consistently labels as preceding action, which we will

refer to as Decision Time Advantage (DTA), and the computational time the system requires to output a

decision (henceforth Computational Time Delay (CTD)):

TTA = DTA � CTD (4.5)

Obtaining a measure of CTD is straightforward: the computation time spent applying pre-processing

and making a prediction for each epoch must be tallied, and a distribution may then be estimated. It

should be noted, of course, that this metric depends on the performance of the machine performing

the computations, and thus should not be directly compared between systems, or taken as a reliable

estimate of �nal system performance.

De�ning the DTA, requires handling the fuzziness of the concept of “reliable action anticipation”:

since any classi�er may output false positives, taking the earliest anticipation-labelled sample would

provide an unrealistic measure; conversely, requiring the classi�er to make an uninterrupted string of

positive classi�cations could provide an overly pessimist reading. In both of these cases, the balance

between optimism and pessimism would be opaque, as there is no clear indication of how reliably a

certain result can be achieved.

To solve this problem, we may combine the DTA with a measure of classi�cation consistency. To
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do this, we will adjust our metric to be DTAk : the earliest point in time, relative to movement onset, at

which a sample is classi�ed by the system as anticipating action at least k% of the time. Intuitively,

one may expect the positive prediction rate to increase monotonically, from the false positive rate to the

true positive rate, as a sliding window moves from negative (resting) to positive (anticipation) epochs, as

illustrated in �g. 4.4; however, this is not necessarily always the case.

Figure 4.4: Illustration of Decision Time Advantage DTAk with a monotonic positive prediction rate.

Since a non-monotonic variation of the positive prediction rate is not guaranteed, the de�nition of

DTAk must be tuned further, so as to not bene�t spurious classi�cations. The de�nitive de�nition of DTA k

becomes: the earliest point in time at which a sample is classi�ed by the system as anticipating action at

least k% of the time, and after which the positive prediction rate remains above k until movement onset.

This metric is only de�ned for k between the False Positive Rate and the True Positive Rate.

Figure 4.5: Illustration of the Decision Time Advantage DTAk with a non-monotonic positive prediction rate.

To estimate this value, a sliding window was moved from resting epochs to anticipation epochs in

the validation set in 0.1 second time increments; all pre-processing steps were applied to samples

generated this way, which were then labelled by the trained classi�ers for each subject and condition;

this process was repeated over thirty runs. The positive prediction rate at each of these time increments

was computed, and PCHIP interpolation was performed to produce a spline which could be used to
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obtain an estimate of DTAk for each classi�er at several k values.

4.2 Data Analysis and Validation

Apart from classi�cation, EEG data were also analysed, based on literature on BCI and neurophysiology,

to quantify and evaluate features that could impact the task of action anticipation. The focus of this

analysis resided on three features in particular: the presence of an � rhythm peak in each subject's

EEG recording, which was used as an indicator for BCI-illiteracy, a condition which results in poor BCI

performance in some subjects; ERSP during action anticipation, in the � and � bands, to evaluate the

magnitude and consistency of these phenomena that form the basis of MI-BCI, and could potentially

inform action anticipation classi�ers; and PSD distribution over the scalp for different bands, to gauge

the impact of artifacts present even after pre-processing, as well as to evaluate how well PSD distribution

during action anticipation aligns with what is described in literature.

4.2.1 Presence of � Rhythm Peak

In BCI applications, a signi�cant portion of subjects (10 to 30%) demonstrate notably poorer perfor-

mance relative to the rest of the population. Research into these individuals, usually referred to as

“BCI-illiterate”, suggest there are speci�c EEG signal patterns that can be used to identify them with a

reasonable degree of con�dence. During Motor Imagery tasks, Ahn et al. [60] link this condition with

high theta and low alpha powers across different mental states.

Detection of BCI-illiterate subjects is important for several reasons: �rst, an inclusive, reliable system

must be capable of maintaining good performance across a heterogeneous population, underlining the

usefulness of evaluating how well the system fares at anticipating action in these subjects; second, since

our dataset (described in chapter 3) features a low amount of subjects, it can be useful to identify those

who may be BCI-illiterate, as these may be a potential source of variability when measuring classi�er

performance; �nally, analysis of BCI illiteracy in EEG-based action anticipation is scarce, making such

an exploration a valuable and novel contribution to this area of research.

To do this, the PSD of central channels C3 and C4 was computed using Welch's method [61], during

resting and anticipation periods. Welch's method estimates the PSD by averaging the periodograms of

windowed signals blocks. Take some signal x(t) in the time domain, and a window w(t), such as the

Hamming window; we may de�ne the mth block of the signal as:

xm (t) = w(n)x(n + mR); n = 1 ; :::; N � 1; m = 1 ; :::; M � 1 (4.6)

where N is the block length, M is the total number of blocks, and R is the stride. The values of N and
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the choice of window determine the resolution bandwidth, and R provides a trade-off between spectral

resolution and side-lobe level in the estimate: overlap reduces edge artifacts, but also results in lower

spectral resolution. Using a Hamming window, the value of R is generally set to N � 1=2.

The periodogram of block m for each frequency ! k is given by:

Pm (! k ) =
1
N

�
�
�
�
�

L � 1X

n =0

xm (n)e� j 2�nk=L

�
�
�
�
�

2

(4.7)

where L is the total signal length. The spectral density estimate is an averaging of the periodograms

obtained for all blocks over the signal length:

Ŝx (! k ) =
1

M

M � 1X

m =1

Pm (! k ) (4.8)

The values used in our pre-processing pipeline were N = 64, R = (64 � 1)=2. The resulting power

distribution was visually analysed for the presence of a noticeable alpha peak, which was used as a

proxy for BCI-illiteracy.

4.2.2 Event Related Spectral Perturbation

According to literature, an ERSP should be noticeable around the central electrodes during action an-

ticipation, becoming more pronounced upon onset of movement/motor imagery tasks. This perturbation

may be a desynchronization in the � frequency around the sensorimotor area (ERD) and/or a synchro-

nization in the � frequency (ERS). These phenomena should be visible as a reduction or increase in

band power relative to baseline, for ERD and ERS, respectively, around the central electrodes.

To evaluate the presence of ERSP during action anticipation and task execution, the Morlet Wavelet

transformation of signals from central channels C3, C4 was computed for the � (f = [7; 13] hertz, 0:1

hertz resolution) and � (f = [15; 30] hertz, 0:1 hertz resolution) bands around action anticipation epochs,

integrating over the frequencies, and expressed as a percentage of average baseline band power.

To obtain the Morlet wavelet transform of time signal x(t), it is convolved with complex Morlet wavelets

w(t; f ), which possess a Gaussian shape in both time and frequency domains, centered around t = 0

(to prevent phase shift) and f = 0 , respectively:

w(t; f ) = e2�if t e� t 2 =2� 2
(4.9)

The width of the Gaussian, which dampens a complex sine wave, is set by the parameter � , based

on the “number of cycles” n of the wavelet, as follows:
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� =
n

2�f
(4.10)

For EEG signal analysis, n generally varies between the values of 2 and 15. Since � also depends

on wavelet frequency, the time resolution of the transformation changes, as window length is inversely

proportional to frequency. Although this de�nition is the most common, an alternative has been proposed

by Cohen [62], where the formulation is altered to replace the unintuitive “number of cycles” parameter

with the wavelet Full Width at Half-Maximum (FWHM), h:

w(t; f ) = e2�if t e� 4 ln(2) t 2 =h2
(4.11)

By de�ning the Gaussian this way, the time resolution of the transformation remains constant for all

frequencies. It is also possible to do this using the previous formulation, by setting a value of n that is

directly proportional to the frequency of the wavelets the signal is convolved with, rather than �xed. The

relationship between these two formulations is given by:

h =
n

p
2 ln(2)
�f

(4.12)

During our analysis, a value of n = f=2 (h � 187 milliseconds) was used. Additionally, a Morlet

Wavelet transformation was applied for frequencies within [0:1; 60] hertz with a resolution of 0:5 hertz,

n = f=2, also expressing the result as a percentage of baseline average, so ERSP could be visualized

across the entire frequency spectrum used during classi�cation. This process was done using MOVE

condition EEG data.

Analysis of these features should provide insight into whether it is feasible to perform action antici-

pation based on ERD, ERS features, as done for Motor Imagery (such as in the work done by Planelles

et al. [6]), or if these phenomena occur too late to serve as the basis for an action anticipation system.

It would also be interesting to visualize the variability of ERSP across subjects, as this could have an

effect on the reliability and coverage of models based on these features.

4.2.3 Power Spectral Density Band and Region Contributions

Distribution of PSD across EEG bands and regions can help identify the main sources of oscillatory

power in brain activity during speci�c tasks. An analysis of these features can thus be helpful in under-

standing whether ERSP phenomena are occurring over sensorimotor regions during action anticipation,

namely by comparing distributions to baseline time segments.

Differences between subjects are expected: cortical folds differ between people, meaning ERSP may

occur over different electrodes; BCI-illiterate subjects, lacking � PSD peaks, may also present different
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distributions; the concentration of power near edge electrodes or high-frequency bands may also occur

as a result of the presence of noise or artifacts during EEG recordings.

Averaged over epochs and subjects, PSD distribution should exhibit a noticeable peak around the

central electrodes, in the sensorimotor region, for � and � bands, attenuated during action anticipation

epochs, after pre-processing steps were applied (high-pass �ltering, CAR and ICA-based removal of

muscle artifacts). Signi�cant inter-subject variability in power distribution motivates the use of Machine

Learning spatial �ltering, whether by using CSP, or a classi�er capable of performing this operation,

such as CNNs.

To produce the PSD topomaps, the PSD was calculated for all electrodes (Welch's method, N = 64,

R = (64 � 1)=2) during resting and action anticipation epochs. The resulting PSD was averaged across

epochs, and normalized by dividing each band by total power. Cubic interpolation was then performed

between electrodes to produce a visualization of power distribution over the scalp.

4.3 Validation Dataset - Motor Imagery Classi�cation

A validation dataset [32], obtained during a Motor Imagery BCI experiment (described in section 3.5),

was used to prototype the signal analysis and classi�cation pipeline. While the exploration of Motor

Imagery epoch classi�cation is outside the scope of this thesis, an evaluation of classi�er performance

for this purpose provides an interesting data point for comparison: since classi�cation pipeline design

was based on features previously used in other BCI applications, the proposed methodology should

result in a system capable of performing this task.

Application of this methodology to the validation dataset requires slight adjustments: signal epoching

was done by selecting the intervals spanning [0, 3] seconds after the task cue appeared on screen (motor

imagery), and [-1.5, 1.5] seconds around a no action, cross on screen cue (baseline). Since this dataset

was generated over the course of 3 sessions per subject, classi�ers were trained for each session per

subject, and results were averaged across sessions, with 30 runs being performed. Classi�ers were

trained to distinguish between MI (regardless of side) and resting epochs.
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Chapter 5

Results

This chapter presents the results of data analysis and action anticipation classi�cation, performed ac-

cording to Chapter 4. The chapter begins with a description of data analysis results in section 5.1; this

is then followed by the model parameter selection results, in section 5.2; after this, the main action antic-

ipation results are presented, in section 5.3; lastly, classi�er performance on the validation dataset, for

the task of Motor Imagery, is shown in section 5.4.

Results presented in this chapter are complemented with a brief description and contextualization.

Further discussion of results, their implications for this thesis, and their limitations is done in chapter 6.

5.1 Data Analysis Results

Results of the data analysis performed on EEG signals are presented in this section. For ERSP and

PSD distribution analysis, results are presented averaged across subjects, highlighting more common,

broad features; individual analysis results for these features are presented in Appendix C.

5.1.1 Presence of � Rhythm Peak

The PSD averaged over the central electrodes C3, C4, during anticipation and rest epochs, is presented

in �g. 5.1. This analysis shows all subjects, apart from subject 1, exhibit a clear resting � frequency peak,

suggesting this subject may be BCI-illiterate. Another notable �nding is a subtle, but clear, reduction in �

band power during anticipation epochs, when compared to resting state, for subjects 3, 4, 5, suggesting

the occurrence of ERD, as expected from literature.
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Figure 5.1: Power Spectral Density at central electrodes during anticipation, resting epochs, per subject, expressed
as a percentage of total power as a function of frequency. � frequency range between dashed lines.

5.1.2 Event Related Spectral Perturbation

The Event Related Spectral Perturbation during action anticipation and task execution, for the � and

� bands, is shown in �g. 5.2a and �g. 5.2b (subject average, MOVE condition), respectively for each

band. Literature suggests there should be a decrease in � band power relative to baseline (ERD), and

an increase in � band power (ERS), during action anticipation and task execution. These perturbations

should also be greater in the electrode contralateral to the task performed or anticipated.

(a) Alpha ERSP. (b) Beta ERSP.

Figure 5.2: Alpha (� ) and Beta (� ) band power relative to baseline at ipsi/contralateral electrodes before, during,
and after action anticipation (between dashed vertical lines). In red dashed lines (horizontal), average
band power during action anticipation and task execution epochs.
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Indeed, when averaged across all subjects, � ERD can be noticed. However, this phenomenon is not

very pronounced during the action anticipation epoch (between vertical dashed lines), only becoming

more evident during task execution, as would be expected from literature. Additionally, while �g. 5.2b

may suggest the presence of � ERS, presenting noticeable � rebound during task execution, an inspec-

tion of per-subject ERSP plots, in Appendix C, �g. C.1 to �g. C.5, reveals the increase in � band power

is a result of artifacts in the high � band in some subjects, rather than a broad, consistent ERS. These

�gures also show considerable inter-subject variability.

5.1.3 Power Spectral Density Band and Region Contributions

The subject average Power Spectral Density distribution over the scalp, during action anticipation and

resting epochs, is presented in �g. 5.3 (MOVE condition) and �g. 5.4 (NOMOVE condition). In both

conditions, during action anticipation, there should be a lower concentration of � bandpower (ERD), as

well as a higher concentration of � bandpower (ERS), around and behind the central electrodes, marked

in the topographic plots with a “+”.

Figure 5.3: Power Spectral Density topography map for anticipation (top) and resting (bottom) epochs, averaged
across all subjects, MOVE condition. Columns represent different EEG bands.

Figure 5.4: Power Spectral Density topography map for anticipation (top) and resting (bottom) epochs, averaged
across all subjects, NOMOVE condition. Columns represent different EEG bands.
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Both �gures show noticeable, but faint, � ERS around the central electrodes, as would be expected in

literature. During the NOMOVE condition, it is also possible to identify � ERD in this region. Consistently

with the previous analysis of ERSP, these phenomena are not very pronounced during action anticipa-

tion. Additionally, muscle artifacts are visible in both �gures, presenting as a concentration of power

near edge electrodes in lower frequencies (� , � bands), or high peaks near central electrodes at high

frequencies ( bands), in spite of the use of ICA for muscle artifact removal. Once again, inter-subject

variability is considerable (Appendix C).

5.2 Model Parameter Selection Results

Evolution of performance metrics with model parameters, as well as the parameters ultimately selected

for tested classi�cation models, is explored in this section, for the different classi�cation approaches.

5.2.1 Short-Time Fourier Transform Feature Classi�ers

Training of the MLP classi�er involves the selection of 3 model parameters: the number of units in

each fully connected layer U, the dropout rate D r , and the number of training epochs. Evolution of

performance with the number of units in each fully-connected layer can be seen in �g. 5.5; performance

relative to the number of training epochs, with and without dropout, is shown in �g. 5.6

Figure 5.5: Comparison of MLP performance relative to the number of units in each fully-connected layer (Validation
performance for “MOVE” condition, all subjects, Morlet transform features).
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Figure 5.6: Comparison of MLP performance relative to the number of training epochs, with (blue) and with-
out(orange, dashed) dropout (Validation performance for “MOVE” condition, all subjects, Morlet trans-
form features).

Final MLP parameters selected for STFT feature classi�cation were U = 128, D r = 0, 50 training

epochs. It should be noted that MLP performance appears to not bene�t from dropout: this is likely due

to the simplicity of the network, which, even with a large number of training parameters, is unable to

express patterns complex enough to over�t to our training data. Over�tting would likely occur with larger

values of U, and more training epochs, but these con�gurations would require far more computational

resources than CNN-based approaches.

The architecture of the CNN classi�er demands the selection of a larger number of parameters:

the number of �lters in each convolutional layer F , the size of the convolutional kernel k, the number

of units in fully-connected layers U, the dropout rate between layers D r , and the amount of training

epochs. Performance evaluations for these parameters are shown in �g. 5.7, �g. 5.8, �g. 5.9, �g. 5.10,

respectively.

51



Figure 5.7: Comparison of CNN performance relative to the number of �lters in each convolutional layer (Validation
performance for “MOVE” condition, all subjects, Morlet transform features).

Figure 5.8: Comparison of CNN performance relative to convolutional layer kernel size (Validation performance for
“MOVE” condition, all subjects, Morlet transform features).
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Figure 5.9: Comparison of CNN performance relative to the number of units in fully-connected layers (Validation
performance for “MOVE” condition, all subjects, Morlet transform features).

Figure 5.10: Comparison of CNN performance relative to the number of training epochs with (blue) and without (or-
ange) dropout (Validation performance for “MOVE” condition, all subjects, Morlet transform features).

The �nal parameters chosen for the CNN classi�er based on STFT features were F = 32, k = 5, U

= 32, D r = 0, and 75 training epochs. While performance using dropout between layers and a large

number of epochs was similar to the performance obtained using 75 training epochs and no dropout,

due to effects of over�tting, lower computational cost gives the latter con�guration an edge.
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The CNN shallow classi�er, with no fully-connected layers and a shallow con�guration, requires only

the evaluation of 3 parameters: the number of �lters in the convolutional layer F , the kernel size k, and

the number of training epochs. The effect of these parameters on classi�cation performance is shown

in �g. 5.11, �g. 5.12, and �g. 5.13.

Figure 5.11: Comparison of CNN shallow performance relative to the number of �lters in the convolutional layer
(Validation performance for “MOVE” condition, all subjects, STFT features).

Figure 5.12: Comparison of CNN shallow performance relative to convolutional layer kernel size (Validation perfor-
mance for “MOVE” condition, all subjects, STFT features).
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Figure 5.13: Comparison of CNN shallow performance relative to the number of training epochs (Validation perfor-
mance for “MOVE” condition, all subjects, STFT features).

Parameters determined to yield the best performance for the CNN shallow classi�er were F = 64, k =

2, and 150 training epochs. Remarkably, unlike the deeper CNN, this classi�er sees better performance

for lower values of kernel size.

5.2.2 End-to-end Classi�ers

For end-to-end classi�cation, MLP performance relative to model parameters U, D r , and the number of

training epochs, is presented in �g. 5.14 and �g. 5.15.

Model parameters chosen for the MLP classi�er were, thus, U = 128 units, no dropout (D r = 0),

and 50 training epochs. The effect of over�tting is noticeable beyond this number of training epochs, but

attenuated with the use of dropout; training with a larger number of epochs would, however, increase

the computational cost of model training.
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Figure 5.14: Comparison of MLP performance relative to the number of units in each fully-connected layer (Valida-
tion performance for “MOVE” condition, all subjects, end-to-end classi�cation).

Figure 5.15: Comparison of MLP performance relative to the number of training epochs with (blue) and without
(orange) dropout (Validation performance for “MOVE” condition, all subjects, end-to-end classi�cation).

CNN classi�er performance relative to the number of �lters in each convolutional layer, F , the kernel

size, k, the number of units in each fully-connected layer, U, the use of dropout, and the number of

training epochs is shown in �gures 5.16 through 5.19.
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Figure 5.16: Comparison of CNN performance relative to the number of �lters in each convolutional layer (Validation
performance for “MOVE” condition, all subjects, end-to-end classi�cation).

Figure 5.17: Comparison of CNN performance relative to convolutional layer kernel size (Validation performance
for “MOVE” condition, all subjects, end-to-end classi�cation).
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Figure 5.18: Comparison of CNN performance relative to the number of units in each fully-connected layer (Valida-
tion performance for “MOVE” condition, all subjects, end-to-end classi�cation).

Figure 5.19: Comparison of CNN performance relative to the number of training epochs with (blue) and without
(orange) dropout (Validation performance for “MOVE” condition, all subjects, end-to-end classi�cation).

The most performance-impacting parameters in this analysis were the number of units in fully-

connected layers U, and the dropout rate, D r . Final chosen parameters for this classi�er during the

end-to-end approach were F = 4, k = 9, U = 32, no dropout, 600 training epochs.

In the case of the CNN shallow classi�er, the best performance results were achieved using F = 128

58



(�g. 5.20), k = 2 (�g. 5.21), 600 training epochs (�g. 5.22).

Figure 5.20: Comparison of CNN shallow performance relative to the number of �lters in the convolutional layer
(Validation performance for “MOVE” condition, all subjects, end-to-end classi�cation).

Figure 5.21: Comparison of CNN shallow performance relative to convolutional layer kernel size (Validation perfor-
mance for “MOVE” condition, all subjects, end-to-end classi�cation).
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Figure 5.22: Comparison of CNN shallow performance relative to the number of training epochs (Validation perfor-
mance for “MOVE” condition, all subjects, end-to-end classi�cation).

The CNN EEGNet classi�er, as proposed by Lawhern et al. [37], saw little effect on action anticipation

performance as a result of changes to its parameters F 1 and D. Parameters chosen for this model, as

a result, were the values F = 12, D = 2.

Figure 5.23: Comparison of CNN EEGNet performance relative value of F1 parameter - number of temporal �lters
(Validation performance for “MOVE” condition, all subjects, epoched EEG signal).
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Figure 5.24: Comparison of CNN EEGNet performance relative value of D parameter - number of spatial �lters
(Validation performance for “MOVE” condition, all subjects, epoched EEG signal).

5.2.3 Gaze Feature Classi�ers

Using gaze features, the MLP classi�er presented the best performance metric using parameters U =

64 (�g. 5.25), no dropout, and 25 training epochs (�g. 5.26). Parameter changes had little effect on

classi�er performance.

Figure 5.25: Comparison of MLP performance relative to the number of units in each fully-connected layer (Valida-
tion performance for “MOVE” condition, all subjects, gaze features classi�cation).
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Figure 5.26: Comparison of MLP performance relative to the number of training epochs with (blue) and without
(orange) dropout (Validation performance for “MOVE” condition, all subjects, gaze features classi�ca-
tion).

The CNN classi�er was implemented with parameter F = 32, k = 10, U = 32, 250 training epochs,

and D r = 0.3. Once again, the effect of classi�er design parameters on performance was muted, as

visible in �gures 5.27 through 5.30.

Figure 5.27: Comparison of CNN performance relative to the number of �lters in each convolutional layer (Validation
performance for “MOVE” condition, all subjects, end-to-end classi�cation).
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Figure 5.28: Comparison of CNN performance relative to convolutional layer kernel size (Validation performance
for “MOVE” condition, all subjects, gaze features classi�cation).

Figure 5.29: Comparison of CNN performance relative to the number of units in fully-connected layers (Validation
performance for “MOVE” condition, all subjects, gaze features classi�cation).
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Figure 5.30: Comparison of CNN performance relative to the number of training epochs with (blue) and without
(orange) dropout (Validation performance for “MOVE” condition, all subjects, gaze features classi�ca-
tion).

Finally, parameters chosen for the CNN shallow classi�er using gaze features were F = 32, k = 10,

and 500 training epochs. Performance relative to several parameter choices is presented in �gures 5.31

through 5.33.

Figure 5.31: Comparison of CNN shallow performance relative to the number of �lters in the convolutional layer
(Validation performance for “MOVE” condition, all subjects, gaze features classi�cation).
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Figure 5.32: Comparison of CNN shallow performance relative to convolutional layer kernel size (Validation perfor-
mance for “MOVE” condition, all subjects, gaze features classi�cation).

Figure 5.33: Comparison of CNN shallow performance relative to the number of training epochs (Validation perfor-
mance for “MOVE” condition, all subjects, gaze features classi�cation).

5.3 Action Anticipation Results

This section presents the main results of this thesis, divided by classi�cation approach. For each

method, classi�cation performance metrics accuracy, precision, recall, and F1-score are presented
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considering all subjects, for MOVE (motor execution) and NOMOVE (MI) conditions. Additionally, the

number of trainable parameters of each classi�er, as well as their DTA k at 50%, 75%, and 90%, are

displayed.

5.3.1 STFT Features Classi�cation Scores

Tables 5.1, 5.2 present classi�er performance using STFT features. Of the three classi�ers tested using

these features, CNN shallow exhibits the best performance metrics, closely followed by CNN. The MLP

classi�er does not reach signi�cantly above chance classi�cation performance during either condition.

The time advantage provided by each classi�er, measured in DTA k , follows the same pattern, as shown

in table 5.3, with the CNN shallow classi�er once again being the best performer, reaching a DTA 90 of

approximately 120 milliseconds.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 52.57 22.58 49.12 34.51 62.43 38.89 49.12 29.83
CNN 88.95 16.67 89.69 24.28 86.42 26.02 85.45 23.45

CNN shallow 87.90 19.71 90.09 21.89 91.54 19.03 87.71 20.06

Table 5.1: Classi�cation performance, MOVE condition, calculated across all subjects, over 30 runs, using STFT
features. Highest mean value per metric in bold.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 49.29 13.76 38.76 27.93 59.50 42.49 44.08 29.40
CNN 91.00 13.50 94.61 14.77 89.00 21.18 89.82 16.98

CNN shallow 95.57 8.74 98.32 6.86 93.42 15.01 94.91 10.47

Table 5.2: Classi�cation performance, NOMOVE condition, calculated across all subjects, over 30 runs, using STFT
features.

Classi�er DTA 50 [ms] DTA75 [ms] DTA90 [ms]

MLP n/a n/a n/a
CNN 598.9 308.8 47.8

CNN shallow 611.3 389.0 120.0

Table 5.3: Decision Time Advantage for k = 50%, 75%, and 90%, MOVE condition, averaged across all subjects,
using STFT features. Values expressed in milliseconds.

Classi�er Trainable parameters Relative to lowest

MLP 4342145 � 491.6
CNN 77985 � 8.8

CNN shallow 8833 1

Table 5.4: Comparison of the number of trainable parameters for each classi�er, using STFT features.
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Additionally, we may compare individual subject performance to gauge inter-subject variability, in

�g. 5.34.

(a) MOVE condition. (b) NOMOVE condition.

Figure 5.34: Subject action anticipation classi�cation performance using STFT features.

5.3.2 End-to-End Classi�cation Scores

Classi�cation performance using an end-to-end approach is described in table 5.5, for the MOVE con-

dition, table 5.6 for the NOMOVE condition, and DTA in table 5.7. Under both conditions, the best

classi�cation performance was achieved by the CNN shallow classi�er, followed by CNN. Performance

was similar for both conditions. The shallow CNN classi�er also presented the highest DTA for all values

k.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 73.14 16.07 71.33 17.80 81.33 24.07 73.36 17.52
CNN 77.14 16.90 79.09 20.38 79.33 22.00 77.27 17.89

CNN shallow 88.00 13.81 88.97 15.91 90.50 16.92 88.01 14.02
CNN EEGNet 64.00 20.65 65.30 24.62 70.17 27.24 65.25 22.22

Table 5.5: Classi�cation performance, MOVE condition, calculated across all subjects, over 30 runs, using an end-
to-end approach. Highest mean value per metric in bold.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 68.00 18.64 67.52 20.58 74.33 27.53 68.33 21.06
CNN 76.00 16.52 80.94 21.46 73.67 24.34 74.30 19.13

CNN shallow 92.57 11.51 93.60 12.81 92.33 18.17 91.57 14.51
CNN EEGNet 56.00 20.77 58.23 26.37 60.50 28.91 56.30 22.93

Table 5.6: Classi�cation performance, NOMOVE condition, calculated across all subjects, over 30 runs, using an
end-to-end approach. Highest mean value per metric in bold.
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Classi�er DTA 50 [ms] DTA75 [ms] DTA90 [ms]

MLP 437.3 223.2 64.2
CNN 409.0 170.8 38.3

CNN shallow 450.3 293.6 101.4
CNN EEGNet 390.7 272.6 113.3

Table 5.7: Decision Time Advantage for k = 50%, 75%, and 90%, MOVE condition, averaged across all subjects,
using end-to-end classi�ers. Values expressed in milliseconds.

Classi�er Trainable parameters Relative to lowest

MLP 2068865 � 618.5
CNN 33213 � 9.9

CNN shallow 19841 � 5.9
CNN EEGNet 3345 1

Table 5.8: Comparison of the number of trainable parameters for each classi�er, using end-to-end classi�ers.

5.3.3 Gaze and Hybrid Classi�cation Scores

Gaze feature classi�cation results on a validation set are presented in tables 5.9 (MOVE), 5.10 (NOMOVE).

Performance under the MOVE condition was slightly higher than during NOMOVE classi�cation. In both

cases, classi�cation performance was poor, with only the CNN classi�er reaching a mean accuracy

above 50% for the two conditions.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 56.71 23.34 58.66 33.91 57.85 31.70 52.70 26.48
CNN 62.71 22.76 60.97 34.69 62.17 34.87 57.88 30.57

CNN shallow 59.57 26.50 60.81 33.72 60.80 32.48 57.40 29.85

Table 5.9: Classi�cation performance, MOVE condition, calculated across all subjects, over 30 runs, using gaze
features. Highest mean value per metric in bold.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 48.71 21.29 53.21 33.48 50.77 33.66 46.12 25.61
CNN 53.86 22.21 55.33 32.85 56.30 32.14 50.50 25.96

CNN shallow 48.14 23.18 49.99 31.59 51.68 33.97 45.73 26.26

Table 5.10: Classi�cation performance, NOMOVE condition, calculated across all subjects, over 30 runs, using
gaze features. Highest mean value per metric in bold.

68



Classi�er Trainable parameters Relative to lowest

MLP 7498 � 15.6
CNN 28129 � 58.5

CNN shallow 481 1

Table 5.11: Comparison of the number of trainable parameters for each classi�er, using gaze features.

Hybrid EEG and gaze classi�cation results are shown in tables 5.12 (MOVE), 5.13 (NOMOVE). The

decision time advantage of these classi�ers for multiple thresholds is also presented in table 5.14. The

best classi�cation performance is achieved by the CNN classi�er, closely followed by CNN shallow; MLP

once again demonstrates poor performance, despite a much higher number of trainable parameters. The

DTA provided by the CNN shallow classi�er is slightly higher than that of the CNN classi�er for values

of k 75% and 90%.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 54.86 18.81 47.24 32.90 64.60 39.22 49.04 28.14
CNN 93.14 15.18 96.04 14.24 93.10 17.89 92.43 16.05

CNN shallow 85.71 19.17 93.42 17.05 85.10 22.16 85.81 19.07

Table 5.12: Classi�cation performance, MOVE condition, calculated across all subjects, over 30 runs, using a hybrid
EEG/gaze classi�er. Highest mean value per metric in bold.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 52.29 19.08 41.89 34.85 49.00 42.12 43.31 32.45
CNN 94.57 10.26 97.80 7.76 91.83 16.62 93.59 12.08

CNN shallow 89.71 13.11 93.23 14.25 90.00 17.08 89.65 13.18

Table 5.13: Classi�cation performance, NOMOVE condition, calculated across all subjects, over 30 runs, using a
hybrid EEG/gaze classi�er. Highest mean value per metric in bold.

Classi�er DTA 50 [ms] DTA75 [ms] DTA90 [ms]

MLP n/a n/a n/a
CNN 597.8 314.6 70.5

CNN shallow 597.5 378.9 107.6

Table 5.14: Decision Time Advantage for k = 50%, 75%, and 90%, MOVE condition, averaged across all subjects,
using hybrid classi�ers. Values expressed in milliseconds.

Classi�er Trainable parameters Relative to lowest

MLP 4349633 � 467.0
CNN 66801 � 7.2

CNN shallow 9313 1

Table 5.15: Comparison of the number of trainable parameters for each classi�er, using hybrid classi�cation.
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5.4 Validation Dataset Results - Motor Imagery Classi�cation

Motor imagery classi�cation results using the validation dataset are shown in table 5.16. The best

performance metrics in this case were obtained with the CNN classi�er, closely followed by CNN shallow.

The MLP classi�er failed to reach performance metrics signi�cantly above chance.

Accuracy Precision Recall F1-Score
Classi�er Mean � Mean � Mean � Mean �

MLP 59.41 13.15 43.67 33.39 55.79 44.38 45.14 33.72
CNN 86.85 12.90 87.11 16.67 86.55 20.45 85.32 17.48

CNN shallow 86.34 12.69 83.19 21.95 85.93 23.74 83.12 21.70

Table 5.16: Classi�cation performance of validation dataset motor imagery epochs using STFT features, calculated
across all subjects, over 30 runs.

While outside the immediate scope of this thesis, the maintenance of high classi�cation scores when

applied to an MI-BCI trial classi�cation problem demonstrates the versatility of the designed models.
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Chapter 6

Discussion

6.1 Data Analysis Results Considerations

The results of the data analysis process carried out should be taken into consideration when discussing

the performance and validity of our action anticipation classi�cation pipeline.

Analysis of subject PSD led to the identi�cation of subject 1 as potentially BCI-illiterate. Under this

circumstance, classi�cation results for this subject should be noticeably below those of other subjects.

Indeed, when comparing subject 3's results to those of other subjects, using EEG features, it is

possible to see noticeably lower performance, as shown in �g. 5.34.

While comparison of subject results seems to con�rm our hypothesis, there is a caveat: as described

in section 3.4, this subject appeared to be confused about the experimental protocol, which may suggest

they were distracted, potentially resulting in a confounding effect. Regardless, an effect on performance

measurements should be expected, and this situation may explain some of the variations seen in clas-

si�cation performance (large standard deviations).

During analysis of ERSP phenomena in the � , � bands during action anticipation and task execution,

occurrence of the perturbations described in literature was only clearly detected during motor action. For

the duration of action anticipation epochs, ERSP effects were subtle. Further analysis of individual sub-

ject ERSP plots also demonstrated considerable inter-subject variability, and lacked a broad, consistent

ERS effect in the � band.

These �ndings suggest that, while ERSP occurs during action anticipation, inter-subject variability,

as well as lower amplitude prior to task execution, use EEG signals for action anticipation may require

the employment of more sophisticated pre-processing and feature extraction techniques, such as CSP,

or the design and training of Machine Learning classi�ers with enough complexity to model and extract

complex patterns from time-frequency features or raw signal, such as CNNs.
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Analysis of PSD distribution over the scalp across several frequency bands revealed subtle � band

ERD, as well as � band ERS during MI action anticipation. This result may seem to contrast with �ndings

from ERSP analysis, but these are not incompatible: ERSP analysis was done using the ipsi/contralat-

eral (relative to task side) central electrodes, whereas PSD distribution suggests these phenomena

occurred mainly over more posterior electrodes. This difference highlights the importance of channel

selection during classi�cation, either explicitly (spatial �ltering) or implicitly (classi�er performing feature

selection), exemplifying a small but impactful discrepancy between phenomena described in literature

and how they may be detected during experiments or in real-world applications. Considerable inter-

subject variability further justi�es the need for this individualized channel selection process.

Another notable �nding from this analysis is the clear presence of muscle and movement artifacts

despite the application of ICA. This occurs because selection of components representing movement

artifacts is done by setting a minimum threshold for component correlation with those identi�ed by

Dharmaprani et al. [59], and the value for this threshold was kept purposefully high, in order to pro-

duce more robust classi�ers. In a real-time decision setting, pre-processing must be kept to a minimum,

so allowing the classi�er to be trained on features that present some artifacts can potentially improve

reliability.

6.2 Comparison of EEG based Action Anticipation Approaches

The �rst performance comparison to be made, to answer the thesis research questions, is between the

feature extraction approach, using STFT time-frequency decomposition, and the end-to-end approach.

A bar chart to facilitate this comparison is shown in �g. 6.1.

Classi�cation performance for the CNN shallow classi�er is similar using both methodologies; the

end-to-end approach yields poorer results when using the deeper CNN classi�er, but greatly improves

MLP performance, potentially due to the much reduced number of features. Notably, the CNN EEGNet

classi�er, which boasts State-of-the-Art performance during MI-BCI trial classi�cation, presents the low-

est classi�cation scores. This may be a result of low classi�er complexity, as shown by the low number

of trainable parameters. EEGNet design by Lawhern et al. [37] was greatly informed by features iden-

ti�ed in neurophysiology research to detect the occurrence of Motor Imagery, which may not translate

consistently to action anticipation.
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Figure 6.1: Comparison of classi�cation accuracy and F1-score for classi�ers employing a feature extraction
(STFT) and end-to-end approach (MOVE condition validation scores).

Overall, these �ndings motivate the employment of end-to-end approaches, speci�cally using shal-

low CNN networks, for the task of action anticipation, as the lack of a feature extraction step reduces

computational burden without a signi�cant impact on performance.

6.3 Gaze-based and Hybrid Classi�cation

To understand the potential bene�t of introducing gaze features as a complement to EEG during action

anticipation classi�cation, we may compare the results obtained by classi�ers using either of these

features separately, and in a hybrid approach, as shown in �g. 6.2.
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Figure 6.2: Comparison of classi�cation accuracy and F1-score for classi�ers using a gaze-based, EEG-based,
and hybrid classi�cation approach (MOVE condition validation scores).

Analysis of gaze-based classi�cation results shows poor performance across all classi�ers. As pre-

viously described, in section 4.1.2, gaze data was heavily corrupted by noise and artifacts, and as a

result, classi�cation is being performed on a feature estimated after heavy signal processing. It is thus

excessive to dismiss the potential of gaze features for this task. Additionally, only pupil diameter was

considered during classi�cation; other features, such as the gaze focal point, have been successfully

modelled and used to anticipate human action in context-speci�c interaction scenarios [42], and warrant

further research.

As would be expected due to poor gaze-based classi�cation performance, use of these features in

complement with EEG resulted in only a small improvement (around 4% increases to accuracy and

F1-Score) for the CNN classi�er. Shallow CNN classi�er performance deteriorated slightly with the

introduction of gaze features.

While a hybridization of EEG signal action anticipation classi�ers with gaze features did not result in

a clear performance improvement, poor gaze measurements quality and the potential shown by gaze

features not explored in this work motivate further investigation of this topic.
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6.4 Action Anticipation in Motor Imagery

To establish whether Motor Imagery may be anticipated in a similar way to action execution, we may

compare classi�cation results obtained during the MOVE and NOMOVE conditions, in �g. 6.3. Analysis

of results under these two conditions reveals Motor Imagery anticipation is classi�ed more accurately

than action anticipation for a majority of classi�ers.

Figure 6.3: Comparison of classi�cation accuracy and F1-score for CNN classi�ers using STFT features and end-
to-end approaches for MOVE and NOMOVE conditions.

Interpretation of this result must be done with care. Intuitively, there would appear to be no reason

for Motor Imagery to be easier to anticipate than executed action. As pointed out in section 3.2, there

is a chance, under the experimental protocol de�ned, that subjects may begin their task, be it Motor

Imagery or motor action, prior to the correct time (red arrow disappearance). When performing MI, this

tendency may be accentuated, which would result in more pronounced ERSP phenomena, leading to

(super�cially) higher performance.

Nevertheless, these results demonstrate the possibility of anticipating Motor Imagery task perfor-

mance using the classi�ers developed in this work.

6.5 Classi�er Complexity and Performance

Exploration of CNNs as promising classi�ers for action anticipation was motivated by their potential

to yield better classi�cation results than less sophisticated methods, such as Multi-Layer Perceptrons
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(MLPs), with considerably fewer trainable parameters, reducing computational burden and improving

model generalization.

A comparison of classi�cation accuracy relative to classi�er trainable parameters, as presented in

�g. 6.4, con�rms this hypothesis. CNN classi�ers demonstrate much higher classi�cation accuracy than

MLPs, despite requiring only a fraction of its number of trainable parameters.

Figure 6.4: Comparison of classi�er accuracy relative to the number of trainable parameters. Colors distinguish
between classi�er architectures; results for STFT, end-to-end, and hybrid classi�ers are shown.

While these results highlight the power of CNN-based classi�ers, it must be taken into account that

MLPs are the most basic Neural Network models. Further research is necessary to compare CNNs with

more modern architectures, such as LSTM-RNN, or transformers, for the task of action anticipation.

6.6 System Decision Time Advantage

The Decision Time Advantage, as proposed in section 4.1.5, was evaluated for all classi�ers, with re-

sults shown in �g. 6.5, for values k of 75% and 90%. Recall the threshold established in section 1.2,

demanding an action anticipation classi�er to consistently predict action with at least 100 milliseconds

of advantage.

For a k value of 75%, all classi�ers shown were capable of anticipating action with an advantage

above the threshold level. However, demanding a classi�er positive prediction rate of 90%, only the

shallow CNN architecture, as well as EEGNet, were capable of reaching the desired level of perfor-

mance. This value is arbitrary: the adequate value of time advantage must be determined by evaluating

how the system will be applied in a physical HRI setting, taking into consideration factors like robot

weight, and movement speed.
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Figure 6.5: Comparison of classi�er Decision Time Advantage at 75% (top) and 90% (bottom). Classi�ers that did
not reach a positive DTA for these thresholds are omitted.

Evaluation of this novel measure provides HRI system designers with a clearer trade-off between

classi�er con�dence and time advantage provided. The DTA also complements traditional performance

metrics, such as accuracy and F1-score, by establishing a measure of classi�er performance in a real-

time setting for robotic control and decision systems. In this work, for example, a naive look at other

performance metrics would suggest the best classi�er to be the deeper CNN; however, a shallow CNN

architecture produces a positive action anticipation classi�cation sooner, as shown by a comparison of

DTA. Use of DTA also allows for a more direct comparison of action anticipation performance across

different systems, by clearly stating the level of classi�er prediction con�dence/consistency through the

k value.

6.7 System Limitations

The main limitations of this research relate to the experimental protocol. Firstly, this protocol is cue-

based, rather than self-paced: while literature suggests slow-cortical potentials, such as the BP, and

oscillatory phenomena, such as ERSP, occur in both circumstances during action anticipation [49],

research under a more realistic scenario would be needed to con�rm this. Secondly, it is impossible to

guarantee subjects will not begin task execution while the anticipation cue remains on screen, despite

being instructed otherwise, muddying the distinction between these two states, and leading to optimistic

performance estimates (assuming task execution will be easier to detect than anticipation). Lastly, the
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low number of task trials during each experimental condition, set in an attempt to avoid participant

fatigue, as well as the single experimental session, may be insuf�cient to produce a classi�er that is

reliable when tested in an on-line setting.

Additional limitations of this methodology include:

• Model parameter selection, which could be performed using a grid search process, potentially

uncovering better performing con�gurations than using an individual parameter study, but requiring

signi�cantly more computational work;

• The limited number of different classi�cation models (3 CNNs, 1 MLP) evaluated; more sophisti-

cated, modern classi�ers, such as LSTM-RNN or transformers, are potential and promising alter-

natives which warrant further research for this task;

• Exploration of STFT features as the only alternative to end-to-end approaches; other feature ex-

traction methods, such as wavelet-based decompositions, may also be investigated;

• Low number of experiment participants, limiting the strength of the conclusions which may be

drawn from this analysis.
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Chapter 7

Conclusion

7.1 Conclusions

The work conducted for this thesis aimed to shed light on the viability of using an EEG-based action

anticipation, particularly in the context of physical HRI.

To answer the research questions proposed, an experiment was conducted during which participants

interacted with a robotic arm in a pick-and-place task. EEG signals and gaze information were recorded

and analysed to evaluate the potential of several CNN classi�ers for action anticipation. Two processing

pipelines were evaluated: one performing feature extraction, by computing the STFT time-frequency de-

composition of action anticipation epochs, and one classifying only the noise-�ltered EEG signal. These

classi�ers were also adapted to gaze-based classi�cation, and extended to explore the potential of a

hybrid EEG and gaze classi�cation. Additionally, a novel metric was proposed and evaluated for each

classi�er, combining time advantage provided relative to movement onset with classi�er con�dence.

Through a comparison of classi�ers making use of feature extraction and an end-to-end approach,

this work demonstrates CNN classi�ers are capable of correctly classifying action anticipation epochs

with similar performance in both circumstances, suggesting these classi�ers may dispense with the need

for explicit feature extraction, reducing computational burden. The end-to-end, shallow CNN classi�er

was able to reach an accuracy of 88.00% (� = 13.81%), and an F1-score of 88.01% (� = 14.02%) when

classifying action anticipation epochs.

Employment of hybrid classi�ers, combining EEG and gaze information, yielded slight performance

improvements when leveraging context independent gaze features. Using a hybrid classi�cation ap-

proach, a deep CNN classi�er was able to reach an accuracy of 93.41% ( � = 15.18%) and F1-score of

92.43% (� = 16.05%) when classifying Motor Imagery-preceding epochs.

A comparison of classi�cation performance during Motor Imagery and motor execution revealed sim-

79



ilar performance under both conditions, attesting to the potential of this methodology for task anticipation

in rehabilitation contexts.

Finally, evaluation of a novel time advantage metric revealed shallow, fully-convolutional CNNs were

capable of consistently anticipating action sooner than other architectures tested, classifying 90% of

epochs as anticipating motor action with a time advantage of 120 milliseconds.

This research demonstrates the viability of systems utilizing CNNs, particularly shallow, fully-convolutional

con�gurations, for the task of human action anticipation using EEG signals. This work provides a foun-

dation for the use of such an approach in the context of physical HRI, and establishes a new way of

measuring action anticipation performance which makes con�dence/time advantage trade-offs clearer

for HRI system designers.

7.2 Future Work

Further research is needed to shine more light on the topic of action anticipation from EEG signals.

Future studies should seek to address the limitations and shortcomings of this work, as well as explor-

ing further avenues of research, namely by increasing the number of participants; including subjects

suffering from neurological conditions, such as the sequelae of stroke; conducting an experiment using

a self-paced protocol, leveraging motion detection sensors, such as accelerometers and cameras, to

more clearly de�ne action onset; decoding motor intention, achieving limb-level resolution, rather than

a binary decision on action anticipation; exploring different classi�cation models and con�gurations,

potentially testing architectures with attention mechanisms; and investigating other pre-processing and

feature extraction methodologies, such as by using Wavelet decomposition.

More capable and reliable action anticipation systems also open up further avenues of research in

the area of HRI. Studies on this topic may seek to evaluate the bene�ts of action anticipation on the

safety, reliability, and ef�cacy of HRI, as well as the way human counterparts perceive and interact with

robotic colleagues capable of anticipating their movements.
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Figure C.1: Event-Related Spectral Perturbation analysis
for subject 3, MOVE condition, action antici-
pation beginning at 0 seconds.

Figure C.2: Event-Related Spectral Perturbation analysis
for subject 4, MOVE condition, action antici-
pation beginning at 0 seconds.

Figure C.3: Event-Related Spectral Perturbation analysis
for subject 5, MOVE condition, action antici-
pation beginning at 0 seconds.

Figure C.4: Event-Related Spectral Perturbation analysis
for subject 6, MOVE condition, action antici-
pation beginning at 0 seconds.
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Figure C.5: Event-Related Spectral Perturbation analysis
for subject 7, MOVE condition, action antici-
pation beginning at 0 seconds.
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Figure C.6: Power Spectral Density distribution over the scalp for EEG rhythm frequency bands during resting and
action anticipation, subject 3, MOVE condition.

Figure C.7: Power Spectral Density distribution over the scalp for EEG rhythm frequency bands during resting and
action anticipation, subject 4, MOVE condition.

Figure C.8: Power Spectral Density distribution over the scalp for EEG rhythm frequency bands during resting and
action anticipation, subject 5, MOVE condition.

Figure C.9: Power Spectral Density distribution over the scalp for EEG rhythm frequency bands during resting and
action anticipation, subject 6, MOVE condition.
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