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Abstract

Diabetic foot ulcers are a serious complication of diabetes, with the potential to lead to lower extremity

amputations and even death. Early detection and treatment are critical for preventing these ulcers from

becoming more severe. In this thesis, we propose a novel approach that could be used for monitoring

the progression of diabetic foot ulcers using machine learning techniques.

Specifically, we will use images of feet from diabetic patients to train a fine-tuned convolutional neural

network (CNN) to recognize ulcerations. Our approach leverages the power of machine learning to

provide an objective and automated method for detecting early signs of diabetic foot ulcers. The need

for an automated procedure to detect ulcers arises from several factors that can significantly impact

the accuracy and efficiency of early ulcer detection. While a quick visual inspection by experienced

specialists can be effective, it is not without limitations. One reason is that Diabetic foot ulcers are

a common complication, and the number of patients requiring regular screenings can be large. An

automated system can efficiently analyze a large volume of images in a short time, enabling early

detection and timely interventions for a larger patient population. By fine-tuning the CNN, we aim to

achieve the best possible performance in this specific context, which has not been previously explored

in the field of diabetic foot ulcers.

We will evaluate the performance of our approach using a dataset of images from diabetic patients

with and without foot ulcers. The results of our evaluation will not only demonstrate the efficacy of our

approach but also validate its performance through expert validation by an experienced specialist in the

field of diabetic foot ulcers. This validation adds further credibility and reliability to our proposed system.

Our approach’s effectiveness is underscored by extensive evaluation using a dataset encompassing

images from diabetic patients, both with and without foot ulcers. The outcomes of our evaluation un-

equivocally establish the remarkable efficacy of our method. Furthermore, our approach gains additional

validation through expert scrutiny by a seasoned specialist in the diabetic foot ulcer field, cementing its

credibility and reliability.

The approach goes beyond ulcer detection and encompasses dynamic monitoring of diabetic foot

ulcer progression over time. After ulcer identification, our system diligently tracks the evolution of the

ulcer, assesses the risk associated with each ulcer and classifies them according to specific character-

istics, such as blister size or deformities. This risk assessment provides healthcare professionals with
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valuable information for early intervention to avoid potential complications.

In summation, this thesis introduces an unprecedented and rigorously validated methodology for ul-

cer detection and the continuous monitoring of diabetic foot ulcers using fine-tuned neural networks.

Our pioneering approach, combining cutting-edge machine learning techniques with expert validation,

marks a transformative milestone in the diabetic foot ulcer detection arena. By harnessing the power of

fine-tuned neural networks, an innovation hitherto unexplored in this context, we are poised to substan-

tially elevate patient outcomes and curtail the incidence of lower extremity amputations among diabetic

individuals.

Keywords

Diabetic foot; Diabetic foot ulcers; Machine learning; Neural networks; Convolutional Neural Networks;

Medical imaging; Ulcer detection; Early detection; Patient outcomes; Automated diagnosis; Computer-

aided diagnosis; Image analysis; Foot ulcer progression; Diabetes management.
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Resumo

Úlceras do pé diabético são uma complicação grave da diabetes, com o potencial de levar a amputações

dos membros inferiores e até mesmo à morte. A deteção precoce e o tratamento são cruciais para evitar

que estas úlceras se tornem mais graves. Nesta tese, propomos uma abordagem inovadora que poderia

ser usada para monitorizar a progressão das úlceras do pé diabético usando técnicas de aprendizagem

automática.

Especificamente, usaremos imagens dos pés de pacientes diabéticos para treinar uma rede neural

convolucional (CNN) afinada para reconhecer úlceras. A nossa abordagem aproveita o poder da apren-

dizagem automática para fornecer um método objetivo e automatizado para detetar sinais precoces de

úlceras do pé diabético. A necessidade de um procedimento automatizado para detetar úlceras decorre

de vários factores que podem afetar significativamente a precisão e eficiência da deteção precoce de

úlceras. Embora uma inspeção visual rápida por especialistas experientes possa ser eficaz, ela não

está isenta de limitações. Um motivo é que as úlceras do pé diabético são uma complicação comum,

e o número de pacientes que requerem triagens regulares pode ser grande. Um sistema automatizado

pode analisar eficientemente um grande volume de imagens em pouco tempo, possibilitando a deteção

precoce e intervenções oportunas para uma população de pacientes maior. Ao afinar a CNN, o nosso

objetivo é alcançar o melhor desempenho possı́vel neste contexto especı́fico, que não foi explorado

anteriormente no campo das úlceras do pé diabético.

Avaliaremos o desempenho da nossa abordagem usando um conjunto de dados de imagens de

pacientes diabéticos com e sem úlceras nos pés. Os resultados da nossa avaliação não apenas

demonstrarão a eficácia da nossa abordagem, mas também validarão o seu desempenho por meio

da validação de um especialista experiente no campo das úlceras do pé diabético. Esta validação

acrescenta ainda mais credibilidade e confiabilidade ao nosso sistema proposto.

A eficácia da nossa abordagem é enfatizada pela extensa avaliação usando um conjunto de dados

que engloba imagens de pacientes diabéticos, tanto com quanto sem úlceras nos pés. Os resultados

da nossa avaliação estabelecem de forma inequı́voca a notável eficácia do nosso método. Além disso,

a nossa abordagem ganha validação adicional por meio da análise de especialistas por um especialista

experiente no campo das úlceras do pé diabético, consolidando a sua credibilidade e confiabilidade.

A abordagem vai além da deteção de úlceras e abrange o monitorização dinâmico da progressão
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das úlceras do pé diabético ao longo do tempo. Após a identificação das úlceras, o nosso sistema

acompanha diligentemente a evolução das úlceras, avalia o risco associado a cada úlcera e as classifica

de acordo com caracterı́sticas especı́ficas, como tamanho de bolhas ou deformidades. Esta avaliação

de risco fornece informações valiosas para os profissionais de saúde intervirem precocemente e evitar

complicações potenciais.

Em resumo, esta tese introduz uma metodologia inédita e rigorosamente validada para a deteção

de úlceras e a monitorização contı́nua de úlceras do pé diabético usando redes neurais afinadas. A

nossa abordagem pioneira, combinando técnicas de aprendizagem automática de ponta com validação

de especialistas, marca um marco transformador na deteção de úlceras do pé diabético. Ao aproveitar

o poder de redes neurais afinadas, uma inovação até então não explorada neste contexto, estamos

preparados para elevar substancialmente os resultados dos pacientes e reduzir a incidência de amputações

dos membros inferiores entre os indivı́duos diabéticos.

Palavras Chave

Pé diabético; Úlceras do pé diabético; Aprendizagem automática; Redes neurais; Redes neurais con-

volucionais; Imagens médicas; Detecção de úlceras; Detecção precoce; Resultados para o paciente;

Diagnóstico automatizado; Diagnóstico assistido por computador; Análise de imagens; Progressão

da úlcera do pé; Gestão da diabetes. Diagnóstico assistido por computador; Análise de imagens;

Progressão de úlceras no pé; Gestão da diabetes.
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1.1 Background and context of the research problem

The importance of addressing the mortality rate associated with diabetic foot complications, which re-

mains a critical concern in healthcare systems around the world, must be emphasized. Extensive re-

search studies have consistently demonstrated an elevated risk of mortality among individuals with dia-

betic foot ulcers, underscoring the urgent need for effective prevention, early detection, and appropriate

management strategies. For instance, Armstrong et al. (2017) conducted a comprehensive study that

examined a large cohort of diabetic patients with foot ulcers, revealing a mortality rate of 50% within

�ve years of ulcer diagnosis [8]. This alarming statistic serves as a stark reminder of the critical nature

of addressing diabetic foot ulcers.

Furthermore, the prevalence of diabetic feet represents a global health issue that is projected to

increase substantially in the coming years. According to the International Diabetes Federation (IDF), an

estimated 537 million adults aged 20-79 were living with diabetes in 2021, and this number is expected to

rise to 783 million by 2045, Diabetes is responsible for 6.7 million deaths in 2021, 1 every 5 seconds [1].

Factors such as lifestyle changes, urbanization, and an aging population contribute to this growing trend.

Consequently, the incidence of diabetic foot complications, including ulcers and infections, is expected

to rise proportionally, placing a considerable burden on healthcare systems worldwide.

Notably, the economic expenses associated with managing diabetic foot ulcers are substantial and

affect individuals, healthcare systems, and society as a whole. The costs encompass direct medical

expenses, such as hospitalizations, surgical interventions, specialized wound care, and rehabilitative

services. According to a study by Kerr et al. (2017), the average annual cost of managing a diabetic foot

ulcer is estimated to be $28,112 per patient [9]. In a broader context, diabetes as a whole has caused at

least USD 966 billion dollars in health expenditure, representing a signi�cant increase of 316% over the

last 15 years [1] . However, it is important to consider that the economic impact extends beyond direct

medical costs. Indirect costs related to productivity loss, work absenteeism, and reduced productivity

signi�cantly contribute to the overall economic burden imposed by diabetic foot complications.

By recognizing the mortality rate, projecting the global prevalence, and understanding the economic

implications, it becomes evident that addressing diabetic foot complications is crucial for healthcare sys-

tems and society at large. Effective prevention strategies, early detection, and appropriate management

interventions are vital in mitigating the risk and impact of diabetic foot ulcers, ultimately improving patient

outcomes and reducing the associated economic burden.

Diabetic foot ulcers (DFUs) are a serious complication of diabetes that can lead to lower extremity

amputations and increased mortality rates [10]. Current methods of detecting DFUs rely on visual in-

spections by healthcare providers, which can be subjective and vary in accuracy. Furthermore, there

is often a delay in diagnosis due to the intermittent nature of ulceration, which can lead to delayed
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Figure 1.1: Diabetes around the world in 2021. Source [1]

intervention and increased risk of complications [11].

The implementation of an automated procedure for diabetic foot ulcer detection is imperative due

to several factors in�uencing the accuracy and ef�ciency of early ulcer identi�cation. While a quick vi-

sual inspection by experienced specialists can be effective, it is not without limitations. Moreover, the

prevalence of diabetic foot ulcers demands a scalable and ef�cient solution [1], where automated algo-

rithms can rapidly analyze a large number of images, ensuring timely interventions for a broader patient

population. Additionally, machine learning-based approaches excel in capturing subtle changes in the

skin, which may evade human observation, enabling early detection and prevention of ulcer progres-

sion. By reducing con�dence on specialized expertise, automated systems can be deployed in various

healthcare settings, bridging resource gaps. Furthermore, such systems facilitate continuous monitor-

ing of ulcer evolution, providing valuable insights for risk assessment and informed treatment decisions.

Emphasizing these reasons underscores the signi�cance of an automated procedure, complementing

human expertise to enhance diabetic foot care and ultimately improve patient outcomes.

Machine learning techniques, such as convolutional neural networks (CNNs), have shown promise

in detecting and classifying medical images. CNNs are particularly well-suited to this problem because
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they can detect subtle changes in the skin that may be missed by human observers [12].

Previous studies have used machine learning techniques to detect DFUs, but these studies have

primarily used datasets that are small and do not re�ect the diverse range of skin tones and textures

present in the diabetic population. In this thesis, we aim to build on previous work by using a diverse

dataset of images from diabetic patients to train a CNN to recognize ulcerations.

Our approach has the potential to signi�cantly improve diabetes management by providing an objec-

tive and automated method for detecting early signs of DFUs. By enabling earlier detection and inter-

vention, we can reduce the incidence of lower extremity amputations and improve patient outcomes [13].

Additionally, our approach may have broader applications in the detection and monitoring of other chronic

conditions that manifest as skin changes.

To train our machine learning model, we utilized a publicly available dataset from Kaggle. The dataset

includes images of feet from diabetic patients with and without ulcerations [14] [15] [16].

The dataset we used in this study consists of three folders: Original Images, Patches, and TestSet.

The Original Images folder contains images that were collected from a medical center and have not been

modi�ed. The Patches folder contains images that were extracted from the Original Images and resized

to 224 x 224 pixels, which is a commonly used size for deep learning models. Within the Patches folder,

the dataset is further split into two subfolders: Abnormal skin and Normal. The Abnormal skin folder

contains 500 images of diabetic foot ulcers and other forms of skin damage, while the Normal folder

contains 500 images of healthy skin. These images will be used as input to our deep learning model.

The TestSet folder contains a set of images that were held out from the training data and will be used

to evaluate the performance of our trained model. By training the model to recognize patterns in these

images, we aim to develop a tool that can assist clinicians in monitoring the progression of diabetic foot

ulcers and potentially identify early signs of tissue damage.

1.2 Research questions and objectives

The research questions for this project are as follows:

1. Can machine learning techniques be used to accurately detect and classify diabetic foot ulcers in

images of the feet?

2. How can machine learning models be trained and optimized to improve the accuracy of ulcer

detection and classi�cation?

3. Can the trained machine learning model be used to identify early signs of tissue damage and

assist clinicians in monitoring the progression of diabetic foot ulcers?

To address these research questions, the following objectives were identi�ed:
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Figure 1.2: Podiatrist. Source Creative Commons

1. Compile and preprocess a dataset of images of feet with diabetic foot ulcers and healthy feet from

publicly available sources.

2. Design and implement a deep learning model using convolutional neural networks to accurately

detect and classify diabetic foot ulcers in images of the feet.

3. Optimize the performance of the model through techniques such as data augmentation and hyper-

parameter tuning.

4. Evaluate the performance of the trained model on a separate test dataset and compare it to existing

methods for ulcer detection.

5. Compare the performance of various pre-trained convolutional neural networks (CNNs), includ-

ing VGG16, VGG19, ResNet50, InceptionV3, and Ef�cientNet, for the task of diabetic foot ulcer

detection and classi�cation in our dataset.

6. Demonstrate the potential of the trained model to assist clinicians in monitoring the progression of

diabetic foot ulcers and identifying early signs of tissue damage through visualization and analysis

of model outputs.

7. Implement and integrate interpretability techniques, such as Grad-CAM visualization, to elucidate

how the model arrives at its predictions.

Achieving these objectives will contribute to the development of a tool that can aid clinicians in the

diagnosis and monitoring of diabetic foot ulcers, potentially leading to earlier interventions and improved

patient outcomes.
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1.3 Relevance of the research

The proposed research is highly signi�cant and relevant due to several reasons. Firstly, the prevalence

of diabetic foot ulcers is increasing worldwide, and it is a major complication of diabetes that can lead to

amputations and increased healthcare costs. Therefore, the development of an accurate and automated

system for early detection and classi�cation of diabetic foot ulcers can have a signi�cant impact on

patient outcomes and healthcare resources [17]. Secondly, the use of machine learning techniques,

particularly deep learning, has shown great promise in medical imaging analysis, and the proposed

research can contribute to this �eld by investigating the effectiveness of different pre-trained networks for

diabetic foot ulcer detection and classi�cation [3]. Thirdly, the availability of publicly accessible datasets

like the one used in this study can facilitate research in this area and lead to the development of more

advanced and effective models for detecting and diagnosing diabetic foot ulcers. Finally, the proposed

research can have broader implications for the application of machine learning in healthcare, speci�cally

in developing automated systems for diagnosing and treating various diseases, which can potentially

improve patient outcomes and reduce healthcare costs [18].

Prevention plays a pivotal role in reducing the incidence and burden of diabetic foot ulcers. By imple-

menting preventive measures, we can effectively mitigate the risk factors associated with ulcer develop-

ment, including peripheral neuropathy, peripheral arterial disease, and foot deformities. To maintain foot

health, it is crucial to incorporate regular foot care practices such as daily inspections, moisturization,

and appropriate footwear selection [19]. Additionally, patient education programs emphasizing self-care

and foot hygiene have demonstrated effectiveness in reducing the occurrence of ulcers. To achieve com-

prehensive care and successful prevention strategies, the integration of multidisciplinary teams involving

podiatrists, endocrinologists, and wound care specialists is essential [20].

An important and challenging aspect of diabetic foot ulcer management is the timely detection and

treatment of ulcers before they advance to more severe stages. Our proposed research addresses this

issue by investigating the feasibility of employing machine learning techniques to recognize ulcers soon

after their appearance, enabling early detection and timely intervention. This step is critical in managing

diabetic foot ulcers as it can potentially prevent the need for more invasive and costly interventions like

amputations [21]. The development of an accurate and automated system for ulcer recognition can

signi�cantly impact patient outcomes by reducing the risk of complications and enhancing their quality

of life. Moreover, the utilization of machine learning techniques in diabetic foot ulcer management has

the potential to improve the ef�ciency and effectiveness of clinical practices, thereby reducing healthcare

costs. Thus, our research holds signi�cant implications for both patient care and healthcare resource

management.

The importance and relevance of this research lies in its goal of harnessing the full potential of AI

technology to assist physicians rather than replace them. By streamlining and making their tasks more
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ef�cient, doctors can spend more time caring for patients and ultimately improve healthcare outcomes.

This research aims to bridge the gap between technology and healthcare with the ultimate goal of

improving the lives of both patients and healthcare professionals.

Figure 1.3: AI implementation in medicine. Source: Image created by the author

1.4 Description of the structure of the document

This chapter provides an overview of the structure and organization of the document. The aim is to give

a brief description of the different sections and subsections that will be covered in this work.

• 1. Introduction In this section, a brief introduction to the general topic of the study is provided,

highlighting the importance of detecting and classifying diabetic foot ulcers using machine learning

techniques and convolutional neural networks (CNN).

• 2. Literature Review This section presents a comprehensive review of relevant studies that have

been conducted in the �eld of detecting and classifying foot images using machine learning tech-

niques and CNNs. Previous works that have employed these techniques to address similar prob-

lems are explored, and their results and contributions are analyzed.

• 3. Methodology In this section, the methodology used in the study is detailed. The data collec-

tion and preprocessing procedures are explained, as well as the con�guration and architecture of
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the CNN employed for detecting and classifying diabetic foot ulcers. The training and evaluation

process of the model is also described.

• 4. Results This section presents the results obtained from the training and evaluation of the

model. Different CNNs are compared using various evaluation metrics to determine the most

effective approach for detecting and classifying diabetic foot ulcers.

• 5. Grad-CAM for model interpretability This section explores the interpretability of the results us-

ing the Grad-CAM technique. It discusses how this technique can provide a deeper understanding

of the patterns and features used by the model to make classi�cations.

• 6. Risk of Ulcer Development In this section, the topic of risk of ulcer development is addressed.

An approach is proposed to assess and classify the risk of ulcer development based on the defor-

mities and lesions detected in the foot images.

• 7. Conclusions This �nal section presents the overall conclusions of the study, discusses the

limitations of the proposed system, and proposes directions for future research and improvements

in the �eld of detecting and classifying diabetic foot ulcers using machine learning techniques.

With this structure, the aim is to provide a clear and concise overview of the content and �ow of the

document, allowing the reader to quickly grasp the different aspects addressed in the study.
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The management of diabetic foot ulcers remains a major challenge in clinical practice. The incidence

of diabetic foot ulcers is high and can lead to serious complications, including amputations and increased

mortality rates. Early detection and timely intervention are critical in the management of diabetic foot

ulcers, as delayed treatment can lead to more severe and dif�cult-to-treat ulcers. The use of machine

learning techniques has shown promise in improving the accuracy and ef�ciency of diabetic foot ulcer

management. In recent years, there has been an increasing amount of research focused on using

machine learning techniques for diabetic foot ulcer detection and classi�cation. In this section, we

provide an overview of the current state of the art in machine learning for diabetic foot ulcer management,

with a particular focus on image-based approaches. We highlight the strengths and limitations of existing

techniques and identify gaps in the literature that our proposed research aims to address.

2.1 Review of relevant literature related to machine learning, con-

volutional neural networks, and image classi�cation

Machine learning has become an increasingly popular approach for image classi�cation tasks, including

diabetic foot ulcer detection and classi�cation.

In the �eld of medicine, similar techniques have been successfully applied in various areas. For

instance, in an article on osteosarcoma bone cancer detection [22] [23], convolutional neural networks

(CNNs) and supervised deep-learning methods are utilized.

To detect and diagnose osteosarcoma, bone X-rays and imaging tests are commonly employed.

However, these processes can be time-consuming and challenging, as in our case. In the article, the

authors propose the use of supervised deep-learning methods to automate the detection of bone cancer.

Upon reviewing the literature, several potential challenges emerge in our project.

• Imbalanced Data : The distribution of the data may be skewed towards one class, making it harder

for the model to accurately predict the minority class. This can be addressed by using techniques

such as oversampling, undersampling, or generating synthetic data.

• Limited Data : The number of images in your dataset may not be suf�cient to train a deep learning

model, which requires a large amount of data. This can be addressed by using transfer learning

or data augmentation techniques.

• Model Over�tting : The model may perform well on the training data, but poorly on new, unseen

data. This can be addressed by using regularization techniques such as dropout, weight decay, or

early stopping.

• Model Interpretability : Deep learning models can be dif�cult to interpret, making it challenging to
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understand why a certain prediction was made. This can be addressed by using techniques such

as visualization or attribution methods.

• Hardware Limitations : Training deep learning models can require signi�cant computational re-

sources, including powerful GPUs and large amounts of memory. This can be addressed by using

cloud-based services or renting computing resources.

It is important to anticipate these potential challenges and develop strategies to address them during

the course of our project.

Despite the recent advances in machine learning-based diabetic foot ulcer classi�cation, there are

still several challenges that need to be addressed. One of the major challenges is the lack of large,

annotated datasets for training and evaluation. Another challenge is the high variability in ulcer appear-

ance, which can make it dif�cult to accurately detect and classify ulcers. Finally, there is a need for more

robust and interpretable machine learning models, as current models can be dif�cult to interpret and

may not be suitable for clinical decision-making.

Convolutional neural networks (CNNs) are particularly well-suited for image-based tasks, as they

are able to automatically extract relevant features from images and learn complex representations that

capture relevant patterns in the data [24].

CNNs have been successfully used for diabetic foot ulcer classi�cation in a number of recent studies

[3] [25] [26].

CNNs consist of a series of convolutional layers that extract features from input images by applying

�lters (kernels) to them. These �lters are designed to identify patterns and features of different scales

and orientations, such as edges, corners, and blobs. The output of each convolutional layer is then

passed through a non-linear activation function (such as ReLU) and pooled to reduce the spatial di-

mensions of the feature maps while retaining the most important features [27]. The �nal output is then

passed through one or more fully connected layers that perform the classi�cation task [26].

In particular, transfer learning has emerged as a popular technique for diabetic foot ulcer classi�cation

using CNNs [28].Transfer learning involves using a pre-trained neural network as a starting point for a

new task instead of training a new network from scratch. This approach is especially useful when the

available dataset is small or the task is similar to the original task for which the network was trained [29].

In transfer learning, the weights of the pre-trained network are frozen, and the last few layers of the

network are replaced with new layers, which are then �ne-tuned on the new dataset. Fine-tuning involves

training the new layers on the new dataset while keeping the weights of the pre-trained layers �xed. This

process allows the new network to learn features that are speci�c to the new dataset while still retaining

the general features learned from the pre-trained network [30].

Pre-trained networks have become a popular choice for transfer learning due to their structured ar-

chitecture, which facilitates the transfer of knowledge acquired from large datasets. Several pre-trained
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networks have been proposed in the literature for image classi�cation tasks, including AlexNet, VGGNet,

GoogLeNet, ResNet, and InceptionNet [31]. AlexNet was the �rst deep neural network to win the Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [32]. VGGNet is known for its deeper

architecture, with up to 19 layers, and has achieved top results in several image classi�cation competi-

tions. GoogLeNet introduced the inception module, which allows the network to use multiple �lter sizes

in parallel to capture features at different scales [33]. ResNet is another deep network that uses residual

connections to enable the training of very deep networks, up to 152 layers. InceptionNet, also known as

Inception-v3, is an extension of the GoogLeNet architecture that uses factorized convolutional layers to

reduce the number of parameters in the network [34].

These pre-trained networks have been shown to be effective in a wide range of computer vision

tasks, including object detection, segmentation, and classi�cation, and have been used as a starting

point for transfer learning in many medical image analysis studies [35] [36] [37]. Transfer learning with

pre-trained networks allows the use of large pre-existing datasets to learn general features that can be

applied to new tasks with smaller datasets, such as medical image analysis.

Transfer learning has been successfully used in a variety of applications, including image classi�ca-

tion, object detection, and natural language processing [38].This approach has been shown to improve

the accuracy of diabetic foot ulcer classi�cation, as it allows the network to leverage the rich feature

representations learned on the larger dataset.

Another important aspect of image-based diabetic foot ulcer classi�cation is the choice of image fea-

tures. Recent studies have explored a range of image features for diabetic foot ulcer classi�cation, in-

cluding texture-based features, shape-based features, and color-based features. Texture-based features

have been particularly popular, as they capture important information about the surface characteristics

of the ulcer. Various texture-based features have been explored for diabetic foot ulcer classi�cation,

including local binary patterns (LBP) [25], gray-level co-occurrence matrix (GLCM) features [39], and

wavelet-based features [40].

In addition to feature extraction, the design of the convolutional neural network (CNN) architecture

is also critical in achieving accurate image classi�cation. One common approach is to use a fully con-

nected network after the convolutional layers to map the extracted features to the output classes [41].

However, recent studies have shown that fully connected networks can lead to over�tting and degrade

the performance of the CNN model on new, unseen data [42]. To mitigate this issue, various techniques

have been proposed, including dropout , batch normalization and global average pooling [43]. These

techniques aim to reduce the number of parameters in the fully connected layers and regularize the

model to prevent over�tting.

In summary, the literature suggests that machine learning approaches, particularly CNNs, hold

promise for improving the accuracy and ef�ciency of diabetic foot ulcer detection and classi�cation.
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Transfer learning and texture-based features are two key approaches that have shown promise in recent

studies. However, there are still several challenges that need to be addressed in order to develop robust

and interpretable machine learning models for diabetic foot ulcer management.

2.2 Overview of related work on foot image classi�cation

Foot image classi�cation has been an active research area in recent years, and several studies have

been conducted to explore different techniques and methods for diabetic foot ulcer classi�cation us-

ing image data. In this section, we provide an overview of some of the recent studies on foot image

classi�cation, focusing on the methods and techniques used for diabetic foot ulcer classi�cation.

One notable approach in foot image classi�cation is transfer learning, where pre-trained CNN models

[38], such as VGG-16, ResNet, or InceptionNet, are �ne-tuned on foot image datasets. This enables

the models to leverage knowledge learned from large-scale datasets, such as ImageNet, and adapt it

to the speci�c task of foot image classi�cation. Transfer learning has shown signi�cant improvements in

accuracy and ef�ciency, especially when the available foot image datasets are limited.

In recent research on diabetic foot complications, two signi�cant studies have addressed the de-

tection and classi�cation of diabetic foot ulcers (DFU) using innovative approaches. The �rst study

presents a non-invasive monitoring system for diabetic foot using thermographic images of foot soles,

even in uncontrolled home environments. By employing deep-learning techniques and a combination of

step-by-step and end-to-end algorithms, the system effectively detects and visualizes speci�c tempera-

ture differences associated with ulcerous and necrotic zones, achieving high detection accuracy rates of

90% for ulcers and 88% for necrotic areas [44].

The second study proposes a unique CNN-based model called DFU-SPNet for DFU vs. normal skin

classi�cation. DFU-SPNet consists of stacked parallel convolution layers that leverage multiple kernel

sizes to extract local and global features for improved abstraction. By �ne-tuning the optimizer settings,

speci�cally using SGD with momentum and a learning rate of 1e � 2, DFU-SPNet outperforms existing

state-of-the-art methods, achieving an impressive AUC of 0.974 on the DFUNet dataset [45].

These studies collectively contribute to the advancement of diabetic foot ulcer detection and classi-

�cation. The �rst study [44] emphasizes the importance of non-invasive monitoring in uncontrolled en-

vironments, highlighting the potential of deep-learning techniques in processing thermographic images.

The second study [45] introduces a novel CNN architecture, DFU-SPNet, which signi�cantly improves

the classi�cation accuracy for DFU detection. These �ndings demonstrate the potential for advanced

technologies to enhance the diagnosis and management of diabetic foot ulcers, ultimately preventing

severe complications and lowering the risk of lower limb amputation.

Additionally, an article on transfer learning in medical imaging adds to the understanding of leveraging
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pre-trained models for improved classi�cation tasks. This article explores transfer learning in the context

of medical imaging, providing insights into its potential bene�ts and limitations [46].

Another important aspect of foot image classi�cation is the availability of annotated datasets. Sev-

eral research studies have created publicly available foot image datasets with carefully annotated labels,

allowing researchers to develop and evaluate their classi�cation models [47]. These datasets include im-

ages of various foot conditions, captured using different imaging modalities, such as digital photography,

thermal imaging, or 3D scanning.

To enhance the classi�cation performance,researchers have explored the fusion of multiple imaging

modalities to improve classi�cation performance. By combining different types of foot images, such as

visible light images and thermal images, the classi�cation models can capture complementary informa-

tion and improve accuracy [48] [49].

It is important to note that the �eld of foot image classi�cation is still evolving, and there are ongo-

ing efforts to develop more robust and accurate models. Researchers are continuously exploring new

algorithms, architectures, and datasets to improve the performance and generalizability of foot image

classi�cation systems.

In summary, these investigations highlight the promise of machine learning algorithms in the realm

of foot image classi�cation and anomaly detection. Nevertheless, they also underscore the imperative

for continued research aimed at enhancing the precision and adaptability of these methodologies. This

need for further exploration remains particularly pronounced in the case of diabetic foot ulcers, given the

diverse range of visual characteristics they may exhibit [50].

Indeed, in this chapter highlights the existing literature on the use of CNNs for classifying diabetic

foot ulcers, underscoring the signi�cance of previous works in this domain. The key distinction of our

proposed approach lies in the combination of �ne-tuned neural networks, speci�cally Ef�cientNet-B2,

and expert validation, which have not been extensively explored in the context of diabetic foot ulcer

detection and evolution monitoring. By leveraging �ne-tuned networks, we aim to achieve superior

performance, increasing the accuracy and reliability of ulcer recognition. Moreover, the incorporation of

expert validation by an experienced specialist in the �eld of diabetic foot ulcers adds credibility to our

system's outcomes and ensures the clinical relevance and accuracy of the predictions.

Additionally, while existing literature might have focused primarily on ulcer classi�cation, our work ex-

tends beyond mere classi�cation and encompasses the estimation of ulcer evolution over time. Through

image analysis and the classi�cation scale for ulcers, we enable the monitoring of ulcer progression

and the assessment of potential risks associated with each ulcer. This evolution estimation is a critical

aspect of diabetic foot ulcer management, as it facilitates timely interventions and preventive measures

to avoid complications, such as lower extremity amputations.

Thus, the novel combination of �ne-tuned neural networks, expert validation, and the comprehensive
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estimation of ulcer evolution distinguishes our work from the existing literature and contributes to ad-

vancing the �eld of diabetic foot ulcer detection and management. By elucidating these differences, we

ensure that our proposed approach brings new insights and potential improvements to the understanding

and treatment of diabetic foot ulcers.

2.3 Overview of diabetic foot ulcers and their classi�cation in clin-

ical practice

Diabetic foot ulcers are a common complication of diabetes. When high blood sugar levels persist over

time, they can cause damage to the nerves and blood vessels in the feet, making them more susceptible

to injury and infection [51]. Diabetic foot ulcers are open sores or wounds that typically occur on the

bottom of the foot or around the toes [20]. They can be very slow to heal and, if left untreated, can lead

to serious complications such as infection, gangrene, and even amputation. In fact, foot ulcers are the

most common reason for hospitalization among people with diabetes. Therefore, it's crucial for people

with diabetes to take proper care of their feet and to seek medical attention promptly if they notice any

signs of a foot ulcer [52].

2.3.1 Causes and Risk Factors

Diabetic foot complications pose signi�cant risks to individuals with diabetes. There are various fac-

tors that contribute to the development of these complications, including both well-known causes and

additional possible reasons.

In people with diabetes and insensitivity in the feet, wearing inappropriate footwear or walking bare-

foot are the primary causes of foot trauma that can lead to ulceration. Individuals with a loss of protective

sensation (PSP) are particularly vulnerable to these injuries [2]. Furthermore, the combination of ele-

vated mechanical stress and the loss of protective sensation is one of the most common causes of

diabetic foot ulcers (DFUs) [53].

Peripheral neuropathy, which is a common diabetic complication, can result in the loss of sensation in

the feet. This sensory loss makes individuals unaware of injuries or excessive pressure on their feet [2].

Consequently, minor cuts, blisters, or injuries may go unnoticed and untreated, eventually leading to

more severe complications.

Poor blood circulation, another consequence of diabetes, particularly affects the extremities like the

feet. Reduced blood �ow hampers the healing process and increases the risk of infections. Insuf�cient

oxygen and nutrients reaching the tissues of the feet make them more susceptible to damage and slow

healing, ultimately leading to ulceration [2] .
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Certain foot deformities, such as hammertoes, bunions, or Charcot foot, are more prevalent in indi-

viduals with diabetes. These deformities create areas of increased pressure or friction, increasing the

vulnerability of the feet to skin breakdown and the formation of ulcers [2].

Inadequate foot care is also a signi�cant contributing factor. Neglecting proper foot care routines,

including regular inspection, proper cleaning, and moisturizing of the feet, can lead to the development

of cracks, calluses, and wounds [53].

Additionally, smoking has detrimental effects on blood circulation and overall health [53]. It further

restricts blood �ow to the feet, exacerbating the risk of tissue damage and delayed wound healing.

To mitigate these risks, individuals with diabetes should be proactive in their foot care. Regular foot

examinations, maintaining good blood sugar control, practicing proper foot hygiene, and seeking prompt

medical attention for any foot-related concerns are crucial steps in preventing diabetic foot complications.

By understanding and addressing these causes and risks, individuals with diabetes can effectively

reduce the likelihood of developing foot ulcers and other complications . Proper education, self-care, and

early intervention play vital roles in maintaining optimal foot health and preventing severe consequences,

including lower limb amputation [2].

Figure 2.1: Areas of the foot at high risk of ulceration. Source [2]

2.3.2 Classi�cation of Diabetic Foot Ulcers

If ranking diabetic foot ulcers based solely on pictures, it would be important to choose a system that

provides clear visual criteria for each stage of ulcer severity. One commonly used system is the Wagner

classi�cation, The Wagner classi�cation [54] consists of six grades, ranging from Grade 0 to Grade 5,

each representing a different level of ulcer severity. Grade 0: No open wounds are present, but there

may be signs of pre-ulcerative lesions such as skin redness or discoloration. Grade 1: Super�cial ulcer

involving the skin layers, but not extending to the deeper tissues. Grade 2: Deeper ulcer penetrating
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through the subcutaneous tissue, potentially exposing tendons or ligaments, but without involvement

of bone or joint. Grade 3: Ulcer with deep tissue involvement, often extending to bone or joint. Os-

teomyelitis (bone infection) may be present. Grade 4: Gangrene (tissue death) affecting a portion of the

foot. The extent of tissue involvement determines the subcategories of Grade 4. Grade 5: Extensive

gangrene involving the entire foot, which may necessitate amputation.Another option is the University of

Texas Diabetic Wound Classi�cation System [23] [55], which uses a combination of depth, tissue type,

and infection status to categorize ulcers into four stages. Both of these systems have visual criteria and

are widely recognized in clinical practice. Ultimately, the choice of ranking system would depend on the

speci�c needs of the medical setting and the preferences of the healthcare providers involved.

It is worth noting that diabetic foot classi�cation, as discussed previously, is typically carried out by

medical experts who rely on their expertise and human visual inspection. These professionals carefully

examine diabetic foot images and apply their clinical knowledge to make the appropriate classi�cations.

While arti�cial intelligence-based approaches are being explored, assessment by specialists remains a

standard in healthcare due to its accuracy and expertise in identifying subtle clinical features that may

be critical for diagnosis and treatment.

In Section 6, Risk of Ulcer Development , it is crucial to incorporate clinically relevant information to

ensure accurate and effective risk assessment. To achieve this, the valuable insights and �ndings from

the mentioned articles will be taken into account. These articles provide signi�cant contributions to the

understanding and classi�cation of diabetic foot ulcers, including the Wagner classi�cation system and

the University of Texas wound classi�cation system.

In the absence of data on the depth of the ulcer, the risk classi�cation for diabetic foot ulcers will

be based on observable elements within the images. Due to the limitations of available data, a com-

prehensive assessment of ulcer depth may not be possible. However, by focusing on visual cues and

other relevant factors, it is still feasible to create a risk classi�cation system that utilizes the information

present in the images.

To develop this risk classi�cation system, it will be essential to consider various visual indicators that

can be observed in the images of diabetic foot ulcers. These indicators may include the size and extent

of the ulcer, the presence of infection or in�ammation, the appearance of surrounding tissue, and the

existence of necrotic or ischemic areas. By analyzing these visual elements, it becomes possible to

assess the severity and potential risks associated with the ulcers.

While the depth of the ulcer is a critical factor in traditional risk classi�cations such as the Wagner [54]

or University of Texas systems [23], the focus in this case will be on leveraging observable elements

to derive a risk classi�cation that aligns with the available image data. This approach allows for the

development of a clinically relevant risk prediction model that takes into account the practical constraints

and available information.
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By explicitly stating the need to create a risk classi�cation based on observable elements within the

images, it ensures that the developed model remains applicable and suitable for the available data. This

approach enables the classi�cation of ulcer risk based on visible indicators, facilitating timely interven-

tions and appropriate management strategies for individuals at risk of developing diabetic foot ulcers.

To make it clear that these classi�cations have been valuable for your work as a reference for diabetic

foot classi�cation, allowing you to establish a non-of�cial classi�cation for your speci�c cases, you can

include the following statement:

It is important to highlight that these classi�cations have served as valuable references for my re-

search, enabling me to establish a non-of�cial classi�cation for the diabetic foot cases I'm studying.

While I acknowledge the limitations of this approach, it has allowed me to facilitate meaningful dis-

cussions with medical specialists and provide a structured framework for categorizing cases within the

context of my study. This classi�cation, although informal, has proven to be a useful tool for addressing

the speci�c objectives of my research and assisting in the analysis of diabetic foot images.
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The objective of this section is to describe the methodology used in this study for the classi�cation

of diabetic foot ulcer (DFU) images. Firstly, a detailed description of the data collection process and

preprocessing methods used to prepare the data for analysis will be provided. Secondly, the architecture

of the convolutional neural network (CNN) used for classifying DFU images will be explained in detail,

including design decisions and optimization strategies used to train the network.

3.1 Description of the data collection and preprocessing methods

The dataset used for this study was the DFU dataset available on Kaggle, which contained 1000 images

of diabetic foot ulcers, including 500 abnormal and 500 normal foot images. The dataset was divided into

a training set of 738 images (70%) and a validation set of 317 images (30%). An independent dataset

was also used for testing the model.

((a)) Normal foot image used for system training ((b)) Abnormal foot image used for system training

Figure 3.1: Images used for network training. Source: Image created by the author

To facilitate data loading and processing, the PyTorch Dataset and DataLoader were utilized.These

modules are essential for ef�cient and effective data handling, especially when working with large

datasets. Additionally, data augmentation techniques were applied using the Albumentations library.

Data augmentation techniques is applied during the training phase to improve our model's generaliza-

tion capabilities and avoid over�tting.

The train-transform consisted of several data augmentation techniques, including SmallestMaxSize

to resize the images to a maximum size of 160 pixels, ShiftScaleRotate to apply random shifts, scales,

and rotations to the images, RandomCrop to randomly crop the images to a size of 128x128, RGBShift
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Figure 3.2: Over�tting in a CNN. Source: Image created by the author

to apply random shifts in the RGB channels, RandomBrightnessContrast to add a wider range of bright-

ness and contrast variability, HorizontalFlip to �ip the images horizontally with a probability of 50%, and

RandomRotate90 to randomly rotate the images 90 degrees in any direction. Finally, the images were

normalized using the mean and standard deviation of the ImageNet dataset and converted to tensors

using ToTensorV2().

Color is an important feature in medical imaging that can provide additional diagnostic information. In

order to capture this feature, we incorporated the `A.HueSaturationValue` data augmentation technique

into my image preprocessing pipeline. This technique randomly shifts the hue, saturation, and value of

the image within certain limits during training. By doing so, it creates variations of the original image with

different color tones and saturations, which can improve the model's ability to generalize to new, unseen

images.

It is important to have a diverse range of color and tone variations in the training data because

medical images can have signi�cant variations in color and contrast due to differences in acquisition

protocols and lighting conditions. Therefore, incorporating color variations through data augmentation

can help the model learn to be more robust to these variations and improve its performance on new,

unseen images. This technique was found to be effective in improving the performance of the model,

and was thus included in the �nal model training process.

Data augmentation is crucial when working with image classi�cation tasks, especially when dealing

with a small dataset. It arti�cially increases the size of the dataset by creating new variations of the

original images, which helps to prevent over�tting and improve the model's performance. Over�tting

occurs when a model becomes too specialized on the training set and performs poorly on unseen data.

By using data augmentation, we were able to introduce more variability in the data and prevent the

model from becoming too specialized on the training set.

Furthermore, data augmentation can also address issues related to class imbalance, where one

class has signi�cantly fewer samples than the other. In our case, we had an equal number of images in
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each class, but this may not always be the case in other datasets. Data augmentation can be used to

create additional samples for the minority class, which can improve the model's performance and reduce

bias.

Figure 3.3: Illustration of data augmentation techniques applied to the image dataset. Source: Image created by
the author

3.2 Explanation of the convolutional neural network architecture

and design choices

The three main parts of a Convolutional Neural Network (CNN) are convolutional layers, activation func-

tions, and pooling layers.

Convolutional Layers: Convolutional layers are the backbone of CNNs. They apply �lters (also called

kernels) to the input image to extract features. Each �lter slides over the input image, performs a dot

product operation between the �lter and the image pixels, and produces an activation map. The �lters

help to detect different patterns in the image such as edges, corners, and textures. The output of a

convolutional layer is a feature map that is passed on to the next layer.

Activation Functions: Activation functions are applied to the output of each convolutional layer to

introduce non-linearity to the model. Non-linearity is important because images contain complex rela-

tionships between pixels that can't be captured by linear functions. Common activation functions used in

CNNs are ReLU (Recti�ed Linear Unit), sigmoid, and tanh. ReLU is the most commonly used activation

function because it is simple and computationally ef�cient.

27



Pooling Layers: Pooling layers reduce the spatial dimensionality of the feature maps. They perform

a down-sampling operation by taking the maximum (max-pooling) or average (average-pooling) value

within a de�ned window. Pooling helps to reduce the number of parameters in the model, which in turn

reduces over�tting and improves computational ef�ciency. The most commonly used pooling size is 2x2,

which reduces the feature map by a factor of 2.

Initially, we attempted to create a custom CNN architecture for the binary classi�cation task. The

architecture consisted of three convolutional layers followed by two fully connected layers. The �rst

convolutional layer had 8 �lters, a kernel size of 5, and a stride of 1. The second convolutional layer

had 16 �lters, a kernel size of 3, and a stride of 1. The third convolutional layer had 32 �lters, a kernel

size of 4, and a stride of 2. Each convolutional layer was followed by a ReLU activation function and

a max pooling layer. The output of the third convolutional layer was �attened and fed to the �rst fully

connected layer with 64 neurons and a ReLU activation function. The second fully connected layer had

two neurons with a log softmax activation function.

The decision to propose the initial architecture and the process behind it are grounded in several key

considerations.

The initial architecture served as our starting point for exploring diabetic foot ulcer classi�cation. It

provided a foundation to begin our research, especially considering the uniqueness of the dataset and

the classi�cation task. It allowed us to get a sense of how well a basic neural network could perform on

this speci�c problem.

Complexity in neural network architectures often leads to increased training time and computational

resources. Beginning with a simple architecture minimized these challenges, making it easier to exper-

iment with different aspects of the problem, such as data preprocessing, hyperparameter tuning, and

regularization techniques.

The simplicity of the architecture allowed for ef�cient experimentation. We could rapidly iterate on

different aspects of the model, including the number of layers, the size of �lters, activation functions, and

pooling strategies, without committing to a complex structure from the outset.

The decision-making process was oriented toward gradual complexity increase. We recognized that

as we gained insights into the dataset and the problem, there would be opportunities to re�ne the

architecture based on empirical results and best practices in the �eld.

In order to improve the performance of my model, we decided to switch to using pre-trained mod-

els, which employ a technique called transfer learning. We tried several pre-trained models, such as

ResNet50, DenseNet121, VGG16, AlexNet, and Ef�cientNet.

Transfer learning involves using a pre-trained model as a starting point for a new task, rather than

training a model from scratch. The pre-trained model has already learned to extract meaningful features

from a large dataset, and these features can be used as a starting point for the new task. This can result
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Figure 3.4: First Approach of the CNN. Source: Image created by the author

in better performance and faster training times.

For ResNet50 and DenseNet121, we loaded the pre-trained weights of the models and replaced

the last fully connected layer with a new layer that had a single output. Then, we moved the model to

the device speci�ed in the parameters. This approach is called ”�ne-tuning” because we are training

the last layer of the model on our speci�c task while keeping the rest of the model �xed. We used the

binary cross-entropy with logits loss function and the Adam optimizer with a learning rate de�ned in the

parameters.

For VGG16 and AlexNet, we also replaced the last fully connected layer with a new layer that had a

single output and then moved the model to the device. We used the same loss function and optimizer as

for the ResNet50 and DenseNet121 models. However, since these models have a simpler architecture

compared to ResNet50 and DenseNet121, they may not perform as well on more complex tasks.

Finally, for Ef�cientNet, we loaded the pre-trained model from the ef�cientnet-pytorch package and

replaced the last fully connected layer with a new layer that had a single output. Then, we moved the

model to the device speci�ed in the parameters and used the same loss function and optimizer as for

the other models. Ef�cientNet is a state-of-the-art model that achieves high accuracy with relatively few

parameters, making it well-suited for transfer learning.

Overall, using pre-trained models with the �ne-tuning approach improved the performance of my

model compared to training from scratch. This is because the pre-trained models have already learned

to extract useful features from a large dataset, which can be bene�cial for the speci�c task at hand.
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3.3 Training and evaluation process

The dataset has been split into a training set and a validation set, with 70% of the data used for training

and 30% for validation. Hyperparameters used it in the model training process:

• Learning rate = 0.001 : determines the step size at which a machine learning model's parameters

are updated during training. If the learning rate is too high, the weights can overshoot the optimal

values and lead to divergence, while if the learning rate is too low, the training process can be slow

and may get stuck in a suboptimal solution.

• Batch size = 64 : number of training examples used in one forward/backward pass (each iteration)

to update the weights of the neural network. If the batch size is too low, the model may not see

enough examples to learn effectively and the learning process may be slow. On the other hand, if

the batch size is too high, the model may require more memory to process the large batch, which

can result in slower training and even cause the model to crash due to memory constraints.

• Number of epochs = 10 : number of times the learning algorithm will iterate over the entire training

dataset.Generally, larger datasets require more epochs to converge, while smaller datasets can

converge in fewer epochs like in our case.

These parameters have been chosen as they have yielded the best results, and the existing literature

supports their usage. Additionally, Adam has been used as the optimizer, and BCEWithLogisticsLoss

has been employed as the loss function during training and evaluation. These steps ensure that the

model is accurately trained and evaluated on the dataset.

In this study, we utilized �ve pre-trained convolutional neural networks (CNNs) for our image clas-

si�cation task. These networks were selected based on their performance and popularity in previous

studies, as well as their varying architectures and sizes. ResNet50, AlexNet, VGG16, DenseNet121,

and Ef�cientNet were the pre-trained networks used in our experiments. ResNet50 is a relatively shal-

low network with skip connections, which has achieved state-of-the-art performance on ImageNet clas-

si�cation. AlexNet was one of the �rst CNNs to win the ImageNet competition and has been widely

used in many computer vision applications. VGG16 is known for its simple and elegant architecture and

has been widely used in transfer learning. DenseNet121 is a compact network that performs well with

limited computational resources. Finally, Ef�cientNet is a family of CNNs that are optimized for resource-

ef�cient image classi�cation, achieving state-of-the-art performance with fewer parameters than other

networks. By using a variety of pre-trained networks with different architectures and sizes, we aimed to

compare their performance and identify the most suitable network for our speci�c image classi�cation

task.

These pre-trained networks were selected because of their ability to extract important features from

the images and to improve the accuracy and ef�ciency of the model.
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Table 3.1: Comparison of pre-trained networks used in the study [6] [7]

Network Year of publication Top-1 Accuracy(ImageNet) Nº of parameters
ResNet 2015 78.5% 60M
AlexNet 2012 63.3% 62M
VGGNet 2014 74.4% 138M

DenseNet121 2016 76.3% 8M
Ef�cientNet 2019 84.3% 66M

One important aspect to keep in mind is that the table provided serves as a general guideline to

the performance of the pre-trained networks used in the study. However, it is important to note that the

results may vary depending on the speci�c dataset and task. Therefore, it is crucial to remain �exible

and open to testing various network architectures to ultimately determine the one that performs the best

on the speci�c task at hand.Selecting the best-performing network in machine learning, especially in

complex medical tasks like diabetic foot ulcer classi�cation, is a multifaceted process. It involves eval-

uating multiple metrics, such as accuracy, precision, ROC curves, F1 score, and MAP (Mean Average

Precision), each offering different insights into model performance. The choice isn't straightforward due

to trade-offs between these metrics, clinical implications, dataset characteristics, interpretability, and

use case speci�city. The decision must align with clinical goals, dataset characteristics, and the speci�c

medical context, making it a nuanced and essential step in developing accurate and clinically relevant

machine learning models for tasks like diabetic foot ulcer detection.

By using a pre-trained network, the network's prior learning on a large amount of data was leveraged,

allowing the diabetic ulcer classi�cation model to learn important features from diabetic ulcer images

more ef�ciently. Furthermore, it was observed that the use of pre-trained networks led to better results

compared to training from scratch.

In order to use pre-trained neural networks such as ResNet50, DenseNet121, AlexNet, VGG16, and

Ef�cientNet, it is necessary to modify the last layer of the network to suit the requirements of our project.

The pre-trained models are usually trained for a speci�c task, such as image classi�cation, but their

use can be extended to other tasks by modifying the �nal layer to �t the desired output. In our case,

we needed to modify the last layer of each pre-trained network to classify images of diabetic foot ulcers

into different categories. This involved changing the number of output neurons to match the number of

classes we wanted to classify, and adjusting the activation function to suit our task. By modifying the last

layer of these pre-trained networks, we were able to leverage the powerful feature extraction capabilities

of these models while adapting them to our speci�c needs.

In our project, we follow this process for each pre-trained network used. For example, we �rst load

the pre-trained model and then replace the last layer with a new linear layer. This new layer is designed

to have only one output node, which corresponds to our binary classi�cation task of detecting foot ulcers.

By following this approach, we can take advantage of the high performance of pre-trained models and
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adapt them to our speci�c classi�cation task.

One of the main advantages of using pre-trained networks is that they come with pre-training weights.

These weights have already been optimized on a large dataset, and they can be transferred to our

problem, allowing us to improve the performance of our models. In other words, the network has already

learned how to recognize patterns in the input data, so we don't need to start from scratch. By leveraging

these pre-trained weights, we can achieve better results with less data and training time, making the

development of deep learning models more accessible and ef�cient. This is particularly useful when

working with medical imaging data, as these datasets can be limited in size and can require substantial

time and computational resources to train a model from scratch.

When using pre-trained networks, it is often useful to �ne-tune them for a speci�c task. By �ne-tuning

the pre-trained model with our dataset, we can adapt the learned features to our speci�c classi�cation

task, while retaining the general knowledge that was captured by the pre-training process. This approach

allows us to take advantage of the high performance of pre-trained models while also tailoring the model

to our speci�c problem.

One common approach to �ne-tuning is to freeze the weights of the pre-trained layers and only train

the newly added layers. This is known as transfer learning. However, in some cases, it may be bene�cial

to also �ne-tune some of the pre-trained layers by leaving them unfrozen.

In our project, we adopted a similar strategy by freezing most of the layers in the pre-trained networks,

except for the last layer or the top layers. This approach allows the model to leverage the pre-trained

weights to capture the general features of the data and quickly adapt to our speci�c task by retraining

the last layer. However, we found that thawing too many layers can lead to worse results, suggesting

that the pre-trained weights may not be suitable for all layers or that our dataset may not contain enough

task-speci�c features to be learned from the data alone. Therefore, we �ne-tuned a subset of the pre-

trained layers by unfreezing the last few or the bottom layers, depending on the network architecture,

and found that this led to better results than freezing all the layers or thawing too many layers.

It is also worth noting that selecting the best-performing network is not always straightforward and

may require a thorough evaluation of multiple metrics, such as accuracy, ROC curves, F1 score and

MAP (Mean Average Precision).

Evaluating the performance of a network is a crucial step in deep learning projects. It allows us

to understand how well the model is doing on a given task and helps us make informed decisions

about how to improve it. We evaluated the performance of different pre-trained networks using various

metrics such as accuracy, precision, recall, F1 score, and mean average precision (MAP). These metrics

provide insights into different aspects of the model's performance, such as its ability to correctly classify

samples, its sensitivity to false positives and false negatives, and its ability to rank samples by their

likelihood of belonging to a speci�c class. In addition to these metrics, we also used receiver operating
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characteristic (ROC) curves to visualize the trade-off between sensitivity and speci�city for different

classi�cation thresholds. In addition to the aforementioned metrics, we also considered the Area Under

the ROC Curve (AUC) to evaluate the performance of our models. The AUC is a widely used metric

that measures the ability of a classi�er to distinguish between positive and negative classes across

different thresholds. In our binary classi�cation task of detecting foot ulcers, a high AUC indicates that the

model is performing well in correctly identifying ulcers while minimizing false positives.By evaluating the

performance of our models using multiple metrics, we were able to gain a comprehensive understanding

of their strengths and weaknesses and make informed decisions about which models to use for our

speci�c task.

We assessed the performance of each network using various metrics, including accuracy, loss, AUC,

F1-score, and MAP. We compared the results of each network and found that some performed better

than others in certain metrics, while others performed better overall. Therefore, we chose the network

that provided the best results in most of the metrics to use in our system. By doing so, we ensure that

our system is not biased towards a particular metric and provides the best overall performance for our

speci�c task of classifying abnormal and normal foot images.
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Figure 3.5: Block diagram of the proposed methodology. Source: Adapted from [3].
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Before comparing the results of the models, let us brie�y explain the performance metrics used for

evaluation:

• Accuracy and Loss: The accuracy metric measures the proportion of correctly classi�ed sam-

ples in the dataset, while the loss metric quanti�es the dissimilarity between the predicted and

true labels. The accuracy and loss curves (Figure 4.2) provide insights into the models' learn-

ing progress and convergence. As depicted in the curves, both accuracy and loss demonstrate

promising trends, indicating the models' effective learning and convergence.

• Area Under the ROC Curve (AUC): The AUC measures the discriminatory power of a classi-

�er by evaluating the trade-off between the true positive rate (sensitivity) and the false positive

rate (1 - speci�city) across various classi�cation thresholds. A higher AUC value indicates better

discriminatory capability.

• Mean Average Precision (MAP): MAP provides an aggregate measure of precision across all

possible recall levels. It takes into account both precision and recall, providing a comprehensive

assessment of the model's performance. A higher MAP score indicates better overall performance.

• Normalized F1-Score: The normalized F1-score considers the balance between precision and

recall while accounting for class imbalance in the dataset. It provides a single value that repre-

sents the model's ability to achieve both high precision and recall. A higher normalized F1-score

indicates better balance between precision and recall.

4.1 Evaluation of the system architecture

In this section, we evaluate the performance of the proposed system architecture for foot ulcer detec-

tion. We begin by presenting the accuracy and loss trends observed during the training and validation

stages. Subsequently, we analyze the evaluation metrics, including Mean Average Precision (MAP),

normalized F1-score, and Receiver Operating Characteristic (ROC) curves, to assess the effectiveness

of the system.

Initially, we attempted to train the neural network from scratch, without leveraging any pre-existing

weights. However, we quickly found that the resulting model was not performing well on our task, and

was struggling to learn meaningful patterns from the input data. This is likely due to the fact that our

dataset was relatively small, and training a model from scratch requires a large amount of labeled data

to avoid over�tting. As a result, we decided to adopt a transfer learning approach and use pre-trained

networks. This allowed us to leverage the knowledge that had already been learned by the networks on

large-scale datasets, and �ne-tune the models to perform well on our speci�c task with a relatively small

amount of data.
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Figure 4.1: Architecture training. Source: Image created by the author

4.1.1 Accuracy and Loss Analysis

During the training phase, the accuracy and loss values were recorded for both the training and validation

datasets over multiple epochs. Figure 1 presents the trend of accuracy and loss over these epochs. The

accuracy curve illustrates the improvement of the model's performance as the training progresses, while

the loss curve demonstrates the convergence and stabilization of the training process.

The accuracy graph shows a steady increase in accuracy for both the training and validation datasets,

indicating that the model is effectively learning to classify foot ulcers. Similarly, the loss graph demon-

strates a decreasing trend, indicating that the model is successfully minimizing the loss function and

improving its predictive capability.

One reason why the validation loss is lower than the training loss is because we used the data aug-

mentation techniques such as rotation, �ipping, and zooming are commonly applied during the training

process. These augmentations introduce variations to the training data, making the model more robust.

However, these augmentations are not applied to the validation data, leading to lower validation loss.

However, when comparing the performance of different models that use pre-trained networks, such

as ResNet50, DenseNet121, Ef�cientNetB2, and ResNet101, we found that they achieved similar results

in terms of accuracy and loss. While these metrics are useful for assessing the training progress and

generalization ability of the models, they may not provide a complete evaluation of how well the models

perform in their intended task.

To gain a more comprehensive understanding of the models' performance, we considered additional

metrics such as the area under the ROC curve (AUC), mean average precision (MAP), and normalized

F1-score. These metrics offer valuable insights into the models' ability to distinguish between normal

and abnormal foot ulcers, handle class imbalance, and achieve a balanced trade-off between precision
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Figure 4.2: Accuracy and Loss Curves. Source: Image created by the author

and recall.

In summary, while accuracy and loss serve as indicators of the models' learning progress, they

alone are not suf�cient to provide a comprehensive assessment of the models' performance in their

classi�cation task. To gain deeper insights and make more informed comparisons between the different

pre-trained networks, we further evaluated the models using additional metrics. In the next section, we

will discuss the evaluation metrics employed, including the area under the ROC curve (AUC), mean

average precision (MAP), and normalized F1-score. These metrics allow us to assess the models'

classi�cation performance, their ability to handle class imbalance, and the balance between precision

and recall. By examining these metrics, we can gain a more holistic understanding of the models'

effectiveness and make informed decisions in selecting the most suitable pre-trained network for our
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task.

4.1.2 Evaluation Metrics

In this subsection, we present the evaluation metrics used to assess the performance of the pre-trained

networks and the impact of �ne-tuning techniques. It is important to note that the results presented here

represent the best scores achieved for each metric, obtained through the comparison of pre-trained

networks and the exploration of different �ne-tuning approaches.

Among the evaluation metrics used, the Area Under the ROC Curve (AUC), Mean Average Precision

(MAP), and Normalized F1-Score played a crucial role in assessing the performance of the models.

These metrics provided insights into the discriminatory power, overall performance, and balance be-

tween precision and recall, respectively.

By comparing the pre-trained networks and analyzing the different versions achieved through �ne-

tuning techniques, we were able to identify the models that exhibited the best performance for each

metric. These selected models are the ones presented in this section, showcasing their excellence in

terms of AUC, MAP, and Normalized F1-Score.

The inclusion of the best scores for each metric allows us to highlight the capabilities and effec-

tiveness of the pre-trained networks, as well as the impact of �ne-tuning techniques in enhancing their

performance.

These metrics provide insights into the system's precision, recall, and overall discriminatory power.

• Mean Average Precision (MAP)

MAP measures the average precision across all possible recall levels. It considers both precision and

recall, providing a comprehensive assessment of the model's performance. The table 4.1 presents the

MAP scores obtained for each network in our experiments.

Table 4.1: Comparison of MAP scores for different pre-trained networks

Pre-trained Network MAP
ResNet50 0.8031

DenseNet121 0.7997
Ef�cientNetB2 0.8777

ResNet101 0.7248

Based on the MAP scores, we observe that the Ef�cientNetB2 network achieved the highest MAP

value of 0.8777, indicating its superior performance in accurately identifying foot ulcers. This result

highlights the effectiveness of Ef�cientNetB2 architecture in our speci�c classi�cation task.

• Normalized F1-Score
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The normalized F1-score measures the balance between precision and recall, accounting for class

imbalance in the dataset. The table 4.2 displays the normalized F1-scores obtained for each network.

Table 4.2: Comparison of F1 scores for different pre-trained networks

Pre-trained Network F1 Score
ResNet50 0.8396

DenseNet121 0.8287
Ef�cientNetB2 0.9078

ResNet101 0.7339

The network with the highest normalized F1-score was Ef�cientNetB2, with a score of 0.9078. This

suggests that Ef�cientNetB2 achieved a good balance between precision and recall in classifying foot

ulcers.

• ROC Curves

ROC curves provide insights into the model's discrimination capability by illustrating the trade-off

between true positive rate (sensitivity) and false positive rate (1 - speci�city) at various classi�cation

thresholds. The �gure 4.3 present the ROC curve for the best-performing network.

Table 4.3: Comparison of AUC scores for different pre-trained networks

Pre-trained Network AUC Score
ResNet50 0.92

DenseNet121 0.93
Ef�cientNetB2 0.96

ResNet101 0.90

The ROC curve demonstrates the excellent discriminatory power of the chosen network, as evi-

denced by the curve closely hugging the top-left corner, indicating high sensitivity and low false positive

rate. The area under the curve (AUC) provides a quantitative measure of the model's performance, with

a value of 0.96 indicating strong discriminatory capability.

These evaluation metrics collectively demonstrate the effectiveness of the proposed system archi-

tecture in accurately detecting foot ulcers. The high MAP scores, normalized F1 scores and the dis-

criminatory power represented by the ROC curve demonstrate the system's ability to classify foot ulcers

accurately and precisely.
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Figure 4.3: Best ROC Curve for Ef�cientNetB2. Source: Image created by the author

4.2 Comparison of Pre-trained Networks

In this section, we will compare and evaluate different pre-trained networks that have been used in our

study. Each pre-trained network comes with its own unique characteristics, advantages, and weak-

nesses. Understanding these aspects is crucial for selecting the most suitable network for our classi�-

cation task.

During the experimentation phase, after �ne-tuning the pre-trained network on the diabetic foot ulcer

dataset, the model is evaluated on a separate and previously unseen test dataset. The test dataset is

distinct from the training and validation datasets, ensuring that the model's performance is assessed on

completely new and independent data.

Testing the model on a separate dataset helps provide a more accurate estimate of how well the

model will perform on real-world, unseen data. If the model performs well on the test dataset, it suggests

that it has learned to generalize and can make accurate predictions on new, unseen foot images.

It is crucial to ensure that the test data is not used during any part of the training process, including

model selection, hyperparameter tuning, or architecture modi�cations. If the test data is used for any of

these purposes, it can lead to over�tting, where the model becomes biased towards the test data and
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may not perform well on new, unseen data.

However we used the same test data to compare the pre-trained networks, you can provide a clear

understanding of how each model performs on the speci�c task of diabetic foot ulcer classi�cation, using

a consistent and shared benchmark. This ensures that any observed differences in performance can be

attributed to the architectural differences and not due to variations in the test data.

4.2.1 Pre-trained Network Analysis

We begin by examining the pre-trained networks in terms of their architecture, training methodologies,

and intended applications.

4.2.1.A ResNet

ResNet, short for Residual Network, is a deep convolutional neural network that introduced the concept

of residual learning. ResNet's key advantage lies in its ability to effectively train extremely deep networks

by mitigating the vanishing gradient problem. However, it may be computationally expensive due to its

deeper architecture.

To evaluate the performance of ResNet, we trained the network on our dataset and assessed its

classi�cation accuracy, AUC, MAP, and normalized F1-score.

The selection of the ResNet architecture involved a systematic evaluation of various models within

the ResNet family, ranging from the simplest, ResNet18, to the most parameter-rich, ResNet152. This

evaluation was driven by the need to strike a balance between model complexity, computational ef�-

ciency, and classi�cation performance.

Starting with ResNet18, we opted for the most basic architecture to establish a baseline for perfor-

mance. As we progressed to more complex models in the ResNet family, such as ResNet50, ResNet101,

and ResNet152, we observed improvements in classi�cation accuracy and the ability to capture intricate

image features. However, these deeper models also came with signi�cantly more parameters, making

them computationally intensive.

The choice of ResNet50 among these options was in�uenced by multiple factors. Firstly, ResNet50

offered a good compromise between model complexity and computational ef�ciency. It provided sub-

stantial improvements in classi�cation accuracy compared to ResNet18, yet it was more memory-

ef�cient and faster to train compared to the deeper ResNet101 and ResNet152 variants.

4.2.1.B DenseNet

DenseNet is another popular pre-trained network architecture known for its dense connectivity pattern. It

connects each layer directly to every other layer in a feed-forward fashion, resulting in enhanced feature
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Figure 4.4: ROC Curve for ResNet50.

propagation and gradient �ow. DenseNet performs well in scenarios where data availability is limited,

but it may have higher memory requirements.

The selection of DenseNet121 followed a similar rationale to that of ResNet50. We systematically

evaluated different models within the DenseNet family, starting from the simpler variants and moving

towards more complex models, including DenseNet121 and DenseNet169. This evaluation aimed to

balance model complexity, computational ef�ciency, and classi�cation performance.

4.2.1.C Ef�cientNet

Ef�cientNet is a family of pre-trained networks that achieve state-of-the-art performance with a highly

ef�cient architecture. It employs a compound scaling method to optimize depth, width, and resolution

simultaneously. Ef�cientNet is known for striking a balance between model size and performance.

The selection of Ef�cientNet models followed a comprehensive evaluation process, mirroring our

approach with ResNet and DenseNet. We began by considering various models within the Ef�cientNet

family, ranging from the smaller, less complex variants like Ef�cientNetB0 to the larger, more parameter-

rich models such as Ef�cientNetB7.

Within the Ef�cientNet family, after careful evaluation of computational ef�ciency and performance,
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Figure 4.5: ROC Curve for DenseNet121.

we have selected Ef�cientNetB2 as the optimal choice. It strikes a well-balanced combination of time

consumption and results, making it a suitable candidate for our classi�cation task.

4.2.2 Fine-tuning Techniques

To further optimize the performance of the pre-trained networks, we applied two �ne-tuning techniques:

freezing layers and using a tensor concatenation approach.

4.2.2.A Freezing Layers

In the freezing layers technique, we initially froze the entire network and gradually unfroze the last few

layers one by one to assess their impact on the model's performance. By selectively unfreezing these

layers, we aimed to �nd the optimal balance between leveraging the pre-trained weights and allowing

the model to adapt to our speci�c task. We evaluated the performance of each network by unfreezing

the last layers individually and comparing the resulting accuracy, AUC, MAP, and normalized F1-score

Using this �ne-tuning technique, we obtained the following results:
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Figure 4.6: ROC Curve for Ef�cientNetB2.

4.2.2.B Tensor Concatenation

In addition to freezing layers, we explored the tensor concatenation approach to enhance the represen-

tation of our input data. We created a tensor by concatenating three color versions of the images: RGB,

CMYK, and Luv. This technique aimed to capture diverse color information and improve the discrimi-

native ability of the networks. We evaluated the performance of each network with this enhanced input

representation using the same metrics.

By examining the pre-trained networks and applying these �ne-tuning techniques, we aim to identify

the best-performing network that achieves optimal results in terms of accuracy, AUC, MAP, and normal-

ized F1-score.

4.3 Overall Performance Comparison using Fine-tuning

In this section, we present the results obtained by �ne-tuning different pre-trained networks on our image

classi�cation task. Fine-tuning is a powerful technique that allows us to leverage the knowledge learned

by pre-trained networks on large datasets and adapt them to our speci�c task. We experimented with
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two different �ne-tuning approaches: freezing layers and using a concatenated input tensor. For each

pre-trained network, we evaluated the performance of different �ne-tuning con�gurations by monitoring

several metrics, such as accuracy, AUC, MAP, and normalized F1-score. Finally, we provide a compre-

hensive comparison of the results obtained by each pre-trained network, highlighting their strengths and

weaknesses.

To compare the performance of the pre-trained networks, we conducted experiments using the same

dataset and evaluation methodology.

The names of the �ne-tuned models provide additional information: ”3T” indicates that an input

tensor has been used to concatenate the three color versions (RGB, CMYK, and LUV) during training,

the middle name represents the pre-trained network used, and the last number indicates the number

of layers that have been thawed. Through this analysis, we aim to identify the most effective �ne-

tuning strategies and provide insights into the performance of each pre-trained network in our speci�c

classi�cation task.

In our �ne-tuning process, we have utilized both freezing layers and concatenated input tensor tech-

niques concurrently. This decision was driven by the aim to leverage the bene�ts offered by each ap-

proach. Freezing layers allows us to capitalize on the pre-trained weights and learn task-speci�c features

by selectively updating only a portion of the network. On the other hand, the concatenated input tensor

technique aims to enhance the model's ability to capture diverse color representations by incorporat-

ing multiple color versions during training. By combining these two techniques, we seek to achieve a

balance between leveraging the pre-trained network's general knowledge and tailoring the model to our

speci�c classi�cation task. This simultaneous utilization enables us to explore the synergistic effects and

potential performance improvements resulting from the combination of these �ne-tuning approaches.
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• Normalized F1-Score

Figure 4.7: F1 Score

• Mean Average Precision (MAP)

Figure 4.8: MAP comparative
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• ROC Curve

Figure 4.9: ROC Curve: Fine-tuned Ef�cienNetB2

These results highlight the strengths and weaknesses of each pre-trained network in the context of

foot ulcer detection. ResNet50 exhibits excellent discriminatory power and overall performance, making

it a promising choice for this speci�c classi�cation task. DenseNet121, on the other hand, achieves a

good balance between precision and recall, making it suitable for applications where class imbalance is

a concern.

However, Ef�cientNetB2 has demonstrated the best results among the evaluated pre-trained net-

works due to several factors. Firstly, Ef�cientNetB2 is known for its ef�cient architecture that strikes a

balance between model size and performance. It combines various scaling dimensions, including width,

depth, and resolution, to optimize the network's capacity and computational ef�ciency. This architec-

tural design allows Ef�cientNetB2 to capture intricate features and patterns effectively while avoiding

over�tting or excessive resource consumption.

We conducted a thorough evaluation of various Ef�cientNet models, ranging from Ef�cientNetB0

to B5, to determine the most suitable architecture for our diabetic foot ulcer classi�cation task. Our

selection process considered both classi�cation performance and computational ef�ciency.

Due to resource limitations, our experiments were constrained to models up to Ef�cientNetB5, as our
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computational resources couldn't support larger architectures. We used the same dataset for training

and evaluation to ensure a fair comparison.

Our results showed that as we progressed from B0 to B2, there was a noticeable improvement in

classi�cation performance. However, upon reaching Ef�cientNetB3, further gains in accuracy became

marginal. Beyond this point, increasing the model's complexity did not signi�cantly enhance classi�ca-

tion results.

Furthermore, computational ef�ciency played a vital role in our decision-making process. Models with

higher computational demands, such as B4 and B5, showed diminishing returns in terms of classi�cation

accuracy while consuming signi�cantly more resources.

Taking these factors into account, we selected Ef�cientNetB2 as the optimal compromise between

computational ef�ciency and classi�cation performance. It struck a balance that allowed us to achieve

excellent results while remaining within our available computational resources.

Additionally, Ef�cientNetB2 bene�ts from its extensive pre-training on a large-scale dataset, which

helps it learn rich representations of diverse visual features. The pre-training process exposes the

network to a wide range of images and enables it to learn general visual knowledge. As a result,

when �ne-tuned on our speci�c foot ulcer classi�cation task, Ef�cientNetB2 can leverage its pre-learned

knowledge to quickly adapt and specialize its performance to the target domain.

Moreover, Ef�cientNetB2's success can be attributed to its ability to generalize well on different

datasets and tasks. Its ef�cient architecture and robust feature representation enable it to handle various

visual patterns, including the distinguishing characteristics of foot ulcers. This generalization capability

makes Ef�cientNetB2 a reliable choice for our classi�cation task, as it demonstrates strong performance

across different evaluation metrics, including AUC, MAP, and normalized F1-score.

Overall, the combination of Ef�cientNetB2's ef�cient architecture, extensive pre-training, and general-

ization capability contribute to its superior performance in our foot ulcer classi�cation task. Its balanced

trade-off between model size and performance, coupled with its ability to capture relevant features,

makes it a suitable choice for achieving the best results in our study.

Based on the obtained results, we can draw some conclusions regarding the performance of differ-

ent networks and the impact of certain factors on classi�cation accuracy. Firstly, both ResNet50 and

DenseNet121 are well-known and widely used networks that have shown promising results in various

tasks. However, in our case with a relatively small dataset, their performance did not meet our expec-

tations in terms of classi�cation accuracy. This can be attributed to the limited amount of data available

for these deep networks to generalize effectively.

On the other hand, Ef�cientNetB2 has emerged as the top performer in our experiments. This can

be attributed to its balanced architecture, which strikes a good trade-off between model complexity and

performance. Ef�cientNetB2 is speci�cally designed to optimize the model's ef�ciency and accuracy
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across different resource constraints, making it well-suited for our task even with limited data.

Interestingly, we observed that extremely large networks with numerous layers did not yield better

results. This can be explained by the phenomenon of over�tting, where the model becomes too complex

and starts to memorize the training data rather than learning meaningful patterns. On the other hand,

very shallow networks with few layers may lack the capacity to capture intricate features, resulting in

lower accuracy. Hence, �nding an optimal depth for the network architecture is crucial for achieving

good performance.

Moreover, our experiments with freezing layers showed that initially freezing and then selectively

unfreezing layers can lead to improvements in classi�cation accuracy. However, after a certain number

of layers are unfrozen, the performance begins to degrade. This indicates the delicate balance between

leveraging pre-trained weights and �ne-tuning speci�c layers to adapt to the target task.

Lastly, increasing the input tensor size by concatenating multiple color versions showed varying ef-

fects depending on the network architecture. While it improved the results for smaller networks like

ResNet50 and DenseNet121, we observed that for Ef�cientNetB2, the training time signi�cantly in-

creased without a proportional improvement in performance.

Figure 4.10: Confusion Matrix Ef�cienNetB2

Overall, our �ndings emphasize the importance of carefully selecting network architectures, consid-
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ering the dataset size, and �ne-tuning strategies to achieve optimal performance in classi�cation tasks.

It is important to note that the choice of the best-performing network may depend on various factors,

including the speci�c requirements of the application, available computational resources, and the trade-

off between different evaluation metrics. Therefore, it is crucial to consider these factors and select the

network that best aligns with the speci�c needs of the foot ulcer detection system.

4.4 Validation by a Podiatrist

To ensure the reliability and clinical relevance of the developed system, we sought the expert opinion

of a podiatrist who specializes in foot ulcer diagnosis. The podiatrist carefully examined the system's

performance and provided valuable feedback based on their clinical experience. Their expertise and

insights helped validate the system's accuracy and suitability for real-world applications.

The validation by the experts played a crucial role in assessing the accuracy and reliability of the

system's predictions. Their analysis went beyond a simple binary classi�cation of whether an ulcer

was present or not. Firstly, the experts examined the images to identify if the patient had diabetic foot

syndrome. Once they con�rmed the correctness of the images and their relevance to the diabetic foot

syndrome, they delved into understanding the reasons behind any discrepancies between the system's

predictions and their expert evaluation.

By investigating the reasons for misclassi�cations, the experts provided valuable insights into the sys-

tem's performance and limitations. This feedback was instrumental in re�ning the system and enhancing

its overall accuracy and robustness.

The experts conducted a thorough analysis to identify the factors contributing to the system's incor-

rect predictions, especially in cases where the system misclassi�ed images. These factors included

important clinical aspects that cannot be solely measured by a single image, such as the depth or sever-

ity of the ulceration. In some instances, certain critical features might not be visually apparent, and the

experts used their domain expertise to recognize and analyze these subtleties.

The podiatrist reviewed a sample set of images and compared the system's classi�cation results

with their own diagnosis. They assessed various aspects such as sensitivity, speci�city, and overall

agreement between the system's predictions and their expert judgment. The podiatrist also provided

valuable input on the clinical signi�cance of correctly identifying foot ulcers and the potential impact of

the system in a healthcare setting.

The feedback and validation from the podiatrist further reinforced the effectiveness and reliability

of our system. Their expertise and professional evaluation added a valuable perspective to the devel-

opment process, ensuring that the system aligns with the requirements and expectations of medical

professionals in the �eld of podiatry.
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By incorporating the validation from a podiatrist, we can con�dently state that our system has under-

gone rigorous evaluation and has received positive validation from a domain expert. This collaboration

between engineering and healthcare professionals strengthens the credibility and applicability of our

research in the context of foot ulcer detection and diagnosis.

After obtaining the expert opinion of the podiatrist, we proceeded to validate the system using a

rigorous evaluation process. To ensure the integrity of the evaluation and mitigate any potential bias, a

double-blind review methodology was employed. This means that the reviewer conducting the evaluation

was unaware of the system's classi�cation results for each image.

The validation process involved providing the reviewer with a set of randomized images, and they

manually classi�ed each image based on their expertise. This manual classi�cation served as the

ground truth for comparison with the system's classi�cations.

By utilizing a double-blind review methodology, we aimed to eliminate any potential bias and en-

sure an objective evaluation of the system's performance. The reviewer's independent assessment of

the images provides an additional layer of validation, strengthening the credibility and reliability of the

system.

The validation process with expert analysis is essential in healthcare applications, as it ensures that

the automated system aligns with the clinical understanding of experts. By integrating expert validation,

the system gains credibility and becomes more reliable for assisting healthcare professionals in mak-

ing accurate and informed decisions regarding diabetic foot ulcers. The collaboration between machine

learning techniques and expert evaluation forms a powerful synergy to advance the diagnosis and man-

agement of diabetic foot complications, ultimately improving patient outcomes and enhancing overall

healthcare.

For detailed information about the validation process, including the review protocol and the reviewer's

assessments, please refer to the Appendix section of this document.
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Figure 4.11: Demonstration of how the validation of the images has been performed.
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This chapter focuses on the application of the Grad-CAM (Gradient-weighted Class Activation Map-

ping) technique to enhance the interpretability of the foot classi�cation model. The chapter begins with

an introduction to the concept of model interpretability and the need for techniques like Grad-CAM in

deep learning projects. It then delves into the understanding of Grad-CAM, explaining its principles and

how it aids in visualizing the regions of the input that contribute most to the model's predictions. The im-

plementation details speci�c to the foot classi�cation model are described, highlighting any adaptations

made. Subsequently, the chapter presents the visualizations obtained by applying Grad-CAM to the foot

classi�cation model, showcasing how it highlights crucial regions in the input images for distinguishing

between normal and abnormal feet. The interpretation and insights gained from these visualizations are

discussed, shedding light on the model's decision-making process and the signi�cance of the highlighted

regions. The chapter also discusses limitations and possible future directions for improving model in-

terpretability using Grad-CAM. The chapter concludes by summarizing the results and implications of

using Grad-CAM to improve model interpretability using Grad-CAM. Finally, the chapter concludes by

summarizing the results and implications of using Grad-CAM to improve model interpretability using

Grad-CAM.

5.1 Introduction to Model Interpretability

In the realm of deep learning, the exceptional performance of models often comes at the cost of inter-

pretability. As neural networks become more complex, with millions of parameters and multiple layers,

it becomes increasingly challenging to understand how these models arrive at their predictions. This

lack of interpretability poses signi�cant concerns in various domains, including healthcare, �nance, and

autonomous systems, where decision-making transparency is crucial.

The need for model interpretability stems from several important factors. First and foremost, inter-

pretability fosters trust and acceptance of deep learning models by providing insights into the reasoning

behind their decisions. In critical applications such as medical diagnosis, where lives are at stake, under-

standing why a model classi�ed an image as abnormal or normal is essential for healthcare professionals

to make informed decisions.

Furthermore, model interpretability helps identify potential biases, discrimination, or erroneous pat-

terns learned by the model. By analyzing the factors that drive the model's predictions, we can detect

and rectify any unintended biases or unfairness that might exist in the training data. This promotes

fairness and accountability in AI systems, ensuring they are unbiased and inclusive.

Additionally, interpretability enables model improvement and debugging. By gaining visibility into the

inner workings of the model, researchers can identify areas of weakness or failure cases and re�ne

the model accordingly. Interpretability techniques provide valuable feedback for model optimization and
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guide feature engineering efforts.

Model interpretability aims to address this issue by providing insights into the inner workings of deep

learning models, allowing researchers, practitioners, and end-users to understand the factors contribut-

ing to predictions. By uncovering the important features, patterns, and regions within the input data

that in�uence the model's decision, interpretability techniques offer transparency and justi�cation for the

model's output.

In this chapter, we delve into the use of one such interpretability technique called Grad-CAM (Gradient-

weighted Class Activation Mapping) to enhance the interpretability of our foot classi�cation model. Grad-

CAM provides visual explanations by highlighting the regions of an input image that are most relevant

for the model's prediction. By utilizing Grad-CAM, we can gain valuable insights into how our model

distinguishes between normal and abnormal feet, enabling us to validate its decision-making process

and build trust in its performance.

The next sections will explore the principles of Grad-CAM, its application to the foot classi�cation

model for our case study, and the visualizations obtained, offering a deeper understanding of the model's

interpretability and its implications for foot assessment.

5.2 Understanding Grad-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) is a technique used for visualizing and under-

standing the decision-making process of deep neural networks. It provides insights into which parts of

an input image are in�uential in the network's classi�cation or prediction.

At its core, Grad-CAM combines the concepts of gradient-based localization and class activation

maps. It leverages the gradient information �owing back from the �nal convolutional layer to identify the

most discriminative regions of an image.

To explain the concept of Grad-CAM, we start with a trained convolutional neural network (CNN)

that has learned to classify images. When an image is fed into the network, it undergoes a series of

convolutional and pooling operations, extracting various features at different spatial resolutions. The

�nal layer of the network produces the prediction probabilities for different classes.

During backpropagation, the gradients of the predicted class score with respect to the feature maps

are computed. Grad-CAM calculates the importance of each feature map by aggregating the gradients

across the spatial dimensions. These gradients indicate the sensitivity of the predicted class to changes

in each feature map.

The image from the paper ”Grad-CAM: Visual Explanations from Deep Networks via Gradient-based

Localization” [4] provides an overview of the Grad-CAM technique. Grad-CAM stands for Gradient-

weighted Class Activation Mapping and is used for visualizing and interpreting the decisions made by
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