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Chapter 1

The name of the game

Signum est quod et se ipsum sensui et praeter se aliquid animo os-
tendit.

Saint Augustine of Hippo (354 � �430), De dialectica (c. 387), V

System is the part of the Universe we want to study. System
A signal is a function of time or space that conveys information about a Signal

system.
A control system is, in simple terms, a system designed to behave as the Control system

designer desires.
There are systems of many types: biological systems, economic systems,

chemical systems, social systems. . . These lecture notes are concerned in par-
ticular with mechatronic systems, i.e. those combining both mechanical and Mechatronic system
electronic components.

Example 1.1. A Wave Energy Converter (WEC) is a mechatronic system that
extracts the energy of sea waves, usually to produce electricity. The power
injected to the electric grid is a signal that depends on time. The elevation
of the sea waves is a signal that depends on both time and space. Figure 1.1
illustrates these signals.

We will study the following subjects:

Part I addresses the development of mathematical models to describe the be-
haviour of mechatronic systems.

Part II uses the models from Part I to study how systems behave.

Part III presents the technology used to measure signals and to control mechatronic
systems.

Part IV shows how controllers can be designed to make control systems behave as
desired.
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Figure 1.1: Left: electrical energy produced by a WEC as a function of time.
Right: wave elevation as a function of time at a given point; at a di�erent
location, the wave elevation will be di�erent.
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2 CHAPTER 1. THE NAME OF THE GAME

Part V is about practical aspects of the implementation of control systems.

Part VI explores system identi�cation, i.e. ways of �nding models from experimen-
tal data.

Part VII studies systems described by models with derivatives and integrals with
orders that are not integer numbers.

Part VIII covers systems with outputs that are not deterministic.

Chapter 43 concludes these lecture notes with an overview of related subjects.

At IST, ULisboa, these subjects are covered in the following courses:

� Signals and Mechatronic Systems covers Parts I, II and III.

� Control Systems covers Parts IV and V.

� System Identi�cation covers Parts VI, VII and VIII.

We will often use a software called Matlab, as well as Matlab's graphicalMatlab

environment for working with block diagrams Simulink. Matlab is not a freeSimulink

software. On the other hand, some of the functionalities of Matlab can be
supplied by free software such as Octave (which you can install from https://Octave
www.gnu.org/software/octave or run online from https://octave-online.

net/) or Scilab (which you can install from https://www.scilab.org/). NoticeScilab
that several functionalities of Matlab we will need are missing from Octave,
which also lacks anything parallel to Simulink. Scilab is more complete, and
has Xcos, which is similar to Simulink; but is slightly less compatible with
Matlab.

In what follows it is presumed that you are acquainted with the most ba-
sic features of Matlab (or Octave, or Scilab), which you can learn with the
�Getting started with MATLAB� tutorials in the program's �Documentation
Center�.

https://www.gnu.org/software/octave
https://www.gnu.org/software/octave
https://www.gnu.org/software/octave
https://www.gnu.org/software/octave
https://octave-online.net/
https://octave-online.net/
https://www.scilab.org/


Part I

Modelling
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5

La ciencia jamás podrá descubrir todos los secretos de la naturaleza,
ya que la ciencia la hacen los hombres y éstos son parte de ella.

J. Juan Rosales García (1967 � . . . ), pers. comm., Saint Petersburg, 2001,
qtd. in Ecuaciones diferenciales ordinarias (2009, auth. Juan Rosales, Manuel

Guía Calderón)

In this part of the lecture notes:

Chapter 2 presents very handy mathematical tools for the resolution of di�erential
equations, which we will need repeatedly in subsequent chapters.

Chapter 3 gives examples of mechatronic systems and signals, and the basic notions
related thereto.

Chapter 4 addresses the modelling of mechanical systems.

Chapter 5 addresses the modelling of electrical systems.

Chapter 6 addresses the modelling of �uidic systems, a particular type of mechanical
systems.

Chapter 7 addresses the modelling of thermal systems.

Chapter 8 addresses the modelling of systems combining several of the components
studied in chapters 4 to 7, as well as of systems with nonlinear models.

Here is what you need to know beforehand to follow these chapters:

� Di�erential and integral calculus, up to the usual level of freshman courses
on Calculus;

� Kinematics, dynamics, electrical circuits, �uid mechanics, and heat trans-
fer, up to the usual level of freshman courses on Physics, or at least the
level of secondary education.
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Chapter 2

The Laplace transform

�And, if we transmit through a wormhole, the person is always re-
constituted at the other end. We can count on that happening, too.�

There was a pause.

Stern frowned.

�Wait a minute,� he said. �Are you saying that when you transmit,
the person is being reconstituted by another universe?�

�In e�ect, yes. I mean, it has to be. We can't very well reconstitute
them, because we're not there. We're in this universe.�

Michael Crichton (1942 � �2008), Timeline (1999), Black rock

The Laplace transform is a very important tool for the resolution of dif- Laplace transform
ferential equations. In this chapter we will study its de�nition, its properties,
its application to di�erential equations (which is the reason we are studying this
subject), and the related Fourier transform, that we will also need.

2.1 De�nition

De�nition 2.1. Let t ∈ R be a real variable, and f(t) ∈ R a real-valued
function. The Laplace transform of function f , denoted by L [f(t)] or by F (s),
is a complex-valued function F (s) ∈ C of complex variable s ∈ C, given by

L [f(t)] =

∫ +∞

0

f(t)e−st dt (2.1)

Remark 2.1. Strictly speaking, operation L is the Laplace transformation,
and the result of applying L to a function gives us its Laplace transform. But
it is common to call the operation itself Laplace transform as well.

Remark 2.2. In (2.1), function f(t) only has to be de�ned for t ≥ 0. This
would not be so if we were using the bilateral Laplace transform, which is Bilateral Laplace trans-

forman alternative de�nition given by

L [f(t)] =

∫ +∞

−∞
f(t)e−st dt (2.2)

This bilateral Laplace transform is seldom used; we will use (2.1) instead, as is
common, and will need (2.2) only in Chapter 37. The price to pay for being
able to work with functions de�ned in R+ only will be addressed below in
section 2.4.

Remark 2.3. The Laplace transform is part of a group of transforms known
as integral transforms, given by

T [f(t)] =

∫ +∞

0

f(t)K(s, t) dt (2.3)

where T is a generic transform and K(s, t) is a function called kernel. In the
case of the Laplace transform, the kernel is K(s, t) = e−st.

7



8 CHAPTER 2. THE LAPLACE TRANSFORM

The Laplace transform of function f(t) will only exist if the improper integral Existence of the Laplace
transformin (2.1) converges. This will happen in one of two cases:

� If f(t) is bounded in its domain R+, the integrand f(t)e−st will obviously
tend to 0 as t→ +∞.

� If f(t) tends to in�nity as t → +∞, but does so slower than e−st tends
to 0, the integrand will still tend to 0. More rigorously, f(t) must be of
exponential order, i.e. there must be positive real constantsM, c ∈ R such
that

|f(t)| ≤M ect, 0 ≤ t ≤ ∞. (2.4)

Otherwise, the integrand of (2.1) does not tend to 0 and it is obvious that the
improper integral will be in�nite. For complete rigour we also have to require
f(t) to be piecewise continuous for F (s) to exist, otherwise the Riemann integral
would not exist.

Remark 2.4. In fact (2.1) may converge only for some values of s, and thus have
a region of convergence which is smaller than C; but then it can be analytically
extended to the rest of the complex plane. This is a question we will not worry
about.

2.2 Finding Laplace transforms

Example 2.1. Let f(t) be functionHeaviside function

H(t) =

{
1, if t ≥ 0

0, if t < 0
, (2.5)

known as the Heaviside function. ThenL [H(t)]

L [H(t)] =

∫ +∞

0

1× e−st dt =

[
e−st

−s

]+∞

0

=
e−∞

−s
− e0

−s
=

1

s
. (2.6)

Example 2.2. Let f(t) be a negative exponential, f(t) = e−at. ThenL [e−at]

L
[
e−at

]
=

∫ +∞

0

e−ate−st dt

=

[
e−(a+s)t

−a− s

]+∞

0

= − e
−∞

s+ a
−
(
− e0

s+ a

)
=

1

s+ a
. (2.7)

While Laplace transforms can be found from de�nition as in the two exam-
ples above, in practice they are found from tables, such as the one in Table 2.1.

To use with pro�t Laplace transform tables, it is necessary to prove �rst the
following result.

Theorem 2.1. The Laplace transform is a linear operator:L is linear

L [k f(t)] = k F (s), k ∈ R (2.8)

L [f(t) + g(t)] = F (s) +G(s) (2.9)

Proof. Both (2.8) and (2.9) are proved from the linearity of the integration
operator:

L [k f(t)] =

∫ +∞

0

k f(t)e−st dt = k

∫ +∞

0

f(t)e−st dt = k F (s) (2.10)

L [f(t) + g(t)] =

∫ +∞

0

(f(t) + g(t)) e−st dt (2.11)

=

∫ +∞

0

f(t)e−st dt+

∫ +∞

0

g(t)e−st dt = F (s) +G(s)

Example 2.3. The Laplace transform of f(t) = 5t is obtained from line 3 of
Table 2.1 together with (2.8):

L [5t] = 5L [t] =
5

s2
(2.12)



2.2. FINDING LAPLACE TRANSFORMS 9

Table 2.1: Table of Laplace transforms

x (t) X (s)

1 δ (t) 1

2 H (t)
1

s

3 t
1

s2

4 t2
2

s3

5 e−at
1

s+ a

6 1− e−at a

s (s+ a)

7 te−at
1

(s+ a)
2

8 tne−at, n ∈ N n!

(s+ a)
n+1

9 sin (ωt)
ω

s2 + ω2

10 cos (ωt)
s

s2 + ω2

11 e−at sin (ωt)
ω

(s+ a)2 + ω2

12 e−at cos (ωt)
s+ a

(s+ a)
2

+ ω2

13
1

b− a
(
e−at − e−bt

) 1

(s+ a)(s+ b)

14
1

ab

(
1 +

1

a− b
(
b e−at − a e−bt

)) 1

s(s+ a)(s+ b)

15
ωn
Ξ
e−ξωnt sin (ωnΞt)

ω2
n

s2 + 2ξωns+ ω2
n

16 − 1

Ξ
e−ξωnt sin (ωnΞt− φ)

s

s2 + 2ξωns+ ω2
n

17 1− 1

Ξ
e−ξωnt sin (ωnΞt+ φ)

ω2
n

s (s2 + 2ξωns+ ω2
n)

In this table: Ξ =
√

1− ξ2; φ = arctan
Ξ

ξ
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Example 2.4. The Laplace transform of f(t) = 1−(1+t)e−3t is obtained from
lines 6 and 7 of Table 2.1 together with (2.9):

L [f(t)] = L
[
1− e−3t − te−3t

]
= L

[
1− e−3t

]
−L

[
te−3t

]
=

3

s (s+ 3)
− 1

(s+ 3)
2 =

3s+ 32 − s
s (s+ 3)

2 =
2s+ 9

s3 + 6s2 + 9s
(2.13)

2.3 Finding inverse Laplace transforms

Laplace transform tables can also be used to �nd inverse Laplace transforms,Inverse Laplace transform
i.e. �nding the f(t) corresponding to a given F (s) = L [f(t)]. This operation
is denoted by f(t) = L −1 [F (s)].

Example 2.5. The inverse Laplace transform of F (s) = 10
s+10 is obtained from

line 5 of Table 2.1 together with (2.8):

L −1

[
10

s+ 10

]
= 10 L −1

[
1

s+ 10

]
= 10 e−10t (2.14)

Example 2.6. The inverse Laplace transform of F (s) = s+2
s2+13s+30 is obtainedPartial fraction expansion

from line 5 of Table 2.1 together with (2.8). But for that it is necessary to develop
F (s) in a partial fraction expansion. First we �nd the roots of the polynomial
in the denominator, which are −3 and −10. So s2 + 13s+ 30 = (s+ 3)(s+ 10),
and we can write

s+ 2

s2 + 13s+ 30
=

A

s+ 3
+

B

s+ 10
(2.15)

where A and B still have to determined:

A

s+ 3
+

B

s+ 10
=
As+ 10A+Bs+ 3B

(s+ 3)(s+ 10)
=
s(A+B) + (10A+ 3B)

s2 + 13s+ 30
(2.16)

Obviously we want that{
A+B = 1

10A+ 3B = 2
⇔

{
B = 1−A
10A+ 3− 3A = 2

⇔

{
B = 8

7

A = − 1
7

(2.17)

So
s+ 2

s2 + 13s+ 30
=
− 1

7

s+ 3
+

8
7

s+ 10
, and �nally

L −1

[
s+ 2

s2 + 13s+ 30

]
= L −1

[ − 1
7

s+ 3
+

8
7

s+ 10

]
(2.18)

= L −1

[ − 1
7

s+ 3

]
+ L −1

[ 8
7

s+ 10

]
= −1

7
e−3t +

8

7
e−10t

Remark 2.5. Notice that the result in line 13 of Table 2.1 can be obtained
from line 5 also using a partial fraction expansion:

1

(s+ a)(s+ b)
=

A

s+ a
+

B

s+ b
=
As+Ab+Bs+ aB

(s+ a)(s+ b)
=
s(A+B) + (Ab+ aB)

(s+ a)(s+ b)
(2.19)

We want {
A+B = 0

Ab+ aB = 1
⇔

{
B = −A
Ab− aA = 1

⇔

{
B = −1

b−a
A = 1

b−a
(2.20)

and thus

L −1

[
1

(s+ a)(s+ b)

]
= L −1

[
1
b−a
s+ a

]
+ L −1

[
−1
b−a
s+ b

]
(2.21)

=
1

b− a
e−at +

−1

b− a
e−bt =

1

b− a
(
e−at − e−bt

)
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Example 2.7. The inverse Laplace transform of F (s) = 4s2+13s−2
(s2+2s+2)(s+4) is ob-Partial fraction expansion

with complex roots tained from lines 5, 15 and 16 of Table 2.1 together with 2.8 and 2.9. The
transforms in lines 14 and 15 are used because the roots of 4s2 + 13s − 2 are
complex and not real (−1± j, to be precise). So we will leave that second order
term intact and we make

4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)
=

As+B

s2 + 2s+ 2
+

C

s+ 4
=
As2 + 4As+Bs+ 4B + Cs2 + 2Cs+ 2C

(s2 + 2s+ 2)(s+ 4)

=
s2(A+ C) + s(4A+B + 2C) + (4B + 2C)

(s2 + 2s+ 2)(s+ 4)
(2.22)

Hence
A+ C = 4

4A+B + 2C = 13

4B + 2C = −2

⇔


C = 4−A
4A+B + 8− 2A = 13

4A− 3B = 15

⇔


C = 4−A
2A+B = 5

4A− 3B = 15

⇔


C = 1

A = 3

B = −1

(2.23)

Finally,

L −1

[
4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)

]
= L −1

[
3s− 1

s2 + 2s+ 2
+

1

s+ 4

]
(2.24)

= 3L −1

[
s

s2 + 2s+ 2

]
− 1

2
L −1

[
2

s2 + 2s+ 2

]
+ L −1

[
1

s+ 4

]
and since for the �rst two terms we have

ω =
√

2 (2.25)

ξω = 1 (2.26)

ξ =
1√
2

(2.27)

Ξ =

√
1− 1

2
=

1√
2

(2.28)

ωΞ = 1 (2.29)

ϕ = arctan

1√
2

1√
2

=
π

4
(2.30)

we arrive at

L −1

[
4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)

]
= −3

√
2e−t sin

(
t− π

4

)
− 1

2
2e−t sin(t) + e−4t

= e−4t + e−t
[
−3
√

2
(

sin t cos
π

4
− cos t sin

π

4

)
− sin t

]
= e−4t + e−t

[
−3
√

2

(
sin t

1√
2
− cos t

1√
2

)
− sin t

]
= e−4t + e−t (−4 sin t+ 3 cos t) (2.31)

Remark 2.6. If in the example above we had decided to expand the second
order term and use only line 5 of Table 2.1, we would have arrived at the very
same result, albeit with more lengthy and tedious calculations involving complex
numbers. We would have to separate 3s−1

s2+2s+2 in two as follows:

3s− 1

s2 + 2s+ 2
=

A+Bj

s+ 1 + j
+

C +Dj

s+ 1− j
(2.32)

=
As+A−Aj +Bjs+Bj +B + Cs+ C + Cj +Djs+Dj −D

s2 + s− js+ s+ 1− j + js+ j + 1

=
s(A+ C) + js(B +D) + (A+B + C −D) + j(−A+B + C +D)

s2 + 2s+ 2

Then
A+ C = 3

B +D = 0

A+B + C −D = −1

−A+B + C +D = 0

⇔


C = 3−A
D = −B
A+B + 3−A+B = −1

−A+B + 3−A−B = 0

⇔


C = 3

2

D = 2

B = −2

A = 3
2

(2.33)



12 CHAPTER 2. THE LAPLACE TRANSFORM

Consequently

L −1

[
4s2 + 13s− 2

(s2 + 2s+ 2)(s+ 4)

]
= L −1

[ 3
2 − 2j

s+ 1 + j
+

3
2 + 2j

s+ 1− j
+

1

s+ 4

]
=

(
3

2
− 2j

)
L −1

[
1

s+ 1 + j

]
+

(
3

2
+ 2j

)
L −1

[
1

s+ 1− j

]
+ L −1

[
1

s+ 4

]
=

(
3

2
− 2j

)
e−(1+j)t +

(
3

2
+ 2j

)
e−(1−j)t + e−4t

= e−4t +

(
3

2
− 2j

)
e−t (cos(−t) + j sin(−t)) +

(
3

2
+ 2j

)
e−t (cos t+ j sin t)

= e−4t + e−t
(

3

2
cos t− 3

2
j sin t− 2j cos t− 2 sin t+

+
3

2
cos t+

3

2
j sin t+ 2j cos t− 2 sin t

)
= e−4t + e−t(3 cos t− 4 sin t) (2.34)

Notice how all the complex terms appear in complex conjugates, so that the
imaginary parts cancel out. This has to be the case, since f(t) is a real-valued
function.

Example 2.8. The inverse Laplace transform of F (s) = s2+22s+119
(s+10)3 is obtainedPartial fraction expansion

with multiple roots from lines 5, 7 and 8 of Table 2.1 together with (2.8) and (2.9):

s2 + 22s+ 119

(s+ 10)3
=

A

s+ 10
+

B

(s+ 10)2
+

C

(s+ 10)3

=
As2 + 20As+ 100A+Bs+ 10B + C

(s+ 10)3
(2.35)

Hence 
A = 1

20A+B = 22

100A+ 10B + C = 119

⇔


A = 1

B = 2

C = −1

(2.36)

Finally,

L −1

[
s2 + 22s+ 119

(s+ 10)3

]
= L −1

[
1

s+ 10
+

2

(s+ 10)2
+

−1

(s+ 10)3

]
(2.37)

= L −1

[
1

s+ 10

]
+ 2L −1

[
2

(s+ 10)2

]
− 1

2
L −1

[
2

(s+ 10)3

]
= e−10t + 2t e−10t − 1

2
t2 e−10t = e−10t

(
1 + 2t− 1

2
t2
)

Example 2.9. The inverse Laplace transform of F (s) = 2s+145
s+70 is obtainedDivision of polynomials

from lines 1 and 5 of Table 2.1, but for that it is necessary to begin by dividing
the numerator of F (s) by the denominator. Because the denominator is of �rst
order, in this case polynomial division can be carried out with Ru�ni's rule
(otherwise a long division would be necessary):

2 145
−70 −140

2 5
(2.38)

So
2s+ 145

s+ 70
= 2 +

5

s+ 70
, and �nally

L −1

[
2s+ 145

s+ 70

]
= 2L −1 [1] + 5L −1

[
1

s+ 70

]
= 2δ(t) + e−70t (2.39)

All polynomial operations mentioned in this sections can be performed with
Matlab using the following commands:
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� roots �nds the roots of a polynomial, represented by a vector with its
coe�cients (in decreasing order of the exponent);

� conv multiplies two polynomials, represented by two vectors as above;

� residue performs polynomial division and partial fraction expansion, as
needed, for a rational function, given the numerator and denominator
polynomials represented by two vectors as above.

Example 2.10. The roots of s2 + 3s+ 2 are −2 and −1: Matlab's command
roots

>> roots([1 3 2])

ans =

-2

-1

Example 2.11. The roots of 4s3 +3s2 +2s+1 are −0.6058, −0.0721+0.6383j
and −0.0721− 0.6383j:

>> roots([4 3 2 1])

ans =

-0.6058 + 0.0000i

-0.0721 + 0.6383i

-0.0721 - 0.6383i

Example 2.12. The product of s2 + 2s + 3 and 4s3 + 5s2 + 6s + 7 is 4s5 +
13s4 + 28s3 + 34s2 + 32s+ 21: Matlab's command conv

>> conv([1 2 3],[4 5 6 7])

ans =

4 13 28 34 32 21

Example 2.13. The partial fraction expansion (2.18) from Example 2.6 is Matlab's command
residueobtained as

>> [r,p,k] = residue([1 2],[1 13 30])

r =

1.1429

-0.1429

p =

-10

-3

k =

[]

Vector r contains the residues or numerators of the fractions in the partial Residues
fraction expansion. Vector p contains the poles or roots of the denominator Poles
of the original expression. Vector k contains (the coe�cients of the polynomial
which is) the integer part of the polynomial division, which in this case is 0
because the order of the denominator is higher than the order of the numerator.

The polynomials of the original rational function can be recovered feeding
this function back vectors r, p and k:

>> [num,den] = residue(r,p,k)

num =

1 2

den =

1 13 30

Example 2.14. The partial fraction expansion (2.34) from Example 2.7 and
Remark 2.6 is obtained as



14 CHAPTER 2. THE LAPLACE TRANSFORM

>> [r,p,k] = residue([4 13 -2],conv([1 2 2],[1 4]))

r =

1.0000 + 0.0000i

1.5000 + 2.0000i

1.5000 - 2.0000i

p =

-4.0000 + 0.0000i

-1.0000 + 1.0000i

-1.0000 - 1.0000i

k =

[]

Example 2.15. The partial fraction expansion from Example 2.9 is obtained
as

>> [r,p,k] = residue([2 145],[1 70])

r =

5

p =

-70

k =

2

Notice how this time there is an integer part of the polynomial division, since
the order of the numerator is not lower than the order of the denominator.

Example 2.16. From

>> [r,p,k] = residue([1 2 3 4 5 6],[7 8 9 10])

r =

0.1451 + 0.0000i

-0.0276 - 0.2064i

-0.0276 + 0.2064i

p =

-1.1269 + 0.0000i

-0.0080 + 1.1259i

-0.0080 - 1.1259i

k =

0.1429 0.1224 0.1050

we learn that

s5 + 2s4 + 3s3 + 4s2 + 5s+ 6

7s3 + 8s2 + 9s+ 10
(2.40)

= 0.1429s2 + 0.1224s+ 0.1050 +
0.1451

s+ 1.1269
+
−0.0276− 0.2064j

s+ 0.0080− 1.1259j
+
−0.0276 + 0.2064j

s+ 0.0080 + 1.1259j

2.4 Important properties: derivatives and inte-
grals

Now that we know how to �nd Laplace transforms, it is time to wonder why
we are studying them. To answer this, �rst we have to establish some very
important results.

Theorem 2.2. If L [f(t)] = F (s), thenL of the derivative

L [f ′(t)] = s F (s)− f(0) (2.41)

Proof. Apply integration by parts
∫
uv′ = uv −

∫
u′v to de�nition (2.1):

L [f(t)] =

∫ +∞

0

u︷︸︸︷
f(t)

v′︷︸︸︷
e−st dt

=

[
f(t)

e−st

−s

]+∞

0

−
∫ +∞

0

f ′(t)
e−st

−s
dt

= lim
t→+∞

(
f(t)

e−st

−s

)
− f(0)

e0

−s
+

1

s

∫ +∞

0

f ′(t)e−st dt (2.42)
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The limit has to be 0, otherwise F (s) would not exist. The integral is, by
de�nition, L [f ′(t)]. From here (2.41) is obtained rearranging terms.

Corollary 2.1. If L [f(t)] = F (s), then

L [f ′′(t)] = s2 F (s)− s f(0)− f ′(0) (2.43)

Proof. Apply (2.41) to itself:

L [f ′′(t)] = sL [f ′(t)]− f ′(0) = s (s F (s)− f(0))− f ′(0) (2.44)

Then rearrange terms.

Corollary 2.2. If L [f(t)] = F (s), then

L

[
dn

dtn
f(t)

]
= sn F (s)− sn−1 f(0)− sn−2 f ′(0)− . . .− dn−1f(t)

dn−1t

∣∣∣∣
t=0

= sn F (s)−
n∑
k=1

sn−k
dk−1f(t)

dtk−1

∣∣∣∣
t=0

(2.45)

Proof. This is proved by mathematical induction. The �rst case is (2.41). The
inductive step is proved applying (2.41) to (2.45) as follows:

L

[
dn+1

dtn+1
f(t)

]
= sL

[
dn

dtn
f(t)

]
− dnf(t)

dtn

∣∣∣∣
t=0

(2.46)

= s

(
sn F (s)−

n∑
k=1

sn−k
dk−1f(t)

dtk−1

∣∣∣∣
t=0

)
− dnf(t)

dtn

∣∣∣∣
t=0

= sn+1 F (s)−

(
n∑
k=1

sn−k+1 dk−1f(t)

dtk−1

∣∣∣∣
t=0

)
− dnf(t)

dtn

∣∣∣∣
t=0

= sn+1 F (s)−

(
n∑
k=1

sn+1−k dk−1f(t)

dtk−1

∣∣∣∣
t=0

)
−
∑

k=n+1

sn+1−k dk−1f(t)

dtk−1

∣∣∣∣
t=0

Theorem 2.3. If L [f(t)] = F (s), then L of the integral

L

[∫ t

0

f(t)

]
=

1

s
F (s) (2.47)

Proof. In (2.42), make

f(t) =

∫ t

0

g(t) dt, (2.48)

whence f ′(t) = g(t). Then

L

[∫ t

0

g(t) dt

]
= −

∫ 0

0

g(t) dt
1

−s
+

1

s

∫ +∞

0

g(t)e−st dt (2.49)

The �rst integral is 0, the second is L [g(t)].

Remark 2.7. Notice that the Laplace transform of a derivative (2.41) involves
f(0), the value of the function itself at t = 0. This is because we are using
the Laplace transform as de�ned by (2.1), rather than the bilateral Laplace
transform (2.2).

2.5 What do we need this for?

We are now in position of answering the question above: we need Laplace trans- Use L to solve di�erential
equationsforms as a very useful tool to solve di�erential equations.

Example 2.17. Solve the following di�erential equation, assuming that y(0) =
0:

y′(t) + y(t) = e−t (2.50)
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Apply the Laplace transform to obtain

L [y′(t) + y(t)] = L
[
e−t
]
⇔ sY (s) + Y (s) =

1

s+ 1
⇔ Y (s) =

1

(s+ 1)2
⇔

⇔ L −1 [Y (s)] = L −1

[
1

(s+ 1)2

]
⇔ y(t) = t e−t (2.51)

It is easy to verify that this is indeed the solution: y′(t) = e−t − t e−t, and thus

y′(t) + y(t) = e−t ⇔ e−t − t e−t + t e−t = e−t, (2.52)

as desired.

Notice how the Laplace transform turned the di�erential equation in t into
an algebraic equation in s, which is trivial to solve. All that is left is to apply
the inverse Laplace transform to turn the solution in s into a solution in t.

Initial conditions must be taken into account if they are not zero.Take care of non-null ini-
tial conditions

Example 2.18. Solve the following di�erential equation, assuming that y(0) =
1
3 and y′(0) = 0:

y′′(t) + 4y′(t) + 3y(t) = 4et (2.53)

Using the Laplace transform, we get

s2Y (s)− 1

3
s− 0 + 4

(
sY (s)− 1

3

)
+ 3Y (s) =

4

s− 1
⇔

⇔ Y (s)
(
s2 + 4s+ 3

)
− s

3
− 4

3
=

4

s− 1
(2.54)

Because s2 + 4s+ 3 = (s+ 1)(s+ 3), we get

Y (s) =
4

(s− 1)(s+ 1)(s+ 3)
+

1

3

s+ 4

(s+ 1)(s+ 3)
(2.55)

We now need two partial fraction expansions:

4

(s− 1)(s+ 1)(s+ 3)
+

1

3

s+ 4

(s+ 1)(s+ 3)
=

A

s− 1
+

B

s+ 1
+

C

s+ 3
+

1

3

(
D

s+ 1
+

E

s+ 3

)
=
A(s2 + 4s+ 3) +B(s2 + 2x− 3) + C(s2 − 1)

(s− 1)(s+ 1)(s+ 3)
+

1

3

(
Ds+ 3D + Es+ E

(s+ 1)(s+ 3)

)
=
s2(A+B + C) + s(4A+ 2B) + (3A− 3B − C)

(s− 1)(s+ 1)(s+ 3)
+

1

3

(
s(D + E) + (3D + E)

(s+ 1)(s+ 3)

)
(2.56)

whence
A+B + C = 0

4A+B = 0

3A− 3B − C = 4

⇔


4A− 2B = 4

4A+B = 0

C = 3A− 3B − 4

⇔


8A = 4

B = −2A

C = 3A− 3B − 4

⇔


A = 1

2

B = −1

C = 1
2

(2.57)

and {
D + E = 1

3D + E = 4
⇔

{
E = 1−D
2D = 3

⇔

{
E = − 1

2

D = 3
2

(2.58)

Thus

y(t) = L −1

[ 1
2

s− 1
− 1

s+ 1
+

1
2

s+ 3
+

1

3

( 3
2

s+ 1
−

1
2

s+ 3

)]
(2.59)

=
1

2
et − e−t +

1

2
e−3t +

1

3

(
3

2
e−t − 1

2
e−3t

)
=

1

2
et − 1

2
e−t +

1

3
e−3t

It is easy to verify that this is indeed the solution: on the one hand,

y′(t) =
1

2
et +

1

2
e−t − e−3t (2.60)

y′′(t) =
1

2
et − 1

2
e−t + 3e−3t (2.61)
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and thus

y′′(t) + 4y′(t) + 3y(t) =
1

2
et − 1

2
e−t + 3e−3t + 2et + 2e−t − 4e−3t +

3

2
et − 3

2
e−t + e−3t

= 4et (2.62)

as desired; on the other hand,

y(0) =
1

2
− 1

2
+

1

3
=

1

3
(2.63)

y′(t) =
1

2
+

1

2
− 1 = 0 (2.64)

as required.

Remark 2.8. Notice what would have happened if we had forgot to include
initial conditions. It would have been as if initial conditions were null, and we
would have got

s2Y (s) + 4sY (s) + 3Y (s) =
4

s− 1
⇔ Y (s)

(
s2 + 4s+ 3

)
=

4

s− 1
(2.65)

and then

y(t) = L −1

[ 1
2

s− 1
− 1

s+ 1
+

1
2

s+ 3

]
=

1

2
et − e−t +

1

2
e−3t (2.66)

In this case,

y′(t) =
1

2
et + e−t − 3

2
e−3t (2.67)

y′′(t) =
1

2
et − e−t +

9

2
e−3t (2.68)

and so it remains true that

y′′(t) + 4y′(t) + 3y(t) =
1

2
et − e−t +

9

2
e−3t + 2et + 4e−t − 12

2
e−3t +

3

2
et − 3e−t +

3

2
e−3t

= 4et (2.69)

but the initial conditions are indeed

y(0) =
1

2
− 1 +

1

2
= 0 (2.70)

y′(t) =
1

2
+ 1− 3

2
= 0 (2.71)

To conclude: if in fact initial conditions were as in Example 2.18, and if we had
written (2.65) instead of (2.54), we would get a wrong result.

2.6 More important properties: initial and �nal
values, convolution

Before we are done with Laplace transforms, we must establish some additional
important properties that will often be needed.

Theorem 2.4. If f(t) and f ′(t) have Laplace transforms, Final value theorem

lim
t→+∞

f(t) = lim
s→0

s F (s) (2.72)

provided that limt→+∞ f(t) ∈ R.

Proof. Apply a limit to (2.41) to get

lim
s→0

L [f ′(t)] = lim
s→0

(s F (s)− f(0))

⇔ f(0) + lim
s→0

∫ +∞

0

f ′(t)e−st dt = lim
s→0

s F (s)

⇔ f(0) +

∫ +∞

0

lim
s→0

(
f ′(t)e−st

)
dt = lim

s→0
s F (s)

⇔ f(0) +

∫ +∞

0

f ′(t) dt = lim
s→0

s F (s)

⇔ f(0) + lim
t→+∞

f(t)− f(0) = lim
s→0

s F (s) (2.73)



18 CHAPTER 2. THE LAPLACE TRANSFORM

Example 2.19. Let f(t) = e−at, a > 0. We know that limt→+∞ f(t) = 0. We
have F (s) = 1

s+a . And lims→0 s F (s) = lims→0
s
s+a = 0.

Notice that, when a < 0, it is still true that F (s) = 1
s+a and that lims→0 s F (s) =

lims→0
s
s+a = 0. But now limt→+∞ f(t) = +∞, which is not real.

Example 2.20. Let F (s) = 1
s(s+a) , a > 0. We have lims→0 s F (s) = lims→0

1
s+a =

1
a . At the same time, f(t) = 1

a (1− e−at), and limt→+∞ f(t) = 1
a .

When a < 0, we are in a situation similar to that of the former example: we
still have lims→0 s F (s) = 1

a , but limt→+∞ f(t) = +∞.

Theorem 2.5. If f(t) and f ′(t) have Laplace transforms,Initial value theorem

lim
t→0+

f(t) = lim
s→+∞

s F (s) (2.74)

provided that lims→+∞ s F (s) ∈ R.

Proof. Apply a limit to (2.41) to get

lim
s→+∞

L [f ′(t)] = lim
s→+∞

(s F (s)− f(0))

⇔ f(0) + lim
s→+∞

∫ +∞

0

f ′(t)e−st dt = lim
s→+∞

s F (s) (2.75)

In the integrand, e−st goes to zero as s → +∞. If f ′(t) has a Laplace trans-
form, it must be of exponential order, and thus e−st goes to zero faster enough
to ensure that lims→+∞

∫ +∞
0

f ′(t)e−st dt = 0. Because we are assuming the uni-
lateral Laplace transform de�nition, f(0) is in reality limt→0+ f(t), as whatever
may happen for t < 0 is not taken into account.

Example 2.21. Let f(t) = e−at. We know that limt→0+ f(t) = 1. We have
F (s) = 1

s+a . And lims→+∞ s F (s) = lims→0
s
s+a = 1.

Notice that, unlike what happened when we applied the �nal value theorem
in Example 2.19, there is now no need to restrict a > 0.

Example 2.22. Let F (s) = 1
s(s+a) . We have lims→+∞ s F (s) = lims→+∞

1
s+a =

0. At the same time, f(t) = 1
a (1− e−at), and limt→+∞ f(t) = 0. There is again

no need now to make a > 0.

De�nition 2.2. Given two functions f(t) and g(t) de�ned for t ∈ R+, theirConvolution
convolution, denoted by ∗, is a function of t given by

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ) dτ (2.76)

Theorem 2.6. Convolution is commutative.

Proof. Use the change of variables t = t − τ , for which dτ = −dt. With this
change of variables, when τ = 0 we have t = t, and when τ = t we have t = 0.
Apply this to (2.76) to get

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ) dτ

= −
∫ 0

t

f(t)g(t− t) dt

=

∫ t

0

f(τ)g(t− τ) dτ = g(t) ∗ f(t) (2.77)

Theorem 2.7. If these Laplace transforms exist,

L [f(t) ∗ g(t)] = F (s)G(s) (2.78)

Proof.

L [f(t) ∗ g(t)] =

∫ +∞

0

(∫ t

0

f(t− τ)g(τ) dτ

)
e−st dt (2.79)
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We can change the limits of integration of the inner integral by including a
Heaviside function H(t− τ):

L [f(t) ∗ g(t)] =

∫ +∞

0

(∫ +∞

0

f(t− τ)H(t− τ)g(τ) dτ

)
e−st dt (2.80)

H(t − τ) = 1 if t − τ ≥ 0 ⇔ τ ≤ t, which is the range of values in (2.79). But
H(t − τ) = 0 if t − τ < 0 ⇔ τ > t, the additional range of values added in
(2.79), which thus does not change the result. We can now change the order of
integration:

L [f(t) ∗ g(t)] =

∫ +∞

0

(∫ +∞

0

f(t− τ)H(t− τ)g(τ) dτ

)
e−st dt

=

∫ +∞

0

∫ +∞

0

f(t− τ)H(t− τ)g(τ)e−st dtdτ

=

∫ +∞

0

g(τ)

∫ +∞

0

f(t− τ)H(t− τ)e−st dtdτ (2.81)

We now apply to the inner integral the change of variables t = t− τ , for which
dt = dt. With this change of variables, when t = 0 we have t = −τ , and when
t→ +∞ we have t→ +∞ too.

L [f(t) ∗ g(t)] =

∫ +∞

0

g(τ)

∫ +∞

−τ
f(t)H(t)e−s(τ+t) dtdτ (2.82)

We have H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0, so the integration limits can
be changed accordingly:

L [f(t) ∗ g(t)] =

∫ +∞

0

g(τ)

∫ +∞

0

f(t)e−sτe−st dtdτ (2.83)

All that is left is taking outside integrals terms that do not depend on the
corresponding variables:

L [f(t) ∗ g(t)] =

∫ +∞

0

g(τ)e−sτ
(∫ +∞

0

f(t)e−st dt

)
dτ

=

∫ +∞

0

f(t)e−st dt

∫ +∞

0

g(τ)e−sτ dτ (2.84)

and these integrals are the de�nitions of F (s) and G(s).

Example 2.23. From L −1
[

1
s

]
= H(t) we get

L −1

[
1

s2

]
= L −1

[
1

s

1

s

]
=

∫ t

0

H(t− τ)H(τ) dτ =

∫ t

0

1 dτ = t (2.85)

Remark 2.9. The function obtained is known as the unit slope ramp: Unit slope ramp

f(t) =

{
t, if t ≥ 0

0, if t < 0
(2.86)

Table 2.2 gives a list of important properties of the Laplace transform.

2.7 The Fourier transform

De�nition 2.3. If F (s) is the Laplace transform of f(t), then the Fourier Fourier transform
transform of f(t), denoted by F [f(t)], is the restriction of F (s) to purely
imaginary values of s, i.e. to the imaginary axis of the complex plane, and

F [f(t)] = L [f(t)]|s=jω = F (jω), ω ∈ R (2.87)

See Figure 2.1.

Remark 2.10. Notice that:
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Table 2.2: Laplace transform properties

x (t) X (s)

1 Ax1 (t) +Bx2 (t) AX1 (s) +BX2 (s)

2 ax (at) X
( s
a

)
3 eatx (t) X (s− a)

4

{
x (t− a) t > a
0 t < a

e−asX (s)

5
dx (t)

dt
sX (s)− x(0)

6
d2x (t)

dt2
s2X (s)− sx(0)− x′(0)

7
dnx (t)

dtn
snX (s)− sn−1x(0)− . . .− x(n−1)(0)

8 −tx (t)
dX (s)

ds

9 t2x (t)
d2X (s)

ds2

10 (−1)ntnx (t)
dnX (s)

dsn

11

t∫
0

x (u) du
1

s
X (s)

12

t∫
0

· · ·
t∫

0

x (u) du =

t∫
0

(t− u)(n−1)

(n− 1)!
x (u) du

1

sn
X (s)

13 x1 (t) ∗ x2 (t) =
∫ t

0
x1 (u)x2 (t− u) du X1 (s)X2 (s)

14
1

t
x (t)

∞∫
s

X (u) du

15 x (t) = x (t+ T )
1

1− e−sT

T∫
0

e−suX (u) du

16 x (0) lim
s→∞

sX (s)

17 x (∞) = lim
t→∞

x (t) lim
s→0

sX (s)

<[s]

=[s]

jω, ω ∈ R+

jω, ω ∈ R−

jω, ω = 0

Figure 2.1: The imaginary axis in the complex plane.
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� f(t) is a real-valued function that depends on a real variable: f(t) ∈ R,
and t ∈ R;

� the Laplace transform of f(t), which is F (s) = L [f(t)], is a complex-
valued function that depends on a complex variable: F (s) ∈ C, and s ∈ C;

� the Fourier transform of f(t), which is F (jω) = F [f(t)], is a complex-
valued function that depends on a real variable, that is the coordinate
along the imaginary axis: F (jω) ∈ C, and ω ∈ R.

Example 2.24. Let f(t) = e−t − e−10t. Then

F (s) =
9

(s+ 1)(s+ 10)
(2.88)

F (jω) =
9

(jω + 1)(jω + 10)

=
9

(10− ω2) + j11ω

=
9
(
(10− ω2)− j11ω

)
((10− ω2) + j11ω) ((10− ω2)− j11ω)

=
9
(
10− ω2

)
− j99ω

(10− ω2)
2

+ 121ω2

=
90− 9ω2

ω4 + 101ω2 + 100
+ j

−99ω

ω4 + 101ω2 + 100
(2.89)

Example 2.25. Let F (jω) = ω0

ω2
0−ω2 , where ω0 is a real constant. The function Inverse Fourier transform

f(t) of which F (jω) is the Fourier transform is the inverse Fourier transform
of F (jω), and is given by

f(t) = F−1 [F (jω)] = F−1

[
ω0

ω2
0 − ω2

]
= F−1

[
ω0

ω2
0 + (jω)2

]
= L −1

[
ω0

ω2
0 + s2

]
= sin (ω0t) (2.90)

While it should now be clear what we need Laplace transforms for, we will
only see what we need Fourier transforms for in chapter 10. A more detailed
study of this transform is found in Chapter 38.

Glossary

I said it in Hebrew � I said it in Dutch �
I said it in German and Greek:
But I wholly forgot (and it vexes me much)
That English is what you speak!

Lewis Carroll (1832 � �1898), The hunting of the Snark (1876), 4

bilateral Laplace transform transformada de Laplace bilateral
convolution convolução
di�erential equation equação diferencial
exponential order function função de ordem exponencial
Fourier transform transformada de Fourier
integral transform transformada integral
Laplace transform transformada de Laplace
Laplace transformation transformação de Laplace
partial fraction expansion expansão em frações parciais
pole polo
polynomial division divisão de polinómios
residue resíduo
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Exercises

1. Find the Laplace transforms of the following functions:

(a) f(t) = 80e−0.9t

(b) f(t) = 1000− e−6t

(c) f(t) = 97.5× 10−3 sin(0.2785t) + 546.9× 10−3e0.9575t cos(0.9649t)

(d) f(t) = sin
(
5t+ π

6

)
Hint: remember that sin(a + b) = sin a cos b +

cos a sin b.

2. Find the inverse Laplace transforms of the following functions:

(a) F (s) = 1
3s2+15s+18

(b) F (s) = 1
5s2+6s+5

(c) F (s) = 8s2+34s−2
s3+3s2−4s

(d) F (s) = s2+2s+8
2s+4

(e) F (s) = −s2+5s−2
s3−2s2−4s+8

3. Consider di�erential equation (2.50) from Example 2.17, but now with the
initial condition y(0) = 2.

(a) Show that y(t) = L −1
[

2s
(s+1)2 + 3

(s+1)2

]
.

(b) Show from (2.41) that L [e−t(1− t)] = s
(s+1)2 .

(c) Find y(t) and check that it veri�es both the di�erential equation
(2.50) and the new initial condition.

4. Solve the following di�erential equations:

(a) y′′(t) + y(t) = t e−t, y(0) = 0, y′(0) = 0

(b) y′′(t) + y(t) = t e−t, y(0) = 1
2 , y

′(0) = − 1
2

(c) y′′(t) + y(t) = 10t− 20, y(0) = 0, y′(0) = 0

(d) 3y′′(t) + 7y′(t) + 2y(t) = 0, y(0) = −5, y′(0) = 10

5. Use the �nal value and initial value theorems to �nd the initial and �nal
values of the inverse Laplace transforms of the functions of Exercise 2.

6. Find the Fourier transforms of the functions of exercises 1 and 2, putting
them in the form F (jω) = < [F (jω)] + j= [F (jω)].

7. Prove the result in line 7 of Table 2.1. Hint: use (2.78) together with the
result in line 5.

8. Prove the result in line 8 of Table 2.1. Hint: use mathematical induction.

9. Show that:

(a) the Fourier transform is given by

F [f(t)] =

∫ +∞

0

f(t)e−jωt dt (2.91)

Hint: apply (2.87) to (2.1).

(b) the bilateral Fourier transform is given by

F [f(t)] =

∫ +∞

−∞
f(t)e−jωt dt (2.92)

Hint: apply (2.87) to (2.2).



Chapter 3

Examples of mechatronic

systems and signals

Eia comboios, eia pontes, eia hoteis à hora do jantar,
Eia aparelhos de todas as espécies, férreos, brutos, mínimos,
Instrumentos de precisão, aparelhos de triturar, de cavar,
Engenhos, brocas, máquinas rotativas !
Eia ! eia ! eia !
Eia electricidade, nervos doentes da Matéria !
Eia telegra�a-sem-�os, simpatia metálica do Inconsciente !

Álvaro de Campos, heteronym of Fernando Pessoa (1888 � �1935), Ode
triunfal, Orpheu, I 1, January�March 1915

In this chapter we discuss di�erent types of mechatronic signals and systems,
and present examples of each.

3.1 Systems

In chapter 1 we have already de�ned system as the part of the Universe we want
to study.

A system made up of physical components may be called a plant. A system Plant
which is a combination of operations may be called a process. Process

Example 3.1. WECs, mentioned in Example 1.1, are plants. Figures 3.1, 3.2
and 3.3 show three di�erent WECs; many other such devices exist.

Example 3.2. If we want to study the wave elevation at a certain onshore
location as a function of the weather on the middle of the ocean, we will be
studying a process.

The variables describing the characteristics of the system that we are inter-
ested in are its outputs. The variables on which the outputs depend are the Outputs
system's inputs. Inputs in the general sense

Figure 3.1: The Pelamis, a �oating near-shore Wave Energy Con-
verter, at Aguçadoura, Portugal (source: left, Wikimedia; right, DOI
10.1155/2013/186056). Waves cause an angular movement of the several sec-
tions of the device. This movement pumps oil in a closed circuit; high pressure
oil is then used to run a turbine driving a usual rotational generator.

23
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Figure 3.2: The Archimedes Wave Swing, a submerged o�shore Wave Energy
Converter before submersion, at Viana do Castelo, Portugal. The device is �lled
with air which is compressed when wave crests pass and expands during wave
troughs. The heaving movement of the AWS upper part moves an electrical
linear generator.

Figure 3.3: The Pico Power Plant (concluded in 1999, decommissioned in 2018),
an onshore Wave Energy Converter of the Oscillating Water Column (OWC)
type (source: left, WavEC; right, DOI 10.3390/en11112939). In an OWC, the
heaving movement of the water inside a chamber compresses and expands the
air, which can �ow in and out the chamber through a turbine designed to always
rotate in the same direction irrespective of the sense of the �ow. The turbine
drives a usual rotational generator.
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Figure 3.4: A Panhard & Levassor Type A motorcar, the �rst mass produced
car in the world, driven by the French priest Jules Gavois (1863 � �1946) in
1891 (source: Wikimedia). This car still does not have a steering wheel (�rst
introduced in 1894), but only a tiller.

Figure 3.5: A window unit air conditioning system (source: Wikimedia). There
are many other types of AC units.

Example 3.3. An internal combustion engine motorcar (see Figure 3.4) is a
plant. We are usually interested in its position, velocity, and attitude. We also
may want to know the rotation speed of the motor, the temperature of the oil,
the fuel consumption, or other such values. All these are outputs. They depend
on the position of the steering wheel, the position of the accelerator and brake
pedals, the gear selected, the condition and inclination of the road the car in
running on, the direction and speed of the wind, the outside temperature, and
other such values. These are the inputs. Not all the outputs depend on all the
inputs.

A control system is one devised to make one or more of the system's Control system
outputs follow some reference. Reference

Example 3.4. An air conditioning (AC) unit (see Figure 3.5) is a mechatronic
system that heats or cools a room to a temperature set by the user. It is
consequently a control system. The value of the temperature selected by the
AC user is the reference. The room's temperature is the output of the plant
that has to follow this reference.

Example 3.5. The wind at the location of a wind turbine is related to the
temperature, the solar exposition, and the atmospheric pressure, among other
variables. This is a process we cannot control. It is not a control system.

For a control system to exist, it must be possible to modify one or more
of the inputs, so as to a�ect the desired outputs and thereby cause them to
follow the reference. Such inputs are called manipulated variables or inputs
in the strict sense. The inputs of the system that cannot be modi�ed are Inputs in the strict sense
called disturbances. When studying control systems, it is usual to call simply Disturbances
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Figure 3.6: A lever, an example of a linear SISO system without dynamics
(source: Wikimedia).

inputs to the inputs in the strict sense, and to call outputs only to the variable
or variables that have to follow a reference.

Example 3.6. In the case of the OWC from Example 3.1 and Figure 3.3, the
sea waves are disturbances, since we cannot control them. The rotation speed
of the turbine is an input in the strict sense, since we can manipulate it (e.g.
varying the resistance of the electrical generator). If the OWC chamber has
a relief valve, the pressure in the chamber will be also an input, since we can
change it opening or closing the relief valve.

Example 3.7. In the case of the car from Example 3.3, the positions of the
steering wheel and of the pedals are inputs. If the car has a manual gear box, the
gear selected is an input too; if the gear box is automatic, it is not. The gusts
of wind are a disturbance, since we cannot modify them. If we are studying the
temperature of the motor of the car, this will depend on the outside temperature,
which we cannot control and is therefore a disturbance.

A system with only one input and only one output is a Single-Input, Single-
Output (SISO) system. A system with more than one input and more than oneSISO system
output is a Multi-Input, Multi-Output (MIMO) system. It is of course possibleMIMO system
to have Single-Input, Multiple-Output (SIMO) systems, and Multiple-Input,
Single-Output (MISO) systems. These are usually considered as particular
cases of MIMO systems.

Example 3.8. Both the OWC of Example 3.1 and the car of Example 3.3 are
MIMO plants.

Example 3.9. The lever in Figure 3.6 is a SISO system: if the extremities are
at heights x(t) and y(t), and the �rst is actuated, then y(t), the output, depends
on position x(t), the input, and nothing more.

Remark 3.1. We can sometimes model a part of a MIMO system as a separate
SISO system. A car is a MIMO system, as we said, but we can model the
suspension of one wheel separately, as a SISO system relating the position of the
wheel to the position of the vehicle frame, neglecting the in�uence that all the
other inputs have on this particular output. Such a model is an approximation,
but for many purposes it is good enough (as we will see in Example 4.2, in
Chapter 4 below).

A system's model is the mathematical relation between its outputs, on theModel
one hand, and its inputs in the general sense (inputs in the strict sense and
disturbances), on the other.

A system is linear if its exact model is linear, and non-linear if its exactLinear system

Non-linear system model is non-linear. Of course, exact non-linear models can be approximated
by linear models, and often are, to simplify calculations.

Example 3.10. The lever of Figure 3.6 is a linear plant, since, if its arm lengths
are Lx and Ly for the extremities at heights x(t) and y(t) respectively,

y(t) =
Ly
Lx

x(t). (3.1)

Example 3.11. A Cardan joint (see Figure 3.7) connecting two rotating shafts,
with a bent corresponding to angle β, is a non-linear plant, since a rotation of
θ1(t) in one shaft corresponds to a rotation of the other shaft given by

θ2(t) = arctan
tan θ1(t)

cosβ
. (3.2)
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Figure 3.7: A Cardan joint, a non-linear mechanical system without dynamics
(source: Wikimedia).

If β ≈ 0, (3.2) can be approximated by

θ2(t) = arctan
tan θ1(t)

1
= θ1(t). (3.3)

The error incurred in approximating (3.2) by (3.3) depends on how close cosβ
is to 1. There will be no error at all if the two shafts are perfectly aligned
(β = 0).

Example 3.12. A car is also an example of a non-linear plant, as any driver
knows.

A system is time-varying if its exact model changes with time, and time- Time-varying system
invariant otherwise. Time-invariant system

Example 3.13. An airplane consumes enormous amounts of fuel. Thus its
mass changes signi�cantly from take-o� to landing. Any reasonable model of a
plane will have to have a time-varying mass. But it is possible to study a plane,
for a short period of time, using an approximation consisting of a time-invariant
model, as the mass variation is neglectable in that case.

Example 3.14. A drone powered by a battery will not have a similar variation
of mass. It is a time-invariant system (unless e.g. its mass changes because it is
a parcel-delivering drone).

Example 3.15. WECs can have time-varying parameters due to the e�ects of
tides. This is the case of the AWS in Figure 3.2, which is submerged and �xed
to the ocean bottom. Consequently, the average height of sea water above it
varies from low tide to high time, even if the sea waves remain the same. Other
WECs are time-invariant, at least with respect to tides. That is the case of the
�oating OWC in Figure 3.8, which, precisely because it �oats, is not a�ected by
tides.

A system has no dynamics if its outputs in a certain time instant do not
depend on past values of the inputs or on past values of the disturbances. Oth-
erwise, it is a dynamic system. A system without dynamics is called static Dynamic system
system, which does not mean that it never changes; it means that, if its inputs Static system
do not change, neither do the outputs.

Example 3.16. Both mechanical systems in Figures 3.6 and 3.7 have no dy-
namics, since the output y(t) only depends on the current value of the input
u(t). Past values of the input are irrelevant.

Example 3.17. Consider a pipe with a tap (or a valve) that delivers a �ow
rate Q(t) given by

Q(t) = kQf(t) (3.4)

where f(t) ∈ [0, 1] is a variable that tells is if the tap is open (f(t) = 1) or closed
(f(t) = 0). This system is static. But a tap placed far from the point where the
�ow exits the pipe will deliver a �ow given by

Q(t) = kQf(t− τ) (3.5)

Here, τ is the time the water takes from the tap to the exit of the pipe. This is
an example of a dynamic plant, since its output at time instant t depends on a
past value of f(t).
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Figure 3.8: A �oating OWC (source: DOI 10.1016/j.energy.2016.06.054).

A system is deterministic if the same inputs starting from the same initial Deterministic system
condition always lead to the same output. A system is stochastic if its outputs Stochastic system
are not necessarily the same when it is subject to the same inputs beginning
with the same initial conditions, or, in other words, if its output is random.

Example 3.18. The process from Example 3.5 is stochastic. Even though we
may know all those variables, it is impossible to precisely predict the wind speed.
The same happens with the process from Example 3.2, and even more so.

Example 3.19. Figure 3.9 shows a laboratory setup to test controllers for the
lithography industry (which produces microchips with components positioned
with precisions of the order of 1 nm). This is a deterministic system. If lithog-
raphy plants and processes were not deterministic, it would be far more di�cult
to mass produce microchips.

In this course we will only address deterministic, SISO, linear time-invariant
(LTI) systems.LTI systems

3.2 Signals

In chapter 1 we have already de�ned signal as a function of time or space that
conveys information about a system. In other words, it is the evolution with
time or with space of some variable that conveys information about a system.
Most of the signals we will meet depend on time but not on space.

Example 3.20. An image given by a camera is a signal that depends on space,
but not on time. A video is a signal that depends on both space and time.

Some signals can only take values in a discrete set; they are called quantisedQuantised signal
signals. Others can take values in a continuous set; they are called analogicalAnalogical signal
signals.

Example 3.21. Consider a turbine, such as the turbine in Figure 3.10, of the
Wells type, installed in the Pico Power Plant (shown above in Figure 3.3). Its
rotation speed is real valued; it takes values in a continuous set. So the signal
consisting in the turbine's rotation speed as a function of time is an analogical
signal.
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Figure 3.9: Left: precision positioning system used at the Delft University of
Technology (source: DOI 10.1007/s11071-019-05130-2). Coil actuators 1 move
masses 2, which are connected through �exures to mass 3, the position of which
is measured using sensors (encoders) 4. Mass 2 can be positioned with a preci-
sion of 1 µm or less. Right: NASA clean room for lithography (source: Wiki-
media).

Figure 3.10: The Wells turbine of the Pico Power Plant OWC in Figure 3.3
(source: DOI 10.1016/j.renene.2015.07.086).
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Figure 3.11: Three-speed manual gearbox, typical of cars in the 1930s (source:
Wikimedia).

Example 3.22. Consider the gearbox of a car (see Figure 3.11). The signal
consisting in the speed engaged as a function of time (neutral, reverse, 1st, 2nd,
etc.) takes values in a discrete set. It is a quantised signal.

Remark 3.2. It is possible, and sometimes desirable, to approximate a quan-
tised signal by an analogical signal, and vice-versa.

Example 3.23. The rotation of a shaft θ(t) is an analogical signal; it is of course
possible to rotate the shaft by an angle as small as desired. But it is often useful
to replace it by a discrete signal ϑ(t) which is the number of revolutions (i.e. the
number of 360◦ rotations of the shaft). This corresponds to an approximation

given by ϑ(t) =
⌊
θ(t)
360◦

⌋
. Figure 3.12 shows a mechanical revolution counter.

Example 3.24. A population � be it the number of persons in a country, the
number of rabbits in a �eld, or the number of bacteria on a Petri dish � is a
quantised signal. It always increases or decreases in multiples of one, since it is
impossible that half a child be born, or that 3

4 of a rabbit dies. However, if the
population is large enough, a variation of one individual is so small that it is
possible to assume that it is an analogical signal, and write equations such as

dp(t)

dt
= b(t)p(t)− d(t)p(t), (3.6)

where p(t) is the population, b(t) is the birth rate, and d(t) is the death rate.
(Terms for immigration and emigration rates must be included if the popula-
tion is not isolated.) Such models (and others more complicated, that we will
mention in passing below in Chapter 43) are used for instance in Bioengineering
and in many other areas.

Example 3.25. Strictly speaking, variables such as the fuel admitted to one of
the cylinders of an internal combustion engine are also quantised, since the num-
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Figure 3.12: Mechanical 19th century revolution counter, from the former Bar-
badinhos water pumping station (currently the Water Museum), Lisbon. Nowa-
days mechanical revolution counters are still used, though electronic ones exist.

ber of molecules of fuel admitted is integer. Of course, in practice an analogical
value is assumed.

Some signals take values for all time instants: they are said to be continu- Continuous signal
ous. Others take values only at some time instants: they are said to be discrete Discrete signal
in time, or, in short, discrete. The time interval between two consecutive values
of a discrete signal is the sampling time. The sampling time may be variable Sampling time
(if it changes between di�erent samples), or constant. In the later case, which
makes mathematical treatment far more simple, the inverse of the sampling time
is the sampling frequency. Sampling frequency

Example 3.26. The air pressure inside the chamber of an OWC is a continuous
signal: it takes a value for every time instant.

Example 3.27. The number of students attending the several classes of this
course along the semester is a discrete signal: there is a value for each class, and
the sampling time is the time between consecutive classes. The sampling time
may be constant (if there is e.g. one laboratory class every Monday) or variable
(if there are e.g. two lectures per week on Mondays and Wednesdays).

Example 3.28. One of the controllers used with the laboratory setup from
Example 3.19 in Figure 3.9 provided a discrete control action with sampling
frequency 20 kHz. So the sampling time was

Ts =
1

20× 103
= 50× 10−6 s = 50 µs, (3.7)

or, in other words, every 50×10−6 s the control action for the coil actuators was
updated; or, again, the control action was updated 20 × 103 times per second.
The sampling frequency could also be given as

ωs =
2π

50× 10−6
= 2π × 20× 103 = 125.7× 103 rad/s. (3.8)

Remark 3.3. Mind the numerical di�erence between the value of the sampling
frequency in Hertz and in radians per second. It is a common source of mistakes
in calculations.

Remark 3.4. It is possible, and sometimes desirable, to approximate a discrete
signal by a continuous signal, and vice-versa. Approximating a continuous signal
by a discrete one is an operation called discretisation. We will study this issue Discretisation
in more detail below in Chapters 12 and 25.

Example 3.29. The control action from Example 3.28 had in fact to be con-
verted into a continuous signal to be applied by the coil actuators. As described,
this was done by keeping the control action signal constant between sampling
times. The operation corresponds to converting a discrete signal as seen in
the left of Figure 3.13 into a continuous signal as seen in the right diagram of
that Figure. The conversion of a digital signal into an analogical signal will be
addressed in detail in Chapter 25.
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Figure 3.13: Left: discrete signal; right: continuous signal obtained from the
discrete signal by keeping the previous value between sampling times (source:
Wikimedia, modi�ed).

Figure 3.14: Discretising a signal (source: Wikimedia), i.e. approximating a
continuous signal (grey) by a discrete one (red).

Example 3.30. Figure 3.14 illustrates the operation of discretisation.

A signal which is both discrete and quantised is a digital signal. Digital signal

A system, too, is said to be continuous, discrete, or digital, if all its inputs Continuous system

Discrete system

Digital system

and outputs are respectively continuous, discrete, or digital.
Electronic components are nowadays ubiquitous. As a result of sensors,

actuators, controllers, etc. being electronic, most signals are digital. Likewise,
systems that incorporate such components are digital, inasmuch their inputs
and outputs are all digital.

Example 3.31. Consider an industrial oven, seen in Figure 3.15, with a control
system to regulate its temperature. The output of this system is the actual
temperature inside the oven, and the input is the desired temperature (i.e. the
reference of the control system). The oven is heated by gas, and so the gas �ow is
the manipulated variable that allows controlling the oven. This is a continuous
system, since all variables exist in all time instants. But, in all likelihood, a
digital sensor will be used for the temperature, and changes in gas �ow will also
take place at sampling times, after the temperature reading is compared with
the reference and processed to �nd the control action that will better eliminate
the error between actual and desired temperatures. So in practice the system
will probably be digital.

Example 3.32. A �ush tank for a toilet equipped with a �oat valve as seen
in the top scheme of Figure 3.16 is a control system devoid of any electronic
component, and for which all signals are continuous. (See also Figure 3.17.)
This is a continuous control system.

A signal is bounded if it can only assume values in a bounded interval. InBounded signal
engineering, most signals (if not all) are bounded.

Example 3.33. The wave elevation at given coordinates cannot be less than
the depth of the sea there. Similarly, the rotation speed of a turbine, or the
linear velocity of a shaft, or a voltage in a circuit, are always limited by physical
constraints.

Remark 3.5. Bounded continuous signals can assume in�nite values, but bounded
quantised signals can only assume a �nite number of values.
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Figure 3.15: Industrial oven for aircraft component manufacture (source: Wiki-
media).

Figure 3.16: Top: �oat valve mechanism, well known by its use in �ush tanks
(source: Wikimedia). Bottom: �ush tank with a �oat valve (notice that the lever
has two arms, to increase the speed with which the water �ow is interrupted as
soon as the �oat raises the level from the lower end of stroke).
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Figure 3.17: Top: a �oat valve (see Figure 3.16) was also used in water me-
ters devised by António Pinto Bastos in the 1850s, which were used in Lisbon
until the 1960s in spite of being obsolescent for a long time by then (source:
Wikimedia). These meters were purely mechanical. Bottom: electromagnetic
�ow meters have no mechanical components; the reading can be sent elsewhere
rather than having to be read in the dials in loco (source: Wikimedia). We will
address sensors for �ow measurements in Chapter 13.
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3.3 Models

In Section 3.1 we have already de�ned a system's model as a mathematical rela-
tion between its inputs and outputs. There are basically two ways of modelling
a system:

1. A model based upon �rst principles is a theoretical construction, re- First principles model
sulting from the application of physical laws to the components of the
plant.

2. A model based upon experimental data results from applying identi�- Experimental model
cation methods to data experimentally obtained with the plant.

It is also possible to combine both these methods.
In this course we will concentrate on models based upon �rst principles, and

you will �nd abundant examples thereof in Chapters 4 through 8. They can
be obtained whenever the way the system works is known. They are the only When to use �rst princi-

ples modelspossibility if the system does not exist yet because it is still being designed and
built, or if no experimental data is available. They may be quite hard to obtain
if the system comprises many complicated interacting sub-parts. Simpli�cations
can bring down the model to more manageable con�gurations, but its theoretical
origin may mean that results will di�er signi�cantly from reality if parameters
are wrongly estimated, if too many simpli�cations are assumed, or if many
phenomena are neglected.

The models of dynamic continuous LTI systems are given by linear di�er- Di�erential equations
ential equations. The models of dynamic digital LTI systems are given by
linear di�erence equations. The models of static LTI systems are linear and Di�erence equations
have neither derivatives nor time di�erences.

Example 3.34. The static model of the lever (3.1) includes neither di�erential
nor di�erence equations. It is irrelevant whether x(t) and y(t) are discretised
or not. The same happens with the non-linear static model of the Cardan joint
(3.2).

Example 3.35. Continuous model (3.6) is a di�erential equation. Suppose
that the model is applied to the population of a country, where immigration
and emigration are neglectable, and for which population data is available on a
yearly basis. Also suppose that birth and death rates are constant and given by
b = 0.03/year and d = 0.02/year. So

dp(t)

dt
= 0.01p(t) (3.9)

Because the sampling time is Ts = 1 year, we can perform the following approx-
imation:

dp(t)

dt

∣∣∣∣
t=year k

≈ pk − pk−1

1 year
, (3.10)

where pk is the population in year k, and pk−1 is the population in the year
before. Notice that this is a �rst order approximation for the derivative in year
k, in which we use the value of the year before, and is consequently called a
backward approximation. So we end up with the following di�erence equation:

pk − pk−1 = 0.01pk ⇔ pk =
1

0.99
pk−1, (3.11)

which is an approximation of di�erential equation (3.9); approximations other
than (3.10) could have been used instead. We will address this subject further
below in Part V.

Example 3.36. Di�erential equation (2.53) can be approximated by di�erence
equation

3yk = 0.4yk−1 + 0.2yk−2 + 0.8eTs k + 1.6eTs (k−1) + 0.8eTs (k−2) (3.12)

for sampling time Ts. Once more, we will see how to arrive at this result below
in Part V.
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Experimental data should, whenever available, be used to con�rm, and if Experimental identi�ca-
tion of model parametersnecessary modify, models based upon �rst principles. This often means that �rst

principles are used to �nd a structure for a model (the orders of the derivatives
in a di�erential equation, or the number of delays in a di�erence equation), and
then the values of the parameters are found from experimental data: feeding
the model the inputs measured, checking the results, and tuning the parameters
until they are equal (or at least close) to measured outputs. This can sometimes
be done using least squares; sometimes other optimisation methods, such as
genetic algorithms, are resorted to. If the outputs of experimental data cannot
be made to agree with those of the model, when the inputs are the same, then
another model must be obtained; this often happens just because too many
simpli�cations were assumed when deriving the model from �rst principles. It
may be possible to �nd, from experimental data itself, what modi�cations to
model structure are needed. This area is known as identi�cation, and will be
addressed below in Parts VI to VIII.

Models based upon �rst principles can be called white box models, sinceWhite box model
the reason why the model has a particular structure is known. If experimental
data requires changing the structure of the model, a physical interpretation of
the new parameters may still be possible. The resulting model is often called a
grey box model.Grey box model

There are methods to �nd a model from experimental data that result in
something that has no physical interpretation, neither is it expected to have.
Still the resulting mathematical model �ts the data available, providing the
correct outputs for the inputs used in the experimental plant. Such models
are called black box models, in the sense that we do not understand howBlack box model
they work. Such models include, among others, neural network (NN) models
(see an example in Figure 3.18) and models based upon fuzzy logic, known as
fuzzy models (see Figure 3.19). These modelling techniques are increasingly
important, but we will not study them in these Lecture Notes.

Glossary

�Lascia stare, cerchiamo un libro greco!�

�Questo?� chiedevo io mostrandogli un'opera dalle pagine coperte di
caratteri astrusi. E Guglielmo: �No, questo è arabo, sciocco! Aveva
ragione Bacone che il primo dovere del sapiente è studiare le lingue!�

�Ma l'arabo non lo sapete neppure voi!� ribattevo piccato, al che
Guglielmo mi rispondeva: �Ma almeno capisco quando è arabo!�

Umberto Eco (1932 � �2016), Il nome della rosa (1980), Quinto giorno, Sesta

black box model modelo de caixa negra
bounded limitado
control system sistema de controlo
continuous contínuo
deterministic determinístico
di�erence equation equação às diferenças
digital digital
discrete discreto
disturbance perturbação
dynamic dinâmico
�rst principles primeiros princípios
grey box model modelo de caixa cinzenta
identi�cation identi�cação
manipulated variable variável manipulada
mechatronic mecatrónico
mechatronics mecatrónica
multiple input entradas múltiplas
multiple output saídas múltiplas
input entrada
model modelo
output saída
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Figure 3.18: Top: scheme of an example of an arti�cial neural network (source:
DOI 10.1016/j.apor.2008.11.002). It is made of several neurons, arranged in
layers. These neurons are oversimpli�ed models of biological neurons, seen in the
bottom scheme (source: Wikimedia), which are arranged in far more complex
patterns. The parameters of an arti�cial neural network are the con�guration of
its interconnections and the parameters of each neuron. Neuron parameters can
be optimised from experimental data using numerical methods. The NN shown
can be used to model a static MIMO system with two inputs and two outputs,
or a dynamic system with one input and two outputs if x2(t) = x1(t − Ts), in
which case it provides a non-linear di�erence equation model with sampling time
Ts. NNs are typically black box models, and parameters are not expected to
have any physical meaning at all; recently, however, signi�cant e�orts in neural
network interpretability have been advanced. We will not study NNs in these
Lecture Notes.

Figure 3.19: In Boolean logic, propositions are either true or false. These two
cases correspond respectively to logical values 1 and 0. In fuzzy logic, all inter-
mediate logical values can be used. The plot above shows an example of this
(source: Wikimedia). For the temperature shown by the grey line, proposition
�temperature is hot� has the logical value 0, proposition �temperature is warm�
has the logical value 0.2, and proposition �temperature is cold� has the logical
value 0.8. This type of logic can then be used to build models, both static and
dynamic. We will not not study fuzzy logic or fuzzy models in these Lecture
Notes.
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Figure 3.20: The Stansted Airport Transit System conveys passengers between
Terminals 1 and 2 of Stansted Airport, United Kingdom (source: Wikimedia).
Vehicles have no driver. They stop, open doors, close doors, and move between
terminals automatically.

plant planta
process processo
reference referência
sampling frequency frequência de amostragem
sampling time tempo de amostragem
signal sinal
single input entrada única
single output saída única
static estático
stochastic estocástico
white box model modelo de caixa branca

Exercises

1. Answer the following questions for each of the mechatronic systems below:

� What are its outputs?

� What are its inputs?

� Is the system SISO or MIMO?

� Which of the inputs can be manipulated, if any?

� Is it a static or a dynamic system?

� Is it time varying or time invariant?

� Is the system continuous or digital?

(a) An automated train system, as seen in Figure 3.20.

(b) A power wheelchair, as seen in Figure 3.21.

(c) A motorboat, as seen in Figure 3.22.

(d) A rigged ship, as seen in Figure 3.22.

(e) A submarine, as seen in Figure 3.23.

(f) A space probe, as seen in Figure 3.24.

(g) A robotic arm, as seen in Figure 3.25.

2. Use the Laplace transform to solve (3.9) for the situation starting at a
time when the country's population is 10 million inhabitants. Find the
population for t = 1, 2, 3 . . . years. Then use (3.11) to �nd the evolution
of the population starting with year k = 1 (corresponding to t = 0 years)
when the country's population is 10 million inhabitants. Find the popu-
lation for k = 2, 3, 4 . . . and compare the results with those obtained with
(3.9).
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Figure 3.21: Physicist Stephen Hawking (1942 � �2018) attending a scienti�c
conference in 2001 (source: Wikimedia).

Figure 3.22: Left: a motorboat with an outboard motor at Zanzibar, Tan-
zania (source: Wikimedia). Right: Portuguese Navy school ship Sagres (for-
merly Brazilian school ship Guanabara, formerly German school ship Albert
Leo Schlageter; source: Wikimedia).

Figure 3.23: The Portuguese Navy submarine Tridente, of the Tridente class,
propelled by a low noise skew back propeller and powered by hydrogen�oxygen
fuel cells (source: Wikimedia).

Figure 3.24: Astronomer Carl Sagan (1934 � �1996) with a model of one of the
two Viking landers, space probes that descended on Mars in 1976 and worked
until 1980 and 1982 (source: Wikimedia). Descent speed was controlled by
deploying a parachute and launching three retrorockets (one on each leg) to
ensure a soft landing. The descent control system employed an inertial reference
unit, four gyroscopes, a radar altimeter, and a landing radar.
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Figure 3.25: Two KUKA LWR IV robotic arms extant at the Control, Automa-
tion and Robotics Laboratory of Instituto Superior Técnico, Universidade de
Lisboa, Portugal. Each robot has seven rotational joints. (Source: Professor
Jorge Martins.)



Chapter 4

Modelling mechanical systems

Lex I.
Corpus omne perseverare in statu suo quiescendi vel movendi unifor-
miter in directum, nisi quatenus a viribus impressis cogitur statum
illum mutare. (. . . )

Lex II.
Mutationem motus proportionalem esse vi motrici impressæ, & �eri
secundum lineam rectam qua vis illa imprimitur. (. . . )

Lex III.
Actioni contrariam semper & æqualem esse reactionem: sive corpo-
rum duorum actiones in se mutuo semper esse æquales & in partes
contrarias dirigi.

Isaac Newton (1643 � �1727), Philosophiæ Naturalis Principia Mathematica
(1687), Axiomata sive Leges Motus

Ut tensio sic vis; That is, The Power of any Spring is in the same
proportion with the Tension thereof: That is, if one power stretch
or bend it one space, two will bend it two, and three will bend it
three, and so forward.

Robert Hooke (1635 � �1703), Lectures de Potentia Restitutiva Or of Spring
Explaining the Power of Springing Bodies (1678)

In this and the following chapters, we will pass in review the basic concepts
of system modelling, for di�erent types of components. In this chapter, we
concentrate upon mechanical components. Surely you will have already learned,
if not all, at least most of these subjects in other courses. However, there are
two reasons why a brief review is convenient at this point of your studies:

1. We will systematically resort to the Laplace transform to study dynamic
systems, and after seeing too many equations with variable s it is easy to
forget that we keep talking about real things � namely, in this course,
mechatronic systems that are all around us in our daily life.

2. This is a good time to stress the similarities between apparently very
di�erent systems that can be described by the very same equations. We
will see that thinking of any system as an energy converter helps to see
those parallels.

4.1 Modelling the translation movement

Mechanical systems with movement along a straight line can usually be modelled
using three components with the respective three equations:

1. A mass. This component stores energy under the form of kinetic energy. Mass
To model them, apply Newton's second law (which you can read in Latin Newton's second law
at the beginning of this chapter):∑

F =
d

dt
(m(t) ẋ(t)) (4.1)

41
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Figure 4.1: Usual translation springs. Left: helical or coil spring; centre: volute
spring; right: leaf spring. (Source: Wikimedia.)

Here,
∑
F is the sum of all forces applied on the mass m(t), which is at

position x(t). (Product m(t) ẋ(t), as you know, is called momentum.) Momentum
Because we are assuming a movement of translation, we need not bother to
use vectors, but the forces must be applied along the direction considered;
if not, their projection onto the said direction must be used. And, as we
said in Section 3.1, we will only consider LTI systems; since the mass is,
in (4.1), a parameter, this restriction means that it will not change with
time, and so we are left with∑

F = mẍ(t) (4.2)

A mass is usually represented by m or M .

2. A spring. This is a mechanical device that stores energy under the formSpring
of elastic potential energy (see Figure 4.1). A translation spring usually
follows Hooke's law (which you can read in Latin and English at theHooke's law
beginning of this chapter):

F = k (x1 − x2) (4.3)

Here, F is the force exerted by the spring, x1 and x2 are the positions of
the extremities of the spring (de�ned so that x1 − x2 is the variation in
length of the spring measured from the repose length), and k is the spring
constant. This constant is usually represented by k or K, and its SI units
are N/m. Force F opposes the relative movement of the extremities that
is its cause (i.e. force F contracts the spring when it is stretched, and
stretches the spring when it is compressed).

3. A damper. This is a mechanical device that dissipates energy (see Fig-Damper
ure 4.2). The most usual model for dampers is viscous damping:Viscous damping

F = c (ẋ1 − ẋ2) (4.4)

Here, F is the force exerted by the damper, ẋ1 and ẋ2 are the velocities
of the extremities of the spring (de�ned so that ẋ1 − ẋ2 is the relative
velocity of the extremities of the damper), and c is the damping constant.
This constant is usually represented by c, C, b or B, and its SI units are
N s/m. Force F opposes the relative movement of the extremities that is
its cause.

Model (4.4) can also be used to model unintended energy dissipation, such
as that due to friction. Notice that since energy dissipation is ubiquitous
even a mechanical system consisting only of a mass and a spring will be
more exactly modelled by a mass, a spring, and a damper, the latter to
account for energy dissipation.

Remark 4.1. Unlike (4.2), Hooke's law (4.3) is often only an approximate
model of the phenomenon it addresses. There are three ways in which reality
usually deviates from (4.3).

1. The relation between force and variation in length can be non-linear. In
any case, as long as the relation is continuous and has a continuous deriva-
tive, a linear approximation will be valid in a limited range of length
variations (see Figure 4.3).
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Figure 4.2: Dashpot damper (source: Wikimedia). There are other types of
dampers. This one, because it contains a viscous �uid, follows (4.4) rather
closely.

Figure 4.3: A linear approximation of a continuous function with a continuous
derivative provides good results in some limited range (source: Wikimedia).

2. Springs that have a di�erent behaviour for positive variations of length
(x > 0, extension) and negative variations of length (x < 0, compression)
are not uncommon.

3. In any case, Hooke's law is obviously valid only for a limited range of
length variations.

Example 4.1. A stainless steel helicoidal spring is 10 cm long. When a traction
force of 10 N is applied, its length increases to 12 cm. What force must be
applied so that its length increases to 15 cm? What force must be applied so
that its length increases to 40× 103 km?

A length increase of 2×10−2 m corresponds to a 10 N force, so k = 10
2×10−2 =

500 N/m. The answer to the �rst question, when x = 5 cm = 5 × 10−2 m, is
F = 500× 5× 10−2 = 25 N. Or, alternatively, since the length increase is to be
15−10
12−10 = 2.5 times larger than in the original situation, the force should also be
2.5 times larger, i.e. 2.5× 10 = 25 N.

In the second case, it should be obvious that a 10 cm helicoidal spring cannot
be stretched to a length which is roughly the perimeter of the Earth. You should
not have to calculate the ludicrous result F = 500×40×106 = 2×1010 N= 20 GN
obtained applying the linear relation (4.3) to realise that the spring will surely
break well before such a force is applied. You should have by now seen a su�cient
number of diagrams such as the one in Figure 4.4 to realise this at once, without
even having to look for the yield strength of stainless steel and coming up with
an educated guess for the spring's cross-sectional area.

Remark 4.2. Our models are approximations of reality. They are valid only for
limited ranges of parameters. These important truths cannot be overstated.

Remark 4.3. Viscous damping (4.4) is another model of reality that very often
is only a rough approximation. Dashpot dampers such as the ones in Figure 4.2
follow this law more closely than other damping phenomena, where damping
may be non-linear or, if linear, proportional to another derivative of position
x (some damping models even use fractional orders of di�erentiation). In any
case, it is obvious that after a while x will reach its end of stroke, and (4.4) will End of stroke
no longer apply.

Combining (4.2)�(4.4) with Newton's third law � which states that when Newton's third law
a body exerts a force on another, this latter body exerts an equal force, but
opposite in direction, on the �rst body �, it is possible to �nd the di�erential
equations that model translation mechanical systems.
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Figure 4.4: Schematic stress-strain curve of steel (source: Wikimedia).

Example 4.2. One of the most simple, but also most useful, mechanical mod- Mass�spring�damper sys-
temels is the so-called mass�spring�damper system, which can be used to model

the behaviour of a mass, on which a force is applied, connected to an inertial
referential by a spring and a damper (remember that any real spring also has
some damping, so, even in the absence of a dashpot damper or a similar device,
energy dissipation must be accounted for). See Figure 4.5. This model can be
applied to many systems, among which the vertical behaviour of a car's suspen-
sion (for which of course far more accurate, and complex, models can also be
used � see Figure 4.6).

Since one of the extremities of the spring is �xed, the force that it exerts on
M is

FK(t) = −K x(t) (4.5)

or, omitting the dependence on time, FK = −K x. There is a minus sign
because, when x increases, the force on M opposes the increase of x. Similarly,
the force exerted on M by the damper is

FB(t) = −B ẋ(t) (4.6)

or FB = −B ẋ to simplify. There is a minus sign because, when x increases, ẋ
is positive, and the force on M opposes the increase of x. Thus

F (t)−K x(t)−B ẋ(t) = M ẍ(t) (4.7)

We will now assume that initial conditions are zero. Applying the Laplace
transform,

F (s)−KX(s)−BsX(s) = Ms2X(s) (4.8)

which we can rearrange as

X(s)

F (s)
=

1

Ms2 +Bs+K
(4.9)

The form (4.9) in which the model of the mass�spring�damper system was
put is called transfer function. It is very practical for the resolution of dy-Transfer function
namic models.

De�nition 4.1. Given a SISO system modelled by a di�erential equation, its
transfer function is the ratio of the Laplace transform of the output (in the nu-
merator) and the Laplace transform of the input (in the denominator), assuming
that all initial conditions are zero.

Remark 4.4. When you see a transfer function, never forget that it is nothing
but a di�erential equation under disguise. The transfer function is a rational
function in s, which conceals a dynamic relation in time (or a relation in space,
if the di�erential equation has derivatives in space rather than in time).
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Figure 4.5: A mass�spring�damper system, with mass M , spring constant K,
and damping coe�cient B.

Figure 4.6: Independent suspension of a car's wheel (source: Wikimedia). The
spring is clearly visible. The damper can be seen inside the coils of the spring.
Even when the suspension does not consist of one spring and one damper, a
mass�spring�damper model can be used, as nearly all suspensions have a spring-
like restitution force and some sort of energy dissipation.
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Remark 4.5. Notice that it is necessary to assume zero initial conditions to
obtain a transfer function. Otherwise, additional terms would appear, and it
would be impossible to isolate on one side of the equation the ratio of the Laplace
transforms of the output and the input. We will further study this subject in
Chapter 8.

Example 4.3. Let us �nd the transfer functions corresponding to (4.2)�(4.4)
� i.e. to a mass, to a spring, and to a damper. For the spring and the damper,
consider that extremity x2 is �xed. Assume that the output is position X(s),
and force F (s) is the input. Then

X(s)

F (s)
=

1

ms2
(4.10)

X(s)

F (s)
=

1

k
(4.11)

X(s)

F (s)
=

1

cs
(4.12)

Since transfer functions are functions of s, they are usually represented by
one capital letter, such as F of G; when F (s) is used to represent a transfer
function, care must be taken not to use the same letter to represent the Laplace
transform F (s) of a force f(t).

Example 4.4. Suppose that force F (t) = sin(t) is applied to the system in
Figure 4.5, in which M = 1 kg, B = 3.5 Ns/m, K = 1.5 N/m. What is the
output x(t)?

The system's transfer function is

G(s) =
X(s)

F (s)
=

1

s2 + 3.5s+ 1.5
=

1

(s+ 3)(s+ 0.5)
(4.13)

We have

F (s) =
1

s2 + 1
(4.14)

and thus

X(s) =

L of the input︷ ︸︸ ︷
1

s2 + 1

transfer function︷ ︸︸ ︷
1

(s+ 3)(s+ 0.5)
=
as+ b

s2 + 1
+

c

s+ 3
+

d

s+ 0.5
(4.15)

=
(as+ b)(s2 + 3.5s+ 1.5) + c(s2 + 1)(s+ 0.5) + d(s2 + 1)(s+ 3)

(s2 + 1)(s+ 3)(s+ 0.5)

=
s3(a+ c+ d) + s2(3.5a+ b+ 0.5c+ 3d) + s(1.5a+ 3.5b+ c+ d) + (1.5b+ 0.5c+ d)

(s2 + 1)(s+ 3)(s+ 0.5)

whence
a+ c+ d = 0

3.5a+ b+ 0.5c+ 3d = 0

1.5a+ 3.5b+ c+ d = 0

1.5b+ 0.5c+ 3d = 1

⇔


c+ d = −a
3.5a− 0.5b = −1

0.5a+ 3.5b = 0

c+ 6d = 2− 3b

⇔


c+ d = −a
50b = 2

a = −7b

c+ 6d = 2− 3b

⇔


c+ d = 7

25

b = 1
25

a = − 7
25

c+ 6d = 47
25

⇔


c = 7

25 − d
�

�

5d = 40
25

⇔


c = − 1

25

�

�

d = 8
25

(4.16)

Finally,

x(t) = L −1

[ − 7
25s

s2 + 1
+

1
25

s2 + 1
+
− 1

25

s+ 3
+

8
25

s+ 0.5

]
= − 7

25
cos(t) +

1

25
sin(t)− 1

25
e−3t +

8

25
e−0.5t (4.17)
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Figure 4.7: The system from Example 4.5, modelled by (4.20).

Example 4.5. Generalise the mass�spring�damper system of Example 4.2 to
include three masses connected by springs and dampers as seen in Figure 4.7.
The forces exerted by these components will be

fK1
= K1(x2 − x1)

fK2 = K2(x3 − x2)

fB1 = B1(ẋ2 − ẋ1)

fB2
= B2(ẋ3 − ẋ2)

(4.18)

Applying Newton's law to the masses, we get
K1(x2 − x1) +B1(ẋ2 − ẋ1) = M1ẍ1

K2(x3 − x2) +B2(ẋ3 − ẋ2)−K1(x2 − x1)−B1(ẋ2 − ẋ1) = M2ẍ2

−K2(x3 − x2)−B2(ẋ3 − ẋ2) = M3ẍ3

(4.19)

Finally, the mathematical model of the system is
M1ẍ1 +K1 (x1 − x2) +B1 (ẋ1 − ẋ2) = 0

M2ẍ2 +K1 (x2 − x1) +B1 (ẋ2 − ẋ1) +K2 (x2 − x3) +B2 (ẋ2 − ẋ3) = 0

M3ẍ3 +K2 (x3 − x2) +B2 (ẋ3 − ẋ2) = 0

(4.20)
To �nd a transfer function from the equations above, we would have to know
which of the three positions x1, x2 and x3 is the input and which is the output.

Remark 4.6. Remember that it is somewhat irrelevant if positive displace-
ments are assumed to be in one direction or the other. In the example above,
positive displacements were arbitrarily assigned to the direction from the left
to the right; the opposite could have been assumed, and signs would then be
changed in such a way that the resulting model would still be correct.

4.2 Simulating transfer functions in Matlab

There are two ways of creating a transfer function with Matlab:

� tf creates a transfer function, represented by two vectors with the coef-
�cients of the polynomials in the numerator and in the denominator (in
decreasing order of the exponent);

� s = tf('s') creates the Laplace transform variable s, which can then be
manipulated using algebraic operators.

Example 4.6. Transfer function (4.13) from Example 4.4 can be created as Matlab's command tf

>> G = tf(1,[1 3.5 1.5])

G =

1

-----------------

s^2 + 3.5 s + 1.5

Continuous-time transfer function.
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Figure 4.8: Results of Example 4.4.

or else as

>> s = tf('s')

s =

s

Continuous-time transfer function.

>> G = 1/(s^2+3.5*s+1.5)

G =

1

-----------------

s^2 + 3.5 s + 1.5

Continuous-time transfer function.

Command lsim (linear simulation) uses numerical methods to solve the dif-Simulation
ferential equation represented by a transfer function for a given input. In other
words, it simulates the LTI represented by the transfer function.

Example 4.7. The output found in Example 4.4 can be obtained and displayedMatlab's command lsim

as follows, if transfer function G(s) has been created as above:

>> t = 0 : 0.01 : 50;

>> f = sin(t);

>> x = lsim(G, f, t);

>> figure,plot(t,x, t,-7/25*cos(t)+1/25*sin(t)-1/25*exp(-3*t)+8/25*exp(-0.5*t))

>> xlabel('t [s]'), ylabel('x [m]')

See Figure 4.8. Notice that we plotted two curves: the �rst was created with
lsim, the second is (4.17). As expected, they coincide (there is a small numerical
di�erence, too small to show up in the plot), and only one curve can be seen.

Remark 4.7. The result (4.17) from Example 4.4 is exact. So the second curve
in Figure 4.8 only has those numerical errors resulting from the implementation
of the functions. The �rst curve has the errors resulting from the numerical
method with which the di�erential equation was solved. Of course, both curves
are based upon the same transfer function, and thus will su�er from any errors
that there may be in that model (e.g. imprecise values of parameters M , B,
and K, or neglected non-linearities in the spring or the damper). Do you still
remember Remark 4.2?
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Figure 4.9: Tangential force F for a rotation of radius r applied on a point-like
mass.

4.3 Modelling the rotational movement

Mechanical systems with movement of rotation can usually be modelled using
three components with the respective three equations:

1. A moment of inertia. For these components, apply Newton's second Moment of inertia

Newton's second law for
rotation

law for rotation:

Theorem 4.1. ∑
τ =

d

dt
(J(t) ω̇(t)) (4.21)

Here,
∑
τ is the sum of all torques applied on the moment of inertia J(t),

which is at angular position ω(t).

Proof. Let r be the radius of rotation for which are applied the tangential
forces

∑
F that cause the torque (see Figure 4.9). Because x = rω, then

ẋ = rω̇, and Newton's second law (4.1) becomes∑
F =

d

dt
(m(t) rω̇(t))⇔ r

∑
F =

d

dt

(
m(t) r2ω̇(t)

)
(4.22)

Because the torque τ of a force F is rF , and the moment of inertia J
of mass m is mr2, (4.21) follows for a point-like mass. In the case of a
distributed mass, integrating (4.22) over the volume occupied will then
yield the desired result.

Corollary 4.1. Considering an LTI system, J will not change with time,
and so we are left with ∑

τ = J ω̈(t) (4.23)

A moment of inertia is usually represented by J or I (the latter letter is
avoided when it can be confounded with an electrical current); its SI units
are kgm2. A torque is usually represented by τ or T ; its SI units are Nm.

2. A torsion spring. This is a mechanical device that stores energy (see Torsion spring
Figure 4.10) and usually follows the angular form of Hooke's law: Angular form of Hooke's

law
τ = κ (ω1 − ω2) (4.24)

Here, τ is the torque exerted by the spring, ω1 and ω2 are the angular
positions of the extremities of the spring, and κ is the spring constant.
This constant is usually represented by the Greek character κ or K (to
avoid confusion with a translation spring, for which a Latin character is
used), and its SI units are N/rad.

3. A rotary damper, or torsional damper. The most usual model for Rotary (or torsional)
damperthis mechanical device that dissipates energy is viscous damping:

τ = c (ω̇1 − ω̇2) (4.25)

Here, τ is the torque exerted by the damper, ω̇1 and ω̇2 are the angular
velocities of the extremities of the damper, and c is the damping constant.
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Figure 4.10: A torsion spring mounted on a mousetrap (source: Wikimedia).
Notice that Hooke's law for torsion springs will only apply in the range of angles
comprised within the ends of stroke (say, from 0 rad to π rad).

Figure 4.11: A mechanical system comprising a moment of inertia J , a torsion
spring with constant κ, and a rotational damper with constant B.

This constant is usually represented by c, C, b or B, just like for the
translation case, but its SI units are N s/rad.

Also like (4.4), model (4.25) can be used to model unintended energy
dissipation, such as that due to friction.

Remark 4.8. When dealing with rotation, take care with angular units. Confu-
sion about values in degrees, radians, and rotations is a common source of error.
This is true also for angular speed, angular velocity, angular spring constants,
etc..

Example 4.8. Consider the system in Figure 4.11. The torque exerted on J
by the spring is

τκ(t) = −κω(t) (4.26)

where ω is the rotation of J in the sense of rotation in which the applied torque
τ is positive. The torque exerted by the damper is

τB(t) = −B ω̇(t) (4.27)

Thus

τ(t)− κω(t)−B ω̇(t) = J ω̈(t) (4.28)

Applying the Laplace transform (and assuming, once more, that all initial con-
ditions are zero),

T (s)− κΩ(s)−BsΩ(s) = Js2Ω(s)⇔ Ω(s)

T (s)
=

1

Js2 +Bs+ κ
(4.29)

4.4 Energy, e�ort and �ow

A comparison of transfer functions (4.9) and (4.29) shows us that di�erent
systems can have similar models. Actually, if the numerical values of M and J ,
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and of B (in translation) and B (in rotation), and of K and κ, are the same,
then the model will be the same.

As you surely know by now, this happens not only with mechanical systems,
but also with systems of other, di�erent types, as we shall see in the following
chapters. One of the best ways of studying this parallelism is to see systems as
energy converters, and energy E as the integral of the product of two variables, Energy
called e�ort variable e and �ow variable f : E�ort

Flow
E(t) =

∫ t

0

e(t) f(t) dt (4.30)

In other words, the product e(t)× f(t) is the instantaneous power Ė(t). Power
In the case of a translation movement,

Ė(t) = F (t) ẋ(t)⇔ E(t) =

∫ t

0

F (t) ẋ(t) dt (4.31)

In the case of a rotation movement,

Ė(t) = τ(t) ω̇(t)⇔ E(t) =

∫ t

0

τ(t) ω̇(t) dt (4.32)

We will consider force F and torque τ as the �ow variable, and velocity ẋ and
angular velocity ω̇ as the e�ort variable. But notice that it would make no
di�erence if it were the other way round. In any case, their product will be the
power. Both choices can be found in published literature.

The components of a system are the e�ort accumulator, the �ow accu- E�ort accumulator
mulator, and the energy dissipator, as seen in Table 4.1. For both accumu- Flow accumulator

Dissipatorlators, energy is the integral of accumulated �ow or accumulated e�ort: elastic
potential energy in the case of e�ort, and kinetic energy in the case of �ow. The
dissipator dissipates energy and it makes no di�erence whether it is kinetic or
potential energy that it dissipates. Table 4.1 also includes the relations between
these quantities.

De�nition 4.2. A transfer function of a system that has the �ux as input and
the e�ort as output is called impedance of that system. A transfer function of a Impedance
system that has the e�ort as input and the �ux as output is called admittance Admittance
of that system. Consequently, the admittance is the inverse of the impedance.

Transfer functions (4.10)�(4.12) can be rewritten so as to give the mechanical
impedance of a mass, a spring, and a damper: Mechanical impedance

sX(s)

F (s)
=

1

ms
(4.33)

sX(s)

F (s)
=
s

k
(4.34)

sX(s)

F (s)
=

1

c
(4.35)

4.5 Other components

Among the several other components that may be found in mechanical systems,
the following ones, because of their general use and of their linearity, deserve a
passing mention:

� Cogwheels, or gears. These wheels convert rotation movement into an- Cogwheels
other rotation movement, but the wheels need not be in the same plane.
For two external cogwheels, the sense of rotation is inverted, whereas for
one external and one internal cogwheel it is not (see Figure 4.12).

Theorem 4.2. Let ω1 and ω2 be the angular positions of the two cog-
wheels, and r1 and r2 the respective radius. Then

ω1

ω2
= ±r2

r1
(4.36)
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Table 4.1: E�ort, �ow, accumulators and dissipators in mechanical systems
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ẋ

m
s−

1
an
gu
la
r
ve
lo
ci
ty
ω̇

ra
d
s−

1

�o
w
f

fo
rc
e
F

N
to
rq
ue

τ
N
m

e�
or
t
ac
cu
m
ul
at
or

sp
ri
ng
,
w
it
h
sp
ri
ng

co
ns
ta
nt
K

N
/m

an
gu
la
r
sp
ri
ng
,
w
it
h
sp
ri
ng

co
ns
ta
nt
κ

N
/r
ad

ac
cu
m
ul
at
ed

e�
or
t
e a

=
∫ ed

t
p
os
it
io
n
x

=
∫ ẋd
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Figure 4.12: Left: two external cogwheels (source: Wikimedia). Right: two
cogwheels, the outside one being an internal cogwheel (because the cogs are on
the inside), and the inside one being an external cogwheel (because the cogs are
on the outside; source: https://etc.usf.edu/clipart).

Figure 4.13: Proof of Theorem 4.3.

Figure 4.14: Transmission belts in a Diesel engine (source: Wikimedia).
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Proof. This is a straightforward consequence of the linear movement of
the point of contact between the two cogwheels being the same:

ω1r1 = ω1r2 (4.37)

Corollary 4.2. Let n1 and n2 be the numbers of cogs, or teeth, in the
cogwheels. Then

ω1

ω2
=
ω̇1

ω̇2
=
ω̈1

ω̈2
= ±r2

r1
= ±n2

n1
(4.38)

Proof. The spacing of the teeth in both cogwheels has to be the same,
otherwise they would not match. Thus the perimeters of the two wheels,
2πr1 and 2πr2, are directly proportional to n1 and n2.

As to the angular velocity and acceleration, it su�ces to di�erentiate
(4.36).

Theorem 4.3. Let τ1 and τ2 be the torques of the two cogwheels. Then

τ1
τ2

=
r1

r2
=
n1

n2
(4.39)

Proof. See Figure 4.13. The forces that each wheel exerts on the other are
equal. Thus

τ1 = F r1 ⇒ F =
τ1
r1

(4.40)

τ2 = F r2 ⇒ F =
τ2
r2

(4.41)

and the result follows.

� A transmission belt. It also converts rotation movement into anotherBelt
rotation movement:

ω1

ω2
=
ω̇1

ω̇2
=
ω̈1

ω̈2
=
r2

r1
(4.42)

Here ω1 and ω2 are the angular positions of the two wheels connected by
the belt, and r1 and r2 are the respective radius. See Figure 4.14.

� A rack and pinion. It converts rotation movement into translation move-Rack and pinion
ment and vice-versa:

x = ωr ⇔ ẋ = ω̇r ⇔ ẍ = ω̈r (4.43)

Here x is the distance of the translation movement, r the radius of the
wheel, and ω the angle of the rotation movement. See Figure 4.15.

� A harmonic drive. It converts rotation movement into another rotationHarmonic drive
movement, using an outside internal circular gear, inside which there is an
external elliptical gear, to which an elliptical shaft is connected through a
rolling bearing:

ω1

ω2
=
ω̇1

ω̇2
=
ω̈1

ω̈2
= −n1 − n0

n0
(4.44)

Here ω2 is the angular position of the elliptical shaft inside the elliptical
gear, ω1 is the angular position of the shaft connected to the elliptical
gear, n1 is the number of teeth of the said gear, and n0 is the number of
teeth of the outside internal gear (which is �xed). See Figure 4.15.

Remark 4.9. Linear models (4.36)�(4.44) omit non-linear e�ects that may
appear, such as backlash due to gaps betweens cogs (see Figure 4.16). These
e�ects may sometimes be important but are not our concern here.

Remark 4.10. Models (4.36)�(4.44) are not only linear but also static (in the
sense that outputs do not depend on past inputs, not in the sense that these
components never move, of course). Non-linearities such as backlash make the
components in fact dynamic.
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Figure 4.15: Left: rack and pinion in a canal gate; the rack is the linear ele-
ment (in this case, vertical). Right: schematic of a harmonic drive. (Source:
Wikimedia.)

Figure 4.16: Backlash (source: Wikimedia).
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Glossary

Als Storm weer bijkomt is het eerste wat hij ziet het vriendelijke
gezicht van de jager.

�Wat wilt u dat ik voor u doe, god?�

�Ik. . . kan je verstaan, maar. . . maar spreek ik nu jouw taal of jij de
mijne? En wat bedoel je met god? Ik ben geen god!�

�Maar natuurlijk bent u dat! Alles wijst erop. U sprak wartaal en
begreep mij niet. Nou, het is duidelijk dat de goden de mensen
niet begrijpen, anders hadden ze ze allang uitgeroeid! En nu u van
de parel der kennis hebt gegeten, begrijpt u er nog niets van. Dat
bewijst dat u gek bent! En de goden moeten gek zijn anders hadden
ze de wereld nooit zo gemaakt als hij is.�

Don Lawrence (1928 � �2003), Martin Lodewijk (1939 � . . . ), Storm, De
kronieken van Pandarve 10, De piraten van Pandarve (1983)

accumulated e�ort potencial acumulado
accumulated �ow �uxo acumulado
admittance admitância
cogwheel roda dentada
coil spring mola helicoidal
compression compressão
damper amortecedor
damping amortecimento
dashpot amortecedor viscoso
dissipator dissipador
e�ort accumulator acumulador de potencial
e�ort variable variável de potencial
end of stroke �m de curso
energy energia
extension extensão
�ow accumulator acumulador de �uxo
�ow variable variável de �uxo
gear roda dentada
harmonic drive redutor harmónico
helical spring mola helicoidal
impedance impedância
leaf spring mola de folhas, mola de lâminas
mass massa
mechanical impedance impedância mecânica
moment of inertia momento de inércia
momentum quantidade de movimento, momento linear
point-like mass massa pontual
power potência
rack and pinion pinhão e cremalheira
rotary damper amortecedor rotativo, amortecedor de torção
simulation simulação
spring mola
spring constant constante de mola
torque binário, torque (bras.)
torsion spring mola de torção
torsional damper amortecedor rotativo, amortecedor de torção
transfer function função de transferência
transmission belt correia de transmissão
volute spring mola de volutas, mola voluta

Exercises

1. Consider the system in Figure 4.17.

(a) Find the di�erential equations that model the system.
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Figure 4.17: System of Exercise 1.

Figure 4.18: System of Exercise 2.

(b) From the result above, knowing that M1 = 1 kg, M2 = 0.5 kg,
K1 = 10 N/m, K2 = 2 N/m, and B2 = 4 Ns/m, �nd transfer
function X2(s)

F (s) .

2. Consider the system in Figure 4.18. The wheels have neglectable mass and
inertia; they are included to show that the masses move without friction.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that M1 = 100 kg, M2 = 10 kg,
K = 50 N/m, and B = 25 Ns/m, �nd transfer function X2(s)

X1(s) .

3. Consider the system in Figure 4.19. The wheels have neglectable mass and
inertia; they are included to show that the masses move without friction.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that M1 = M21 kg, K = 5 N/m,
and B = 10 Ns/m, �nd transfer function X1(s)

F (s) .

(c) For the same constants, �nd transfer function X2(s)
F (s) .

4. Consider the system in Figure 4.20.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that M1 = 1 kg, M2 = 2 kg, M3 =
3 kg, K1 = 10 N/m, K2 = 20 N/m, K3 = 30 N/m, B1 = 5 Ns/m,
B2 = 10 Ns/m, and B3 = 15 Ns/m, �nd transfer function X1(s)

F (s) .

Figure 4.19: System of Exercise 3.



58 CHAPTER 4. MODELLING MECHANICAL SYSTEMS

Figure 4.20: System of Exercise 4.

Figure 4.21: System of Exercise 5.

(c) For the same constants, �nd transfer function X2(s)
F (s) .

(d) For the same constants, �nd transfer function X3(s)
F (s) .

5. Consider the system in Figure 4.21. The cogwheels have neglectable mo-
ments of inertia, when compared to J . Let Nu be the number of cogs in
the upper cogwheel, and Nl the number of cogs in the lower cogwheel.

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that J = 50 kgm2, Nu = 20, Nl =

30, and B = 40 Ns/m, �nd transfer function Ω(s)
T (s) .

6. Consider the system in Figure 4.22. The pinion's centre is �xed, and its
moment of inertia I includes the lever actuated by force F .

(a) Find the di�erential equations that model the system.

(b) From the result above, knowing that r = 0.2 m, I = 0.8 kgm2,
m = 20 kg, k = 1000 N/m, and b = 480 Ns/m, �nd transfer function
X(s)
F (s) .

7. Consider the system in Figure 4.23. Force F is applied through a bar of
neglectable mass, connected by the spring and the damper to mass m,
a�ected by friction force Fa that follows the law of viscous damping with
constant ba. The bar has velocity vF ; mass m has velocity F .

(a) Find the di�erential equations that model the system.

(b) From the result above, �nd transfer function VF (s)
F (s) .

8. Consider the system in Figure 4.24. The position of mass M is x(t).

(a) Find the di�erential equations that model the system.

(b) From the result above, �nd transfer function X(s)
T (s) .

9. For all the systems in the exercises above, �nd:

(a) the e�ort variables;

(b) the e�ort accumulators;

(c) the �ow variables;

(d) the �ow accumulators;
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Figure 4.22: System of Exercise 6.

Figure 4.23: System of Exercise 7.

Figure 4.24: System of Exercise 8.
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Figure 4.25: From left two right: two springs in series; two springs in parallel;
two dampers in series; two dampers in parallel.

Figure 4.26: Mechanical system from Exercise 11.

(e) the dissipators.

10. Find the X(s)
F (s) transfer functions, as in (4.10)�(4.12), of the following sys-

tems (see Figure 4.25):

(a) two springs, with constants K1 and K2, in series;

(b) two springs, with constants K1 and K2, in parallel;

(c) two dampers, with constants B1 and B2, in series;

(d) two dampers, with constants B1 and B2, in parallel.

11. Consider the mechanical system in Figure 4.26 comprising a mass M , a
damper with viscous friction coe�cient B and a spring with sti�ness K.
These elements are connected to a �xed pulley of radius r with inertia J .
The system is driven by a torque T . Let θ be the rotation angle of the
pulley.

(a) Model the system, writing the equations that describe its dynamics.

(b) Obtain the transfer function considering the torque T as input and
the mass position x as output.



Chapter 5

Modelling electrical systems

By that time Mordor was deservedly being called �smithy of the na-
tions,� and it could trade its manufactured goods for any amounts of
food from Khand and Umbar. Trading caravans went back and forth
through the Ithilien Crossroads day and night, and more and more
voices in Barad-dúr were saying that the country has had enough
tinkering with agriculture, which was nothing but a net loss anyway,
and the way to go was to develop what nobody else had � namely,
metallurgy and chemistry. Indeed, the industrial revolution was well
underway; steam engines toiled away in mines and factories, while
the early aeronautic successes and experiments with electricity were
the talk of the educated classes.

Kirill Yeskov (1956 � . . . ), The Last Ringbearer (1999), I 3 (transl. Yisroel
Markov, 2011)

This chapter addresses the modelling of electrical systems.

5.1 Passive components

The three simplest elements in an electrical circuit are:

1. A resistor. This component (see Figure 5.1) dissipates energy according Resistor
to Ohm's law: Ohm's law

R(t) =
U(t)

I(t)
(5.1)

Here R is the resistance, U is the voltage (or tension, or electric potential
di�erence), and I is the current. Notice that U = U1 − U2, where U1 and
U2 are the voltages at the resistor's terminals.

The resistance R of a uniform conductor is directly proportional to its
length L and inversely proportional to its cross-section A:

R = ρ
L

A
(5.2)

Proportionality constant ρ is called resistivity. This variation with length
is used to build variable resistances, shown in Figure 5.2.

2. A capacitor. This component (see Figure 5.4) stores energy and its most Capacitor
usual model is

U(t) =
1

C
Q(t) (5.3)

where Q(t) is the electrical charge stored, and C is the capacity. Since
I(t) = dQ(t)

dt ,

U(t) =
1

C

∫ t

0

I(t) dt (5.4)

61
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Figure 5.1: Di�erent types of resistors. Left: individual resistors for use in
electronics; centre: many resistors in one encasing; right: wirewound resistors
for high tensions and currents in a train. (Source: Wikimedia.) There are still
other types of resistors.

Figure 5.2: Potentiometers (or variable resistors, or rheostats) have a slider or
a screw to move the position of a terminal, and thus the length of the resistor
which is actually employed; resistance is proportional to this length (source:
Wikimedia). See Figure 5.3.

Figure 5.3: Top: a linear potentiometer with length xmax and resistance Rmax,
connected on the left and on the movable terminal at position x, has a resistance
R proportional to the position: x

xmax
= R

Rmax
⇔ R = Rmax

x
xmax

. Bottom: this
potentiometer is used as a tension divider, grounded on the left and at Vmax on
the right; the voltage at the terminal is given by V

Vmax
= R

Rmax
= x

xmax
⇒ V =

Vmax
x

xmax
⇔ x = xmax

V
Vmax

.
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Figure 5.4: Left: 100 nF capcitor; right: 20 µF capacitor.

Figure 5.5: Inductor for electronic circuits.

Di�erentiating, we get

I(t) = C
dU(t)

dt
(5.5)

3. An inductor. This component (see Figure 5.5) also stores energy and its Inductor
most usual model is

I(t) =
1

L
λ(t) (5.6)

where λ(t) =
∫ t

0
U(t) dt is the �ux linkage, and L is the inductance. Dif-

ferentiating, we get

U(t) = L
dI(t)

dt
(5.7)

The transfer functions of the resistor, the capacitor, and the inductor, cor-
responding to (5.1), (5.5), and (5.7), considering always tension U(s) as the
output and current I(s) as the input, are

U(s)

I(s)
= R (5.8)

U(s)

I(s)
=

1

Cs
(5.9)

U(s)

I(s)
= Ls (5.10)

Remark 5.1. Notice that Ohm's law (5.1) or (5.8) corresponds to a static
system.

Remark 5.2. It cannot be overstated that relations (5.8)�(5.10) are not fol-
lowed by many components:
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Table 5.1: E�ort, �ow, accumulators and dissipators in electrical systems
Electrical system SI

e�ort e voltage U V
�ow f current I A

e�ort accumulator inductor with induction L H
accumulated e�ort ea =

∫
e dt �ux linkage λ =

∫
U dt Wb

relation between accumulated e�ort and �ow ea = ϕ(f) �ux linkage λ = LI
accumulated energy Ee =

∫
ea df inductive energy Ee = 1

2LI
2 J

�ow accumulator capacitor with capacity C F
accumulated �ow fa =

∫
f dt charge Q =

∫
I dt C

relation between accumulated �ow and e�ort fa = ϕ(e) charge Q = CU

accumulated energy Ef =
∫
fa de capacitative energy Ef = 1

2CV̇
2 J

dissipator resistance R Ω
relation between e�ort and �ow e = ϕ(f) U = RI

dissipated energy Ed =
∫
f de Ed = 1

2RI
2 J

� Many resistances do not follow a linear relation between U and I such as
(5.1), and are thus called non-ohmic resistors. Still, Ohm's law can be a Non-ohmic resistors
good approximation in a limited range of values (see Figure 4.3 again).

� Many capacitors have variable capacity C, depending on the voltage ap-
plied. Others follow di�erential equations of fractional order (which we
will study in Chapter 35).

� Inductances always have some resistance, which is often not neglectable.
So their transfer function would more accurately be R+ Ls.

� Even when (5.8)�(5.10) are accurately followed, this only happens for a
limited range of values. Increase U or I too much, and any electrical
component will cease to function (burn, melt. . . ). What is too much
depends on the particular component: there are components that cannot
stand 1 V while others work at 104 V and more.

5.2 Energy, e�ort and �ow

Because Ė(t) = U(t)I(t) and E(t) =
∫ t

0
U(t)I(t) dt, e�ort and �ow variables

are U and I. While either can once more play each of the roles, by universal
convention,

� U is the e�ort variable,

� I is the �ow variable, and thus

� the inductor is the e�ort accumulator,

� the capacitor is the �ux accumulator,

� the resistor is the dissipator.

Table 5.1 sums up the passing information and relations.

Remark 5.3. Transfer functions (5.8)�(5.10) have the �ux as input and the
e�ort and output. They consequently give the impedance of the correspondingElectrical impedance
components.

To model electric systems with these components, (5.8)�(5.10) are combined
with Kircho�'s laws:Kircho�'s laws

� The current law states that the sum of the currents at a circuit's node isKircho�'s current law
zero.

� The voltage law states that the sum of the voltages around a circuit'sKircho�'s voltage law
closed loop is zero.
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Figure 5.6: Left: voltage divider. Right: RC circuit.

Example 5.1. Consider the system in Figure 5.6 known as voltage divider.Voltage divider
The input is Vi(t) and the output is Vo(t). Applying the current law at point
B, we see that the current �owing from A to B must be the same that �ows
from B to C. Applying Ohm's law (5.1) to the two resistances, we see that

R1 =
VB(t)− VA

I(t)
=
Vo(t)− Vi(t)

I(t)
⇒ I =

Vo − Vi
R1

(5.11)

R2 =
VC(t)− VB(t)

I(t)
=

0− Vo(t)
I(t)

⇒ I =
−Vo
R2

(5.12)

In the last equalities above, we dropped the dependence on t to alleviate the
notation. Consequently,

(Vo − Vi)R2 = −VoR1 ⇔ Vo(R1 +R2) = ViR2 ⇔
Vo
Vi

=
R2

R1 +R2
(5.13)

Notice that this system is static, and from Vo(t)
Vi(t)

= R2

R1+R2
we get Vo(s)

Vi(s)
= R2

R1+R2
.

Remark 5.4. Remember that, similarly to what happens with the positive
direction of displacements in mechanical systems, it is irrelevant if a higher
tension is presumed to exist to the left or to the right of a component. Current
is always assumed to �ow from higher to lower tensions; as long as equations are
coherently written, if in end current turns out to be negative, this only means
that it will �ow the other way round.

Example 5.2. The transfer function of the system in Figure 5.6 known as RC
circuit can be found in almost the same manner, thanks to impedances: RC circuit

R =
VB(s)− VA(s)

I(s)
=
Vo(s)− Vi(s)

I(s)
⇒ I =

Vo − Vi
R

(5.14)

1

Cs
=
VC(s)− VB(s)

I(s)
=

0− Vo(s)
I(s)

⇒ I = −VoCs (5.15)

In the last equalities above, we dropped the dependence on s to alleviate the
notation. Consequently,

Vo − Vi = −VoRCs⇔ Vo(1 +RCs) = Vi ⇔
Vo
Vi

=
1

1 +RCs
(5.16)

Notice that this system is dynamic, and from Vo(s)(1 + RCs) = Vi(s) we get
Vo(t) +RC dVo(t)

dt = Vi(t).

Example 5.3. Both systems above are particular cases of the generic system Two generic impedances
in Figure 5.7 with two impedances:

Z1(s) =
VB(s)− VA(s)

I(s)
=
Vo(s)− Vi(s)

I(s)
⇒ I =

Vo − Vi
Z1

(5.17)

Z2(s) =
VC(s)− VB(s)

I(s)
=

0− Vo(s)
I(s)

⇒ I =
−Vo
Z2

(5.18)
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Figure 5.7: Left: generic electrical system with two impedances, of which the
voltage divider (Figure 5.6), the RC circuit (Figure 5.6) and the CR circuit (to
the right) are particular cases. Right: CR circuit.

Figure 5.8: Two impedances in parallel.

Consequently,

(Vo − Vi)Z2 = −VoZ1 ⇔
Vo
Vi

=
Z2

Z1 + Z2
(5.19)

Replacing Z1(s) = R1 and Z2(s) = R2 in (5.19), we obtain (5.13).
Replacing Z1(s) = R and Z2(s) = 1

Cs in (5.19), we obtain (5.16).
We can also obtain the transfer function of the case where the resistor and

the capacitor are switched as also shown in Figure 5.7: when Z1(s) = 1
Cs and

Z2(s) = R, we have Vo(s)
Vi(s)

= R
R+ 1

Cs

= RCs
1+RCs . This is known as a CR circuit.CR circuit

Remark 5.5. We have incidentally shown that two impedances Z1 and Z2 inImpedances in series
series correspond to a single impedance Z = Z1 + Z2, i.e. two impedances in
series are summed, just as two resistances in series are. You know that two
resistances R1 and R2 in parallel are equivalent to resistance R = 1

1
R1

+ 1
R2

, and

something similar happens to two impedances in parallel (see Figure 5.8):Impedances in parallel

Z1 =
VB − VA

I1
⇔ I1 =

VB − VA
Z1

(5.20)

Z2 =
VB − VA

I2
⇔ I2 =

VB − VA
Z2

(5.21)

Z =
VB − VA
I1 + I2

=
VB − VA

VB−VA
Z1

+ VB−VA
Z2

=
1

1
Z1

+ 1
Z2

(5.22)

Because of the parallelism between systems of di�erent types, this is true for me-
chanical impedances as well (see Exercise 10 from Chapter 2), and for impedances
of other types of systems we will study in the next chapters.

Example 5.4. Consider the system in Figure 5.9 known as RLC circuit. TheRLC circuit
input is Vi(t) and the output is Vo(t). Applying the current law, we see that
the current �owing from A to B must be the same that �ows from B to C and
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Figure 5.9: RLC circuit.

the same that �ows from C to D. Then
R = VB(t)−VA

I(t) = VB(t)−Vi(t)
I(t) ⇒ VB = RI + Vi

Ls = VC(t)−VB(t)
I(t) = Vo(t)−VB(s)

I(t) ⇒ ILs = Vo − VB
1
Cs = VD(s)−VC(s)

I(s) = 0−Vo(s)
I(s) ⇒ I = −VoCs

(5.23)

We now replace the �rst equation in the second, and use it together with the
third to get

ILs = Vo −RI − Vi ⇔ I(R+ Ls) = Vo − Vi (5.24)

⇒ Vo − Vi
R+ Ls

= −VoCs⇔ Vo + VoCRs+ VoCLs
2 = Vi ⇔

Vo
Vi

=
1

CLs2 + CRs+ 1

From Vo(s) + Vo(s)CRs+ Vo(s)CLs
2 = Vi(s) we get

Vo(t) + CR
dVo(t)

dt
+ CL

d2Vo(t)

dt2
= Vi(t) (5.25)

Remark 5.6. We could have established (5.25) �rst, without using impedances:
R = VB(t)−VA(t)

I(t) ⇒ I(t) = 1
RVB(t)− 1

RVi(t)

VC(t)− VB(t) = LdI(t)
dt ⇒ Vo(t)− VB(t) = L

R
dVB(t)

dt − L
R

dVi(t)
dt

VD(t)− VC(t) = 1
C

∫
I(t) dt⇒ −dVo(t)

dt = frac1CI(t)

(5.26)

Replacing the �rst equation in the third, and then the result in the second,

−dVo(t)

dt
=

1

RC
VB(t)− 1

RC
Vi(t)⇒ VB(t) = Vi(t)−RC

dVo(t)

dt
(5.27)

Vo(t)− Vi(t) +RC
dVo(t)

dt
=
L

R

(
dVi(t)

dt
−RC d2Vo(t)

dt2

)
− L

R

dVi(t)

dt
(5.28)

Rearranging terms in the last equality gives (5.25). Applying the Laplace trans-
form, we then obtained transfer function (5.24). The results are of course the
same. Notice that in both cases zero initial conditions were implicitly assumed
(i.e. integrals were assumed to be zero at t = 0; in the case of the Laplace
transform, this means that there is no f(0) term in (2.41)). We will address
this further in Chapter 9.

Remark 5.7. Transfer function (5.24) is similar to transfer functions (4.9) and
(4.11). As you know, this is one case of a so-called electrical equivalent of a
mechanical system, or of a mechanical equivalent of an electrical system. The
notions of e�ort and �ux make clear why this parallel between models exists:
both consist of an e�ort accumulator, a �ux accumulator, and a dissipator.
But notice that the parallel is not complete: (4.9) has a �ux as input and
an accumulated e�ort as output; both the input and the output of (5.24) are
e�orts.
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Figure 5.10: Left: an integrated circuit with a 741 OpAmp, one of the most usual
types of OpAmps (source: Wikimedia). Other OpAmp types are manufactured
in integrated circuits that have several OpAmps each, sharing the same power
supply. Right: the symbol of the OpAmp (source: Wikimedia). Power supply
tensions are often omitted in diagrams for simplicity, but never forget that an
active component without power supply does not work.

Figure 5.11: The output of an OpAmp.

5.3 The operational ampli�er (OpAmp), an ac-
tive component

The resistor, the capacitor and the inductor are called passive components be- Passive components
cause they do not need a source of energy to function. Components that need
a source of energy to function are called active components. Among them areActive components
diodes and transistors, together with sensors that we will study in Chapter 13.
A component we will study right away because of its importance is the opera-
tional ampli�er, or in short the OpAmp.

An OpAmp is an electronic component that presents itself as an integrated
circuit (see Figure 5.10) and ampli�es the di�erence between its two inputs V −

and V +:

V out = K
(
V + − V −

)
(5.29)

The output V out is limited to the power supply tensions:

V S− ≤ V out ≤ V S+ (5.30)

As can be expected from the fact that the OpAmp is an active component, if
no power is supplied, i.e. if the corresponding pins of the integrated circuit areNo output if no power sup-

ply disconnected and thus V S+ = V S− = 0 V, then V out = 0 V, i.e. there is no
output. The gain of the OpAmp K should ideally be in�nite; in practice it is
very large, e.g. 105 or 106. See Figure 5.11.

The other important characteristic of the OpAmp is that the impedance
between its two inputs V − and V + is very large. Ideally it should be ini�nite;
in practice it is 2 MΩ or more.
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Figure 5.12: Inverting OpAmp with two generic impedances.

Example 5.5. The OpAmp can be used to compare two tensions, connectedComparator
to the two inputs V − and V +. Because K is very large, if V + > V −, even if
only by a very small margin, the output will saturate at tension V S+. Likewise,
if V + < V −, even if only by a very small margin, the output will saturate at
tension V S−.

Only if V + and V − are equal, and equal to a great precision, will the output
be 0 V. Consider the case of a 741 OpAmp, typically supplied with V S± =
±15 V. Suppose that K = 105. Then the output V out will not saturate at
either +15 V or −15 V only if |V + − V −| < 15× 10−5 V.

Example 5.6. OpAmps are very usually employed in the con�guration shown
in Figure 5.12, known as inverting OpAmp or inverter. In this case, because Inverting OpAmp or in-

verterthe OpAmp's input impedance is very large, the current I will �ow from input
Vi to output Vo, as shown in Figure 5.12. Consequently,

Vo = K(V + − V −)⇔ V − = −VoK
Z2 = Vo−V −

I ⇔ I = Vo−V −
Z2

Z1 = V −−Vi
I ⇔ I = V −−Vi

Z1

(5.31)

Eliminating I and V −, we get

Vo + Vo
K

Z2
=
−VoK − Vi

Z1
⇔ VoZ1 + Vo

Z1

K
+ Vo

Z1

K
= −ViZ2 ⇔

Vo
Vi

= − Z2K

Z1K + Z1 + Z2

(5.32)

Because K is large, (5.32) reduces to

Vo
Vi

= −Z2

Z1
(5.33)

Remark 5.8. Notice how (5.33) shows that we can assume

V + = V − (5.34)

(and so in this case V − = 0). This is because of the high input impedance.

Example 5.7. If in Figure 5.12 we make Z1 = R1 and Z2 = R2, we obtain the
circuit in Figure 5.13, known as inverting ampli�er, for which Inverting ampli�er

Vo
Vi

= −R2

R1
(5.35)

Notice that, because R1, R2 > 0 (there are no negative resistances!), in this
circuit the signs of Vi and Vo are always opposite. In spite of the circuit's name,
it can

� amplify the input (i.e. |Vo| > |Vi|, if R2 > R1), or Ampli�cation
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Figure 5.13: Inverter ampli�er.

Figure 5.14: Inverting summer or summing circuit.

� attenuate the input (i.e. |Vo| < |Vi|, if R1 > R2). Attenuation

Example 5.8. Consider the circuit in Figure 5.14, which is another variation
of the negative feedback OpAmp. From (5.34) and the Kircho� law of nodes,
implicit in the currents shown in Figure 5.14, we get

Z1 = V1−0
I1
⇔ I1 = V1

Z1

Z2 = V2−0
I2
⇔ I2 = V2

Z2

Z3 = 0−Vo
I1+I2

⇔ V1

Z1
+ V2

Z2
= −Vo

Z3
⇔ Vo = −Z3

Z1
V1 − Z3

Z2
V2

(5.36)

Consider what happens when all the impedances are resistors:

� If Z1 = Z2 = Z3 = R this circuit is called inverting summer or invert-Inverting summer or in-
verting summing circuit ing summing circuit. The output Vo is the sum of the two inputs V1

and V2, but with the sign inverted.

� If Z1 = Z2 = R and Z3 = R3 this will be an inverting amplifyingInverting amplifying sum-
mer or inverting summing
ampli�er

summer or inverting summing ampli�er. The amplifying ratio is
−R3

R (and can correspond to ampli�cation or attenuation).

� If all the resistances are di�erent, we will have an inverting weightedInverting weighted sum-
mer summer. If R3

R1
+ R3

R2
= 1 there is no ampli�cation or attenuation; other-

wise there is.

Remark 5.9. Notice that the circuit in Figure 5.14 is a MISO system.
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Figure 5.15: Inverting RC circuit with an OpAmp.

Figure 5.16: Inverting CR circuit with an OpAmp.

Example 5.9. If in Figure 5.12 we have Z1 = R and Z2 consists in a resistor
R and a capacitor C in parallel, we obtain the circuit in Figure 5.15, with

Z2 =
1

1
R + 1

1
Cs

=
R

1 +RCs
(5.37)

Vo
Vi

= − 1

1 +RCs
(5.38)

and similar to the RC circuit from Example 5.2 with transfer function (5.16).
If in Figure 5.12 we have Z2 = R and Z1 consists in a resistor R and a

capacitor C in series, we obtain the circuit in Figure 5.16, with

Z1 = R+
1

Cs
=

1 +RCs

Cs
(5.39)

Vo
Vi

= − RCs

1 +RCs
(5.40)

and similar to the CR circuit from Example 5.3.

Example 5.10. Other than the inverter con�guration in Figure 5.12, the most
usual con�guration with which OpAmps are used is the on in Figure 5.17, known
as the non-inverting OpAmp or non-inverter. Because of the very large Non-inverting OpAmp or

non-inverterinput impedance, current �ows as shown, and
Vo = K(Vi − V −)⇔ V − = Vi − Vo

K

Z2 = Vo−V −
I ⇔ I = Vo−V −

Z2

Z1 = V −−0
I ⇔ I = V −

Z1

(5.41)

Eliminating I and V −, we get

Vo − Vi + Vo
K

Z2
=
Vi − Vo

K

Z1
⇔ VoZ1 − ViZ1 + Vo

Z1

K
= ViZ2 − Vo

Z2

K
⇔ Vo

Vi
=

Z1 + Z2

Z1 + Z1

K + Z2

K

(5.42)
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Figure 5.17: Non-inverting OpAmp with two generic impedances.

Figure 5.18: Non-inverting ampli�er.

Because K is large, (5.42) reduces to

Vo
Vi

=
Z1 + Z2

Z1
(5.43)

Remark 5.10. (5.43) shows once again that we can assume (5.34). We would
have arrived sooner at the same result.

Example 5.11. If in Figure 5.17 we make Z1 = R1 and Z2 = R2, we obtain
the circuit in Figure 5.18, known as non-inverting ampli�er, for whichNon-inverting ampli�er

Vo
Vi

=
R1 +R2

R1
(5.44)

Notice that, because R1, R2 > 0, not only in this circuit the signs of Vi and
Vo are always the same, as the input is always ampli�ed (i.e. |Vo| > |Vi|): it is
impossible to attenuate the input.

Example 5.12. Suppose that we want to amplify a tension 4 times. We can
use the non-inverting ampli�er of Figure 5.18 with R2 = 3R1. As an alternative,
we can use two inverting ampli�ers as in Figure 5.19.

Remark 5.11. When we want to attenuate a tension without inverting its
signal, a non-inverting ampli�er cannot be used, since it must be always true
that Vo

Vi
> 1; two inverting ampli�ers in series must be used instead, as in the

previous example.

Figure 5.19: Two inverting ampli�ers, that amplify the input 4 times.
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Figure 5.20: Voltage bu�er.

Figure 5.21: Subtractor.

Example 5.13. Consider the circuit in Figure 5.20. Because of (5.34), we have
V + = V − = Vi, and Vo = V −; hence

Vo = Vi (5.45)

While at �rst sight this may seem a good candidate for the prize of the most
useless circuit, it is in reality a most useful one. We can be sure that Vo = Vi
and that whatever components are connected to Vo will not a�ect Vi, because
there is no current �owing between Vi and Vo. (The source of energy is the
OpAmp's power supply.) If it were not for the OpAmp, anything connected to
Vo would modify the value of Vi. This circuit is known as voltage bu�er or
tension bu�er. Voltage bu�er

Example 5.14. The MISO system in Figure 5.21 is know as subtractor, be- Subtractor
cause 

R = V2−V ±
I2

R = V ±−Vo
I2

R = V1−V ±
I1

R = V ±−0
I1

(5.46)

From the last two equations, we get 2V ± = V1. From the �rst two equations,
and replacing this last result,

V2 = 2V ± − Vo ⇔ Vo = V1 − V2 (5.47)

5.4 Other components

Among the several other components that may be found in mechanical systems,
we will study the model of the transformer, shown in Figure 5.22: Transformer

VP
VS

=
NP
NS

(5.48)

Here VP and VS are the tensions in the two windings, and NP and NS are
the corresponding numbers of turns in each winding. This is an ideal model; in
practice, there are losses, but we will not need to use a more accurate expression.
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Figure 5.22: Transformer (source: Wikimedia commons).

Glossary

Et le professeur Lidenbrock devait bien s'y connaître, car il passait
pour être un véritable polyglotte. Non pas qu'il parlât couramment
les deux mille langues et les quatre mille idiomes employés à la sur-
face du globe, mais en�n il en savait sa bonne part.

Jules Verne (1828 � �1905), Voyage au centre de la Terre (1864), 2

active component componente ativo
ampli�cation ampli�cação
attenuation atenuação
capacitance capacidade elétrica, capacitância (bras.)
capacitor condensador, capacitor (bras.)
current corrente, intensidade (de corrente elétrica)
electric potential di�erence voltagem, tensão, diferença de potencial elétrico
�ux linkage �uxo magnético total
impedance impedância
inductance indutância
inductor bobina, indutor
inverting ampli�er ampli�cador inversor
inverter inversor
inverting amplifying summer somador ampli�cador inversor
inverting OpAmp AmpOp inversor
inverting summer somador inversor
inverting summing ampli�er ampli�cador somador inversor
inverting summing circuit circuito somador inversor
inverting weighted summer somador inversor ponderado
non-inverter não-inversor
non-inverting OpAmp AmpOp não-inversor
OpAmp AmpOp
operational ampli�er ampli�cador operacional
passive component componente passivo
potentiometer potenciómetro, resistência variável, reóstato
resistance resistência
resistor resistência, resistor (bras.)
rheostat potenciómetro, resistência variável, reóstato
subtractor subtrator
tension voltagem, tensão, diferença de potencial elétrico
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.23: Systems of Exercises 1 and 2.

tension bu�er AmpOp seguidor de tensão, bu�er de tensão
variable resistor potenciómetro, resistência variável, reóstato
voltage voltagem, tensão, diferença de potencial elétrico
voltage bu�er AmpOp seguidor de tensão, bu�er de tensão

Exercises

1. Find the equations describing the dynamics of the systems in Figure 5.23,
and apply the Laplace transform to the equations to �nd the corresponding
transfer function.

2. Again for the systems in Figure 5.23, �nd the transfer function directly
from the impedances of the components, and apply the inverse Laplace
transform to the transfer functions to �nd the corresponding equations.

3. Show that the di�erential equations modelling the circuit in Figure 5.24
are similar to those of the mechanical system of Exercise 1 in Chapter 4.
Explain why, using the concepts of e�ort and �ow.

4. Find the mechanical systems equivalent to the circuits in Figure 5.25.

5. Find the transfer function of the circuit in Figure 5.12 from the impedance
of the components for the following cases:

(a) Impedance Z1 is a resistor, impedance Z2 is a capacitor.
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Figure 5.24: Circuit of Exercise 3.

(a) (b)

Figure 5.25: Systems of Exercise 4.

(b) Impedance Z1 is a capacitor, impedance Z2 is a resistor.

(c) Impedance Z1 is a resistor, impedance Z2 is an inductor.

(d) Impedance Z1 is an inductor, impedance Z2 is a resistor.

(e) Both impedances Z1 and Z2 are capacitors.

(f) Both impedances Z1 and Z2 are inductors.

(g) Impedance Z1 consists in a resistor and a capacitor in series, impedance
Z2 is a resistor.

(h) Impedance Z1 consists in a resistor and a capacitor in parallel, impedance
Z2 is a resistor.

(i) Impedance Z1 is a resistor, impedance Z2 consists in a resistor and
a capacitor in series.

(j) Impedance Z1 is a resistor, impedance Z2 consists in a resistor and
a capacitor in parallel.

(k) Both impedances Z1 and Z2 consist in a resistor and a capacitor in
series.

(l) Both impedances Z1 and Z2 consist in a resistor and a capacitor in
parallel.

(m) Impedance Z1 consists in a resistor and a capacitor in series, impedance
Z2 consists in a resistor and a capacitor in parallel.

(n) Impedance Z1 consists in a resistor and a capacitor in parallel, impedance
Z2 consists in a resistor and a capacitor in series.

(o) Impedance Z1 consists in a resistor and an inductor in series, impedance
Z2 is a resistor.

(p) Impedance Z1 consists in a resistor and an inductor in parallel,
impedance Z2 is a resistor.

(q) Impedance Z1 is a resistor, impedance Z2 consists in a resistor and
an inductor in series.

(r) Impedance Z1 is a resistor, impedance Z2 consists in a resistor and
an inductor in parallel.

(s) Both impedances Z1 and Z2 consist in a resistor and an inductor in
series.

(t) Both impedances Z1 and Z2 consist in a resistor and an inductor in
parallel.

(u) Impedance Z1 consists in a resistor and an inductor in series, impedance
Z2 consists in a resistor and an inductor in parallel.

(v) Impedance Z1 consists in a resistor and an inductor in parallel,
impedance Z2 consists in a resistor and an inductor in series.
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Figure 5.26: Circuit of Exercise 6.

6. Find the transfer function of the circuit in Figure 5.26. Assume that all
resistors are equal.

7. How could you perform operation Vo = V1 − V2 using two OpAmps and
without resorting to the subtractor in Figure 5.21?

8. Design a circuit to perform the operation Vo = V1 + V2 − V3 + 2V4 − 3V5.
Use only one OpAmp.

9. Design a circuit to perform the operation Vo = 10(V1 + V2 + 1
2V3). Use

two OpAmps.

10. Modify the subtractor in Figure 5.21 so as to give:

(a) Vo = V1 − 1
3V2

(b) Vo = 5(V1 − V2)

11. Suppose you are using an OpAmp with power supply V S± = ±20 V as
comparator. UseMatlab to plot the expected output Vo for 0 s≤ t ≤ 10 s
and the following inputs:

(a) V + = sin(tπ) V and V − = 5 V

(b) V + = 5 V and V − = sin(tπ) V

(c) V + = 10 sin(tπ) V and V − = 5 V

(d) V + = 5 V and V − = 10 sin(tπ) V
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Chapter 6

Modelling �uidic systems

Suppose a solid held above the surface of a liquid and partially im-
mersed: a portion of the liquid is displaced, and the level of the
liquid rises. But, by this rise of level, a little bit more of the solid is
of course immersed, and so there is a new displacement of a second
portion of the liquid, and a consequent rise of level. Again, this sec-
ond rise of level causes a yet further immersion, and by consequence
another displacement of liquid and another rise. It is self-evident
that this process must continue till the entire solid is immersed,
and that the liquid will then begin to immerse whatever holds the
solid, which, being connected with it, must for the time be consid-
ered a part of it. If you hold a stick, six feet long, with its end in
a tumbler of water, and wait long enough, you must eventually be
immersed. The question as to the source from which the water is
supplied�which belongs to a high branch of mathematics, and is
therefore beyond our present scope�does not apply to the sea. Let
us therefore take the familiar instance of a man standing at the edge
of the sea, at ebb-tide, with a solid in his hand, which he partially
immerses: he remains steadfast and unmoved, and we all know that
he must be drowned.

Lewis Carroll (1832 � �1898), A tangled tale (1885), Knot IX

In this chapter we are concerned with �uid �ow in pipes (not with �uid Pipe �ow
�ow with a free surface). Fluidic systems can be accurately modelled using the
Navier-Stokes equations, which you learn in a di�erent course. Fortunately, in
many cases of �uid �ow in pipes it is possible to use simpli�ed equations as
follows.

6.1 Energy, e�ort and �ow

Energy E is given by the integral over distance x of the force F exerted by the
�uid:

E =

∫ x

0

F dx (6.1)

The force is equal to the product of the pressure p and the cross-sectional area
A, so

F = pA⇒ E =

∫ x

0

pAdx (6.2)

The volume �ow rate (or volumetric �ow rate) Q is the derivative of the Volume �ow rate
volume V = Ax, given by

Q = A
dx

dt
(6.3)

where we assume a constant A. With some abuse of notation, we can write
A = Q dt

dx and replace this in (6.2) to rewrite the integral in (6.1) as

E =

∫ t

0

pQdt (6.4)

79
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Table 6.1: E�ort, �ow, accumulators and dissipators in �uidic systems
Fluidic system SI

e�ort e pressure P Pa
�ow f volume �ow rate Q m3/s

e�ort accumulator �uidic inductance with inertance L kgm−4

accumulated e�ort ea =
∫
edt �uidic moment Γ =

∫
p dt Pa s

relation between accumulated e�ort and �ow ea = ϕ(f) �uidic moment Γ = LQ
accumulated energy Ee =

∫
ea df kinetic energy of the �ow Ee = 1

2LQ
2 J

�ow accumulator reservoir with capacitance C F
accumulated �ow fa =

∫
f dt volume V =

∫
Qdt m3

relation between accumulated �ow and e�ort fa = ϕ(e) volume V = Cp
accumulated energy Ef =

∫
fa de potential energy of the �ow Ef = 1

2Cp
2 J

dissipator �uidic resistance R kg s−1 m−4

relation between e�ort and �ow e = ϕ(f) p = RQ
dissipated energy Ed =

∫
f de Ed = 1

2RQ
2 J

So pressure p and volume �ow rate Q can be used as e�ort and �ow. By an
understandable universal convention, Q is always considered as the �ow, and p
as the e�ort.

Table 6.1 sums up the passing information and relations. The next section
presents the basic components mentioned in that Table.

6.2 Basic components of a �uidic system

The basic components of a �uidic system are the following:

1. A reservoir or tank, which may either have a free surface (see Figure 6.1)Reservoir
Tank or not. Tanks of the �rst case are often used with liquids; closed tanks

are the only option when the �uid is a gas, since the gas might otherwise
escape, even if its density is higher than that of the air.

In the case of a tank with a free surface, there must be a pipe at theOpen tank
bottom (otherwise the tank could not be emptied). The pressure p at
that point, as you know, is

p = ρgh (6.5)

where ρ is the �uid density, g is the acceleration of gravity, and h is the
height of the �uid in the tank. But the volume of �uid in the tank is given
by V = Ah, and so, replacing h = V

A in (6.5) and solving in order to V ,Capacitance

V = p
A

ρg︸︷︷︸
capacitance C

(6.6)

In the case of reservoirs without a free surface, it can also be shown thatPressurised tank
V = pC, where the value of capacitance C will depend on whether the �uid
is is a liquid, a gas undergoing an isothermal compression or expansion,
or a gas undergoing an adiabatic compression or expansion. We need not
worry with that, as long as the value of C is known.

2. A �uidic inductance. This is in fact one of the two phenomena thatFluidic inductance
take place in a pipe. Its model is an application of Newton's second law
(4.1) to the �uid contained in a length ` of pipe (see Figure 6.2):

Ap︸︷︷︸
force

= ρA`︸︷︷︸
mass

d2x

dt2
(6.7)

The force is the product of the cross-sectional area and the pressure (or
rather the di�erence of pressures at the two extremities of the �uid sep-
arated by length `). Integrating both sides, and introducing the �uidic
moment Γ =

∫
p dt,

Γ = ρ`
dx

dt
(6.8)
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Figure 6.1: A water reservoir at the Évora train station. (Source: Wikimedia.)

Figure 6.2: A pipe with cross-sectional area A.

From (6.3) we know that dx
dt = Q

A , so

Γ =
ρ`

A︸︷︷︸
inertance L

Q (6.9)

3. A pressure drop. This is the other phenomena taking place in any pipe, Pressure drop
due to the resistance of viscous forces both between the �uid and the
wall of the pipe and between �uid particles themselves. In another course
you learn about the di�erence between laminar �ow (i.e. a situation in Laminar �ow
which �uid particles move essentially in the direction of the �ow only)
and turbulent �ow (i.e. a situation in which �uid particles move in a far Turbulent �ow
more chaotic manner).

Here it su�ces to notice that in laminar �ow theHagen-Poiseuille equa- Hagen-Poiseuille equation
for laminar �owtion applies:

p =
8µ`

πr4︸︷︷︸ Q (6.10)

�uidic resistance R

Here p is the pressure drop over length ` of the pipe, µ is the dynamic
viscosity, and r is the pipe radius. (If the cross-section of the pipe is not

circular, then r =
√

A
r .) This expression was �rst determined experimen-

tally, and then proved from the Navier-Stokes equations; all that we need
to worry about is the value of the �uidic resistance.

The pressure drop is always higher for turbulent �ow than for laminar
�ow, and the relation between p and Q is no longer linear. However, it
may be linearised around a convenient point, so as to �nd an approximate
value of resistance R = p

Q valid in some range of values of these variables.
(See Figure 4.3 again.)

The pressure also drops when the �ow crosses valves, bends (or shouldered
�ttings), ori�ces, diameter reducers, etc.. Model p = RQ is usually a good
�t for those situations as well.

Remark 6.1. Pipes have both inertance and resistance. Of course, it may be
that one of the two is neglectable when compared to the other; but in reality
both are present.
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Figure 6.3: System of Example 6.1.

Remark 6.2. The impedances of these components are as follows:Fluidic impedances

P (s)

Q(s)
=

1

Cs
(6.11)

P (s)

Q(s)
= Ls (6.12)

P (s)

Q(s)
= R (6.13)

Pipe �ow can be modelled putting together the equations describing these
components with the conservation of mass.

Example 6.1. Consider the system in Figure 6.3, supplied with water by a
pump providing a pressure p, that �ows through a long pipe with inertance L
and neglectable resistance, and either �lls a tank with capacitance C or leaves
the system through a valve with resistance R. We want to know the pressure
below the tank pt.

Let q(t) be the volume �ow rate through the long pipe, that is then divided
into the �ow feeding the tank qt(t) and the �ow through the valve qv(t). Using
the impedances, we get

P (s)−Pt(s)
Q(s) = Ls

Q(s) = Qt(s) +Qv(s)
Pt(s)
Qt(s)

= 1
Cs

Pt(s)
Qv(s) = R

⇒


P (s)− Pt(s) = LsPt(s)

(
1
R + Cs

)
Q(s) = Pt(s)

(
1
R + Cs

)
Qt(s) = Pt(s)Cs

Qv(s) = 1
RPt(s)

(6.14)

The �rst equation then gives the desired answer:

P (s) = Pt(s)

(
1 +

L

R
s+ LCs2

)
⇔ Pt(s)

P (s)
=

1

1 + L
Rs+ LCs2

(6.15)

Remark 6.3. Notice that (6.15) is similar to the model of a mass�spring�
damper system (4.9) or the model of an RLC system (5.24).

Remark 6.4. Liquids can be presumed to be incompressible, so ρ is constant
and independent from p. Thus (6.5) shows that there is a one-to-one relation
between p and h, where h is the hydraulic head. So, when the �uid is a liquid,Hydraulic head
p is often replaced by ρgh. To do this, of course, the density of the liquid used
in the system must be �xed in advance; the most usual cases are water, brine,
and crude oil.

Model (6.9) of a �uidic inductance tells us that
∫
p dt = Γ = LQ; applyingUsing the head instead of

the pressure the Laplace transform, this becomes
Fluidic inductance p

s
= LQ⇔ ρgh

s
= LQ⇔ h =

L

ρg
sQ (6.16)

Here, L∗ = L
ρg is the inertance relating hydraulic head and �ow; L is the in-

ertance relating pressure and �ow. Notice that the SI units of L are kgm−4;
those of L∗ are s2 m−2.

Likewise, model (6.10) of �uidic resistance tells us that p = RQ; soFluidic resistance

ρgh = RQ⇔ h =
R

ρg
Q (6.17)

Here, R∗ = R
ρg is the resistance relating hydraulic head and �ow; R is the resis-

tance relating pressure and �ow. Notice that the SI units of R are kg s−1 m−4;
those of R∗ are sm−2.
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Figure 6.4: System of Example 6.2.

Example 6.2. Consider the system in Figure 6.4, with two water reservoirs
fed by a pump that delivers a �ow q, and connected by a pipe with neglectable
inertance and resistance R. We have

q(t) = q1(t) + q2(t)

q1(t) = A1ḣ1(t)

q2(t) = A2ḣ2(t)
h2(t)−h1(t)

R = q1(t)

⇒


Q(s) = A1H1(s)s+A2H2(s)s

Q1(s) = A1H1(s)s

Q2(s) = A2H2(s)s

H2(s)−H1(s) = RA1H1(s)s

(6.18)

Thus{
Q(s) = A1H1(s)s+A2H1(s)(RA1s+ 1)s

H2(s) = H1(s)(RA1s+ 1)
⇔

{
Q(s) = H1(s)(RA1A2s

2 +A1s+A2s)

H2(s) = H1(s)(RA1s+ 1)
⇔

H1(s)

Q(s)
=

1

RA1A2s2 + (A1 +A2)s
H2(s)

Q(s)
=

RA1s+ 1

RA1A2s2 + (A1 +A2)s

(6.19)

Remark 6.5. When modelling pipe �ows, pay special attention to non-linearities.
All pipes have some maximum value that the �ow can take. So in a pipe like
that in Figure 6.4 we have −Qmax ≤ Q ≤ Qmax. But in some systems pipes
feed tanks from above: see for instance Figure 6.8 below, corresponding to Ex-
ercise 2. In that case, 0 ≤ Q3 ≤ Q3 max. In other words, the �ow can �ll up the
tank below, but it cannot empty it.

Neglecting non-linearities leads to absurd models and ludicrous conclusions,
such as those mocked by mathematician Charles Dogdson in the quote at the
beginning of this chapter.

6.3 Other components

Among the several other components that may be found in pipe �ow systems, the
hydraulic press deserves a passing mention. Its principle is shown in Figure 6.5.
Because of (6.2), a similar pressure on both sides means that

F1

A1
=
F2

A2
⇔ F2 = F1

A2

A1
(6.20)

where F1 and F2 are the forces exerted on the two pistons, with areas A1 and
A2. This principle is used in presses such as that in Figure 6.6.

Glossary

Había en el puerto gran multitud de buques de todas clases y tamaños,
resplandeciendo entre ellos, llamando la atención y hasta excitando
la admiración y la envidia de los españoles, un enorme y hermosísimo
navío, construido con tal perfección, lujo y elegancia, que era una
maravilla.
Los españoles, naturalmente, tuvieron la curiosidad de saber quién
era el dueño del navío y encargaron al secretario que, sirviendo de
intérprete, se lo preguntase a algunos alemanes que habían venido a



84 CHAPTER 6. MODELLING FLUIDIC SYSTEMS

Figure 6.5: Principle of the hydraulic press (source: Wikimedia).

Figure 6.6: Hydraulic press (source: Wikimedia).
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Figure 6.7: System of Exercise 2.

bordo.
Lo preguntó el secretario y dijo luego a sus paisanos y camaradas:
� El buque es propiedad de un poderoso comerciante y naviero de
esta ciudad en que estamos, el cual se llama el señor Nichtverstehen.

Juan Valera (1824 � �1905), Cuentos y chascarrillos andaluces (1896), El
señor Nichtverstehen

brine água salgada (lit. salmoura)
�uidic inductance indutância �uídica
�uidic moment momento �uídico
�uidic resistance resistência �uídica
hydraulic head altura de coluna de �uido (de água, de água salgada, de crude)
hydraulic press prensa hidráulica
inertance indutância �uídica
pressure pressão
pressure drop perda de carga
reservoir reservatório, tanque
tank reservatório, tanque
volume �ow rate caudal volumétrico
volumetric �ow rate caudal volumétrico

Exercises

1. Consider the system from Example 6.1, shown in Figure 6.3. Find its
mechanical equivalent.

2. Consider the system in Figure 6.7, fed by a pump delivering volume �ow
rate q1(t). Tanks 1 and 2 are connected by a pipe with neglectable iner-
tance and �uidic resistance R1; tanks 2 and 3 are emptied through valves
with resistances R2 and R3 respectively. Find transfer functions H1(s)

Q1(s) ,
H2(s)
Q1(s) and H3(s)

Q1(s) .

3. Consider the system in Figure 6.8, fed by a pump delivering volume �ow
rate q1(t). Find transfer functions H1(s)

Q1(s) ,
H2(s)
Q1(s) ,

H3(s)
Q1(s) and Q5(s)

Q1(s) .
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Figure 6.8: System of Exercise 3.



Chapter 7

Modelling thermal systems

� Mais qu'entends-tu par le vide ? demanda Michel, est-ce le vide
absolu ?

� C'est le vide absolument privé d'air.

� Et dans lequel l'air n'est remplacé par rien ?

� Si. Par l'éther, répondit Barbicane.

� Ah ! Et qu'est-ce que l'éther ?

� L'éther, mon ami, c'est une agglomération d'atomes impondéra-
bles, qui, relativement à leurs dimensions, disent les ouvrages de
physique moléculaire, sont aussi éloignés les uns des autres que
les corps célestes le sont dans l'espace. Leur distance, cependant,
est inférieure à un trois-millionièmes de millimètre. Ce sont ces
atomes qui, par leur mouvement vibratoire, produisent la lumière
et la chaleur, en faisant par seconde quatre cent trente trillions
d'ondulations, n'ayant que quatre à six dix-millièmes de millimètre
d'amplitude.

Jules Verne (1828 � �1905), Autour de la Lune (1869), 5

This chapter concerns thermal systems. You will study heat transfer in
depth in another course, but simple cases can be modelled with a formulation
similar to that employed to the systems in the previous chapters.

7.1 Energy, e�ort and �ow

There is, however, an important di�erence. By convention:

� temperature T is the e�ort variable; Temperature

� heat �ow rate q is the �ow variable. Heat �ow rate

However, heat is energy; it is in fact kinetic energy of molecules and atoms. Heat is energy
(As you may know, an omnipresent æther was postulated for some centuries
to explain the propagation of heat and especially of light, but this hypothesis,
of which you may �nd a popular explanation at the beginning of this chapter,
has been abandoned for about one century, having been by then contested for
decades because of experimental results with which it could not reconciled.)
Consequently, it is not true in thermal systems that energy is the integral of the
product of e�ort and �ow � see (4.30) �, as the variable used for �ow is an
energy rate itself. And, as a result, the parallels with the other types of systems
we have been studying are not perfect.

7.2 Basic components of a thermal system

There is only one type of accumulator, that of heat, i.e. of �ow: Heat accumulator

H(t) = mCp(T (t)− T (0)) (7.1)

87
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Here H(t) =
∫ t

0
q(t) dt is the accumulated heat in mass m, which has a speci�c

heat Cp and is heated from temperature T (0) to temperature T (t). Speci�c heat
Dissipation can take place in three di�erent ways:

� In conduction there is no macroscopic movement of the solid or �uidConduction
that undergoes the process. Heat is transmitted, or rather di�used, at
the molecular and atomic levels. The heat �ow, which we assume to be
positive in the sense of increasing values of position x, is

q(t) = −kA∂T (x, t)

∂x
(7.2)

where A is the cross-sectional area and k is the thermal conductivity.
Assuming that the temperature distribution over x is linear over a distance
L, (7.2) becomes

q(t) =
kA

L︸︷︷︸ (T (0, t)− T (L, t)) (7.3)

conduction heat transfer coe�cient hc

Notice that the minus sign is gone because ∂T (x,t)
∂x = limL→0

T (L,t)−T (0,t)
L .

� In convection there is macroscopic movement of the �uid where heatConvection
transfer is taking place. In solids matter cannot move and this way and
consequently there can be no convection. If the �uid movement is due
solely to the temperature gradients, this is called free convection; ifFree convection
�uid movement is due at least in part to some other reason (like �uid �ow
in pipes, or a blower), this is called forced convection. In any case,Forced convection
the heat �ow, again assumed positive in the sense of increasing values of
position x, is

q(t) = hA︸︷︷︸ (T (0, t)− T (L, t)) (7.4)

convection heat transfer coe�cient hh

Here h is the convection heat transfer coe�cient, and A is the cross-
sectional area over which heat transfer takes place.

� In radiation heat is propagated by the emission of photons. It is the onlyRadiation
heat transmission that can take place in a vacuum. It is also the only one
corresponding to a non-linear law:

q(t) = CrA
(
T 4

1 − T 4
2

)
(7.5)

Here Cr is a proportionality constant that we need not delve into. This
law, of course, can be linearised around some point, and the result will be
approximately valid in a vicinity thereof; for instance:

q(t) = CrA (T1 + T2)
(
T 2

1 + T 2
2

)︸ ︷︷ ︸ (T1 − T2) (7.6)

radiation heat transfer coe�cient hr

Notice that all cases � conduction, convection, and linearised radiation �
can be reduced to the following form:

∆T = Rq (7.7)

Here R is thermal resistance and ∆T is the temperature di�erence.Thermal resistance
The relations are summed up in Table 7.1. The corresponding impedances

are

∆T (s)

Q(s)
=

1

mCps
(7.8)

∆T (s)

Q(s)
= R (7.9)
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Table 7.1: E�ort, �ow, accumulators and dissipators in thermal systems
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Figure 7.1: A thermometer immersed in a �uid.

Figure 7.2: Electrical circuit equivalent to the thermal system in Figure 7.1.

t

T
f

T
t
(0)

t

T
f

T
t
(0)

Figure 7.3: Evolution of temperature Tt(t) in the system Figure 7.1 when Tt(t) <
Tf (left) and when Tt(t) > Tf (right).
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Example 7.1. The reading of a mercury or alcohol thermometer at time t = 0
is Tt(0). At that instant, it is immersed in a �uid at temperature Tf (see
Figure 7.1). Let the thermal resistance of the glass be R, and the speci�c heat
of mass m of mercury or alcohol be Cp. How does Tt(t) evolve?

This can be seen using an equivalent electrical circuit. Both temperatures
become tensions; the thermal resistance of the glass becomes a resistance R and
the heat accumulator becomes a capacitor C. So the equivalent circuit is the
one in Figure 7.2. The corresponding transfer function � remember (5.16) �
is

Vo(s)

Vi(s)
=

1

1 +RCs
(7.10)

Temperature Tf is constant and is applied from t = 0 on, so the Laplace
transform of the input is

L [(Tf − Tt(0)) H(t)] =
Tf
s

(7.11)

Notice that the amplitude of the temperature change is Tf − Tt(0); since the
Heaviside function begins at 0 and ends in 1, we must multiply it by Tf − Tt(0)
and take into account the di�erent initial value also when calculating the output
we want to know:

Tt(t)− Tt(0) = L −1

[
Tf
s

1

1 +RmCps

]
= TfL

−1

[
1

RmCp

s( 1
RmCp

+ s)

]
= Tf

(
1− e−

1
RmCp

t
)

(7.12)

We conclude that temperature Tt(t) begins at Tt(0), ends at Tf , and changes
exponentially with time. This is illustrated in Figure 7.3.

Glossary

Aber in Phantásien waren fast alle Wesen, auch die Tiere, min-
destens zweier Sprachen mächtig: Erstens der eigenen, die sie nur
mit ihresgleichen redeten und die kein Auÿenstehender verstand, und
zweitens einer allgemeinen, die man Hochphantäsisch oder auch die
Groÿe Sprache nannte. Sie beherrschte jeder, wenngleich manche sie
in etwas eigentümlicher Weise benützten.

Michael Ende (1929 � �1995), Die unendliche Geschichte von A biz Z (1979),
2

conduction condução
convection convecção
forced convection convecção forçada
free convection convecção livre
heat accumulator acumulador de calor
heat �ow rate �uxo de calor
radiation radiação
speci�c heat calor especí�co
thermal resistance resistência térmica
temperature temperatura

Exercises

1. Consider the Wave Energy Converter of Figure 3.2, when submerged in
sea water at constant temperature Tsea. Assume that the air inside the
device has a homogeneous temperature Tair(t) and is heated by the de-
vice's Power Take-O� (PTO) mechanism, at temperature TPTO(s), that
delivers an electrical power P (t) to the electrical grid with an e�ciency
η. (See Figure 7.4.) Heat transfer from the PTO to the air inside the
device takes place by convection with a constant coe�cient h and for area
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Figure 7.4: The Wave Energy Converter of Exercise 1.

A; neglect the thermal capacity of the metallic WEC itself; consider that
Cair and CPTO are the thermal capacities of the air and the PTO, that
have masses mair and mPTO. Let T (t) = Tair(t)−TPTO(t). Find transfer
function T (s)

P (s) .

2. Explain which of the electrical systems in Figure 5.23 have a thermal
equivalent and which do not, and why.



Chapter 8

Modelling interconnected and

non-linear systems

�You are right in thinking that he is under the British government.
You would also be right in a sense if you said that occasionally he
is the British government.�

�My dear Holmes!�

�I thought I might surprise you. Mycroft draws four hundred and
�fty pounds a year, remains a subordinate, has no ambitions of any
kind, will receive neither honour nor title, but remains the most
indispensable man in the country.�

�But how?�

�Well, his position is unique. He has made it for himself. There
has never been anything like it before, nor will be again. He has
the tidiest and most orderly brain, with the greatest capacity for
storing facts, of any man living. The same great powers which I
have turned to the detection of crime he has used for this particular
business. The conclusions of every department are passed to him,
and he is the central exchange, the clearinghouse, which makes out
the balance. All other men are specialists, but his specialism is
omniscience. We will suppose that a minister needs information as
to a point which involves the Navy, India, Canada and the bimetallic
question; he could get his separate advices from various departments
upon each, but only Mycroft can focus them all, and say o�hand how
each factor would a�ect the other.�

Sir Arthur Conan Doyle (1859 � �1930), His last bow (1917), The
Adventure of the Bruce�Partington Plans (1908)

This chapter presents an overview of the modelling process.

8.1 Energy, e�ort and �ow

Table 8.1 presents the impedances of all the �ow accumulators, e�ort accumu- Impedances
lators, and energy dissipators, summing up Tables 4.1, 5.1, 6.1, and 7.1, and
showing clearly the existing parallelism between systems of di�erent types.

This is the place to notice that e�ort variables are measured in relation to
an arbitrary value that serves as zero:

� In Table 8.1 this is explicit for thermal systems, since temperature is
denoted as ∆T , as what matters is the temperature di�erence.

� In the case of electrical systems, what matters is always the electrical
tension at the extremities of the component.

� In the case of pipe �ow, resistance and inductance depend on the pressure
di�erence at the extremities. Reservoirs with a free surface also depend
on a pressure di�erence, between the pressure of the liquid at the bottom
and the atmospheric pressure.

93
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Table 8.1: E�ort, �ow, accumulators and dissipators in di�erent types systems
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� In the case of mechanical systems, the energy dissipated by a damper
depends on the relative velocities of its extremities, and the energy accu-
mulated by a spring depends on the relative position of its extremities.

Notice that there may be values of these variables that we can think of as ab-
solute zeros, such as temperature −273.15 ◦C = 0 K, pressure 0 Pa of complete
vacuum, or position and velocity measured in an inertial frame of reference.
Still, it is often far more practical to use other values, such as atmospheric Dealing with initial condi-

tionspressure, room temperature, or resting position, as zero.

Example 8.1. A 300 kg dirigible balloon �ies at constant altitude z = 200 m,
because its impulsion cancels its weight. It can move vertically thanks to two
electrical propulsors, each of which provides a force given by Fp(t) = γU(t),
where U(t) is the tension applied (control input) and the gain is γ = 15 N/V
(the force is upwards when U > 0). When the balloon moves, there is a viscous
drag force with coe�cient c = 30 Ns/m. How does the altitude change with
time when a 20 V tension is applied during 10 s?

A balance of forces shows that

300z̈(t)︸ ︷︷ ︸
mass×acceleration

= 2× 15U(t)︸ ︷︷ ︸
propulsors

−30ż(t)︸ ︷︷ ︸
drag force

(8.1)

We know that initial conditions are z(0) = 200 and ż(0) = 0, so we could be
tempted to apply the Laplace transform as

300
(
Z(s)s2 − 200s

)
= 30U(s)− 30 (Z(s)s− 200) (8.2)

Rearranging terms,

(300s2 + 30s)Z(s) = 30U(s) + 6× 104s+ 6× 103 (8.3)

⇔ Z(s) =
1

(10s+ 1)s
U(s) +

2× 103s

(10s+ 1)s
+

2× 102

(10s+ 1)s
=

1

(10s+ 1)s
U(s) +

2× 102

s

Notice that it is impossible to �nd a transfer function Z(s)
U(s) relating the (Laplace No transfer function if ini-

tial conditions are not zerotransforms of) the input and the output. To obtain a transfer function, make
z∗(t) = z(t)− (0), and then

300Z∗(s) = 30U(s)− 30Z∗(s)s⇔ Z∗(s)

U(s)
=

1

(10s+ 1)s
(8.4)

The result will of course be the same, but this allows us to use many results
established for transfer functions, such as those in Chapters 9 and 11. It also
allows us to use Matlab to �nd the answer as follows:

>> G = tf(1, [10 1 0]);

>> Ts = 0.001; t = 0 : Ts : 50;

>> U = zeros(size(t)); U(1:10/Ts) = 20*ones(1, 10/Ts);

>> z = lsim(G, U, t); z = z + 200;

>> figure, plot(t,Z)

>> xlabel('t [s]'), ylabel('z [m]')

Notice how we had to add 200 to the result (or else we would have to bear in
mind that the plot would show oscillations around 200 m). See Figure 8.1.

Remark 8.1. Remember that we already did something similar in Example 7.1.

8.2 System interconnection

Transfer functions are of great aid when modelling several interconnected sys-
tems, of the same or of di�erent types.

Example 8.2. Consider the system in Figure 8.2. The force exerted by the
inductance in the handle that undergoes displacement x2 is given by F2(t) =

αi(t), where i(t) is the current in the inductance. Find X1(s)
Vi(s)

.
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Figure 8.1: Results of Example 8.1.

Figure 8.2: System of Example 8.2.

We can of course write all the equations, and obtain the desired result with
successive replacements. Transfer functions allow us to model each system sep-
arately, making such replacements easier.

As to the electrical system, remembering (5.48),

R+ Ls =
n2

n1
Vi(s)

I(s)
⇔ I(s)

Vi(s)
=

n2

n1

R+ Ls
(8.5)

As to the lever, and letting F1 be the force exerted on mass m1,

F1(t)a = F2(t)b⇔ F1(s)

F2(s)
=
b

a
(8.6)

As to the mass,

F1(t)−Kx1(t) = m1ẍ1(t)⇔ X1(s)

F1(s)
=

1

m1s2 +K
(8.7)

Finally,

X1(s)

Vi(s)
=
X1(s)

F1(s)

F1(s)

F2(s)

F2(s)

I(s)

I(s)

Vi(s)
=

b
aα

n2

n1

(m1s2 +K)(R+ Ls)
(8.8)

This way, we are also able to study each transfer function separately, analysing
its in�uence in the �nal result.

Bond graphs are another tool that can be used to assist the modellingBond graphs
of interconnected systems. They consist in a graphical representation of what
happens with energy in a system, based upon the concepts of e�ort and �ux.
These are written above and below arrows (of which, by convention, only half the
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Figure 8.3: Two bond graphs of systems where elements have the same �ux and
there is an e�ort junction. Top: electrical circuit. Notice that V1 = (V1 − V2) +
(V2 − V3) + V3. Bottom: �uidic system. Since the pipe has both resistance and
inductance, the pressure change from the pump delivering a constant pressure
P to the bottom of the reservoir where the hydraulic head is h and the pressure
is ρgh is split into two, as if the �uid would �rst go through an inductance
without resistance and then through a resistance without inductance, so that
P = (P − P1) + (P1 − ρgh) + ρgh.

tip is drawn). Figure 8.3 shows two examples of bond graphs in which several
elements have the same �ux and di�erent e�orts; the corresponding junction
of the several e�orts in one system is by convention denoted by number 1.
Figure 8.4 shows two examples of bond graphs in which several elements have
the same e�ort and di�erent �ows; the corresponding junction of the several
�ows in one system is by convention denoted by number 0. Also notice how
sources of energy are denoted by SE. Finally, the product of what is above and
below each arrow (the e�ort and the �ow) will be that element's instantaneous
power, showing how energy is distributed over the system. We will not study
bond graphs more complicated than these, nor further explore the ability of this
graphical tool to assist in the modelling.

8.3 Dealing with non-linearities

Non-linearities can be classi�ed as hard or soft, as they are respectively more
or less severe. Though no uniform de�nition is universally accepted, we will say
that

� a soft non-linearity is one that is continuous and di�erentiable, Soft non-linearity

� a hard non-linearity is linear almost everywhere, but is not di�eren- Hard non-linearity
tiable, or even not continuous.

Figure 8.5 presents two examples.
Non-linearities are very common. They may be part of the design of a

system, even of a control system. In Chapter 28 we will learn how to deal with
non-linearities in control systems. What is important here is to notice that
soft non-linearities can be approximated by a �rst order approximation around
the operating point. Estimating how large the approximation error may be is
important; we will do that in Chapters 12�14.

Example 8.3. In Figure 8.6, mass m = 10 kg rests on a non-linear spring and
is pulled by force F applied simultaneously on a linear spring with k = 103 N/m
and on a linear damper with b = 500 Ns/m. The non-linear force of the spring
is given by Fk = 5000 − 500

∆y+0.1 (SI), where the ∆y is the variation of length
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Figure 8.4: Two bond graphs of systems where elements have the same e�ort
and there is a �ux junction. Top: electrical circuit. Notice that I = I1 +I2 +I3.
Bottom: mechanical system. Notice that F − Kx − Bẋ = Mẍ ⇔ F = Kx +
Bẋ+Mẍ.
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mations.
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Figure 8.6: System of Example 8.3.
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Figure 8.7: Non-linear force of Example 8.3.

around the uncompressed value. We want a linear model for this system around
nominal conditions of rest when F = 0.

Figure 8.7 shows the non-linear force. When F = 0, the non-linear spring is
compressed by the weight of m, which is −9.8 × 10 N (notice the minus sign,
since the weight is downwards and the positive sign of y corresponds to an
upwards direction), corresponding to

−98 = 5000− 500

∆y + 0.1
⇔ ∆y = −1.9× 10−3 m (8.9)

The linearised law is

Fk ≈
dFk

d(∆y)

∣∣∣∣
∆y=−1.9×10−3 m

y =
500

(∆y + 0.1)2

∣∣∣∣
∆y=−1.9×10−3 m

y = 5.2× 104y (SI)

(8.10)

where y = ∆y + 1.9× 10−3 m, or, if you prefer, the variation of length around
∆y = −1.9× 10−3 m. Furthermore, the linear components are assumed to have
no mass, and hence transmit force F to mass m. Thus

mÿ = F − 5.2× 104 (SI) (8.11)

It should be stressed that linear model (8.11) is only an approximation.
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Figure 8.8: System of Exercise 1.

Glossary

Desejoso ainda o Fucarãdono, como mais douto �q os outros, de leuar
a sua auante cõ preg�utas �q embaraçass�e o padre, lhe veyo arguindo
de nouo �q por�q razão punha nomes torpes ao Criador de todas as
cousas, & aos Sãtos �q no ceo assistião em louuor seu, infamãdoo de
m�etiroso, pois elle, como todos criaõ, era Deos de toda a verdade ?
& para �q se entenda dõde naceo a este dizer isto, se ha de saber �q
na lingoa do Iapaõ se chama a m�etira diusa, & por�q o padre quãdo
pregaua dezia �q a�qella ley �q elle vinha den�uciar era a verdadeira ley
de Deos, o qual nome elles pela grossaria da sua lingoa não podião
pron�uciar taõ claro como nos & por dizer�e Deos dezião diùs, daquy
veyo que estes seruos do diabo tomaraõ motiuo de dizer�e aos seus
que o padre era demonio em carne �q vinha infamar a Deos põdo-lhe
nome de mentiroso: (. . . ) E porque tambem se saiba a razaõ porque
lhe este bonzo disse que punha nomes torpes aos santos, foy, porque
tinha o padre por custume quando acabaua de dizer missa rezar com
todos h�ua Ladaynha para rogar a N. Senhor pela augm�etação da fé
Catholica, & nesta ladainha dezia sempre, como nella se custuma,
Sancte Petre ora pro nobis, Sancte Paule ora pro nobis, & assi dos
mais Santos. E por�q tambem este vocablo santi na lingoa Iapoa
he torpe & infame, daquy veyo arguyr este ao padre �q punha maos
nomes aos Sãtos, (. . . ) & daly por diãte mãdou o padre �q se naõ
dissesse mais sancte, senaõ beate Petre, beate Paule, & assi aos outros
Santos, porque já dantes tinhaõ os bonzos todos perante el Rey feito
peçonha disto.

Fernão Mendes Pinto (1509? � �1583), Peregrinaçam (1614, posth.),
CCXIII

bond graph grafo de ligação
hard non-linearity não-linearidade severa
linearisation, linearization (US) linearização
soft non-linearity não-linearidade suave

Exercises

1. Draw the bond graph of the system in Figure 8.8.

2. Draw the bond graph of the balloon from Example 8.1.

3. The system in Figure 8.9 is fed by a water pump with a characteristic curve
given by P (t) = 105 − 2× 106Q(t), where P and Q are the pressure (Pa)
and the volumetric �ow (m3/s) provided.

The pipe has a 0.01 m2 cross section and a length of 50 m. Its �ow
resistance is neglectable; its inertance is not.

The tank has a free surface and 1 m2 cross-section.

The valve is non-linear and veri�es relation

Qv(t) = 0.3× 10−4N(t)
√
Pv(t) (8.12)
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Figure 8.9: System of Exercise 3.

where Qv is the �ow through the valve (m3/s), N is the opening of the
valve (dimensionless), and Pv is the pressure (Pa) at the entrance of the
valve, which is also the pressure at the bottom of the tank.

In nominal conditions, Pv = 8× 104 Pa and Qv = 0.01 m3/s.

(a) Show that the pipe's inertance is L = 5× 106 kgm−4.

(b) Show that in nominal conditions the height of water in the tank is
h̄ = 8.16 m.

(c) Show that the non-linear relation of the valve (8.12) can be linearised
as

Qv(t) = Qv(t) + 0.085
(
N(t)−N(t)

)
+ 6.25× 10−7

(
Pv(t)− Pv(t)

)
(8.13)

(d) Show that the system can be modelled by (8.13) together with
Pv(t)− Pv = ρg

(
h− h̄

)(
Q(t)− Q̄

)
−
(
Qv(t)−Qv

)
= A

d(h−h̄)
dt(

Pb(t)− Pb
)
−
(
Pv(t)− Pv

)
= L

d(Q(t)−Q̄)
dt

(8.14)

(e) Find transfer function ∆Pv(s)
∆N(s) , relating variations around nominal

conditions.

4. In Figure 8.10, the lever with inertia I oscillates around the horizontal
position (i.e. θ(t) = 0) and is moved by torque τm. Mass m moves verti-
cally, at distance d from the fulcrum of the lever, inside a cylinder with
two springs of constant k, �lled with incompressible oil. The pressure
di�erence ∆p(t) between the two chambers of the cylinder moves the oil
through �uidic resistance R. Thanks to oil lubrication, friction inside the
cylinder is neglectable.

(a) Write linearised equations for the dynamics of the system.

(b) Find transfer function Θ(s)
Tm(s) .

5. In Figure 8.11, the lever with inertia I is actuated by force F (t) and
supported on the other side by a spring and a damper. On the lever
there is a car with mass m, moving to sidewards due to gravity, without
friction. When F = 0 and the car is on the fulcrum (i.e. its position is
x = 0), the lever remains in the horizontal position. There is no friction
at the fulcrum.

(a) Write linearised equations for the dynamics of the system.

(b) Find transfer function X(s)
F (s) .

6. The lever in Figure 8.12, with neglectable mass, is moved by a torque τ
applied on the fulcrum, in the absence of which the lever is horizontal (i.e.
θ = 0). F is the force exerted on the fulcrum.

It is known that m1 = 1.5 kg, m2 = 2.0 kg, d1 = 0.6 kg, d2 = 0.4 m, and
b = 20 Ns/m. The spring obeys the non-linear law in Figure 8.12, where δ
is the length variation in mm (with δ > 0 corresponding to compression),
and Fm is the resulting force in N.
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Figure 8.10: System of Exercise 4.

Figure 8.11: System of Exercise 5.

Figure 8.12: System of Exercise 6.
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Figure 8.13: Non-linear law of the spring of Exercise 6.

Figure 8.14: System of Exercise 7.

(a) Show that, in nominal conditions, Fm = 1.63 N.

(b) Show from the plot in Figure 8.13 that the force of the spring can be
linearised as Fm = 1.63 + 3.26× 103x1.

(c) Write linearised equations for the dynamics of the system.

(d) Find transfer function F (s)
T (s) .

7. In Figure 8.14, the fresh water (ρ = 1000 kg/m3) tank in the left is big
enough to keep a constant liquid height h0 = 5 m, while the tank in the
right has a 10 m2 cross-section and a variable liquid height h1(t).

Flow qc(t) bleeds this tank and does not depend on pressure; �ow q1(t)
passes through a non-linear valve that veri�es

q1(t) = 0.15xv(t)
√

∆p(t) (SI) (8.15)

where ∆p(t) is the pressure di�erence on both sides of the valve and xv(t)
is mechanically actuated by h1(t) through a rigid lever with a = 0.4 m
and b = 4 m.

In nominal conditions, qc(t) = q1(t) = 0.2 m3/s and h1(t) = 3 m.

(a) Show that the model of the �ow through the valve (8.15) can be
linearised around nominal conditions as

q1(t) = 21xv(t) + 5.09× 10−6∆p (SI) (8.16)
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(b) Write linearised equations for the dynamics of the system.

(c) Find transfer function ∆H1(s)
Qc(s)

.
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To study and not think is a waste. To think and not study is dan-
gerous.

Confucius (c. 551 BC � �c. 479 BC), Analects (5th c. BC?), II 15 (transl. A.
Charles Muller, 2021)

In this part of the lecture notes:

Chapter 9 develops the very important notion of transfer function of a system through
the representation of interconnected systems as blocks, in so-called block
diagrams.

Chapter 10 is dedicated to the study of time and frequency responses in general.

Chapter 11 studies the time and frequency responses of di�erent systems.

Here is what you need to know beforehand to follow these chapters:

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4.
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Chapter 9

Transfer functions and block

diagrams

In this chapter we will show how transfer functions can be used together with
a graphic representation of system interconnection called block diagram. We
conclude using block diagrams as a tool for a short introduction to control.

9.1 More on transfer functions

Remember De�nition 4.1 about what is a transfer function of a SISO system
modelled by a di�erential equation: it is the ratio between the Laplace transform
of the output and the Laplace transform of the input, assuming initial conditions
equal to zero. Also remember that behind each transfer function there is a
di�erential equation, and that di�erential equations are models of real things. Transfer functions are dif-

ferential equationsUsing transfer functions, we can easily study the behaviour of a system
abstracting from its physical reality. This is the approach we will take from now
on. This said, notice that remembering the actual system that is being studied
can be useful to check if results are possible or not. Remember that models
approximate reality, not the other way round. Also remember Example 4.1
about the spring stretched to an impossible length (it breaks, of course), or
Remark 6.5 about pipes where the �ow cannot be negative. We would not have
found that just by looking at our models, which are linear.

Theorem 9.1. The transfer function of a SISO LTI continuous in time can be Ratio of polynomials in s
expressed as the ratio of two polynomials in s.

Proof. Let the input of the SISO system be u(t) and its output be y(t). Because
the system is LTI and continuous in time, it is modelled by a linear di�erential
equation:

a0y(t) + a1
dy(t)

dt
+ a2

d2y(t)

dt2
+ a3

d3y(t)

dt3
+ . . . = b0u(t) + b1

du(t)

dt
+ b2

d2u(t)

dt2
+ b3

d3u(t)

dt3
+ . . .

⇔
n∑
k=0

ak
dky(t)

dtk
=

m∑
k=0

bk
dku(t)

dtk
(9.1)

In the last expression, n and m are the highest derivative orders of the equa-
tion. Assuming zero initial conditions and applying the Laplace transform, this
becomes

a0Y (s) + a1Y (s)s+ a2Y (s)s2 + a3Y (s)s3 + . . . = b0U(s) + b1U(s)s+ b2U(s)s2 + b3U(s)s3 + . . .

⇔
n∑
k=0

akY (s)sk =

m∑
k=0

bkU(s)sk (9.2)

Rearranging terms,

Y (s)

U(s)
=

b0 + b1s+ b2s
2 + b3s

3 + . . .

a0 + a1s+ a2s2 + a3s3 + . . .
=

m∑
k=0

bks
k

n∑
k=0

aks
k

(9.3)
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Remark 9.1. Some authors change the order of the coe�cients, and instead of
(9.3) write

Y (s)

U(s)
=

m∑
k=0

bm−ks
k

n∑
k=0

an−ks
k

(9.4)

This is a mere detail of notation.

Remark 9.2. (9.3) corresponds to an in�nite number of representations of a
same transfer function. It su�ces to multiply both numerator and denominator
by a constant. But it is common to normalise coe�cients so that a0 = 1, orNormalising transfer func-

tion coe�cients an = 1, or b0 = 1.

Example 9.1. Consider the microprecision control setup test in Figure 3.9 from
Example 3.19. The transfer function from one of the actuators to the position
of the mass has been identi�ed as

G(s) =
9602

s2 + 4.27s+ 7627
(9.5)

This was normalised so that a2 = 1, n = 2. We could also normalise a0 or b0:

G(s) =
1.2589

131.11× 10−6s2 + 559.85× 10−6s+ 1

=
1

104.14× 10−6s2 + 444.70× 10−6s+ 0.7943
(9.6)

It is easy to �nd the di�erential equation from a transfer function. When theGetting the transfer func-
tion back transfer function is represented merely by a letter, meaning that it is a function

of s, as in (9.5) above, it still corresponds to the ratio of the Laplace transforms
of output and input.

Example 9.2. (9.5) can be rewritten as

Y (s)

U(s)
=

9602

s2 + 4.27s+ 7627
⇔ Y (s)(s2 + 4.27s+ 7627) = 9602U(s)

⇔Y (s)s2 + 4.27Y (s)s+ 7627Y (s) = 9602U(s) (9.7)

which is the Laplace transform of the di�erential equation governing the plant:

y′′(t) + 4.27y′(t) + 7627y(t) = 9602u(t) (9.8)

De�nition 9.1. A transfer function is proper if the order of the polynomialProper transfer function
in the numerator is equal to or less than the order of the polynomial in the
denominator.

A transfer function is strictly proper if the order of the polynomial in theStrictly proper transfer
function numerator is less than the order of the polynomial in the denominator.

In the notation of (9.3), the transfer function is proper if m ≤ n, and strictly
proper if m < n.

For reasons we shall address in Chapters 11 and 25, we will be working almost
always with proper transfer functions, and most of the times with strictly proper
transfer functions.

De�nition 9.2. The order of a transfer function is the highest order of theOrder of a transfer func-
tion polynomials in the numerator and the denominator. If the transfer function is

proper, its order is the order of the denominator.

Remark 9.3. The order of a transfer function is also the order of the di�erential
equation from which it was formed. In fact, sk corresponds to a derivative of
order k.

Remark 9.4. Notice that some transfer functions can be simpli�ed because
numerator and denominator have common factors. Eliminating them reduces
the order of the transfer function.
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Example 9.3. Here are examples of proper transfer functions of:

� Order 0

Ga(s) = 20 (9.9)

� Order 1

Gb(s) =
19

s+ 18
(9.10)

Gc(s) =
17s+ 16

s+ 15
(9.11)

Gd(s) =
14

s
(9.12)

Ge(s) =
13s+ 12

s
(9.13)

� Order 2

Gf (s) =
11

s2 + 10s+ 9
(9.14)

Gg(s) =
8s+ 7

s2 + 6s+ 5
(9.15)

Gh(s) =
4s2 + 3s+ 2

s2 + s− 1
(9.16)

Gi(s) =
s2 − 2s+ 1

s2
(9.17)

Gj(s) =
s2 − 3s− 4

s2 − 5s− 6
(9.18)

They have all been normalised so that the coe�cient of the highest order mono-
mial in the denominator is 1 (i.e. an = 1). Transfer functions Gb(s), Gd(s),
Gf (s), Gg(s), and Gi(s) are strictly proper; the other ones are not.

Gj(s) is of order 2 but can be simpli�ed and become of order 1:

Gj(s) =
s2 − 3s− 4

s2 − 5s− 6
=

(s− 4)(s+ 1)

(s− 6)(s+ 1)
=
s− 4

s− 6
(9.19)

Transfer functions are often put in the following form, that explicitly shows
the zeros of the transfer function (i.e. the zeros of the polynomial in the nu- Zeros
merator) and the poles of the transfer function (i.e. the zeros of the polynomial Poles
in the denominator):

Y (s)

U(s)
=
bm(s− z1)(s− z2)(s− z3) . . .

an(s− p1)(s− p2)(s− p3) . . .
=

bm

m∏
k=1

(s− zk)

an

n∑
k=0

(s− pk)

(9.20)

Here the zeros are zk, k = 1, 2, . . .m and the poles are pk, k = 1, 2, . . . n. Be-
cause both inputs and outputs are real, transfer function coe�cients are real,
and consequently the poles and zeros are either real or pairs of complex conju-
gates. (Remember Remark 2.6.) So in (9.20) it is usual to multiply such pairs,
presenting a second order term instead of two complex terms.

Example 9.4. The second order transfer functions in Example 9.3 can be
rewritten as

Gf (s) =
11

(s+ 9)(s+ 1)
(9.21)

Gg(s) =
8s+ 7

(s+ 5)(s+ 1)
(9.22)

Gh(s) =
4
(
s+ 3+

√
23j

8

)(
s+ 3−

√
23j

8

)
(
s+ 1+

√
5

2

)(
s+ 1−

√
5

2

) =
4s2 + 3s+ 2(

s+ 1+
√

5
2

)(
s+ 1−

√
5

2

) (9.23)

Gi(s) =
(s− 1)2

s2
(9.24)
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For Gj(s), see (9.19). Notice that, in the case of Gh(s), only the second expres-
sion is usual; the �rst one, explicitly showing the two complex conjugate zeros,
is not.

Remark 9.5. From De�nition 9.2 results that the order of a proper transfer
function is the number of its poles.

The following Matlab functions use transfer functions in this form:

� zpk creates a transfer function from its zeros, poles, and the bm
an

ratio inTransfer function from ze-
ros, poles, gain (9.20), here called gain k, and also converts a transfer function created

with tf into this form;

� pole �nds the poles of a transfer function;

� tzero �nds the zeros of a transfer function.

Example 9.5. Transfer function (9.15) or (9.22)

� has one zero, 8s+ 7 = 0⇔ s = − 7
8 = −0.875,

� has two poles, (s+ 5)(s+ 1) = 0⇔ s = −5 ∨ s = −1,

� veri�es k = bm
an

= 8
1 = 8.

It can be created, converted to a ratio of two polynomials as in (9.3), andMatlab's command zpk

converted back to the (9.20) form as follows:

>> G_g = zpk(-7/8, [-5 -1], 8)

G_g =

8 (s+0.875)

-----------

(s+5) (s+1)

Continuous-time zero/pole/gain model.

>> G_g = tf(G_g)

G_g =

8 s + 7

-------------

s^2 + 6 s + 5

Continuous-time transfer function.

>> G_g = zpk(G_g)

G_g =

8 (s+0.875)

-----------

(s+5) (s+1)

Continuous-time zero/pole/gain model.

Its poles and zeros can be found as follows:Matlab's commands
pole and tzero

>> tzero(G_g)

ans =

-0.8750

>> pole(G_g)

ans =

-5

-1
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Figure 9.1: Generic block.

It does not matter whether a transfer function was created with tf or with
zpk (or with any other function to create transfer functions that we did not
study yet): pole and tzero work just the same.

Another way of �nding the poles and the zeros is to access the numerator and
the denominator, and then using roots to �nd the roots of these polynomials.
The transfer function must be in the tf form this time, the only one that has
the num and den �elds:

>> G_g = tf(G_g);

>> G_g.num{1}

ans =

0 8 7

>> roots(ans)

ans =

-0.8750

>> G_g.den{1}

ans =

1 6 5

>> roots(ans)

ans =

-5

-1

Notice that the {1} is necessary since Matlab presumes that the transfer
function is MIMO and thus has many transfer functions relating the many inputs
with the many outputs. The cell array index accesses the �rst transfer function,
which, as the system is SISO, is the only one.

A very important property of transfer functions for the rest of this chapter
has already been mention in Section 8.2 and illustrated in Example 8.2: if two
systems G1(s) = y1(s)

u1(s) and G2(s) = y2(s)
u2(s) are interconnected so that the output Multiplying transfer func-

tionsof one is the input of the other, y1(s) = u1(s), then the resulting transfer
function is

y2(s)

u1(s)
=
y2(s)

u2(s)

y1(s)

u1(s)
= G1(s)G2(s) (9.25)

Remark 9.6. Remember that the multiplication of two Laplace transforms Multiplication of L is con-
volution in tdoes not correspond to the multiplication of the original functions, but rather

to their convolution, as we have shown in (2.78). Operation convolution is
de�ned in (2.76). (This is sometimes a source of confusion, because the sum of
two Laplace transforms is the sum of the original functions, as L is linear.)

9.2 Block diagrams

Block diagrams are graphical representations of the relations between vari-
ables and functions. In our case, functions will be systems, and variables will
be signals (which are themselves, as you remember, functions of time, or space).
Figure 9.1 shows a generic system (represented by a block) relating two signals
(represented by lines with arrows).

The practical thing to do for LTI systems is to represent them using their
transfer functions, and consequently to represent signals by their Laplace trans-
forms. The block in Figure 9.2 means that Y (s) = G(s)U(s). This is yet another
advantage of using the Laplace transform: the (Laplace transform of the) out-
put is the product of the (transfer function of the) system and the (Laplace
transform of the) input.
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Figure 9.2: Linear block.

Figure 9.3: Block diagram of Example 9.6, corresponding to the mechatronic
system in Figure 8.2 from Example 8.2.

Example 9.6. The mechatronic system in Example 8.2 had four transfer func-
tions, as follows:

G1(s) =
I(s)

Vi(s)
=

n2

n1

R+ Ls
(9.26)

G2(s) =
F2(s)

I(s)
= α (9.27)

G3(s) =
F1(s)

F2(s)
=
b

a
(9.28)

G4(s) =
X1(s)

F1(s)
=

1

m1s2 +K
(9.29)

The corresponding block diagram is shown in Figure 9.3. In fact,

I(s) = G1(s)Vi(s) (9.30)

F2(s) = G2(s)I(s) (9.31)

F1(s) = G3(s)F2(s) (9.32)

X1(s) = G4(s)F1(s) (9.33)

The Example above shows that several interconnected systems correspond
to a sequence of blocks. By similarity with electrical circuits, blocks in such a
sequence are said to be in series or in cascade. This is because of the propertyBlocks in series

Blocks in cascade of transfer functions illustrated in (9.25). Clearly, two blocks A and B in series
are equivalent to one block AB.

Adding signals is represented as shown in Figure 9.4, where

y = y1 + y2 = Au+Bu = (A+B)u (9.34)

By similarity with electrical circuits, blocks A and B are said to be in parallel.Blocks in parallel
Clearly, they are equivalent to one block A+B. Signal subtraction is indicated
similarly.

The block con�gurations in Figure 9.5, wherein the input of a block dependsFeedback
on its output, is called feedback loop or just feedback: feedback, because
the output is fed back to the block it originates from; and loop, because of theLoop
con�guration of the diagram. In that Figure, A is called direct branch andDirect branch
B feedback branch. The two block diagrams only di�er because of the signFeedback branch
a�ecting signal d(s):

� when b(s) = a(s)− d(s), there is negative feedback;Negative feedback

� when b(s) = a(s) + d(s), there is positive feedback.Positive feedback

Negative feedback is far more common; when feedback is mentioned without
specifying whether it is positive or negative, you can safely presume it is nega-
tive. Notice that, for both:



9.2. BLOCK DIAGRAMS 115

Figure 9.4: Block diagram with two blocks in parallel.

Figure 9.5: Block diagrams with feedback loops. Left: negative feedback. Right:
positive feedback.

� the input of the loop is a(s);Input of the feedback loop

� the output of the loop is c(s); Output of the feedback loop

� the input of the direct branch is b(s) = a(s)∓ d(s);

� the output of the direct branch is a(s);

� the input of the feedback branch is c(s);

� the output of the feedback branch is d(s).

Consequently, for negative feedback,

c = Ab = A(a− d) = A(a−Bc) = Aa−ABc

⇒ c+ABc = Aa⇒ c = a
A

1 +AB
(9.35)

and, for positive feedback,

c = Ab = A(a+ d) = A(a+Bc) = Aa+ABc

⇒ c−ABc = Aa⇒ c = a
A

1−AB
(9.36)

Example 9.7. The centrifugal governor (see Figure 9.6) is a control system Centrifugal governor
which had widespread use to control the pressure in boilers. It rotates because
of the pressure of the steam. The faster it rotates, the more the two spheres
go up, thereby opening a valve relieving steam pressure. Consequently the
regulator spins slower, the balls go down, and this closes the valve, so pressure
is no longer relieved and goes up again. This is negative feedback: an increase
of any variable has as consequence the decrease of another variable that caused
the original increase, and vice-versa.

Example 9.8. Audio feedback (or �howl�) is an example of positive feedback.
Surely you must have heard it often, whenever there is a sound system amplify-
ing the sound detected by a microphone which is too close to the loudspeakers,
so that even background noise is ampli�ed to the point of being received again
by the microphone and ampli�ed further � see Figure 9.7. The amplitude of
the resulting sound does not become in�nite because at some point the ampli�er
and/or the loudspeakers saturate, but the �howl� can damage the equipment or,
more importantly, the listeners' auditory systems.
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Figure 9.6: Centrifugal governor of a boiler in the former Barbadinhos water
pumping station (currently the Water Museum), Lisbon.

Figure 9.7: How audio feedback occurs.
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Example 9.9. Biological processes provide numerous examples of both positive
and negative feedback. We will go back to this in Chapter 43.

The best way to simplify block diagrams is to write the corresponding equa-
tions and do so analytically.

Example 9.10. In the block diagram of Figure 9.8 we make

G1(s) = 2 (9.37)

G2(s) =
s+ 10

s2 + 0.5s+ 5
(9.38)

G3(s) =
1

s+ 1
(9.39)

G4(s) =
20(s− 0.5)

(s− 1)(s− 3)
(9.40)

G5(s) =
1

s
(9.41)

(9.42)

(The block for G1(s) is triangular because Simulink, which we will mention
below, uses triangles for constants, but this convention is unusual; when drawing
blocks by hand, they are all usually rectangles.) Then

e = G2c = G2G1b = G2G1(a− d) = G1G2(a−G3e)⇒

⇒ (1 +G1G2G3)e = G1G2a⇒ e = a
G1G2

1 +G1G2G3
(9.43)

h = G5g = G5(e+ f) = G5

(
a

G1G2

1 +G1G2G3
+G4a

)
= a

(
G1G2G5

1 +G1G2G3
+G4G5

)
(9.44)

Finally, the whole block diagram corresponds to transfer function

h(s)

a(s)
=

2 s+10
s2+0.5s+5

1
s

1 + 2 s+10
s2+0.5s+5

1
s+1

+
20(s− 0.5)

s(s− 1)(s− 3)
(9.45)

It is usually a good idea to put the result in one of the forms (9.3) or (9.20).
Since calculations are rather complicated, we can use Matlab:

>> s = tf('s');

>> (2/s*(s+10)/(s^2+0.5*s+5))/(1+2/(s+1)*(s+10)/(s^2+0.5*s+5))+...

20*(s-0.5)/((s-1)*(s-3)*s)

ans =

22 s^7 + 45 s^6 + 200 s^5 + 617.5 s^4 + 380.5 s^3 + 1960 s^2 - 950 s

----------------------------------------------------------------------

s^9 - 2 s^8 + 8.25 s^7 - 10.75 s^6 - 55.25 s^5 + 33.75 s^4 - 350 s^3

+ 375 s^2

Continuous-time transfer function.

>> zpk(ans)

ans =

22 s (s+2.931) (s-0.4226) (s^2 + 0.5s + 5) (s^2 - 0.9629s + 6.972)

------------------------------------------------------------------

s^2 (s-3) (s+2.5) (s-1) (s^2 + 0.5s + 5) (s^2 - s + 10)

Continuous-time zero/pole/gain model.
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Figure 9.8: Block diagram of Example 9.10.

As you can see from the last result, it is possible to eliminate s and s2+0.5∗s+5

from both the numerator and the denominator. So h(s)
a(s) is of sixth order.

In this way it is possible to �nd several generic equivalences in block dia-
grams, such as those of Figure 9.9, which may be used in block diagram sim-
pli�cation. The analytical simpli�cation of block diagrams is however normally
easier and less prone to errors.

Matlab has commands to combine transfer functions:

� operators + and * add and multiply transfer functions (remember that two
blocks in series correspond to the product of their transfer functions);

� feedback receives the direct and the feedback branches and gives the
transfer function of the negative feedback loop.

Example 9.11. We can verify our calculations of Example 9.10 as follows:Matlab's command
feedback

>> G1 = 2;

>> G2 = (s+10)/(s^2+0.5*s+5);

>> G3 = 1/(s+1);

>> G4 = 20*(s-0.5)/((s-1)*(s-3));

>> G5 = 1/s;

>> loop_from_a_to_e = feedback(G1*G2, G3)

loop_from_a_to_e =

2 s^2 + 22 s + 20

--------------------------

s^3 + 1.5 s^2 + 7.5 s + 25

Continuous-time transfer function.

>> from_a_to_g = loop_from_a_to_e + G4

from_a_to_g =

22 s^4 + 34 s^3 + 73 s^2 + 411 s - 190

-----------------------------------------------

s^5 - 2.5 s^4 + 4.5 s^3 - 0.5 s^2 - 77.5 s + 75

Continuous-time transfer function.

>> from_a_to_h = from_a_to_g * G5

from_a_to_h =

22 s^4 + 34 s^3 + 73 s^2 + 411 s - 190

---------------------------------------------------

s^6 - 2.5 s^5 + 4.5 s^4 - 0.5 s^3 - 77.5 s^2 + 75 s
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Figure 9.9: Block diagram simpli�cation.
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Figure 9.10: Commonly used blocks of Simulink.

Continuous-time transfer function.

>> zpk(from_a_to_h)

ans =

22 (s+2.931) (s-0.4226) (s^2 - 0.9629s + 6.972)

-----------------------------------------------

s (s+2.5) (s-3) (s-1) (s^2 - s + 10)

Continuous-time zero/pole/gain model.

This is the same transfer function we found above, with the poles and zeros
common to the numerator and denominator eliminated.

Matlab's most powerful tool for working with block diagrams is Simulink.Simulink

All the block diagrams above have been created with Simulink, and then
cropped so as not to show what Simulink calls source and sink, which are
not part of what is shown in standard block diagrams (you must not include
them when drawing block diagrams by hand). To use Simulink, access its
library in Matlab by clicking the corresponding button or typing simulink.
The library looks like very di�erent in di�erent versions of Matlab, but its
organisation is similar: the most commonly used blocks are in one of the several
subsets of the Simulink library; then there are libraries corresponding to the
toolboxes you have installed. Figure 9.10 shows the blocks you will likely need:Commonly used Simulink

blocks
� The Transfer Fcn block, from the Continuous subset of the Simulink

library, creates a transfer function like function tf.

� The Zero-Pole block, from the Continuous subset of the Simulink li-
brary, creates a transfer function like function zpk.

� The LTI System block, from the Control System Toolbox library, cre-
ates a transfer function using function tf or function zpk. It is also pos-
sible just to put there a variable with a transfer function, created in the
command line.

� The Sum block (name hidden by default), from the Math operations sub-
set of the Simulink library, is a sum point.

� The Gain block, from the Math operations subset of the Simulink li-
brary, multiplies a signal by a constant.

� The From Workspace block, from the Sources subset of the Simulink

library, provides a signal to run a simulation. The signal is either a struc-
ture (see the block's dialogue for details) or a matrix with time instants in
the �rst column and the corresponding values of the signal in the second
column (these will be interpolated).

� The Scope block, from the Sinks subset of the Simulink library, plots
the signal it receives. It can be con�gured to record the data to a variable
in the workspace, which is most practical to reuse it later.

� The Mux block (from �multiplexer�, name hidden by default), from the
Signal Routing subset of the Simulink library, joins two (or more) sig-
nals into one. The result is a vector-valued signal. If two real-values signals
are multiplexed, the result is a vector-valued signal with dimension 2.
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Figure 9.11: Simulink �le of Example 9.12.
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Figure 9.12: Output of Example 9.12.

To use a block, create an empty Simulink �le and drag it there. Connect blocks
with arrows by clicking and dragging from one block's output to another's input.
Double-click a block to see a dialogue where you can �ll in the arguments you
would use in a Matlab command written in the command line (i.e. after the
>>). Most of the times you can use numbers or variables; you just have to
create the variables before you create the model. Right-clicking a block shows a
context menu with many options, among which those of showing or hiding the
block's name, or rotating it. You can edit a block's name by clicking it, and
add a label to a signal by double-clicking it.

To run a simulation, choose its duration in the box on the top of the window,
or go to Simulation > Model Configuration Parameters. Then click the
Play button, or use command sim with the name of the (previously saved) �le
with the block diagram model.

Example 9.12. Let us simulate the mechatronic system of Examples 8.2 and 9.6,
given by (9.26)�(9.29). The Simulink �le is as shown in Figure 9.11 and its
running time was set to 3 s; variables have been used and must be de�ned before
running the simulation, but this means that they are easier to change. Block
From Workspace has matrix [0 1], meaning that at time 0 it will output value
1, and since no other value is provided this one will be kept. So we are �nding
the response of the system to a Heaviside function (2.5), or rather to a tension
of 1 V being applied when the simulation begins. Block Scope is con�gured to
save data to variable Data. The following commands create the variables, run
the simulation, and plot again the results which you could also see in the Scope
itself:

>> n2 = 200; n1 = 100; L = 1e-2; R = 100; alpha = 100; b = 0.3; a = 0.1;

m1 = 1; K = 100;

>> sim('prob3_ficha3_2011_modif_2')

>> figure, plot(Data.time,Data.signals.values(:,2)), xlabel('time [s]'),

ylabel('x_1 [m]')

See Figure 9.12. We could have expected these oscillations with constant am-
plitude, and you will know why in Chapter 11.
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Figure 9.13: Left: open loop control. Right: closed loop control.

Remark 9.7. Notice that the input signal was speci�ed in time and the out-
put variable was obtained as a function of time, but the di�erential equations
were speci�ed as transfer functions, i.e. not as relations in variable t but in the
Laplace transform variable s. This is the way Simulink works. However, do not
forget that, since in a block diagram system dynamics is indicated by transfer
functions, signals too must be given by their Laplace transforms, as functions
of s. It is correct to say that y(s) = G(s)u(s); it makes no sense at all to write
y(t) = G(s)u(t) mixing t and s.

The dialogue Model Configuration Parameters, which can also be ac-
cessed through a button, allows specifying many other things, among which:

� the numerical method used to solve the di�erential equations;

� the maximum and minimum time steps used by the numerical method;

� a tolerance that will not be exceeded by the numerical method's estimate
of the errors incurred.

Notice that some numerical methods use �xed time steps. These may be used
with di�erential equations, but are the only ones that can be used with di�erence
equations (corresponding to digital models).

9.3 Control in open-loop and in closed-loop

There are two generic con�gurations for control systems: open-loop control
and closed-loop control, shown in Figure 9.13. Every control system is a
variation of one of these two con�gurations, or a combination thereof. Both add,
to the system we want to control, another system called controller, intended
to make the controlled system's output y(t) follow some speci�ed reference, or
desired output, r(t) (remember Section 3.1). In a perfectly controlled system,
y(t) = r(t), ∀t. The output of the controller is the system's input in the strict
sense (the input must be a manipulated variable).

In open-loop control the controller receives the reference that the systemOpen-loop control
should follow, and decides from this desired output what control action to take.
This control action will be the input of the system. It is not checked whether or
not the system's output does follow the reference. So, if there is some unexpected
deviation from the reference, this does not change the control action. Open-loop
control only uses blocks in series.

In open-loop control,

y(s) = G(s)u(s) = G(s)C(s)r(s) (9.46)

and since we want y(s) = r(s) then we should have C(s) = G−1(s), i.e. the
controller should be an inverse model of the system to control. Notice that
if the model of the system is proper then the controller is not proper; you will
learn why this brings problems in Chapter 11.

Closed-loop control uses negative feedback. The reference is compared withClosed-loop control
the system output. Ideally, the error should be zero. What the controller
receives is this error, so the control action is based on the error.

The simplest closed-loop controller is proportional: C(s) = K ∈ R. With
proportional control, if the error is small, the control action is small too; ifProportional control
the error is large, the control action is also large. There are techniques to choose
an appropriate value of K, and also to develop more complex controllers, with
poles and zeros, which will be addressed in Part IV.
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Figure 9.14: Closed-loop control with disturbances and sensor dynamics.

Figure 9.15: The same as Figure 9.14, but with MIMO systems.

Actually, no control system is that simple. Figure 9.14 shows a more realistic
situation, including the following additions:

� H(s) is the sensor that measures output y. A perfect sensor measures Sensor dynamics
the output exactly: ŷ(t) = y(t), ∀t; and hence H(s) = 1. No sensor is
perfect, but it is often possible to assume H(s) = 1 even so (in which case
the block does not need to be there). If this is not the case, H(s) must be
explicitly taken into account.

� du(t) is a disturbance that a�ects the control action. This means that Control action disturbance
the control action is not precisely received by the controlled system. For
instance, if the control action is a force, this means that there are other
forces acting upon the system. Or, if the control action is a current, there
are unintended �uctuations of the value determined by the controller.

� dy(t) is a disturbance that a�ects the system output. This means that the System output disturbance
output is a�ected by something else other than the system. For instance,
if the output is a �ow, there is some other source of �uid, or some bleeding
of �uid somewhere, that must be added or subtracted. Or, if the output
is a position, there may be vibrations that have to be superimposed.

� dŷ(t) is a disturbance that a�ects the sensor's measurement of the system Output measurement dis-
turbanceoutput. Just like u(t) can su�er a disturbance, so can ŷ(t).

Remark 9.8. Disturbances in Figure 9.14 follow what is called an additive
model, since the disturbance is added to the signal it disturbs. Other models Additive disturbances
use multiplicative disturbances, that are multiplied rather than summed. Here Multiplicative disturbances
we will stick to additive disturbances, which result in linear models.

Remark 9.9. We saw in Chapter 3 that MIMO systems may have some inputs
in the general sense that are disturbances and others that are manipulated
variables. Figure 9.15 represents disturbances using MISO systems. The block
diagram in Figure 9.14 re�ects the same situation using only SISO systems. The
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Figure 9.16: The same as Figure 9.14, but using transfer functions (9.48)�(9.51).

price to pay for using SISO systems is less freedom in establishing mathematical
relations between disturbances and outputs.

The output of the block diagram in Figure 9.14 is

ỹ = dy + y = dy +Gũ = dy +G(du + u) = dy +Gdu +GCe

= dy +Gdu +GC(r − ˆ̃y) = dy +Gdu +GCr −GC(dŷ + ŷ)

= dy +Gdu +GCr −GCdŷ −GCHỹ
⇒ (1 +GCH)ỹ = dy +Gdu +GCr −GCdŷ (9.47)

⇒ ỹ =
1

1 +GCH
dy +

G

1 +GCH
du +

GC

1 +GCH
r +

−GC
1 +GCH

dŷ

Because of the linearity of the relations involved, (9.47) gives the same result as
if four transfer functions were involved as seen in Figure 9.16:

G1 =
ỹ

r
=

GC

1 +GCH
(9.48)

G2 =
ỹ

du
=

G

1 +GCH
(9.49)

G3 =
ỹ

dy
=

1

1 +GCH
(9.50)

G4 =
ỹ

dŷ
=

−GC
1 +GCH

(9.51)

Notice that each of the four transfer functions above can be obtained assuming
that all inputs but one of them are zero. If the system were not linear, that
would not be the case.

Glossary

D'altra parte gli aveva detto la sera prima che lui possedeva un'dono:
che gli bastava udire due che parlavano in una lingua qualsiasi, e
dopo un poco era capace di parlare come loro. Dono singolare, che
Niceta credeva fosse stato concesso solo agli apostoli.

Umberto Eco (1932 � �2016), Baudolino (2000), 2

block diagram diagrama de blocos
blocks in cascade blocos em cascata
blocks in parallel blocos em paralelo
closed-loop anel fechado, malha fechada
direct branch ramo direto
disturbance perturbação
feedback retroação
feedback branch ramo de retroação
feedback loop anel de retroação, malha de retroação
inverse model modelo inverso
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open-loop anel aberto, malha aberta
order ordem
proper transfer function função de transferência própria
proportional control controlo proporcional
strictly proper transfer function função de transferência estritamente própria

Exercises

1. For each of the transfer functions below, answer the following questions:

� What are its poles?

� What are its zeros?

� What is its order?

� Is it a proper transfer function?

� Is it a strictly proper transfer function?

� What is the di�erential equation it corresponds to?

(a) s
s2 + 12s+ 20

(b) s+ 1
s− 5

(c) s2 + 2s+ 10
s3 − 5s2 + 15.25s

(d) 10
(s+ 1)2(s2 + 5s+ 6)

(e) s2 + 2
s2(s+ 3)(s+ 50)

(f)
(s4 + 6s3 + 8.75s2)

(s2 + 4s+ 4)2

2. Find the following transfer functions for the block diagram in Figure 9.17:

(a)
y(s)
d(s)

(b)
y(s)
r(s)

(c)
y(s)
m(s)

(d)
y(s)
n(s)

(e)
u(s)
d(s)

(f)
u(s)
r(s)

(g)
u(s)
m(s)

(h)
u(s)
n(s)

(i)
e(s)
d(s)

(j)
e(s)
r(s)

(k)
e(s)
m(s)

(l)
e(s)
n(s)

3. Figure 9.18 shows a variation of closed-loop control called internal model
control (IMC). It has this name because it requires knowing a model of the
system to control, as well as an inverse model of the system to control.In
that block diagram:
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Figure 9.17: Block diagram of Exercise 2.

Figure 9.18: Internal model control (IMC).

� G(s) is the plant to control,

� G∗(s) is the model of the plant to control,

� G−1(s) is the inverse model of the plant to control.

(a) Show that, if the model is perfect, i.e. if
G∗(s) = G(s), then the error is given by E(s) = R(s)−D(s).

(b) Show that, if, additionally, the inverse model is perfect, i.e.G−1(s)G(s) =
1, then the output is Y (s) = R(s).

(c) Show that, whether the models are perfect or not, the block diagram
of IMC in Figure 9.18 is equivalent to the block diagram of closed-

loop control in Figure 9.13, if C(s) = G−1(s)
1−G−1(s)G∗(s) .

4. Figure 9.19 shows a variation of closed-loop control called cascade control
(or master�slave control, though that designation is out of favour nowa-
days). In that block diagram, the plant to control is G(s) = G1(s)G2(s),
and it possible to measure both Y1(s) and Y2(s). Each of the two parts of
the system to control is controlled separately.

(a) Find transfer function
Y1(s)
U2(s)

.

(b) Use that result to �nd transfer function
Y2(s)
R(s)

.

5. Redraw the block diagram of Figure 9.11 from Example 9.12 as follows:

� use the values of the variables given in Example 9.12,

Figure 9.19: Cascade (or master�slave) control.
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Figure 9.20: Block diagrams of Exercise 6.

� let the input Vi(s) be a manipulated variable,

� let there be some reference r(t) for x1(t) to follow,

� add proportional control K.

Then �nd transfer function X1(s)
R(s) as a function of K.

6. For each of the two block diagrams in Figure 9.20:

(a) Find transfer function Y (s)
R(s) .

(b) Let A(s) = 1
s , B(s) = 10

s+1 , C(s) = 2, D(s) = s+0.1
s+2 . Find the value

of Y (s)
R(s) .

7. Prove all the equivalences of block diagrams shown in Figure 9.9.
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Chapter 10

Time and frequency responses

Schirm und Robert �iegen dort
Durch die Wolken immer fort.
Und der Hut �iegt weit voran,
Stöÿt zuletzt am Himmel an.
Wo der Wind sie hingetragen,
Ja! das weiÿ kein Mensch zu sagen.

Heinrich Hoffmann (1809 � �1894), Der Struwwelpeter, Die Geschichte vom
�iegenden Robert (1847)

We already know that we can use the Laplace transform (and its inverse)
to �nd out the output of any transfer function for any particular input. In
this chapter we study several usual particular cases. This allows us to �nd
approximate responses in many cases, and to characterise with simplicity more
complex responses. It also paves the way to the important concept of frequency
responses.

10.1 Time responses: steps and impulses as in-
puts

The following inputs are routinely used to test systems:

� The impulse: Impulse

u(t) = δ(t) (10.1)

L [u(t)] = 1 (10.2)

� The step, with amplitude d: Step

u(t) = dH(t) (10.3)

L [u(t)] =
d

s
(10.4)

� In particular, the unit step, with amplitude 1: Unit step

u(t) = H(t) (10.5)

L [u(t)] =
1

s
(10.6)

� The ramp, with slope d: Ramp

u(t) = d t (10.7)

L [u(t)] =
d

s2
(10.8)

� In particular, the unit ramp, with slope 1: Unit ramp

u(t) = t (10.9)

L [u(t)] =
1

s2
(10.10)

129
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� The parabola, with second derivative 2d: Parabola

u(t) = d t2 (10.11)

L [u(t)] =
2d

s3
(10.12)

� In particular, the unit parabola, with second derivative 2:Unit parabola

u(t) = t2 (10.13)

L [u(t)] =
2

s3
(10.14)

You can either �nd the Laplace transforms above in Table 2.1, or calculate them
yourself.

Remark 10.1. Notice that:

� the unit step is the integral of the impulse:
∫ t

0

δ(t) dt = H(t);

� the unit ramp is the integral of the unit step:
∫ t

0

H(t) dt = t;

� the unit parabola is not the integral of the unit ramp:
∫ t

0

tdt =
1

2
t2 6=

t2.

Remark 10.2. Remember that while the Heaviside function H(t) is a function,Properties of δ(t)
and so are t and t2, the Dirac delta δ(t) is not. It is a generalised function, andδ(t) is not a function
the limit of the following family of functions:

f(t, ε) =

{
1
ε , if 0 ≤ t ≤ ε
0, if t < 0 ∨ t > ε

(10.15)

δ(t) = lim
ε→0+

f(t, ε) (10.16)

Since ∫ +∞

−∞
f(t, ε) dt =

∫ ε

0

f(t, ε) dt =

∫ ε

0

1

ε
dt = 1, ∀ε ∈ R+ (10.17)

we also haveIts integral in R is 1 ∫ +∞

−∞
δ(t) dt = 1 (10.18)

Furthermore, for a continuous function g(t),

f(t, ε) min
0≤t≤ε

g(t) ≤ f(t, ε)g(t) ≤ f(t, ε) max
0≤t≤ε

g(t)

⇒
∫ ε

0

f(t, ε) min
0≤t≤ε

g(t) dt ≤
∫ ε

0

f(t, ε)g(t) dt ≤
∫ ε

0

f(t, ε) max
0≤t≤ε

g(t) dt

⇔ min
0≤t≤ε

g(t)

∫ ε

0

f(t, ε) dt ≤
∫ ε

0

f(t, ε)g(t) dt ≤ max
0≤t≤ε

g(t)

∫ ε

0

f(t, ε) dt

⇒ min
0≤t≤ε

g(t) ≤
∫ ε

0

f(t, ε)g(t) dt ≤ max
0≤t≤ε

g(t) (10.19)

where we used (10.17). Making ε→ 0+, we get

g(0) ≤
∫ ε

0

f(t, ε)g(t) dt ≤ g(0)⇔
∫ ε

0

f(t, ε)g(t) dt = g(0) (10.20)

A consequence of this is thatIntegral of δ(t) mutiplied
by a function ∫ b

a

g(t)δ(t) dt = g(0) (10.21)

as long as the integration inteval includes and overtakes 0, i.e. a ≤ 0 < b; in
particular,

L [δ(t)] =

∫ +∞

0

δ(t)e−st dt = e−s0 = 1 (10.22)
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The reasons why (10.1)�(10.13) are routinely used as inputs to test systems
are:

� They are simple to create.

� Calculations are simple, given their Laplace transforms.

� They can be used to model many real inputs exactly, and even more as
approximations.

Example 10.1. The following situations can be modelled as steps:

� A metal workpiece is taken from an oven and quenched in oil at a lower
temperature.

� A sluice gate is suddenly opened, letting water into an irrigation canal.

� A switch is closed and a tension is thereby applied to the motor that
rotates the joint of a welding robot.

� A �nished part is dropped onto a conveyer belt.

� A car advancing at constant speed descends a sidewalk onto the street
pavement.

Example 10.2. The following situations can be modelled as ramps:

� A deep space probe moves out of the solar system at constant speed along
a straight line in an inertial system of coordinates, due to inertia, far from
the gravitational in�uence of any close celestial body.

� A high-speed train moves from one station to another at cruiser speed.

� A welding robot creates a welding joint at constant speed, to ensure a
uniform thickness.

Notice that, save for the �rst example, the ramp is limited in time: sooner or
later, the train and the welding robot will have to stop. In fact, unlimited ramps
are seldom found.

Remark 10.3. The impulse is in fact impossible to create: there are no physical
quantities applied during no time at all, with an in�nite intensity. However, the
impulse is a good approximation of inputs that have a very short duration.
Figure 10.1 shows two inputs in that situation: a sequence of two steps

u1(t) = kH(t− t0)− kH(t− t1)

=

{
k, if t0 ≤ t ≤ t1
0, if t < t0 ∨ t > t1

≈ k(t1 − t0)δ(t− t0) (10.23)

and, even more realistically, a sequence of two ramps, approximated by

δ(t)

∫ +∞

0

u2(t) dt = δ(t)

[
1

2
k(t1 − t0) + k(t2 − t1) +

1

2
k(t3 − t2)

]
= δ(t− t0)

k

2
(t3 + t2 − t1 − t0) (10.24)

Of course, any input with a form such as that of Figure 10.2 can be approximated
by an impulse (multiplied by the integral over time of the input).

Remark 10.4. Unit steps are almost exclusively used because amplitude 1
makes calculations easier. Since we are assuming linearity, if the amplitude of
the step is d instead of 1, the output will be that for the unit step, multiplied
by d. The same can be said for unit ramps and unit parabolas. When steps (or
ramps, or parabolas) are applied experimentally, amplitude 1 may be too big or
too small, and a di�erent one will have to be used instead.

Example 10.3. Suppose you want to test a car's suspension, when the wheel
climbs or descends a step. Obviously nobody with a sound mind would apply a
1 m step for this purpose (see Figure 10.3). A 10 cm step would for instance be
far more reasonable. Of course, if our model is linear, we can apply a unit step,
knowing well that the result will be nonsense, and then simply scale down the
result.
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Figure 10.1: Two functions that can be approximated by an impulse if t0 ≈ t1
(left) or t0 ≈ t3 (right).
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Figure 10.2: General form of a function that can be approximated by an impulse
if t0 ≈ t1.

Figure 10.3: Would you test a car's suspension like this? (Source: Wikimedia,
modi�ed)
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Figure 10.4: The Rasteirinho mobile robot, without the laptop computer with
which it is controlled.

Example 10.4. The Rasteirinho (see Figure 10.4) is a mobile robot, of which
about a dozen units are used at IST in laboratory classes of di�erent courses.
It is controlled by a laptop computer, �xed with velcro. Its maximum speed
depends on the particular unit; in most, it is around 80 cm/s. Consequently, it
is useless to try to make its position follow a unit ramp, which would correspond
to a 1 m/s velocity. Once more, we could simulate its behaviour with a linear
model for a unit ramp and then scale the output down.

Example 10.5. In the WECs of Figures 3.2 and 3.3, the air inside the device is
compressed by the waves. A change of air pressure of 1 Pa is ludicrously small;
it is useless even to try to measure it. But if our model of the WEC is linear we
can simulate how much energy it produces when a unit step is applied in the air
pressure and then scale the result up to a more reasonable value of the pressure
variation.

In what follows we will concentrate on the impulse and unit step responses,
and mention responses to unit ramps and steps with amplitudes which are not 1
whenever appropriate.

Theorem 10.1. The impulse response of a transfer function has a Laplace Impulse response of a sys-
temtransform which is the transfer function itself.

Proof. Since G(s) = Y (s)
U(s) , where G(s) is a transfer function, Y (s) is the Laplace

transform of the output, and U(s) is the Laplace transform of the input, and
since the Laplace transform of an impulse is 1, the result is immediate.

Remark 10.5. This allows de�ning a system's transfer function as the Laplace
transform of its output when the input is an impulse. This de�nition is an
alternative to De�nition 4.1 found in many textbooks.

Corollary 10.1. The output of a transfer function G(s) for any input u(t)
is equal to the convolution of the input with the transfer function's impulse
response g(t):

y(t) = g(t) ∗ u(t) =

∫ t

0

g(t− τ)u(τ) dτ (10.25)

Proof. This is an immediate result of Theorem 10.1 and of (2.78).

Remark 10.6. It is usually easier to calculate the Laplace transform of the
input U(s) to �nd the Laplace of the output as Y (s) = G(s)U(s) and then �nally
the output as y(t) = L −1 [G(s)U(s)], than to calculate the output directly as
y(t) = g(t) ∗ u(t).

The following Matlab functions are useful to �nd time responses:
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� step plots a system's response to a unit step (and can return the values
plotted in vectors);

� impulse does the same for an impulse input;

� lsim, already studied in Section 4.2, can be used for any input.

Just like lsim, both step and impulse use numerical methods to �nd the re-
sponses, rather than analytical computations.

Example 10.6. The impulse, unit step and unit ramp responses of a plant areMatlab's command
impulse

Matlab's command step

shown in Figure 10.5 and obtained as follows:

>> s = tf('s'); G = 1/(s+1);

>> figure, impulse(G), figure, step(G)

>> t = 0 : 0.01 : 6; figure, plot(t, lsim(G, t, t))

>> xlabel('t [s]'), ylabel('output')

>> title('response to a unit ramp')

The time range is chosen automatically by step and impulse.

Example 10.7. The response of the transfer function from Example 10.6 to a
step with amplitude 10 during 20 s can be found in two di�erent manners, both
providing, of course, the same result:

>> [stepresp, timevector] = step(G, 20);

>> t = 0 : 0.01 : 20;

>> figure, plot(t, lsim(G, 10*ones(size(t)), t), timevector, 10*stepresp)

>> xlabel('t [s]'), ylabel('output'), title('Step response')

There is, in fact, a slight di�erence in the two plots shown in Figure 10.6, because
function step chooses the sampling time automatically, and it is di�erent from
the one explicitly fed to lsim.

10.2 Steady-state response and transient response

The impulse, unit step, and unit ramp responses of

G(s) =
1

s+ 1
(10.26)

from Example 10.6, shown in Figure 10.5 as they are numerically calculated by
Matlab, can be found analytically as follows:

� Impulse response:

yi(t) = L −1

[
1

s+ 1

]
= e−t (10.27)

� Unit step response:

ys(t) = L −1

[
1

s+ 1

1

s

]
= 1− e−t (10.28)

� Unit ramp response:

yr(t) = L −1

[
1

s+ 1

1

s2

]
= L −1

[
−1

s
+

1

s2
+

1

s+ 1

]
= t− 1 + e−t

(10.29)

In each of them we can separate the terms that tend to zero as the time increases
from those that do not. The �rst make up what we call the transient response.Transient
The latter make up what we call the steady-state response.Steady-state

yi(t) = 0︸︷︷︸
steady-state

+ e−t︸︷︷︸
transient

(10.30)

ys(t) = 1︸︷︷︸
steady-state

− e−t︸︷︷︸
transient

(10.31)

yr(t) = t− 1︸ ︷︷ ︸
steady-state

+ e−t︸︷︷︸
transient

(10.32)



10.2. STEADY-STATE RESPONSE AND TRANSIENT RESPONSE 135

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Impulse Response

Time (seconds)

A
m
p
l
i
t
u
d
e

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (seconds)

A
m
p
l
i
t
u
d
e

0 1 2 3 4 5 6
0

1

2

3

4

5

6

t [s]

o
u
t
p
u
t

response to a unit ramp

Figure 10.5: Impulse, unit step and unit ramp responses of G(s) = 1
s+1 , from

Example 10.6.
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Figure 10.6: Response of G(s) = 1
s+1 for a step with amplitude 10, from Exam-

ple 10.7.

In other words, a time response y(t) can be separated into two parts, the tran-
sient response yt(t) and the steady-state response yss(t), such that

y(t) = yt(t) + yss(t) (10.33)

lim
t→+∞

yt(t) = 0 (10.34)

lim
t→+∞

yss(t) 6= 0 ∨ yss(t) = 0, ∀t (10.35)

We also call transient to the period of time in which the response is dominated
by the transient response, and steady-state to the period of time in which the
transient response is neglectable and the response can be assumed equal to the
steady-state response. Whether a transient response can or cannot be neglected
depends on how precise our knowledge of the response has to be. Below in
Sections 11.2 and 11.3 we will see usual criteria for this.

The steady-state response can be:

� zero, as the impulse response of (10.26), shown in Figure 10.5;

� a non-null constant, as the unit step response of (10.26), shown in Fig-
ure 10.5;

� an oscillation with constant amplitude, as the step response of 1
(s2+1)(s+1) ,

shown in Figure 10.7;

� in�nity, with the output increasing or decreasing monotonously, as the
unit ramp response of (10.26), shown in Figure 10.5;

� in�nity, with the output oscillating with increasing amplitude, as the im-
pulse response of s

(s2+1)2 , shown in Figure 10.7.

What the steady-state response is depends on what the system is and on what
its input is.

Remark 10.7. Most systems never reach in�nity. The probe of Example 10.2
can move away to outer space, but temperatures do no rise to in�nite values
(before that the heat source is exhausted, or something will burn), robots reach
the end of their workspace, high electrical currents will activate a circuit breaker,
etc.; in other words, for big values of the variables involved, the linear model of
the system usually ceases in one way or another to be valid.

Over the next sections we will learn several ways to calculate steady-state
responses without having to �nd an explicit expression for the output, and then
calculating its limit. When the steady-state response is constant or in�nity, it
can be found from the �nal value theorem (Theorem 2.4), i.e. applying (2.72).Final value theorem
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Figure 10.7: Time responses with oscillations: unit step response of 1
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(top) and impulse response of s
(s2+1)2 (bottom).
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Example 10.8. The steady-states of the impulse, step and ramp responses
(10.27)�(10.29) are as follows:

lim
t→+∞

yi(t) = lim
t→+∞

e−t = 0 (10.36)

lim
t→+∞

ys(t) = lim
t→+∞

1− e−t = 1 (10.37)

lim
t→+∞

yr(t) = lim
t→+∞

t− 1 + e−t = +∞ (10.38)

They can be found without the inverse Laplace transform using (2.72):

lim
t→+∞

yi(t) = lim
s→0

s
1

s+ 1
= 0 (10.39)

lim
t→+∞

ys(t) = lim
s→0

s
1

s+ 1

1

s
= 1 (10.40)

lim
t→+∞

yr(t) = lim
s→0

s
1

s+ 1

1

s2
= +∞ (10.41)

Example 10.9. Remember that (2.72) applies when the limit in time exists.
Figure 10.7 shows two cases where this limit clearly does not exist because of os-
cillations with an amplitude that does not decrease. But the two corresponding
limits are

lim
t→+∞

y(t) = lim
s→0

s
1

(s2 + 1)(s+ 1)

1

s
= 1 (10.42)

lim
t→+∞

y(t) = lim
s→0

s
s

(s2 + 1)2
=∞ (10.43)

In the �rst case we got the average value of the steady-state response; in the
second, in�nity. Neither case is a valid application of the �nal value theorem.
We need to know �rst if the time limit exists.

De�nition 10.1. The constant steady-state output of the unit step responseStatic gain

of a stable system G(s) = Y (s)
U(s) is called the static gain of G(s):

lim
t→+∞

y(t) = lim
s→0

s
b0 + b1s+ b2s

2 + b3s
3 + . . .

a0 + a1s+ a2s2 + a3s3 + . . .︸ ︷︷ ︸
G(s)

1

s︸︷︷︸
U(s)

=
b0
a0

(10.44)

10.3 Stability

The time responses from Section 10.2 illustrate the importance of the concept
of stability.

De�nition 10.2. A signal x(t) is bounded if ∃K ∈ R+ : ∀t, |x(t)| < K.Bounded signal

De�nition 10.3. A system is:BIBO stability

� stable if, for every input which is bounded, its output is bounded too;

� not stable if there is at least a bounded input for which its output is not
bounded.

This de�nition of stability is known as bounded input, bounded output stabil-
ity (BIBO stability).

Theorem 10.2. A transfer function is stable if and only if all its poles are onAll poles of stable transfer
functions are on the left
complex half-plane

the left complex half-plane.

Proof. We will prove this in two steps:

� A transfer function G(s) is stable if and only if its impulse response g(t)
is absolutely integrable, i.e. i� ∃M ∈ R+∫ +∞

0

|g(t)| dt < M (10.45)

� A transfer function's impulse response is absolutely integrable if and only
if all its poles are on the left complex half-plane.
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Lemma 10.1. A transfer function is stable if and only if its impulse response
is absolutely integrable.

Proof. Let us suppose that the impulse response g(t) is absolutely integrable,
and that ∫ +∞

0

|g(τ)|dτ = K (10.46)

Let us also suppose that the input u(t) is bounded, as required by the de�nition
of BIBO stability:

|u(t)| ≤ U, ∀t (10.47)

From (10.25) we get

|y(t)| = |g(t) ∗ u(t)| =
∣∣∣∣∫ t

0

g(τ)u(t− τ) dτ

∣∣∣∣
≤
∫ t

0

|g(τ)u(t− τ)| dτ

≤
∫ t

0

|g(τ)| |u(t− τ)|dτ

≤ U
∫ t

0

|g(τ)|dτ ≤ UK (10.48)

So the output is bounded, proving that the condition (impulse response abso-
lutely integrable) is su�cient.

Reductio ad absurdum proves that it is also necessary. Suppose that the
impulse response g(t) is not absolutely integrable; thus, there is a time instant
T ∈ R+ such that ∫ T

0

|g(τ)|dτ = +∞ (10.49)

Now let the input u(t) be given by

u(T − t) = sign(g(t)) (10.50)

This is a bounded input, −1 ≤ u(t) ≤ 1, ∀t, and so, if the transfer function
were stable, the output would have to be bounded. But in time instant T

y(T ) =

∫ T

0

g(τ)u(t− τ) dτ =

∫ T

0

|g(τ)|dτ = +∞ (10.51)

and thus y(t) is not bounded. This shows that the condition is not only su�cient
but also necessary.

Lemma 10.2. A transfer function's impulse response is absolutely integrable
if and only if all its poles are on the left complex half-plane.

Proof. A transfer function G(s) has an impulse response given by L −1 [G(s)].
Transfer function G(s) can be expanded into a partial fraction expansion, where
the fractions have the poles of G(s) in the denominator. Poles can be divided
into four cases.

� The pole is real, p ∈ R, and simple. In this case the fraction k
s−p (where

k ∈ R is some real numerator) has the inverse Laplace transform k ept.

� If p = 0, then lim
t→+∞

k ept = k. In this case the impulse response is

not absolutely integrable, since∫ +∞

0

|k| dt = lim
t→+∞

|k|t = +∞ (10.52)

� If p > 0, the exponential tends to in�nity: lim
t→+∞

k ept = ±∞ (de-

pending on the sign of k). If in the last case the response was not
absolutely integrable, even more so in this one.
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� If p < 0, the exponential tends to zero: lim
t→+∞

k ept = 0. The impulse

response is absolutely integrable, since∫ +∞

0

∣∣k ept∣∣ dt = k

∫ +∞

0

ept dt = k

[
1

p
ept
]+∞

0

=
k

p
(0− 1) = −k

p
∈ R+

(10.53)

� The pole is real and its multiplicity n is 2 or higher. In this case there will
be, in the expansion, fractions of the form kn

(s−p)n ,
kn−1

(s−p)n−1 ,
kn−2

(s−p)n−2 . . . k1

s−p .
(Here the ki ∈ R, i = 1 . . . n are the numerators in the expansion.) The
corresponding inverse Laplace transforms are of the form ki

(i−1)! t
i−1ept, i =

1 . . . n.

� If p = 0, then the exponential tends to 1, but the power does diverge

to in�nity: lim
t→+∞

ki
(i− 1)!

ti−1ept = ±∞ (depending on the sign of

k), ∀i ≥ 2. So in this case the impulse response is not absolutely
integrable, as seen above.

� If p > 0, then lim
t→+∞

ki
(i− 1)!

ti−1ept = ±∞, ∀i. Again, the impulse

response is not absolutely integrable.

� If p < 0, then lim
t→+∞

ki
(i− 1)!

ti−1ept = 0, ∀i, since the e�ect of the

exponential prevails. For the same reason, the impulse response is
absolute integrable, just as in (10.53).

� The pole is complex, p = a+ bj ∈ C\R, a, b ∈ R, and simple. Remember
once more that complex poles must appear in pairs of complex conjugates,
since all polynomial coe�cients are real (otherwise real inputs would case
complex outputs). In this case the fraction k

s−p = k
s−(a+bj) (where k ∈ C

is some complex numerator) has the inverse Laplace transform

L −1

[
k

s− p

]
= L −1

[
k

s− (a+ bj)

]
= k ept = k eatebjt = k eatebjt

= k eat (cos bt+ j sin bt) (10.54)

and the fraction k̄
s−p̄ = k̄

s−(a−bj) (where z̄ is the complex conjugate of
z ∈ C) has the inverse Laplace transform

L −1

[
k̄

s− p̄

]
= L −1

[
k̄

s− (a− bj)

]
= k̄ ep̄t = k̄ eate−bjt = k̄ eate−bjt

= k̄ eat (cos(−bt) + j sin(−bt)) = k̄ eat (cos bt− j sin bt)
(10.55)

Their e�ect on the impulse response is their sum:

L −1

[
k

s− p

]
+ L −1

[
k̄

s− p̄

]
= k eat (cos bt+ j sin bt) + k̄ eat (cos bt− j sin bt)

= (k + k̄) eat cos bt = 2<(k) eat cos bt
(10.56)

Notice that the imaginary parts cancel out, and we are left with oscillations
having:

� period 2π
b , where b is the positive imaginary part of the poles;

� amplitude 2<(k)eat, where a is the real part of the poles. The ex-
ponential is the important term, since it is the exponential that may
cause this term to vanish or diverge.

So:

� If a = 0, then the amplitude of the oscillations remains constant; they
do not go to zero neither do they diverge to an in�nite amplitude.
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This means that the impulse response is not absolutely integrable,
since ∫ +∞

0

|2<(k) cos bt| dt = 2|<(k)|
∫ +∞

0

|cos bt| dt

= 2|<(k)| lim
n→+∞

n

∫ 2π
b

0

|cos bt| dt

= 4|<(k)| lim
n→+∞

n

∫ π
b

0

sin btdt

=
4|<(k)|

b
lim

n→+∞
n [− cos bt]

π
b
0

=
8|<(k)|

b
lim

n→+∞
n = +∞ (10.57)

� If a > 0, the amplitude of the oscillations tends to in�nity. Conse-
quently the impulse response will not be absolutely integrable.

� If a < 0, the exponential tends to zero, and so will the oscillations.
In this case the impulse response is absolutely integrable, since∫ +∞

0

∣∣2<(k) eat cos bt
∣∣ dt ≤ 2|<(k)|

∫ +∞

0

eat dt (10.58)

and we end up with a case similar to (10.53).

� The pole is complex and its multiplicity n is 2 or higher. This case is a
mixture of the last two. There will be terms of the form ki

(s−(a+bj))i +

ki
(s−(a−bj))i , i = 1 . . . n. The corresponding inverse Laplace transform is
2<(ki)
(i−1)! t

i−1eat cos bt. So:

� If a = 0, then eat = 1 but the amplitude of the oscillations still grows
to in�nity, because of the power function, if i ≥ 2. So in this case
the impulse response will not be absolutely integrable.

� If a > 0, the amplitude of the oscillations tends to in�nity. The same
conclusion follows.

� If a < 0, the exponential tends to zero, and for large times its e�ect
prevails; so the the impulse response will be absolutely integrable.

It is clear that one single term not tending exponentially to zero su�ces to
prevent the impulse response from being absolutely integrable. Consequently,
the only way for the impulse response to tend to zero is that all poles should
have negative real parts; in other words, that all poles should lie on the left
complex half-plane.

While some authors call unstable to all systems that are not stable, the
following distinction is current.

De�nition 10.4. A system is: Unstable and marginally
stable systems

� unstable if its impulse response is not bounded;
Unstable systems

� marginally stable if it is not stable and its impulse response is bounded. Marginal stability

Theorem 10.3. Marginally stable systems have no poles on the right complex Marginally stable systems
have simple poles on the
imaginary axis

half-plane, and one or more simple poles on the imaginary axis.

Proof. It is clear from the proof of Lemma 10.2 that simple poles on the imag-
inary axis correspond to:

� impulse responses which are bounded:

� a pole at the origin has a constant impulse response;

� a pair of complex conjugate imaginary poles has constant amplitude
sinusoidal oscillations as impulse response;
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� responses to bounded inputs which are not bounded, since systems with
such poles are not stable.

A single pole p on the right complex half-plane makes a system unstable, since,
whatever the input may be, in the partial fraction expansion of the output there
will be a fraction of the form k

s−p , and the proof of Lemma 10.2 shows that such
terms always diverge exponentially to in�nity.

The same happens with multiple poles on the imaginary axis:

� multiple poles at the origin cause a polynomial impulse response, which
diverges to in�nity (check Table 2.1, or (11.206) below);

� pure imaginary multiple poles also cause the impulse response to diverge,
as argued in the proof of Lemma 10.2.

The e�ect of each pole on the stability of a system justi�es the following
nomenclature.

De�nition 10.5. Poles are:Stable, marginally stable,
and unstable poles

� stable, when located on the left complex half-plane;

� marginally stable, when simple and located on the imaginary axis, i.e.
s = jω, ω ∈ R, and notice that this includes the origin, s = 0;

� unstable, when multiple and located on the imaginary axis, or when
located on the right complex half-plane.

A system is:Stability depends on pole
location

� stable, when all its poles are stable;

� marginally stable, when it has no unstable poles, and one or more of its
poles are marginally stable;

� unstable, when it has one or more unstable poles.

Example 10.10. From the location of the poles, we can conclude the following
about the stability of these transfer functions:

�
s+ 4

(s+ 1)(s+ 2)(s+ 3)
; poles: −1, −2, −3; stable transfer function

�
s− 5

s2 + 6
; poles: ±

√
6j; marginally stable transfer function

�
s+ 7

(s2 + 8)2
; poles: ±

√
8j (double); unstable transfer function

�
(s− 12)(s+ 13)

(s+ 9)2(s2 + 20s+ 221)
; poles: −9 (double), −10 ± 11j; stable transfer

function

�
14

s− 15
; poles: 15; unstable transfer function

�
16

s
; poles: 0; marginally stable transfer function

�
−17

s2
; poles: 0 (double); unstable transfer function

�
18

s(s2 + 19)
; poles: 0, ±

√
19j; marginally stable transfer function

�
24

(s+ 20)(s+ 21)(s+ 22)(s− 23)
; poles: −20, −21, −22, 23; unstable trans-

fer function

Remark 10.8. Never forget that zeros have nothing to do with stability.Poles, not zeros, deter-
mine stability
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Figure 10.8: A weaving loom (source:Wikimedia).

10.4 Time responses: periodic inputs

Consider the weaving loom in Figure 10.8. The shuttle that carries the yarn
that will become the weft thread moves without cease from the left to the right
and then back. Meanwhile, half the warp threads are pulled up by a harness,
which will then lower them while the other half goes up, and this too without
cease. The corresponding references are similar to those in Figure 10.9. They
are called square wave and triangle wave, and are examples of periodic Square wave

Triangle wavesignals.

De�nition 10.6. A periodic signal is one for which ∃T ∈ R+ Periodic signals

f(t+ T) = f(t), ∀t (10.59)

T = minT is the period of signal f(t).

Remark 10.9. Notice that the di�erent values of T are in fact the integer
multiples of T , i.e.

f(t+ T ) = f(t), ∀t⇒ f(t+ nT ) = f(t), ∀t, n ∈ N (10.60)

Triangle waves are also a useful alternative to ramps, since they avoid the
inconvenience of an in�nitely large signal. Square waves are useful in experi-
mental settings for another reason: they allow seeing successive step responses,
and consequently allow measuring parameters several times in a row. For this
purpose, the period must be large enough for the transient regime to disappear.

Example 10.11. We can �nd the output of G(s) = 15
s+20 to a square wave with Matlab's command

squareperiod 1 s and amplitude 1 using Matlab as follows:

>> t = 0 : 0.001 : 3;

>> u = square(t*2*pi);

>> figure, plot(t,u, t,lsim(15/(s+20),u,t))

>> axis([0 3 -1.5 1.5])

>> xlabel('t [s]'), ylabel('input and output'), legend({'input','output'})
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Figure 10.9: A square wave and a triangle wave (both with period 1 and ampli-
tude 1).

Notice that the amplitude of the �rst step is 1 and the amplitude of the following
steps is the peak to peak amplitude, twice as big, viz. 2. Also notice that there
is a step every half period, i.e. every 0.5 s.

The period was appropriately chosen since (as we shall see in Section 11.2)
the transient response is practically gone after 0.5 s. A period four times smaller
would not allow seeing a complete step response. Both cases are shown in
Figure 10.10.

Another useful periodic signal is the sinusoid, which appears naturally with
any phenomena that are the projection onto a plane of a circular movement on
a perpendicular plane. In practice, sinusoids are found (at least as approxima-
tions) when working with such di�erent things as tides, motor vibrations, or
daily thermal variations.

Theorem 10.4. The stationary response y(t) of a stable linear plant G(s)Sinusoidal inputs cause si-
nusoidal outputs in steady
state

subject to a sinusoidal input u(t) = sin(ωt) is

y(t) = |G(jω)| sin(ωt+ ∠G(jω)) (10.61)

where ∠z is the phase, or argument, of z ∈ C (also notated often as arg z), so
that z = |z|ej∠z.

Proof. The output is

y(t) = L −1 [Y (s)] (10.62)

and

Y (s) = G(s)U(s) = G(s)L [sin(ωt)] = G(s)
ω

s2 + ω2
= G(s)

ω

(s+ jω)(s− jω)
(10.63)

If all poles pk, k = 1, . . . , n of G(s) are simple, we can perform a partial fraction
expansion of Y (s) as follows:

Y (s) =
b0

s+ jω
+

b0
s− jω

+

n∑
k=1

bk
s− pk

⇒ y(t) = b0e
−jωt + b0e

jωt︸ ︷︷ ︸
steady-state response yss(t)

+

n∑
k=1

bke
pkt

︸ ︷︷ ︸
transient

response yt(t)

(10.64)

We know that all terms in the transient response yt(t) belong there because the
exponentials are vanishing, since the poles are on the left complex half-plane.
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Figure 10.10: Response of G(s) =
15

s+ 20
to two square waves with di�erent

periods.
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If there are multiple poles, the only di�erence is that there will be terms of the
form bk

(i−1)! t
i−1epkt, i ∈ N in the transient response yt(t), which will still, of

course, be vanishing with time. In either case, the steady-state response is the
same.

From (10.63) we know that Y (s) = G(s) ω
(s+jω)(s−jω) , and from (10.64) we

know that Y (s) = b0
s+jω + b0

s−jω + L [yt(t)]. We can multiply both by s + jω
and obtain

G(s)
ω

s− jω
= b0 +

(
b0

s− jω
+ L [yt(t)]

)
(s+ jω) (10.65)

Now we evaluate this equality at s = −jω:

G(−jω)
ω

−2jω
= b0 (10.66)

Replacing b0 = G(−jω) 1
−2j and b0 = G(jω) 1

2j in yss(t) = b0e
−jωt + b0e

jωt, we
obtain

yss(t) = G(−jω)
1

−2j
e−jωt +G(jω)

1

2j
ejωt

= |G(−jω)|ej∠G(−jω) 1

−2j
e−jωt + |G(jω)|ej∠G(jω) 1

2j
ejωt

= −|G(jω)|ej(∠G(−jω)−ωt) 1

2j
+ |G(jω)|ej(∠G(jω)+ωt) 1

2j

=
1

2j
|G(jω)|

(
ej(∠G(jω)+ωt) − ej(∠G(−jω)−ωt)

)
=

1

2j
|G(jω)|

(
cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)

− cos
(
− (∠G(jω) + ωt)

)
− j sin

(
− (∠G(jω) + ωt)

))
=

1

2j
|G(jω)|

(
cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)

− cos (∠G(jω) + ωt) + j sin (∠G(jω) + ωt)
)

=
1

2j
|G(jω)|2j sin (∠G(jω) + ωt)

= |G(jω)| sin (ωt+ ∠G(jω)) (10.67)

Corollary 10.2. Since G(s) is not only stable but also linear, if the input is
u(t) = A sin(ωt) instead, the output is

y(t) = A|G(jω)| sin(ωt+ ∠G(jω)) (10.68)

Example 10.12. Figure 10.11 shows the simulated vertical position of the Wave
Energy Converter of Figure 3.2, the Archimedes Wave Swing, when subject to
sinusoidal waves of di�erent amplitudes. The device is in steady-state, as is clear
both from the regularity of its movements and from the time already passed since
the beginning of the simulation. As the input is sinusoidal, if the model were
linear, the output should be sinusoidal too. But the shape of the output is not
sinusoidal; it is not even symmetrical around its mean value; its amplitude does
not increase linearly with the amplitude of the input. The model used to obtain
these simulation results is obviously non-linear.

10.5 Frequency responses and the Bode diagram

(10.68) shows that, if a stable system G(s) has a sinusoidal input, the steady-
state output is related to the input through G(jω), which is the Fourier trans-
form (2.87) of the di�erential equation describing the system's dynamics:

� if the input is sinusoidal, the steady-state output is sinusoidal too;Frequency, amplitude, and
phase of output for sinu-
soidal inputs � if the input has frequency ω, the steady-state output has frequency ω too;
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Figure 10.11: Vertical position of the AWS from Figure 3.2, simulated assuming
sinusoidal sea waves of di�erent amplitudes between 0.5 m and 2.0 m.

� if the input has amplitude A (or peak-to-peak amplitude 2A), the steady-
state output has amplitudeA|G(jω)| (or peak-to-peak amplitude 2A|G(jω)|);

� if the input has phase θ at some time instant t, the steady-state output
has phase θ + ∠G(jω) at that time instant t.

Remember that:

� the steady-state output is sinusoidal, but the transient is not: you must The transient is not sinu-
soidalwait for the transient to go away to have a sinusoidal output;

� unstable systems have transient responses that do not go away, so you will
never have a sinusoidal output;

� ω is the frequency in radians per second. ω is in rad/s

De�nition 10.7. Given a system G(s):

� its frequency response is G(jω), a function of ω; Frequency response

� its gain at frequency ω is |G(jω)|; Gain

� its gain in decibel (denoted by symbol dB) is 20 log10 |G(jω)| (gain Gain in dB
|G(jω)| is often called gain in absolute value, to avoid confusion with the Gain in absolute value
gain in decibel);

� its phase at frequency ω is ∠G(jω). Phase

Remark 10.10. These de�nitions are used even if G(s) is not stable. If the
system is stable:

� the gain is the ratio between the amplitude of the steady-state output and
the amplitude of the input;

� the phase is the di�erence in phase between the steady-state output sinu-
soid and the input sinusoid.

Example 10.13. Figure 10.12 shows the output of G(s) = 300(s+1)
(s+10)(s+100) for a

sinusoidal input of frequency 1 rad/s, found as follows:

>> s = tf('s');

>> G = 300*(s+1)/((s+10)*(s+100));

>> t = 0 : 0.001 : 30;

>> figure, plot(t,sin(t), t,lsim(G,sin(t),t))

>> xlabel('time [s]'), ylabel('output'), grid
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The amplitude of the input is 1, by construction; the amplitude of the out-
put is 0.4219. So the gain at 1 rad/s is 0.4219

1 = 0.4219 in absolute value, or
20 log10 0.4219 = −7.50 dB. This maximum value is taking place at 26 s, while
the corresponding maximum of the input takes place later, at 4×2π+ π

2 = 26.7 s.
As the period is 2π = 6.28 s, the phase is 26.7−26

6.28 × 360◦ = 40◦.
Figure 10.12 also shows the output of G(s) when the frequency is 200 rad/s:

>> t = 0 : 0.0001 : 0.2;

>> figure, plot(t,sin(200*t), t,lsim(G,sin(200*t),t))

>> xlabel('time [s]'), ylabel('output'), grid

In that case, the amplitude of the input is still 1 and the amplitude of the
output is 1.313. So the gain at 200 rad/s is 1.313

1 = 1.313 in absolute value, or
20 log10 1.313 = 2.37 dB. This maximum value is taking place at 0.1703 s, while
the corresponding maximum of the input takes place earlier, at 5× 2π

200 +
π
2

200 =
0.1649 s. As the period is 2π

200 = 0.0314 s, the phase is 0.1649−0.1703
0.0314 × 360◦ =

−62◦.
In both cases, it is visible that the �rst oscillations are not sinusoidal, because

of both their shape and their varying amplitudes. In other words, the transient
has not yet disappeared by then.

In the example above, the amplitude of the output was larger than that of
the input in one case, and smaller in the other. Also in one case the extremes
of the output sinusoid took place earlier than those of the input sinusoid, while
in the other case it was the other way round.

De�nition 10.8. Given

� a stable system G(s),

� with sinusoidal input of frequency ω and amplitude Au,

� with steady-state sinusoidal output also of frequency ω and amplitude
Ay = Au|G(jω)|,

then:

� If the amplitude of the output is larger than the amplitude of the input,
Ay > Au, the system is amplifying its input:Ampli�cation

Ay > Au ⇒ |G(jω)| = Ay
Au

> 1⇒ 20 log10 |G(jω)| > 0 dB (10.69)

That is to say:

� the gain in absolute value is larger than 1;

� the gain in decibel is larger than 0 dB.

� If the amplitude of the output is smaller than the amplitude of the input,
Ay > Au, the system is attenuating its input:Attenuation

Ay < Au ⇒ |G(jω)| = Ay
Au

< 1⇒ 20 log10 |G(jω)| < 0 dB (10.70)

That is to say:

� the gain in absolute value is smaller than 1;

� the gain in decibel is smaller than 0 dB.

� If the amplitude of the output and the amplitude of the input are the same,
Ay = Au, the system is neither amplifying nor attenuating its input:

Ay = Au ⇒ |G(jω)| = Ay
Au

= 1⇒ 20 log10 |G(jω)| = 0 dB (10.71)

That is to say:

� the gain in absolute value is 1;

� the gain in decibel is 0 dB.
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Table 10.1: Gain values; Au is the amplitude of the input sinusoid and Ay is
the amplitude of the steady-state output sinusoid

Gain in absolute value Gain in decibel Amplitudes
Minimum value |G(jω)| = 0 20 log 10|G(jω)| = −∞ dB Ay = 0

Attenuation 0 < |G(jω)| < 1 20 log 10|G(jω)| < 0 dB Ay < Au
Input and output with same amplitude |G(jω)| = 1 20 log 10|G(jω)| = 0 dB Ay = Au

Ampli�cation |G(jω)| > 1 20 log 10|G(jω)| > 0 dB Ay > Au

Furthermore:

� If the extremes of the output take place earlier than the corresponding
extremes of the input, the output leads in relation to the input; thisPhase lead
means that

∠G(jω) > 0 (10.72)

� If the extremes of the output take place later than the corresponding
extremes of the input, the output lags in relation to the input; this meansPhase lag
that

∠G(jω) < 0 (10.73)

� If the extremes of the output and the corresponding extremes of the input
take place at the same time, the output and the input are in phase; this
means that

∠G(jω) = 0 (10.74)

� If the maxima of the output and the minima of the input take place at
the same time, and vice versa, the output and the input are in phasePhase opposition
opposition; this means that

∠G(jω) = ±180◦ = ±π rad (10.75)

Remark 10.11. Notice that, since sinusoids are periodic, the phase is de�ned
up to 360◦ shifts: a 90◦ phase is undistinguishable from a −270◦ phase, or for
that matter from a 3690◦ phase or any 90◦ + k360◦, k ∈ Z phase. While each
of these values can be in principle arbitrarily chosen, it usual to make the phase
vary continuously (as much as possible) with frequency, starting from values for
low frequencies determined as we will see below in Section 11.4.

De�nition 10.9. Frequencies ωgc at which the frequency response of a plantGain crossover frequency
G(s) veri�es

|G(jω)| = 1⇔ 20 log10 |G(jω)| = 0 dB (10.76)

are called gain crossover frequencies.

De�nition 10.10. Frequencies at which input and output are in phase oppo-Phase crossover frequency
sition are called phase crossover frequencies.

Gain values can be summed up as shown in Table 10.1.

Example 10.14. Consider the responses to sinusoidal inputs ofG(s) = 1
s2+0.5s+1

in Figure 10.13.

� For ω = 0.5 rad/s:

� The amplitude of the output is larger than that of the input, so we
must have

|G(j0.5)| > 1⇔ 20 log10 |G(j0.5)| > 0 dB (10.77)

� In fact, the gain is

|G(j0.5)| =
∣∣∣∣ 1

(j0.5)2 + 0.5j0.5 + 1

∣∣∣∣ =

∣∣∣∣ 1

1− 0.25 + j0.25

∣∣∣∣ =
1√

0.752 + 0.252
= 1.26

⇒ 20 log10G(j0.5) = 20 log10 1.26 = 2 dB (10.78)
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� The output is delayed in relation to the input, so we must have
∠G(j0.5) < 0.

� In fact, the phase is

∠G(j0.5) = ∠

(
1

0.75 + j0.25

)
= ∠1− ∠(0.75 + j0.25) = 0◦ − arctan

0.25

0.75
= −18◦

(10.79)

� For ω = 1 rad/s:

� The amplitude of the output is even larger now, so

|G(j)| > |G(j0.5)| = 1.26⇔ 20 log10 |G(j)| > 20 log10G(j0.5) = 2 dB
(10.80)

� In fact, the gain is

|G(j)| =
∣∣∣∣ 1

j2 + 0.5j + 1

∣∣∣∣ =

∣∣∣∣ 1

j0.5

∣∣∣∣ =
1

0.5
= 2

⇒ 20 log10G(j) = 20 log10 2 = 6 dB (10.81)

� The output is delayed in relation to the input. Furthermore, the
output crosses zero as the input is already at a peak or at a through.
So the phase is negative, and equal to −90◦.

� In fact,

∠G(j) = ∠

(
1

j0.5

)
= ∠1− ∠(j0.5) = 0◦ − 90◦ = −90◦ (10.82)

� For ω = 2 rad/s:

� The amplitude of the input is larger than that of the output, so we
must have

|G(j2)| < 1⇔ 20 log10 |G(j2)| < 0 dB (10.83)

� In fact, the gain is

|G(j2)| =
∣∣∣∣ 1

(2j)2 + 0.5j2 + 1

∣∣∣∣ =

∣∣∣∣ 1

−3 + j

∣∣∣∣ =
1√

9 + 1
= 0.316

⇒ 20 log10G(j2) = 20 log10 10−
1
2 = −10 dB (10.84)

� The output is delayed in relation to the input. Furthermore, input
and output are almost in phase opposition, but not yet. So we must
have 0◦ < ∠G(j2) < −180◦, but close to the latter value.

� In fact, the phase is

∠G(j2) = ∠

(
1

−3 + j

)
= ∠1− ∠(−3 + j) = 0◦ − arctan

1

−3
= −162◦

(10.85)

The Bode diagram, or Bode plot, is a graphical representation of the fre- Bode diagram
quency response of a system, as a function of frequency. This diagram comprises
two plots:

� a top plot, showing the gain in dB (y�axis) as a function of frequency in
a semi-logarithmic scale (x�axis);

� a bottom plot, showing the phase in degrees (y�axis) as a function of
frequency in a semi-logarithmic scale (x�axis).

Frequency is usually given in rad/s, but sometimes in Hz.

De�nition 10.11. A frequency variation corresponding to a 10�fold increase Decade
or decrease is called decade. In a Bode diagram, since the frequency is shown
in a logarithmic scale, decades are equally spaced.
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Figure 10.13: Responses of G(s) = 1
s2+0.5s+1 (blue) to input sinusoids (red)

with 0.5 rad/s (top), 1 rad/s (centre) and 2 rad/s (bottom).
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Figure 10.14: Bode diagram of G(s) =
300(s+ 1)

(s+ 10)(s+ 100)
.

In the following sections we will learn how to plot by hand the Bode diagram
of any plant (or at least a reasonable approximation thereof); meanwhile, the
following Matlab commands can be used instead:

� bode plots the Bode diagram of a system;

� freqresp calculates the frequency response of a system.

Example 10.15. The Bode diagram in Figure 10.14 of G(s) = 300(s+1)
(s+10)(s+100) Matlab's command bode

from Example 10.13 is found as follows:

>> s = tf('s');

>> G = 300*(s+1)/((s+10)*(s+100));

>> figure, bode(G), grid

The gains and phases at ω = 1 rad/s and ω = 200 rad/s found in Example 10.13
can be observed in the diagram.

This way we �rst �nd the frequency response and then use it to plot the Matlab's command
freqrespBode diagram:

>> [Gjw, w] = freqresp(G); % Gjw returned as a 3-dimensional tensor...

>> Gjw = squeeze(Gjw); % ...must now be squeezed to a vector

>> figure, subplot(2,1,1), semilogx(w, 20*log10(abs(Gjw)))

>> grid, xlabel('frequency [rad/s]'), ylabel('gain [dB]'), title('Bode diagram')

>> subplot(2,1,2), semilogx(w, rad2deg(unwrap(angle(Gjw))))

>> grid, ylabel('phase [degrees]') % unwrap avoids jumps of 360 degrees

To �nd the gains and phases to con�rm those found found in Example 10.13:

>> Gjw = freqresp(G, [1 200])

Gjw(:,:,1) =

0.3294 + 0.2640i

Gjw(:,:,2) =

0.6525 - 1.1704i

>> gains = 20*log10(abs(Gjw))

gains(:,:,1) =

-7.4909

gains(:,:,2) =

2.5420

>> phases = rad2deg(unwrap(angle(Gjw)))

phases(:,:,1) =

38.7165

phases(:,:,2) =

-60.8590

Here's another way of �nd the same values:
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>> w = [1 200];

>> Gjw = 300*(1i*w+1)./((1i*w+10).*(1i*w+100));

Gjw =

0.3271 + 0.2676i 0.6186 - 1.2212i

>> gains = 20*log10(abs(Gjw))

gains =

-7.4909 2.5420

>> phases = rad2deg(unwrap(angle(Gjw)))

phases =

38.7165 -60.8590

Notice the small di�erences due to numerical errors.

Example 10.16. The Bode diagram in Figure 10.15 of G(s) = 1
s2+0.5s+1 from

Example 10.14 shows the gains and phases found in that example, that can also
be found as follows:

>> G = tf(1,[1 .5 1])

G =

1

---------------

s^2 + 0.5 s + 1

Continuous-time transfer function.

>> figure,bode(G),grid on

>> Gjw = squeeze(freqresp(G, [.5 1 2]))

Gjw =

1.2000 - 0.4000i

0.0000 - 2.0000i

-0.3000 - 0.1000i

>> gains = 20*log10(abs(Gjw))

gains =

2.0412

6.0206

-10.0000

>> phases = rad2deg(unwrap(angle(Gjw)))

phases =

-18.4349

-90.0000

-161.5651

Example 10.17. From the Bode diagram in Figure 10.16, even without know-
ing what transfer function it belongs to, we can conclude the following:

� At ω = 0.1 rad/s, the gain is 20 dB (i.e. 10
20
20 = 10 in absolute value) and

the phase is 0◦ = 0 rad. So, if the input is

u(t) = 5 sin(0.1t+
π

6
) (10.86)

the steady-state output will be

y(t) = 5× 10 sin(0.1t+
π

6
) = 50 sin(0.1t+

π

6
) (10.87)

� At ω = 10 rad/s, the gain is 17 dB (i.e. 10
17
20 = 7.1 in absolute value) and

the phase is −45◦ = −π4 rad. So, if the input is

u(t) = 5 sin(10t+
π

6
) (10.88)

the steady-state output will be

y(t) = 5× 7.1 sin(10t+
π

6
− π

4
) = 35.5 sin(10t− π

12
) (10.89)
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Figure 10.15: Bode diagram of
1

s2 + 0.5s+ 1
.

� At ω = 100 rad/s, the gain is 0 dB (i.e. 100 = 1 in absolute value) and
the phase is −85◦ = −1.466 rad. So, if the input is

u(t) = 5 sin(100t+
π

6
) (10.90)

the steady-state output will be

y(t) = 5× 1 sin(100t+ 0.524− 1.466) = 5 sin(100t− 0.942) (10.91)

� At ω = 1000 rad/s, the gain is −20 dB (i.e. 10
−20
20 = 0.1 in absolute value)

and the phase is −90◦ = −π2 rad. So, if the input is

u(t) = 5 sin(1000t+
π

6
) (10.92)

the steady-state output will be

y(t) = 5× 0.1 sin(1000t+
π

6
− π

2
) = 0.5 sin(1000t− π

3
) (10.93)

� The system is linear. So, if the input is

u(t) = 0.5 sin(0.1t+
π

6
) + 25 sin(1000t+

π

6
) (10.94)

the steady-state output will be

y(t) = 0.5× 10 sin(0.1t+
π

6
) + 25× 0.1 sin(1000t+

π

6
− π

2
)

= 5 sin(0.1t+
π

6
) + 2.5 sin(1000t− π

3
) (10.95)

Notice how the frequency with the largest amplitude in the input now has
the smallest.

Glossary

And he said: Behold, it is one people, and one tongue is to al: and
they haue begunne to doe this, neyther wil they leaue of from their
determinations, til they accomplish them indede. Come ye therfore,
let vs goe downe, and there confound their tongue, that none may
heare is neighbours voice.

Moses (attrib.; 13th c. BC?), Genesis, xi 6�7, Douay-Rheims version (1609)
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Figure 10.16: Bode diagram of Example 10.17.

ampli�cation ampli�cação
attenuation atenuação
bounded signal sinal limitado
decade década
frequency response resposta em frequência
gain ganho
gain crossover frequency frequência de cruzamento de ganho
impulse impulso
marginally stable marginalmente estável
phase fase
phase crossover frequency frequência de cruzamento de fase
phase lag atraso de fase
phase lead avanço de fase
phase opposition oposição de fase
phase crossover frequency frequência de cruzamento de fase
ramp rampa
square wave onda quadrada
static gain ganho estacionário
steady-state estado estacionário
steady-state response resposta estacionária
stable estável
step degrau, escalão
transient response resposta transiente
triangle wave onda triangular
unit ramp rampa unitária
unit step degrau unitário
unstable instável

Exercises

1. For each of the following pairs of a transfer function and an input:

� �nd the Laplace transform of the input;

� �nd the Laplace transform of the output;

� �nd the value of the output for t � 1 without using the inverse
Laplace transform;

� �nd the output as a function of time;

� separate that function of time into a transient and a steady state;

� con�rm the value of the output for t� 1 found previously.

(a) G(s) =
10

s2 + 21s+ 20
and u(t) = 0.4, t > 0
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(b) G(s) =
5

s+ 0.1
and u(t) = 2t, t > 0

(c) G(s) =
s

s2 + s+ 1
and u(t) = δ(t)

(d) G(s) =
s

s2 + s+ 1
and u(t) = 0.4, t > 0

(e) G(s) =
7

s
and u(t) = 0.4, t > 0

2. From the poles of the transfer functions of Exercise 1 of Chapter 9, explain
which of them are stable, unstable, or marginally stable.

3. Figure 10.17 shows the Bode diagrams of some transfer functions. For each
of them, read in the Bode diagram the values from which you can calculate
the transfer function's steady state response to the following inputs:

� u(t) = sin(2t)

� u(t) = sin(2t+ π
2 )

� u(t) = sin(1000t)

� u(t) = 10 sin(1000t)

� u(t) = 1
3 sin(0.1t− π

4 ) + sin(2t+ π
2 )10 sin(1000t)

4. For each of the following transfer functions:

� �nd the corresponding Fourier transform;

� �nd the gain (both in absolute value and in decibel) and the phase
(in radians or degrees, as you prefer) at the indicated frequencies.

(a) G(s) =
5

s+ 0.1
and ω = 0.01, 0.1, 1 rad/s

(b) G(s) =
s

s2 + s+ 1
and ω = 0.1, 1, 10 rad/s

(c) G(s) =
7

s
and ω = 1, 10, 100 rad/s

5. In naval and ocean engineering it is usual to call Response Amplitude RAO
Operator (RAO) to what we called gain. It is often represented in abso-
lute value in a linear plot as a function of frequency. Figure 10.18 shows
the RAO of four di�erent heaving buoys. Suppose that each of them is
subject to waves with an amplitude of 2 m and a frequency of 2π rad/s.
What will be the amplitude of the oscillation of each buoy?

6. Consider transfer function G(s) =
10

10s+ 1
.

(a) When the input is a unit step, what will the steady state response
be?

(b) When the input is a step with amplitude 3, what will the steady state
response be?

(c) Without computing an expression for the output, give a rough esti-
mate of how long it takes for the output to reach 20, when the input
is a step with amplitude 3.

(d) Without computing an expression for the output, give a rough esti-
mate of the 2% settling time, when the input is a step with amplitude
3.

(e) Calculate the output as a function of time, using an inverse Laplace
transform, and �nd the exact values of the estimations from the last
two questions.

(f) Suppose that the input is now a unit step again. What will the
new value of the 2% settling time be? Hint: is the system linear or
non-linear?

7. Show that, in (10.21), if 0 /∈ [a, b] and function g(t) is bounded, the inte-
grand is zero everywhere, and the integral is zero.
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Figure 10.17: Bode diagrams of Exercise 3.
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Figure 10.18: RAO of four heaving buoys of Exercise 5 (source:
http://marine-eng.ir/article-1-80-en.pdf).
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Chapter 11

Finding time and frequency

responses

A rocket-driven spaceship can, obviously, only accelerate along its
major axis � that is, `forwards'. Any deviation from a straight
course demands a physical turning of the ship, so that the motors
can blast in another direction. Everyone knows that this is done by
internal gyros or tangential steering jets: but very few people know
just how long this simple manoeuvre takes. The average cruiser,
fully fuelled, has a mass of two or three thousand tons, which does
not make for rapid footwork. But things are even worse than this,
for it is not the mass, but the moment of inertia that matters here
� and since a cruiser is a long, thin object, its moment of inertia
is slightly colossal. The sad fact remains (though it is seldom men-
tioned by astronautical engineers) that it takes a good ten minutes to
rotate a spaceship through 180 degrees, with gyros of any reasonable
size. Control jets are not much quicker, and in any case their use is
restricted because the rotation they produce is permanent and they
are liable to leave the ship spinning like a slow-motion pin-wheel, to
the annoyance of all inside.

In the ordinary way, these disadvantages are not very grave. One
has millions of kilometres and hundreds of hours in which to deal
with such minor matters as a change in the ship's orientation. It is
de�nitely against the rules to move in ten-kilometre-radius circles,
and the commander of the Doradus felt distinctly aggrieved.

Arthur C. Clarke (1917 � �2008), Hide-and-seek, Astounding Science
Fiction, September 1949

In this chapter we systematically study the time and frequency responses of
di�erent systems, beginning with the simplest cases.

11.1 Time and frequency responses of a pole at
the origin

In this section we study the behaviour of transfer functions of the form

G(s) =
b

s
, b > 0 (11.1)

which have one pole at the origin, s = 0.
As to time responses, it is clear that, for any input u(t), the output is 1

s integrates its input

y(t) = L −1

[
U(s)

b

s

]
= b

∫ t

0

u(t) (11.2)

where we have used (2.47). In particular, the unit step response of (11.1) is Unit step response of bs

y(t) = L −1

[
b

s2

]
= bt (11.3)

161
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Figure 11.1: Response of bs to a step of amplitude K.

Figure 11.2: Bode diagram of bs .

and in the more general case of a step with amplitude K the response is Step response of bs

y(t) = bKt (11.4)

This response will go up if K > 0 and go down if K < 0, as seen in Figure 11.1.
As we know, (11.1) is marginally stable, since

� its response to a step, which is a bounded input, is not bounded;

� its impulse response, y(t) = L −1
[
b
s

]
= bH(t), is bounded.

The frequency response of (11.1) isFrequency response of bs

G(jω) =
b

jω
(11.5)

|G(jω)| =
∣∣∣∣ bjω

∣∣∣∣ =
b

ω
(11.6)

20 log10 |G(jω)| =
∣∣∣∣ bjω

∣∣∣∣ = 20 log10 b+ 20 log10 ω (11.7)

∠G(jω) = ∠b︸︷︷︸
0◦

−∠(jω)︸ ︷︷ ︸
90◦

= −90◦ (11.8)

As to the gain of (11.8), notice that:

� it is shown as a straight line in a Bode diagram, since it has a linear
variation with log10 ω;
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� the slope of that straight line is always −20 dB per decade;

� there is one gain crossover frequency, which is b rad/s;

� when compared with the case b = 1, the gain is shifted up if b > 1 or down
if 0 < b < 1, by 20 log10 b in either case.

11.2 Time and frequency responses of a �rst-order
system without zeros

In this section we study the behaviour of transfer functions of the form

G(s) =
b

s+ a
, a 6= 0, b > 0 (11.9)

which have one pole, s = −a 6= 0.
The unit step response of (11.9) is, as can be seen in Table 2.1, Step response of b

s+a

y(t) =
b

a

(
1− e−at

)
(11.10)

and, in the more general case of a step with amplitude K, the step response is

y(t) =
bK

a

(
1− e−at

)
(11.11)

As we know, (11.9) is

� stable if a > 0 (pole in −a ∈ R−), in which case the exponential in
(11.10)�(11.11) vanishes when t increases;

� unstable if a < 0 (pole in −a ∈ R+), in which case the exponential in
(11.10)�(11.11) keeps increasing when t increases.

Figure 11.3 shows the general shape of the step response. Notice that, if the
system is stable:

� the steady-state response is constant and given by yss = bK
a ;

� the response will go up if K > 0 and down if K < 0;

� the response is monotonous, and thus the output is never larger than the
steady-state value;

� the response changes with time as follows:

y

(
0.7

a

)
=
bK

a

(
1− e−0.7

)
= 0.50 yss (11.12)

y

(
1

a

)
=
bK

a

(
1− e−1

)
= 0.63 yss (11.13)

y

(
2

a

)
=
bK

a

(
1− e−2

)
= 0.86 yss (11.14)

y

(
2.3

a

)
=
bK

a

(
1− e−2.3

)
= 0.90 yss (11.15)

y

(
3

a

)
=
bK

a

(
1− e−3

)
= 0.95 yss (11.16)

y

(
4

a

)
=
bK

a

(
1− e−4

)
= 0.98 yss (11.17)

y

(
4.6

a

)
=
bK

a

(
1− e−4.6

)
= 0.99 yss (11.18)

� 1
a is called time constant; Time constant

� the slope of the response at t = 0 is given by

y′(0) =
bK

a
ae−a0 = bK (11.19)
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Figure 11.3: Response of b
s+a to a step with amplitude K.

De�nition 11.1. The x%�settling time ts,x% is the minimum value of time Settling time
for which

∀t > ts,x%, yss

(
1− x

100

)
≤ y(t) ≤ yss

(
1 +

x

100

)
(11.20)

The most usual are the 5%�settling time and the 2%�settling time, though other
values, such as 10%, 15%, or 1%, are sometimes found.

Since step response (11.11) is monotonous, (11.12)�(11.18) show that

� its 10% settling time is ts,10% = 2.3
a ;

� its 5% settling time is ts,5% = 3
a ;

� its 2% settling time is ts,2% = 4
a ;

� its 1% settling time is ts,1% = 4.6
a .

The frequency response of (11.9) isFrequency response of b
s+a

G(jω) =
b

jω + a
=
b(a− jω)

a2 + ω2
(11.21)

|G(jω)| =
∣∣∣∣ b

jω + a

∣∣∣∣ =
b√

a2 + ω2
(11.22)

20 log10 |G(jω)| = 20 log10 b− 10 log10

(
a2 + ω2

)
[dB] (11.23)

∠G(jω) = 0− ∠(jω + a) = − arctan
ω

a
(11.24)

and thus, if a > 0 (stable system):

� for low frequencies,

ω � a⇒ G(jω) ≈ b

a
(11.25)

ω � a⇒ |G(jω)| ≈
∣∣∣∣ ba
∣∣∣∣ =

b

a
(11.26)

ω � a⇒ 20 log10 |G(jω)| ≈ 20 log10

b

a
[dB] (11.27)

ω � a⇒ ∠G(jω) ≈ ∠

(
b

a

)
= 0◦ (11.28)
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� for frequency ω = a,

G(ja) =
b

a(j + 1)
(11.29)

|G(ja)| =
∣∣∣∣ b

a(j + 1)

∣∣∣∣ =
b

a

1√
2

(11.30)

20 log10 |G(ja)| = 20 log10

b

a
− 20 log10

√
1 + 1 ≈ 20 log10

b

a
− 3 [dB]

(11.31)

∠G(ja) = 0− ∠(j + 1) = −45◦ (11.32)

� for high frequencies,

ω � a⇒ G(jω) ≈ b

jω
(11.33)

ω � a⇒ |G(jω)| ≈
∣∣∣∣ bjω

∣∣∣∣ =
b

ω
(11.34)

ω � a⇒ 20 log10 |G(jω)| ≈ 20 log10 b− 20 log10 ω [dB] (11.35)

ω � a⇒ ∠G(jω) ≈ ∠

(
b

jω

)
= −90◦ (11.36)

In other words:

� for low frequencies, b
s+a is similar to constant b

a , with a zero phase and a
constant gain;

� for high frequencies, b
s+a is similar to b

s , with a −90◦ phase and a linear
gain with a slope of −20 dB per decade;

� the phase goes down from 0◦ for low frequencies to −90◦ for high frequen-
cies.

If a < 0, the gain is the same; only the phase changes:

� for low frequencies,

ω � a⇒ ∠G(jω) ≈ ∠

(
b

a

)
= −180◦ (11.37)

� for frequency ω = |a|,

G(j|a|) =
b

a+ j|a|
=

b

|a|(−1 + j)
(11.38)

ω = |a| ⇒ ∠G(jω) = 0− ∠(−1 + j) = −135◦ (11.39)

� for high frequencies,

ω � a⇒ G(jω) ≈ b

jω
ω � a⇒ ∠G(jω) ≈ ∠

(
b

jω

)
= −90◦ (11.40)

So in this case the phase goes up from −180◦ for low frequencies to −90◦ for
high frequencies. Remember that since the system is unstable in this case the
output will not be a sinusoid in steady state (it will have diverged exponentially
to in�nity).

Figure 11.4 shows the Bode diagram of (11.9).

Remark 11.1. The Bode diagram of (11.9) in Figure 11.4 is often approximated
by its asymptotes shown in Figure 11.5.

Remark 11.2. The steady-state response of (11.9) to a unit step b
a can be found

from the gain for low frequencies (11.25). In fact, a low frequency corresponds
to a large time span.
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Figure 11.4: Bode diagram of b
s+a .
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Figure 11.5: Asymptotes of the Bode diagram of b
s+a in Figure 11.4.
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11.3 Time and frequency responses of a second-
order system without zeros

In this section we study the behaviour of transfer functions of the form

G(s) =
b

s2 + a1s+ a2
, b > 0 (11.41)

which have two poles. It is usual to rewrite (11.41) as

G(s) =
b

s2 + 2ξωns+ ω2
n

=
b

(s+ ξωn +
√
ξ2 + 1)(s+ ξωn −

√
ξ2 + 1)

, b > 0

(11.42)

For reasons we will see later, ξ is called damping coe�cient and ωn natural
frequency. The poles of (11.42) are

p1 = −ξωn + ωn
√
ξ2 − 1 (11.43)

p2 = −ξωn − ωn
√
ξ2 − 1 (11.44)

Notice that:

� (11.41) can always be put in the form (11.42), save

� when a2 < 0, in which case the transfer function is unstable, as can
be easily seen in a way we will learn below in section 11.5),

� or when a2 = 0 6= a1, in which case there is one pole at the origin,
and the transfer function is marginally stable;

� if either ξ or ωn are negative the real part of the poles is positive and
(11.42) is unstable too;

� if both ξ or ωn are negative, (11.42) is just as if both were positive, so
that case need not be considered;

� if ωn = 0 then G(s) = b
s2 , which is unstable;

� if ξ ≥ 1 then the poles are real, in which case we can write

G(s) =
b

(s+ p1)(s+ p2)
, b > 0, p1, p2 ∈ R (11.45)

� if, in particular, ξ = 1 then the two real poles are both equal to −ωn:

G(s) =
b

(s+ ωn)2
, b, ωn > 0 (11.46)

� if 0 ≤ ξ < 1 the system is not unstable and the complex conjugate poles
are given by

p1 = −ξωn + jωn
√

1− ξ2 (11.47)

p2 = −ξωn − jωn
√

1− ξ2 (11.48)

Five cases will be treated separately:

� ξ > 1, i.e. the two poles are real and di�erent, as in (11.45): in this caseOverdamped system
the system is called overdamped;

� ξ = 1, i.e. there is a double pole, as in (11.46): in this case the system isCritically damped system
called critically damped;

� 0 < ξ < 1, i.e. the two poles are complex conjugate and stable: in thisUnderdamped system
case the system is called underdamped;

� ξ = 0, i.e. the two poles are complex conjugate and marginally stable: inSystem with no damping
this case the system is said to have no damping;
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Figure 11.6: Location of the poles in the complex plane of second order systems.
Notice that the bottom left undamped system is marginally stable, as well as
the bottom centre one with a pole at the origin.

� G(s) = b
s2+a1s

= b
s(s+a1) , b > 0, i.e. the transfer function is marginally

stable with one pole in the origin.

See Figure 11.6.
If both poles of (11.41) are real, di�erent from zero and di�erent from eachStep response of

overdamped system
b

(s+p1)(s+p2)

other, then its response to a step of amplitude K is, as can be seen in Table 2.1,

y(t) =
bK

p1p2

(
1 +

1

p1 − p2

(
p2 e
−p1t − p1 e

−p2t
))

(11.49)

As expected, should either p1 or p2 be negative, (11.49) would diverge to in�nity.
Assuming that both p1 and p2 are positive, we can rewrite (11.49) using (11.43)�
(11.44):

p1p2 = (−ξωn + ωn
√
ξ2 − 1)(−ξωn − ωn

√
ξ2 − 1)

= ξ2ω2
n − ω2

n(ξ2 − 1) = ω2
n (11.50)

p1 − p2 = −ξωn + ωn
√
ξ2 − 1− (−ξωn − ωn

√
ξ2 − 1) = 2ωn

√
1− ξ2 (11.51)

y(t) =
bK

ω2
n

(
1 +

1

2
√

1− ξ2

(
(−ξ −

√
ξ2 − 1) e(ξ−

√
ξ2−1)ωnt − (−ξ +

√
ξ2 − 1) e(ξ+

√
ξ2−1)ωnt

))
(11.52)

Then:

� the steady-state response is constant and given by yss = bK
p1p2

= bK
ω2
n
;

� the response begins at 0 with a horizontal slope, since

y′(t) =
bK

p1p2

1

p1 − p2

(
−p1p2 e

−p1t + p1p2 e
−p2t

)
(11.53)

and thus y′(0) = 0;

� the response is monotonous, since y′(t) = bK
p1−p2

(e−p2t − e−p1t) = 0 admits
only one solution which is t = 0;
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� there is an in�ection point, which can be found as follows:

y′′(t) =
bK

p1 − p2

(
p1e
−p1t − p2e

−p2t
)

= 0

⇒ log p1 − p1t = log p2 − p2t

⇔ t =
p1 − p2

log p1 − log p2
(11.54)

(11.52) shows that y(t) depends on t only in the argument of the two exponen-
tials, where t appears multiplied by ωn. This product ωnt has no dimensions.
This step response can be put as a function of ωnt, as in Figure 11.7, and then
will vary only with ξ as shown.

The frequency response in this case can be easily found thanks to the fol-Frequency response
of overdamped system

b
(s+p1)(s+p2)

lowing result:

Theorem 11.1. The gain in dB and the phase of the product of two transfer
functions are the sum of their separate gains and phases:

20 log10 |G1(s)G2(s)| = 20 log10 |G1(s)|+ 20 log10 |G2(s)| (11.55)

∠ [G1(s)G2(s)] = ∠ [G1(s)] + ∠ [G2(s)] (11.56)

So we can just add the frequency responses of two �rst-order systems and
obtain the responses in Figure 11.8. Again, it usual to plot the corresponding
asymptotes, shown in Figure 11.9, instead. Notice that:

� For low frequencies, the gain is 20 log10
b

p1p2
= 20 log10

b
ω2
n
dB, and the

phase is 0◦. Indeed, when ω ≈ 0, the system is similar to a constant:

G(jω) =
b

−ω2 + 2ξωnjω + ω2
n

≈ b

ω2
n

(11.57)

� For high frequencies, the gain is linear with a slope of −40 dB per decade,
and the phase is −180◦. Indeed, when ω � p1, p2, the system is similar
to a double integrator:

G(jω) =
b

−ω2 + 2ξωnjω + ω2
n

≈ − b

ω2
(11.58)

� When the two poles do not have the same order of magnitude, it is possible
to notice their e�ect on gain and phase separately. But, if the values of
p1 and p2 are close to each other, their e�ects on the frequency response
merge.

If both poles of (11.41) are equal, (11.50) shows that p1 = p2 = ωn, and theStep response of critically
damped system b

(s+ωn)2 system's response to a step of amplitude K is, as can be seen in Table 2.1,

y(t) =
bK

ω2
n

(
1− e−ωnt − ωnte−ωnt

)
(11.59)

As expected, should p be negative, (11.59) would diverge to in�nity. Assuming
that p is positive, then:

� the steady-state response is constant and given by yss = bK
ω2
n
;

� the response begins at 0 with a horizontal slope, since

y′(t) =
bK

ω2
n

(
ωne

−ωnt − ωne−ωnt + ω2
nte
−ωnt

)
= bKte−ωnt (11.60)

and thus y′(0) = 0;

� the response is monotonous, since y′(t) = bKte−ωnt = 0 admits only one
solution which is t = 0;

� there is an in�ection point, which can be found as follows:

y′′(t) = bK
(
e−ωnt − ωnte−ωnt

)
= bK(1− ωnt)e−ωnt = 0

⇔ t =
1

ωn
(11.61)
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Figure 11.7: Response of b
s2+2ξωns+ω2

n
, b, ωn > 0 to a step with ampli-

tude K > 0. Top: ξ = 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3. Bottom:
ξ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.
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Figure 11.8: Bode diagram of b
s2+2ξωns+ω2

n
, b, ωn > 0, ξ > 1, i.e. of

b
(s+p1)(s+p2) , b, p1, p2 > 0. Top: ξ � 1. Bottom: ξ > 1.
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Figure 11.9: Asymptotes of the Bode diagram of b
s2+2ξωns+ω2

n
, b, ωn > 0, ξ > 1,

i.e. of b
(s+p1)(s+p2) , b, p1, p2 > 0, in Figure 11.8. Top: ξ � 1. Bottom: ξ > 1.

Notice how in the latter case the aporoximation is poorer.
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Figure 11.10: Bode diagram of b
s2+2ξωns+ω2

n
, b, ωn > 0, for ξ =

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

Once more, (11.59) shows that y(t), given in Figure 11.7, depends on t only, by
product ωnt.

The frequency response in this case can be found thanks to (11.55)�(11.56)Frequency response of
critically damped system

b
(s+ωn)2

and is shown in Figure 11.10. Again, it usual to plot instead the corresponding
asymptotes, shown in Figure 11.11. Notice that:

� For low and high frequencies, the frequency response is the same as in the
overdamped case.

� For ω = ωn, the gain and phase are

G(jωn) =
b

(jωn + ωn)2
=

b

ω2
n(j + 1)2

=
b

2jω2
n

(11.62)

20 log10 |G(jωn)| = 20 log10

b

ω2
n

− 20 log10 2

= 20 log10

b

ω2
n

− 6 dB (11.63)

∠G(jωn) = −90◦ (11.64)

If the poles of (11.41) are complex conjugate, the system's response to a stepStep response of un-
derdamped system

b
s2+2ξωns+ω2

n

of amplitude K is, as can be seen in Table 2.1,

y(t) =
bK

ω2
n

(
1− 1√

1− ξ2
e−ξωnt sin

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

))
(11.65)

See Figure 11.7. As already mentioned, should product −ξω be positive (i.e. if
either ξ or ωn are negative), (11.65) would diverge to in�nity. Assuming that
the system is stable, i.e. that 0 < ξ < 1, then:

� the steady-state response is again constant and given by yss = bK
ω2
n
;

� the response has oscillations caused by the sinusoid, and so is not monotonous;

� the frequency of the oscillations, ωn
√

1− ξ2, is called damped frequencyDamped frequency
(as opposed to natural frequency ωn);

� the oscillations have decreasing amplitudes thanks to the exponential;
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Figure 11.11: Asymptotes of the Bode diagram of b
s2+2ξωns+ω2

n
, b, ωn > 0, for

ξ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and
√

2
2 ≤ ξ ≤ 1.

� indeed, since −1 ≤ sinx ≤ 1, ∀x, the response y(t) is limited by two
exponential curves ȳ(t) and y(t) that converge to yss (see Figure 11.12):

y(t) =
bK

ω2
n

(
1− e−ξωnt√

1− ξ2

)
≤ y(t) ≤ bK

ω2
n

(
1 +

e−ξωnt√
1− ξ2

)
= ȳ(t)

(11.66)

� the oscillations take place around the steady-state, which means that the Overshoot
response will exceed that value at some instants: this is called overshoot
(see Figure 11.12);

� the response begins at 0 with a horizontal slope, since

y′(t) = − bK

ω2
n

√
1− ξ2

[
−ξωne−ξωnt sin

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)

+ωn
√

1− ξ2e−ξωnt cos

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)]

=
bK e−ξωnt

ωn
√

1− ξ2

[
ξ sin

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)

−
√

1− ξ2 cos

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)]
(11.67)

and thus

y′(0) =
bK

ωn
√

1− ξ2

(
ξ sin

(
arctan

sin︷ ︸︸ ︷√
1− ξ2

ξ︸︷︷︸
cos

)
−
√

1− ξ2 cos

(
arctan

sin︷ ︸︸ ︷√
1− ξ2

ξ︸︷︷︸
cos

))

=
bK

ωn
√

1− ξ2

(
ξ
√

1− ξ2 −
√

1− ξ2ξ
)

= 0 (11.68)

� that the response is not monotonous can also be seen equalling (11.67) to
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zero, so as to �nd the time instants in which (11.65) changes direction:

y′(t) = 0 (11.69)

⇔ ξ sin

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)

−
√

1− ξ2 cos

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)
= 0

⇔ tan

(
ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ

)
=

√
1− ξ2

ξ

⇒ ωn
√

1− ξ2t+ arctan

√
1− ξ2

ξ
= arctan

√
1− ξ2

ξ
+ kπ

⇔ t =
kπ

ωn
√

1− ξ2
, k ∈ Z

� because the upper exponential curve in (11.66) limiting the response de-
creases with time, the �rst overshoot is the largest, and its maximum value
is thus the the maximum overshoot;

� the value Mp of this maximum overshoot is usually given as a percentageMaximum overshoot
of the steady-state value:

Mp =
max y(t)− yss

yss
⇔ max y(t) = yss(1 +Mp) (11.70)

� the time instant at which the maximum overshoot takes place is the peakPeak time
time tp, which is consequently given by (11.69) for k = 1:

tp =
π

ωn
√

1− ξ2
(11.71)

� Mp can be found replacing (11.71) in (11.65) and then using (11.70):

y(tp) =
bK

ω2
n

(
1− 1√

1− ξ2
e
−ξωn π

ωn

√
1−ξ2 sin

(
ωn
√

1− ξ2
π

ωn
√

1− ξ2
+ arctan

√
1− ξ2

ξ

))

=
bK

ω2
n

(
1− 1√

1− ξ2
e
−ξπ√
1−ξ2 sin

(
π + arctan

sin︷ ︸︸ ︷√
1− ξ2

ξ︸︷︷︸
cos

)
︸ ︷︷ ︸

sin arctan
√

1−ξ2/ξ

)

=
bK

ω2
n

(
1 + e

−ξπ√
1−ξ2

)

⇒Mp =

bK
ω2
n

(
1 + e

−ξπ√
1−ξ2

)
− bK

ω2
n

bK
ω2
n

= e
−ξπ√
1−ξ2 (11.72)

� (11.65) could be used to �nd settling times for di�erent percentages ofSettling time
the steady-state value, but the sinusoid makes calculations di�cult (the
response is not monotonous) and numerical results have abrupt variations
with ξ; it is easier to obtain approximated (by excess) settling times from
the (monotonous) limiting exponential curves in (11.66), e.g. ȳ(t):

ȳ(ts,x%) = yss

(
1 +

x

100

)
⇔ bK

ω2
n

(
1 +

e−ξωnt√
1− ξ2

)
=
(

1 +
x

100

) bK
ω2
n

⇔ e−ξωnt =
x

100

√
1− ξ2

⇒ t =
− log

(
x

100

√
1− ξ2

)
ξωn

≤
− log x

100

ξωn
(11.73)
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Figure 11.12: Overshoots, maximum overshoot Mp, peak time tp, 5% settling
time ts,5% approximated from the envelope exponentials.

and thus, replacing x with di�erent values, we �nd that (compare these
values with those of a �rst order system without poles):

� the 10% settling time is ts,10% = 2.3
ξωn

;

� the 5% settling time is ts,5% = 3
ξωn

;

� the 2% settling time is ts,2% = 4
ξωn

;

� the 1% settling time is ts,1% = 4.6
ξωn

.

The frequency response in this case cannot be found from that of �rst order Frequency response of
underdamped system

b
s2+2ξωns+ω2

n

transfer functions using Theorem 11.1. We can write

G(jω) =
b

−ω2 + 2ξωnjω + ω2
n

(11.74)

|G(jω)| = b√
(ω2
n − ω2)2 + 4ξ2ω2

nω
2

(11.75)

20 log10 |G(jω)| = 20 log10 b− 20 log10

√
(ω2
n − ω2)2 + 4ξ2ω2

nω
2 (11.76)

∠G(jω) = − arctan
2ξωnω

ω2
n − ω2

(11.77)

and see that for high and low frequencies the frequency response is the same as
in the overdamped and critically damped cases. But this time the gain (11.75)
may not be monotonous. To �nd this, because numerator b is constant and the
square root is monotonous, we only need to calculate the derivative

d

dω

[
(ω2
n − ω2)2 + 4ξ2ω2

nω
2
]

= 2(ω2
n − ω2)(−2ω) + 8ξ2ω2

nω (11.78)

Equalling to zero we �nd that the gain has a maximum at a frequency called Resonance frequency
resonance frequency ωr given by

ω2
r − ω2

n + 2ξ2ω2
n = 0

⇔ ω2
r = ω2

n − 2ξ2ω2
n

⇒ ωr = ωn
√

1− 2ξ2 (11.79)
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Figure 11.13: Pole location in the complex plane, unit step responses and Bode

diagrams of three transfer functions given by ω2
n

s2+2ξωns+ω2
n
, when ωn is constant.

as long as the square root is real, i.e. 1 − 2ξ2 > 0 ⇔ ξ < 1√
2
≈ 0.707. In this

case, the corresponding maximum value of the gain is found from (11.76):

20 log10 |G(jωr)| = 20 log10 b− 20 log10

√
(ω2
n − ω2

n(1− 2ξ2))2 + 4ξ2ω4
n(1− 2ξ2)

= 20 log10 b− 20 log10

√
ω4
n(1− 1 + 2ξ2)2 + ω4

n(4ξ2 − 8ξ4)

= 20 log10 b− 20 log10 ω
2
n

√
4ξ4 + 4ξ2 − 8ξ4

= 20 log10 b− 20 log10 ω
2
n︸ ︷︷ ︸

gain at low frequencies

−20 log10

∈[0,1]︷ ︸︸ ︷
2ξ
√

1− ξ2︸ ︷︷ ︸
>0

(11.80)

(Notice that since 0 < ξ <
√

2
2 we have 2ξ

√
1− ξ2 <

√
2
√

1− 1
2 = 1.) This

frequency behaviour is shown in Figure 11.10, and the corresponding asymptotes
in Figure 11.11, where the resonant peak of−20 log10 2ξ

√
1− ξ2 dB is marked.

For ξ = 0, system (11.41) is marginally stable, and step response (11.65)Step response of undamped
system b

s2+ω2
n

simpli�es to

y(t) =
bK

ω2
n

(
1− sin

(
ωnt+

π

2

))
(11.81)

and thus the steady-state response consists in oscillations with frequency ωn
that are not damped; that is why ωn is called natural frequency: it is theWhy ωn is the natural fre-

quency frequency of the system's step response (or impulse response; check Table 2.1
again) oscillations when the damping coe�cient is 0. The reason why ξ is theWhy ξ is the damping co-

e�cient damping coe�cient, by the way, is that it is proportional to the coe�cient of the
damper in (4.9); more generically, it is related to the coe�cient of the energy
dissipator, as can be seen e.g. in (5.24).

The corresponding frequency response is given by (11.74) with ξ = 0:Frequency response of un-
damped system b

s2+ω2
n

G(jω) =
b

ω2
n − ω2

(11.82)

This is always a real number, and so the phase jumps from 0◦ (when ω < ωn)
to −180◦ (when ω > ωn) as seen in Figure 11.10. At resonance frequency
ωr = ωn

√
1− 2ξ2 = ωn, the peak is

lim
ω→ωr

|G(jωr)| = lim
ω→ωn

|G(jωn)| = lim
ω→ωn

b√
(ω2
n − ω2)2

= +∞ (11.83)
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Figure 11.14: Pole location in the complex plane, unit step responses and Bode

diagrams of three transfer functions given by ω2
n

s2+2ξωns+ω2
n
, when ξ is constant.

Of course, in practice systems have some residual damping, and in any case
sinusoidal outputs never have in�nite amplitudes (reread Example 4.1 and Re-
mark 10.7 if you need).

We can now sum up what happens for the four di�erent cases of (11.41) we
have studied (check Figure 11.6 again):

� step responses begin at 0 with a horizontal slope;

� step responses have a bK
ω2
n
steady-state (where K is the amplitude of the

step);

� step responses have no overshoot if ξ ≥ 1, and have a Mp = e
−ξπ√
1−ξ2

overshoot if 0 ≤ ξ < 1;

� frequency responses have a phase that goes from 0◦ (at low frequencies)
to −180◦ (at high frequencies) as the frequency increases;

� frequency responses have a gain that goes from b
ω2
n
(i.e. 20 log10

b
ω2
n
dB, at

low frequencies) to 0 (i.e. −∞ dB, at high frequencies) as the frequency
increases;

� the slope of the gain is −40 dB per decade at high frequencies;

� the gain has no resonant peak if ξ ≥
√

2
2 , and has a −20 log10 2ξ

√
1− ξ2 >

0 resonant peak if 0 ≤ ξ <
√

2
2 (so in this case, for a sinusoidal input with Meaning of the resonant

peaka frequency equal to or around ωr, the system's sinusoidal steady-state
output will have an amplitude larger than the input's).

Figures 11.13�11.16 illustrate how step and frequency responses of (11.42) with
complex conjugate poles change according to their position on the complex
plane.

To conclude this section, the �fth and �nal case of a second order transfer Step response of b
s(s+a)

function to be considered is that in which either pole is 0: (11.49) cannot be
applied; (11.41) will integrate the output of the other pole.
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Figure 11.15: Pole location in the complex plane, unit step responses and Bode
diagrams of three transfer functions given by p1p2

(s+p1)(s+p2) , when the real part of
the poles is constant.

Figure 11.16: Pole location in the complex plane, unit step responses and Bode
diagrams of three transfer functions given by p1p2

(s+p1)(s+p2) , when the imaginary
part of the poles is constant.
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11.4 Systems with more zeros and poles: fre-
quency responses

The frequency response of systems with more than two poles, or with zeros, or
with a negative gain, can be found from the frequency response of

� each real pole and zero,

� each pair of complex conjugate poles and zeros, and

� its gain

found separately. To �nd the frequency response of any transfer function, write
it as a product of smaller transfer functions found therein, and sum the corre-
sponding gains and phases, according to Theorem 11.1.

Remark 11.3. It is often easier to write those smaller transfer functions so
that they have a 0 dB gain at low frequencies (excepting poles or zeros at the
origin, of course, which have no constant gain at low frequencies), and then add
the e�ect of a gain as needed. This is how we will proceed in what follows.
But it is possible to have di�erent low-frequency gains for the di�erent smaller
transfer functions.

We already know the following:

� the frequency response of a pole at the origin 1
s was studied in section 11.1:

G(jω) =
1

jω
(11.84)

20 log10 |G(jω)| = −20 log10 ω dB (11.85)

∠G(jω) = −90◦ (11.86)

� the frequency response of a real pole in the left complex half-plane a
s+a , a >

0 was studied in section 11.2:

G(jω) =
a

jω + a
(11.87)

20 log10 |G(jω)| ≈ 0 dB, ω � a (11.88)

∠G(jω) ≈ 0◦, ω � a (11.89)

20 log10 |G(ja)| = 20 log10

a√
a2 + a2

= 20 log10

1√
2

= −3 dB (11.90)

∠G(ja) = 0◦ − arctan
a

a
= −45◦ (11.91)

20 log10 |G(jω)| ≈ 20 log10 a− 20 log10 ω dB, ω � a (11.92)

∠G(jω) ≈ −90◦, ω � a (11.93)

� the frequency response of a real pole in the right complex half-plane
a
s−a , a > 0 was also studied in section 11.2:

G(jω) =
a

jω − a
(11.94)

20 log10 |G(jω)| ≈ 0 dB, ω � a (11.95)

∠G(jω) ≈ −180◦, ω � a (11.96)

20 log10 |G(ja)| = 20 log10

a√
a2 + a2

= 20 log10

1√
2

= −3 dB (11.97)

∠G(ja) = 0◦ − arctan
a

−a
= −135◦ (11.98)

20 log10 |G(jω)| ≈ 20 log10 a− 20 log10 ω dB, ω � a (11.99)

∠G(jω) ≈ −90◦, ω � a (11.100)

� the frequency response of a pair of complex conjugate poles in the left

complex half-plane ω2
n

s2+2ξωns+ω2
n
, ωn > 0, 0 ≤ ξ < 1 was studied in sec-
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tion 11.3:

G(jω) =
ω2
n

ω2
n − ω2 + j2ξωnω

(11.101)

20 log10 |G(jω)| ≈ 0 dB, ω � ωn (11.102)

∠G(jω) ≈ 0◦, ω � ωn (11.103)

20 log10 |G(jωn
√

1− 2ξ2)| = −20 log10 2ξ
√

1− ξ2 dB > 0 dB (11.104)

20 log10 |G(jωn)| = −20 log10 2ξ dB (11.105)

∠G(jωn) = ∠
1

j2ξ
= −90◦ (11.106)

20 log10 |G(jω)| ≈ 20 log10 ω
2
n − 40 log10 ω dB, ω � ωn

(11.107)

∠G(jω) ≈ −180◦, ω � ωn (11.108)

We will now �nd the following frequency responses:

� A positive gain k > 0:

G(jω) = k (11.109)

20 log10 |G(jω)| = 20 log10 k dB (11.110)

∠G(jω) = 0◦ (11.111)

� A negative gain k > 0:

G(jω) = −k (11.112)

20 log10 |G(jω)| = 20 log10 |k| dB (11.113)

∠G(jω) = −180◦ (11.114)

� A zero at the origin s:

G(jω) = jω (11.115)

20 log10 |G(jω)| = 20 log10 ω dB (11.116)

∠G(jω) = 90◦ (11.117)

� A zero in the left complex half-plane s+b
b , b > 0:

G(jω) =
jω + b

b
(11.118)

20 log10 |G(jω)| ≈ 0 dB, ω � b (11.119)

∠G(jω) ≈ 0◦, ω � b (11.120)

20 log10 |G(jb)| = 20 log10

√
b2 + b2

b
= 20 log10

√
2 = 3 dB (11.121)

∠G(jb) = arctan
b

b
= 45◦ (11.122)

20 log10 |G(jω)| ≈ 20 log10 ω − 20 log10 b dB, ω � b (11.123)

∠G(jω) ≈ 90◦, ω � b (11.124)

� A zero in the right complex half-plane s−b
b , b > 0:

G(jω) =
jω − b
b

(11.125)

20 log10 |G(jω)| ≈ 0 dB, ω � b (11.126)

∠G(jω) ≈ 180◦, ω � b (11.127)

20 log10 |G(jb)| = 20 log10

√
b2 + b2

b
= 20 log10

√
2 = 3 dB (11.128)

∠G(jb) = arctan
b

−b
= 135◦ (11.129)

20 log10 |G(jω)| ≈ 20 log10 ω − 20 log10 b dB, ω � b (11.130)

∠G(jω) ≈ 90◦, ω � b (11.131)
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� A pair of complex conjugate poles in the right complex half-plane ω2
n

s2−2ξωns+ω2
n
, ωn >

0, 0 ≤ ξ < 1:

G(jω) =
ω2
n

ω2
n − ω2 − j2ξωnω

(11.132)

20 log10 |G(jω)| ≈ 0 dB, ω � ωn (11.133)

∠G(jω) ≈ 0◦ ≡ −360◦, ω � ωn (11.134)

20 log10 |G(jωn
√

1− 2ξ2)| = −20 log10 2ξ
√

1− ξ2 dB > 0 dB (11.135)

20 log10 |G(jωn)| = −20 log10 2ξ dB (11.136)

∠G(jωn) = ∠
1

−j2ξ
= −270◦ (11.137)

20 log10 |G(jω)| ≈ 20 log10 ω
2
n − 40 log10 ω dB, ω � ωn

(11.138)

∠G(jω) ≈ −180◦ ≡ −180◦, ω � ωn (11.139)

(Notice that the phase goes up from −360◦ to −180◦, or from 0◦ to 180◦.)

� A pair of complex conjugate zeros in the left complex half-plane s
2+2ξωns+ω

2
n

ω2
n

, ωn >

0, 0 ≤ ξ < 1:

G(jω) =
ω2
n − ω2 + j2ξωnω

ω2
n

(11.140)

20 log10 |G(jω)| ≈ 0 dB, ω � ωn (11.141)

∠G(jω) ≈ 0◦, ω � ωn (11.142)

20 log10 |G(jωn
√

1− 2ξ2)| = 20 log10 2ξ
√

1− ξ2 dB < 0 dB (11.143)

20 log10 |G(jωn)| = 20 log10 2ξ dB (11.144)

∠G(jωn) = ∠j2ξ = 90◦ (11.145)

20 log10 |G(jω)| ≈ 40 log10 ω − 20 log10 ω
2
n dB, ω � ωn

(11.146)

∠G(jω) ≈ 180◦, ω � ωn (11.147)

� A pair of complex conjugate zeros in the right complex half-plane s
2−2ξωns+ω

2
n

ω2
n

, ωn >

0, ξ ≥ 0:

G(jω) =
ω2
n − ω2 − j2ξωnω

ω2
n

(11.148)

20 log10 |G(jω)| ≈ 0 dB, ω � ωn (11.149)

∠G(jω) ≈ 0◦, ω � ωn (11.150)

20 log10 |G(jωn
√

1− 2ξ2)| = 20 log10 2ξ
√

1− ξ2 dB < 0 dB (11.151)

20 log10 |G(jωn)| = 20 log10 2ξ dB (11.152)

∠G(jωn) = ∠− j2ξ = −90◦ (11.153)

20 log10 |G(jω)| ≈ 40 log10 ω − 20 log10 ω
2
n dB, ω � ωn

(11.154)

∠G(jω) ≈ −180◦, ω � ωn (11.155)

All the corresponding frequency responses are summed up in Figures 11.17�
11.19.

Example 11.1. Find the Bode diagram of

G(s) =
s+ 100

s(s2 + 0.5s+ 1)
= 100︸︷︷︸
G1(s)

× 1

s︸︷︷︸
G2(s)

× s+ 100

100︸ ︷︷ ︸
G3(s)

× 1

s2 + 0.5s+ 1︸ ︷︷ ︸
G4(s)

(11.156)

First plot the asymptotes of the Bode diagrams of the four transfer function
G1(s) to G4(s), in Figure 11.20. Add them to obtain the asymptotes of the Bode
diagram of G(s) in the same Figure, which also shows the actual Bode diagram.
The asymptotes are seen to be a rather fair approximation, especially when the
resonance peak given by −20 log10(0.5

√
1− 0.252) = 6.3 dB is added.
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Figure 11.17: Bode diagrams of k, −k, 1
s and s, k > 0.

Remark 11.4. Since the phase is determined up to shifts of 360◦, there are
di�erent ways of choosing which particular values are used. In all of them the
phase is, of course, continuous with frequency ω whenever possible.

� Choose the low frequency phase value to be closest to zero. In this way
a low frequency value of, say, −90◦ is preferred to 270◦, no matter what.
This criterion presents no reason to choose among 180◦ and −180◦, when
input and output are in phase opposition at low frequencies.

� Choose the low frequency phase value that better shows the number of

zeros and poles at the origin. In this way, transfer function s3N(s)
D(s) , where

polynomials N(s) and D(s) have no roots at the origin, will have a low
frequency phase beginning at 270◦ and not at −90◦, since a zero pushes the
phase up and so this phase shows that the three zeros are responsible for
the low frequency behaviour. The phase of transfer function N(s)

sD(s) would
begin at −90◦ for a similar reason. This criterion may or may not give
the same result as the one above. It allows choosing among low frequency
phases of 180◦ and −180◦ if there are two poles or two zeros at the origin,
but not if there is a negative gain.

� Choose the closest values to zero in the entire frequency range of concern,
as long as the phase is continuous with ω.

Example 11.2. Find the Bode diagram of

G(s) =
−s+ 5

s2(s+ 10)
= −1

2︸︷︷︸
G1(s)

× 1

s2︸︷︷︸
G2(s)

× 10

s+ 10︸ ︷︷ ︸
G3(s)

× s− 5

5︸ ︷︷ ︸
G4(s)

(11.157)

First plot the asymptotes of the Bode diagrams of the four transfer function
G1(s) to G4(s), in Figure 11.21. Add them to obtain the asymptotes of the
Bode diagram of G(s) in the same Figure, which also shows the actual Bode
diagram.

Remark 11.5. Given the way Bode diagrams can be built from smaller transfer
functions, this can be used to identify a model for a plant from its frequency
response. The Bode diagram is split into the sum of several Bode diagrams
corresponding to frequency responses in Figures 11.17�11.19; the model will be
the product of the respective transfer functions.
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Figure 11.18: Bode diagrams (left) and corresponding asymptotes (right) of
a
s+a ,

a
s−a ,

s+a
a and s−a

a , a > 0.
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Figure 11.19: Bode diagrams (left) and corresponding asymptotes (right) of
ω2
n

s2+2ξωns+ω2
n
, ω2

n

s2−2ξωns+ω2
n
, s

2+2ξωns+ω
2
n

ω2
n

and s2−2ξωns+ω
2
n

ω2
n

, ωn > 0, ξ ≥ 0.
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Figure 11.20: Building the Bode diagram of (11.156) from Example 11.1.
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Figure 11.21: Building the Bode diagram of (11.157) from Example 11.2.
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Example 11.3. Given either Bode diagram of Examples 11.1 or 11.2, �rst
draw its asymptotes, as shown in Figures 11.20 or 11.21; then divide them into
the separate asymptotes, also shown in the Figures, corresponding to transfer
functions from Figures 11.17�11.19. The product of these transfer functions is
the desired transfer function, either (11.156) or (11.157).

De�nition 11.2. A zero on the left complex half-plane (i.e. a zero with a Minimum and non-
minimum phase zerosnegative real part) is a minimum phase zero. A zero on the right complex

half-plane (i.e. a zero with a positive real part) is a non-minimum phase
zero.

Remark 11.6. The reason for these names can be seen in Figure 11.18: the
phase of s+a

a , a > 0 is between 0◦ and 90◦, while the phase of s−a
a , a > 0 is

between 180◦ and 90◦. The latter is thus, for low frequencies and in average,
larger than the former.

A system's frequency response at high frequencies depends on the di�erence Gain slope at high frequen-
ciesbetween the number of poles n and the number of zeros m. More precisely, it

is clear from Figures 11.17�11.19 that, at high frequencies, each pole will con-
tribute to the gain with a slope of −20 dB/decade, and each zero will contribute
to the gain with a slope of 20 dB/decade. Consequently, the slope of the gain in
a Bode diagram will be 20(m−n) dB per decade. So, as the frequency increases:

� the gain of strictly proper transfer functions goes to −∞ dB, i.e. to 0 in
absolute value;

� the gain of transfer functions with the same number of poles and zeros
goes to a constant value (in both dB and absolute value);

� the gain of transfer functions which are not proper goes to +∞ dB, i.e. to
+∞ in absolute value.

In the latter case, if the transfer function is stable, this means that inputs with Why transfer functions
should be strictly properoscillations of smaller and smaller periods correspond to steady-state output

oscillations with larger and larger amplitudes (and with the same small period
of the input). The velocity with which the output would be changing would
become in�nite. This is clearly impossible in practice, as it would require an
arbitrarily large energy. (For instance, in the case of an output which is a
position, there would a frequency above which this position would be changing
faster than light speed.) The same happens even in the case of a constant
gain for high frequencies, since the amplitude may not be increasing, but the
period decreases. The only models which are physically possible are those with
more poles than zeros, i.e. strictly proper models. That is why most models are
strictly proper. Of course, all models are only valid for a range of parameters.
So we can use models with as many zeros as poles, or more zeros than poles,
being aware that for frequencies high enough they cannot be valid: there have
to be unmodelled poles changing the behaviour of the plant so that it does not
require an impossibly in�nite energy.

On the other hand, the slope of the gain at (very) low frequencies depends on Gain slope at low frequen-
ciesthe number of zeros or poles at the origin: it is clear from Figures 11.17�11.19

only they cause a slope at such frequencies:

� n poles at the origin cause a low frequency gain slope of −20n dB/decade;

� m zeros at the origin cause a low frequency gain slope of 20m dB/decade.

Example 11.4. Consider the Bode diagram of Example 11.1 in Figure 11.20.
At low frequencies, the gain has a −20 dB/decade slope. Consequently, there
has to be a pole at the origin. At high frequencies, the gain has a −40 dB/decade
slope. Consequently, the number of poles exceeds the number of zeros by 2 (we
could have 0 zeros and 2 poles, or 1 zero and 3 poles, or 2 zeros and 4 poles,
etc.).

Example 11.5. Consider the Bode diagram of Example 11.2 in Figure 11.21.
At low frequencies, the gain has a −40 dB/decade slope. Consequently, there
have to be 2 poles at the origin. At high frequencies, the gain has a−40 dB/decade
slope. Consequently, the number of poles exceeds the number of zeros by 2.
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Remark 11.7. Notice that the gain of a stable system at low frequencies is Stable system's gain at low
frequenciesconstant and equal to its static gain:

lim
ω→0

G(jω) = lim
ω→0

b0 + b1s+ b2s
2 + b3s

3 + . . .

a0 + a1s+ a2s2 + a3s3 + . . .︸ ︷︷ ︸
G(s)

∣∣∣∣∣∣∣∣∣
s=jω

=
b0
a0

(11.158)

De�nition 11.3. The type of a transfer function is its number of poles at theType of a transfer function
origin.

Example 11.6. Here are transfer functions of type 0, type 1, type 2 and type
3:

G0(s) =
1

s+ 1
(11.159)

G1(s) =
1

s(s+ 1)
(11.160)

G2(s) =
1

s2(s+ 1)
(11.161)

G3(s) =
1

s3(s+ 1)
(11.162)

11.5 Systems with more zeros and poles: stabil-
ity

We know that a stable plant's poles have real negative parts. If there are only
one or two poles, this is not di�cult to verify. Things change if there are three or
more poles, since �nding the roots of polynomials of such orders is not trivial.
There are of course numerical algorithms to do so e�ciently. But there is a
way of knowing if all the roots of a polynomial are on the left complex half-
plane without having to compute them: the Routh-Hurwitz criterion. It
even lets us know how many poles there are on the right complex half-plane.
Demonstrating the validity of this criterion is not trivial and we will not do
that. We will only present it together with examples of application.

Consider a polynomial in s given byRouth-Hurwitz criterion

p(s) =

n∑
k=0

aks
k = ans

n + an−1s
n−1 + . . .+ a1s+ a0 (11.163)

For each of if its n roots, we want to know if it has positive real parts, negative
real parts, or lies on the imaginary axis.

� If a0 = 0, there is a root at the origin. Divide the polynomial by s and
start again.

� If not all the ak have the same sign, there is at least one root with positive
real part. If all the ak are negative, we can multiply p(s) by −1, which
does not change its roots, and all coe�cients become positive; so we can
say instead that all the ak must be positive if all the roots are to have
negative real parts. This is a necessary condition, but it is not su�cient (it
may happen that all the ak are positive and still some roots have positive
real parts).

� The number of roots with positive real parts is equal to the number ofRouth-Hurwitz table
sign changes of the �rst column of the Routh-Hurwitz table, which has n
lines,

⌈
n
2

⌉
columns, and is built as follows:

sn an an−2 an−4 . . . 0
sn−1 an−1 an−3 an−5 . . . 0
sn−2 b1 b2 . . .
sn−3 c1 c2 . . .
...

...
...

s2 d1 d2

s1 e1

s0 f1

(11.164)
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Here,

b1 =
an−1an−2 − an−3an

an−1
= an−2 −

an−3an
an−1

(11.165)

b2 =
an−1an−4 − an−5an

an−1
= an−4 −

an−5an
an−1

(11.166)

... (11.167)

c1 =
b1an−3 − b2an−1

b1
= an−3 −

b2an−1

b1
(11.168)

c2 =
b1an−5 − b3an−1

b1
= an−5 −

b3an−1

b1
(11.169)

... (11.170)

This pattern goes on in each line until all further elements are necessarily
zero, and goes down until all n lines are �lled in.

Example 11.7. Consider a transfer function given by N(s)
s3+6s2+11s+6 . We build

the Routh-Hurwitz table

s3 1 11
s2 6 6
s 6×11−6×1

6 = 10
1 10×6−0×6

10 = 6

(11.171)

and verify that all elements in the �rst column are positive. So the transfer
function is stable (whatever the numerator may be, since, remember, zeros have
nothing to do with stability).

If there is a zero in the left column, replace it with a vanishing ε. If when Zero in the left column
ε −→ 0+ all the coe�cients below are positive, there is a pair of complex
conjugate pure imaginary poles (which are marginally stable), and the other
poles are stable. If some are negative, the transfer function is unstable.

Example 11.8. Consider a transfer function given by N(s)
s3+s2+4s+4 . We build

the Routh-Hurwitz table

s3 1 4
s2 1 4

s 1×4−4×1
1 = ���

ε

0
1 ε×4−0×1

ε = 4

(11.172)

and verify that when ε −→ 0+ the �rst column is entirely positive. So there are
no unstable poles. The zero is caused by a pair of complex conjugate poles on
the imaginary axis: s3 + s2 + 4s+ 4 = (s+ 1)(s+ 2j)(s− 2j).

Example 11.9. Consider a transfer function given by N(s)
s6+4s5+9s4+13s3−17s−10 .

Since there are both positive and negative coe�cients in the denominator, we
can tell right away that the transfer function is not stable. (Remember that if
they were all positive the transfer function might still be unstable.) To know
how many of the 6 poles are unstable, we build the Routh-Hurwitz table

s6 1 9 0 −10
s5 4 13 −17
s4 9− 13

4 = 23
4

17
4 −10

s3 13− 17
23
4

= 231
23 −17 + 40

23
4

= − 231
23

s2
231
23

17
4 + 231

23
23
4

231
23

= 10 -10

s
10(− 231

23 )+10 231
23

10 = ���
ε

0
1 −10

(11.173)

and verify that when ε −→ 0+ there is one sign change in the �rst column, from
line s to line 1. So there are �ve stable poles, and one unstable pole (in fact
s6 + 4s5 + 9s4 + 13s3 − 17s− 10 = (s− 1)(s+ 1)2(s+ 2)(s2 + s+ 5)).
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Figure 11.22: Control system from Examples 11.12 and 11.13.

Example 11.10. Consider a transfer function given by N(s)
s3−12s+16 . We build

the Routh-Hurwitz table

s3 1 −12

s2
���
ε

0 16
s −12− 16

ε
1 16

(11.174)

and verify that when ε −→ 0+ the element below in the �rst column is negative.
So there are two sign changes, and two unstable poles (in fact s3 − 12s+ 16 =
(s− 2)2(s+ 4)).

Remark 11.8. Notice that coe�cient a0 always turns up in the last line of the
table. If it does not, you got your calculations wrong.

If there is a whole line of zeros, build a polynomial with the coe�cients of theLine of zeros
line above, di�erentiate it, and use the coe�cients of the derivative to replace
the zeros.

Example 11.11. Consider a transfer function given by N(s)
s6−4s4+4s2−16 . We

begin the Routh-Hurwitz table

s6 1 −4 4 −16
s5 0 0 0

(11.175)

and verify that the second line only has zeros. So we look at the line above,
which is line s6, and use the coe�cients of that line with powers s6, s4, s2 and
s0 to obtain d

ds

(
s6 − 4s4 + 4s2 − 16

)
= 6s5 − 16s3 + 8s.

s6 1 −4 4 −16
s5 6 −16 8
s4 − 4

3
8
3 −16

s3 −4 −64
s2 24 −16
s − 200

3
1 −16

(11.176)

There are three sign changes, and so three unstable poles (in fact s6 − 4s4 +
4s2 − 16 = (s− 1 + j)(s− 1− j)(s+ 1 + j)(s− 1− j)(s+ 2)(s− 2)).

The Routh-Hurwitz criterion is important not only because it allows �nding
out by hand whether or not a system is stable, but above all because it lets us
�nd analytical conditions for the stability of a closed-loop that depends on a
parameter.

Example 11.12. Plant

y(s)

u(s)
=

1

(s− 1)(s+ 2)
(11.177)

is controlled in closed loop with a proportional controller K, as seen in Fig-
ure 11.22. We �rst assume that the sensor is perfect, i.e. H(s) = 1. To know
what values of K ensure that the closed loop is stable, we �nd the closed loop
transfer function

y(s)

r(s)
=

K
s2+s−2

1 + K
s2+s−2

=
K

s2 + s+K − 2
(11.178)
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and build the corresponding Routh-Hurwitz table

s2 1 K − 2
s 1
1 K − 2

(11.179)

from which we see that all coe�cients are positive in the left column if

K − 2 > 0⇔ K > 2 (11.180)

Example 11.13. If in the last example we make K = 10 and then �nd out that
the sensor has dynamics given by H(s) = a

s+a , we want to know what values
of pole a still let the closed loop be stable. So the closed loop transfer function
becomes

y(s)

r(s)
=

10
s2+s−2

1 + 10a
(s2+s−2)(s+a)

=
10

s3 + (a+ 1)s2 + (a− 2)s+ 8a
(11.181)

From the Routh-Hurwitz table

s3 1 a− 2
s2 a+ 1 8a

s (a+1)(a−2)−8a
a+1 = a2−9a+2

a+1

1 8a

(11.182)

we see that all coe�cients are positive in the left column if
a+ 1 > 0
a2−9a+2
a+1 > 0

8a > 0

⇒


a > −1
(a+0.22)(a−9.22)

a+1 > 0

a > 0

(11.183)

For the second condition,

−0.22 −1 9.22
a2 − 9a+ 2 + 0 − − 0 +
a+ 1 − − 0 + +

− 0 + ∞ − 0 +

(11.184)

and so we conclude that the system is stable if a > 9.22.

Remark 11.9. In the example above, it would obviously have been wiser to
choose the sensor �rst, and only then the proportional controller K. And there
are surely other requirements for the control system other than ensuring stabil-
ity; we will address them in Part IV.

Example 11.14. Plant

G(s) =
1.5s2 + 22.5s+ 66

s2 − 8s− 9
(11.185)

is controlled in closed loop with a proportional controllerK and a perfect sensor.
To know what values ofK ensure that the closed loop is stable, we �nd the closed
loop transfer function

y(s)

r(s)
=

K 1.5s2+22.5s+66
s2−8s−9

1 +K 1.5s2+22.5s+66
s2−8s−9

=
K(1.5s2 + 22.5s+ 66)

s2 − 8s− 9 +K(1.5s2 + 22.5s+ 66)

=
1.5Ks2 + 22.5Ks+ 66K

(1.5K + 1)s2 + (22.5K − 8)s+ (66K − 9)
(11.186)

and build the Routh-Hurwitz table

s2 1.5K + 1 66K − 9
s 22.5K − 8
1 66K − 9

(11.187)
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We are tempted to write
1 + 1.5K > 0

22.5K − 8 > 0

66K − 9 > 0

⇔


K > − 2

3 = −0.6667

K > 8
22.5 = 0.3556

K > 9
66 = 0.1364

⇒ K > 0.3556 (11.188)

and conclude that only these values of K make the closed loop stable. But if
we make K = −1 in (11.186) we get

y(s)

r(s)
=
−1.5s2 − 22.5s− 66

−0.5s2 − 30.5s− 75
=

3s2 + 45s+ 132

s2 + 61s+ 150
(11.189)

which has poles in −58.4330 and −2.5670 and is thus stable. Why is this so?
Because the number of unstable poles is the number of sign changes in the �rst
column of the Routh-Hurwitz table; if they are all negative, there are no sign
changes, and no unstable poles. Since G(s) is not strictly proper, the entire
�rst column depends on K, while in all previous examples there was always a
positive number in that column, meaning that all others had to be positive too
for all poles to be stable. In this case, we can let the entire column be negative,
i.e. 

1 + 1.5K < 0

22.5K − 8 < 0

66K − 9 < 0

⇔


K < − 2

3 = −0.6667

K < 8
22.5 = 0.3556

K < 9
66 = 0.1364

⇒ K < −0.6667 (11.190)

and thereby conclude that if K ∈]−∞,−0.6667[∪]0.3556,+∞[ the closed loop
is stable.

11.6 Systems with more zeros and poles: time
responses

We know from the proof of Theorem 10.2, or from

L −1

[
1

s+ a

]
= e−at (11.191)

together with a reasoning similar to that of Remark 2.6, that each pole of a
transfer function will originate an exponential in its time response:

� if the pole is stable, its (negative) real part corresponds to how fast thisE�ects of the real part of a
pole part of the time response is vanishing;

� if there is an imaginary part, it will correspond (together with that of theThe imaginary parts of
poles cause oscillations pole's complex conjugate) to oscillations in time (which, the pole being

stable, are vanishing).

Consequently,

� the more negative the real part of a stable pole is, the faster its e�ect inFaster poles
the time responses vanishes;

� the closer a stable pole is to the imaginary axis, the slower its e�ect in theSlower poles
time responses vanishes.

When a transfer function is written as a partial fraction expansion, theMeaning of the residues
residues show the weight that each pole will have in the time responses. Slower
poles, even when weighted with a residue which is relatively small when com-
pared with the others, have a lasting e�ect in time responses just for being slow,
i.e. for the slowly vanishing e�ect of their contribution, and are thus called dom-
inant poles.Dominant poles

When a transfer function has only one dominant pole, or one pair of complex
conjugate dominant poles, clearly far from the other ones, its time response will
be mostly determined by that pole or poles. This is not so when there are
several dominant poles, or, rather, when there are none, since no pole has an
e�ect clearly dominating that of the others.
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Figure 11.23: Unit step responses of the transfer functions of Example 11.15.

Figure 11.24: Poles and zeros of the transfer functions of Example 11.15.
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Figure 11.25: Bode plots of the transfer functions of Example 11.15.
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Figure 11.26: Unit step responses of the transfer functions of Example 11.16.

Example 11.15. Transfer function

G1(s) =
2s+ 11

s2 + 11s+ 10
=

1

s+ 1
+

1

s+ 10
(11.192)

has a dominant pole, −1, since pole −10 is faster. Residues are the same, so we
can expect the step response of G1(s) to be rather similar to that of

Ĝ1(s) =
11
10

s+ 1
(11.193)

(which has the same static gain) as is indeed the case: see Figure 11.23. But
transfer function

G2(s) =
101s+ 110

s2 + 11s+ 10
=

1

s+ 1
+

100

s+ 10
(11.194)

which has the same poles has a much larger residue for the slower pole, and
consequently its step response is not really that similar to that of

Ĝ2(s) =
11

s+ 1
(11.195)

(with the same static gain) as seen in Figure 11.23. This can also be seen from
the position of the zero in both cases, given in Figure 11.24. G1(s) has the zero
far from the dominant pole, in a location where its e�ect is faster, and so does
not interfere signi�cantly with its behaviour. Gs(s) has the zero quite close to
the dominant pole, thus interfering with its e�ect in time responses.

Remark 11.10. This can be more clearly understood looking at the Bode
diagrams of G1(s) and G2(s) in Figure 11.25 in comparison with those of Ĝ1(s)
and Ĝ2(s). The zero does not a�ect the frequency response of low frequency pole
−1 for G1(s), but does so for G2(s). Remember that low frequencies correspond
to larger time intervals, so in the case of G1(s) step responses will be, for large
time intervals, similar to those of Ĝ1(s).

Example 11.16. Transfer function

G(s) =
3s2 + 6s+ 4

s3 + 3s2 + 4s+ 2
=

1

s+ 1
+

1

s+ 1 + j
+

1

s+ 1− j
(11.196)

has three poles, none of which is dominant. So the step response of G(s) is
inbetween those of

Ĝ1(s) =
2

s+ 1
(11.197)

Ĝ2(s) =
2

s+ 1 + j
+

2

s+ 1− j
(11.198)

as seen in Figure 11.26.
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Figure 11.27: Unit step and unit ramp responses of the transfer functions of
Example 11.17.

A time response can also be studied with respect to:

� its steady-state response, using the �nal value theorem, as seen above in
Section 10.2;

� its transient response, from the di�erence between the number of zeros
and poles, and the eventual presence of non-minimum phase zeros.

The latter cause an undershoot in time responses, i.e. the response begins withUndershoot
a negative derivative if the steady-state value is positive, or a positive derivative
if the steady-state value is negative. In simpler terms, the response goes down
before going up, or up before going down.

Example 11.17. Figure 11.27 shows the unit step and unit ramp responses of

G1(s) =
−s+ 1

(s+ 1)(s+ 2)
(11.199)

G2(s) =
s− 1

s2 + 0.5s+ 2
(11.200)

The responses illustrate the following:

� undershoots exist in all time responses of the plant;

� there may or may not be further oscillations in the plant's response;

� undershoots exist whether the steady-state corresponds to a positive or a
negative value.

Theorem 11.2. A non-minimum phase zero or pole causes an undershoot in
time responses.
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Proof. Let us consider the case of a transfer function with a non-minimum phase
zero and a positive steady-state value; other cases are similar:

G(s) =
−s+ b

n∏
k=1

(s+ pk)

(11.201)

The beginning of the transient response corresponds to very small time values,
i.e. to very high frequencies. At high frequencies,

G(jω) =
−jω + b

n∏
k=1

(jω + pk)

≈ −jω
(jω)n

(11.202)

which is also the frequency response of

Ĝ(jω) = − 1

sn−1
(11.203)

So, for small values of t, G(s) and Ĝ(s) behave similarly. Ĝ(s) has negative time
responses to positive inputs (and positive time responses to negative inputs),
and consequently so does G(s) for t ≈ 0.

Theorem 11.3. A transfer function with n poles and m zeros will have step Di�erence between the
number of poles and the
number of zeros

responses y(t) with n−m− 1 continuous derivatives, i.e.

� if n = m, then n − m − 1 = −1: the step response y(t) itself with be
discontinuous;

� if n = m + 1, then n −m − 1 = 0: the step response y(t) is continuous,
but its �rst derivative dy(t)

dt is discontinuous (and thus so are higher order
derivatives);

� if n = m+2, then n−m−1 = 1: the step response y(t) and its �rst deriva-

tive dy(t)
dt are continuous, but its second derivative d2y(t)

dt2 is discontinuous
(and thus so are higher order derivatives);

� if n = m+3, then n−m−1 = 2: the step response y(t), its �rst derivative
dy(t)

dt and its second derivative d2y(t)
dt2 are continuous, but its third deriva-

tive d3y(t)
dt3 is discontinuous (and thus so are higher order derivatives);

� and so on.

Proof. The line of reasoning is similar to that of the theorem above, and because
the system is linear we can consider the unit step response y(t) of a transfer
function with an arbitrary gain:

y(t) = L −1 [Y (s)] = L −1

1

s

m∏
k=1

(s+ zk)

n∏
k=1

(s+ pk)

 (11.204)

Again we are interested in the beginning of the transient response, which cor-
responds to very small time values, i.e. to very high frequencies, at which

Y (jω) =
1

jω

m∏
k=1

(jω + zk)

n∏
k=1

(jω + pk)

≈ 1

jω

(jω)m

(jω)n
=

1

(jω)n−m+1
(11.205)

This is the Fourier transform corresponding to 1
sn−m+1 . It is easily proved by

mathematical induction, from the Laplace transform of the Heaviside function
and the Laplace transform of the integral, that

L −1

[
1

sk

]
=

tk−1

(k − 1)!
, t ≥ 0, k ∈ N (11.206)

Thus, for small values of t, y(t) and tn−m

(n−m)! will behave similarly. The number

of continuous derivatives of tn−m, n−m ∈ N, is as stated.



200 CHAPTER 11. FINDING TIME AND FREQUENCY RESPONSES

Figure 11.28: Step responses of three di�erent transfer functions, for which the
di�erence between the number of poles and zeros is 0, 1 and 2. Notice that, when
di�erence is 0, the response is discontinuous, just as a step also is; when the
di�erence is 1, the response is for a while close to a straight line; and when the
di�erence is 2, the response is curved, and can be approximated by a parabola.

Remark 11.11. It is straightforward to �nd, in a similar manner, how many
continuous derivatives will have the response of a system to a ramp, a parabola,
or another input given by a polynomial. For inputs which are not polynomial,
a polynomial approximation of the input may be used.

Example 11.18. Consider these transfer functions, with the following di�er-
ences between the number of poles and zeros:

G0(s) =
s+ 1

s+ 2
, n−m = 0 (11.207)

G1(s) =
1

s+ 1
, n−m = 1 (11.208)

G2(s) =
s+ 1

(s+ 0.5)(s+ 1.5)(s+ 2)
, n−m = 2 (11.209)

According to Theorem 11.3 and its proof, at t ≈ 0 their outputs will be similar
to

y0(t) = L −1

[
1

s

]
= H(t) (11.210)

y1(t) = L −1

[
1

s

1

s

]
= t (11.211)

y2(t) = L −1

[
1

s

1

s2

]
=
t2

2
(11.212)

in what concerns the number of continuous derivatives. Figure 11.28 shows
visually that it is so.

Glossary

`To you I may seem a vulgar robber, but I bear on my shoulders
the destiny of the human race. Your tribal life with its stone-age
weapons and beehive huts, its primitive coracles and elementary
social structure, has nothing to compare with our civilization �
with our science, medicine and law, our armies, our architecture, our
commerce, and our transport system which is rapidly annihilating
space and time. Our right to supersede you is the right of the higher
over the lower. Life �'

`Half a moment,' said Ransom in English. `That's about as much
as I can manage at one go.' Then, turning to Oyarsa, he began
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translating as well as he could. The process was di�cult and the
result � which he felt to be rather unsatisfactory � was something
like this:

`Among us, Oyarsa, there is a kind of hnau who will take other
hnaus' food and � and things, when they are not looking. He says
he is not an ordinary one of that kind. He says what he does now
will make very di�erent things happen to those of our people who
are not yet born. He says that, among you, hnau of one kindred all
live together and the hrossa have spears like those we used a very
long time ago and your huts are small and round and your boats
small and light and like our old ones, and you have one ruler. He
says it is di�erent with us. He says we know much. There is a thing
happens in our world when the body of a living creature feels pains
and becomes weak, and he says we sometimes know how to stop it.
He says we have many bent people and we kill them or shut them
in huts and that we have people for settling quarrels between the
bent hnau about their huts and mates and things. He says we have
many ways for the hnau of one land to kill those of another and
some are trained to do it. He says we build very big and strong huts
of stones and other things � like the p��triggi. And he says we
exchange many things among ourselves and can carry heavy weights
very quickly a long way. Because of all this, he says it would not be
the act of a bent hnau if our people killed all your people.'

C. S. Lewis (1868 � �1963), Out of the silent planet (1938), 20

critically damped criticamente amortecido
damped frequency frequência amortecida
damping amortecimento
dominant pole polo dominante
maximum overshoot máximo sobreimpulso
minimum phase fase mínima
natural frequency frequência natural
non-minimum phase fase não-mínima
overdamped sobreamortecido
overshoot sobreimpulso
peak time tempo de pico
resonance frequency frequência de ressonância
resonant peak pico de ressonância
settling time tempo de estabelecimento
time constant constante de tempo
underdamped subamortecido
undamped sem amortecimento
undershoot subimpulso

Exercises

1. Sketch the following step responses, marking, whenever they exist,

� the settling time according to the 5% criterion,

� the settling time according to the 2% criterion,

� the steady-state value.

(a) G(s) =
15

s+ 5
, for input u(t) = 4H(t)

(b) G(s) =
10

s− 1
, for input u(t) = H(t)

(c) G(s) =
1

2s+ 1
, for input u(t) = −H(t)

(d) G(s) =
−2

4s+ 1
, for input u(t) = 10H(t)
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Table 11.1: Unit step response of Exercise 4.
time output
0.0 0.0000
0.1 0.0000
0.2 0.0000
0.3 0.0000
0.4 0.0000
0.5 0.0000
0.6 0.0632
0.7 0.0865

time output
0.8 0.0950
0.9 0.0982
1.0 0.0993
1.1 0.0998
1.2 0.0999
1.3 0.1000
1.4 0.1000
1.5 0.1000

(e) G(s) =
10

s
, for input u(t) = H(t)

2. Sketch the Bode diagrams of the following transfer functions, indicating

� the gain for low frequencies,

� the frequency at which the gain is 3 dB below the gain for low fre-
quencies,

� the slope of the gain for high frequencies,

� the phase for low frequencies,

� the phase for high frequencies,

� the frequency at which the phase is the average of those two values.

Hint: draw the asymptotes of the Bode diagram. Mark the frequency at
which the gain has decreased 3 dB.

(a) G(s) =
15

s+ 5

(b) G(s) =
1

s+ 10

(c) G(s) =
1

2s+ 1

(d) G(s) =
2

4s+ 1

(e) G(s) =
10

s

3. Let G(s) =
1

s+ 1
.

(a) Consider the unit step response of G(s). What is the settling time,
according to the 5% criterion?

(b) Find analytically the unit ramp response y(t) of G(s).

(c) Find the analytical expression of the steady-state yss(t) of that re-
sponse y(t).

(d) How long does it take for
∣∣∣yss(t)−y(t)

y(t)

∣∣∣ to be less than 5%? In other

words, �nd how long it takes for the unit ramp response to be within
a 5% wide band around its steady state.

4. A �rst order system K
s+p has the response tabulated in Table 11.1, when

its input is a unit step applied at instant t = 0.5 s. Find the gain K and
the pole p. Hint: subtract the response from the steady state value; you
should now have an exponential with a negative power. Plot its logarithm
and adjust a straight line.

5. For each of the transfer functions below, and for the corresponding step
input, �nd, if they exist:

� the natural frequency ωn and the damping factor ξ,

� the steady state value yss,
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� the peak time tp and the maximum overshoot Mp (expressed in per-
centage),

� the 5% and the 2% settling times (use the expressions for the expo-
nential envelope of the oscillations),

� the location of the poles,

� the time instant at which the response �rst reaches yss
2 ,

and sketch the step response.

(a) G(s) =
7

s2 + 0.4s+ 1
, for input u(t) = 0.1H(t)

(b) G(s) =
1

s2 + 5.1s+ 9
, for input u(t) = 18H(t)

(c) G(s) =
1

2s2 + 8
, for input u(t) = H(t)

(d) G(s) =
10

s2 − s+ 1
, for input u(t) = 2H(t)

(e) G(s) =
0.3

s2 + 4s− 1
, for input u(t) = 15H(t)

6. Sketch the Bode diagrams of the following transfer functions, indicating

� the gain for low frequencies,

� the resonant peak value, and the frequency at which it is located, if
indeed there is one,

� the slope of the gain for high frequencies,

� the phase for low frequencies,

� the phase for high frequencies,

� the frequency at which the phase is the average of those two values.

Hint: draw the asymptotes of the Bode diagram. If there is a resonant
peak mark it in your plot.

(a) G(s) =
1

s2 + 20s+ 100

(b) G(s) =
7

s2 + 0.4s+ 1

(c) G(s) =
1

s2 + 5.1s+ 9

(d) G(s) =
1

2s2 + 8

7. Find the second order transfer functions that, for a unit step input, have:

(a) tp = 0.403 s, Mp = 16.3%, yss = 0.8

(b) tp = 0.907 s, y(tp) = 11.63, yss = 10

(c) tr = 0.132 s, ts2% = 2.0 s, yss = 0.5

8. Consider the mechanical system in Figure 11.29. When f(t) = 8.9 N,
t ≥ 0, the output has tp = 1 s, Mp = 9.7%, and yss = 3× 10−2 m.

(a) Find the values of massM , viscous damping coe�cient B, and spring
sti�ness K.

(b) Suppose we want the same steady-state regime and the same settling
time, but a maximum overshoot of 0.15%. What should the new
values of M , B and K be?

9. Plot the Bode diagrams of the following plants:

(a) G(s) =
−4s+ 20

s3 + 0.4s2 + 4s

(b)
d3y(t)

dt3
+ 16

d2y(t)

dt2
+ 65

dy(t)

dt
+ 50y(t) = 100

du(t)

dt
+ 50u(t)
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Figure 11.29: System of Exercise 8.

(c) G(s) =
120(s+ 1)

s(s+ 2)2(s+ 3)

(d) G(s) =
s2

(s+ 0.5)(s+ 10)

(e) G(s) =
10s

(s+ 10)(s2 + s+ 2)

(f) G(s) =
(s+ 4)(s+ 20)

(s+ 1)(s+ 80)

10. Establish a correspondence between the three Bode diagrams and the three
unit step responses in Figure 11.30.

11. Establish a correspondence between the three Bode diagrams and the three
unit step responses in Figure 11.31.

12. Find the transfer functions corresponding to the Bode diagrams in Fig-
ure 11.32.

13. Use the Routh-Hurwitz criterion to �nd how many unstable poles each of
the following transfer functions has, and classify each system as stable,
marginally stable, or unstable.

(a)
s2 +

5

7
s− 10

s4 − 2s3 − 13s2 + 14s+ 24

(b) s+ 2
s4 − 2s3 − 13s2 + 14s+ 24

(c) s+ 2
s6 − 2s5 − 13s4 + 14s3 + 24s2 Hint: can you put anything in evi-

dence in the denominator?

(d) s3 + 2s2 + s
s4 + 4s3 + 4s+ 5

(e) s3 + 2s2 + s
s5 + 4s4 + 4s2 + 5s

(f) s3 + 2s2 + s
2s3 − 6s+ 4

14. Find the ranges of values of K1,K2 ∈ R for which the systems having
transfer functions with the following denominators are stable.

(a) s3 + 3s2 + 10s+K1

(b) s3 +K2s
2 + 10s+ 5

(c) s3 + 2s2 + (K1 + 1)s+K2

15. How many unstable, marginally stable, and stable poles do the following
transfer functions have?
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Figure 11.30: Bode diagrams and unit step responses of Exercise 10.
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Figure 11.31: Bode diagrams and unit step responses of Exercise 11.
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Figure 11.32: Bode diagrams of Exercise 12.
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Figure 11.33: The Sopwith Camel, a �ghter aircraft from World War I.

(a) G1(s) =
s− 2

s4 + 2s3 + 5s2 + 8s+ 4

(b) G2(s) =
s4 + 20s3 + 150s2 + 500s+ 625

s5 − 2s4 + 5s3 − 8s2 + 4s

(c) G3(s) =
s2 − 4

s3 + 5s2 + 6s+ 8

16. Find analytically the unit step responses of G1(s) =
100

s+ 10
and

G2(s) =
s+ 100

s+ 10
. Sketch them both in the same plot, marking the 5%

settling time for each. Plot separately the di�erence between them. Then

do the same for G3(s) =
8

s+ 12
and G4(s) =

s+ 8

s+ 12
.

17. Consider the following transfer functions:

G1(s) =
5050s+ 10000

s2 + 101s+ 100
(11.213)

G2(s) =
101s+ 10000

s2 + 101s+ 100
(11.214)

(a) Find their poles.

(b) Which pole is faster? Why?

(c) Which of the two transfer functions will respond faster to a unit step?
Why?

18. The roll angle φ (rotation around the x-axis) of the aircraft in Figure 11.33
is given by

ṗ = −2p+ 12δA (11.215)

where p = φ̇ and δA is the aileron de�ection. All variables are given in SI
units.

(a) Find transfer function Gp(s) =
p(s)

δA(s)
.

(b) Find transfer function Gφ(s) =
φ(s)

δA(s)
.

(c) Sketch p(t) when the ailerons undergo a 1◦ = π
180 rad step.

(d) What is p(t) when t = 0.5 s?

(e) Sketch φ(t) for the same input.

(f) Suppose you want φ = 30◦ after 20 s. Without calculating φ(t), �nd
an approximate value for the necessary aileron de�ection.

19. Plot the Bode diagram of transfer function G(s) =
120 (s+ 1)

s (s+ 2)
2

(s+ 3)
.
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Then Dick gave a cry. �It's just come into sight. Look, when we
passed those tall trees on the bank yonder, Tall Stone came into
view. It was behind them before that.�

�Good,� said Julian. �Now I'm going to stop paddling and keep Tall
Stone in sight. If it goes out of sight I'll tell you and you must back-
paddle. Dick, can you possibly paddle and look out for something
that could be Tock Hill on the opposite side? I daren't take my eyes
o� Tall Stone in case it disappears.�

�Right,� said Dick, and paddled while he looked earnestly for Tock
Hill.

�Got it!� he said suddenly. �It must be it! Look, over there � a
funny little hill with a pointed top. Julian, can you still see Tall
Stone?�

�Yes,� said Julian. �Keep your eyes on Tock Hill. Now it's up to the
girls. George, paddle away and see if you can spot Steeple.�

�I can see it now, already!� said George, and for one moment the
boys took their eyes o� Tall Stone and Tock Hill and looked where
George pointed. They saw the steeple of a faraway church glinting
in the morning sun.

�Good, good, good,� said Julian. �Now Anne � look for Chimney
� look down towards the end of the lake � where the house is. Can
you see its one chimney?�

�Not quite,� said Anne. �Paddle just a bit to the left � the left, I
said, George! Yes � yes, I can see the one chimney. Stop paddling
everyone. We're here!�

They stopped paddling but the raft drifted on, and Anne lost the
chimney again! They had to paddle back a bit until it came into
sight. By that time George had lost her steeple!

At last all four things were in view at once, and the raft seemed to
be still and unmoving on the quiet waters of the lake.

Enid Blyton (1897 � �1968), Five on a hike together (1951), XVIII

In this part of the lecture notes:

Chapter 12 introduces the basic concepts of measuring chains and control loops.

Chapter 13 presents the technology of the most common types of sensors, and the
criteria to choose them.

Chapter 14 presents the technology of the most common types of actuators, and the
criteria to choose them.

Here is what you need to know beforehand to follow these chapters:

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4;

� System theory, from Part II.
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Chapter 12

Measuring chains and

actuation chains

`Because, you see, I'm the only person who can open the door.'

`But you have given me the word. Was that a lie?'

`No � the word's all right. But, you see, it's one of these new-style
electric doors. In fact, it's really the very latest thing in doors. I'm
rather proud of it. It opens to the words �Open Sesame� all right �
but to my voice only.'

`Your voice? I will choke your voice with my own hands. What do
you mean � your voice only?'

`Just what I say. Don't clutch my throat like that, or you may
alter my voice so that the door won't recognise it. That's better.
It's apt to be rather pernickety about voices. It got stuck up for a
week once, when I had a cold and could only implore it in a hoarse
whisper. Even in the ordinary way, I sometimes have to try several
times before I hit on the exact right intonation.'

She turned and appealed to a short, thick-set man standing beside
her.

`Is this true? Is it possible?'

`Perfectly, ma'am, I'm afraid,' said the man civilly. From his voice
Wimsey took him to be a superior workman of some kind� probably
an engineer.

`Is it an electrical device? Do you understand it?'

`Yes, ma'am. It will have a microphone arrangement somewhere,
which converts the sound into a series of vibrations controlling an
electric needle. When the needle has traced the correct pattern, the
circuit is completed and the door opens. The same thing can be
done by light vibrations equally easily.'

`Couldn't you open it with tools?'

`In time, yes, ma'am. But only by smashing the mechanism, which
is probably well protected.'

`You may take that for granted,' interjected Wimsey reassuringly.

She put her hands to her head.

`I'm afraid we're done in,' said the engineer, with a kind of respect
in his tone for a good job of work.

Dorothy L. Sayers (1893 � �1957), Lord Peter Views the Body (1928), The
adventurous exploit of the cave of Ali Baba

In this chapter we take a closer look on sensors and actuators.
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Figure 12.1: Closed loop control. Top: simplest representation (see Figure 9.13).
Bottom: sensor and actuator explicitly shown.

Figure 12.2: Ammeter from the Tagus power plant (currently the Museum of
Electricity), Lisbon. Notice that the scale is not linear.

12.1 What are measuring chains and actuation
chains

Let us take another look at the simplest representation of a feedback control
system, already know to us from Figure 9.13 and repeated in Figure 12.1. We
saw in chapter 9 that, to feed back the output to the controller, we need a sensor
that measures the output y. The sensor is a device that converts the variable
to be read into another which can be read directly. This conversion is called
transduction. While we can often assume a perfect sensor H(s) = 1, in whichTransduction
case the measured output ŷ is equal to the output itself (i.e. ŷ = y), the sensor
must exist. Sensor technology will be addressed in more detail in chapter 13.

Example 12.1. The analogical ammeter in Figure 12.2 transduces current into
an angle. The angle can be read directly by sight on a scale. This sensor does
not record the reading.

Example 12.2. The seismograph in Figure 12.3 transduces a position (corre-
sponding to the amplitude of the vibration of the ground) again into an angle.
The reading is recorded on paper; time is transduced into a position thanks to
a rotation of the drum obtained through clockwork.

Likewise, the control action u provided by the controller must somehow be
implemented in the plant G(s); this is done through an actuator: for instance,Actuator
a motor in a mechanical plant, or a heater in a thermal plant. This is shown
in Figure 12.1. Once more, we can have such a good actuator Ga(s) that we
can assume the control action actually applied ũ to be equal to the control
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Figure 12.3: Seismograph from the Santa Marta lighthouse (currently a mu-
seum), Cascais.

Figure 12.4: Closed loop control with sensor, actuator and AD/DA conversion
explicitly shown.

action u that should be applied, the one given by the actuator � that is to say,
Ga(a) = 1 or ũ = u. Even if this is not assumed, the (imperfect) behaviour
of the actuator may be considered simply as part of the plant to be controlled
G(s). This makes sense if there is no way of changing the actuator, but if the
actuator can be replaced by a di�erent one (hopefully a better one, though poor
replacement parts and actuator malfunctions are also part of life) it is easier to
have separate models and change only the actuator model. Actuator technology
will be addressed in more detail in chapter 14.

It is perfectly possible to have plants where no more elements need to be
modelled: think of the �ush tank from Figure 3.16, where the sensor is the
�oater, and the actuator the lever that rotates on a hinge and is connected to the
�oater. But nowadays most sensors and actuators are electronic, and perform
a transduction of the measured variable to an electrical quantity (voltage or
current); the controllers that use measurements to decide the control actions to
apply are also electronic. Consequently, ŷ and u are digital signals (i.e. both
discrete in time and quantised in amplitude, as we saw in section 3.2); while y
is analogical, and ũ must be, if not analogical, at least continuous in time. That
is why it is necessary to have a digital to analogical converter , or simply a DA DA converter
converter, between the controller and the actuator, as seen in Figure 12.4. The
function of the AD converter is to receive a digital signal as input and provide
an analogical output (remember the example in Figure 3.13). Likewise, if after
all the sensor provides a measurement ŷ which is not digital, an analogical to
digital converter , or DA converter in short, is needed after the sensor. Even if the AD converter
sensor itself already provides a digital output, it is because it incorporates the
function of the DA converter. The function of the AD converter is to discretise
(in time) and quantise (in amplitude) its input.

The AD and the DA conversions may be carried out by the same device, AD/DA converter
which will have:

� analog inputs, and the corresponding digital outputs;
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Figure 12.5: Open loop control with actuation chain explicitly shown.

� digital inputs, and the corresponding analog outputs.

Figure 12.4 shows yet another element after the sensor: a �lter, that is, aFilter
system designed to eliminate noise from the measurement. This noise can be
present in the output of the plant, or be a result of the sensor itself. The �lter
can be applied to the analog measurement before AD conversion, or be applied
to the digital signal after AD conversion (this last option is the only one possible
if the sensor provides a digital reading).

Figure 12.4 also indicates what, in a digital control system, constitutes

� the measuring chain: sensor, �lter, AD conversion;Measuring chain

� the actuation chain: DA conversion, actuator.Actuation chain

If these chains are ideal, they can be modelled by ŷ
y = 1 and ũ

u = 1.
An open-loop control system will also have an actuation chain, as seen if

Figure 12.5, but no measuring chain. A measuring chain is present in a system
which is measured but not controlled.

12.2 Filters

We have just mentioned �lters in connection with the measuring chain, as a
means of eliminating noise from sensor measurements. In general, a �lter is a
system that eliminates some frequency components of a signal. These compo-
nents are said to be cut. Those that are not eliminated are said to pass the
�lter. Figure 12.6 shows the ideal behaviour of four types of �lters:Types of �lters

� low-pass �lters eliminate high frequencies and pass low frequencies;

� high-pass �lters eliminate low frequencies and pass high frequencies;

� band-pass �lters eliminate both low and high frequencies and pass inter-
mediate frequencies;

� band-stop or band-reject �lters eliminate intermediate frequencies and
pass both high and low frequencies.

In terms of periods of oscillations:

� low-pass �lters eliminate small periods and pass large periods;

� high-pass �lters eliminate large periods and pass small periods;

� band-pass �lters eliminate both small and large periods and pass interme-
diate periods;

� band-stop �lters eliminate intermediate periods and pass both small and
large periods.

What low and high frequencies (or large and small periods) are depends on the
application. The cut-o� frequency ωc is the limit separating the pass-band (theCut-o� frequency
interval of frequencies that pass the �lter) from the stop-band (the interval of
frequencies that the �lter eliminates).

No �lter can be as good as what Figure 12.6 shows. Figure 12.7 pictures aPerfect �lters do not exist
more realistic behaviour. Notice in particular:
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Figure 12.6: Ideal �lters.

� that both the pass-band and the stop-band are de�ned within some tol-
erance (in Figure 12.7, δp is the tolerance of the pass-band and δs is the
tolerance of the stop-band), which can be larger or narrower depending
on what is needed for each particular application;

� that there may be ripples in each of those intervals of frequencies;

� that, because the gain of a �lter within the stop-band will never reach
0 (i.e. −∞ dB), no frequencies of the �ltered signal are ever eliminated:
only attenuated;

� that, because the gain within the pass-band will not always be 1 (i.e.
0 dB), neither will the phase of the �lter in the interval be always 0◦: and
so, in practice, all �lters always introduce some distortion in the signal
that passes;

� that there is between the pass-band and the stop-band a transition band,
i.e. a range of frequencies where the signal no longer passes (since the
gain is below tolerance δp of the pass-band) and where it is not su�-
ciently attenuated (since the gain is above tolerance δs of the stop-band),
lying between the cut-o� frequency ωc which delimits the pass-band and
frequency ωs which delimits the stop-band.

Example 12.3. A 1 Hz signal is measured with an electronic sensor, and the
reading is corrupted with 50 Hz noise from the electric grid. To �lter out this
2π × 50 = 314 rad/s noise without distorting the 2π × 1 = 6.28 rad/s signal,
we will use a �rst order system, with the pole at the same distance from the
frequencies of signal and noise in a Bode diagram. A Bode diagram has a
logarithmic scale for frequencies, so the pole should be at the geometric mean
of 6.28 rad/s and 314 rad/s, which is

√
6.28× 314 = 44.4 rad/s:

F1(s) =
44.4

s+ 44.4
(12.1)

Figure 12.8 shows the Bode diagram of F1(s), and the gain and the phase at
the frequencies of both signal and noise:

� |F1(j 6.28)| = 10
−0.0861

20 = 0.99, which means that 99% of the signal passes:
it undergoes a 1% attenuation;

� ∠F1(j 6.28) = −8◦, which means that distortion due to a delay in the
phase is not very signi�cant;
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Figure 12.7: Behaviour of �lters, closer to reality than the ideal behaviour in
Figure 12.6. Notice that the band-stop �lter shown has a larger value of δs, and
larger ripples in the stop-band, than the other �lters.

Figure 12.8: Bode diagram of �lter F1(s) given by (12.1).

� |F1(j 314)| = 10
−17.1

20 = 0.14, which means that 14% of the noise passes:
it undergoes a 86% attenuation;

� ∠F1(j 314) = −82◦, which means that noise is not only attenuated: its
phase is also signi�cantly distorted.

Example 12.4. If the 14% attenuation is not enough, a second order �lter can
be used instead. Let us put two poles at 44.4 rad/s:

F2(s) =
44.42

(s+ 44.4)2
(12.2)

Figure 12.9 shows the Bode diagram of F2(s), and the gain and the phase at
the frequencies of both signal and noise:

� |F2(j 6.28)| = 10
−0.172

20 = 0.98, which means that 98% of the signal passes:
it undergoes a 2% attenuation;

� ∠F2(j 6.28) = −16◦, which means that distortion due to a delay in the
phase is now larger;
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Figure 12.9: Bode diagram of �lter F2(s) given by (12.2).

� |F2(j 314)| = 10
−34.2

20 = 0.02, which means that 2% of the noise passes: it
undergoes a 98% attenuation;

� ∠F2(j 314) = −164◦, which means that noise is now even more signi�-
cantly distorted.

Notice how we got a better attenuation of the noise, paying the price of distorting
more the signal.

Remark 12.1. In the previous example we used a second order system with Second order �lters should

have
√

2
2 ≤ ξ ≤ 1damping coe�cient ξ = 1 (double real pole). Notice that:

� it does not make sense to have an overdamped system, ξ > 1, with two real
poles which do not coincide: the transition band would be larger without
any advantage (see Figures 11.8 and 11.9 again);

� it does not make sense to have an underdamped system with ξ <
√

2
2 : there

would be a resonance peak, meaning that the input would be ampli�ed
near the end of the pass band, which does not make sense for a �lter (see
Figures 11.10 and 11.11 again).

As a consequence, second order �lters only make sense if critically damped or
lightly underdamped.

Remark 12.2. In both examples above, �lter design is rather easy, because
signal and noise have well de�ned frequencies, which are signi�cantly apart from
each other. Whenever frequency ranges of signal or noise are not well known, or When �lter design becomes

hardwhenever they are close to each other, �lter design becomes far more di�cult.
When they overlap, it is of course impossible to �lter out noise without damaging
the signal, or preserving the signal without letting some noise pass.

Remark 12.3. In both examples above, putting ωc halfway through signal and
noise frequencies is an attempt to balance good noise attenuation on the one
hand and little signal distortion on the other. We could also have:

� �xed in advance the minimum acceptable attenuation of the noise, �nd
the resulting ωc, and then check if signal distortion is acceptable; or

� �xed in advance the maximum acceptable distortion of the signal, �nd the
resulting ωc, and then check if noise attenuation is acceptable.

To design �lters of orders above 2, there are two criteria that can be followed:

� minimise the ripple of the pass-band (the price to pay being a larger
transition band);

� minimise the width of the transition band (the price to pay being ripples
in the pass-band).
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Minimising ripples leads to Butterworth �lters. We will not prove, but only Butterworth �lters min-
imise pass-band ripplesstate the following result:

� low-pass Butterworth �lters of order n with cut-o� frequency ωc are given
by

F (s) =
1

Hn

(
s
ωc

) (12.3)

� high-pass Butterworth �lters of order n with cut-o� frequency ωc are given
by

F (s) =
1

Hn

(
ωc
s

) (12.4)

where Hn(x) are Butterworth polynomials, given by

H1(x) = x+ 1 (12.5)

H2(x) = x2 + 1.4142x+ 1 (12.6)

H3(x) = (x+ 1)(x2 + x+ 1) (12.7)

= x3 + 2x2 + 2x+ 1 (12.8)

H4(x) = (x2 + 0.7654x+ 1)(x2 + 1.8478x+ 1) (12.9)

= x4 + 2.6131x3 + 3.4142x2 + 2.6131x+ 1 (12.10)

H5(x) = (x+ 1)(x2 + 0.6180x+ 1)(x2 + 1.6180x+ 1) (12.11)

= x5 + 3.2361x4 + 5.2361x3 + 5.2361x2 + 3.2361 + 1 (12.12)

...

Hn(x) =

n∑
k=0

ak,nx
k (12.13)

a0,n = 1 (12.14)

ak,n =

k∏
m=1

cos (m−1)π
2n

sin mπ
2n

, k = 1, . . . , n (12.15)

Example 12.5. Figure 12.10 shows the Bode diagram of the �rst 10 Butter-
worth �lters with ωc = 44.4 rad/s, as in Examples 12.3 and 12.4. Notice how
steeper gain slopes, and consequently larger attenuations at high frequencies,
are got at the cost of earlier distortions in the phase. A constant gain and a
negative phase mean that the signal will be delayed; as we will see in Chap-
ter 24, delays are a serious nuisance in control systems, and easily make them
unstable.

The transfer functions of the �rst two �lters are

F1(s) =
1

s
44.4 + 1

(12.16)

F2(s) =
1( s

44.4

)2

+ 2

√
2

2︸︷︷︸
ξ

s

44.4
+ 1

=
1971

s2 + 62.79s+ 1971
(12.17)

Notice that (12.16) is the same as (12.1).

Designing a �lter by minimising the width of the transition band leads toChebyshev and elliptic �l-
ters minimise the transi-
tion band

Chebyshev and elliptic �lters. We will not study them, just mention their ex-
istence. Butterworth, Chebyshev and elliptic �lters of any order can be easily
used in Simulink with block Analog Filter Design (from the DSP System

toolbox). All you have to do is to specify what type of �lter you want (low-
pass, high-pass, band-pass, or band-stop), what design method you want (el-
liptic, Butterworth, Chebyshev. . . ), the order of the �lter, and the passband.
Figure 12.11 compares �lters of �fth order of these types.
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Figure 12.10: Bode diagram of Butterworth �lters from Example 12.5.

Figure 12.11: Absolute value of the gain of di�erent �fth order �lters, as a
function of normalised frequency (source: Wikimedia).
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12.3 Bandwidth

Strictly speaking, the bandwidth ωb of a �lter is the width of its pass-band.Bandwidth of a �lter
Consequently:

� In the case of a low-pass �lter, the lower limit of the pass-band is 0 rad/s,
thus ωb = ωc − 0 = ωc.

� In the case of a high-pass �lter, the upper limit of the pass-band is in�nite,
so strictly speaking ωb = ∞ − ωc = ∞. But, since for a low-pass �lter
ωb = ωc, for high-pass �lters ωc is frequently given as the bandwidth as
well.

� In the case of a band-stop �lter, there are two pass-bands: the lower fre-
quency pass-band has bandwidth ωb = ωcl − 0 = ωcl; the upper frequency
pass-band has ωb = ∞− ωch = ∞, and, as for a high-pass �lter, ωch is
often given instead.

� In the case of a band-pass �lter, ωb = ωch − ωcl (see Figure 12.7). But
the two limits of the pass-band ωcl and ωch are often given instead, as for
band-stop �lters.

So in practice bandwidth ωb is frequently identi�ed with the cut-o� frequency
ωc (or frequencies, if there are more than one). Consequently, ωb will be the
frequency (or frequencies) where the gain crosses tolerance δp of the pass-band
(see Figure 12.7 again). The value of δp should be de�ned according to the
speci�cations of the particular situation where the �lter is employed. Very often,
the −3 dB criterion is used, i.e. the bandwidth ωb of a �lter F (s) is de�ned as−3 dB criterion for the

bandwidth the frequency where its gain |F (jω)| crosses −3 dB, or, in absolute value,

20 log10 |F (jωb)| = −3 dB⇔ |F (jωb)| = 10
−3
20 = 0.708 (12.18)

So, with this criterion, 70% of the signal passes, i.e. there is an attenuation of
30%. (Of course, if this is not acceptable, either because 30% of attenuation
is too much or because larger attenuations of the signal can be tolerated, a
di�erent criterion should be used.) The advantage of this criterion is that

� a �rst-order �lter F (s) = a
s+a has a −3 dB gain at the frequency of the

pole, as we see by (11.90), and so ωb = a;

� a second-order �lter with ξ =
√

2
2 and natural frequency ωn = a, given by

F (s) =
a2

s2 + 2
√

2
2 as+ a2

(12.19)

has a −20 log10 2
√

2
2 = −3 dB gain at frequency ωn = a, as we saw in

(11.105), and so ωb = a;

� and indeed all Butterworth �lters of any order, not only those of �rst-order
and second-order just mentioned, will have ωb = a.

When a bandwidth is mentioned, and no indication is given about the criterion
used to de�ne it, you can safely assume that the −3 dB criterion was employed.

The notion of bandwidth can be extended to any plant. Again, strictlyBandwidth of a plant in
general speaking, the bandwidth is the width of a frequency range, but in practice

the limits of the range are given instead, or rather only one limit if the other
is 0 rad/s or in�nity. The bandwidth will thus be once more a frequency or
frequencies that satisfy one of several criteria, according to what better suits
the plant.

� If the largest value of the gain of the plant is 0 dB, then the −3 dB criterion
can be used just as it is for �lters.

� If the largest value of the gain is larger than 0 dB, the −3 dB criterion
can also be used just the same.
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Figure 12.12: Bode diagram of a �rst-order plant with gain gmax = 20 dB at low
frequencies. Using the gmax − 3 dB criterion for the bandwidth, the frequency
of the pole is found.

� If the largest value of the gain is larger than 0 dB, the 0 dB criterion
can be used instead. The bandwidth will then separate the frequencies
where the input is ampli�ed from those where the input is attenuated. In
this case, the bandwidth will be just another name for the gain crossover
frequency, according to De�nition 10.9.

� If the largest value of the gain is some value gmax dB, a criterion can be
used by which the bandwidth is the frequency (or frequencies) where the
gain crosses gmax−3 dB. See Figure 12.12 to see an example showing why
this makes sense.

� The former criterion makes particular sense if gmax < 0 dB, since the gain
does not cross 0 dB and may not even cross −3 dB.

� The former criterion makes no sense if there are poles at the origin, since
in that case gmax = +∞.

� Some other value that better suits the problem addressed can be used
instead.

The 0 dB criterion is often useful, but since a plant's gain can be known with
uncertainty, or undergo small changes, for safety the −3 dB criterion is used
instead.

12.4 Signal characteristics

Having studied �lters, let us now look again at AD/DA conversion:

� AD conversion consists in two changes:

� the signal is sampled in time;

� the amplitude of the signal is quantized.

� DA conversion consists in two changes:

� the amplitude of the signal must be reconstructed;

� the signal will become continuous in time.

Changes in time will be addressed below in Chapter 25. Here we will address
changes in amplitude.
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Digital signals are (almost always) binary, consisting in an integer number Values of an n-bit digital
signalin base 2, i.e. they are a sequence of binary digits or bits, i.e. zeros or ones. A

digital signal with n bits can assume 2n values, ranging in decimal form from 0
to 2n − 1.

Example 12.6. A 4-bit digital signal can assume 24 = 16 values which are

binary decimal
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Notice that 16 in base 2 is 10000 and requires 5 bits to be represented. It is
impossible to represent it with 4 bits.

Remark 12.4. This is similar to what happens with an integer decimal number
with n digits, which can assume 10n values ranging from 0 to 10n−1. With three
decimal digits we can represent 999, but 103 = 1000 would require 4 decimal
digits. Of course, there are 1000 numbers from 0 (or 000, if you prefer) to 999.

Converting integers from base 2 to base 10 can be done summing the powersFrom base 2 to base 10
of 2 corresponding to bits which are 1.

Remark 12.5. This is similar to the interpretation of a decimal integer number.
We know that 60789, which has 5 decimal digits, is in fact

60789 = 6× 104 + 0× 103 + 7× 102 + 8× 101 + 9× 100 (12.20)

The rightmost digit multiplies 100 and thus, if there are n digits, the leftmost
digit multiplies 10n−1. Binary numbers are even easier to handle, because bits
are either 0 or 1.

Example 12.7. Binary number 10011101, which has 8 bits, corresponds to
decimal number

1×27+0×26+0×25+1×24+1×23+1×22+0×21+1×20 = 128+0+0+16+8+4+0+1 = 157
(12.21)

It is sometimes convenient to write the number like this:

order 7 6 5 4 3 2 1 0
bits 1 0 0 1 1 1 0 1
powers of 2 27 26 25 24 23 22 21 20

weights 128 64 32 16 8 4 2 1

Thereafter, the weights corresponding to bits equal to 1 are summed.

Example 12.8. Binary number 000111010110, which has 12 bits, corresponds
to decimal number

order 11 10 9 8 7 6 5 4 3 2 1 0
bits 0 0 0 1 1 1 0 1 0 1 1 0
powers of 2 211 210 29 28 27 26 25 24 23 22 21 20

weights 2048 1024 512 256 128 64 32 16 8 4 2 1
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28 + 27 + 26 + 24 + 22 + 21 = 256 + 128 + 64 + 16 + 4 + 2 = 470 (12.22)

Remark 12.6. In the last example, there were useless zeros at the left of the
last bit equal to 1. Of course, AD/DA converters work with a �xed number
of bits, and thus only half of the values they can assume do not begin with a
zero.

Converting integers from base 10 to base 2 can be done subtracting succes- From base 10 to base 2
sively the largest possible power of 2. These powers will correspond to the bits
that are equal to 1.

Example 12.9. Decimal numberm = 789 can be converted to binary as follows.
First we �nd all the powers of 2 until we exceed m.

210 29 28 27 26 25 24 23 22 21 20

1024 512 256 128 64 32 16 8 4 2 1

Since 210 > m we now know we will need 10 bits, corresponding to powers from
20 to 29. Now we successively subtract the larger possible weight from the table
above:

789− 512 = 789− 29 = 277 (12.23)

277− 256 = 277− 28 = 21 (12.24)

21− 16 = 21− 24 = 5 (12.25)

5− 4 = 5− 22 = 1 (12.26)

1− 1 = 1− 20 = 0 (12.27)

The bits equal to 1 are those of the powers we used:

29 28 27 26 25 24 23 22 21 20

1 1 0 0 0 1 0 1 0 1

Consequently m = 1100010101(2). If a larger number of bits is required, the
number is padded with zeros at the left. For instance, if m is to be written
using 16 bits, we will have 0000001100010101.

The number of bits in an AD/DA converter lets us know the resolution of Resolution
its output, which is the smallest interval between two consecutive readings.

Example 12.10. An 8-bit AD converter receives signals ranging from 0 V to
5 V. Its resolution is 5−0

28 = 5
256 = 0.0195 V = 19.5 mV.

Example 12.11. A 12-bit DA converter outputs signals ranging from −10 V
to 10 V. Its resolution is 10−(−10)

212 = 20
4096 = 0.0049 V = 4.9 mV.

The resolution can also be given referring to the variable which is being
measured, in the case of AD conversion, or which is being output, in the case
of DA conversion. This is fairly simple if transduction is linear. In the case
of a sensor with linear transduction, the proportion between the variable of
transduction and the measured variable is called sensibility. Sensibility

Example 12.12. Consider a sensor measuring distances from 0 cm to 50 cm
and with an output ranging from 0 V to 5 V. Its sensibility is constant, and
equal to 5−0

50−0 = 0.1 V/cm. The sensor is connected to the 8-bit AD converter
receiving signals from 0 V to 5 V of Example 12.10. The resolution of the
distance measurement is 50−0

28 = 50
256 = 0.195 cm. This can be graphically

depicted as in Figure 12.13.

Example 12.13. Consider a sensor measuring temperatures from 20 ◦C to
120 ◦C and with an output ranging from 1.25 V to 7.5 V. Its sensibility is
constant, and equal to 7.5−1.25

120−20 = 0.0625 V/◦C. The sensor is connected to a
10-bit AD converter receiving signals from −10 V to 10 V. The resolution of the
temperature measurement can be found in di�erent ways:

� The range of the output of the sensor is 7.5−1.25 = 6.25 V. Consequently,
we are using only 6.25

20 = 0.3125 of the 210 = 1024 values that the AD
converter can output, i.e. we are using only 0.3125 × 1024 = 320 values.
Thus the resolution is 120−20

320 = 0.3125 ◦C.
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Figure 12.13: Relations in the measuring chain of Example 12.12.

Figure 12.14: Relations in the measuring chain of Example 12.13.

� The resolution of the AD converter in Volt is 10−(−10)
210 = 20

1024 = 0.0195 V.
Hence the resolution in degree Celsius is 0.0195

0.0625 = 0.3125 ◦C.

� 7.5 V corresponds to output 7.5−(−10)
10−(−10) × 1024 = 896. 1.25 V corresponds

to output 1.25−(−10)
10−(−10) × 1024 = 576. Thus the resolution is 120−20

896−576 =

0.3125 ◦C.

Of course, all these ways of reasoning consist in fact in the same calculation and
give the same result. See Figure 12.14.

In the previous example, outputs were found with rules of three. When
the result is not integer, it must be rounded down, because both AD and DAAD/DA conversion

rounds down converters work as shown in Figure 12.15 (in the next section we will see why).
Notice that, as a result:

� in AD conversion, when the input is the maximum voltage admissible
Vmax, the output should be 2n, where n is the number of bits, but, since
it is impossible to represent this number with n bits, the output is 2n − 1
instead;
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Figure 12.15: Blue line: how AD and DA conversions take place, for a 3-bit
converter working with voltages in the range from Vmin to Vmax; the resolution
is ∆V = Vmax−Vmin

8 . The extension to any other number of bits is immediate.

� in DA conversion, since the largest input is 2n−1, the output never reaches
Vmax, but only Vmax −∆V = Vmax − Vmax−Vmin

2n .

Example 12.14. A 16-bit AD converter working in the ±10 V range receives
2 V as input. The output is⌊

2− (−10)

10− (−10)
216

⌋
= b39321.6c = 39321 (12.28)

Converting this to binary form,

39321− 215 = 6553 (12.29)

6553− 212 = 2457 (12.30)

2457− 211 = 409 (12.31)

409− 28 = 153 (12.32)

153− 26 = 25 (12.33)

25− 24 = 9 (12.34)

9− 23 = 1 (12.35)

1− 20 = 0 (12.36)

we get 1001100101011001.

Example 12.15. A 6-bit DA converter has outputs in the −5 V to 5 V range
and receives 110001 as input. Since 110001(2) = 25 +24 +20 = 32+16+1 = 49,
the output will be

−5 +
25 + 24 + 20

26
(5− (−5)) = −5 +

32 + 16 + 1

64
10 =

490

64
− 5 = 2.656 V

(12.37)

Knowing the resolution is important to calculate the precision: Precision

� the precision εmax of a measuring chain in the maximum absolute value
of the error ε between the measured value x̂ and the exact value of the
variable that is being measured x, that is,

εmax = max
x̂
|ε| = max

x̂
|x̂− x| (12.38)

� the precision εmax of an actuation chain is the maximum absolute value
of the error ε between the control action applied ũ and the desired control
action u found by the controller, that is,

εmax = max
ũ
|ε| = max

ũ
|ũ− u| (12.39)



228 CHAPTER 12. MEASURING CHAINS AND ACTUATION CHAINS

The precision of the chain, being a maximum value of an absolute error, is the
sum of the precision of its components.

Indeed, sensor and actuator accuracy is a�ected by errors, which can beSystematic vs. stochastic
errors classi�ed as systematic when their value remains the same for identical condi-

tions, or stochastic when they are a random variable. Systematic errors lead
to a bias in measurements. Stochastic errors corresponding to random variables
that do not have a zero mean also lead to bias in measurements. We will study
stochastic systems in detail in Part VIII of these Lecture Notes.

Example 12.16. Suppose that the sensor from Example 12.12 has an accuracy
of 5 mm. Since the range is 50 cm, this is often indicated as 5 mm

50 cm = 1% of
full-scale reading. This means that the accuracy is 1%× 50 cm = 5 mm.Accuracy as % of full-scale

reading Since the resolution of the AD conversion is 0.39 cm = 3.9 mm, if there are
no other sources of noise present, the precision of the measuring chain shall be
5 + 3.9 = 8.9 mm.

Example 12.17. Analog measurements have resolution and precision too. Con-
sider the weighing scale in Figure 12.16. Mass can be measured in the 5 kg to
100 kg range, with a resolution of 0.1 kg, and a precision of 0.1 kg. There is
no �ner resolution because the graduation has ten marks per kilogram. The
precision is a result of the characteristics of the device.

Example 12.18. In Example 12.17 the resolution and the precision have the
same value, but this is often not the case. Figure 12.17 shows luggage scales with
a resolution of 1 g, but with a precision of 5 g or 10 g depending on the range
where the measurement falls. (Varying precisions are found for some types of
sensors, especially because of non-linearities, as we shall see in Chapter 13.)

Remark 12.7. It makes sense to have a resolution equal to the precision, as in
Example 12.17, in which case all �gures of the measurement are certain; and it
makes sense to have a resolution higher than the precision, as in Example 12.18,
in which case the last �gure of the measurement is uncertain. It would make no
sense to have a resolution more than 10 times larger than the precision, since in
that case at least the last �gure of the measurement would have no signi�cance.
It would also make no sense to have a resolution coarser than the precision,
since the capacities of the sensor would be wasted.

In Examples 12.12 and 12.16 the range of outputs of the sensor S is precisely
the range of inputs of the AD converter C. If S 6= C there are three possible
situations:

� If S 6⊂ C, then it is necessary to modify S, adding (or subtracting) some
value, or multiplying it by some gain, or both, until S ⊂ C. We will see
in the next section that this can be easily done with op-amps.

� If S ⊂ C, but S is clearly smaller than C, and the resolution of the AD
conversion has a signi�cant weight in the precision of the measurement
chain, then S should be modi�ed as well.

� If S ⊂ C, and the resolution of the AD conversion is �ne, there is no need
to do anything.

A similar reasoning applies to DA conversion in the actuation chain.

Example 12.19. A sensor has an output in the 0 V to 10 V range, and will be
connected to a 24 bit AD converter that receives values in the 0 V to 5 V range.
The output of the sensor must be halved. Otherwise, the AD would over�ow
and its output would saturate. See Figure 12.18.

Example 12.20. A sensor has an output in the 0 V to 10 V range, and will
be connected to a 24 bit AD converter that receives values in the −5 V to 5 V
range. 5 V must be subtracted to the output of the sensor. See Figure 12.19.

Example 12.21. An electric motor receives an input in the 0 V to 10 V range,
corresponding to rotation speeds between 1 rpm and 100 rpm. It will be con-
nected to an 8 bit DA converter that has an output in the 0 V to 5 V range.
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Figure 12.16: Weighing scales once used in the Beªchatów coal mine, Poland.
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Figure 12.17: Luggage scales.
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Figure 12.18: Relations in the measuring chain of Example 12.19.

Figure 12.19: Relations in the measuring chain of Example 12.20.
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Figure 12.20: Relations in the measuring chain of Example 12.23. Compare this
with the original situation in Figure 12.14.

We do not want the motor to run faster than 45 rpm. Thus control actions
larger than 4.5 V are not needed, and the output of the DA converter can be
connected directly to the motor (likely through a power ampli�er, as we will see
in Chapter 14).

Example 12.22. If the temperature sensor from Example 12.13 has an accuracy
of 3 ◦C, then the precision of the measurement is 3.3125 ◦C. The contribution of
the AD converter for this is 0.3125 ◦C and is not very relevant when compared
to sensor accuracy. So the sensor can be directly connected to the AD converter.

Example 12.23. If the temperature sensor from Example 12.13 has an accuracy
of 0.1 ◦C, then the precision of the measurement is 0.4125 ◦C. The contribution
of the AD conversion is signi�cant, and if we need a precision of 0.2 ◦C it is clear
that it is the resolution of the AD conversion that is preventing this speci�cation
from being ful�lled. The resolution is poor because only 320 of the 1024 values
that the AD can output are being used. If all values were used, the precision of
the measurement would be 0.1 + 120−20

1024 = 0.1977 < 0.2 ◦C as required. So the
output of the sensor must be corrected:

� its range is from 1.25 V to 7.5 V, with an amplitude of 6.25 V and a mean
value of 4.375 V;

� we need it to range from −10 V to 10 V, with an amplitude of 20 V and
a mean value of 0 V;

� so �rst its mean should be corrected by subtracting 4.375 V;

� then its range must be corrected through an ampli�cation of 20
6.25 = 3.2

times.

See Figure 12.20.

12.5 Op-amp implementation of signal condition-
ing

Signal conditioning consists in the several operations underwent by a signal in
the measuring chain or in the actuation chain � �ltering, correction of the mean,
ampli�cation, etc.. They can be implemented using op-amps in the several
con�gurations we studied in Chapter 5.
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Figure 12.21: Circuit of Example 12.24, implementing the relations of Exam-
ple 12.23.

Example 12.24. The operations in Example 12.23 can be implemented with
op-amps with ±15 V supply tensions as shown in Figure 12.21. Notice that:

� Because a −4.375 V is unlikely to be directly available, it was obtained
from the 15 V tension which must be available to supply the op-amps.

� Care must be taken not to exceed supply tensions anywhere. That is why
it is not possible to multiply the sensor output S ∈ [1.25 V, 7.5 V] by 3.2
�rst, and only then correct the mean value subtracting 14 V. Apparently
the �nal result would be the same, since of course 3.2(x−4.375) = 3.2x−14.
But the �rst operation would require voltages in the range

3.2× [1.25 V, 7.5 V] = [4 V, 24 V] 6⊂ [−15 V, 15 V] (12.40)

and so the op-amps would saturate.

� The circuit in Figure 12.21 is not the only possible way of implementing
the desired operations. A weighted subtracting op-amp could have been
used instead. (Try to draw the corresponding circuit.)

� In particular, resistor values could change as long as the proportions for
each op-amp are kept. However, resistor values should not be too small
or too large.

� Resistor values that cannot be found o� the shelf can be obtained combin-
ing resistors in series (or in parallel), or with a potentiometer. The later
option allows calibrating the measuring (or actuation) chain, i.e. changing Calibration
the parameters of the components (in this case, resistance values) so that
the value read is exact in situations where the accurate value to be read
is known.

� Small resistor values mean high currents, since from Ohm's law I = U
R .

And high currents mean signi�cant energy dissipation by Joule e�ect, since
the power dissipated is given by P = RI2 = UI; this also means that the
resistances would get very hot.

� Another reason to avoid small resistor values is that jump wires, cables,
and other components have resistance too; such resistances are small, but
cannot be neglected if resistors have small values. As a consequence,
proportions of resistances around the op-amps would not be the desired
ones, and signal conditioning would be inaccurate.

� Large resistor values are also undesirable, since currents would be small.
In that case, noise a�ecting currents would hardly be neglectable, and
measurements would be unreliable.

Filters can implemented analogically with op-amps. Several con�gurations
that can be used for �lters have appeared in Exercises 1 and 5 of Chapter 5;
see also Exercises 6 and 7 in this chapter. These �lters �lter signals before AD
conversion. We will see in Part V how to implement (numerically) �lters after
AD conversion, i.e. �lters that receive the signal already discretised in time.
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Figure 12.22: Successive approximation AD converter with N bits (source:
Wikimedia). S/H (sample and hold) denotes discretisation in time; DAC is
the digital to analog converter; and SAR (successive approximation register) is
the microprocessor's generator of binary numbers according to the binary search
algorithm.

AD/DA conversion is always done using commercially available converters,
but it is important to know how it is done using op-amps, since this makes
clearer why it behaves how it does:

� DA conversion is obtained with a sequence of summing ampli�ers, as seen
in Exercise 9 below;

� AD conversion is obtained with one or more comparator op-amps. The
input is compared with the values of the voltages of possible binary outputs
(the full points in Figure 12.15). The output is the largest binary number
that is not larger than the input. That is why AD conversion results in
a step-like behaviour as seen in Figure 12.15, rounding the output down.
While there are di�erent possible con�gurations, the most common ones
are:

� There are as many comparators as possible outputs. This is fast,
since all comparisons are done simultaneously. On the other hand,
if the number of bits n is high, 2n op-amps take lots of space and
energy.

� There is only one comparator, that sequentially compares the input
with a variable voltage. This voltage is obtained, using a DA con-
verter, from a binary number sent by a microprocessor. The compar-
ison could be done beginning with 0 and then going up one bit at a
time, but this takes too much time; in practice, the microprocessor
usually runs a binary search algorithm (which you may know from
computer programming) instead:

1. If the conversion has n bits, the �rst comparison is always with
2n−1, which corresponds to the middle of interval [Vmin, Vmax].

2. If the input is larger, the output must be in the [2n−1, 2n − 1]
range. If the input is smaller, the output must be in the [0, 2n−1−
1] range.

3. The midpoint of this interval where we now know that the output
must be is used for a new comparison.

4. This goes on until it is clear that the interval where the output
must be has only one point; i.e. until it is clear that input V
veri�es V ≥ m and V < m+ 1. Then m is the output.

These are called successive approximation AD converters. See Fig-
ure 12.22.

Glossary

Ora menganava tanto
que cuydey que ereis vos santo
& vos falais castellano
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Gil Vicente (1465? � �1536?), Floresta denganos (1536)

accuracy precisão
active �lter �ltro ativo
actuation chain cadeia de atuação
AD converter conversor AD
band-pass (�lter) (�ltro) passa-banda
band-stop, band-reject (�lter) (�ltro) corta-banda
bandwidth largura de banda
bias enviesamento
calibration calibração
cut-o� frequency frequência de corte
DA converter conversor DA
distortion distorção
�lter �ltro
high-pass (�lter) (�ltro) passa-alto
low-pass (�lter) (�ltro) passa-baixo
measuring chain cadeia de medida
measuring range gama de medida
pass-band banda (de frequências) de passagem
passive �lter �ltro passivo
precision precisão
repeatability repetibilidade
resolution resolução
signal conditioning condicionamento de sinal
sensibility sensibilidade
stochastic error erro estocástico
stop-band banda (de frequências) de corte, banda de rejeição
successive approximation aproximação sucessiva
systematic error erro sistemático
transduction transdução
transition band banda (de frequências) de transição

Exercises

1. The speedometer of a car's dashboard receives a signal in the [0, 2] V range
and shows speed values in the [0, 200] km/h range. It will be connected to
a sensor that measures speeds in the [0, 50] m/s range, providing a reading
in the [0, 50] mV range. Design the signal conditioning needed to connect
the sensor to the dashboard's speedometer.

2. A submarine has a sonar that creates a sound and detects its re�ection by
an object. The sound travels from the submarine to the object and back,
and then is detected. The speed of sound in water is 1500 m/s.

(a) How is the distance d to the object related to the time t between the
emission of the sound and the detection of its re�ection?

(b) The sound detector that measures t returns a tension given by 100 mV
per second. It will be connected directly to a display that receives
signals in the [0, 5] V range. What is the largest distance d that can
be shown, before the display saturates?

3. An accelerometer outputs 14 mV per g, where g = 9.8 m/s2. Design a
signal conditioning to convert this into 0.25 V per m/s2.

4. A quadcopter has a sensor to measure its height. The maximum frequency
of this signal is 10 Hz. There is noise at frequencies of 1 kHz and higher.
Design a �lter with at least 37 dB attenuation for noise, while letting at
least 99% of the signal pass.

5. A sensor reads a signal given by y(t) = cos(10t). A power ampli�er in-
troduces noise estimated as d(t) = 0.5 cos(104t). In order to reduce the
amplitude of the noise to 0.01, the �lter in Figure 12.23 was employed.
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Figure 12.23: Circuit with the �lter of Exercise 5. The sensor is connected to
the left of the breadboard, and the �ltered signal is read to the right (source:
Professor Carlos Cardeira).

Figure 12.24: Circuit with the �lter of Exercise 6.

(a) The resistance is R = 10 kΩ and the capacitor is C = 6 µF. Explain
why the �lter is not suitable for its purpose.

(b) What values of R and C would be suitable?

6. Consider the �lter in Figure 12.24.

(a) Find transfer function Vout(s)
Vin(s) .

(b) What kind of �lter is this?

(c) What values of R1, R2, C1 and C2 would you use to obtain a cut-o�
frequency of 100 Hz?

(d) Plot the resulting Bode diagram.

(e) Replace resistors by capacitors and vice-versa, and answer again all
the questions above.

7. Repeat the last exercise, using the �lters with the circuits in Figure 12.25.

8. An 8�bit AD converter receives values in the in the [0, 10] V range.

(a) What is the converter's input when its output is 10101001?

(b) What is the converter's input when its output is 01010111?

(c) What is the converter's output when its input is 3 V?

(d) What is the converter's resolution?

9. Consider the DA converter in Figure 12.26.
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Figure 12.25: Circuit with the �lters of Exercise 7.

Figure 12.26: DA converter of Exercise 9.
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(a) What is the converter's output when its input is 1001?

(b) What is the converter's output when its input is 0101?

10. A distance sensor with a sensibility of 0.1 V/mm measures distances in
the range from 20 mm to 120 mm. The reading will be read by an AD
converter that receives signals in the [−5,+5] V range. Project a signal
conditioning circuit with only one OpAmp, supplied with ±15 V tensions;
assume that you have a DC +5 V tension available.



Chapter 13

Sensors

Once outside the town, Stomper led them into a thick sedge and bade
them to be small and quiet lest they be seen by Sorhed's agents, who
would soon revive and mount the hunt.

The party was still panting when sharp-eared Arrowroot adjusted
the volume on his hearing aid and laid his head to the ground.

�Hark and lo!� he whispered, �I do hear the sound of Nine Riders
galloping nigh the road in full battle array.� A few minutes later a
dispirited brace of steers ambled awkwardly past, but to give Stom-
per his due, they did carry some rather lethal-looking antlerettes.

�The foul Nozdrul have bewitched my ears,� mumbled Stomper as
he apologetically replaced his batteries, �but it is safe to proceed,
for the nonce.� It was at that moment that the thundering hooves
of the dreaded pig riders echoed along the road.

Henry N. Beard (1945 � . . . ), Douglas C. Kenney (1946 � �1980), Bored of
the Rings (1969), III

In this chapter we will study how sensors for di�erent types of physical
quantities work. Most sensors nowadays transduce what they are measuring
into a voltage or a current, which will then be acquired electronically. Even
if the signal is not recorded, but merely shown to a human user, such sensors
are employed with a digital display. As a consequence, measuring chains need,
almost always, to be supplied energy to function.

Sensors used to display a reading on a scale, as in Figure 12.2, are not found
today as often as they once were. In any case,

� if a sensor transduces the quantity measured into an angular (or linear)
position, easily shown on a scale, a further transduction of the angle into
a voltage (or a current) allows acquiring the measurement electronically;

� if a sensor transduces the quantity measured into a voltage (or a current),
a further transduction into an angle (or a linear position) allows showing
the reading on a scale.

In either case, the measurement will be based on more than one transduction. The working principle of
some sensors uses two or
more transductions

This is usual: as we will see, there are sensors with working principles based
upon more than two transductions.

The output of some sensors is already digital; they do not require AD con-
version.

You are strongly advised to search the Internet for websites of manufacturers
and sellers of the di�erent types of sensors, and check the technical documen-
tation available. This is the best way to get acquainted with the characteristics
of the di�erent sensors: range, resolution, precision, bandwidth, type of output, Important characteristics

of sensorstype of supply, repeatability, linearity, temperature or humidity limitations �
and if possible check yet another very important non-technical characteristic
which is the price.

239
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Figure 13.1: Bode diagrams of s (di�erentiation) and of 1
s (integration).

Figure 13.2: Left: a signal corrupted by high frequency noise. Right: the
derivative we would like to have, and what we really get when we di�erentiate
without bothering to �lter.

13.1 Position, proximity, velocity and accelera-
tion sensors

Position, velocity and acceleration can be found from one another. This meansFinding x, ẋ and ẍ from
one another that a sensor for one of these variables can be used to �nd the others. This is

done in practice, but is not without problems:

� Velocity can be found di�erentiating position, and acceleration can be
found di�erentiating velocity or di�erentiating position twice. But dif-
ferentiation ampli�es high-frequency noise: see the Bode diagram in Fig-
ure 13.1, and an example of the e�ect in Figure 13.2. Ampli�ed high-
frequency (i.e. short period) noise is felt at once.

� Velocity can be found integrating acceleration, and position can be found
integrating velocity or integrating acceleration twice. But integration am-
pli�es low-frequency noise: see the Bode diagram in Figure 13.1, and an
example of the e�ect in Figure 13.3. Ampli�ed low-frequency (i.e. large
period) noise is felt only after a while.

Proximity sensors return a binary variable related to position x: the sen-
sor detects if x < xmax, where xmax is some threshold below which presence
is detected. Position sensors can be used as proximity sensors: it is merelyRelation between proxim-

ity and position sensors a question of comparing the measured distance x with the desired threshold.
Several proximity sensors can be used to measure a distance, as seen in Fig-
ure 13.4; the resolution will be the distance between two consecutive sensors.
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Figure 13.3: Left: a signal corrupted by low frequency noise. Right: the inte-
gral we would like to have, and what we really get when we integrate without
bothering to �lter.

Figure 13.4: Several proximity sensors with range r, placed at a distance d from
each other, can be used to measure position (in this case, the position of the
dark square), if d < 2r.

This distance can never be larger than xmax, and in practice should probably
be inferior; otherwise it is possible that an object will not be detected by any
sensor.

Proximity sensors can also be easily used to measure the angular velocity of
non-homogeneous bodies. The example of a cog is shown in Figure 13.5: the
sensor detects the proximity of a tooth; the angular velocity is found di�erenti-
ating with respect to time the value of a counter that accumulates the number
of teeth.

Example 13.1. The cog of Figure 13.5 has 28 teeth. A proximity sensor has the
output shown in that Figure; i.e., 14 teeth could be counted during 1 s. Thus,
the cog rotates at 14

28 = 0.5 Hz, i.e. 0.5×2π = π rad/s, or still 0.5×60 = 30 rpm.
Usually the values of a counter would be known instead of the sensor output.

For instance, the counter would have 753 at t = 31 s, and 767 at t = 32 s; thus,

ω =
767−753

28

32−31 = 0.5 Hz = π rad/s = 30 rpm.

As we saw in Chapter 4, position, velocity and acceleration can be linear
or angular. Sensors for linear quantities can be used for angular quantities and
vice-versa, using e.g. a rack and pinion (remember Figure 4.15) or a roller wheel.
We will now study the more frequently found working principles of these types

Figure 13.5: Left: a proximity sensor detects the teeth of a cog (source: adapted
from Wikimedia). Right: output of the proximity sensor for Example 13.1.
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Figure 13.6: Left: rotary potentiometer. Right: output of a rotary potentiome-
ter with one terminal grounded and another at 5 V.

of sensors. Some only work for linear quantities; others only work for angular
quantities; others work for both.

13.2 Working principles of position sensors

The following sensors measure both linear and angular positions.

� Potentiometric sensors consist in a potentiometer with the terminalsPotentiometric sensors
at �xed voltages. The resistance is uniform, and so the position of the
slider is proportional to the resistance between the slider and one of the
terminals; see (5.2) and Figure 5.3 again. These sensors use to be relatively
cheap, but, because the slider must move and overcome friction, they are
subject to wear and there are limitations to the velocity of the slider. In
other words, the bandwidth of the sensor is limited (i.e. the frequency of
the changes in the measured position cannot be very high).

Rotary potentiometers have the resistance shaped in a round form, asRotary potentiometers
in Figure 13.6. In this case, for a multi-turn measurement, the output
will have a discontinuity when the cursor passes from one terminal to the
other.

� Encoders are more often used to measure angular position, though linear
encoders exist as well. A rotary encoder is a sensor consisting in a wheel
with perforations (shaped as slits), disposed in such a way that the light of
a LED on one side of the wheel may be detected by a light sensor (which
we will address below in Section 13.6) on the other side, if the hole is
aligned with both the LED and the sensor. Instead of a perforated wheel,
it is possible to have a wheel with a surface which either re�ects light or
not; in this case, both the LED and the light sensor are on the same side of
the wheel. Because the encoder output depends on light sensors detecting
light or not, it is digital by construction. There are two main types of
encoders:

� Incremental encoders, or relative encoders, have a row of nIncremental encoders
slits along the rim (or non-re�ective dark spots, though incremental
encoders more often have slits). As the wheel turns, the output of
a light sensor mounted as seen in Figure 13.7 will be a square wave.
(More precisely, if the rotation speed is constant, the output will be
a square wave. Otherwise, the up and down steps will not be evenly
distributed in time.) A counter counts the number m of peaks in
this wave, and thus, since the counter was reset, the angle θ that the
wheel has described is

θ =
m

n
360◦ (13.1)

If the wheel always turns in the same sense of rotation, this is enough;
otherwise, the counter just keeps incrementing its value even when
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Figure 13.7: Left: incremental encoder. Right: output of the light sensors.
(Source: ISBN 9780128123195.)

0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

0 0 0 0
1 0 0 1
5 1 0 1
7 1 1 1
3 0 1 1
2 0 1 0
6 1 1 0
4 1 0 0

Figure 13.8: Left: 3-bit encoder wheel with binary numbers. Right: 3-bit
encoder wheel with Gray code. (Source: Wikimedia.) Notice how on the left
all three bits may change at one time, while on the right, by construction, only
one changes at a time.

the shaft rotates back. To know the sense of rotation, two di�erent
light sensors are needed. They will either be slightly misaligned so
that they will not detect a slit at the same time, or correspond to two
di�erent rows of misaligned slits along the rim. In this way, there will
be two square waves, and knowing which of them goes up �rst it is
possible to know if the wheel turns clockwise or counter-clockwise, i.e.
if the count should be incremented or decremented. In any case, the
rotation is measured from the position of the shaft when the counter
was reset. Some encoders include a third sensor, to detect a single
slit that will correspond to 0◦; but this will only work if that sensor
is ever activated (small oscillating shaft rotations may prevent that).
And, in any case, the position is found integrating � or rather, since
a digital value is used, summing � a measurement.

� Absolute encoders give the absolute value of the angular position Absolute encoders
of the shaft. The wheel is divided into n concentric annuli, and into
2n sectors, as seen in Figure 13.8. Each sector has its n sectors of
annuli painted so as to correspond to a di�erent number in base 2.
(Slits would prevent a smooth transition of the reading from one
sector to the next.) There are n sensors, and the binary number
formed by the readings of the sensors gives the angular position of
the shaft, with resolution 360◦

2n . Numbers may follow in numerical
order, but in this way it is possible that, when the reading changes
from one sector to the next, di�erent light sensors will change its
output at slightly di�erent instants. Consequently, for a short period
of time, the output will be wrong. Thus, it is usual to arrange the
binary numbers in such a way that only one bit changes at a time.
This arrangement is known as Gray code and shown in Figure 13.8. Gray code

The encoders described above are optical encoders, by far the most com- Optical vs. magnetic en-
codersmon. Magnetic encoders are similar but replace the LED and the light

sensor by magnetic pulses. Instead of slits in the wheel, or zones that alter-
nately re�ect and do not re�ect light, the wheel has permanent magnets,
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Figure 13.9: Magnetic linear incremental encoder (source: DOI
10.3390/s18072281).

Figure 13.10: LVDT distance sensor (source: Wikimedia).

and their presence is detected by a circuit where a current is induced.

Measuring a linear position with an encoder is normally done using a rack
and pinion or a roller wheel, but there are linear encoders (though not asLinear encoders
common as rotary encoders) such as the one in Figure 13.9.

� Linear variable di�erential transformers (LVDT sensors) and ro-LVDT and RVDT sensors
tary variable di�erential transformers (RVDT sensors) have three
coils and a ferromagnetic core connected by a shaft to the position to be
measured. The shaft moves back and forward, as seen in Figure 13.10, in
a LVDT; in a RVDT, shown in Figure 13.11, it rotates. A �xed voltage is
applied to coil A, the primary coil, and the core becomes an electromag-
net. If it is equidistant from both the other coils, the secondary coils, the
core induces no current in them, and there is no voltage B; this is called
the null point. If the core moves aside, there will be a current in one of
the secondary coils, and B 6= 0. LVDT and RVDT sensors have good
resolution and bandwidth, little wear, and few temperature restrictions.

The following sensors measure linear position only.

� Capacitive sensors, or capacitance sensors, have the position to be mea-Capacitive sensors
sured connected to one of the plates of a capacitor. If the moving target
is conductive, it may be used as one of the plates. The capacitance C of
a capacitor with plates of area A separated by distance x is given by

C =
Aε

x
(13.2)

where ε the dielectric constant of the medium between the plates. Capac-
itance is then measured applying a known current, so that the resulting
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Figure 13.11: Left: RVDT with its core at the null point, and thus equal volt-
ages in the secondary windings. Right: di�erent voltages in the two secondary
windings. (Source: https://www.youtube.com/watch?v=lNKxIsM_W3M.)

Figure 13.12: Eddy currents with intensity I induced by the magnetic �eld
B of a magnet on a moving conducting material C with velocity V (source:
Wikimedia).

voltage, after the capacitor is charged, is inversely proportional to the
capacity C (remember (5.9)), and consequently linear with x.

� Eddy current sensors are based on eddy currents, or Foucault currents, Eddy current sensors
and require that the target be conductive. As Figure 13.12 shows, a mov-
ing magnetic �eld induces an electric current in a conductive material.
Since the target may not be moving, sensors use an electromagnet with
a high frequency alternating current. In this way, the magnetic �eld is
always changing, just as if a permanent magnet were moving. The closer
the target, the more energy these currents have. They generate a magnetic
�eld that counteracts the one that originates them. The result is that the
sensor and the target can be modelled as a transformer with a variable
coupling coe�cient (remember Figure 5.22). The sensor itself will be sim-
ilar to an LR system with both impedance L and resistance R depending
on the distance x, as in Figure 13.13. These sensors operate in a wide
amplitude of temperatures and have a high bandwidth.

� Hall sensors, or Hall e�ect sensors, are based on the Hall e�ect, explained Hall sensors
in Figure 13.14, and again require a conductive target. The presence of
the conductive target in the magnetic �eld changes the dielectric constant
and consequently the Hall voltage. The variation of this voltage is used
to �nd the distance of the target.

� Inductive sensors are similar, and are also based on an electromagnet. Inductive sensors
Unlike Hall sensors, only variations in the magnetic �eld caused by a
metallic target are detected. Consequently, these sensors are proximity
sensors.

� Strain gauges are resistances glued to a surface, in such a way that Strain gauges
will be stretched or compressed with it. They are used to measure small

Figure 13.13: Model of an eddy currents sensor.

https://www.youtube.com/watch?v=lNKxIsM_W3M
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Figure 13.14: Hall e�ect: magnet (3) generates a magnetic �eld (4) that deviates
the electrons (1) passing through plate (2) which is part of the circuit fed by
battery (5). The force acting on the electrons is called Lorentz force. Because
electrons are de�ected, there is a di�erence of electric potential between the
upper and the lower sides of plate (2), called Hall voltage. In practice, the plate
is usually a semiconductor. (Source: adapted from Wikimedia.)

displacements (as well as several other quantities, as we will see in the
following sections).

� When the surface is stretched, so is the resistance: its length increases
and its cross-section decreases. (5.2) shows that the resistance will
consequently increase.

� When the surface is compressed, so is the resistance: its length de-
creases and its cross-section increases. (5.2) shows that the resistance
will consequently increase.

See Figure 13.15. The resistance of a strain gauge has several windings
to maximise the changes in length and cross-section; see Figure 13.16. It
should be glued so that these windings are parallel, or oblique, to the
direction of the stretch or compression; it should never be perpendicular
thereto.

Theorem 13.1. The variation of the resistance ∆R of a strain gauge is
linear with the variation of ist length ∆L, provided that it be small.

Proof. As the strain gauge is solid, its volume before and after the change
in length is the same. Let the initial length be L and the initial cross-
section be A. The �nal length will be L+ ∆L, and the �nal cross-section
will be A − ∆A; the variations ∆L and ∆A will be either both positive
or both negative. Neglecting second order terms (that is why we need a
small ∆L),

LA = (L+ ∆L)(A−∆A) = LA− L∆A+A∆L−
≈0︷ ︸︸ ︷

∆L∆A

⇒ ∆A =
A

L
∆L (13.3)

From (5.2), we know that the initial resistance R is R = ρLA , and that the
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Figure 13.15: How a strain gauge's length and cross section change when it is
stretched and compressed (source: Wikimedia).

Figure 13.16: A strain gauge (source: Wikimedia).
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�nal resistance is

R+ ∆R = ρ
L+ ∆L

A−∆A

⇔ ρ
L

A
+ ∆R = ρ

L+ ∆L

A−∆A

⇒ ∆R = ρ
L+ ∆L

A− A
L∆L

− ρL
A

= ρ

(
L2 + L∆L

LA−A∆L︸ ︷︷ ︸
≈LA

− L2

LA

)

= ρ
L∆L

LA
=
ρ

A
∆L (13.4)

Since a strain gauge transduces the variation in length into a resistance,
another transduction is needed to obtain a voltage. The simplest way
to do this would be a tension divider, as in Figure 13.17. A constant
reference voltage Vi is provided, the output is Vo, and we let the additional
resistor of the divider be equal to the nominal value of the resistance of
the gauge:{

R+ ∆R = Vi−Vo
i

R = Vo
i

⇒ i =
Vi − Vo
R+ ∆R

=
Vo
R

⇒ ViR− VoR = VoR+ Vo∆R⇔ Vo(2R+ ∆R) = ViR

⇔ Vo
Vi

=
R

2R+ ∆R
(13.5)

Because, as we saw, ∆R � R, this con�guration seldom, if ever, leads to
acceptable results, as Vo

Vi
will be nearly constant. That is why an alterna-

tive con�guration, teh Wheatstone bridge, is used instead. There are
in fact three di�erent variations, shown in Figure 13.17, depending on the
number of gauges used:

� In a quarter bridge, there is one gauge, andWheatstone bridge: quar-
ter bridge {

VA = Vi
R

R+R+∆R

VB = Vi
R

R+R

⇒ Vo = VB − VA = Vi

(
1

2
− 1

2 + ∆R
R

)

⇒ Vo
Vi

=
2 + ∆R

R

2 (2 +
∆R

R
)︸ ︷︷ ︸

≈2

− 2

2 (2 +
∆R

R
)︸ ︷︷ ︸

≈2

≈ 1

4

∆R

R
(13.6)

� In a half bridge, there are two gauges, placed in such a way thatWheatstone bridge: half
bridge one will be stretched and the other compressed; i.e. the variations of

resistance will be symmetrical. If the distance measured is the result
of bending a beam, that means that a gauge is placed on top and
another at the bottom. Then{

VA = Vi
R−∆R

R−∆R+R+∆R

VB = Vi
R

R+R

⇒ Vo = VB − VA = Vi

(
1

2
−

1− ∆R
R

2

)

⇒ Vo
Vi

=
1

2

∆R

R
(13.7)

� In a full bridge, there are four gauges, placed in such a way thatWheatstone bridge: full
bridge two will be stretched and two compressed:{

VA = Vi
R−∆R

R−∆R+R+∆R

VB = Vi
R+∆R

R−∆R+R+∆R

⇒ Vo = VB − VA = Vi

(
1 + ∆R

R

2
−

1− ∆R
R

2

)

⇒ Vo
Vi

=
∆R

R
(13.8)

Even with a Wheatstone bridge, the output voltage usually needs to be
signi�cantly ampli�ed to be read by an AD converter.



13.2. WORKING PRINCIPLES OF POSITION SENSORS 249

(a) (b)

(c) (d)

Figure 13.17: A strain gauge needs to be used with other resistors. (a) Volt-
age divider, a very poor con�guration because the output hardly changes. (b)
Wheastsone quarter bridge, with one gauge. (c) Wheatstone half bridge, with
two symmetrical gauges. (d) Wheatstone full bridge, with two pairs of symmet-
rical gauges.
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Figure 13.18: Measuring a distance using a laser triangulation sensor (source:
Wikimedia). When the object comes closer by a distance DZ, its image in the
light sensor moves by a distance Dz.

� Laser sensors use a laser (Light Ampli�cation by Stimulated Emission
of Radiation) beam to measure distance in one of two ways:

� Pulses of light are emitted and re�ected in an object. The re�ected
light is called return, and detected; the time t between the emission
of the pulse and the detection of the return is given by c = d

t , where
c is the speed of light and d the desired distance. This is the way
a lidar (LIght Detection And Ranging) works. Lidar sensors areLidar
often used in autonomous vehicles, because they are fast (they have
a very large bandwidth) and can return distances for a wide range
of angles, allowing a 3D image of the environment to be built. They
are also used in cartography. In this case, the location and altitude
of an airplane carrying a lidar are found using a GPS (which we will
address below); the lidar gives the distance of the airplane to the
ground, once more sweeping a wide range of angles. Since the GPS
gives the altitude not in relation to the ground, but as a distance
to the centre of the Earth, the lidar readings can be used to build a
3D image of what the airplane is �ying over. The range of distances a
lidar can measure varies signi�cantly; it can be of tens, hundreds, or
even thousands of meters. Larger ranges result in lower accuracies.

� The laser is emitted continuously, is re�ected, and detected. TheLaser triangulation
position where it is detected is related with the distance to the surface
as shown in Figure 13.18. This is called triangulation. The range
of lengths that can be measured in this way is smaller than that of
the lidar, but on the other hand an accuracy of almost 1 µm can be
obtained.

� Ultrasound sensors emit ultrasounds and measure the time it takes forUltrasound sensors
the echo to return. This may be done with a single transducer, that both
emits the ultrasound and measures the echo. In a way, they are similar
to a lidar, but using ultrasounds instead of laser pulses; this means that
the sensor works even when there is smoke or fog (environments that pose
problems to laser sensors), or when the material fails to re�ect a laser
beam because of being translucid. On the other hand, the range is usually
of at most a few meters only, and care must be taken because the speed
of sound is not constant (it depends on temperature and on other usually
less relevant factors).

� A similar principle can be found in a sonar (SOund Navigation AndSonar
Ranging), that uses audible sound to measure underwater distances.

� GNSS (Global Navigation Satellite Systems) deserve to be mentioned
here, though they are signi�cantly di�erent from the precedent technolo-
gies and are used for di�erent purposes. The better known GNSS is the
GPS (Global Positioning System) of the government of the United StatesGPS
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Figure 13.19: Knowing one's distance to a point of known location (such as
a GPS satellite), we know we are on the surface of a sphere. Knowing one's
distance to two points of known location, we know we are on the intersection
of two spheres, i.e. on a circle (source: Wikimedia). Knowing one's distance
to three points of known location, the current location can be know precisely
if there are no errors in the distances or the positions of the spheres' centres
(source: Wikimedia). (In fact the intersection of three spheres leads to two
points, but the GPS receiver is presumed to be at the point closer to the Earth,
and not in outer space.) Knowing one's distance to more than three points
of known location allows a better reckoning of the current location using least
squares.

of America, though there are others, such as the European Union's Galileo,
and many are compatible with each other; in any case, GPS is often used
by synecdoche to design all GNSSs. These systems are based on satellites
orbiting the Earth, broadcasting radio signals that include the satellite's
location and the time, given by an atomic clock (this is a very simpli�ed
description, but su�ces for our purpose). GPS receivers read these signals
and �nd how much time the signal took to arrive; from this time t, the
distance d to the satellite is found as c = d

t , where c is the speed of light.
Knowing the distance to several such satellites, and their position, the
current location is found as the point which is at the correct distance from
all the satellites (see Figure 13.19). Receiving four signals, it is possible to
correct the GPS receiver's clock (which is not as precise as the satellites'
clocks).

As to angular position sensors:

� There is an additional sensor technology that measures angular position
only and deserves a mention. A resolver is similar to a transformer Resolver
(which we studied in Section 5.4), or, rather, to two transformers, with
the primary winding in a rotor, and two secondary windings in a stator
within which the rotor rotates. (Notice the di�erence to a RVDT.) The
number of turns in the two secondary windings must be the same; the
number of turns in the primary winding can be di�erent, but to simplify
we will assume that all windings have the same number of turns, and that
there are no losses.

The primary voltage VP is an AC voltage with a frequency ωI which must
be clearly above the frequency of rotation of the rotor:

VP (t) = A sin(ωIt) (13.9)

The two secondary windings make an angle of 90◦ with each other; see
Figure 13.20. When the primary is aligned with one of them, a voltage
equal to VP (t) will be induced in that winding, while the other one, being
perpendicular, will have no current whatsoever. When the rotor makes an
angle θ with one of the windings, the voltages will be

VS1(t) = A cos θ sin(ωIt) (13.10)

VS2(t) = A sin θ sin(ωIt) (13.11)

For this reason, the two stator windings are known as cos and sin wind-
ings. If the rotor rotates with a constant angular velocity θ̇, their voltages
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Figure 13.20: Left: the three windings of a resolver. Right: how the voltages
of the sin and cos windings change with time when the rotor rotates with a
constant angular velocity.

change as shown in Figure 13.20, and θ(t) is found as

θ(t) = arctan
VS2(t)

VS1(t)
(13.12)

Because the signs of both the numerator and the denominator are known,
θ(t) can be found in any quadrant.

� Inclinometer or clinometer is a generic name for a sensor that measuresClinometer
the inclination or tilt of a probe, either from the vertical or from the
horizontal. Any working principle for an angular position sensor will do, as
long as it can measure small angles with a reasonable precision; frequently,
servo accelerometers, addressed below in Section 13.3, are used.

� A compass is often employed with a GPS to know not only one's position,Compass
but one's orientation as well. Most compasses make use of the Hall e�ect
(remember Figure 13.14).

13.3 Working principles of velocity and accelera-
tion sensors

Only angular velocity sensors, known as tachometers, use some working prin-Tachometers
ciples not yet addressed:

� Some are DC generators, i.e. they are DC motors that, instead of trans-
forming electrical energy into movement, transform movement into a DC cur-
rent. We will address DC motors in Chapter 14.

� A stroboscope is a �ashing light. It is used to �nd an angular velocityStroboscope
in the following way:

� The rotating body has one distinctive mark.

� The frequency of the �ashes ω is varied until the distinctive mark
seems to be stopped.

� This means that, in period 2π
ω , the disc completed an integer number

of rotations.

� The frequency of the �ashes is increased until the highest value for
which the mark seems to be stopped. In this case, the disc will
complete only one rotation in period 2π

ω , and its angular velocity is
ω.

� It is usual to check that this is the real period increasing the frequency
of the �ashes to 2ω. The mark should then be seen twice, on opposite
sides of the rotating body. Notice that this test is not completely
conclusive. If during the suspected period 2π

ω the body completes
in fact an even number of rotations n, doubling the frequency we
will see in the new period π

ω a number of rotations n
2 which is still

integer, and we will know that ω was not yet the angular velocity of



13.3. WORKING PRINCIPLES OF VELOCITY ANDACCELERATION SENSORS253

Figure 13.21: Eddy currents in a disk induced by a magnet (source: Wikimedia).
If the disk rotates, and the magnet does not, it functions as a brake. If the
magnet rotates, it drags the disk along.

the rotating body. But if n is odd, say, equal to 3, in the new period
π
ω there will be 1.5 rotations, and the mark will be seen on opposite
sides of the body just as if ω were the actual angular velocity of the
rotating body. Thus, doubling ω should only be done when it is quite
certain that the body is rotating at most twice during period 2π

ω .

� Drag cup tachometers are based on eddy currents, already mentioned Drag cup
about eddy current sensors. While eddy current sensors use an AC elec-
tromagnet, so as to be able to measure the position of a target which did
not move, these tachometers use a permanent magnet that rotates with
the body whose angular velocity we want to measure. It is this rotation
that induces eddy currents in a metallic (usually aluminium) cup, within
which the magnet rotates. As mentioned, these currents themselves gen-
erate a magnetic �eld; thus, there is a torque between the magnet and
the disk, proportional to the velocity of the magnet. In other words, the
rotation of the magnet drags the cup; it would cause it to rotate as well,
but the cup is connected to a rotational spring, that exerts a force propor-
tional to the angular position, as in (4.24). Thus, the cup will stop at an
angular position proportional to the angular velocity of the magnet. See
Figure 13.21.

The cup may be connected to a pointer (to show the velocity on a grad-
uated dial) or connected to a sensor of angular position. These sensors
were often used in cars, though nowadays less often. In a car, they can
be used to show the velocity of the vehicle (with the magnet connected
to the output of the gearing box, and thus rotating with the wheels) or
the velocity of the engine (with the magnet connected to the input of the
gearing box, and thus rotating with the engine).

Accelerometers, or acceleration sensors, use the following working princi-
ples:

� This chapter is still being written.
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13.4 Sensors for force, binary, pressure and level

13.5 Sensors for �ow and pressure in �ows

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

13.6 Sensors for temperature and luminosity

This chapter is still being written.

13.7 Sensors for pH and concentration

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

Glossary

᾿Εὰν οὖν μὴ ειδῶ τὴν δύναμιν τῆς φωνῆς, ἔσομαι τῷ λαλοῦντι βάρβαρος

και ὁ λαλῶν ἐν ἐμοι βάρβαρος.

Saint Paul of Tarsus (5 BC? � �67?), First Epistle to the Corinthians (c.
53�55?), xiv 11

anemometer anemómetro
encoder contador incremental
extensometer extensómetro
speedometer velocímetro

Exercises

1. According to European standards, car speedometers must never indicate
a speed below the actual speed, and the indicated speed must not exceed
the actual speed by more than 10% of the actual value plus 4 km/h.

http://www.panteaonacional.gov.pt/171-2/historia-2/
http://www.panteaonacional.gov.pt/171-2/historia-2/
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Figure 13.22: Angular position measurement system from Exercise 2.

(a) Let v be the actual speed and vm the indicated speed. Plot the
maximum and minimum admissible values of vm as functions of v,
together in the same plot.

(b) Plot the maximum and minimum admissible values of v as functions
of vm, together in another di�erent plot.

2. The angular position α in Figure 13.22 is measured using a laser sensor,
able to provide readings in the [100 mm, 200 mm] range, with a resolution
of 1 mm and a precision of 5 mm.

(a) What are the resolution and the precision in relation to the 100 mm
width of the measuring range?

(b) Show that the angular position α and the linear position x are related
by

tanα =
d

x− x0
(13.13)

What are the values of d and x0?

(c) What are the maximum and minimum values of α that can be mea-
sured?

(d) Plot α(x) for the entire possible ranges of both variables.

(e) What is the precision in the measurement of α?

(f) What values can the resolution take?

3. The angular velocity ω of a rotating shaft is measured with an encoder
that provides 1024 pulses per rotation, connected to a counter that uses a
5 Hz sampling frequency. The shaft can rotate up to 7500 rpm.

(a) Show that the change ∆n of the counter reading between two suc-
cessive sampling instants is given by

∆n = b32.6ωc (13.14)

when ω is given in rad/s.

(b) Find the absolute value of the resolution of the angular velocity mea-
surement.

(c) Find the resolution in relation to the largest possible value of the
angular velocity.

(d) How many 4�bit counters are needed to make up a counter that can
read all possible values?
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Table 13.1: Three accelerometers for Exercise 4.
Servo Piezoelectric Piezoresistive

Range 10 g 10 g 10 g
Pass band 300 Hz [1 Hz, 10000 Hz] 1000 Hz
Sensibility 1 mA/g 0.1 V s2/m 5 µV/V/g
Precision 10−4 g 0.5% 1%

Price 1800 ¿ 180 ¿ 500 ¿

Figure 13.23: Time responses from Exercise 5.

(e) If only the �rst 8 bits are considered, what will be the resolution of
the angular velocity measurement?

4. An accelerometer is needed to measure accelerations in an automobile, in
the [0 g, 2 g] range, with frequencies in the [0 Hz, 50 Hz] range, during
2 hours.

(a) Which of the three sensors in Table 13.1 would you choose, and why?

(b) The AD converter has 8 bits and an input in the [0 V, 5 V] range.
Assuming that the power supply for the sensor will be the 12 V DC
car battery, design the necessary signal conditioning.

(c) What will the resolution be?

(d) If data is recorded with a 250 Hz sampling frequency, how large will
be the �le where measurements are recorded?

5. A velocity sensor was tested for three di�erent constant speeds. The time
responses obtained are shown in Figure 13.23.

(a) Do these time responses support that the sensor measurement is lin-
ear?

(b) Find a suitable transfer function to model the sensor response.

6. An elevator comprises a 500 kg cabin, a 600 kg counterweight, and an
electrical motor to move the steel cable that connects them. A 280 Ω
extensometer, with sensibility δR

R = 2, mounted in a simple bridge pow-
ered at 24 V, measures the elastic deformation of the cable, given by (see
Figure 13.24)

ε =
F

SE
(13.15)

where the cable's cross-section is S = 4 cm2, and the Young modulus is
E = 1011 Pa. The objective is to detect a cargo above the maximum
admissible value of 150 kg.

(a) Draw a scheme of the signal conditioning described.
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Figure 13.24: The elevator cable from Exercise 6.

(b) With this signal conditioning, what will the sensibility be, in V/N?

(c) Design an additional signal conditioning element to sound a buzzer
when the cargo is too heavy.

7. The temperature of a motor can assume values in the [10◦C, 180◦C] range,
and is measured with an infrared sensor that works in the [−18◦C, 538◦C]
range. Its output is in the [0 V, 5 V] range, and its precision is given by

max {4◦C, 2%TF } (13.16)

where TF is the temperature measured, in ◦F.

(a) Find the relation between the sensor output e and the temperature
T .

(b) What is the sensor's sensibility?

(c) Given the range of temperatures being measured, what will be the
actual range of e?

(d) Plot the precision as function of TF , in ◦F.

(e) Given the range of temperatures being measured, what will be the
maximum value of the error?

(f) The sensor is directly connected to an 8�bit AD converter, that re-
ceives inputs in the [0 V, 5 V] range. Find the AD output as a
function of temperature.

(g) What will be the resolution of the measurement, in ◦C?

(h) AD converter noise a�ects 3 LSB. What will be the precision of the
measurement, considering both conversion noise and sensor preci-
sion?

(i) The emissivity is 0.6, but estimated as 0.5. How will this a�ect
precision?

8. A sensor outputs a tension in the [0.2 V, 3.3 V] range, varying linearly
with the relative humidity in the [0%, 100%] range.

(a) Design the signal conditioning that will convert this output into the
[0 V, 1 V] range. Available tensions are 12 V, −12 V, and 5 V.

(b) This will be connected to a 10�bit AD converter that receives tensions
in the [0 V, 1 V] range. What is the resolution of the measurement?

(c) The precision of the sensor is 1% or less. What is the precision of
the measurement, considering both the precision of the sensor and
the resolution of the AD converter?

(d) Figure 13.25 shows a control system of relative humidity H(s), where
Href (s) is the reference for humidity H(s), P (s) is a disturbance,
Gp(s) = 100

s+100 is the process we want to control, Gs(s) is the sensor,

and Gc(s) = 10
s+10 is a controller. Find transfer function H(s)

Href (s) , and
plot its Bode diagram.
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Figure 13.25: Relative humidity control system from Exercise 8.

9. What is the resolution of the position measurement depicted in Figure 13.4?



Chapter 14

Actuators

An engineer is a person who enjoys the feel of tools, the noise of
dynamos and smell of oil.

George Orwell (1903 � �1950), Bene�t of Clergy: Some Notes on Salvador
Dali (1944)

This chapter is still being written.

14.1 Generalities about electric motors

AC, DC, power ampli�cation.

14.2 DC motors

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

14.3 AC motors

This chapter is still being written.

14.4 Generalities about pneumatic and hydraulic
actuators

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

14.5 Pneumatic and hydraulic compressors and
motors

This chapter is still being written.

14.6 Cylinders and valves

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).
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14.7 Dimensioning of pneumatic and hydraulic
circuits

Glossary

Os bos e xenerosos
a nosa voz entenden
e con arroubo atenden
o noso rouco son,
máis sóo os iñorantes,
e féridos e duros,
imbéciles e escuros
non os entenden, non.

Eduardo María González-Pondal Abente (1835 � �1917), Queixumes dos
pinos (1886), Os pinos

alternating current corrente alternada
brushless motor motor sem escovas
compressed air ar comprimido
compressor compressor
coreless motor motor sem núcleo
direct current corrente contínua
double acting valve, double action valve válvula de duplo efeito
power ampli�er ampli�cador de potência
stepper motor motor passo-a-passo

Exercises

1. We want to control the angular position of a brushless DC motor, with
the characteristics given in Figure 14.1. An 8-bit DA converter will be
used, with the characteristics given in Figures 14.2 and 14.3. The supply
voltage VDD of the DA converter will be the highest possible.

(a) The motor should turn in both senses, and consequently must re-
ceive a voltage in the range from −12 V to +12 V. Design a signal
conditioning to connect the output of the DA converter to the motor
input.

(b) Show how you could implement this signal conditioning using OpAmps.
Find reasonable values for resistors and other components you may
need. Assume that you have −12 V and +12 V available.
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(c) Find the resolution of the control action in Volt, after the signal
conditioning.

(d) Tensions −12 V and +12 V correspond to the motor's nominal rota-
tion velocity of 6070 rpm shown in Figure 14.1 (in di�erent senses of
rotation, of course). What is the resolution of the rotation velocity?

(e) When the DA converter's output is 01101001, what tension will be
supplied to the motor, and what will be its rotation speed?

(f) The angular position of the motor's shaft is being measured with
160 Hz noise. Design a �rst order �lter that brings the amplitude
of the noise down to 10% of its original value, with the smallest
possible attenuation to low frequencies two decades or more below
the frequency of the noise. (There is no need to show how the �lter
could be implemented with OpAmps.)

(g) The DC motor takes a time interval τ to reach 95% of the expected
rotation velocity when there is a step in the tension supplied. Model
this dynamic behaviour with a �rst order transfer function (with unit
gain at low frequencies).

Figure 14.1: Part of a DC motor's datasheet.

Figure 14.2: Part of a DA converter's datasheet.

Figure 14.3: Part of a DA converter's datasheet (continued).

2. To control the angular velocity of a shaft, its angular position is mea-
sured with an encoder. Figure 14.4 shows part of the encoder's manual.
The sampling frequency will be the highest supported by the enconder,
which is 1 kHz. The shaft is actuated by a brushed DC motor with the
characteristics shown in Figure 14.5.

(a) What values, in both degrees and radians, do the two resolutions
mentioned in Figure 14.4 correspond to?

(b) Which of the two resolutions allows reading a lower angular velocity
of the motor? Find the value of that velocity in radians per second.



262 CHAPTER 14. ACTUATORS

Figure 14.4: Part of an encoder's manual for Exercise 2.

Figure 14.5: Part of a brushed DC motor's manual for Exercise 2.

(c) The plot in Figure 14.4 shows the non-linearity of the sensor for
the worst situation that still respects alignment tolerance, when 256
counts per turn are selected. That largest absolute value of the angle
given in the plot correspond to how many LSB?

(d) For the rated angular velocity of the motor (do not confound this
with the angular velocity when there is no load), and for both res-
olutions mentioned in Figure 14.4, �nd the change in the reading of
the encoder during a sample time.

(e) Between the DA converter providing the control action and the DC
motor, there is one of the two signal conditioning circuits in Fig-
ure 14.6. For each of the circuits, �nd what is the largest voltage
that the DA can supply, without exceeding the nominal voltage at
the input of the motor. (Consider that the power ampli�er does not
change the voltage.)

3. A pneumatic double acting cylinder is used in a circuit with compressed
air at 10 bar. The inside diameter of the cylinder (i.e. the bore) is 5 cm.
The diameter of the rod is 1 cm.

(a) If this is a cylinder with a through rod, what force can it exert?

(b) If this cylinder does not have a through rod, what force can it exert?
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Figure 14.6: Signal conditioning circuits for Exercise 2.
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Part IV

Control systems
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The thought makes me feel old. I can remember when there wasn't
an automobile in the world with brains enough to �nd its own way
home. I chau�eured dead lumps of machines that needed a man's
hand at their controls every minute. Every year machines like that
used to kill tens of thousands of people.

The automatics �xed that. A positronic brain can react much faster
than a human one, of course, and it paid people to keep hands o�
the controls. You got in, punched your destination and let it go its
own way.

We take it for granted now, but I remember when the �rst laws came
out forcing the old machines o� the highways and limiting travel
to automatics. Lord, what a fuss. They called it everything from
communism to fascism, but it emptied the highways and stopped the
killing, and still more people get around more easily the new way.

Of course, the automatics were ten to a hundred times as expensive
as the hand-driven ones, and there weren't many that could a�ord
a private vehicle. The industry specialized in turning out omnibus-
automatics. You could always call a company and have one stop at
your door in a matter of minutes and take you where you wanted to
go. Usually, you had to drive with others who were going your way,
but what's wrong with that?

Isaac Asimov (1920 � �1992), Sally, Fantastic, May-June 1953

In this part of the lecture notes:

Chapter 15 is about control strategies and controller structures, among which are PID
controllers and lead-lag controllers.

Chapter 16 presents the root locus plot, which is a tool to study closed loop control
systems, and how it can be used to design controllers.

Chapter 18 concerns the Nyquist stability criterion, which are another tool to study
closed loop control systems.

Chapter 17 addresses stability margins, yet another tool to study closed loop control
systems.

Chapter 19 shows the Nichols plot, a further tool for the study of closed loop control
systems.

Chapter 20 studies steady-state errors in closed loop control systems.

Chapter 21 systematically exposes methods to design controllers of the PID type.

Chapter 22 systematically exposes methods to design controllers of the lead-lag type.

Chapter 23 shows how to design controllers using the Internal Model Control method-
ology.

Chapter 24 introduces pure delay systems and the problem they cause to control.

Here is what you need to know beforehand to follow these chapters:

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4;

� System theory, from Part II;

� Filters, from Sections 12.2 and 12.3 of Chapter 12.
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Chapter 15

Control strategies and

controller structures

�Bon! Peut-être les Sélénites ont-ils poussé plus loin que vous le
calcul intégral! Et à propos, qu'est-ce que ce calcul intégral ?

�C'est un calcul qui est l'inverse du calcul di�érentiel, répondit
sérieusement Barbicane.

�Bien obligé.

�Autrement dit, c'est un calcul par lequel on cherche les quantités
�nies dont on connaît la di�érentielle.

�Au moins, voilà qui est clair, répondit Michel d'un air on ne peut
plus satisfait.

Jules Verne (1828 � �1905), Autour de la Lune (1869), IV

In Chapter 9 we already studied the two basic con�gurations for control
systems:

� open-loop control, in which there is no feedback of the output, and the
controller's input is the reference that the output must follow;

� closed-loop control, in which there is output feedback, and the controller's
input is the closed-loop error between the reference and the output.

See Section 9.3 again, and in particular Figure 9.13. In this chapter we will
study what these con�gurations can do, and what controllers are used with
each.

15.1 Open loop control

Open loop control:

� is conceptually simpler than closed loop control;

� does not require a measurement of the output;

� consequently, it can be implemented even when the output cannot be
measured, or is di�cult or expensive to measure: no sensor for the output
variable is required to implement it;

� can anticipate control actions if the reference is known in advance;

� works well if two conditions are simultaneously met:

� we know a perfect model of the plant;

� there are no unknown disturbances (noise) of either the control action
or the output.

269
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Figure 15.1: Open-loop control of (15.1) from Example 15.1.

Example 15.1. In the open-loop of Figure 9.13, let

G(s) =
0.1

s2 + 1.5s+ 1
(15.1)

C(s) = 10 (15.2)

Plant G(s) is an underdamped second order plant, with damping coe�cient
ξ = 0.75 and steady-state gain 0.1. Controller C(s) ensures that the steady-
state of the open-loop y(s)

r(s) is 1. Figure 15.1 shows how a reference consisting
of three steps is followed, together with the corresponding control action, which
should be always checked to see if control actions are not too large (remember
that actuators saturate).

This is what happens when the reference is known for the time instant when
it must be applied. But suppose that the reference is known in advance. In thisOpen-loop control when

the reference is known in
advance

case, the corresponding control action can begin before each step takes place.
The best way to do so is to schedule the control action beforehand; in this case,
C(s) does not receive the reference as an input, as it must be followed; it just
provides the control action chosen beforehand to follow the reference. Of course,
in closed-loop control this would make no sense, since the controller needs the
error, found from the current value of the output: and if the reference can be
known in advance, the output cannot. Figure 15.2 shows this new situation.

But,Open-loop control does not
work that well in practice

� if the model of the plant is not perfect, or

� if there is noise,

things do not work that well. And, most importantly, it is nigh to impossible
to control unstable plants in open loop.

Example 15.2. Consider the case of Example 15.1 again, with two changes:

� Figure 15.3 shows what happens if there is an error identifying the plant:
in particular, a 10% error in the gain. Consequently,

G(s) =
0.11

s2 + 1.5s+ 1
(15.3)

but the controller remains the same. Notice that the output has steady-
state errors, but, since the controller does not receive any measurement
of the output (which may even not be measured at all), nothing is done
about it.
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Figure 15.2: Open-loop control of (15.1) from Example 15.1, with an anticipated
control action.

Figure 15.3: Open-loop control of (15.1) from Example 15.1, when the plant is
known with a modelling error.
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Figure 15.4: Open-loop control of (15.1) from Example 15.1, when the output
is a�ected by sinusoidal disturbance (15.4).

� Figure 15.4 shows what happens if there is a disturbance: in particular,
an additive disturbance in the output dy; see Figure 9.14. The actual,
disturbed output ỹ(t) is given by

ỹ(t) = y(t) + sin
π

5
t︸ ︷︷ ︸

yd(t)

(15.4)

where y(t) is the output we expected. Again, because the controller does
not receive any measurement of the output, nothing is done about this
oscillation which appears in the output.

15.2 Closed loop control

Thanks to output feedback, closed loop control can mitigate the e�ects of noise
and wrong models.

Example 15.3. The underdamped second-order plant of Examples 15.1 and 15.2
can be controlled in closed-loop, as seen in Figure 9.13, with

C(s) = 55 +
30

s
+ 25s (15.5)

This is a type of controller that we will study later on in this chapter. For more
realistic simulations of performance, and for fairer comparison with open-loop
control, control actions were limited to the [−500, 500] interval. (The e�ects of
this saturation of the control action will be studied in depth in Chapter 28.)
Figures 15.5 and 15.6 show that:

� in the absence of modelling errors or disturbances, faster responses are
now provided, albeit at the cost of a higher overshoot (overshoots vs. fast
responses are a frequent dilemma in closed-loop control, as we shall see in
the next chapters);

� the e�ect of a 10% modelling error, that of (15.3), is nearly eliminated;

� noise (15.4) is signi�cantly attenuated, even if not completely eliminated.
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Figure 15.5: Closed-loop control of (15.1) from Example 15.1

A closed loop can also stabilise unstable plants.

Example 15.4. In the closed-loop of Figure 9.13, let

G(s) =
1

s− 1
(15.6)

C(s) = 10 +
5

s
(15.7)

Figure 15.7 shows the response of the closed-loop to the same step-wise reference
of the previous examples. We could have known that the closed-loop is stable,
even though the plant controlled is not, by �nding its poles:

y(s)

r(s)
=

(
10 + 5

s

)
1
s−1

1 +
(
10 + 5

s

)
1
s−1

=
10s+5
s2−s

1 + 10s+5
s2−s

=
10s+ 5

s2 + 9s+ 5
(15.8)

The roots of the denominator are −8.4 and −0.6: the closed-loop is thereby
stable.

However, badly designed closed loop control can also make stable plants
unstable.

Example 15.5. In the closed-loop of Figure 9.13, let

G(s) =
1

s3 + 4s2 + 6s+ 4
(15.9)

C(s) = 25 (15.10)

The poles of G(s) are −2 and −1± j, and so the plant is stable; but the closed-
loop and its poles are

>> G = 1/((s+2)*(s+1+1i)*(s+1-1i));

>> closed_loop = feedback(25*G, 1)

closed_loop =

25

----------------------
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Figure 15.6: Top: closed-loop control of (15.1) from Example 15.1, when the
plant is known with a modelling error. Bottom: the same, when the output is
a�ected by sinusoidal disturbance (15.4).
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Figure 15.7: Closed-loop control of (15.6) from Example 15.4.

s^3 + 4 s^2 + 6 s + 29

Continuous-time transfer function.

>> pole(closed_loop)

ans =

-4.2107 + 0.0000i

0.1054 + 2.6222i

0.1054 - 2.6222i

and thus the closed-loop is unstable, because of a badly designed controller.

Remark 15.1. Assuming that the controller of Example 15.5 is proportional, Routh-Hurwitz criterion
and proportional controlC(s) = K ∈ R, it is easy to use the Routh-Hurwitz criterion to �nd which

values of K would ensure a stable closed-loop:

y(s)

r(s)
=

K
s3+4s2+6s+4

1 + K
s3+4s2+6s+4

=
K

s3 + 4s2 + 6s+ (4 +K)
(15.11)

s3 1 6
s2 4 4 +K

s 4×6−(4+K)
4

1 4 +K

(15.12)

So as to have all the elements in the �rst column positive,

24− 4−K
4

> 0⇒ K < 20 (15.13)

4 +K > 0⇒ K > −4 (15.14)

Consequently, in Example 15.5, controller C(s) = K = 25 caused an unstable
closed-loop, since the loop will be stable only if K ∈]− 4, 20[.

Also check Example 11.12 again.
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Of course, unlike open-loop control, closed-loop control requires a measuring
chain for the feedback branch � and, while it is possible to cope with noise,
noise still reduces performance, and completely wrong measurements prevent
control systems from working.

15.3 Design of open loop controllers

From Figure 9.13 it is clear that

y(s) = G(s)C(s)r(s) (15.15)

and thus if we want the output y(s) to follow the reference r(s) perfectly, i.e.
y(s) = r(s), all we have to do is

C(s) =
1

G(s)
(15.16)

and perfect control is achieved.
In practice things are not that simple. As we saw in Chapter 11, plantOpen-loop controller de-

sign in practice models ought to be strictly proper, i.e. to have more poles than zeros. If so,
applying (15.16) we get a controller C(s) which is not proper, i.e. has more zeros
than poles. This controller, as we know, has a behaviour at high frequencies
that is impossible. Consequently, additional poles must be added, so that C(s)
will be strictly proper, or at least proper. Ideally, additional poles should have
a frequency as high as possible, preferably higher than the frequency of every
zero and pole in G(s), so as to not alter the desired behaviour in the frequencies
where the model is valid (and in which the controller must thus do its job). Of
course, higher frequencies will mean faster responses, and faster responses mean
higher values of the control actions, so even if the actuator can respond fast
enough it may saturate if poles are too far away.

Example 15.6. Suppose that we want to control plant

G(s) =
s+ 1

s(s+ 10)
(15.17)

in open loop. It has one zero and two poles; so, if the controller is to be proper,
it needs an additional pole. One decade above the highest frequency zero or
pole would place it at 100 rad/s. But assume that control actions would be too
large, or that the actuator does not respond that fast, and we are left with

C1(s) =
20s(s+ 10)

(s+ 1)(s+ 20)
(15.18)

or even with

C2(s) =
10s

s+ 1
(15.19)

which corresponds to an additional pole at 10 rad/s, which then cancels the
zero. Figure 15.8 shows the results obtained with both controllers when the
reference is the same of previous examples.

It is possible to combine open-loop and closed-loop control in a single controlCombining open and
closed loop control system.

Example 15.7. Plant (15.17) from Example 15.6, with a 10% error in the
steady-state gain, can be controlled combining open-loop controller (15.19) with
a closed-loop proportional controller, as seen in Figure 15.9. The result, when
there is a sinusoidal output disturbance given by (15.4), is shown in Figure 15.10,
and is clearly better than results got with only one of the controllers, shown in
Figure 15.11.

15.4 Closed loop controllers

The design of closed loop controllers is not as trivial, and will occupy the re-
maining chapters of this Part. We will study right away the most common forms
that closed loop controllers take.
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Figure 15.8: Closed-loop control of (15.17) from Example 15.6.

Figure 15.9: Simulink �le with which simulation results in Figures 15.10
and 15.11 were obtained, corresponding to Example 15.7.
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Figure 15.10: Control of (15.17) from Example 15.7, combining open-loop and
closed-loop control as seen in Figure 15.9.

� Proportional controllers are already known to us. They apply a controlP controllers
action

u(t) = K e(t), K 6= 0 (15.20)

⇒ u(s) = K e(s) (15.21)

⇒ u(s)

e(s)
= C(s) = K (15.22)

proportional to the loop error: the larger the error, the larger the control
action. Notice that a proportional controller is a static system.

� Proportional�integral controllers apply a control action which is thePI controllers
sum of two control actions:

� one proportional to the loop error,

� one proportional to the integral of the loop error:

u(t) = Kp e(t) +Ki

∫ t

0

e(t) dt, Kp,Ki 6= 0 (15.23)

⇒ u(s) = Kp e(s) +
Ki

s
e(s) (15.24)

⇒ u(s)

e(s)
= C(s) = Kp +

Ki

s
(15.25)

The reasoning behind this second term is that, in this way, if proportional
control achieves a steady-state error, since the integral of the error will
grow with time, the control action will also keep increasing, eliminating
the error. We will see in Chapter 20 when this actually works and when
it does not.

� Proportional�derivative controllers apply a control action which isPD controllers
the sum of two control actions:

� one proportional to the loop error,

� one proportional to the derivative of the loop error:
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Figure 15.11: Control of (15.17) from Example 15.7. Top: open-loop control
only. Bottom: closed-loop control only.
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u(t) = Kp e(t) +Kd
de(t)

dt
dt, Kp,Kd 6= 0 (15.26)

⇒ u(s) = Kp e(s) +Kd s e(s) (15.27)

⇒ u(s)

e(s)
= C(s) = Kp +Kd s e(s) (15.28)

The reasoning behind this second term is that, in this way, if there is a
sudden increase of the error, the control action will immediately increase
to counter it, rather than waiting for a large error (or, even worse, for a
large integral of the error) to do so. We will see in the next chapters when
this makes sense and when it does on.

� Proportional�integral�derivative controllers apply a control actionPID controllers
which is the sum of three control actions:

u(t) = Kp e(t) +Ki

∫ t

0

e(t) +Kd
de(t)

dt
dt (15.29)

⇒ u(s) = Kp e(s) +
Ki

s
e(s) +Kd s e(s) (15.30)

⇒ u(s)

e(s)
= C(s) = Kp +

Ki

s
+Kd s (15.31)

This combines the desired advantages of both PI and PD control. Of
course,

� proportional control is a particular case of PID control, in which
Ki = Kd = 0;

� PI control is a particular case of PID control, in which Kd = 0;

� PD control is a particular case of PID control, in which Ki = 0.

� The PID family of controllers includes not onlyPID family

� proportional controllers,

� PI controllers,

� PD controllers,

� PID controllers,

but also similar controllers with more than one derivative part (though
this is seldom found) or (more often) more than one integral part, such as

� PI2D controllers:

C(s) = Kp +
Ki1

s
+
Ki2

s2
+Kd s (15.32)

� PI3D controllers:

C(s) = Kp +
Ki1

s
+
Ki2

s2
+
Ki3

s3
+Kd s (15.33)

� PID2 controllers:

C(s) = Kp +
Ki

s
+Kd1 s+Kd2 s

2 (15.34)

and so on. We will see in Chapter 20 why additional integral parts may
be needed. Chapter 21 is devoted to design methods for the PID family
of controllers.

� Lead-lag controllers have one pole, one zero, and a positive gain that
tends to zero at either low or high frequencies:

� Lead controllers are given byLead controllers

C(s) =
αs+ a

s+ a
, α > 1, a > 0 (15.35)
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� Lag controllers are given byLag controllers

C(s) =
s+ a

s+ a
α

, α > 1, a > 0 (15.36)

So, both (15.35) and (15.36) correspond to particular cases of

C(s) = K
s+ b

s+ p
(15.37)

with some restrictions on the parameters (gain K, pole −p, and zero −b).
We will see in Chapters 18 and 20 why we want these controllers, and
will learn how to design them in Chapter 22. In that Chapter we plot the
Bode diagrams of (15.35) and (15.36), and see that they have, respectively,
phases which are positive (lead) and negative (lag) � hence the names.

In the following chapters we will see abundant examples of controllers of all
these types (and of other types too).

Meanwhile notice that Proper controllers have
additional poles

� lead-lag controllers (15.35)�(15.36) and PI controllers (15.25) are proper
but not strictly proper,

� PD controllers (15.28) and PID controllers (15.31) are not proper,

and so all require additional poles to be implemented in practice. We will see
in Chapter 29 more details on this.

Glossary

I have remarked that the paper had fallen away in parts. In this
particular corner of the room a large piece had peeled o�, leaving a
yellow square of coarse plastering. Across this bare space there was
scrawled in blood-red letters a single word:�

rache

�What do you think of that?� cried the detective, with the air of a
showman exhibiting his show. �This was overlooked because it was
in the darkest corner of the room, and no one thought of looking
there. The murderer has written it with his or her own blood. See
this smear where it has trickled down the wall! That disposes of the
idea of suicide anyhow. Why was that corner chosen to write it on?
I will tell you. See that candle on the mantelpiece. It was lit at the
time, and if it was lit this corner would be the brightest instead of
the darkest portion of the wall.�

�And what does it mean now that you have found it?� asked Gregson
in a depreciatory voice.

�Mean? Why, it means that the writer was going to put the female
name Rachel, but was disturbed before he or she had time to �nish.
You mark my words, when this case comes to be cleared up you will
�nd that a woman named Rachel has something to do with it. It's
all very well for you to laugh, Mr. Sherlock Holmes. You may be
very smart and clever, but the old hound is the best, when all is said
and done.�

(. . . )

�One other thing, Lestrade,� he added, turning round at the door,
� `Rache' is the German for `revenge,' so don't lose your time by
looking for Miss Rachel.�

Sir Arthur Conan Doyle (1859 � �1930), A study in scarlet (1887), I 3

lag controller controlador de atraso
lead controller controlador de avanço
lead-lag controller controlador de avanço-atraso
proportional controller controlador proporcional
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proportional�derivative controller controlador proporcional�derivativo
proportional�integrative controller controlador proporcional�integral
proportional�integrative�derivative controller controlador proporcional�
integral�derivativo

Exercises

1. A train can travel at a maximum speed of 115.2 km/h, and its maximum
acceleration is ±0.8 m/s2.

(a) What is the minimum time that the train takes to travel between
two stations 6.4 km apart? Draw the evolution of velocity with time.

(b) Assume that larger accelerations (or decelerations) mean a larger
consumption of energy. (In fact things are more complicated in real
life.) If, due to timetable constraints, the train must take exactly
six minutes to travel between the same two stations, how should the
velocity change with time so that energy consumption is as low as
possible?



Chapter 16

Root locus

Minos' daughter Ariadne was among the spectators and she fell in
love with Theseus at �rst sight as he marched past her. She sent
for Daedalus and told him he must show her a way to get out of the
Labyrinth, and she sent for Theseus and told him she would bring
about his escape if he would promise to take her back to Athens
and marry her. As may be imagined, he made no di�culty about
that, and she gave him the clue she had got from Daedalus, a ball
of thread which he was to fasten at one end to the inside of the door
and unwind as he went on. This he did and, certain that he could
retrace his steps whenever he chose, he walked boldly into the maze
looking for the Minotaur.

Edith Hamilton (1867 � �1963), Mythology (1942), III 9

The root locus diagram:

� shows the location (or locus) in the complex plane of the poles of a
closed loop (i.e. the roots of the denominator of the closed loop transfer
function),

� when the gain of the open loop changes.

It can be used in one of the following situations (see Figure 16.1): What the root locus dia-
gram is for

� to design a proportional controller,

� to design the gain of a controller that has poles and zeros, once these are
known,

� to see what happens to a closed loop control system with a known con-
troller, when the gain of the plant changes for some reason.

As we already saw, the location of the poles of the closed loop control system:

� lets us know if it is stable (remember Section 10.3);

� can give us an idea of how its time responses will be (remember Sec-
tion 11.6).

16.1 Simple examples

Example 16.1. Let plant y(s)
u(s) = 1

s+1 be controlled in closed loop by propor-

tional controller u(s)
e(s) = K. The closed loop transfer function is

y(s)

r(s)
=

K
s+1

1 + K
s+1

=
K

s+ 1 +K
(16.1)

and thus has always only one pole, located at

s = −1−K (16.2)

283
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Figure 16.1: Situations in which the root locus diagram is useful. (a) The
plant G(s) is known. The controller K is proportional. We want to set a
reasonable value for K. (b) The plant G(s) is known. The controller K ×C(s)
has known poles and zeros (collected in transfer function C(s)). We want to set
a reasonable value for controller gain K. (c) The controller C(s) is known. The
plant K×G(s) has known poles and zeros (collected in transfer function G(s)).
We want to know what happens when the gain of the plant K changes for some
reason. (Notice that in this case we cannot change K at will, otherwise it would
be part of the controller, not the plant.)
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Table 16.1: Variation of the closed loop pole with open loop gain K in Exam-
ple 16.1.

K 5 4 3 2 1 0 −1 −2 −3 −4 −5
pole −6 −5 −4 −3 −2 −1 0 1 2 3 4

This pole will be stable if

s < 0⇔ −1−K < 0⇔ K > −1 (16.3)

Notice that, if K = 0, the closed loop pole (16.2) will be K = −1, which is the
open loop pole too. But in that case the numerator of the closed loop (16.1) is
zero, the control action u(t) will be always zero, and the control system will not
work; there is not, properly speaking, a closed loop when K = 0.

We can give di�erent values to K and �nd the values for the closed loop
pole in Table 16.1, which are then plotted in Figure 16.2. Plotting more points
is easy using two for cycles in Matlab, one for positive and one for negative
values of K, with the result also shown in Figure 16.2:

G = tf(1,[1 1]);

% positive values of K

poles_closed_loop = [];

for K = 0 : 0.25 : 6

poles_closed_loop = [poles_closed_loop; pole(feedback(K*G, 1))];

end

figure, plot(real(poles_closed_loop), imag(poles_closed_loop), 'bx')

% negative values of K

poles_closed_loop = [];

for K = 0 : -0.25 : -6

poles_closed_loop = [poles_closed_loop; pole(feedback(K*G, 1))];

end

hold on, plot(real(poles_closed_loop), imag(poles_closed_loop), 'rx')

grid on, xlabel('Real axis'), ylabel('Imaginary axis'), legend({'K>0','K<0'})

Of course, the root locus diagram corresponds to an in�nitely small reso-
lution in K. This diagram shows what happens to the closed loop pole with the
variation of K. The last plot of Figure 16.2 was obtained with Matlab using
commands Matlab command

rlocus
>> s = tf('s');

>> figure,rlocus(1/(s+1))

>> hold on, rlocus(-1/(s+1),'g') % the 'g' option forces the green colour

>> legend({'K>0','K<0'})

Function rlocus always assumes a positive open loop gain K; that is why it
was used twice, the second time with the minus sign inserted in the open loop
itself. For this simple open loop transfer function with only one pole, the root
locus could also have been easily plotted by hand from (16.2).

Example 16.2. Let plant y(s)
u(s) = 1

(s+4)(s+2) be controlled in closed loop by

proportional controller u(s)
e(s) = K. The closed loop transfer function is

y(s)

r(s)
=

K
s2+6s+8

1 + K
s2+6s+8

=
K

s2 + 6s+ 8 +K
(16.4)

There are two poles, located at

s =
−6±

√
36− 32− 4K

2
= −3±

√
1−K (16.5)

These poles verify the following:

� If K = 0, they are those of the open loop, s = −3± 1⇔ s = −4∨ s = −2,
though once more the numerator of the closed loop (16.4) is zero, so there
is in fact no closed loop at all.
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Figure 16.2: Top left: pole of the close loop consisting of plant y(s)
u(s) = 1

s+1 and
a proportional controller K, for the cases in Table 16.1. Top right: the same,
calculated with for cycles for more values of K. Bottom: root locus diagram
of the plant.

� If 0 < K < 1, they are real.

� If K = 1, they coincide, s = −1.

� If K > 1, they are imaginary, having a constant real part <(s) = −1;

� If K < 0, they are real. If −3 +
√

1−K > 0 ⇒ 1 −K > 9 ⇔ K < −8,
one of them will be positive.

These conclusions can be qualitatively seen in the root locus diagram, which
can be plot as

G = tf(1,conv([1 4],[1 2]));

% positive values of K

poles_closed_loop = [];

for K = 0 : 0.2 : 10

poles_closed_loop = [poles_closed_loop; pole(feedback(K*G, 1))];

end

figure, plot(real(poles_closed_loop), imag(poles_closed_loop), 'bx')

% negative values of K

poles_closed_loop = [];

for K = 0 : -0.2 : -10

poles_closed_loop = [poles_closed_loop; pole(feedback(K*G, 1))];

end

hold on, plot(real(poles_closed_loop), imag(poles_closed_loop), 'gx')

grid on, xlabel('Real axis'), ylabel('Imaginary axis'), legend({'K>0','K<0'})

or better still as

s = tf('s');

G = 1/((s+2)*(s+4));

figure,rlocus(G,-G)

legend({'K>0','K<0'})

and can be seen in Figure 16.3.
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Table 16.2: Rules to plot the root locus of G(s)

1. G(s) =
bms

m + bm−1s
m−1 + . . .+ b0

ans
n + an−1s

n−1 + . . .+ a0
must be proper, i.e. n ≥ m. Write its product by the varying gain K ∈ R

in the form

KG(s) =
K bm
an

(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)
, K ∈ R (16.6)

Two cases must be considered, corresponding to K bm
an

> 0 and K bm
an

< 0.
2. Plot the n open loop poles on the complex plane using a cross ×, and the m open loop zeros using a circle ◦.
3. The root locus diagram is symmetric in relation to the real axis.
4. If n−m ≥ 2, the centroid of the root locus is constant, irrespective of the value of K.
5. Points on the real axis belong to the root locus

� if there is an odd number of open loop poles and zeros to its right, and K bm
an

> 0;
� if there is an even number of open loop poles and zeros to its right, or no poles and zeros at all, and

K bm
an

< 0.

6. The diagram has n branches, each of which corresponds to a closed loop pole.
7. All branches converge to the open loop poles when K → 0.
8. m branches converge to the open loop zeros when |K| → ∞.
9. n −m branches diverge to in�nity when |K| → ∞, following asymptotes that make with the positive real axis

angles of

γ =


180◦(2k + 1)

n−m
, k = 0, . . . , n−m− 1, if

K bm
an

> 0

360◦k

n−m
, k = 0, . . . , n−m− 1, if

K bm
an

< 0
(16.7)

and intersect on the real axis at point

σ =

n∑
k=1

pk −
m∑
k=1

zk

n−m
(16.8)

10. The branches of the root locus converge or diverge on the real axis, perpendicularly thereto, at the real roots of

d

ds

1

G(s)
= 0⇔ d

ds

(s− p1) . . . (s− pn)

(s− z1) . . . (z − zm)
= 0 (16.9)

11. In the neighbourhood of a complex open loop pole pi, branches have an asymptote with an angle φi given by

φi =



m∑
k=1

ψk −
n∑
k=1
k 6=i

φk + 180◦, if
K bm
an

> 0

m∑
k=1

ψk −
n∑
k=1
k 6=i

φk, if
K bm
an

< 0

(16.10)

where

φk = ∠[pi − pk], k = 1, . . . , n, k 6= i (16.11)

ψk = ∠[pi − zk], k = 1, . . . ,m (16.12)

as seen in Figure 16.4.
12. In the neighbourhood of a complex open loop zero zi, branches have an asymptote with an angle ψi given by

ψi =



n∑
k=1

φk −
m∑
k=1
k 6=i

ψk + 180◦, if
K bm
an

> 0

m∑
k=1

φk −
m∑
k=1
k 6=i

ψk, if
K bm
an

< 0

(16.13)

where

φk = ∠[zi − pk], k = 1, . . . , n (16.14)

ψk = ∠[zi − zk], k = 1, . . . ,m, k 6= i (16.15)

as seen in Figure 16.4.
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Figure 16.3: Left: root locus of 1
(s+4)(s+2) obtained with for cycles. Right: the

same, obtained with rlocus.

Figure 16.4: Measuring the angles for rules 11 and 12 from Table 16.2.

16.2 Rules for the root locus

Root locus diagrams can be easily found with Matlab, but it is also possible
to draw them by hand. Drawing root locus diagrams by hand is as important
as drawing Bode diagrams by hand: of course both can be accurately found
using Matlab, but hand-drawn diagrams help to gain sensibility to the e�ects
of poles and zeros and of their location in the complex plane.

We present a systematic set of rules to draw root locus diagrams in Ta-
ble 16.2, together with some simple examples. In the next section, we will see
where these rules come from.

Example 16.3. Consider plant

G(s) =
20

s2 + 2s+ 2
(16.16)

To plot its root locus by hand, we follow the steps in Table 16.2:

1. We rewrite the open loop transfer function as G(s) = 20K 1
(s+1+j)(s+1−j) .

The two cases we must consider are 20K > 0 ⇔ K > 0 and 20K < 0 ⇔
K < 0.

2. There are n = 2 poles, a complex conjugate pair at −1± j. There are no
zeros, i.e. m = 0.

3. We know that the diagram is always symmetric in relation to the real axis.
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4. Because n−m = 2, the centroid will be constant. So, when a closed loop
pole moves in one direction, the other must move in the same direction
but in the opposite sense, so that the centroid remains the same.

5. Real points to the right of s = −1 have no open loop poles to their right,
i.e.

∀s > −1, s > <(p1) ∧ s > <(p2) (16.17)

Consequently, that part of the real axis belongs to the root locus when
K < 0. Real points to the left of s = −1 have two open loop poles to their
right, i.e.

∀s < −1, s < <(p1) ∧ s < <(p2) (16.18)

Since 2 is an even number, that part of the real axis also belongs to the
root locus when K < 0. No part of the real axis belongs to the root locus
when K > 0. We can now draw the �rst, incomplete sketch of the root
locus diagram in Figure 16.5.

6. The diagram has n = 2 branches, i.e. the closed loop has 2 poles.

7. Both branches converge to −1± j when K → 0.

8. Since there are no open loop zeros, no branches of the root locus converge
to them.

9. n−m = 2 branches, i.e. both of them, diverge to in�nity when K is large.
When K > 0, they follow asymptotes with slopes given by the angles

γ0 =
180◦(2× 0 + 1)

2
= 90◦ (16.19)

γ1 =
180◦(2× 1 + 1)

2
= 270◦ ≡ −90◦ (16.20)

It would have su�ced to �nd γ0 = 90◦; since the root locus is symmetric
in relation to the real axis, the other angle would have to be −90◦. When
K > 0, the asymptotes correspond to angles

γ0 =
360◦ × 0

2
= 0◦ (16.21)

γ1 =
360◦ × 1

2
= 180◦ (16.22)

These asymptotes are already in the plot, as they are in fact the real axis
itself. Asymptotes pass through the real point

σ =
−1 + j − 1− j

2
= 1 (16.23)

Notice that we might have considered only the real parts; the imaginary
parts are bound to cancel out. We now know that the vertical asymptotes,
the ones with the angle ±90◦ for K > 0, pass through σ = −1. We know
enough to draw the complete root locus diagram in Figure 16.5. Mind the
arrows indicating the increasing values of K.

10. It is obvious that the point of divergence on the real axis is −1, but we
can con�rm this calculating

d

ds

s2 + 2s+ 2

20
= 0⇔ 2s+ 2 = 0⇔ s = −1 (16.24)

11. It also obvious that the branches arrive at the complex conjugate open
loop poles when K → 0− and leave them when K increases from 0 with
vertical asymptotes (after all, the vertical asymptotes for K → +∞ pass
right through the open loop poles themselves). But we can con�rm this as
follows: let p1 = −1−j and p2 = −1+j; then the angles of the asymptotes
aroung p2 are found as

φ1 = 90◦ ⇒

{
φ2 = 180◦ − 90◦ = 90◦, K > 0

φ2 = −90◦, K < 0
(16.25)
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Figure 16.5: Root locus of (16.16) from Example 16.3. Left: incomplete sketch
after step 5. Right: complete sketch after step 9.

Because of the symmetry, we can tell right away that{
φ1 = −90◦, K > 0

φ1 = 90◦, K < 0
(16.26)

12. There are no complex conjugate open loop poles, so this rule does not
apply.

It is clear from the root locus that

� G(s) can be controlled in closed loop with a proportional controllerK > 0,
being always stable;

� there will always be oscillations in the controlled system, since the closed
loop poles will always be complex;

� the larger the value of K, the more oscillations the controlled system will
have;

� a negative proportional controller may result in real poles, if K is negative
enough;

� however, for values of K which are negative and very large, the controlled
system will become unstable, since one of the closed loop poles will be
positive. We can �nd the value of K below which the closed loop is
unstable applying to the closed loop transfer function

y(s)

r(s)
=

20K
s2+2s+2

1 + 20K
s2+2s+2

=
20K

s2 + 2s+ (2 + 20K)
(16.27)

the Routh-Hurwitz criterion:

s2 1 2 + 20K
s 2
1 2 + 20K

(16.28)

We see that the closed loop is stable if

2 + 20K > 0⇔ K > −0.1 (16.29)

� for this gain value K = −0.1 which makes the closed loop marginally
stable, there will be a pole at s = 0.

Example 16.4. The root locus of plant

G(s) =
s+ 4

(−s+ 1)(s+ 3)(s2 + 4s+ 8)
(16.30)

is found as follows.
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1. We rewrite the open loop transfer function as

G(s) = −K s+ 4

(s− 1)(s+ 3)(s+ 2 + 2j)(s+ 2− 2j)
(16.31)

The two cases we must consider are −K > 0 ⇔ K < 0 and −K < 0 ⇔
K > 0. Notice how the unstable pole causes the two cases to switch in
what the sign of K is concerned.

2. There are n = 4 poles, one unstable at s = 1, a stable real pole at s = −3,
and a pair of complex conjuate stable poles ate s = −2 ± 2j. There is
m = 1 zero, which is a mininum phase zero, at s = −4.

3. We know that the diagram is always symmetric in relation to the real axis.

4. Because n−m = 3, the centroid will be constant. So, when a closed loop
pole moves in one direction, the others must move in such a way that the
centroid remains the same.

5. Real points verify the following:

� Those to the right of s = 1 have no open loop poles to their right, so
that part of the real axis belongs to the root locus when −K < 0⇔
K > 0.

� Those in ] − 2, 1[ have one open loop pole to their right, so as 1
is odd that part of the real axis belongs to the root locus when
−K > 0⇔ K < 0.

� Those in ]− 3,−2[ have three open loop poles to their right, so as 3
is odd that part of the real axis also belongs to the root locus when
−K > 0⇔ K < 0.

� Those in ] − 4,−3[ have four open loop poles to their right, so as
4 is even that part of the real axis belongs to the root locus when
−K < 0⇔ K > 0.

� Those to the left of s = −4 have to their right four open loop poles
and one open loop zero, so as the total 5 is odd that part of the real
axis belongs to the root locus when −K > 0⇔ K < 0.

6. The diagram has n = 4 branches, i.e. the closed loop has 4 poles.

7. The four branches converge to the open loop poles s = 1, s = −3, s =
−2± 2j when K → 0.

8. One of the branches will converge to the open loop zero s = −4 when
|K| → ∞. Since the zero is real, this convergence is already shown in the
sketch above.

9. n −m = 3 branches diverge to in�nity when K is large. When K > 0,
they follow asymptotes with slopes given by the angles

γ0 =
360◦ × 0

2
= 0◦ (16.32)

γ1 =
360◦ × 1

3
= 120◦ (16.33)

γ2 =
360◦ × 2

3
= 240◦ ≡ −120◦ (16.34)

Notice that, because the root locus is symmetric in relation to the real
axis, it su�ces to �nd the angles between 0◦ and 180◦; the others are
symmetric. When K < 0,

γ0 =
180◦(2× 0 + 1)

3
= 60◦ (16.35)

γ1 =
180◦(2× 1 + 1)

3
= 180◦ (16.36)

and of course γ2 = −60◦ ≡ 300◦. Asymptotes pass through the real point

σ =
1− 3− 2− 2− (−4)

3
= −2

3
(16.37)

We can now draw the �rst, incomplete sketch of the root locus diagram
in Figure 16.6.
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10. The points of divergence or convergence on the real axis are found solving

d

ds

−s4−6s3−13s2−4s+24︷ ︸︸ ︷
(−s+ 1)(s+ 3)(s2 + 4s+ 8)

s+ 4
= 0

⇔ (−4s3 − 18s2 − 26s− 4)(s+ 4) + s4 + 6s3 + 13s2 + 4s− 24

(s+ 4)2
= 0

⇔ −3s2 − 28s3 − 85s2 − 104s− 40

(s+ 4)2
= 0

(16.38)

This is too di�cult to solve anallytically, but we can make

>> roots([3 28 85 104 40])

ans =

-4.8449 + 0.0000i

-1.8950 + 0.5908i

-1.8950 - 0.5908i

-0.6985 + 0.0000i

Only the real roots matter, viz. −4.8449 and −0.6985.

11. Let p1 = 1, p2 = −2 + 2j, p3 = −2 − 2j, p4 = −3 and z1 = −4. See
Figure 16.7. The angles of the asymptotes aroung p2 are found as

φ1 = 180◦ − arctan 2
3 = 146.3◦

φ3 = 90◦

φ4 = arctan 2
1 = 63.4◦

ψ1 = arctan 2
2 = 45◦

⇒

{
φ2 = 45◦ − 146.3◦ − 90◦ − 63.4◦ = −254.7◦ ≡ 105.3◦, K > 0

φ2 = −254.7◦ + 180◦ = −76.7◦, K < 0

(16.39)

Because of the symmetry, we can tell right away that{
φ3 = −105.3◦, K > 0

φ3 = 76.7◦, K < 0
(16.40)

12. There are no complex conjugate open loop poles, so this rule does not
apply. With all we know, the second diagram in Figure 16.6 can now be
drawn.

It is clear from the root locus that

� G(s) can be controlled in closed loop with a proportional controller K;

� when K > 0, the control loop is always unstable;

� when K < 0 is close to 0, the control loop is also unstable;

� when K < 0 is very large, the control loop is unstable too;

� when the control loop is stable, there may be two complex conjugate
dominant poles, resulting in an oscillating response, or one real dominant
pole;

� even when there is a real dominant pole, there will be complex conjugate
poles;
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Figure 16.6: Root locus of (16.30) from Example 16.4. Left: incomplete sketch
after step 9. Right: complete sketch after step 11.

� the control loop will be stable only for an interval of negative values of K,
that can be found applying to the closed loop transfer function

y(s)

r(s)
=

K(s+4)
−s4−6s3−13s2−4s+24

1 + K(s+4)
−s4−6s3−13s2−4s+24

=
Ks+ 4K

−s4 − 6s3 − 13s2 − 4s+ 24 +Ks+ 4K

=
−Ks− 4K

s4 + 6s3 + 13s2 + s(4−K) + (−4K − 24)
(16.41)

(in which we took the care of letting the �rst coe�cient of the denominator
be positive) the Routh-Hurwitz criterion:

s4 1 13 −4K − 24
s3 6 4−K
s2 13 + K−4

6 −4K − 24
s 4−K + 6 4K+24

13+K−4
6

1 −4K − 24

(16.42)

For stability, the entire �rst column must have the same sign (in this case,
positive), and so

13 + K−4
6 > 0

4−K + 36 4K+24
78+K−4 > 0

−4K − 24 > 0

⇒


K − 4 > −78
(−K+4)(K+74)+144K+864

K+74 > 0

4K < −24

⇒


K > −74
K2−74K−1160

K+74 < 0

K < −6

⇒


K > −74

−13.3 < K < 87.3

K < −6

⇒ −13.3 < K < −6 (16.43)

Notice that these negative values of K, replaced in the closed loop (16.41),
result in a positive steady state value;

� when K = −6, the marginally stable closed loop has a pole at s = 0;

� when K = −13.3, the closed loop has two imaginary poles s = ±jω.

Example 16.5. In the previous example, it may be interesting to know where
exactly does the root locus cross the imaginary axis, i.e. the value of ω > 0 for
the closed loop poles s = ±jω when K = −13.3. This can be found from the
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Figure 16.7: Angles needed for the root locus of (16.30) from Example 16.4.

Figure 16.8: Step response of the marginally stable closed loop consisting in
plant (16.30) controlled with K = −13.3, from Example 16.5.

denominator of the closed loop (16.41), which must be zero at these poles. If
we replace K = −13.3 and s = jω, and equal to zero:

(jω)4 + 6(jω)3 + 13(jω)2 + jω(4 + 13.3) + (−4(−13.3)− 24) = 0

⇔ω4 − j6ω3 − 13ω2 + j17.3ω + 29.2 = 0

⇔

{
ω4 − 13ω2 + 29.2 = 0

−6ω3 + 17.3ω = 0

⇔

{
ω2 = 13±

√
169−4×29.2

2

ω = 0 ∨ −6ω2 + 17.3 = 0

⇔

{
ω2 = 10.1 ∨ ω2 = 2.9

ω = 0 ∨ ω2 = 2.9

⇔

{
ω = 3.2 ∨ ω = 1.7

ω = 0 ∨ ω = 1.7
(16.44)

Thus, when K = −13.3 the root locus crosses the imaginary axis at s = ±1.7j,
as shown in Figure 16.6. The interest of knowing this is that, as we saw in
Chapter 10, this ω is the frequency of an oscillation. The oscillation is that of
the step response of the closed loop, which is marginally stable (since it has no
unstable poles, and two poles on the imaginary axis). If we make

figure,step(feedback(-13.3 * (s+4)/( (-s+1)*(s+3)*(s^2+4*s+8) ), 1), 25)

we get the response in Figure 16.8. The frequency of the oscillation is, as
expected,

ω =
2π

24.4− 20.7
= 1.7 rad/s (16.45)

16.3 Proofs of rules for the root locus

We now establish the results we used in the last section and incidentally meet
the important concept of characteristic equation.
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Theorem 16.1. The root locus diagram is symmetric in relation to real axis.

Proof. This is a consequence of poles being either real or pairs of complex con-
jugates, as we saw in Section 9.1.

De�nition 16.1. Given a plant with transfer function Characteristic equation

G(s) =
N(s)

D(s)
(16.46)

where N(s) and D(s) are polynomials in s, the equation D(s) = 0, the roots of
which are the poles of G(s), is called characteristic equation.

Corollary 16.1. Let the direct branch of any of the closed loop control systems
in Figure 16.1 be K N(s)

D(s) , where K is the varying gain and polynomials N(s) and
D(s) collect the zeros and the poles. Since the transfer function of the closed
loop is

y(s)

r(s)
=

K N(s)
D(s)

1 +K N(s)
D(s)

(16.47)

the characteristic equation of the closed loop is Closed loop characteristic
equation

1 +K
N(s)

D(s)
= 0 (16.48)

which can also be written in any of the following forms:

D(s) +KN(s) = 0 (16.49)

K
N(s)

D(s)
= −1 (16.50)

|K| |N(s)|
|D(s)| = 1

∠

[
K
N(s)
D(s)

]
= π + 2kπ, k ∈ Z

(16.51)

In what follows we always presume that the open loop transfer function
K N(s)
D(s) is proper, i.e. that the order n of polynomial N(s) is not larger than

the order m of polynomial D(s), i.e. that there are not more zeros than poles
(remember De�nition 9.1 and the discussion about the number of poles and
zeros in Section 11.4). Also let

N(s) = bms
m + bm−1s

m−1 + . . .+ b0

= bm(s− z1) . . . (s− zm) (16.52)

D(s) = ans
n + an−1s

n−1 + . . .+ a0

= an(s− p1) . . . (s− pn) (16.53)

where z1, . . . , zm are the zeros of the open loop, and p1, . . . , pn the poles.

Theorem 16.2. Points s on the real axis that are not zeros of G(s) belong to
the root locus

� if there is an odd number of open loop poles and zeros to its right, and
Kbm
an > 0;

� if there is an even number of open loop poles and zeros to its right, or no

poles and zeros at all, and Kbm
an < 0.

Proof. The phase condition of (16.51) can be written as

∠

[
K
bm(s− z1) . . . (s− zm)

an(s− p1) . . . (s− pn)

]
= π + 2kπ

⇔∠

[ ∈R︷ ︸︸ ︷
Kbm
an

]
+ ∠[s− z1] + . . .+ ∠[s− zm]− ∠[s− p1]− . . .− ∠[s− pn] = π + 2kπ

⇔∠[s− z1] + . . .+ ∠[s− zm]− ∠[s− p1]− . . .− ∠[s− pn] = −∠
[
Kbm
an

]
︸ ︷︷ ︸
either 0 or ±π

+π + 2kπ

(16.54)
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Let s be real. As we know, poles and zeros may either be real or appear as
complex conjugates:

� When a zero zi or pole pi is real, the angle ∠[s− zi] or ∠[s− pi] is either
0 or ±π.

� It will be 0 if s− zi > 0 ⇔ s > zi or s− pi > 0 ⇔ s > pi, i.e. if the
pole or zero lies to the left of s.

� It will be ±π if s− zi < 0⇔ s < zi or s− pi < 0⇔ s < pi, i.e. if the
pole or zero lies to the right of s. Notice that it is irrelevant whether
we are talking about a pole or a zero, since +π ≡ −π.

� When there is a pair of complex conjugate poles or zeros, since s is real
and thus s = s, the angles must always cancel out:

∠[s− zi] + ∠[s− zi] = ∠[s− zi] + ∠[s− zi]
= ∠[s− zi]− ∠[s− zi] = 0 (16.55)

−∠[s− pi]− ∠[s− pi] = −∠[s− pi]− ∠[s− pi]
= −∠[s− pi]− (−∠[s− pi]) = 0 (16.56)

(This is graphically represented in Figure 16.9, since each of the terms s − z1

to s − pn, which is a complex number, can also be thought of as a vector on
the complex plane.) Thus, complex conjugate zeros and poles are irrelevant for
(16.54), and each real zero or pole to the right of s contributes with a phase of
±π. So:

� If Kbman > 0, then −∠
[
Kbm
an

]
= 0, and (16.54) becomes

∠[s− z1] + . . .+ ∠[s− zm]− ∠[s− p1]− . . .− ∠[s− pn] = π + 2kπ
(16.57)

There must be an odd number of real zeros and poles to the right of s, if
s is to belong to the root locus.

� If Kbman < 0, then −∠
[
Kbm
an

]
= ±π, and (16.54) becomes

∠[s− z1] + . . .+ ∠[s− zm]− ∠[s− p1]− . . .− ∠[s− pn] = 2kπ (16.58)

There must be an even number of real zeros and poles to the right of s, if
s is to belong to the root locus.

Because adding 2 to an odd number results in an odd number, and adding 2 to
an even number results in an even number, the total number of zeros and poles
can be considered; pairs of complex conjugates change nothing just the same.

We have shown when s may belong to the root locus because the phase
condition of (16.51) is ful�lled. But, if the phase condition is ful�lled, the gain
condition of (16.51) is ful�lled making

|K| = |D(s)|
|N(s)|

(16.59)

which is always possible as long as N(s) 6= 0.

Theorem 16.3. The number of poles of the closed loop is the number of poles
of the open loop n.

Proof. Since we assumed that m ≤ n, and K is a scalar, the polynomial in the
left member of (16.49) is of order n.

Theorem 16.4. When K → 0, the poles of the closed loop converge to the
poles of the open loop, i.e. the roots of D(s).

Proof. When K → 0, (16.49) becomes D(s) = 0.

Theorem 16.5. When K → ±∞, m closed loop poles converge to the zeros
of the open loop, i.e. the roots of N(s), and n−m closed loop poles diverge to
in�nity.
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Figure 16.9: Diagrams to illustrate the proof of Theorem 16.2. Left: s has all
the open loop zeros and poles to its left. Right: some open loop zeros and poles
are on the right side of s, some on the left.

Proof. When K → ±∞, (16.49) can be approximated by N(s) = 0. So the
roots of N(s), i.e. the zeros of the open loop, will be roots of the closed loop.

If n = m, this accounts for all the closed loop poles. If the open loop is
strictly proper, there will be n −m closed loop poles unaccounted for. In that
case, the characteristic equation (16.49) becomes

ans
n + . . .+ am+1s

m+1 + ams
m + . . .+ a0 +Kbms

m + . . .+Kb0 = 0

⇔ ans
n + . . .+ am+1s

m+1 + (am +Kbm)sm + . . .+ a0 +Kb0 = 0

⇔ ans
n + . . .+ am+1s

m+1 = −(am +Kbm)sm − . . .− (a0 +Kb0)
(16.60)

Since |K| → +∞, the right member is diverging to in�nity. The only way the
left member is also diverging to in�nity is |s| → +∞. (Notice that s is complex
and may be diverging to in�nity in any direction.)

Theorem 16.6. The n−m closed loop poles diverging to in�nity have asymp-
totes making with the positive real axis angles given by

π(2k + 1)
n−m , if Kbman > 0

2kπ
n−m, if Kbman < 0

(16.61)

Proof. Since |s| ← ∞,

lim
|s|→∞

K
N(s)

D(s)
= lim
|s|→∞

K
bms

m + bm−1s
m−1 + . . .+ b0

ansn + an−1sn−1 + . . .+ a0

= lim
|s|→∞

Kbm
an

(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)

= lim
|s|→∞

Kbm
an

sm

sn
= lim
|s|→∞

Kbm
an

1

sn−m
(16.62)

The phase condition of (16.51) becomes

∠

[
Kbm
an

1

sn−m

]
= π + 2kπ, k ∈ Z

⇔ ∠

[
Kbm
an

]
︸ ︷︷ ︸
either 0 or π

−(n−m)∠s = π + 2kπ, k ∈ Z (16.63)

If Kbman > 0, its contribution for the phase is 0, and we get

∠s = −π + 2kπ

n−m
=
π(2k + 1)

n−m
, k ∈ Z (16.64)
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If Kbman < 0, its contribution for the phase is π, and we get instead

∠s = − 2kπ

n−m
=

2kπ

n−m
, k ∈ Z (16.65)

Theorem 16.7. The branches of the root locus converge or diverge on the real
axis at the real roots of

d

ds

(s− p1) . . . (s− pn)

(s− z1) . . . (z − zm)
= 0 (16.66)

Proof. When the branches converge or diverge, the real point s where they do
so will correspond to either a maximum or a minimum value of K on the real
axis. Indeed, if we move along the real axis with K increasing, and reach a
point of divergence s, then K will increase along branches that are no longer
real, and to the other side of s gain K will now decrease. And, if we move along
the real axis with K decreasing, and reach a point of convergence s, then K will
decrease along branches that are no longer real, and to the other side of s gain
K will now increase. This is clear by looking at any root locus diagram where
such points exist.

Consequently, if K has a local maximum or minimum for a certain real point
s, then dK

ds = 0. Using (16.50),

K = −D(s)

N(s)
⇒

dK

ds
=

d

ds

(
−D(s)

N(s)

)
=

d

ds

D(s)

N(s)
= 0 (16.67)

Theorem 16.8. Rules 11 and 12 from Table 16.2 hold.

Proof. Let s be a point of the root locus in the vicinity of pole pi, i.e. we make
s→ pi. We take the limit of the phase condition of (16.51)

lim
s→pi

∠

[
K bm
an

(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)

]
= π + 2kπ, k ∈ Z (16.68)

which becomes (dropping the 2kπ periodicity)

either 0 or ±π︷ ︸︸ ︷
∠

[
Kbm
an

]
+

∠[pi−z1]=ψ1︷ ︸︸ ︷
lim
s→pi

∠[s− z1] + . . .+

∠[pi−zm]=ψm︷ ︸︸ ︷
lim
s→pi

∠[s− zm]

− lim
s→pi

∠[s− p1]︸ ︷︷ ︸
∠[pi−p1]=φ1

− . . .− lim
s→pi

∠[s− pi]︸ ︷︷ ︸
φi

− . . .− lim
s→pi

∠[s− pn]︸ ︷︷ ︸
∠[pn−p1]=φn

= 0 (16.69)

Solving for φi, we get (16.10). The proof for a zero is similar.

We will not prove:

� expression (16.8) for the intersection of the asymptotes;

� that branches only converge or diverge on the real axis;

� that they converge or diverge perpendicularly to the real axis;

� that the centroid of the root locus is constant if n−m ≥ 2.

Remark 16.1. Up until now we have assumed that the feedback branch of theRoot locus when the feed-
back branch is not 1 closed loop is 1 (i.e. we have assumed a perfect sensor). If this is not the case,

the closed loop in Figure 16.10

y = KG(r −Hy)⇒ y(1 +KGH) = KGr ⇒ y

r
=

KG

1 +KGH
(16.70)

has the characteristic equation

1 +KGH = 0⇔ KGH = −1⇔

{
|KGH| = 1

∠[KGH] = π + 2kπ, k ∈ Z
(16.71)

Thus, in this situation, instead of the root locus of G(s), the root locus of
G(s)H(s) has to be used instead.
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Figure 16.10: Closed loop with non-unitary feedback.

16.4 Finding desired poles from speci�cations

Suppose that we are given speci�cations of how the time responses of a controlled
system should be. To use the root locus diagram to design a proportional
controller, or to adjust the gain of any other type of controller, we

� �nd from the speci�cations the zones of the complex plane where the closed
loop poles must lie;

� �nd for which values of gain the root locus is inside such zones. If there are
no values of the gain that put all the closed poles in those zones, another
controller is necessary.

We know from Section 11.6 that the poles are not the only thing that determines
the time response of a system, but reasonable approximations can be found in
this way if there is a dominant real pole s = −a, or a pair of complex conjugate
dominant poles

s = −a± jb

= −ξωn ± jωn
√

1− ξ2 (16.72)

⇒

|s| =
√
ξ2ω2

n + ω2
n(1− ξ2) = ωn

∠s = arctan
±ωn

√
1− ξ2

−ξωn = arctan
±
√

1− ξ2

−ξ
(16.73)

(remember (11.43)�(11.44)).
Recall from Sections 11.2 and 11.3 that, in either case, Zones of C for a given set-

tling time

� the 10% settling time is ts,10% =
2.3

a
⇔ −a = − 2.3

ts,10%
;

� the 5% settling time is ts,5% =
3

a
⇔ −a = − 3

ts,5%
;

� the 2% settling time is ts,2% =
4

a
⇔ −a = − 4

ts,2%
;

� the 1% settling time is ts,1% =
4.6

a
⇔ −a = − 4.6

ts,1%
.

Suppose that a maximum value for the settling time is required. This settling
time will correpond to poles on a vertical straight line with real part −a found
from the relations above. The dominant poles can be on this line, or, better
still, somewhat to its left, in which case they will be faster. See Figure 16.11.

Also recall that: Zones of C for a maximum
value of Mp

� if there is a dominant real pole (i.e. without imaginary part), there is no
overshoot;

� if there is a pair of complex conjugate dominant poles, the maximum
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Figure 16.11: Left: zone of the complex plane where dominant poles must be,
given a real part −a found from a maximum settling time ts speci�cation. Right:
zone of the complex plane where the dominant poles must be, given a maximum
overshoot Mp that is not to be exceeded.

overshoot (as a fraction of the steady-state value) is given by (11.72):

Mp = e
−ξπ√
1−ξ2

⇒ ξπ√
1− ξ2

= − logMp

⇒ ξ2π2 = (logMp)
2(1− ξ2)

⇒ ξ2
(
π2 + (logMp)

2
)

= (logMp)
2

⇒ ξ2 =
(logMp)

2

π2 + (logMp)2
(16.74)

Of the two possible values of the square root, one is positive and the other
is negative. Usually the maximum overshoot is smaller than 100%, i.e.
than 1; thus, it is with the minus sign that we get a positive value for the
damping coe�cient ξ:

ξ =
− logMp√

π2 + (logMp)2
(16.75)

So, if one of the speci�cations is that a certain value of the maximum over-
shoot cannot be exceeded, (16.75) is used to �nd the minimum admissible
damping factor (ξ can be higher, since larger damping factor correspond
to more damped oscillations, i.e. with smaller amplitudes). From (16.73),
we know that ξ has no e�ect on the magnitude of the poles, and su�ces
to �nd their phase. Replacing (16.74) and (16.75) in (16.73),

∠s = arctan

±

√
1− (logMp)2

π2 + (logMp)2

− − logMp√
π2 + (logMp)2

= arctan

±

√
π2

π2 + (logMp)2

logMp√
π2 + (logMp)2

= arctan± π

logMp
(16.76)

Since the poles are stable, these angles are in the second (π2 ≤ ∠s ≤ π)
and third quadrants (−π ≤ ∠s ≤ −π2 ). Poles closer to the real axis,
where there are no oscillations, will have lower values of the maximum
overshoot (the imaginary parts of the poles are smaller; remember from
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Figure 16.12: Left: zone of C where dominant poles must be in Example 16.6.
Right: root locus of C(s)G(s).

Section 11.6 that the imaginary parts of the poles are what originate the
oscillations). Thus, a speci�cation for the largest admissible value of Mp

translates into a sector of the complex plane around the negative real axis.
See Figure 16.11.

Of course, if there is no clearly dominant pole or pair of complex conjugate
poles, the approximations above for the desired locations of poles will be poor.

Example 16.6. Plant G(s) = 10
s2+s+1 will be controlled in closed loop by a PID

controller given by C(s) = Kp

(
1 + 5

s + s
20

)
. We want

� a maximum overshoot of 5% or less;

� a 5% settling time of 1 s or less.

What should be the value of the PID gain Kp?
We can �nd the zone of C where the dominant pole or poles should be as

follows:

� From Mp ≤ 5% = 0.05, we get |∠s| ≥
∣∣∣arctan π

log 0.05

∣∣∣ = 134◦. Notice that

we chose the angle in the second quadrant; calculating arctan π
log 0.05 will

likely gives us −46◦, in the fourth quadrant, as the result.

� From ts,5% ≤ 1 s, we get −a ≤ −3.

This zone is shown in Figure 16.12. We now plot the root locus of C(s)G(s) and
check the values of Kp for which all poles are inside the desired zone: Kp = 3.8,
in this case. Choosing the lowest possible of Kp, the control action will be
as low as possible. But it may be reasonable to allow for some uncertainty in
parameters, and thus use a slightly larger value of Kp to ensure that all poles
are indeed inside the desired zone.

The step responses of the closed loop for Kp = 5 and Kp = 30 are shown in
Figure 16.13. Notice how, for Kp = 5, the speci�cations are still not followed,
even though all the poles, and consequently the dominant one or dominant ones,
are inside the zone of the complex plane corresponding to the speci�cations. If
the control action is feasible, the problem is solved using C(s) = 30

(
1 + 5

s + s
20

)
.

Remark 16.2. In the Example above, as we do not know what type of system
G(s) is (mechanical, thermal, etc.), and what actuator is being used, we can
form no idea about whether the control action is reasonably small, or too large.
We also do not know if the actuator bandwidth required to implement this
control action is feasible. In real life, it is important to know what system is
being controlled, so that these matters can be decided.

Matlab includes the app controlSystemDesigner (called sisotool in
older versions) to assist the design of closed loop controllers for SISO plants.
Among other functionalities, this app lets us select a plant and change the open
loop gain in its root locus diagram, showing interactively how the closed loop
step response will be in each case. See Figure 16.14.



302 CHAPTER 16. ROOT LOCUS

Figure 16.13: Behaviour of the closed loop control system from Example 16.6.

Figure 16.14: controlSystemDesigner from Matlab.

Glossary

And Eliacim, and Sobna, and Ioahe sayd to Rabsaces: Speake to
thy seruants in the Syrian tongue: for we vnderstand it: speake not
to vs in the Iewes language in the eares of the people, that is vpon
the wal. And Rabsaces sayd to them: Why, did my lord send me to
thy lord and to thee, to speake al these wordes; and not rather to
the men, that sitte on the wal (. . . )?

Isaiah ben Amoz (attrib.; 8th�7th c. BC), Isaiah, xxxvi 11�12, Douay-Rheims
version (1610)

branch ramo
characteristic equation equação característica
root locus lugar geométrico das raízes (LGR)

Exercises

1. Consider the plants with the following open-loop transfer functions. Admit
both cases K > 0 and K < 0. Plot their root-locus, determining all
the relevant points, the asymptotes, the departure and arrival angles, the
values of K ensuring stability (resorting to the Routh-Hurwitz criterion as
needed), and the points where the root locus crosses the imaginary axis.

(a) G1 (s) =
1

s+ 10

(b) G2 (s) =
1

s− 10

(c) G3 (s) =
s+ 30

s+ 10

(d) G4 (s) =
s+ 10

s+ 30
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(e) G5 (s) =
1

(s+ 10)(s+ 30)

(f) G6 (s) =
1

(s+ 10)(s− 30)

(g) G7 (s) =
1

(s− 10)(s+ 30)

(h) G8 (s) =
1

(s− 10)(s− 30)

(i) G9 (s) =
s+ 20

(s+ 10)(s+ 30)

(j) G10 (s) =
1

(s+ 10)(s+ 20)(s+ 30)

(k) G11 (s) =
1

s2 + 20s+ 200

(l) G12 (s) =
s+ 20

s2 + 20s+ 200

2. Consider the plants with the following open-loop transfer functions. Admit
both cases K > 0 and K < 0. Plot their root-locus, determining all
the relevant points, the asymptotes, the departure and arrival angles, the
values of K ensuring stability (resorting to the Routh-Hurwitz criterion as
needed), and the points where the root locus crosses the imaginary axis.

(a) G1 (s) =
(s+ 1)

s2 (s+ 2)

(b) G2 (s) =
(s− 2)

s2 (s+ 1) (s+ 3)

(c) G3 (s) =
1

s (s2 + 0.2s+ 1)

(d) G4 (s) =
(s+ 1)

s (s2 + 3s+ 9)

(e) G5 (s) =
1

s (s+ 1)
3

(f) G6 (s) =

(
s2 + 2, 8s+ 4

)
s (s+ 3) (s2 + 2s+ 4)

(g) G7 (s) =
(s+ 1)

s2 (s+ 3) (s+ 4)

(h) G8 (s) =
(s+ 1)

s2 (s+ 10)

(i) G9 (s) =
(s+ 2)

s (s2 + 2s+ 2)

(j) G10 (s) =
(−10s+ 40)

s(s2 + 40s+ 1025)

3. Find the zones of the complex plane corresponding to the following spec-
i�cations:

(a) Settling time under 5 min; no overshoot.

(b) Settling time under 1 min; overshoot under 5%.

(c) Settling time under 10 ms; overshoot under 25%.

4. Find a proportional controller for the following plants and speci�cations,
whenever possible:

(a) G(s) =
s+ 100

s2 + 100s+ 2600
, settling time under 50 s, overshoot under

1%.

(b) G(s) =
s+ 100

s2 + 100s+ 2600
, settling time under 5 s, overshoot under

15%.
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Figure 16.15: Root locus from Exercise 5.

(c) G(s) =
100

s2 + 100s+ 2600
, settling time under 50 s, overshoot under

1%.

5. The plant with the root locus in Figure 16.15 will be controlled in closed
loop with a proportional controller K.

(a) Is the loop always stable when K > 0?

(b) Is the loop always unstable when K > 0?

(c) Is the loop always stable when K < 0?

(d) Is the loop always unstable when K < 0?

(e) Is the loop stable if |K| is small enough?

(f) Is there any value of K for which the loop will be critically damped?



Chapter 17

The Nyquist stability

criterion

`I suppose there are two views about everything,' said Mark.
`Eh? Two views? There are a dozen views about everything until
you know the answer. Then there's never more than one.'

C. S. Lewis (1868 � �1963), That hideous strength (1945), 3

The Nyquist criterion is another tool that, just like the root locus, can be
used

� to design a proportional controller,

� to design the gain of a controller that has poles and zeros, once these are
known,

� to see what happens to a closed loop control system with a known con-
troller, when the gain of the plant changes for some reason.

This criterion is better visualised in the Nyquist diagram, and to study the
Nyquist diagram it is convenient to study the polar diagram �rst.

17.1 The polar diagram

In theBode diagram, the frequency response of a plant G(s) is represented as a
function of frequency ω > 0; the gain |G(jω)|, in decibel, and the phase ∠G(jω),
are plotted separately (with a semilogarithmic scale). (Remember section 10.5.)

In the polar diagram, G(jω) is represented in the complex plane; i.e. Polar diagram shows
G(jω) in the complex
plane

=[G(jω)] is plotted in the y�axis as function of <[G(jω)] in the x�axis. Fre-
quency is not explicitly shown. It is obvious that, given any point of a polar
diagram,

� the gain |G(jω)| (in absolute value, not in dB) is its distance to the origin,

� the phase ∠G(jω) is its phase.

Example 17.1. The polar diagram of G(s) = 1
s+1 is shown in Figure 17.1

together with its Bode diagram. Notice that

� for low frequencies, lim
ω→0+

G(jω) = 1, and so the polar diagram begins at Where the polar plot begins

1;

� for high frequencies, lim
ω→+∞

G(jω) = 0, and so the polar diagram ends at Where the polar plot ends

the origin;

� for high frequencies, lim
ω→+∞

∠G(jω) = −90◦, and so the polar diagram

approaches the origin from below, tangent to the imaginary axis, where
the phase is −90◦, remaining always to the right of the imaginary axis
because the phase is never below −90◦.

305
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Figure 17.1: Bode diagram and polar plot for G(s) = 1
s+1 .

Figure 17.2: Bode diagram and polar plot for G(s) = 1
s2+0.6s+1 .

Example 17.2. The polar diagram of G(s) = 1
s2+0.6s+1 is shown in Figure 17.2

together with its Bode diagram. Notice that

� for low frequencies, lim
ω→0+

G(jω) = 1, and so the polar diagram begins at

1;

� for high frequencies, lim
ω→+∞

G(jω) = 0, and so the polar diagram ends at

the origin;

� because ξ = 0.3 <
√

2
2 , there is a resonance peak, and thus the gain is

partly outside a unit radius circle;

� for high frequencies, lim
ω→+∞

∠G(jω) = −180◦, and so the polar diagram

approaches the origin from the left, tangent to the real axis, where the
phase is −180◦, remaining always below the real axis because the phase is
never below −180◦.

Example 17.3. The polar diagram of G(s) = 1
s(s+1) is shown in Figure 17.3

together with its Bode diagram. The behaviour for low frequencies can be
explained as follows.

� Because lim
ω→0+

|G(jω)| = +∞, the polar diagram begins at an in�nite

distance from the origin.

� Because lim
ω→0+

∠G(jω) = −90◦, the polar diagram begins vertically, from

below. These points are in the third quadrant, and have phases between
−180◦ and −90◦. For arbitrarily large distances from the origin, the real
part is neglectable, and the imaginary part very large; thus, the phases
approach −90◦.

� This can be seen more accurately calculatingFinding an asymptote of
the polar plot



17.2. THE NYQUIST DIAGRAMWHEN THERE ARE NO POLES ON THE IMAGINARYAXIS307

Figure 17.3: Bode diagram and polar plot for G(s) = 1
s(s+1) .

Figure 17.4: Left: Nyquist diagram of 1
s+1 . Right: Nyquist diagram of

1
s2+0.6s+1 .

G(jω) =
1

jω(jω + 1)

=
1

−ω2 + jω

=
−ω2 − jω

(−ω2 + jω)(−ω2 − jω)

=
−ω2 − jω
ω4 + ω2

=
−1

ω2 + 1
+ j

−1

ω3 + ω
(17.1)

lim
ω→0+

<[G(jω)] = lim
ω→0+

−1

ω2 + 1
= −1 (17.2)

lim
ω→0+

=[G(jω)] = lim
ω→0+

−j
ω3 + ω

= −j∞ (17.3)

So (17.2)�(17.3) show that the diagram begins with an asymptote given by
<[z] = −1, approaching the origin from below. The angle of the asymptote
is, as expected, −90◦.

17.2 The Nyquist diagram when there are no poles
on the imaginary axis

The simplest description of the Nyquist diagram is that it consists in a transfer The Nyquist diagram also
shows the complex conju-
gate of the frequency re-
sponse

function's polar diagram plus its complex conjugate (i.e. the polar diagram
turned upside down, so to say).

Example 17.4. Figure 17.4 shows the Nyquist diagram of 1
s+1 and 1

s2+0.6s+1 , Matlab function
nyquist

as plotted by Matlab function nyquist (and after command axis equal to

Matlab command axis

equal

make the scales of the x�axis and the y�axis the same). Compare this with
Figures 17.1 and 17.2.

The formal de�nition is more complicated, but necessary for the Nyquist
stability criterion we are about to study. We will postpone the case of plants
with poles on the imaginary axis (either at 0, or pairs of complex conjugates)
to Section 17.4.
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First notice that the curve showing the frequency response in the polar
diagram can be seen as the positive imaginary axis j×]0,+∞[ transformed by
the complex-valued function of complex value G(s). We say that the frequency
response curve is a mapping of the positive imaginary axis, using functionMapping
G(s).

Theorem 17.1. The complex conjugate of the frequency response G(jω) is theG(−jω) = G(jω)
mapping of the negative imaginary axis, G(−jω), ω > 0.

Proof. Let G(s) = N(s)
D(s) . Then

G(jω) =
N(jω)

D(jω)

=
N(jω)D(jω)

D(jω)D(jω)︸ ︷︷ ︸
∈ R

(17.4)

The numerator N(jω)D(jω) is a polynomial on ω:

� Its real part will consist in

� the independent term,

� the term on (jω)2 = −ω2,

� the term on (jω)4 = ω4,

� the term on (jω)6 = −ω6,

and so on, i.e. the terms on even powers of jω. Thus, <[N(jω)D(jω)]<[G(jω)] is even
is an even function of ω, and so is <[G(jω)]. That is to say, <[G(jω)] =
<[G(−jω)].

� Its imaginary part will consist in

� the term on jω,

� the term on (jω)3 = −jω3,

� the term on (jω)5 = jω5,

and so on, i.e. the terms on odd powers of jω. Thus, =[N(jω)D(jω)] is=[G(jω)] is odd
an odd function of ω, and so is =[G(jω)]. That is to say, =[G(jω)] =
−=[G(−jω)].

Consequently,

G(jω) = <[G(jω)] + j=[G(jω)]

= <[G(jω)]− j=[G(jω)]

= <[G(−jω)] + j=[G(−jω)] = G(−jω) (17.5)

As a result, given a transfer function G(s), its polar plot plus its complex
conjugate are the mapping, using G(s), of j] −∞, 0[∪j]0,+∞[. In fact we can
throw in the origin too, and map the entire imaginary axis jω, ω ∈]−∞,+∞[,
since we are assuming no poles on the imaginary axis: this means thatD(jω) 6= 0

whatever the value of ω (including ω = 0), and so G(0) = N(0)
D(0) is �nite.

The Nyquist diagram is de�ned as the mapping, not of the imaginary axis
alone, but of a contour in C.

De�nition 17.1. A contour is a closed curve in C, oriented clockwise orContour in C
counter-clockwise, such that:

� there is only a �nite number of points of the curve where it is not di�er-
entiable;

� the curve can be completely traversed without passing twice by any point
(this precludes closed curves that cross themselves, for instance).

De�nition 17.2. The Nyquist diagram of a transfer function G(s) that has
no poles on the imaginary axis is the mapping, using G(s), of the Nyquist
contour, or Nyquist path, that consists ofNyquist contour
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Figure 17.5: The Nyquist contour (blue) in the complex plane. This contour is
mapped in a Nyquist diagram, when G(s) has no poles on the imaginary axis.

� a straight line s = jω, ω ∈ [−r,+r], and

� a semi-circle s = rejθ, θ ∈ [−π2 ,+
π
2 ],

as r → +∞, and is clockwise oriented. See Figure 17.5.

Remark 17.1. As r → +∞, the semi-circle approaches in�nity.
If G(s) is strictly proper, this semi-circle of in�nite radius is mapped to the

origin. In fact,

lim
|s|→+∞

G(s) = lim
|s|→+∞

bms
m + . . .+ b0

ansn + . . .+ a0
= 0 (17.6)

since n > m.
If n = m, the semi-circle of in�nite radius is mapped to a point other than

the origin. In fact,

lim
|s|→+∞

G(s) = lim
|s|→+∞

bns
n + . . .+ b0

ansn + . . .+ a0
=
bn
an

(17.7)

17.3 The Nyquist criterion

The Nyquist stability criterion is based upon a theorem that we will not prove.

Theorem 17.2. Let f(s) = fN (s)
fD(s) be a complex-valued rational function of

complex variable s, and C a clockwise (counter-clockwise) contour in C that

� does not pass on the poles of f(s),

� encircles P poles of f(s),

� encircles Z zeros of f(s).

Then the mapping of contour C by f(s) is a closed line f(C ) that encircles
Z − P times the origin, clockwise (counter-clockwise).

Remark 17.2. The mapped contour f(C ) need not be a contour. It may, for
instance, cross itself, or even have coincident lines.

Example 17.5. We can verify this theorem numerically as shown in Fig-
ures 17.6 and 17.7. On the left, a counter-clockwise complex contour is shown,
together with the zeros and poles of a transfer function, which will serve as f(s).
On the right, the contour mapped by the the transfer function is shown.

� In Figure 17.6, top, the contour encircles Z = 0 zeros and P = 0 poles
of the transfer function. Thus, the mapped contour encircles Z − P = 0
times the origin, counter-clockwise.
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� In Figure 17.6, centre, the contour encircles Z = 0 zeros and P = 1 poles
of the transfer function. Thus, the mapped contour encircles Z − P =
−1 times the origin, counter-clockwise, i.e. it encircles the origin once,
clockwise.

� In Figure 17.6, bottom, the contour encircles Z = 0 zeros and P = 2 poles
of the transfer function. Thus, the mapped contour encircles Z − P =
−2 times the origin, counter-clockwise, i.e. it encircles the origin twice,
clockwise.

� In Figure 17.7, top, the contour encircles Z = 1 zeros and P = 2 poles
of the transfer function. Thus, the mapped contour encircles Z − P =
−1 times the origin, counter-clockwise, i.e. it encircles the origin once,
clockwise.

� In Figure 17.7, centre, the contour encircles Z = 2 zeros and P = 4 poles
of the transfer function. Thus, the mapped contour encircles Z − P =
−2 times the origin, counter-clockwise, i.e. it encircles the origin twice,
clockwise.

� In Figure 17.7, bottom, a di�erent contour is used with the same transfer
function as above, showing that changing the shape of the contour is
irrelevant for the result. The number of encirclements, is, as expected, the
same: twice, clockwise.

The plots of Figure 17.6, top, can be drawn with the following code. The next
cases are similar.

s1 = 1+1i*(-1:0.01:1);

s2 = 1i+(1:-0.01:-1);

s3 = -1+1i*(1:-0.0025:-1);

s4 = -1i+(-1:0.01:1);

G = @(s) 1./(s+2);

% transfer function defined as a function handle for complex variables

figure, plot(real(s1),imag(s1), real(s2),imag(s2),...

real(s3),imag(s3), real(s4),imag(s4), -2,0,'x')

axis([-2 2 -2 2]), xlabel('Real axis'), ylabel('Imaginary axis')

title('1/(s+2)')

figure, plot(real(G(s1)),imag(G(s1)), real(G(s2)),imag(G(s2)),...

real(G(s3)),imag(G(s3)), real(G(s4)),imag(G(s4)), 0,0,'+')

axis([-0.5 1.5 -1 1]), xlabel('Real axis'), ylabel('Imaginary axis')

title('1/(s+2)')

The plots of Figure 17.7, bottom, use the contour

sr = 1.5*exp(1i*(-pi:pi/100:pi));

Theorem 17.3. Let G(s) = N(s)
D(s) be a transfer function with P unstable poles.Nyquist criterion

Let N be the number of clockwise encirclements of its Nyquist diagram around
point −1. Then G(s) in closed loop, as seen in Figure 17.8, will have Z = N+P
unstable poles.

Proof. The characteristic equation of the closed loop is 1 + G(s) = 0. We will
apply Theorem 17.2 to function f(s) = 1 + G(s). The contour C will be the
Nyquist path. We know that the mapping of the Nyquist path using f(s) will
have a number of enrolments around the origin N given by N = Z − P ⇔ Z =
N + P . But:

� Since G(s) is linear, f(s) is also linear. So, given a contour C , its mapping
by f(s) will be f(C ) = 1 +G(C ), i.e. the mapping by G(s) shifted to the
right by 1. Thus, the number of enrolments of f(C ) around the origin N
is also the number of enrolments of G(C ) around −1. And the mapping
G(C ) is the Nyquist plot of G(s).
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Figure 17.6: Example 17.5 illustrates Theorem 17.2. Left: complex contour and
the zeros and poles of a transfer function. Right: the contour mapped by the
the transfer function (the origin is marked with a cross). Bottom right �gure:
the two leftmost curves are coincident; the outside curve was enlarged to show
more clearly the shape of the mapped contour. Continues in Figure 17.7.
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Figure 17.7: Figure 17.6 continued. Example 17.5 illustrates Theorem 17.2.
Left: complex contour and the zeros and poles of a transfer function. Right:
the contour mapped by the the transfer function (the origin is marked with a
cross).

Figure 17.8: Top: block diagram for the Nyquist criterion. Bottom: block
diagram for the Nyquist criterion, with a variable open loop gain K.
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Figure 17.9: Nyquist diagram of model (17.8) of a boost converter, from Exam-
ple 17.6.

� Z is the number of zeros of f(s) inside C . Since the Nyquist path covers
the entire right half of the complex plane, Z is the number of roots of
f(s) such that s > 0. The roots of f(s) are the roots of the closed loop
characteristic equation, i.e. the unstable poles of the closed loop.

� P is the number of poles of f(s) = 1 +G(s) = 1 + N(s)
D(s) = N(s)+D(s)

D(s) inside
C . Since the Nyquist path covers the entire right half of the complex
plane, the poles of f(s) are the roots of D(s) such that s > 0, i.e. the
unstable poles of G(s).

Theorem 17.4. Let G(s) = N(s)
D(s) be a transfer function with P unstable poles. Nyquist criterion when K

variesLet N be the number of clockwise encirclements of its Nyquist diagram around
point − 1

K . Then G(s) controlled in closed loop by proportional controller K,
as seen in Figure 17.8, will have Z = N + P unstable poles.

Proof. The characteristic equation of the closed loop is 1 + KG(s) = 0. We
will apply Theorem 17.2 to function f(s) = 1 +KG(s). The proof is similar to
that of the previous theorem, with the following change: given a contour C , its
mapping by f(s) will be f(C ) = 1 + KG(C ), i.e. the mapping by G(s) shifted
to the right by 1

K . Thus, the number of enrolments of f(C ) around the origin
N is also the number of enrolments of G(C ) around − 1

K .

This result lets us use the Nyquist diagram of a transfer function to �nd the
values of a proportional controller K that can stabilise it in closed loop, just as
we might do using Routh's criterion.

Example 17.6. A boost converter (a device that converts a DC voltage into a
larger DC voltage) is modelled by transfer function

C(s) =
−418040s+ 9.523× 108

s2 + 884.6s+ 2.015× 106
(17.8)

The corresponding Nyquist diagram is shown in Figure 17.9. What values of a
proportional controller K can stabilise this transfer function in closed loop?

The poles of C(s) are −442.3± 1348.8j. They are both stable, thus P = 0.
We count the number of clockwise enrolments around the points on the real
axis, and build the following table:

R
−∞ +∞−472 0 472

− 1
K ∈ ]−∞,−472[ ]− 472, 0[ ]0, 472[ ]472,+∞[
K ∈ ]0, 0.0021[ ]0.0021,+∞[ ]−∞,−0.0021[ ]− 0.0021, 0[
N 0 2 1 0
P 0 0 0 0
Z 0 2 1 0

(17.9)

From the table it is clear that there will be no closed loop unstable poles (Z = 0)
if −0.0021 < K < 0 or if 0 < K < 0.0021. So the open loop will be stable for
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Figure 17.10: Nyquist diagram of 1
s−1 , from Example 17.7.

−0.0021 < K < 0.0021. (We can add K = 0 to the interval since there will be
no feedback and the output will be always zero: control will be a failure, but
the output is stable.)

Example 17.7. Figure 17.10 shows the Nyquist diagram of 1
s−1 . What pro-

portional controllers can stabilise this plant in closed loop?
P = 1, and real points from −1 to 0 are encircled once counter-clockwise,Counter-clockwise en-

circlements are negative
clockwise encirclements

i.e. they are encircled clockwise −1 times. From table

R
−∞ +∞−1 0

− 1
K ∈ ]−∞,−1[ ]− 1, 0[ ]0,+∞[
K ∈ ]0, 1[ ]1,+∞[ ]−∞, 0[
N 0 −1 0
P 1 1 1
Z 1 0 1

(17.10)

we see that we must have K > 1.

Remark 17.3. Remember that if, instead of the cases of Figure 17.8, the controlWhat Nyquist diagram
should be plot loop is di�erent, the characteristic equation is not the same. Thus:

� in case (b) of Figure 16.1, when a plant G(s) is controlled in closed loop
by a controller KC(s) with variable gain K, we must �nd the Nyquist
diagram of C(s)G(s);

� in case (c) of Figure 16.1, when a plant KG(s) with variable gain K is
controlled in closed loop by a controller C(s), we must �nd the Nyquist
diagram of C(s)G(s);

� in the case of Figure 16.10, when a plant G(s) is controlled in closed loop
by a proportional controller K, and there is in the feedback branch a
sensor H(s), we must �nd the Nyquist diagram of G(s)H(s).

17.4 The Nyquist diagram when there are poles
on the imaginary axis

When there are poles on the imaginary axis, the Nyquist contour must be mod-Nyquist contour for poles
at the origin or imaginary
poles

i�ed with semi-circles with vanishing radius r′ → 0+, as shown in Figure 17.11
for a situation in which there is a pole at the origin and a pair of complex con-
jugate imaginary poles. The number and location of the semi-circles depends,
of course, of the number and location of the poles on the imaginary axis. The
semi-circles are on the right side of the imaginary axis so as to always have
s > 0, so that only unstable poles of the transfer function are ever encircled.

These vanishing semi-circles near poles originate curves with a radius that
increases to in�nity as r′ → 0+. Matlab function nyquist does not plot these
so-called curves at in�nity (only the polar plot and its complex conjugate),
though we can �nd them numerically using small values for r′.
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Figure 17.11: The Nyquist contour (blue) in the complex plane, when there are
poles on the imaginary axis.

Example 17.8. Figure 17.12 shows the Nyquist diagrams of plants

G1(s) =
s+ 0.1

s(s+ 1)
(17.11)

G2(s) =
s+ 0.1

s(s− 1)
(17.12)

G3(s) =
s− 0.1

s(s+ 1)
(17.13)

as Matlab plots them, and then with the curves at in�nity added. The same
Figure shows the mapping of two approximations of the Nyquist path: one with
r = 10, r′ = 1

10 , and another with r = 100, r′ = 1
100 , which is of course a better

approximation of the Nyquist diagram. The �rst approximation already shows
where the curves at in�nity will be; the second is quite clear.

To know without numerical calculations whether a curve in the Nyquist plot Finding curves at in�nity
caused by a pole at the origin turns clockwise or counter-clockwise, it su�ces
to see what happens with the only real point of the vanishing semi-circle of the
Nyquist path, ε→ 0+. See Figure 17.13.

Example 17.9. For transfer functions (17.11)�(17.13), we have

lim
ε→0+

G1(s)|s=ε = lim
ε→0+

ε+ 0.1

ε(ε+ 1)
= +∞ (17.14)

lim
ε→0+

G2(s)|s=ε = lim
ε→0+

ε+ 0.1

ε(ε− 1)
= −∞ (17.15)

lim
ε→0+

G3(s)|s=ε = lim
ε→0+

ε− 0.1

ε(ε+ 1)
= −∞ (17.16)

Thus:

� The Nyquist diagram of G1(s) will have a curve at in�nity on the right
side of the complex plane; we might, with some abuse of terminology, say
that the curve passes through +∞.

� The Nyquist diagrams of G2(s) and G3(s) will have curves at in�nity on
the left side of the complex plane; we might, with some abuse of terminol-
ogy, say that in each diagram the curve passes through −∞.

Notice that multiple poles at the origin result in an increasingly large curve Multiple poles at the origin
at in�nity:

� 1 pole at the origin 1
s originates a curve with 180◦;

� 2 poles at the origin 1
s2 originate a curve with 360◦;
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Figure 17.12: Nyquist diagrams of (17.11)�(17.13). Top left: diagrams plot-
ted with nyquist. Top right: Nyquist diagrams, obtained adding the curves
at in�nity to the plots of nyquist. Middle left: Nyquist path with a �nite
value of r = 10 and a non-vanishing value of r′ = 1

10 . Middle right: approx-
imations of the Nyquist diagrams, that map the contour on the left. Bottom
left: Nyquist path with a larger r = 100 and a smaller r′ = 1

100 . Bottom right:
approximations of the Nyquist diagrams, that map the contour on the left.

Figure 17.13: The Nyquist contour (blue) in the complex plane, when there is
a pole at the origin, evidencing the only vanishing real point ε→ 0+.
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Figure 17.14: Approximations of the Nyquist diagrams of (17.17)�(17.19). The
curve at in�nity cause by n poles at the origin has an angle given by n 180◦.

� 3 poles at the origin 1
s3 originate a curve with 540◦;

� and in general n poles at the origin 1
sn originate a curve with n 180◦.

Example 17.10. Figure 17.14 shows fairly good approximations of the Nyquist
plots of

G1(s) =
s+ 0.1

s(s+ 1)
(17.17)

G2(s) =
s+ 0.1

s2(s+ 1)
(17.18)

G3(s) =
s+ 0.1

s3(s+ 1)
(17.19)

obtained mapping the Nyquist path from Figure 17.12, bottom left (r = 100
and r′ = 1

100 ).

Glossary

�Oltre la porta si scopre un sepolcro a sette lati e sette angoli, illu-
minato prodigiosamente da un sole arti�ciale. Nel mezzo, un altare
rotondo, ornato da vari motti o emblemi, del tipo nequaquam

vacuum. . . �

�Ne quà quà? Firmato Donald Duck?�

�È latino, hai presente? Vuol dire il vuoto non esiste.�

�Meno male, altrimenti sai che orrore.�

Umberto Eco (1932 � �2016), Il pendolo di Foucault (1988), IV 29

clockwise no sentido retrógrado, no sentido horário, no sentido dos ponteiros
do relógio
contour contorno
counter-clockwise no sentido direto, no sentido anti-horário, no sentido con-
trário ao dos ponteiros do relógio
curve at in�nity curva no in�nito
encirclement enrolamento
mapping mapeamento
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Figure 17.15: Polar diagram of the plant from Exercise 1.

Figure 17.16: Polar diagram of G(s), from Exercise 2.

Exercises

1. Figure 17.15 shows the polar plot of a plant.

(a) What is the type of the plant?

(b) How many poles and zeros does the plant have?

2. Figure 17.16 shows the polar diagram of the second-order plant

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (17.20)

where ζ ∈ {0.25, 0.5, 1}. Find the correspondence between curves A, B
and C, and the three possible values of ζ.

3. The closed loop in Figure 17.17 has the open-loop transfer function

G(s)H(s) =
K(s+ 1)

s(s+ 2)(s+ 3)
, K ≥ 0. (17.21)

(a) Plot its root locus.

(b) Plot its Nyquist diagram.

(c) Analyse the closed loop's stability for di�erent values of K.
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Figure 17.17: Control loop from Exercise 3.

Figure 17.18: Nyquist diagrams from Exercise 4.

4. Which of the two Nyquist diagrams of Figure 17.18 corresponds to transfer
function −10

(s+1)(s+10)?

5. Figure 17.19 shows the Nyquist diagram of plant −20
(s+1)(s+10) .

(a) Is the plant stable in closed loop?

(b) If the plant is controlled in closed loop with a proportional controller
K, for which values of K will the loop be stable?

(c) If plant −10
(s+1)(s+10) is controlled in closed loop with a proportional

controller K, for which values of K will the loop be stable?

6. The attitude θ of a space station is related to the thrust δ of two motors
that can be used to correct it by

G(s) =
Θ(s)

∆(s)
=

15

s(s2 + 15s+ 75)
(17.22)

The attitude will be controlled in closed loop with a proportional controller
K.

(a) Plot its Nyquist diagram.

(b) Apply Nyquist's criterion and �nd the values of K for which the
control loop is stable.

(c) Con�rm that these values of K stabilise the plant using the Routh-
Hurwitz criterion.

(d) Plot the root-locus of G(s) and relate it to the results you found.

Figure 17.19: Nyquist diagram of plant −20
(s+1)(s+10) from Exercise 5.



320 CHAPTER 17. THE NYQUIST STABILITY CRITERION



Chapter 18

Stability margins

In eo �umine pons erat. Ibi præsidium ponit et in altera parte
�uminis Q. Titurium Sabinum legatum cum sex cohortibus relinquit;
castra in altitudinem pedum XII vallo fossaque duodeviginti pedum
muniri iubet.

Caius Iulius Cæsar (100 BC � �24 BC), Commentarii de bello Gallico (c. 50
BC), II 5, 6

Stability margins are another tool that, just like the root locus, can be used

� to design a proportional controller,

� to design the gain of a controller that has poles and zeros, once these are
known,

� to see what happens to a closed loop control system with a known con-
troller, when the gain of the plant changes for some reason.

18.1 Stability margins in the Nyquist diagram

Consider the �rst block diagram of Figure 17.8; that is to say, if there is a
controller C(s) and a plant Gp(s), both are merged in G(s) = C(s)Gp(s). Of
course, this is the same as the second block diagram of Figure 17.8 with K = 1.
Suppose that G(s) has no unstable poles. Then the Nyquist criterion (Theo-
rem 17.3) shows that the closed loop will have no unstable poles if there are no
encirclements around −1, since in that case Z = N + P = 0 + 0.

Example 18.1. Figure 18.1 shows three Nyquist diagrams exemplifying three
possible cases:

� On the left,

G(s) =
1

(s+ 2)(s2 + 0.3s+ 1)
(18.1)

There are no encirclements of point −1, so the closed loop is stable.

� On the centre,

G(s) =
1.68

(s+ 2)(s2 + 0.3s+ 1)
(18.2)

The diagram passes through point −1, so the closed loop is marginally
stable.

� On the right,

G(s) =
3

(s+ 2)(s2 + 0.3s+ 1)
(18.3)

There are two encirclements, so the closed loop is unstable.

321
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Figure 18.1: Nyquist diagrams of (18.1)�(18.3), from Example 18.1.

The gain margin (GM) and the phase margin (PM), known together as
stability margins, show us how far the frequency response of G(s) is from the
situation when the closed loop is critically stable:

1. When the closed loop is stable: If the closed loop is stable,
GM> 0 and PM> 0

� The gain margin shows us how much the gain of the frequency re-
sponse of G(s) could increase until the closed loop becomes critically
stable. This is the same as increasing open loop gain K. Thus, the
gain margin is a value larger than 1; this gain increase is usuallyGM is usually given in dB
given in dB, and so it has a positive value. See Figure 18.2.

� The phase margin shows us how much the phase of the frequency re-
sponse of G(s) could decrease until the closed loop becomes critically
stable. This decrease has a positive value. As is clear from Fig-
ure 18.3, since at critical stability the frequency response should pass
through, but not encircle, point −1, we need only consider the phase
decrease as taking place on a unit radius circle, i.e. for |G(jω)| = 1.

2. When the closed loop is unstable:If the closed loop is unsta-
ble, GM< 0 and PM< 0

� The gain margin shows us how much the gain of the frequency re-
sponse of G(s) must decrease until the closed loop becomes critically
stable. This is the same as decreasing the open loop gain K. Thus,
the gain margin is a value smaller than 1; this phase decrease, given
in dB, has a negative value. See Figure 18.4.

� The phase margin shows us how much the phase of the frequency
response of G(s) must increase until the closed loop becomes criti-
cally stable. This phase increase is given as a phase decrease with
a negative value. Once more, and as is clear from Figure 18.5, since
at critical stability the frequency response should go through −1, we
need only consider the phase increase as taking place on a unit radius
circle.

In short, if an open loop has no unstable poles, then the corresponding closed
loop will be

� stable, if both GM and PM are positive;

� unstable, if both GM and PM are negative.

Let us de�ne quantitatively the stability margins:

� On the Nyquist diagram, the gain margin can be seen on the negative
real axis, on which lies point −1. The negative real axis consists of pointsThe gain margin is read

at a phase crossover fre-
quency

where

argG(jω) = . . . ,+540◦,+180◦,−180◦,−540◦, . . . (18.4)

So, the frequency response on the negative real axis will correspond to an
output and input in phase opposition. Remember from De�nition 10.10
that a frequency ωpc at which this happens is called a phase crossover
frequency.
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Figure 18.2: The positive gain margin of G(s) shows how much the open loop
gain K could increase until the closed loop becomes critically stable.

Figure 18.3: The positive phase margin of G(s) shows us how much the phase
could decrease until the closed loop becomes critically stable. G(s) is given by
(18.1). Left: the whole phase of G(s) is decreased, and thus the entire frequency
response is rotated clockwise around 0◦, while its complex conjugate is rotated
counter-clockwise around 0◦. Right: the phase margin can be read on the unit
radius circle.

Figure 18.4: The negative gain margin of G(s) shows how much the open loop
gain K must decrease until the closed loop becomes critically stable.
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Figure 18.5: The negative phase margin of G(s) shows us how much the phase
must increase until the closed loop becomes critically stable (it is negative be-
cause the phase margin is given as a phase decrease). G(s) is given by (18.3).
Left: the whole phase of G(s) is increased, and thus the entire frequency re-
sponse is rotated counter-clockwise around 0◦, while its complex conjugate is
rotated clockwise around 0◦. Right: the phase margin can be read on the unit
radius circle.

� If the gain at the crossover frequency |G(jωpc)| is multiplied by its inverse
1

|G(jωpc)| , then it becomes 1. A gain of 1 with a phase given by (18.4)
means that the frequency response goes through point −1, and the closed
loop is marginally stable. So, the gain margin is 1

|G(jωpc)| , or, in dB,

GM = 20 log10

1

|G(jωpc)|
= −20 log10 |G(jωpc)| (18.5)

Notice that the minus sign in this de�nition con�rms what we saw above:

� if the closed loop is stable, then |G(jωpc)| < 1, and GM = −20 log10 |G(jωpc)| >
0 dB;

� if the closed loop is unstable, then |G(jωpc)| > 1, and GM = −20 log10 |G(jωpc)| <
0 dB.

� Remember from De�nition 10.9 that, if at some frequency ωgc the fre-The phase margin is read
at a gain crossover fre-
quency

quency response crosses the unit radius circle on the Nyquist diagram
over which the phase margin is read, i.e. if |G(jωgc)| = 1, we have a gain
crossover frequency.

� The phase margin, as shown in Figures 18.3 and 18.5, is given by

PM = 180◦ + argG(jωgc) (18.6)

However, notice that there is some ambiguity in this expression, since the
crossover frequency need not be at −180◦: it can take place at any value
−180◦ + k360◦, k ∈ Z. It is better to write

PM = 180◦ + k360◦ + argG(jωgc) (18.7)

with k chosen such that a phase increase of PM will cause an encirclement
of −1 in the Nyquist plot.

Expressions (18.5) and (18.6)�(18.7) have to be complemented with a consider-
ation of the cases when there are several gain or phase crossover frequencies, or
none at all.

� If there is no phase crossover frequency, the gain can be arbitrarily in-GM= +∞ dB if ωpc does
not exist creased without causing any encirclement of −1. Thus, the gain margin is

in�nite, GM=+∞ dB. (Of course, in practice gains cannot be increased
arbitrarily, actuators saturate sooner or later, at some point the models
are no longer valid, etc..) See an example in Figure 18.6.
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Figure 18.6: Nyquist plot of 0.5
s+1 . Left: The phase never reaches the negative

real axis. So, the gain can be arbitrarily increased without the appearance of
encirclements of −1: the gain margin is in�nite. Right: the gain is always
below 1. So, the phase can be arbitrarily decreased without the appearance of
encirclements of −1: the phase margin is not well de�ned, or is in�nite.

Figure 18.7: Nyquist plot of s2+s+10
3(s2+s+1)(s+1) , with three phase crossover frequen-

cies. It is the �rst that determines the gain margin. Right: detail of the plot on
the left.

� If there is no gain crossover frequency, there is no point on the unit radiusPM= +∞, or is not de-
�ned, if ωgc does not exist circle at which the phase can be measured for the phase margin, and so

this margin can be said not to be de�ned. Or it can be said that the entire
phase of G(s) may decrease arbitrarily, without any encirclement of −1,
and thus the phase margin can be said to be in�nite, PM= +∞. See an
example in Figure 18.6.

� If there are several phase crossover frequencies, the one that ought to GM when there are several
ωpcbe considered is the �rst that will cause encirclements of −1 as the gain

increases. As the gain must decrease for high frequencies in a strictly
proper transfer function, this phase crossover frequency is usually the �rst,
corresponding to the lowest possible gain increase. See an example in
Figure 18.7

� If there are several gain crossover frequencies, the one that ought to be PM when there are several
ωgcconsidered is the �rst that will cause encirclements of −1 as the phase

decreases. If the phase decreases for high frequencies, this will be the last
crossover, as in Figures 18.3 and 18.5 for plants (18.1) and (18.3).

Remark 18.1. Always remember that we �nd the GM and PM of the open GM and PM of the open
loop determine closed loop
stability
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Figure 18.8: Reading the stability margins in the Bode diagram. Left: stable
closed loop. Right: unstable closed loop.

loop to learn about the stability of the closed loop. Also remember that what is
included in the open loop depends on the characteristic equation of the closed
loop:

� in case (a) of Figure 16.1, when a plant G(s) is controlled in closed loop by
a proportional controller K, we must �nd the stability margins of G(s);

� in case (b) of Figure 16.1, when a plant G(s) is controlled in closed loop
by a controller KC(s) with variable gain K, we must �nd the stability
margins of C(s)G(s);

� in case (c) of Figure 16.1, when a plant KG(s) with variable gain K is
controlled in closed loop by a controller C(s), we must �nd the stability
margins of C(s)G(s);

� in the case of Figure 16.10, when a plant G(s) is controlled in closed loop
by a proportional controller K, and there is in the feedback branch a
sensor H(s), we must �nd the stability margins of G(s)H(s).

18.2 Stability margins in the Bode diagram

The stability margins can also be shown in the Bode diagram. In fact, it is much
easier to read them in the Bode diagram than on the Nyquist diagram (although
it is on the Nyquist diagram that it can be seen why the closed loop is stable if
the margins are positive, and unstable if negative). Figure 18.8 illustrates how
the gain and phase margins are read in a generic Bode diagram.

Example 18.2. We want to control plant G(s) = 10
s(s+10)2 with a proportional

controller C(s) = 10. Will the closed loop be stable?
Writing the open loop as

C(s)G(s) =
1

s

10

s+ 10

10

s+ 10︸ ︷︷ ︸
cut-o� at 10 rad/s

100

10× 10︸ ︷︷ ︸
1

(18.8)

we can easily plot the asymptotic Bode diagram in Figure 18.9, and see that:

� there is one gain crossover frequency at ωgc = 1 rad/s;

� at frequency ωgc, the phase of C(s)G(s) is close to −90◦, per the asymp-
totes;

� consequently the phase margin is PM = −90◦ + 180◦ = 90◦;

� in reality ∠C(jωgc)G(jωgc) is somewhat below, since the asymptotic phase
behaviour is only an approximation;
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Figure 18.9: Asymptotic Bode diagram of open loop C(s)G(s) = 10 10
s(s+10)2 ,

from Example 18.2.

Figure 18.10: Stability margins of open loop C(s)G(s) = 10 10
s(s+10)2 , from Ex-

amples 18.2 and 18.3.

� in reality PM is somewhat less than 90◦;

� there is one phase crossover frequency at ωpc = 10 rad/s;

� at frequency ωpc, the gain of C(s)G(s) is −20 dB, per the asymptotes;

� remembering (11.90), we see that the gain value is in fact |C(jωgc)G(jωgc)| =
−20− 3− 3 = −26 dB, as shown in Figure 18.9;

� consequently the gain margin is PM = 26 dB.

The easiest way of �nding stability margins in Matlab is using function Matlab function margin

margin, which is similar to function bode.

Example 18.3. The margins of Example 18.2 are found as:

>> s=tf('s'); figure, margin(10*10/(s*(s+10)^2))

and we obtain Figure 18.10. Function margin can also return the margins, if
used with output arguments.

Example 18.4. Since the gain margin of the last two examples is 26 dB, or,
in absolute value, 1026/20 = 19.95, we could still increase the gain up to 19.95
times, and the closed loop would still be stable. This is clear from the Bode
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diagram in Figure 18.10: if the gain goes up less than 26 dB, we still have
GM > 0 and PM > 0.

Replacing controller C(s) = 10 with controller C(s) = 10 × 19.95 = 199.5,
the loop would be marginally stable.

Example 18.5. The stability margins of (18.1) and (18.3) can be found and
plotted with

s = tf('s');

G1 = 1/( (s+2)*(s^2+0.3*s+1) );

figure, margin(G1)

xlim([.1 10]) % the x axis begins at 0.1 rad/s and ends at 10 rad/s

G3 = 3/( (s+2)*(s^2+0.3*s+1) );

figure, margin(G3)

xlim([.1 10])

See Figure 18.11. The values returned can be found from the de�nitions; con-
sider for instance (18.1):

� To �nd the gain crossover frequency, we �rst calculate

G(s) =
1

(s+ 2)(s2 + 0.3s+ 1)
=

1

s3 + 2.3s2 + 1.6s+ 2
(18.9)

G(jω) =
1

−jω3 − 2.3ω2 + 1.6jω + 2
=

1

(2− 2.3ω2) + j(1.6ω − ω3)
(18.10)

|G(jω)| = 1√
(2− 2.3ω2)2 + (1.6ω − ω3)2

=
1√

ω6 + ω4(2.32 − 3.2) + ω2(1.62 − 9.2) + 4
(18.11)

We could now �nd ωgc by solving

|G(jω)| = 1⇔ ω6 + ω4(2.32 − 3.2) + ω2(1.62 − 9.2) + 4 = 1 (18.12)

which will have to be done numerically, but since we now know that ωgc =
1.13 rad/s we can just verify that

1.136 + 1.134(2.32 − 3.2) + 1.132(1.62 − 9.2) + 4 = 1 (18.13)

Notice from the Bode diagram in Figure 18.11 that there are, in fact, two
gain crossover frequencies, and that we are considering the largest, since
the phase is closer to −180◦.

� From ωgc = 1.13 rad/s, the phase margin can be found:

argG(jω) = arg 1− arg
[
(2− 2.3ω2) + j(1.6ω − ω3)

]
= − arctan

1.6ω − ω3

2− 2.3ω2

(18.14)

argG(jωgc) = − arctan
1.6× 1.13− 1.133

2− 2.3× 1.132
= −158.7◦ (18.15)

(Using Matlab, the angle is found with atan2d, so that the result is in
] − 180◦,+180◦].) So PM= 180◦ − 158.7◦ = 21.3◦, there being a small
di�erence to the value in Figure 18.11 due to numerical approximations.

� To �nd the phase crossover frequency, we could solve

argG(jω) = − arctan
1.6ω − ω3

2− 2.3ω2
= −180◦ (18.16)

It is of course easier to notice that this can only happen when the imagi-
nary part of argG(jω) is zero, i.e.

1.6ω − ω3 = 0⇔ ω = 0 ∨ ω = ±
√

1.6 = ±1.26 (18.17)

Consequently, the only phase crossover frequency is 1.26 rad/s.
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Figure 18.11: Bode diagrams of (18.1) and (18.3), showing the gain and phase
margins.

� From ωpc = 1.26 rad/s, the gain margin can be found:

|G(jωpc)| = 20 log10

1√
1.266 + 1.264(2.32 − 3.2) + 1.262(1.62 − 9.2) + 4

= −4.4 dB

(18.18)

and thus GM= 4.4 dB, there being a small di�erence to the value in
Figure 18.11 due to numerical approximations.

� The gain margin could also have been found using the Routh-Hurwitz
criterion. The closed loop which has gain K and G(s) in the direct branch
is given by

F (s) =
K

s3+2.3s2+1.6s+2

1 + K
s3+2.3s2+1.6s+2

=
K

s3 + 2.3s2 + 1.6s+ 2 +K
(18.19)

and thus the Routh-Hurwitz table is

s3 1 1.6
s2 2.3 2 +K

s 1.6− 2+K
2.3

1 2 +K

(18.20)

Consequently, the closed loop will be stable if{
1.6− 2+K

2.3 > 0

2 +K > 0
⇒

{
K < 1.6× 2.3− 2 = 1.68

K > −2
(18.21)

Since the gain cannot increase more that 1.68 times without the closed loop
becoming unstable, we see that the gain margin is GM= 20 log10 1.68 =
4.51 dB.

18.3 Stability margins with opposite signs

Until now, we have seen that the closed loop will be stable or unstable depending
on whether the stability margins of the open loop are respectively positive or
negative. Remember that we assumed no unstable poles in the open loop, and
thus there can be no encirclements of −1 in the Nyquist diagram if the closed
loop is to be stable.

If the stability margins found from (18.4)�(18.7) or read in a Bode diagram If GM and PM have op-
posite signs, no conclusion
about stability can be taken

turn out to have opposite signs, this means that the frequency response is such
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Figure 18.12: Left: Bode diagram of (18.22), from Example 18.6, with the
stability margins. Right: Nyquist diagram.

that the margins give no information about encirclements of −1 in the Nyquist
plot for an open loop without unstable poles. Thus, in that case closed loop
stability cannot be determined from the gain and phase margins.

This can happen because there are unstable poles in the open loop, in which
case the reasoning about encirclements of −1 no longer applies as assumed until
now. But there are still other cases in which gain and phase margins have
opposite signs.

Example 18.6. The stability margins of

G(s) =
2

s− 1
(18.22)

are shown in Figure 18.12. Since one is positive and the other negative, we can-
not conclude whether the closed loop in Figure 17.8 with this transfer function
will be stable or not. The Nyquist diagram shows the reason why: there is an
unstable pole, and the counter-clockwise encirclement of −1 is needed so that
the Nyquist stability criterion will return Z = 1− 1 = 0.

Example 18.7. The stability margins of

G(s) =
(s+ 1)2

s3
(18.23)

are shown in Figure 18.13. This time, G(s) has no poles with positive real parts,
but, again, we cannot conclude from the gain and phase margins whether the
closed loop in Figure 17.8 with this transfer function will be stable or not. The
reason why this case is complicated can be seen in the Nyquist diagram: the
frequency response has a vertical asymptote and begins with a phase of −270◦,
so the plot encircles −1 counter-clockwise; then the three poles at the origin
originate a curve at in�nity with 540◦ that encircles −1 clockwise. The net result
is zero encirclements, and the Nyquist criterion shows that the closed loop has
Z = 0 + 0 = 0 unstable poles. (You can check this �nding its transfer function,
and the corresponding poles, or drawing the root-locus plot.) The stability
margins of G(s) tell us nothing, because the net number of encirclements is
di�cult to determine.

18.4 Stability margins and the root locus dia-
gram

The root locus diagram can also be used to justify why the stability margins of
an open loop transfer function determine closed loop stability (when they do, i.e.
when they have the same sign). Let us consider a plant G(s) = N(s)

D(s) controlled
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Figure 18.13: Left: Bode diagram of (18.23), from Example 18.7, with the
stability margins. Right: Nyquist diagram.

in closed loop by a proportional controller K > 0, as in Figure 16.1, case (a).
We saw in Section 16.3 that closed loop poles must verify the characteristic
equation

1 +K
N(s)

D(s)
= 0⇒ K

N(s)

D(s)
= −1⇒


K
|N(s)|
|D(s)| = 1

∠

[
K
N(s)
D(s)

]
= π + 2kπ, k ∈ Z

(18.24)

(where we made |K| = K because K > 0) and we know that marginally stable
poles are on the imaginary axis: s = jω, ω ∈ R. Thus, marginally stable closed
loop poles verify

K
|N(jω)|
|D(jω)|

= 1

⇔ 20 log10K︸ ︷︷ ︸
K in dB

+ 20 log10 |G(jω)|︸ ︷︷ ︸
gain in dB at frequency ω

= 0 dB (18.25)

and

∠

[
K
N(jω)

D(jω)

]
= π + 2kπ

⇔ ∠K︸︷︷︸
0 rad

+∠G(jω) = π + 2kπ, k ∈ Z︸ ︷︷ ︸
. . . , 3π, π,−π,−3π, . . .

⇔ ∠G(jω) = 180◦ + k 360◦, k ∈ Z︸ ︷︷ ︸
. . . , 540◦, 180◦,−180◦,−540◦, . . .

(18.26)

In other words, ω must be both a gain crossover frequency and a phase
crossover frequency of KG(jω) (remember De�nitions 10.9 and 10.10).

Figure 18.14 shows examples of this situation, for stable, minimum phase
plants. Notice that, in all cases, lower values of K result in stable closed loops,
and higher values of K in unstable closed loops. This is because there are closed
loop poles diverging to in�nity, which have positive real parts when the gain is
large enough. If there are three or more such poles, this is inevitable, as can be
seen from the angles of the asymptotes of the root locus; when there are only
two branches diverging to in�nity, they may or may not become unstable (since
the asymptotes have ±90◦ angles).

Thus, notice that

� for lower values of K, when the closed loop is stable,

� at the phase crossover frequency, the gain is now below 0 dB,



332 CHAPTER 18. STABILITY MARGINS

Figure 18.14: Top left: root locus of G1(s) = 1
s3+10s2+40s+80 ; top right: Bode

diagram of 320
s3+10s2+40s+80 ; a closed loop with controller K = 320 and plant

G1(s) is marginally stable. Bottom left: root locus of G2(s) = s+20
s3+15s2+70s+300 ;

top right: Bode diagram of 150(s+20)
s3+15s2+70s+300 ; a closed loop with controller K =

150 and plant G2(s) is marginally stable.

� at the new, lower gain crossover frequency, the phase is above −180◦;

� for higher values of K, when the closed loop is unstable,

� at the phase crossover frequency, the gain is now above 0 dB,

� at the new, higher gain crossover frequency, the phase is below −180◦.

These are the same conclusions we reached about stability margins using the
Nyquist diagram.

Glossary

�Então duvida que se falasse latim?�perguntou Henrique, sor-
rindo.

�Eu duvido. Não sei como os homens se podessem entender com
aquella endiabrada contradança de palavras, com aquella desa�-
nação que faz dar volta ao juizo de uma pessoa. Sabe o senhor o que
é uma casa desarranjada, onde ninguem se lembra onde tem as suas
coisas quando precisa d'ellas e passa o tempo todo a procural-as?
Pois é o que é o latim. Abre a gente um livro e põe-se a traduzir e vae
dizendo: �As armas, o homem e eu, canto, de Troia, e primeiro, das
praias.� Quem percebe isto! Ora agora peguem n'estas palavras e
em outras, que elles punham ás vezes em casa do diabo, e façam uma
coisa que se entenda! É quasi uma adivinha. Ora adeus! E depois�
continuou elle, enthusiasmado com o riso de Henrique, suppondo-o
de approvação�e depois as di�erentes maneiras de chamar a um ob-
jecto? Isso tambem tem graça. Nós cá dizemos por exemplo: �reino
e reinos� e está acabado; lá não senhor; diz-se regnum e regna e
regni e regno e regnis e até regnorum. Ora venham-me cá elogiar a
tal lingua!

Júlio Dinis (1839 � �1871), A morgadinha dos canaviais (1868), III
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gain margin margem de ganho
phase margin margem de fase
stability margins margens de estabilidade

Exercises

1. The distance d travelled by a robot controlled with a variable voltage

u is given by G (s) =
d(s)

u(s)
=

1

s (s+ 1)
2 . This plant is controlled with a

proportional controller K. Find the gain K for which the phase margin
of the controlled loop is PM = 60◦.

2. Plot the asymptotes of the Bode diagrams of the plants with the open-loop
transfer functions given below. Mark the gain and phase margins in your
plots. What can you say about the stability of the plants?

(a) G1(s) =
s2

(s+ 0.5) (s+ 10)

(b) G2(s) =
10s

(s+ 10) (s2 + s+ 2)

(c) G3(s) =
(s+ 4) (s+ 20)

(s+ 10) (s+ 80)

3. Find the stability margins of the following plants, and take conclusions
about whether or not they are stable in closed loop:

(a) G1(s) =
2(s+ 3)

s(s+ 1)(s+ 2)

(b) G2(s) =
5(s+ 2)

(s+ 1)(s2 + 2s+ 4)

(c) G3(s) =
1

s(s+ 1)2
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Chapter 19

The Nichols diagram

Bis über'n Kopf in's Tintenfaÿ
Tunkt sie der groÿe Nikolas.

Heinrich Hoffmann (1809 � �1894), Der Struwwelpeter, Die Geschichte von
dem schwarzen Buben (1844)

We now know two di�erent ways of graphically representing the frequency
response of a system with transfer function G(s):

� The Bode diagram, where we represent

� the gain in dB 20 log10 |G(jω)| as a function of frequency ω, and

� the phase ∠G(jω), usually in degrees, as a function of frequency
omega.

A logarithmic scale is used for the x�axis with the frequency, usually given
in rad/s.

� The Nyquist diagram, where we represent G(jω) on the complex plane;
i.e. we plot the imaginary part =[G(jω)] on the y�axis, as a function of
the real part <[G(jω)] on the x�axis. There is no explicit representation
of frequency ω.

In this chapter, we study a third possible representation, theNichols diagram, The Nichols diagram is an
alternative to the Bode and
Nyquist diagrams

in which we represent the gain in dB 20 log10 |G(jω)| as a function of the phase
∠G(jω), usually in degrees. There is no explicit representation of frequency ω.

19.1 Examples

Example 19.1. Figure 19.1 shows the Bode, Nyquist and Nichols diagrams of Nichols diagram of a 1st
order systemthree �rst order transfer function without zeros, that amplify low frequencies.

Notice how the Nichols diagram shows the phase decreasing from 0◦ to −90◦,
and the gain decreasing from its initial positive value in dB to −∞ dB (i.e. 0
in absolute value). Also notice how the Nyquist and Nichols diagrams are the
same for all three transfer functions, as there is no explicit representation of
frequency, and the low frequency gain is the same.

Example 19.2. Figure 19.2 shows the Bode, Nyquist and Nichols diagrams of Nichols diagram of a 2nd
order systeman underdamped second order transfer function without zeros, having a unitary

gain for low frequencies. Notice how the Nichols diagram shows the phase
decreasing from 0◦ to −180◦, and the gain increasing from its initial value value
of 0 dB revealing a resonance frequency (and thus a damping coe�cient lower
than

√
2

2 ).

The Nichols diagrams in Figures 19.1 and 19.2 were plot withMatlab using
command nichols, which has a syntax similar to bode or nyquist. Matlab command

nichols

335
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Figure 19.1: Bode, Nyquist and Nichols diagrams of three �rst order transfer
functions.

Figure 19.2: Bode, Nyquist and Nichols diagrams of 1
s2+0.2s+1 .

19.2 Stability margins

Finding crossover frequencies (remember De�nitions 10.9 and 10.10) and stabil-
ity margins (review Section 18.4) in the Nichols diagram is simple:

� There is a phase crossover frequency when the curve crosses a vertical
line at −180◦ ± k360◦, with k ∈ Z.

� The corresponding gain margin is read at that vertical line: it is positive
if the curve is below 0 dB, and negative if above.

� There is a gain crossover frequency when the curve crosses the hori-
zontal axis (i.e. 0 dB).

� The corresponding phase margin is read over the horizontal axis, and is
the distance to the closest vertical line at −180◦ ± k360◦: it is positive if
we are to the right of the line, negative if to the left.

Figure 19.3 shows where crossovers are read. Matlab plots red crosses at
x = 0 dB, y = −180◦ ± k360◦, so as to make reading stability margins easier.

Example 19.3. Figure 19.4 shows the phase margins of two third order transfer
functions: in one case, both are positive; in the other, both are negative.

19.3 The N and M curves

We will now study the reason why the Nichols diagram is used. Consider a closed
loop as shown in Figure 19.5; if this is a control loop, then G(s) corresponds
to both the controller and the plant. Let the closed loop transfer function be
F (s) = y(s)

r(s) . Also let the absolute value and phase of complex G(jω) be

G(jω) = |G(jω)|︸ ︷︷ ︸
G

ej

θ︷ ︸︸ ︷
∠G(jω) = Gejθ = G cos θ + j G sin θ (19.1)
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Figure 19.3: In a Nichols diagram, there is a gain crossover when the plot crosses
the red line, and a phase crossover when the phase crosses any blue line.

Figure 19.4: Left: Nichols diagram of 104

(s+1)(s+10)(s+100) . Right: Nichols diagram

of 106

(s+1)(s+10)(s+100) .

Figure 19.5: Closed loop for Section 19.3.
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In other words, the Nichols diagram of G(s) has G in the y�axis, and θ in the
x�axis. Thus

F (s) =
G(s)

1 +G(s)
(19.2)

|F (jω)| =
∣∣∣∣ G(jω)

1 +G(jω)

∣∣∣∣ =
|G(jω)|
|1 +G(jω)|

=
G

|1 +G cos θ + j G sin θ|
=

G√
(1 +G cos θ)

2
+G2 sin2 θ

=
G√

1 + 2G cos θ +G2 cos2 θ +G2 sin2 θ
=

G√
1 + 2G cos θ +G2

(19.3)

∠F (jω) = ∠
G(jω)

1 +G(jω)
= ∠G(jω)− ∠ [1 +G(jω)]

= θ − ∠ [1 +G cos θ + j G sin θ] = θ − arctan
G sin θ

1 +G cos θ
(19.4)

It is usual to plot, on Nichols diagrams, curves along which |F (jω)| and ∠F (jω)
have constant values, i.e. level curves of (19.3)�(19.4). These curves are also
known as M and N curves, respectively. In this way, looking at a plot that
shows us the frequency response of an open loop, we can also see what the
frequency response of the closed loop will be.

Finding analytic expressions for these M and N curves is di�cult and not
necessary; they can be found numerically. Matlab plots these curves when
grid is applied to a Nichols plot.

Example 19.4. Figure 19.6 shows the Bode diagrams of an open loop G(s)
and the corresponding closed loop F (s), obtained with

s = tf('s');

G = (s-10)/(s^2+0.2*s+1);

F = feedback(G,1);

figure,bode(G,F),legend

figure,nichols(G),grid

The code above also plots the Nichols diagram of G(s), shown in Figure #. The
values of gain and phase of F (s) can be seen from the M and N curves; notice
in particular that:

� the gain for low frequencies is positive but not far from 0 dB, and indeed
the Nichols diagram of G(s) never goes beyond the 1 dB M curve;

� the gain has no resonance peak, and indeed the Nichols diagram of G(s)
never gets closer to the red crosses than it was at its beginning;

� the phase remains close to 0◦ for a while, and indeed the Nichols diagram
of G(s) is for a while almost parallel to an N curve of a very low phase;

� the phase goes down to −90◦, and so does the Nichols diagram of G(s).

Notice that:

� Matlab labels theM curves with the corresponding values of gain in dB.
N curves are left unlabelled, since the corresponding phase can be read in
the x�axis. In fact, when open loop gain G is small, the closed loop phase
∠F (jω) given by (19.4) becomes

∠F (jω) = θ − arctan
G sin θ

1 +G cos θ︸ ︷︷ ︸
≈1

≈ θ − arctan

≈0︷ ︸︸ ︷
G sin θ︸ ︷︷ ︸
≈0

≈ θ (19.5)

which is the open loop phase.
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Figure 19.6: Diagrams for Example 19.4. Left: Bode diagram of open loop G(s)
and closed loop F (s). Right: Nichols diagram of open loop G(s).

Figure 19.7: Nichols diagram showing the periodicity of the M and N curves in
θ.

� M and N curves are periodic in θ, with a period of 360◦, since θ only
appears in (19.3)�(19.4) together with trigonometric functions, which are
periodic. This periodicity is shown in Figure 19.7.

� M and N curves can also be plot in Nyquist diagrams; Matlab does Why the Nichols diagram
is usedso when grid is applied to a Nyquist plot. However, reading the closed

loop gain and phase makes more sense when the diagram shows the open
loop gain and phase, not the real and imaginary parts of the open loop
frequency response.

� In fact, there are controller design techniques based the Nichols diagram:
the controller is designed to avoid the regions of the diagram where the
M and N curves have an undesirable behaviour (e.g. a high closed loop
gain). We will not study these control design techniques, but will mention
one of them below in Section 43.6.

Glossary

And the Galaadites tooke the fordes of Iordan, by the which Ephraim
was to returne. And when there had come to the same one of the
number of Ephraim, �eeing, and had said: I besech you let me passe:
The Galaadites said to him: Art thou not an Ephraite? Who saying:
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I am not: they asked him: Say then Schibboleth, which is interpreted
an Eare of corne. Who answered, Sibboleth, not being able by the
same letter to expresse, an eare of corne. And immediatly being
apprehended they killed him in the very passage of Iordan.

Judges, xii 5�6, Douay-Rheims version (1609)

level curve curva de nível

Exercises

1. Plot the Nichols diagram of the plant in Exercise 3 from Chapter 18.

2. Repeat Exercise 2 from Chapter 17 using the Nichols plot.

3. Repeat Exercise 3 from Chapter 17 using the Nichols plot.

4. Prove that theM and N curves are circles in the Nyquist diagram. Follow
the following steps.

(a) Let the frequency response of a transfer function G(s) be given by
G(jω) = X(ω) + jY (ω), where X,Y ∈ R, and let the frequency
response of the closed loop with G(s) in the direct branch and unit
feedback be F (s). Find an expression for F (jω) as function of X and
Y .

(b) Show that

|F (jω)|2 =
X2 + Y 2

(1 +X)2 + Y 2
(19.6)

(c) Let M = |F (jω)|, and show that, if M = 1, the curve degenerates
into a vertical straight line given by X = − 1

2 .

(d) Let M 6= 1, and rearrange terms in (19.6) to arrive at(
X +

M2

M2 − 1

)2

+ Y 2 =
M2

(M2 − 1)2
(19.7)

which is the equation of a circle with centre
(
− M2

M2−1 , 0
)
and radius

M
M2−1 .

(e) Show that

∠F (jω) = arctan
Y

X
− arctan

Y

1 +X
(19.8)

(f) Let N = tan∠F (jω), and rearrange terms in (19.8) to arrive at(
X +

1

2

)2

+

(
Y − 1

2N

)2

=
1

4
+

(
1

2N

)2

(19.9)

which is the equation of a circle with centre
(
− 1

2 ,
1

2N

)
and radius√

1
4 +

(
1

2N

)2
.
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Steady-state errors

Einer der Männer feuerte auf sie. Der hellblaue Lichtblitz verfehlte
sie um mehrere Meter und schlug eine Stich�amme aus der Wand,
und Katt begann Haken zu schlagen und sich auf fast noch un-
möglichere Weise zu bewegen. Der nächste Schuss verfehlte sie noch
mehr, aber nun erö�neten auch die anderen Männer das Feuer, und
Anders hatte ja bereits gesehen, was für ausgezeichnete Schützen sie
waren.

Wolfgang Hohlbein (1953 � . . . ), Heike Hohlbein (1954 � . . . ), Anders
(2004), Die tote Stadt, I 6

We saw in Section 10.2 what a steady-state is. Consider now a closed loop
control system, as seen in Figure 20.1. As we want the output y(t) to follow ref-
erence r(t), we should ideally have an error e(t) = 0, ∀t. It of course expectable
that this cannot be achieved immediately when the control system is started,
or when the reference changes unexpectedly. Still, it can be desirable that

lim
t→+∞

e(t) = 0 (20.1)

In other words, we are requiring that there should be no steady-state error. Steady-state error ess
If this is impossible, or unnecessarily di�cult, it is still of course desirable that
the steady-state error should be small (what a small error is depends, of course,
on the particular problem under study). If, however, the steady-state error
becomes too large, or, even worse, diverges to in�nity, then the closed-loop
control system is not ful�lling its purpose.

Let us denote the steady-state error by ess. We know that we can �nd it
using the �nal value theorem (Theorem 2.4):

ess = lim
t→+∞

e(t) = lim
s→0

s e(s) (20.2)

We also know that

e(s) = r(s)−H(s)G(s)C(s)e(s)⇔ e(s) =
r(s)

1 + C(s)G(s)H(s)
(20.3)

and thus the steady-state error is given by

ess = lim
t→+∞

e(t) = lim
s→0

s r(s)

1 + C(s)G(s)H(s)
(20.4)

Figure 20.1: Closed-loop control system.

341
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In this chapter we will see what this means for three di�erent types of references,

� the step,

� the ramp, and

� the parabola.

References found in practice are usually of one of these types, or can at least be
approximated in this way. We will see what consequences the results have for
the choice of controller C(s).

20.1 Steps as references

When the reference for the closed loop control system is a step with amplitude
K, we say that ess is a position steady-state error. (The reason why is clear
if output y(t) is a position, and r(t) = K is a reference for what that position
should be. But we keep talking of a position steady-state error also when y(t)
is some other variable.) Then

r(t) =

{
0, t < 0

K, t ≥ 0
⇒ r(s) =

K

s
(20.5)

then

ess = lim
t→+∞

e(t) = lim
s→0

s Ks
1 + C(s)G(s)H(s)

=
K

1 + lim
s→0

C(s)G(s)H(s)
(20.6)

We see that there are two di�erent cases, depending on product C(s)G(s)H(s),
which we call the open-loop transfer function. Remembering De�nition 11.3,
we conclude the following:

� If C(s)G(s)H(s) is of type 0, then, irrespective of its number of zeros,

lim
s→0

C(s)G(s)H(s) = lim
s→0

the number of zeros is irrelevant︷ ︸︸ ︷
N(s)

(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
no poles at the origin: p1, p2, p3 . . . 6= 0

= Kp (20.7)

and thus

ess =
K

1 + lim
s→0

C(s)G(s)H(s)
=

K

1 +Kp
(20.8)

� If C(s)G(s)H(s) is of type 1, then numerator N(s) has no zeros at the
origin, because otherwise the pole at the origin would have been cancelled.
So, irrespective of its number of zeros,

lim
s→0

C(s)G(s)H(s) = lim
s→0

the number of zeros is irrelevant︷ ︸︸ ︷
N(s)

s(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
one pole at the origin: p1, p2, p3 . . . 6= 0

= +∞ (20.9)

and thus

ess =
K

1 + lim
s→0

C(s)G(s)H(s)
= 0 (20.10)

� Likewise, if C(s)G(s)H(s) is of type 2 or more, then, irrespective of its
number of zeros (which cannot be at the origin),

lim
s→0

C(s)G(s)H(s) = lim
s→0

N(s)

sn(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
n ≥ 2 poles at the origin

= +∞ (20.11)

and thus ess = 0 just the same.
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In other words, we need at least one pole at the origin in the open loop to ensure
no steady state error. A good sensor should verify H(s) ≈ 1, and have no poles
at the origin; indeed, it makes little sense that the sensor should integrate y(t).
So,

� if plant G(s) has one pole at the origin, or more, ess will be zero;If the plant is of type 0, the
controller should be of type
1 to ensure no steady state
error

� if plant G(s) has no poles at the origin, controller C(s) should have (at
least) one pole at the origin so that ess will be zero (it can be e.g. a PI or
PID controller);

� if neither plant G(s) nor controller C(s) have poles at the origin, there
will be a constant steady state error.

Example 20.1. Figure 20.2 shows the unit step responses of a second order,
type 0 system, controlled by a proportional (thus, type 0) controller and by a
PI (thus, type 1) controller. The plots were drawn as follows:

% plant: type 0

s = tf('s');

G = 1 / (s^2 + 0.5*s + 1);

t = 0 : 0.1 : 120;

r = ones(size(t));

% controller: type 0

C = 1; F = feedback(C*G, 1);

y = lsim(F, r, t);

figure, plot(t,r, t,y), legend({'reference','output'}), ylim([0 1.1])

xlabel('time [s]'), ylabel('reference and output')

% controller: type 1

C = 1 + 0.1/s; F = feedback(C*G, 1);

y = lsim(F, r, t);

figure, plot(t,r, t,y), legend({'reference','output'}), ylim([0 1.1])

xlabel('time [s]'), ylabel('reference and output')

The steady state error ess for the proportional controller is, as expected,

Kp = lim
s→0

1× 1

s2 + 0.5s+ 1
= 1 (20.12)

ess =
1

1 +Kp
=

1

2
(20.13)

A 50% steady state error is likely to be unacceptable in all situations. Suppose
we could accept, at most, a 5% steady state error. We could, of course, use the
PI controller, and get a 0% error, or settle for a proportional controller P given
by

ess = 0.05 =
1

1 +Kp
⇔ 1 +Kp = 20⇔ Kp = 19 (20.14)

⇒ Kp = 19 = lim
s→0

P × 1

s2 + 0.5s+ 1
⇔ P = 19 (20.15)

While with this controller P = 19 the steady state error will now be low enough,
as you can check, there will be a very high overshoot (and you can see why if
you �nd where closed loop poles went to). That is the price to pay for keeping
a simple controller (proportional, in this case). We will learn more about PID
tuning in the next chapter.

20.2 Ramps as references

When the reference for the closed loop control system is a ramp with slope K,
we say that ess is a velocity steady-state error. (Once more, the reason why
is clear if output y(t) is a position, and reference r(t) = Kt corresponds to a
constant velocity. Again, we keep talking of a velocity steady-state error even
if the output is not a position.) Then

r(t) =

{
0, t < 0

Kt, t ≥ 0
⇒ r(s) =

K

s2
(20.16)
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Figure 20.2: Unit step responses of the closed loop control of 1
s2+0.5s+1 from

Example 20.1. Left: proportional control P = 1. Right: PI control C(s) =
1 + 0.1

s .

then

ess = lim
t→+∞

e(t) = lim
s→0

s Ks2

1 + C(s)G(s)H(s)

== lim
s→0

K

s+ sC(s)G(s)H(s)
=

K

lim
s→0

sC(s)G(s)H(s)
(20.17)

We see that there are now three di�erent cases, depending on the open-loop
transfer function:

� If C(s)G(s)H(s) is of type 0, then, irrespective of its number of zeros,

lim
s→0

sC(s)G(s)H(s) = lim
s→0

s

the number of zeros is irrelevant︷ ︸︸ ︷
N(s)

(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
no poles at the origin: p1, p2, p3 . . . 6= 0

= 0 (20.18)

and thus

ess =
K

lim
s→0

sC(s)G(s)H(s)
= +∞ (20.19)

� If C(s)G(s)H(s) is of type 1, then numerator N(s) has no zeros at the
origin, because otherwise the pole at the origin would have been cancelled.
So, irrespective of its number of zeros,

lim
s→0

sC(s)G(s)H(s) = lim
s→0

s

the number of zeros is irrelevant︷ ︸︸ ︷
N(s)

s(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
one pole at the origin: p1, p2, p3 . . . 6= 0

=
N(0)

p1 p2 p3 . . .
= Kv 6= 0 (20.20)

and thus

ess =
K

lim
s→0

sC(s)G(s)H(s)
=

K

Kv
(20.21)

� If C(s)G(s)H(s) is of type 2, then, irrespective of its number of zeros
(which cannot be at the origin),

lim
s→0

sC(s)G(s)H(s) = lim
s→0

sN(s)

s2(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
2 poles at the origin

= +∞ (20.22)
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and thus

ess =
K

lim
s→0

sC(s)G(s)H(s)
= 0 (20.23)

� Likewise, if C(s)G(s)H(s) is of type 3 or more, then, irrespective of its
number of zeros,

lim
s→0

sC(s)G(s)H(s) = lim
s→0

sN(s)

sn(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
n ≥ 3 poles at the origin

= +∞ (20.24)

and thus ess = 0 just the same.

In other words, we need at least two poles at the origin in the open loop to
ensure no steady state error. As it makes no sense that poles at the origin are
found in the sensor,

� if plant G(s) has two or more poles at the origin, ess will be zero; Plant and controller
should have 2 poles at the
origin among them for
ess = 0

� if plant G(s) has one pole at the origin, controller C(s) should have (at
least) one pole at the origin so that ess will be zero (it can be e.g. a PI
controller), otherwise ess will be constant; Plant and controller with 1

poles at the origin among
them have constant ess

� if plant G(s) has no poles at the origin, controller C(s) should have (at
least) two poles at the origin so that ess will be zero (it can be e.g. a PI2

controller), while a controller with one pole at the origin will originate a If the plant is of type 0, the
controller should be of type
2 to ensure no steady state
error

constant ess;

� if neither plant G(s) nor controller C(s) have poles at the origin, the

No poles at the origin: a
ramp reference cannot be
followed

steady state error will be in�nite, i.e. the control system will not follow
the reference.

Example 20.2. Figure 20.3 shows the unit slope ramp responses of the type 0
system from Example 20.2, controlled by the proportional (thus, type 0) con-
troller P = 19 and by the PI (thus, type 1) controller. The plots were drawn as
follows:

% plant: type 0

s = tf('s');

G = 1 / (s^2 + 0.5*s + 1);

t = 0 : 0.1 : 400;

r = t;

% controller: type 0

C = 19; F = feedback(C*G, 1);

y = lsim(F, r, t);

figure, plot(t,r, t,y), legend({'reference','output'})

xlabel('time [s]'), ylabel('reference and output')

% controller: type 1

C = 1 + 0.1/s; F = feedback(C*G, 1);

y = lsim(F, r, t);

figure, plot(t,r, t,y), legend({'reference','output'})

xlabel('time [s]'), ylabel('reference and output')

The steady state error ess for the proportional controller keeps increasing with
time, as expected, and becomes arbitrarily large. The PI controller achieves a
constant steady state error, given, as expected, by

Kv = lim
s→0

s

(
1 +

0.1

s

)
1

s2 + 0.5s+ 1
= lim
s→0

s+ 0.1

s2 + 0.5s+ 1
= 0.1 (20.25)

ess =
1

Kv
= 10 (20.26)
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Figure 20.3: Unit slope ramp responses of the closed loop control of 1
s2+0.5s+1

from Example 20.2. Left: proportional control P = 19, obtained in Exam-
ple 20.1. Right: PI control C(s) = 1 + 0.1

s .

20.3 Parabolas as references

When the reference for the closed loop control system is a parabola given by
K
2 t

2, we say that ess is an acceleration steady-state error. (Again, this is
because, if output y(t) is a position, the reference corresponds to a constant
acceleration.) Then

r(t) =

{
0, t < 0
K
2 t

2, t ≥ 0
⇒ r(s) =

K

s3
(20.27)

then

ess = lim
t→+∞

e(t) = lim
s→0

s Ks3

1 + C(s)G(s)H(s)

== lim
s→0

K

s2 + s2C(s)G(s)H(s)
=

K

lim
s→0

s2C(s)G(s)H(s)
(20.28)

We see that there are now three di�erent cases, depending on the open-loop
transfer function:

� If C(s)G(s)H(s) is of type 0, then, irrespective of its number of zeros,

lim
s→0

s2C(s)G(s)H(s) = lim
s→0

s2

the number of zeros is irrelevant︷ ︸︸ ︷
N(s)

(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
no poles at the origin: p1, p2, p3 . . . 6= 0

= 0 (20.29)

and thus

ess =
K

lim
s→0

sC(s)G(s)H(s)
= +∞ (20.30)

� If C(s)G(s)H(s) is of type 1, then numerator N(s) has no zeros at the
origin, because otherwise the pole at the origin would have been cancelled.
So, irrespective of its number of zeros,

lim
s→0

s2C(s)G(s)H(s) = lim
s→0

s2

the number of zeros is irrelevant︷ ︸︸ ︷
N(s)

s(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
one pole at the origin: p1, p2, p3 . . . 6= 0

=
N(0)

p1 p2 p3 . . .
= 0 (20.31)

and thus ess = +∞ just the same.
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� If C(s)G(s)H(s) is of type 2, then, irrespective of its number of zeros
(which cannot be at the origin),

lim
s→0

s2C(s)G(s)H(s) = lim
s→0

s2N(s)

s2(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
2 poles at the origin

=
N(0)

p1 p2 p3 . . .
= Ka 6= 0 (20.32)

and thus

ess =
K

lim
s→0

sC(s)G(s)H(s)
=

1

Ka
(20.33)

� If C(s)G(s)H(s) is of type 3 or more, then, irrespective of its number of
zeros,

lim
s→0

s2C(s)G(s)H(s) = lim
s→0

s2N(s)

sn(s+ p1)(s+ p2)(s+ p3) . . .︸ ︷︷ ︸
n ≥ 3 poles at the origin

= +∞ (20.34)

and thus

ess =
K

lim
s→0

sC(s)G(s)H(s)
= 0 (20.35)

In other words, we need at least three poles at the origin in the open loop to
ensure no steady state error. As it makes no sense that poles at the origin are
found in the sensor,

� if plant G(s) has three or more poles at the origin, ess will be zero; Plant and controller
should have 3 poles at the
origin among them for
ess = 0

� if plant G(s) has two poles at the origin, controller C(s) should have (at
least) one pole at the origin so that ess will be zero (it can be e.g. a PI
controller), while a constant controller will originate a constant ess; Plant and controller with 2

poles at the origin among
them have constant ess

� if plant G(s) has one pole at the origin, controller C(s) should have (at
least) two poles at the origin so that ess will be zero (it can be e.g. a PI2

controller), while a controller with one pole at the origin will originate a
constant ess;

� if plant G(s) has no poles at the origin, controller C(s) should have (at
least) three poles at the origin so that ess will be zero, while a controller
with two poles at the origin will originate a constant ess;

� if plant G(s) and controller C(s) together have no poles at the origin, or Less than two poles at the
origin: a parabolic refer-
ence cannot be followed

only one, the steady state error will be in�nite, i.e. the control system will
not follow the reference.

20.4 Summing up the results

Table 20.1 sums up the results in this chapter.

Glossary

At the next peg the Queen turned again, and this time she said,
�Speak in French when you can't think of the English for a thing�
turn out your toes as you walk�and remember who you are!�

Lewis Carroll (1832 � �1898), Through the Looking-Glass, and what Alice
found there (1871), II

acceleration steady state error erro estacionário de aceleração
position steady state error erro estacionário de posição
velocity steady state error erro estacionário de velocidade
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Table 20.1: Steady state errors of a closed loop control system (see Figure 20.1).

reference for the type of the open loop C(s)G(s)H(s) constant
output when t ≥ 0 type 0 type 1 type 2 type 3 or higher given by

step e(t) = K
K

1 +Kp
0 0 0 Kp = lim

s→0
C(s)G(s)H(s)

ramp e(t) = Kt +∞ K

Kv
0 0 Kv = lim

s→0
sC(s)G(s)H(s)

parabola e(t) = K
2 t

2 +∞ +∞ K

Ka
0 Ka = lim

s→0
s2C(s)G(s)H(s)

Exercises

1. Consider a unit feedback control system with transfer function in the direct
loop

G(s) = 10
s+ 2

(s+ 3)(s+ 5)
. (20.36)

For a unit step input signal u(t) = 1, t ≥ 0, what is the steady-state error
ess of the time response?

2. Consider a closed-loop system with unit feedback and transfer function in
the direct loop

G(s) =
Y (s)

E(s)
=

8

(s+ 2)(s+ 4)
. (20.37)

(a) For the closed loop's unit step response, �nd:

i. the peak time tp
ii. the maximum overshoot y(tp)

iii. the rise time tr
iv. the settling time ts

(b) For a unit ramp input signal r(t) = t, t ≥ 0, what is this plant's
steady-state error ess = lim

t→+∞
r(t)− y(t)?

3. Consider a system with transfer function Y (s)/U(s) = G(s). The output
time response y(t) in closed loop for a step input in the reference r(t) = 10,
t ≥ 0, exhibits the steady-state error ess = 1 shown in Figure 20.4. For
m ≤ n, which of the following statements is true?

A) G (s) = 10
1 + b1s+ · · ·+ bms

m

1 + a1s+ · · ·+ ansn

B) G (s) = 9
1 + b1s+ · · ·+ bms

m

1 + a1s+ · · ·+ ansn

C) G (s) = 10
1 + b1s+ · · ·+ bms

m

s (1 + a1s+ · · ·+ ansn)

D) G (s) = 9
1 + b1s+ · · ·+ bms

m

s (1 + a1s+ · · ·+ ansn)
.

4. Figure 20.5 shows a block diagram that models the pen in a plotter and
the corresponding control system, and Figure 20.6 shows its unit-step
response.

(a) Find from the step-response the system's damping coe�cient ξ and
natural frequency ωn.

(b) We want to improve the time response y(t), so as to have an overshoot
Mp ≤ 5% and a 2% settling time ts < 0.1 s. Find, if possible, a value
of gain K for these speci�cations.
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Figure 20.4: Step response from Exercise 3.

Figure 20.5: Model of a pen in a plotter printer from Exercise 4.

Figure 20.6: Step response of the model of a pen in a plotter printer from
Exercise 4.
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Figure 20.7: Control loop from Exercise 5.

Figure 20.8: Control loop from Exercise 6.

5. In the closed-loop system of Figure 20.7,

G(s) =
s+ 2

s(s+ 1)(s+ 4)
(20.38)

H(s) = 1 (20.39)

K > 0 (20.40)

(a) Find the range of values of K for which the closed-loop is stable.

(b) Find K so that the the steady-state error for a unit ramp input is
10%.

6. Consider the plant in Figure 20.8, where

G(s) =
1

(s+ 1)(s+ 3)(s+ 8)
, K > 0. (20.41)

(a) Plot its root-locus.

(b) For which values of K is the system stable?

(c) Can you �nd a 5% steady-state error ess for a unit-step input, solely
by changing gain K?

(d) Plot the Bode diagram of G(s) for K = 240.



Chapter 21

Design of PID controllers

In this paper, the three principal control e�ects found in present con-
trollers are examined and practical names and units of measurement
are proposed for each e�ect. (. . . ) Formulas are given which enable
the controller settings to be determined from the experimental or
calculated values of the lag and unit reaction rate of the process to
be controlled. These units form the basis of a quick method for ad-
justing a controller on the job. The e�ect of varying each controller
setting is shown in a series of chart records. It is believed that the
conceptions of control presented in this paper will be of assistance in
the adjustment of existing controller applications and in the design
of new installations.

J. G. Ziegler (1909 � �1997), N. B. Nichols (1914 � �1997), Optimum
settings for automatic controllers, Transactions of the ASME, Nov. 1942

In this chapter we address design methods for controllers of the PID family.
A generic PID controller corresponds to a transfer function usually written in
one of three ways:

C(s) = P +
I

s
+Ds (21.1)

C(s) = kp

(
1 +

1

Tis
+ Tds

)
(21.2)

C(s) = KP

(
1 +

1

TIs

)
︸ ︷︷ ︸
integral part

(1 + TDs)︸ ︷︷ ︸
derivative part

(21.3)

(21.1) is the same as (15.31), but this notation avoids confusions with (21.2)
and (21.3). It is of course possible to rewrite a PID given in one of these three
forms in either of the other two (see Exercise 1).

21.1 Root locus and Bode diagrams

The e�ects of the three components of the control action can be studied with
the tools we now have:

� In Chapter 20 we learned how we could see if the integral part eliminates
or reduces steady state errors.

� The derivative part adds a zero to the controller. We know from the root
locus, studied in Chapter 16, that open loop zeros pull closed loop poles.
The derivative part is used to pull the root locus to the zones of the plane
corresponding to a fast response without excessive overshoot.

� The e�ect of the proportional part can also be studied with the root locus.

A PID controller has

� a pole at the origin,

351
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Figure 21.1: Poles and zeros in the complex plane and Bode diagram of a PID.
Top: real zeros. The PID is given by (21.3) with TI > TD. If TD > TI ,
the zeros switch, and the lowest value of the gain in 20 log10

KPTD
TI

. Bottom:
complex conjugate zeros. The PID is given by (21.1), with P 2 − 4DI < 0.
The steepness of the transition from a negative to a positive slope depends on
how large the imaginary part of the zeros is (remember the resonance peak in
Figure 11.19).
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� two zeros, which may be real or complex conjugate. These zeros have
negative real parts (it makes no sense at all to have non-minimum phase
zeros, since they would pull closed loop poles to the right complex half
plane, where they are unstable).

Figure 21.1 shows the location of the poles and zeros on the complex plane of a
PID, and its Bode diagram. Notice that:

� At low frequencies, ω ≈ 0, the PID frequency response can be approxi-
mated by its integral part:

C(jω) = P +
I

jω
+Djω ≈ I

jω
(21.4)

It will thus have a−90◦ phase and a linear decreasing gain with a−20 dB/decade
slope.

� At high frequencies, ω → +∞, the PID frequency response can be ap-
proximated by its derivative part:

C(jω) = P +
I

jω
+Djω ≈ Djω (21.5)

It will thus have a +90◦ phase and a linear increasing gain with a +20 dB/decade
slope.

Figure 21.2 shows the same for PI and PD controllers, that, lacking one of the
control action components, can be easily obtained from the more general PID
case.

Remember that, as noticed in Chapter 15, neither of these controllers are
strictly proper. It is obviously impossible to have an ever increasing gain for high
frequencies, as in Figure 21.1 for the PID or in Figure 21.2 for the PD. Even the
not decreasing gain for high frequencies of the PD in Figure 21.2 cannot exist
in reality (as we saw in Chapter 11). We will see in Chapter 29 how additional
poles are used with PID control, when we will address implementation questions.

21.2 Tuning rules

The simplest way to design a controller is to use a tuning rule. Tuning rules What a tuning rule is
provide the controller's parameters using simple calculations based on some few
characteristics of the plant to be controlled; a complete model is not necessary.
Tuning rules have been found heuristically (by trial and error after a long expe-
rience with many cases) or analytically (from calculations that apply to plants
with some characteristics usually found in practice). While controllers obtained
with all design methods can and should be �ne tuned, tuning rules, because of Fine tuning
their simplicity, are particularly apt to provide controller parameters that have
to be �ne tuned � i.e. slight variations of the parameters, by trial and error,
should be carried out, checking if performance can still be improved.

While there are many tuning rules for controllers of the PID familly, we
will only study the two oldest rules (which were found heuristically, but can be
justi�ed analytically), which are among the simplest, but also among the most
e�ective.

The Ziegler-Nichols reaction curve method can be applied to plants that Ziegler-Nichols reaction
curve methodhave a step response shaped like an S, as seen in Figure 21.3. As you know by

now, such a step response is found in plants which When there is an S-shaped
step response

� have all poles and zeros real and negative (and are thus stable, minimum-
phase, and not underdamped),

� are at least of second order,

� have a number of poles which is at least equal to the number of zeros
plus two (otherwise the response would begin with a slope, and have no
in�ection point),
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Figure 21.2: Poles and zeros in the complex plane and Bode diagram of a PI
(top) and of a PD (bottom).
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Figure 21.3: S-shaped step response of a plant G(s) (in open loop), for the
application of the Ziegler-Nichols reaction curve method.

Table 21.1: PID parameters according to the Ziegler-Nichols reaction curve
method. See Figure 21.3

Type of controller Kp Ti Td

P
T

θK
� �

PI
0.9T

θK

θ

0.3
�

PID
1.2T

θK
2θ 0.5θ

though it is possible to �nd transfer functions with all the characteristics above
which do not have an S-shaped step response. If the plant has a step response
which is not really S-shaped, but is something close, you may still apply the
rule, though, of course, results can be expected to be poorer. Some of the most
common cases that may still work with this rule, illustrated in Figure 21.4, are When this rule can also be

appliedstep responses:

� slightly underdamped,

� which have no in�ection point (e.g. �rst order plants), but have a delay,
i.e. the step response does not begin at once when the input is applied,
but only after some period of time, called delay (we will study delayed
plants below in Chapter 24),

� of non-minimum phase plants.

The rule cannot be applied to plants with step responses which are clearly not When this rule cannot be
appliedS-shaped. Usual cases, illustrated in Figure 21.5, include:

� clearly underdamped step responses,

� responses with no in�ection point (and no delay), such as �rst order trans-
fer functions, or those with a number of poles that exceeds the number of
zeros by only one.

Once the characteristics of the step response shown in Figure 21.3 are known,
controller parameters are found for (21.2) as shown in Table 21.1.

Notice that:
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Figure 21.4: Step responses which are not S-shaped but are still close enough
so that the Ziegler-Nichols reaction curve method can be applied. The farthest
the step response is from an S-shape, the poorer the results are likely to be.
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Figure 21.5: Step responses which are not S-shaped and for which the Ziegler-
Nichols reaction curve method cannot be applied.
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Figure 21.6: Marginally stable closed loop with proportional control, with crit-
ical oscillations in the step response, for the application of the Ziegler-Nichols
critical gain method.

� The step response can be obtained experimentally. This is possible for
most plants.

� The step response can also be obtained numerically from a model of the
plant, though if there is a model better design methods can be used instead
(such as those of Section 21.3 below).

� It makes little sense to obtain the step response analytically from a model
of the plant, since the tuning rule is an approximative design method, and
the result will likely have to be �ne tuned, as mentioned above.

The Ziegler-Nichols critical gain method can be applied to plants that, whenZiegler-Nichols critical
gain method controlled with proportional gain K in closed loop, have a critical gain Kcr,

i.e. a gain that makes the closed loop marginally stable. The step response ofCritical gain
this marginally stable closed loop has oscillations with a constant amplitude;
the period of those oscillations is the critical period Pcr. The closed loop isCritical period
illustrated in Figure 21.6. As you know from studying the root locus, a plant
will have a critical gain if:

� it has a number of poles which exceeds the number of zeros by at least
three,

� its poles are stable, so that the corresponding branches are on the left com-
plex half plane for small values of K, and one or more cross the imaginary
axis as K increases.

Still, there are some plants which have a critical gain but for which this rule does
not apply (this usually happens when the root locus is particularly convoluted).

Once Kcr and Pcr are known, controller parameters are found for (21.2) as
shown in Table 21.2.

Notice that:

� The critical gain and period may be found experimentally, but there are
many plants for which this is not possible for safety reasons: it may be
dangerous to bring a control loop to marginal stability (there are plants
that can explode, break apart, melt down. . . ).
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Table 21.2: PID parameters according to the Ziegler-Nichols critical gain
method. See Figure 21.3. It is not guaranteed that PIDs designed to have
small or no overshoot will, in fact, meet that speci�cation.

Type of controller Kp Ti Td

P 0.5Kcr � �

PI 0.45Kcr
Pcr
1.2

�

PID 0.6Kcr
Pcr
2

Pcr
8

PID with a small overshoot
1

3
Kcr

Pcr
2

Pcr
3

PID with no overshoot 0.2Kcr
Pcr
2

Pcr
3

� Kcr and Pcr can be found numerically or analytically from a model of the
plant (you can use the root locus and the Routh-Hurwitz criterion).

21.3 PID design by pole-placement

Controllers can be designed by placing closed loop poles in the regions of the
complex plane corresponding to the desired speci�cations. As you know, re-
sponses also depend on zeros, which means that this design method, though
analytical and usually leading to better performances than tuning rules, may
still require �ne tuning at the end.

Example 21.1. Suppose that we want to control plant

G(s) =
1

(s+ 1)(s+ 2)(s+ 10)
(21.6)

so as to achieve

� a steady-state ess = 0 for a constant reference,

� ts,2% ≤ 0.8 s,

� Mp ≤ 4.3%.

Concerning the �rst speci�cation, since the plant has no poles at the origin,
the �rst speci�cation will require a controller with one pole at the origin, i.e. a
PI or a PID.

Concerning the second speci�cation, from what we saw in Section 16.4 we
know that the real part −a of the closed loop dominant poles s = −a± b must
verify

−a ≤ − 4

0.8
= −5 (21.7)

Concerning the third speci�cation, we know that the dominant poles must
verify

|∠s| ≥ arctan
π

log 0.043
= 135◦ (21.8)

Putting all this together, it is seen that a PI or PID is needed, that will
put the closed loop dominant poles in the zone of the complex plane shown in
Figure 21.7. We now use the root locus to check if a PI controller, that adds
a pole at the origin and a negative real zero, is enough to bring the dominant
poles into that zone. Figure 21.8 shows that to be impossible. The root locus
diagrams shown correspond to particular values of the PI zero, but it is clear
that, whatever the precise location of the zero in either of the three cases,
speci�cations are always impossible to ful�l.

Thus, a PID is needed. It is expedient to use (21.3) and begin with the
design of a PD; the integral part is added at the end. The transfer function
F (s) of the closed loop formed by plant (21.6) and a PD is given by

F (s) =
KP (1 + TDs)G(s)

1 +KP (1 + TDs)G(s)
(21.9)
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Figure 21.7: Zone of C where closed loop dominant poles must be according to
the speci�cations of Example 21.1.

Figure 21.8: A PI cannot ful�l the speci�cations of Example 21.1, as the two
rightmost branches never go to the left of −5. Top left: the zero is to the left
of the pole at −10. Top right: the zero lies between the poles at −10 and −2.
Bottom left: the zero lies between the poles at −2 and −1. Bottom right: the
zero is to the right of the poles at −1.
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Figure 21.9: Root locus of (21.6) controlled with PD C(s) = 129.67(1 + 0.37s),
from Example 21.1.

We want the situation in Figure 21.9, with the leftmost pole going right towards
the zero, and the rightmost poles being pulled to the left inside the desired zone.
The limit case is that in which the branches pass through −5± 5j, i.e.

1 +KP (1 + TDs)G(s)

∣∣∣∣
s=−5±5j

= 0

⇔KP (1 + TD(−5± 5j))G(−5± 5j) = −1

⇔

{
|KP (1 + TD(−5± 5j))G(−5± 5j)| = 1

arg [KP (1 + TD(−5± 5j))G(−5± 5j)] = ±180◦
(21.10)

Let us choose for instance s = −5 + 5j and the −180◦ phase for the second
equation, that becomes

0︷ ︸︸ ︷
argKP + arg (1− 5TD + 5TDj)− arg(−5 + 5j + 1)− arg(−5 + 5j + 2)− arg(−5 + 5j + 10) = −180◦

⇔ arctan
5TD

1− 5TD
= −180◦ + arctan

5

−4
+ arctan

5

−3
+ arctan

5

5

⇔ 5TD
1− 5TD

= tan 114.6◦

⇔5TD = −2.18(1− 5TD)⇔ TD = 0.37 (21.11)

The �rst equation now becomes

KP |1− 5× 0.37 + 5× 0.37j|
|−5 + 5j + 1| |−5 + 5j + 2| |−5 + 5j + 10|

= 1

⇔ KP

√
(−0.85)2 + 1.852 =

√
16 + 25

√
9 + 25

√
25 + 25

⇔ KP = 129.67 (21.12)

Figure 21.9 shows the root locus of C(s)G(s) where C(s) = 129.67(1+0.37s)
is the PD just found. The two problems with PID design by pole placement
should be clear by now:

� �rst, we had to solve a non-linear system of equations, which in this case
was relatively easy, but often involves much more di�cult calculations;

� then, the result turned out not to achieve the desired performance. In
this case, even though we pulled the two complex conjugate poles as little
to the left as possible, the real pole which is moving right ends up being
dominant (it is about s = −3, clearly outside the desired zone), and so
the settling time speci�cation will not be ful�lled. Very often something
like this happens, and the pole or poles which are being placed become
dominated by another pole or by a zero, changing the expected behaviour
of the controlled plant.

For this reason, it is usually expedient to use app controlSystemDesigner

to design controllers by pole placement. Figure 21.10 shows that neither the
settling time speci�cation nor the maximum overshoot speci�cation are, in fact,
veri�ed. Thus, the position of the PD zero should be adjusted until they are,
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Figure 21.10: Top: controlSystemDesigner con�rms that plant (21.6) con-
trolled with PD C(s) = 129.67(1 + 0.37s) does not ful�l the speci�cations of
Example 21.1. Bottom: adding the PI part of the PID controller.

if this is at all possible. If, on the other hand, the resulting settling time could
be accepted, then the PI is added, with a zero su�ciently fast to perturb as
little as possible the time response achieved by the PD. This too is shown in
Figure 21.10; notice how there is now no steady state error, but the settling
time increases further to more than 7 s.

Glossary

Ἀκούσαντες δὲ ὅτι τῇ ῾Εβραΐδι διαλέκτῳ προσεφώνει αὺτοις μᾶλλον

παρέσχον ἡσυχίαν.

Saint Luke the Evangelist (? � �84), Acts of the Apostles, xxii 2

critical gain ganho crítico
critical period período crítico
tuning rule regra de sintonia

Exercises

1. Show that:

(a) to rewrite (21.2) in the form of (21.1), we must do

P = kp (21.13)

I =
kp
Ti

(21.14)

D = kpTd (21.15)
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(b) to rewrite (21.3) in the form of (21.1), we must do

P = KP

(
1 +

TD
TI

)
(21.16)

I =
KP

TI
(21.17)

D = KPTD (21.18)

(c) to rewrite (21.1) in the form of (21.2), we must do

kp = P (21.19)

Ti =
P

I
(21.20)

Td =
D

P
(21.21)

(d) to rewrite (21.1) in the form of (21.3), we must do either

KP =
P +

√
P 2 − 4DI

2
(21.22)

TI =
P +

√
P 2 − 4DI

2I
(21.23)

TD =
2D

P +
√
P 2 − 4DI

(21.24)

or in alternative

KP =
P −

√
P 2 − 4DI

2
(21.25)

TI =
P −

√
P 2 − 4DI

2I
(21.26)

TD =
2D

P −
√
P 2 − 4DI

(21.27)

(e) to rewrite (21.3) in the form of (21.2), we must do

kp = KP

(
1 +

TD
TI

)
(21.28)

Ti = TI + TD (21.29)

Td =
TITD
TI + TD

(21.30)

(f) to rewrite (21.2) in the form of (21.3), we must do either

KP = kp
1 +

√
1− 4TdTi

2
(21.31)

TI = Ti
1 +

√
1− 4TdTi

2
(21.32)

TD = Td
2

1 +
√

1− 4TdTi

(21.33)

or in alternative

KP = kp
1−

√
1− 4TdTi

2
(21.34)

TI = Ti
1−

√
1− 4TdTi

2
(21.35)

TD = Td
2

1−
√

1− 4TdTi

(21.36)
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Figure 21.11: Left: multirotor drone; centre: block diagram with the control
system of the drone.

2. Find a PI controller and a PID controller for plant G(s) =
− 1

2s+ 1

s2 + s+ 1
3

,

using the open-loop (reaction curve) Ziegler-Nichols method.

3. Find a PID controller for plant G (s) =
10

s (s+ 1)
2 , using the closed-loop

(critical gain) Ziegler-Nichols method.

4. Consider the multirotor drone in Figure 21.11. The four rotors exert an
upwards force F , due to which the drone hovers at height h, with a vertical
velocity w = ḣ. The system can be represented by the block diagram in
the same Figure and will be controlled in closed loop aiming at

� a 2% settling time of 1 second or less,

� a maximum overshoot of 4.3% or less, and

� no steady-state error for a constant height reference.

(a) Find which speci�cations cannot be satis�ed with a proportional con-
troller C(s) = 1.

(b) Propose a controller structure, �nd its parameters, and verify that
speci�cations are satis�ed.

5. A torque Tf is applied to a ship to control its roll θ, as seen in Figure 21.12.

The corresponding transfer function is Gp(s) =
Θ(s)

Tf (s)
=

9

s2 + 1.2s+ 9
.

The system will be controlled in closed loop aiming at

� a 2% settling time of 4 second or less,

� a maximum overshoot of 4.3% or less, and

� a steady-state error for a 0◦ reference of 10% or less.

Figure 21.12: Ship from Exercise 5.

(a) Find which speci�cations cannot be satis�ed with a proportional con-
troller C(s) = 1.

(b) Propose a controller structure, �nd its parameters, and verify that
speci�cations are satis�ed.

6. Find PID controllers for the following plants:
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(a) G1(s) =
1

s+ 1

(b) G2(s) =
1

(s+ 1)2

(c) G3(s) =
1

(s+ 1)3

(d) G4(s) =
1

(s+ 1)4

(e) G5(s) =
1

(s+ 1)8

(f) G6(s) =
1

(s+ 1)(1 + 0.1s)(1 + 0.12s)(1 + 0.13s)

(g) G7(s) =
1

(s+ 1)(1 + 0.2s)(1 + 0.22s)(1 + 0.23s)

(h) G8(s) =
1

(s+ 1)(1 + 0.5s)(1 + 0.52s)(1 + 0.53s)

(i) G9(s) =
1− 0.1s

(s+ 1)3

(j) G10(s) =
1− 0.2s

(s+ 1)3

(k) G11(s) =
1− 0.5s

(s+ 1)3

(l) G12(s) =
1− s

(s+ 1)3

(m) G13(s) =
1− 2s

(s+ 1)3

(n) G14(s) =
1− 5s

(s+ 1)3

7. Find PID controllers for the following plants:

(a) G15(s) =
100

(s+ 10)2

(
1

s+ 1
+

0.5

s+ 0.05

)
(b) G16(s) =

(s+ 6)2

s(s+ 1)2(s+ 36)

(c) G17(s) =
1

(s+ 1)(s2 + 0.2s+ 1)

(d) G18(s) =
22

(s+ 1)(s2 + 0.2× 2s+ 22)

(e) G19(s) =
52

(s+ 1)(s2 + 0.2× 5s+ 52)

(f) G20(s) =
102

(s+ 1)(s2 + 0.2× 10s+ 102)

(g) G21(s) =
1

s2 − 1

(h) G22(s) =
1

s(s+ 1)

(i) G23(s) =
1

s(s+ 1)2

(j) G24(s) =
1

s(s+ 1)3

(k) G25(s) =
1

s(s+ 1)4

(l) G26(s) =
1

s(s+ 1)8

(m) G27(s) =
1

s(s+ 1)(1 + 0.1s)(1 + 0.12s)(1 + 0.13s)
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(n) G28(s) =
1

s(s+ 1)(1 + 0.2s)(1 + 0.22s)(1 + 0.23s)

(o) G29(s) =
1

s(s+ 1)(1 + 0.5s)(1 + 0.52s)(1 + 0.53s)

(p) G30(s) =
1− 0.1s

s(s+ 1)3

(q) G31(s) =
1− 0.2s

s(s+ 1)3

(r) G32(s) =
1− 0.5s

s(s+ 1)3

(s) G33(s) =
1− s

s(s+ 1)3

(t) G34(s) =
1− 2s

s(s+ 1)3

(u) G35(s) =
1− 5s

s(s+ 1)3



Chapter 22

Design of lead-lag controllers

�Time lag�time lag! That idiot of a platform controller thought he
was using a local radio circuit. But he'd been accidentally switched
through a satellite�oh, maybe it wasn't his fault, but he should have
noticed. That's a half-second time lag for the round trip. Even then
it wouldn't have mattered �ying in calm air. It was the turbulence
over the Grand Canyon that did it. When the platform tipped, and
he corrected for that�it had already tipped the other way. Ever
tried to drive a car over a bumpy road with a half-second delay in
the steering?�

Arthur C. Clarke (1917 � �2008), A meeting with Medusa, 2, Playboy,
December 1971

This chapter is still being written.
In the picture: National Pantheon, or Church of Saint Engratia, Lisbon

(source: http://www.panteaonacional.gov.pt/171-2/historia-2/), some-
when during its construction (1682�1966).

Glossary

�Nay, ye shall know the truth.
We come from another world,
though we are men such as ye;
we come,� I went on, �from the
biggest star that shines at night.�

�Oh! oh!� groaned the chorus of
astonished aborigines.

�Yes,� I went on, �we do, indeed�;
and again I smiled benignly, as
I uttered that amazing lie. �We

367
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come to stay with you a little
while, and to bless you by our
sojourn. Ye will see, O friends,
that I have prepared myself for
this visit by the learning of your
language.�

�It is so, it is so,� said the chorus.

�Only, my lord,� put in the old
gentleman, �thou hast learnt it
very badly.�

I cast an indignant glance at him,
and he quailed.

�Já que vos perdoei, porque sois
ignorantes, condescendo tambem
em vos dizer quem somos. So-
mos Espiritos! Vivemos além,
por cima das nuvens, n'uma
d'aquellas estrellas que vós vêdes
de noite brilhar. E viemos visi-
tar esta terra, mas em paz e para
alegria de todos!

Entre os indigenas correram
grandes ah! ah! Lentos e mara-
vilhados.

Eu prosegui, mais grave:

�Nós conhecemos todos os reis
e todas as gentes. E eu, que sou
a voz dos outros, conheço todas
as linguas.

�A nossa bem mal! Arriscou
com timidez o velho guerreiro.

Dardejei-lhe um olhar chamme-
jante que o estarreceu.

H. Rider Haggard (1856 � �1925), King Solomon's mines (1885), VII
(transl. Eça de Queiroz (1845 � �1900), As minas de Salomão, 1891, V)

word in English word in Portuguese
palavra em inglês palavra em português

Exercises

1. Consider plant G(s) =
s+ 5

(s+ 0.5)(s2 + 0.6s+ 1.09)
.

(a) Find a lead compensator C(s) for this plant that ful�lls the following
speci�cations:

� The gain margin must be in�nite.

� The phase margin must be PM = 20◦ with a ±10% tolerance.

� The steady state error cannot be a�ected.

(b) Find a lead compensator C(s) for this plant that puts a pair of poles
at −4 + 10j, and verify the 2%-settling time against the performance
expected.

2. The transfer function relating the voltage applied to the motor u(t) with

the azimuth angle of an antenna θ(t) is G(s) =
Θ(s)

U(s)
=

1

s(10s+ 1)
; see

Figure 22.1. We want

� an overshoot to a step in the reference angle of 16% or less;

� a 2% settling time of 10 s or less;

� no steady-state error for a constant reference.

(a) Find the region of the s�plane where closed loop poles can lie.

(b) Prove that you cannot ful�ll all speci�cations using proportional con-
trol only.

(c) Propose a structure for the controller.

(d) Find the parameters of a controller of the lead-lag family and show
that all speci�cations are thereby ful�lled.

(e) Do the same for a controller of the PID family.
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Figure 22.1: Antenna from Exercise 2.

Figure 22.2: Airplane from Exercise 3 and the unit step response from its model.

3. Figure 22.2 shows a plane, together with the variation of its height h(t)
in metres when a 1◦�step is applied to angle of the elevators δ(t).

(a) Which of the plots A�H in Figure 22.3 corresponds to the root locus
of transfer function H(s)

∆(s) when K > 0?

(b) Which of the plots A�H in Figure 22.3 corresponds to the root locus
of transfer function H(s)

∆(s) when K < 0?

(c) Is a feedback loop with proportional control enough to ensure an
accurate tracking of a constant vertical velocity ḣ(t)?

(d) Knowing that a feedback loop with a proportional controller equal
to 1 leads to a steady state error of 0.9 when tracking a constant
vertical velocity ḣ(t) = 1 m/s, design a controller reducing this steady
state error to 0.3, without signi�cantly deteriorating the transient
response.

4. The transfer function relating the depth of facing performed by a lathe
(output) with the control action of the motor (input) is

Gp(s) =
2

s(s+ 1)(s+ 5)
(22.1)

The desired speci�cations are:

� maximum overshoot of 10% or less;

� steady-state error of 0.125 m or less for a constant velocity reference.

(a) Show that not all speci�cations can be satis�ed with a proportional
controller K = 1.

(b) Propose a structure for the controller, �nd its parameters, and verify
that speci�cations are ful�lled.

5. The horizontal position x(t) of a robot is given by transfer function

Gp(s) =
X(s)

U(s)
=

1.6

(s+ 1)2
(22.2)
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Figure 22.3: Possible root locus plots for the airplane from Exercise 3.
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where u(t) is the control action. The desired speci�cations are:

� maximum overshoot of 10% or less;

� phase margin of 50◦ or more;

� steady-state error of 10% or less for a constant position reference.

(a) Show that not all speci�cations can be satis�ed with a proportional
controller K = 1.

(b) Propose a structure for the controller, �nd its parameters, and verify
that speci�cations are ful�lled.
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Chapter 23

Internal Model Control

Sir Humphrey: The Civil Service was united in its desire to make
sure that the Common Market didn't work. That's why we went
into it.
Hacker: What are you talking about?
Sir Humphrey: Minister, Britain has had the same foreign policy ob-
jective for at least the last 500 years: to create a disunited Europe.
In that cause we have fought with the Dutch against the Spanish,
with the Germans against the French, with the French and Italians
against the Germans, and with the French against the Germans and
Italians. Divide and rule, you see. Why should we change now, when
it's worked so well?
Hacker: That's all ancient history, surely?
Sir Humphrey: Yes, and current policy. We had to break the whole
thing up, so we had to get inside. We tried to break it up from
the outside, but that wouldn't work. Now that we're inside we can
make a complete pig's breakfast of the whole thing: set the Ger-
mans against the French, the French against the Italians, the Ital-
ians against the Dutch. . . The Foreign O�ce is terribly pleased; it's
just like old times.

Antony Jay (1930 � �2016), Jonathan Lynn (1943 � . . . ), Yes, Minister, I 5
(The writing on the wall, 1980)

Internal Model Control (IMC) may be seen as a variation of closed-loop
control or as a design method for closed-loop controllers. It is the object of
Exercise 3 from Chapter 9, and is developed in this Chapter.

23.1 IMC as a variation of closed-loop control

IMC can be used when there is a good model of the system and a good inverse
model of the system (i.e. a model that receives the system's output y(t) as
input, and delivers the system's input u(t) as output). These are used in the
con�guration shown in Figure 23.1, where

� G(s) is the actual system to control,

� G∗(s) is the model of the plant,

� G−1(s) is the inverse model of the plant.

373
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Figure 23.1: Block diagram of IMC.

In this con�guration,

E = R−
(
Y − Ŷ

)
= R−D −GU +G∗U

= R−D −GG−1E +G∗G−1E (23.1)

⇒ E
(
1 +GG−1 −G∗G−1

)
= R−D

⇒ E = R
1

(1 +GG−1 −G∗G−1)
−D 1

(1 +GG−1 −G∗G−1)

Y = GG−1E +D = R
GG−1

1 +GG−1 −G∗G−1
−D GG−1

1 +GG−1 −G∗G−1
+D

= R
GG−1

1 +GG−1 −G∗G−1
+D

1−G∗G−1

1 +GG−1 −G∗G−1

(23.2)

Notice that if the model is perfect, i.e. if G∗(s) = G(s), then the error (23.1)
is

E(s) = R(s)−D(s)−G(s)U(s) +G∗(s)U(s)︸ ︷︷ ︸
0

= R(s)−D(s). (23.3)

If the inverse model is perfect, then

Y (s) = D(s) +G(s)G−1(s)︸ ︷︷ ︸
1

E(s) = D(s) +R(s)−D(s) = R(s) (23.4)

In other words, with perfect models, IMC achieves perfect disturbance rejection,
i.e. perfect robustness to disturbances. In practice, models are never perfect,
but IMC often works well enough if models are fairly good.

IMC is suitable when black-box models (direct and inverse) of the plant
are available. If models are transfer functions, then a proper G∗(s) implies an
inverse model G−1(s) which is not proper. Consequently, additional poles will
have to be included � just as for PIDs and lead-lag controllers. To be more
precise, if G∗(s) has n poles and m zeros and is strictly proper, then n−m+ 1
poles have to be added to G−1(s) so that it will become strictly proper.

Example 23.1. Consider the following case:

G(s) =
s+ 2

(s2 + 0.18s+ 1)(s+ 0.1)
(23.5)

G∗(s) =
s+ 2

(s2 + 0.2s+ 1)(s+ 0.1)
(23.6)

G−1(s) =
102(s2 + 0.2s+ 1)(s+ 0.1)

(s+ 2)(s+ 10)2
(23.7)

Notice that:

� the dominant pole of the model is −0.1;

� the model also has two non-dominant complex conjugate poles with ξ =
0.1 and ωn = 1 rad/s;

� we are assuming that the damping coe�cient ξ of the complex poles was
identi�ed with a 10% error;
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Figure 23.2: Results of Example 23.1.

Figure 23.3: Results of Example 23.2.

� two poles, one decade above ωn, were added to the inverse model, so that
it will be proper.

The output of the IMC system in Figure 23.1 in this case is shown in Figure 23.2
for a reference consisting of three steps.

Example 23.2. Consider the following case:

G(s) =
−s+ 2

(s2 + 0.18 ∗ s+ 1)(s+ 0.1)
(23.8)

G∗(s) =
2

(s2 + 0.2 ∗ s+ 1)(s+ 0.1)
(23.9)

G−1(s) =
103(s2 + 0.2 ∗ s+ 1)(s+ 0.1)

2(s+ 10)3
(23.10)

The di�erence from Example 23.1 is that there is a non-minimum phase zero. As
a consequence, there would be an unstable pole in the inverse model. The way
around this is to replace that pole by its steady-state gain; a third additional pole
has to be added for a proper inverse model. And, because this approximation
was used in the inverse model G−1, it is better to use in G∗ as well, otherwise
results would be worst. The output of the IMC system in Figure 23.1 in this
case is shown in Figure 23.3 for the same reference of Example 23.1. Notice how
the e�ect of the non-mimimum phase zero which was not properly modelled is
now clearly felt. We will see in Example 23.3 how to improve upon this.
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23.2 IMC as a design method for closed-loop con-
trollers

Suppose that G∗ and G−1 are known as transfer functions. Then IMC is equiv-
alent to a usual closed-loop (see Figure 9.13) if

C(s) =
G−1(s)

1−G−1(s)G∗(s)
. (23.11)

In fact, in that case,

Y

R
=

CG

1 + CG

=
G−1G

1−G−1G∗

1 + G−1G
1−G−1G∗

=
G−1G

1−G−1G∗ +G−1G
(23.12)

which is the same as (23.2).
Of course, if the inverse model G−1(s) is the exact inverse of the model G∗(s)

of the plant, then (23.11) becomes

C(s) =
G−1

1−G−1G∗︸ ︷︷ ︸
1︸ ︷︷ ︸

0

(23.13)

which makes no sense, and at best means that the control action U = CE =

lim
D→0

G−1E

D
should be very large (likely saturating the actuator in practice).

Still, fairly good models may be used with (23.11) resulting in acceptable con-
trollers.

Example 23.3. Plant (23.8) from Example 23.2 can be controlled in closed
loop using (23.11) found from (23.9)�(23.9):

C(s) =

103(s2+0.2∗s+1)(s+0.1)
2(s+10)3

1− 103(s2+0.2∗s+1)(s+0.1)
2(s+10)3

2
(s2+0.2∗s+1)(s+0.1)

=

103(s2+0.2∗s+1)(s+0.1)
2(s+10)3

1− 103

(s+10)3

=
103(s2 + 0.2 ∗ s+ 1)(s+ 0.1)

(s+ 10)3 − 103

=
103(s2 + 0.2 ∗ s+ 1)(s+ 0.1)

s3 + 30s2 + 300s
(23.14)

This closed-loop controller actually performs better than the IMC from Exam-
ple 23.2, as you may see simulating both cases with Matlab. This may seem
surprising since we just proved equivalence for the general case. But cancelled
poles and zeros in (23.14) allow much better results numerical simulations �
and in practice (23.11) also works better than Figure 23.1 if, of course, models
are known as transfer functions.

Glossary

I got o� the plane in Recife (the Brazilian government was going to
pay the part from Recife to Rio) and was met by the father-in-law
of César Lattes, who was the director of the Center for Physical
Research in Rio, his wife, and another man. As the men were o�
getting my luggage, the lady started talking to me in Portuguese:
�You speak Portuguese? How nice! How was it that you learned
Portuguese?�
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I replied slowly, with great e�ort. �First, I started to learn Span-
ish. . . then I discovered I was going to Brazil. . . � Now I wanted
to say, �So, I learned Portuguese,� but I couldn't think of the word
for �so.� I knew how to make big words, though, so I �nished the
sentence like this: �consequentemente, aprendi Português! �
When the two men came back with the baggage, she said, �Oh, he
speaks Portuguese! And with such wonderful words: consequente-
mente!�

Richard P. Feynman (1918 � �1988), Ralph Leighton (1949 � . . . ), �Surely
you're joking, Mr. Feynman!� � Adventures of a curious character (1985), 4

Internal Model Control controlo por modelo interno

Exercises

1. Find a closed-loop controller for the plant of Example 23.1 using (23.11).
Compare its performance with the one shown in Figure 23.2.

2. Apply IMC to the plants of Exercises 6 and 7 from Chapter 21. Simulate
the results using Simulink for the references mentioned in each Exercise.

(a) Implement the simulation using the block diagram of Figure 23.1.

(b) Implement the simulation using (23.11) and a closed loop.
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Chapter 24

Delay systems

Abrupt and nerve-shattering the telephone rang. Ashley leapt up to
answer it. Captain Granforte barred his way.

�Let him go, Captain,� said George Harlequin. �Let him do what he
wants.�

Granforte stepped aside and Ashley stood with the receiver in his
hands, listening to the crackling, impersonal voices saying �Pronto!
Pronto! Pronto! � all the way up to Rome, and looking down at
the dead face of Vittorio d'Orgagna and the blood that spread out
over his white shirt-front. The `prontos' started again in descend-
ing scale�Rome, Terracina, Naples, Castellammare, Sorrento�and
�nally, Hansen came on.

�Pronto! Hansen speaking.�

�This is Ashley. . . Sorrento.�

�Great to hear you, Ashley boy! Great, great! What's news?�

Morris West (1916 � �1999), The big story (1957), 13

This chapter is still being written. In the picture below: National Pantheon,
or Church of Saint Engratia, Lisbon (source: http://www.panteaonacional.

gov.pt/171-2/historia-2/), somewhen during its construction (1682�1966).

24.1 Pure delays

Origin. Laplace transform. Frequency response. Bode, Nyquist and Nichols
diagrams. The example of hot water in the shower. Margins.

Theorem 24.1. The Laplace transform of delay θ is the negative exponential
e−θs, i.e. given a function f(t) with Laplace transform F (s),

L [f(t− θ)] = F (s)e−θs (24.1)

Proof. Since we are using the unilateral Laplace transform, and thus the integral
in

L [f(t− θ)] =

∫ +∞

0

f(t− θ)e−st dt (24.2)

begins at t = 0, it is clear from Figure 24.1 that we can multiply f(t− θ) by a
delayed Heaviside function, without changing the result:

L [f(t− θ)] =

∫ +∞

0

f(t− θ)H(t− θ)e−st dt (24.3)

Using variable change

τ = t− θ (24.4)

t = 0⇒ τ = −θ (24.5)

t = +∞⇒ τ = +∞ (24.6)

dτ = dt (24.7)
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Figure 24.1: A function of time, and the same function delayed.

this becomes

L [f(t− θ)] =

∫ +∞

−θ
f(τ)H(τ)e−s(t−θ) dτ (24.8)

and because H(t) = 0 for t < 0 this integral can begin in 0:

L [f(t− θ)] = e−sθ
∫ +∞

0

f(τ)

1︷ ︸︸ ︷
H(τ) e−sτ dτ

= e−sθ
∫ +∞

0

f(τ)e−sτ dτ︸ ︷︷ ︸
L [f(t)]

= F (s) e−sθ (24.9)

24.2 Padé approximations

Origin. Poles and zeros. Margins (approximated). Use in controller design.

24.3 Smith predictor

Variation of IMC. What it does and does not.

24.4 Control of systems similar to delay sistems

Systems with non-minimum phase. Control design.

Systems with two signi�cantly di�erent time constants. Cascade control has
already been mentioned in Exercise 4 from Chapter 9.
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This chapter is still being written. In the picture: National Pantheon, or
Church of Saint Engratia, Lisbon (source: http://www.panteaonacional.gov.
pt/171-2/historia-2/), somewhen during its construction (1682�1966).

Glossary

�Padre nosso que estaes nos céus:�dizia Engracia Ripa, deixando
correr um dos bugalhos de umas contas da terra sancta que tinha nas
mãos.�Ora essa!�Sancti�cado seja o vosso nome.�Forte tractante!�
Venha a nós o vosso reino.�E uma pessoa com a sua áquella de que
era um home como se quer!�Seja feita a vossa vontade.�Safa!�
Assim na terra como nos céus.�Com que então setenta?�

�Entregadinhas!�Ave Maria, gracia plena:�respondeu a tia Jero-
nyma, que latinisava furiosamente á força de viver com o prior.�
Como lh'o hei-de dizer?�Domisteco.�Foi o demo que o tentou.�
Benedités tu. . .�

Alexandre Herculano (1810 � �1877), O Parocho da aldeia (1843), VIII

cascade control controlo em cascata
(pure) delay atraso (puro)
Smith predictor preditor de Smith

Exercises

1. Consider the irrigation canal in Figure 24.2. The water from a reservoir
enters the canal through a gate at height y ∈ [0 m, 1 m]. The gate is
actuated by a motor controller by voltage V ∈ [−10 V,+10 V]. The
velocity of the gate is given by

ẏ = ϕV (24.10)

and maximum velocity of the gate achieved by the motor is ±0.1 m/s.
We know from Fluid Mechanics that water dynamics in the canal is given
by Saint-Venant equations (a simpli�ed version of the Navier-Stokes equa-
tions for this case), but this can be approximated by a �rst order transfer
function with delay, relating water height h with gate height y. In this
canal,

h(s)

y(s)
=

100

100s+ 1
e−20s (24.11)

http://www.panteaonacional.gov.pt/171-2/historia-2/
http://www.panteaonacional.gov.pt/171-2/historia-2/
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(a) Draw the block diagram for this system, with input V and output h.

(b) Show that a proportional controller K for gate height y leads to a
closed loop transfer function given by

y(s)

yref(s)
=

0.01K

s+ 0.01K
(24.12)

(c) Find the value of K achieving the smallest possible settling time for
a unit step reference, without saturation of the control action.

(d) Let K = 10. Show that h(s) and yref(s) are related by transfer
function

G(s) =
h(s)

yref(s)
=

0.1× 100

(s+ 0.1)(100s+ 1)
e−20s (24.13)

(e) Show that, using a (1,1) Padé approximation, G(s) above can be
approximated by

G̃(s) =
h(s)

yref(s)
=

100(1− 10s)

(10s+ 1)2(100s+ 1)
(24.14)

(f) Plot the Bode diagram of G̃(s). (Take into account that this is a
non-minimum phase system.)

(g) Since G(s) is a system with delay a Smith predictor is actually a
better control architecture. The block diagram is given in Figure
24.3, where κ is a controller. Identify signals 1, 2, 3, 4 and 5, and
transfer functions 6, 7, 8, 9 and 10.

Reservoir

Gate

Canal

Onto the farms

y

h

Figure 24.2: Irrigation canal.

Figure 24.3: Smith predictor.

2. The angular velocity of the motor of a drone is ω(t) and depends on a
control action v(t):

G(s) =
1

0.04s+ 1
e−0.35s (24.15)
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(a) Comparing plant (24.15) with plant

G̃(s) =
1

0.04s+ 1
, (24.16)

what does the term e−0.35 change: only the gain, only the phase,
both gain and phase, or neither gain nor phase?

(b) Show that using a Padé approximation it is possible to approximate
(24.15) by

G(s) ≈ −s+ 5.714

0.04s2 + 1.229s+ 5.714
(24.17)

(c) Use approximation (24.17) and the Routh-Hurwitz criterion to �nd
the values that a proportional controller K can take, ensuring the
stability of the closed loop.

(d) Explain if the real range of values of K that stabilise plant (24.15)
is larger or smaller than the one you got using Padé approximation
(24.17).

3. Explain why a non-minimum phase zero makes a plant harder to control.

4. Consider a plant with the transfer function G(s) =
0.5

s (s+ 1)
e−2s. Find its

gain and phase margins.

5. Find PID controllers for the following plants both without, and with, a
Smith predictor, and compare performance.

(a) G1(s) = e−s

(b) G2(s) =
1

1 + 0.1s
e−s

(c) G3(s) =
1

1 + 0.2s
e−s

(d) G4(s) =
1

1 + 0.5s
e−s

(e) G5(s) =
1

1 + 2s
e−s

(f) G6(s) =
1

1 + 5s
e−s

(g) G7(s) =
1

1 + 10s
e−s

(h) G8(s) =
1

(1 + 0.1s)2
e−s

(i) G9(s) =
1

(1 + 0.2s)2
e−s

(j) G10(s) =
1

(1 + 0.5s)2
e−s

(k) G11(s) =
1

(1 + 2s)2
e−s

(l) G12(s) =
1

(1 + 5s)2
e−s

(m) G13(s) =
1

(1 + 10s)2
e−s
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Part V

Practical implementation of

control systems

385





387

Who would be satis�ed with a navigator or engineer, who had no
practice or experience whereby to carry on his scienti�c conclusions
out of their native abstract into the concrete and the real?

Saint John Henry Newman (1801 � �1890), An essay in aid of a grammar of
assent (1870), VIII 1, 2

In this part of the lecture notes:

Chapter 25 is an introduction to digital signals and systems.

Chapter 26 shows how to �nd digital approximations of previously designed con-
trollers.

Chapter 27 presents tools for the study of digital closed loop control systems, and how
to use them to design digital controllers directly, rather then approximat-
ing a previous design.

Chapter 28 is about the e�ects of non-linearities in control systems.

Chapter 29 presents an overview of several practical issues of implementation.

Here is what you need to know beforehand to follow these chapters:

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4;

� System theory, from Part II;

� Filters, from Sections 12.2 and 12.3 of Chapter 12;

� Control theory, from Part IV (though you may have skipped Chapters 19
and 23).
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Chapter 25

Digital signals and systems

Τοῦ δὲ ποσοῦ τὸ μέν ἑστι διωρισμένον, τὸ δὲ συνεξές.

Aristotle (384 BC � �322 BC), Kathegoriai, VI

Controllers designed with the methods from Part IV can be implemented in
many ways. All controllers until the mid-20th century used only mechanical,
pneumatic or electrical components, and can be found today in simple cases or
for special applications (remember Example 3.32).

Example 25.1. In the cicuit of Figure 25.1,

VA = −R1

R1
e = −e (25.1)

VB = −
1
Cs

R2
e = − 1

R2Cs
e (25.2)

u = −R4

R3
VA −

R4

R3
VB =

R4

R3︸︷︷︸
Kp

(
1 +

1

R2C︸︷︷︸
Ti

s

)
e (25.3)

This is, consequently, an implementation of a PI controller. If R4 and R2 are
potentiometers, the two parameters of the controller can be tuned sliding or
rotating two buttons.

Because (as we saw in Chapter 3) most systems nowadays include digital
signals, and because controllers are usually implemented using microprocessors,
computers (which of course have microprocessors), or Programmable Logic Con-
trollers (which are computers designed speci�cally to implement controllers in
harsh environments, resisting to dust, vibrations, extreme temperatures, etc.),
which only handle digital signals, it is important to study the consequences
digital signals have for control performance. Remember that a digital signal

Figure 25.1: A PI controller implemented with OpAmps, resistors, and a capac-
itor.
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Figure 25.2: A digital signal.

� only exists in some time instants, i.e. is discrete in time;

� only assumes values from a discrete set, i.e. is quantised in amplitude.

We will concentrate on the e�ects of discretisation (and thus speak mostly of dis-
crete signals and discrete signals, rather than digital signals and digital systems)
because

� when a signal only assumes values in some time instants, derivatives no
longer exist;

� whatever happens inbetween two sampling instants will only be known at
the next sampling instant. Thus, the e�ect of discretisation is similar to
that of a delay, and we know from Chapter 24 the problems this brings.
Notice, however, that, even if the sampling time Ts is constant, the delay
τ with which an event will be known will be variable. All we know is that
0 ≤ τ < Ts.

When time is discrete, time instants and signal values are numbered as in
Figure 25.2. Notice that

� if there are n+ 1 time instants, they are numbered from 0 to tn;

� yk is a shorthand for y(tk);

� if the sampling time Ts is constant, then

t0 = 0 (25.4)

t1 = Ts (25.5)

t2 = 2Ts (25.6)

t3 = 3Ts (25.7)

... (25.8)

tk = k Ts (25.9)

and

y0 = y(t0) = y(0) (25.10)

y1 = y(t1) = y(Ts) (25.11)

y2 = y(t2) = y(2Ts) (25.12)

y3 = y(t3) = y(3Ts) (25.13)

... (25.14)

yk = y(tk) = y(k Ts) (25.15)

It is because of (25.4) and (25.10) that it is reasonable to begin numbering
time instants at 0.



25.1. THE Z TRANSFORM 391

In practice, Ts is almost always constant, since this is much easier to implementTs constant in practice
� and it is fortunate that it be so, since the mathematical treament is much
simpler assuming a constant Ts, as we will always do in what follows.

25.1 The Z transform

We will now �nd the Laplace transform of a discrete signal y(t), such as (25.10)�
(25.15), that only assumes a value if t = k Ts, k ∈ Z+

0 . This signal is zero almost
everywhere. Remembering property (10.21) of the Dirac delta function, we write

y(t) = y(0)δ(t) + y(Ts)δ(t− Ts) + y(2Ts)δ(t− 2Ts) + y(3Ts)δ(t− 3Ts) + . . .+ y(k Ts)δ(t− k Ts) + . . .

= y0δ(t) + y1δ(t− Ts) + y2δ(t− 2Ts) + y3δ(t− 3Ts) + . . .+ ykδ(t− k Ts) + . . .

=

+∞∑
k=0

ykδ(t− k Ts) (25.16)

In this way, if we integrate y(t)

� and t is not a multiple of Ts (more precisely, ∼ ∃k ∈ Z+
0 : t = k Ts), the

integral is 0;

� and t = 0, we get back y(0) = y0;

� and t = Ts, we get back y(Ts) = y1;

� and t = 2Ts, we get back y(2Ts) = y2;

� and, in the general case, t = k Ts, k ∈ N, we get back y(k Ts) = yk.

Theorem 25.1. The Laplace transform of a discrete signal yk is

L [y(t)] = L

[
+∞∑
k=0

ykδ(t− k Ts)

]
=

+∞∑
k=0

yk
(
e−Tss

)k
(25.17)

Proof. Applying (2.1) to y(t), and then (24.1),

L [y(t)] =

∫ +∞

0

+∞∑
k=0

ykδ(t− k Ts)e−st dt

=

+∞∑
k=0

yk

∫ +∞

0

δ(t− k Ts)e−st dt︸ ︷︷ ︸
L [δ(t−k Ts)]

=

+∞∑
k=0

yk L [δ(t)]︸ ︷︷ ︸
1

e−k Tss (25.18)

This Laplace transform justi�es the following de�nitions:

De�nition 25.1. The delay operator z−1 is given by Delay operator z−1

z−1 = e−Tss (25.19)

Using this delay operator z−1, we can write the Laplace transform (25.17)
of a discrete signal yk in a more simple way:

De�nition 25.2. The Z transform of a discrete signal yk is its Laplace trans- Z [yk]
form written with the delay operator z−1:

Z [yk] =

+∞∑
k=0

ykz
−k (25.20)

Here are some consequences of the de�nition of z−1:

� the delay operator z−1 = e−Tss is a delay of one sampling time Ts;

� z−k = e−k Tss is a delay of k sampling times Ts;
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Figure 25.3: Three discrete time signals from Examples 25.2, 25.3, and 25.4,
together with the continuous time functions that they discretise.

� the forward operator z = eTss is a forward shift in time of one sampling Forward operator z
time Ts;

� zk = ek Tss is a forward shift in time of k sampling times Ts;

� because z and z−1 are de�ned with an exponential, neither is ever 0. Thus,
it is always possible to divide by z or by z−1.

Example 25.2. The Z transform of the Heaviside function (see Figure 25.3)

h0 = 1 (25.21)

h1 = 1 (25.22)

h2 = 1 (25.23)

h3 = 1 (25.24)

... (25.25)

hk = 1, ∀ k ∈ Z+
0 (25.26)

is the sum of a geometric series:

Z [hk] =

+∞∑
k=0

z−k =

+∞∑
k=0

(
z−1
)k

= z0 + z−1 + z−2 + z−3 + . . . (25.27)

The �rst term is z0 = 1, and the ratio is z−1; thus, the sum is

Z [hk] = H(z) =
1

1− z−1
=

z

z − 1
(25.28)

Example 25.3. The Z transform of the power function with base a 6= 0

x0 = a0 = 1 (25.29)

x1 = a1 = a (25.30)

x2 = a2 (25.31)

x3 = a3 (25.32)

... (25.33)

xk = ak, ∀ k ∈ Z+
0 (25.34)

is also the sum of a geometric series:

Z [xk] =

+∞∑
k=0

akz−k =

+∞∑
k=0

(a
z

)k
(25.35)

The �rst term is
(
a
z

)0
= 1, and the ratio is a

z ; thus, the sum is

Z [xk] = X(z) =
1

1− a
z

=
z

z − a
=

1

1− a z−1
(25.36)

Notice that (25.28) is a particular case of (25.36), for a = 1.
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Example 25.4. Function e−at can be discretised as xk = e−akTs , and its Z
transform is

Z [xk] =

+∞∑
k=0

e−akTsz−k =

+∞∑
k=0

(
z−1e−aTs

)k
(25.37)

The �rst term is 1, and the ratio is z−1e−aTs ; thus, the sum is

Z [xk] = X(z) =
1

1− z−1e−aTs
=

z

z − e−aTs
(25.38)

The Z transform, being a Laplace transform, enjoys the linearity property Z is linear
of L . This can also be shown from de�nition:

Theorem 25.2. The Z transform is a linear operator:

Z [a xk] =

+∞∑
k=0

a xkz
−k = aZ [xk] (25.39)

Z [xk + yk] =

+∞∑
k=0

(xk + yk) z−k

=

+∞∑
k=0

xkz
−k + ykz

−k =

+∞∑
k=0

xkz
−k +

+∞∑
k=0

ykz
−k

= Z [xk] + Z [yk] (25.40)

Theorem 25.3. The initial and �nal values of a discrete signal xk are retrieved Initial value theorem
Final value theoremfrom its Z transform X(z) as

x0 = lim
z→+∞

X(z) (25.41)

lim
k→+∞

xk = lim
z→1

(
1− z−1

)
X(z) (25.42)

Proof. (25.41) is an obvious consequence of the de�nition:

lim
z→+∞

X(z) = lim
z→+∞

x0 + x1z
−1 + x2z

−2 + x2z
−2 + x3z

−3 + . . . = x0 (25.43)

To prove (25.42), we �rst notice that since z−1 is a delay then z−1X(z) is found
as follows:

X(z) = Z [xk] =

+∞∑
k=0

xkz
−k (25.44)

⇒ z−1X(z) = Z [xk−1] =

+∞∑
k=0

xk−1z
−k (25.45)

We now subtract (25.45) from (25.44):

X(z)− z−1X(z) =

+∞∑
k=0

xkz
−k −

+∞∑
k=0

xk−1z
−k

⇔ X(z)
(
1− z−1

)
=

+∞∑
k=0

(xk − xk−1) z−k

⇒ lim
z→1

X(z)
(
1− z−1

)
= lim
z→1

+∞∑
k=0

(xk − xk−1) z−k = lim
n→+∞

n∑
k=0

(xk − xk−1)

= lim
n→+∞

x0 − x−1 + x1 − x0 + x2 − x1 + x3 − x2 + x4 − x3 + . . .+ xn−1 − xn−2 + xn − xn−1

= lim
n→+∞

xn − x−1︸︷︷︸
0

(25.46)

We assume x−1 = 0 because the �rst sample of the signal is x0.
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25.2 Discrete transfer functions

Because the time is discrete, there are no derivatives; it is impossible to calculate No derivatives in discrete
time

f ′(t) = lim
h→0

f(t)− f(t− h)

h
(25.47)

since h cannot be smaller than Ts, or f(t) will no longer be de�ned. That is
why, as we saw in Chapter 3, digital systems are not described by di�erential
equations, but rather by di�erence equations, that relate the successive values
of the input and the output. Operator z−1 is very useful to write di�erence
equations.

Example 25.5. The model

Y (s)

U(s)
=

1

2 + 3s
⇒ y(t) =

1

2
u(t)− 3

2
y′(t) (25.48)

can be approximated as

y(t) =
1

2
u(t)− 3

2

y(t)− y(t− Ts)
Ts

⇒ yk =
1

2
uk −

3

2

yk − yk−1

Ts
(25.49)

using the smallest possible time interval. We will see below in Section 25.3 and
Chapter 26 that this is not the only possible approximation, or even the best;
but it su�ces to show how di�erence equation (25.49) can be written using z−1:

yk =
1

2
uk −

3

2

yk − yk−1

Ts

⇔ Y (z) =
1

2
U(z)− 3

2

Y (z)
(
1− z−1

)
Ts

⇔ 2TsY (z) = TsU(z)− 3Y (z)
(
1− z−1

)
⇔ Y (z)

(
2Ts + 3− 3z−1

)
= U(z)Ts

⇔ Y (z)

U(z)
=

Ts
2Ts + 3− 3z−1

(25.50)

(25.50) is a di�erential equation put under the form of a discrete transferDiscrete transfer function
function. While a discrete transfer function relates the Z transform of the
output (in the numerator) and the input (in the numerator), just like a contin-
uous time transfer function, is not unusual to abuse notation and write instead

yk
uk

=
Ts

2Ts + 3− 3z−1
(25.51)

There are several ways of creating a discrete transfer function withMatlab:

� tf will create a discrete transfer function in z if, after the vectors with
the coe�cients of the numerator and the denominator, the sampling time
is given;

� tf will create a discrete transfer function in z−1 if this is requested by
option 'Variable';

� z = tf('z') creates the forward operator z, for which the sampling time
may or may not be speci�ed;

� z_1 = tf([0 1],1,'Variable','z^-1')

creates the delay operator z−1.

Simulink also has a block for discrete transfer functions.

Example 25.6. Transfer function

G(z) =
z + 2

3z2 + 4z + 5
=

z−1 + 2z−2

3 + 4z−1 + 5z−2
(25.52)

can be created as a function of z either as

>> tf([1 2],[3 4 5],0.5)
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Figure 25.4: Top row: a signal, discrete in time, and the continuous signals
obtained with a ZOH and a FOH. It is clear that the FOH easily over or un-
derestimates the signal. Bottom row: the same signal, corrupted by noise. The
ZOH is a�ected; the FOH provides wild outputs.

or as

>> z = tf('z',0.5);

>> (z+2)/(3*z^2+4*z+5)

As a function of z−1, we either make (notice the leading zero)

>> tf([0 1 2],[3 4 5],0.5,'Variable','z^-1')

or

>> z_1 = tf([0 1],[1],0.5,'Variable','z^-1');

>> (z_1+2*z_1^2)/(3+4*z_1+5*z_1^2)

25.3 Zero order hold

The usual way of converting a discrete signal into a continuous one is the zero ZOH
order hold (ZOH), which we already met in Figure 3.13. It keeps the last
value of the discrete signal constant until there is a new value. The output of a
ZOH is a sequence of steps; i.e. a sequence of zero-order polynomials, that is to
say, a zero-order spline (hence the name).

A possible alternative would be a �rst-order hold, that extrapolates the FOH
value from the last two previous samples, as seen in Figure 25.4. That Figure
also makes clear the reason why this is seldom done: any noise will make the
extrapolation far poorer than the result of a ZOH (and the electronics are of
course harder to implement).

Control loops with a digital controller and a continuous plant are often found
in practice. In that case, there must be a ZOH converting the digital control
action uk provided by the controller into a continuous signal u(t), as seen in
Figure 25.5. In that case, when discretising the plant, we have to �nd yk

uk
,

and thus the e�ects of the ZOH must be accounted for. The resulting discrete
transfer function is usually denoted by HG(z) = yk

uk
, to stress that it is not just

G(s) that is being discretised, but the ZOH too; the H stands for hold.
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Figure 25.5: Control loop with a digital controller and a continuous plant.
Notice that the reference rk is discrete in time, just as the measured output
ŷk and the closed loop error ek. The plant output y(t) is continuous, and
the control action provided by the controller must be converted from a digital
signal uk into a continuous signal u(t) by a ZOH. The part of the loop within
the dashed line is what Theorem 25.4 is concerned with.

Theorem 25.4. A continuous plant G(s) = y(s)
u(s) with a ZOH at its input (as Z transform when there is

a ZOHshown in Figure 25.5) has a discrete equivalent HG(z) = yk
uk

given by

HG(z) =
z − 1

z
Z

[
G(s)

s

]
= (1− z−1)Z

[
G(s)

s

]
(25.53)

Proof. The output u(t) of the ZOH is given by a sequence of steps:

u(t) = uk, k Ts ≤ t < (k + 1)Ts (25.54)

This can be written as

u(t) =

+∞∑
k=0

xk

(
H
(
t− k Ts

)
−H

(
t− (k + 1)Ts

))
(25.55)

Thus

u(s) = L [u(t)] =

+∞∑
k=0

uk

(
1

s
e−k Tss − 1

s
e−(k+1)Tss

)

=

+∞∑
k=0

uk

z−k︷ ︸︸ ︷
e−k Tss︸ ︷︷ ︸

Z [uk]

1−

z−1︷ ︸︸ ︷
e−Tss

s︸ ︷︷ ︸
due to the ZOH

(25.56)

and

yk
uk

= HG(z) = Z

[
G(s)

1− z−1

s

]
= (1− z−1)Z

[
G(s)

s

]
(25.57)

25.4 Choosing the sampling time

The sampling time of a system must be appropriate to the plants and signals
involved. It cannot be too large, and should not be too short.

� If the sampling time is too large, the behaviour of the system will not be
known. For instance, to study sea waves a sampling time of 10 s would
not do, since many waves have shorter periods. These would never be
measured.

� It the sampling time is too short, there will be useless measurements,
and huge senseless data �les. Furthermore, since experimental data is
always corrupted with some noise, short sample times mean that more
high frequency noise is being acquired. For instance, to study the tides a
sampling time of 10 ms would not do, since the tides take hours to rise
and fall (with periods of either 12 h or 24 h, depending on the zone of
Earth). Most of what would be measured would be high frequency noise
of the sensor.

De�nition 25.3. If the sampling frequency is ωf = 2π
Ts
, the Nyquist fre-

quency is ωf
2 = π

Ts
.Nyquist frequency
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Figure 25.6: A sinusoid, sampled with di�erent sampling periods. Notice how,
if the sampling frequency is too small, the frequency of the sinusoid is unrecog-
nisable. It seems to be lower than it is: this phenomenon is called aliasing.

Theorem 25.5. Let x(t) = sinωt be a sinusoid, and xt be a discrete signal
obtained sampling x(t) with sampling time Ts. If the frequency of the sinusoid
is above the Nyquist frequency, ω > π

Ts
, it cannot be found from the discrete

signal xt.

We will not present a formal proof, but this result is rather intuitive. It tells
us that we need at least two points per period to sample a sinusoid so that its Minimum sampling fre-

quencyfrequency will be recognisable. Otherwise, a phenomenon called aliasing will
Aliasingoccur, illustrated in Figure 25.6.

However, this bare minimum of two sampling instants per period is most
undesirable: the amplitude of a sinusoid sampled in this way will surely be
wrong. Only with an exceptional luck would the crest and the through of the
sinusoid be sampled, as seen in the �rst case of Figure 25.7. It would be very
likely that the sample instants would match phases other than ±90◦, and thus
the amplitude of the sampled sinusoid will be some random value, below the true
one, as in the second and third cases of Figure 25.7. And, with an exceptional
lack of luck, the last situation of Figure 25.7, in which only the zero crossings
are hit, might arise.

In practice it is expedient to have 10 to 20 points per period. So, if the Rule of thumb for Ts
sinusoid has period T and frequency ω = 2π

T , the sampling time Ts and the
sampling frequency ωs = 2π

Ts
should verify

T

20
≤ Ts ≤

T

10
⇔ 2π

20ω
≤ Ts ≤

2π

10ω
⇔ 20ω ≥ ωs ≥ 10ω (25.58)

This is a heuristic rule; the lower limit for Ts ensures that the amplitude is
never underestimated by more than 5%, as seen in Figure 25.8, which depicts
the most unfavourable case possible. It may sometimes be convenient to have
an even higher sampling frequency.

Most signals, of course, are not sinusoidal. So rule (25.58) must be applied
to the fastest frequency (i.e. the smallest perior) found in the signal � or at
least the fastest frequency we may be interested in.
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Figure 25.7: A sinusoid of frequency ω is discretised using sampling frequency
ω
2 . The �rst sampling time can fall at any phase of the sinusoid, leading to very
di�erent discrete signals. Top row: very favourable situation, only possible with
exceptional luck. Middle rows: usual situations. Bottom row: very unfavourable
situation, only possible with exceptional lack of luck.

Figure 25.8: A sampling time Ts = T
10 ensures that the amplitude A of a

sinusoid with period T (and frequency 2π
T ) can be found from the discretised

signal with an error which never exceeds 5%. The situation depicted is the most
unfavourable one as to the phases that sampling instants fall on.
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Figure 25.9: Zones where poles are stable. Left: poles in s. Right: poles in z.

25.5 Stability and causality of discrete transfer
functions

Let us consider a plant with a pole given by s = a+ jb. Because

z = eTss ⇔ s =
1

Ts
log z (25.59)

the pole will be mapped to

z = eTsa+jTsb = eTsa︸︷︷︸
magnitude

ejTsb︸ ︷︷ ︸
phase

(25.60)

We see that the pole in z will have

� a magnitude that depends only on the real part of s,

� a phase that depends only on the imaginary part of s.

Also,

� if pole s is stable, i.e. if a < 0, pole z will have a magnitude eTsa < 1, i.e. Stable poles in z are inside
the unit radius circlez will be inside the unit radius circle;

� if pole s is on the imaginary axis, i.e. if a < 0, pole z will have a magnitude
e0 = 1, i.e. z will be on the unit radius circle;

� if pole s is unstable, i.e. if a > 0, pole z will have a magnitude eTsa > 1,
i.e. z will be outside the unit radius circle. Outside the unit radius

circle, poles in z are unsta-
bleIn other words,

� poles in s are stable to the left of the imaginary axis, and unstable to the
right;

� poles in z are stable inside the unit radius circle, and unstable outside. Stable poles have |z| < 1

Unstable poles have |z| > 1Additionally,

� simple poles in s on the imaginary axis are marginally stable: the same
applies to simple poles in z on the unit radius circle;

� multiple poles in s on the imaginary axis are unstable: the same applies
to multiple poles in z on the unit radius circle.

See Figure 25.9.

Example 25.7. Transfer function G1(z) = 1
z+2 has a pole at z = −2; since

|z| = 2 > 1, this is an unstable pole, and G1(z) is unstable.
Transfer function G2(z) = 1

z− 1
2

has a pole at z = 1
2 ; since |z| =

1
2 < 1, this

is an stable pole, and G2(z) is stable.
Figure 25.10 shows the unit step responses of G1(z) and G2(z), by which it

can be con�rmed that the �rst is stable and the second is not.
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Figure 25.10: Unit step responses of G1(z) (left) and G2(z) (right) from Exam-
ple 25.7. The sample time (which is irrelevant for stability) was assumed to be
1 s.

Notice that what matters are poles in z; even if a discrete transfer function Find poles in z, not in z−1

is given as a ratio of two polynomials in z−1, what matters for stability are the
roots of the denominator given as values of z.

Example 25.8. The roots of the denominator of G(z) = z−1+6
z−2+5z−1+6 are z−1 =

2 and z−1 = 3. Because this corresponds to z = 1
2 and z = 1

3 , we conclude that
G(z) is stable.

We saw in Chapter 11 that only those transfer functions having more poles
than zeros, i.e. which are proper, can be physically possible. The same happens
in z; it is in fact even much clearer in z.

Example 25.9. Let

G(z) =
b2z

2 + b1z + b0
a1z + 1

(25.61)

This transfer function is not proper, since it has two zeros but only one pole.
The corresponding di�erence equation is

b2z
2 + b1z + b0
a1z + 1

=
yk
uk
⇔

(b2z
2 + b1z + b0)uk = (a1z + 1)yk ⇔

b2uk+2 + b1uk+1 + b0uk = a1yk+1 + yk ⇔

yk+1 =
b2
a1
uk+2 +

b1
a1
uk+1 +

b0
a1
uk −

1

a1
yk ⇔

yk =
b2
a1
uk+1 +

b1
a1
uk +

b0
a1
uk−1 −

1

a1
yk−1 (25.62)

The output yk depends on a future input, uk+1.

This Example illustrates the following result:

Theorem 25.6. If a discrete transfer function has m zeros and n poles, such
that m > n, then the output yk depends from future inputs uk+1, . . . , uk+m−n.

A system isCausality

� causal, if its output does not depend from future inputs;

� non-causal, if its output depends from future inputs.

So, discrete transfer functions that are not proper are non-causal. By extension,
continuous transfer functions that are not proper are called non-causal too.

Remark 25.1. The number of zeros and poles that matters is found in z, not in

z−1. We might be tempted to say that H(z) =
1
3 z
−2+ 1

3 z
−1+ 1

3

1 has a polynomial
of order 2 in the numerator and a polynomial of order 0 in the denominator;
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Figure 25.11: Strips of the complex plane where s is represented that are mapped
onto the entire complex plane where z is represented.

of course, with 2 zeros and 0 poles it would not be causal. But its di�erence
equation is

1

3
z−2 +

1

3
z−1 +

1

3
=
yk
uk
⇒ yk =

1

3
uk +

1

3
uk−1 +

1

3
uk−2 (25.63)

and it is clear that the output depends on the current and on past inputs, not

on anything future. We should have considered H(z) =
1
3 + 1

3 z+
1
3 z

2

z2 and noticed
that the transfer function has in fact 2 poles and 2 poles, and thus no problems
of causality.

25.6 Primary and complementary strips in s

Since s = a + jb is mapped to z = eTsaejTsb = eTsa cos(Tsb) + jeTsa sin(Tsb),
and the cosine and sine functions are periodical, it is clear that all points of the
form

s = a+ j

(
b+

2kπ

Ts

)
, k ∈ Z (25.64)

will be mapped to very same point

z = eTsa cos

(
Ts

(
b+

2kπ

Ts

))
+ jeTsa sin

(
Ts

(
b+

2kπ

Ts

))
= eTsa cos (Tsb) + jeTsa sin (Tsb) (25.65)

This means that the complex plane where s is represented can be split into an
in�nite number of horizontal strips, of width 2π

Ts
, as seen in Figure 25.11. Each Each strip in s mapped to

the entire plan in zof them is mapped onto the entire complex plane where z is represented.
The existence of in�nite points s mapped to the same value of z is a con-

sequence of Theorem 25.5. Many sinusoids, when sampled in time, result in
the same discrete signal, as seen in Figure 25.12. Of course, only one will be
properly sampled: the one with a frequency below the Nyquist frequency, i.e.
the one found inside the strip of the complex plane centred on the real axis,
from −j πTs to +j πTs . For this reason, this strip is called primary strip, and
the others, where sinusoids have frequencies that cannot be properly sampled,
are called complementary strips.
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Figure 25.12: Di�erent sinusoids sampled with the same sampling time can
result in the same discrete signal.

Glossary

They were really getting quite fond of their strange pet and hoped
that Aslan would allow them to keep it. The cleverer ones were
quite sure by now that at least some of the noises which came out
of his mouth had a meaning. They christened him Brandy because
he made that noise so often.

C. S. Lewis (1868 � �1963), The Magician's nephew (1955), 14

complementary strip faixa complementar
delay operator operador de atraso
forward operator operador de avanço
primary strip faixa primária
Programmable Logic Controller (PLC) autómato programável (AP)
zero order hold retentor de ordem zero

Exercises

1. In a closed loop control system, the error e and the control action u are
electrical signals. Design analog circuits to implement:

(a) A proportional controller u
e = 10, using one OpAmp and two resis-

tors.

(b) A proportional controller u
e = 0.5, using two OpAmps and four re-

sistors. Why is it that in this case one OpAmp is not enough?

(c) A PD controller u
e = 5 (1 + 0.1s).

(d) A PID controller u
e = 5

(
1 + 1

2s + 0.1s
)
.

(e) A generic PID controller u
e = Kp

(
1 + 1

Tis
+ Tds

)
.

(f) A lead controller u
e = 50s+0.1

s+0.1 .

(g) A lag controller u
e = s+10

s+0.5 .

(h) A generic lead-lag controller u
e = K s+b

s+p .

2. Discuss if a 100 ms sampling time is appropriate for the following systems,
and propose a di�erent value when it is not:
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(a) A system with a 100 rad/s open-loop bandwidth.

(b) A system with a 5 rad/s open-loop bandwidth.

(c) A system with a 0.3 rad/s open-loop bandwidth.

(d) A tidal energy converter.

(e) The controller of the opening of the valves in the engine of a car.

(f) The controller of the opening of the valves in the diesel engine of a
ship running at 80 rpm.

3. Knowing that G(z) = z2−3
(z−1)2 and that the sampling time is 100 ms, �nd

x(t) for t = 0 s, 0.1 s, 0.2 s,. . . 2 s, when

(a) the input is a unit impulse;

(b) the input is a unit step;

(c) the input is u0 = 1, u1 = 2, and 0 otherwise.

4. Consider a signal with Z transform given by Z{x (t)} = X (z) =
z

(z + 1) (z − 1)
.

Let Ts be the sampling time. Therefore:

A) x (t) = 1− (−1)
nTs , n = 0, 1, 2, . . .

B) x (t) = 1
2

[
1− (−1)

nTs
]
, n = 0, 1, 2, . . .

C) x (t) = 2
[
1− (−1)

nTs
]
, n = 0, 1, 2, . . .

D) None of the above.

5. Consider signal x(t), such that X (s) = L{x(t)} =
s+ 2

(s+ 1)
2

(s+ 3)
.

(a) Obtain X (z) = Z {x (t)} for a generic sampling time h.

(b) Do the same for h = 1 s.

(c) Do the same for a sampling frequency of 10 Hz.

6. Consider a signal with Z transform given by Z{x (t)} =
2z
(
z − 5

12

)(
z − 1

2

) (
z − 1

3

) .
(a) Its inverse transform is:

A) x (t) =

(
1

2

)k
+

(
1

3

)k
, k = 0, 1, 2, . . .

B) x (t) =

(
1

2

)k
+

(
1

3

)k
−
(

5

12

)k
, k = 0, 1, 2, . . .

C) x (t) =

(
5

12

)k
−
(

1

2

)k
−
(

1

3

)k
, k = 0, 1, 2, . . .

D) None of the above.

(b) Let h be the sampling period. From the transform de�nition, it can
be concluded that:

E) X (z) = 2 +
5

6
z−1 +

13

36
z−2 + · · · ⇒ x (0) = 2, x (h) =

5

6
, x (2h) =

13

36
, . . .

F) X (z) = 1 +
1

2
z−1 +

1

3
z−2 + · · · ⇒ x (0) = 1, x (h) =

1

2
, x (2h) =

1

3
, . . .

G) X (z) =
5

12
− 1

2
z−1 − 1

3
z−2 + · · · ⇒ x (0) =

5

12
, x (h) = −1

2
, x (2h) = −1

3
, . . .

H) None of the above.

7. Given X(z) =
z

(z − 1)
2

(z − 2)
determine x(kh), k = 0, 1, 2, . . . , where h

is the sampling period.

8. Present a formal proof of Theorem 25.6, following the reasoning in Exam-
ple 25.9.
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Chapter 26

Digital approximations of

continuous systems

In this chapter

26.1 Using the Z transform

Z

26.2 Mapping poles and zeros

map

26.3 Backward �rst order approximation

back

26.4 Forward �rst order approximation

forward

26.5 The Tustin approximation

Tustin

26.6 Approximating controllers

This chapter is still being written. In the picture: National Pantheon, or
Church of Saint Engratia, Lisbon (source: http://www.panteaonacional.gov.
pt/171-2/historia-2/), somewhen during its construction (1682�1966).
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Glossary

Pirenne leaned over the table to get a better view and Hardin contin-
ued: �The message from Anacreon was a simple problem, naturally,
for the men who wrote it were men of action rather than men of
words. It boils down easily and straightforwardly to the unquali�ed
statement, when in symbols is what you see, and which in words,
roughly translated, is, `You give us what we want in a week, or we
take it by force.' �

Isaac Asimov (1920 � �1992), Foundation, II 5 (The Encyclopedists,
Astounding Science-Fiction, May 1942)

word in English word in Portuguese
palavra em inglês palavra em português

Exercises

1. The PD controller C(s) = 8s+ 32 has to be implemented with a sampling
time of 0.02 s. Find the di�erence equation that should be implemented
in a microprocessor.

2. The roll of the ship from Exercise 5 of Chapter 21 is going to be controlled
with a PID controller C(s) = 2s + 11 + 1

s , implemented with a sampling
time of 10 ms. Find the di�erent digital implementations of the con-
troller that result from using di�erent approximations, implement them
using Matlab commands, and verify which approximation is the best. The

system to be controlled is given by G(s) =
9

s2 + 1.2s+ 9
.



Chapter 27

Study and control of digital

systems

Weston was pale and haggard from a night of calculations intricate
enough to tax any mathematician even if his life did not hang on
them.

C. S. Lewis (1868 � �1963), Out of the silent planet (1938), 21

This chapter is still being written.

27.1 Block diagrams

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

27.2 Pole placement

This chapter is still being written.

27.3 Steady state errors

407

http://www.panteaonacional.gov.pt/171-2/historia-2/


408 CHAPTER 27. STUDY AND CONTROL OF DIGITAL SYSTEMS

27.4 Root locus

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

27.5 Jury and Routh-Hurwitz criteria

This chapter is still being written.

27.6 Frequency responses

In the picture: National Pantheon, or Church of Saint Engratia, Lisbon (source:
http://www.panteaonacional.gov.pt/171-2/historia-2/), somewhen dur-
ing its construction (1682�1966).

27.7 Studying stability from frequency responses

Glossary

�But I think I've learnt to manage these donkeys, Fred.� I leant
forward and quietly gave the order to turn left into Peter's large
hairy ear. �Zur linken Zeite, mein Freund.�

Peter veered to the left, barging into Paul and very nearly unseating
Fred. We would have left the track altogether and started across the
Forest had I not quickly murmured to him in German to go right
again and then straight on.

�It's quite simple,� I explained to Fred. �Mr. Mattock said that Aunt
Lot was always muttering in German. That's how she talked to the
donkeys. We'll be all right from now on.�

�You mean you'll be all right,� grumbled Fred. �My subject's His-
tory, not German. You'll have to talk for us both.�

John Pudney (1909 � �1977), Spring adventure (1961), 1

word in English word in Portuguese
palavra em inglês palavra em português

http://www.panteaonacional.gov.pt/171-2/historia-2/
http://www.panteaonacional.gov.pt/171-2/historia-2/
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Figure 27.1: Block diagram of Exercise 1.

Figure 27.2: Block diagram of Exercise 2.

Exercises

1. Consider the system shown in Figure 27.1 with sampling period h. Is the

closed-loop transfer function given by
Y (z)

R(z)
=

G(z)

1 +G(z)H(z)
, by

Y (z)

R(z)
=

G(z)

1 +GH(z)
,

or by neither of these transfer functions?

2. Consider the system shown in Figure 27.2 with sampling period h. Which
of the following transfer functions corresponds to this closed-loop?

(a)
Y (z)

R(z)
=

G1G2(z)

1 +G1G2(z)

(b)
Y (z)

R(z)
=

G1(z)G2(z)

1 +G1G2(z)

(c)
Y (z)

R(z)
=

G1G2(z)

1 +G1(z)G2(z)

(d)
Y (z)

R(z)
=

G1(z)G2(z)

1 +G1(z)G2(z)

3. The discretised transfer function relating the voltage u(t) applied to the
motor with the azimuth angle θ(t) of the antenna in Exercise 2 of Chap-

ter 22 is HG(z) =
0.003z + 0.003

z2 − 1.975z + 0.975
, with a sampling time of 0.25 s.

Figure 27.3 shows the Bode diagram of the open loop formed by the plant

and by controller C(z) =
30.361(z − 0.882)

z − 0.286
.

(a) Is the closed loop stable?

(b) Can this controller follow constant angle references?

4. The discretised transfer function relating the depth of facing (output)
performed by the lathe of Exercise 4 from Chapter 22 with the control
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Figure 27.3: Bode diagram of Exercise 3.



410 CHAPTER 27. STUDY AND CONTROL OF DIGITAL SYSTEMS

action of the motor (input) is

Gp(z) =
0.0477(z + 1.65)(z + 0.0788)

(z − 1)(z − 0.4966)(z − 0.0302)
(27.1)

with a 0.7 s sampling time.

(a) Knowing that the bandwidth of the closed loop was estimated as
0.622 rad/s, explain if the sampling time is reasonable or not.

(b) Find the values of a proportional controller that stabilises this plant.

5. A helium-�lled spherical balloon is to be designed so that its weight is
compensated by its hydrostatic lift, and thus its height h(t) will be given
by

G(s) =
h(s)

u(s)
=

1

s(10s+ 1)
(27.2)

where u(t) is the command action of the vertical thrust of its propellers.

(a) Find the di�erential equation that models the plant, considering only
a mass m, a buoyancy B, a weight W , a drag D and a propulsion T .

(b) Let m = 300 kg, let the drag coe�cient be β = 30 Ns/m, and let the
densities of the �uids be ρair = 1 kg/m3 and ρHe = 0.2 kg/m3. Find
the radius of the balloon.

(c) Let T (t) = 30u(t). Prove G(s) and �nd its discrete equivalent, as-
suming a 0.8 s sampling time and a zero-order hold.

(d) Study the stability of the discrete closed-loop using the root-locus
method.

(e) Find a digital controller that ensures closed-loop poles at 0.9 rad/s
and 0.266± 0.33j rad/s.

(f) Check if this controller achieves or not a 10 dB attenuation for a
0.02 rad/s disturbance.

(g) Study the closed loop's stability using the Nyquist diagram.

6. The transfer function of a robot is

G(s) =
1.6

(s+ 1)2
(27.3)

(a) Find the values of proportional controllers that stabilise the plant.

(b) Show that if there is a zero-order hold with 0.1 s sampling time in
the control loop then the transfer function of the plant is HG(z) =

0.0075z + 0.007

z2 − 1.81z + 0.8187
.

(c) Plot the root locus of HG(z).

(d) Find the values of proportional controllers that stabilise the discrete
plant.

(e) Compare the values of the proportional controller that can be used
in both the continuous and the discrete cases.

7. Consider an inverted pendulum, that deviates from the vertical by an angle
φ(t), and is controlled by a control action u(t) that moves the base of the
pendulum sidewards (see Figure 27.4). The corresponding (linearised)
transfer function is

G(s) =
Φ(s)

U(s)
=

5s

(s− 5)(s+ 5)(s+ 0.2)
=

5s

s3 + 0.2s2 − 25s− 5
(27.4)

(a) Show that the discrete equivalent of (27.4), when a zero-order hold
with a 200 Hz sampling frequency is applied at the input of the plant,
is

HG(z) =
6.2482× 10−5(z − 1)(z + 1)

(z − 1.025)(z − 0.999)(z − 0.9753)
(27.5)

(b) Figure 27.5 shows the Nyquist plot of (27.5). Show that (27.5) cannot
be stabilised with a proportional controller.
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Figure 27.4: Inverted pendulum in the Laboratory of Control and Robotics; its
parameters are not those of transfer function (27.4).
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Chapter 28

Non-linearities in control

systems

This chapter concerns the e�ects of non-linearities in control systems. Non-
linearities can stem:

� From the plant. We saw in Chapter 8 that soft non-linearities can be
linearised, but of course that is only an approximation.

� From the actuator. While the actuator is often considered as part of
the plant, it is better to consider it a separate model not only if it can be
easily replaced but also if it is the source of non-linear behaviour. One
particular non-linearity, saturation, is inevitable in any actuator, since no
actuator can provide an arbitrarily large control action (this would always
require in�nite energy). At most, this non-linearity can be neglected if it
is certain that in no case the controller will ever require a control action
too large for the actuator. In mechatronic systems, mechanical parts of-
ten originate non-linearities such as dead zones (remember Figure 8.5) or
backlash (remember Figure 4.16).

� From the sensor. As we saw in Chapter 13, there are sensors with non-
linear transductions, which can be accounted for (in which case it is as if
they did not exist) or linearised.

� From the control law itselft. Design strategies of non-linear control
laws fall outside the scope of these Lecture Notes; only one particular case
of one particular strategy (that of reset control) will be presented below
in Chapter 29.

The study of their e�ect is easier in continuous time (i.e. using transfer functions
in s, not in z); in any case, the e�ects of non-linearities are similar in discrete
time as well.

28.1 Non-linearities and responses in time

The e�ect of non-linearities in time responses of open-loop control systems is
fairly easy to determine. In closed-loop, because the e�ect of the non-linearity is
fed back, this is not that easy, but can be done using the equivalent gain Keq, Equivalent gain
de�ned as the ratio between the output y and the input x of the non-linearity
(having hence no dimensions):

Keq =
y

x
(28.1)

Example 28.1. Consider the non-linearity described in Figure 28.1, combining
a dead-zone with saturation:

y =


0, if − 1 < x < 1

x, if − 3 ≤ x ≤ −1 ∨ 1 ≤ x ≤ 3

−3, if x < −3

3, if x > 3

(28.2)

413
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Figure 28.1: Non-linearity (left) and its equivalent gain (right).

Figure 28.2: Control loop with one non-linearity.

The equivalent gain, also shown in the Figure, is

y =


0
x , if − 1 < x1

x
x , if − 3 ≤ x ≤ −1 ∨ 1 ≤ x ≤ 3
−3
x , if x < −3

3
x , if x > 3

=


0, if − 1 < x1

1, if − 3 ≤ x ≤ −1 ∨ 1 ≤ x ≤ 3
3
|x| , if x < −3 ∨ x > 3

(28.3)

Notice that, for input x = 0, the equivalent gain was, of course, extended by
continuity.

If a closed-loop con�guration such as the one seen in Figure 28.2 can beEquivalent gain and root-
locus found, in which the non-linearity a�ects the error, then the equivalent gain

must be combined with a means of studying the in�uence of the gain in closed-
loop stability, such as the root-locus diagram and the Routh-Hurwitz criterion,
to assess the in�uence of the non-linearity in the control loop.

Example 28.2. In the control system of Figure 28.3,

G(s) =
s+ 5

s2
(28.4)

The root-locus of (28.4) is given in Figure 28.4. We now consider two cases,
both shown in Figure 28.5:

� When the reference is r = 1, the initial value of the error is e(0) = 1 (and
then the error decreases). The control action never saturates, so we always
have Keq = 1. The response is oscillatory, with an overshoot only slightly
larger than what might be expected from the position of the closed loop
poles. (Remember that the discrepancy is not surprising since the closed
loop is not a second order system without zeros.)
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Figure 28.3: Control loop of Examples 28.2 and 28.3 (top), and equivalent gain
of the saturation (bottom).
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Figure 28.4: Root locus of (28.4) from Example 28.2.

� When the reference is r = 5, the initial value of the error is e(0) = 5, the
control action saturates at u(0) = 1, and so Keq = 1

5 = 0.2. In Figure 28.4
we see that this corresponds to a more oscillatory behaviour, as expected
from the poles closer to the imaginary axis; the overshoot is somewhat
lower than, but in line with, the expected value.

Example 28.3. If in the control system of Figure 28.3 the system is rather

G(s) =
s+ 5

s(s2 + 0.25s+ 1)
(28.5)

with the root-locus given in Figure 28.6, the values of the gain ensuring closed-
loop stability are found as follows:

y(t)

r(t)
=

K s+5
s3+0.25s2+s

1 +K s+5
s3+0.25s2+s

=
Ks+ 5K

s3 + 0.25s2 + s(K + 1) + 5K
(28.6)

s3 1 K + 1
s2 0.25 5K

s K + 1− 5K
0.25

1 5K

(28.7)

{
K + 1− 20K > 0

5K > 0
⇒

{
K < 1

19 = 0.0526

K > 0
(28.8)

We now consider two cases as well, both shown in Figure 28.7:

� When the reference is r = 1, the initial value of the error is e(0) = 1.Limit cycle
The control action is limited to 1, so the equivalent gain is 1

1 , and thus
the system becomes unstable. However, in the Figure we see that the
amplitude of the oscillations does not grow inde�nitely, as might be ex-
pected. This is because of the saturation. As the error grows, since the
control action is limited to [−1, 1], the equivalent gain becomes smaller,
and the loop eventually falls back into the zone of stability. As the er-
ror decreases, the equivalent gain increases, and the control loop becomes
unstable again. Because of this switching between a stable and an unsta-
ble situation, around the limit of stability, the oscillations end up with a
constant amplitude. This is called a limit cycle.
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Figure 28.5: Example 28.2: reference 1 (top) and reference 5 (bottom).
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Figure 28.6: Root locus of (28.5) from Example 28.3.

� When the reference is r = 100, the initial value of the error is e(0) =
100. The control action is limited to 1, so the equivalent gain is 1

100 , and
the system is stable. As the error becomes smaller, the equivalent gain
increases, the system becomes unstable, and we have a limit cycle again.

Notice that the amplitude of the oscillations is the same in both cases of Fig-
ure 28.7. We will see below how it can be found. But there is a signi�cant
di�erence between the two cases. When r = 1, the amplitude of the oscillations
of the limit cycle is so large in relation to r that the situation is in practice as bad
as if the loop were unstable. When r = 100, the amplitude of the oscillations,
not being neglectable, may in some cases be tolerable. Hence the importance of
estimating limit cycles, and their amplitudes, caused by non-linearities.

Remark 28.1. Complex conjugate poles on the imaginary axis can also orig-
inate oscillations with a constant amplitude, but a limit cycle is caused by a
non-linearity instead.

28.2 Describing function

To better study limit cycles, which originate oscillations, it is necessary to study
the in�uence of non-linearities in the frequency response of control loops. This
is at �rst sight impossible: if there is a non-linearity, the output of the control
system for a sinusoidal input (i.e. reference) is no longer a sinusoid with the same
period of the input. Hence it is impossible to speak about a gain and a phase, as
when linear systems are studied. But it is possible to �nd an approximate gainA describing function has

an approximate gain and
an approximate phase

and an approximate phase, using a Fourier series expansion, if the non-linear
output y(t) for a sinusoidal input u(t) = U sin(ωt) (hence with period T = 2π

ω )
is

� periodic, with period T :

T = inf
{
T̃ : y(t+ T̃ ) = y(t), ∀t

}
(28.9)

(in other words, T is shortest period of time after which y(t) repeats itself);

� even, in the sense that

y

(
t+

T

2

)
= −y(t), ∀t (28.10)

Theorem 28.1. Let f(x) be a limited, periodic function, with period 2π, andFourier series expansion
a �nite number of maxima, minima and discontinuities. Then the Fourier series
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Figure 28.7: Example 28.3: reference 1 (top), reference 100 (centre), reference
consisting of three steps (bottom).
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f(x) given by

f(x) =
a0

2
+

+∞∑
k=1

ak cos kx+ bk sin kx (28.11)

ak =
1

π

∫ 2π

0

f(x) cos kx dx (28.12)

bk =
1

π

∫ 2π

0

f(x) sin kx dx (28.13)

converges in the domain of f and veri�es

f(t) =
lim
τ→x−

f(τ) + lim
τ→x+

f(τ)

2
(28.14)

Proof. The proof can be found in any textbook of Calculus.

Corollary 28.1. Suppose that f(x) has an arbitrary period T , and that ω =
2π
T ⇔ T = 2π

ω . Then function g(x) = f
(
T
2πx
)

= f
(
x
ω

)
has period 2π, and we

can write

g(x) = f
(x
ω

)
=
a0

2
+

+∞∑
k=1

ak cos kx+ bk sin kx (28.15)

ak =
1

π

∫ 2π

0

f(x) cos kx dx (28.16)

bk =
1

π

∫ 2π

0

f(x) sin kx dx (28.17)

Making t = x
ω ⇔ x = ωt⇒ dx = ω dt, we get

f(t) =
a0

2
+

+∞∑
k=1

ak cos kωx+ bk sin kωx (28.18)

ak =
ω

π

∫ 2π
ω

0

f(t) cos kωt dt (28.19)

bk =
ω

π

∫ 2π
ω

0

f(t) sin kωt dt (28.20)

In our case, from (28.10), (28.19) and the de�nition of ω comes

a0 =
2

T

∫ T

0

y(t) dt

=
2

T

∫ T
2

0

y(t) dt+
2

T

∫ T

T
2

y(t) dt︸ ︷︷ ︸
−

∫ T/2
0 y(t) dt

= 0 (28.21)

and so we make

y(t) ≈ a1 cosωt+ b1 sinωt (28.22)

We now make use of the following lemma:

Lemma 28.1.

A cos(x) +B sin(x) =
√
A2 +B2 sin

(
x+ arctan

A

B

)
(28.23)

Proof.√
A2 +B2 sin

(
x+ arctan

A

B

)
=
√
A2 +B2 sinx cos arctan

A

B
+
√
A2 +B2 cosx sin arctan

A

B

=
√
A2 +B2 sinx

B√
A2 +B2

+
√
A2 +B2 cosx

A√
A2 +B2

(28.24)
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Figure 28.8: On-o� non-linearity.

From (28.22) and (28.23), we conclude that, if we let

a =
ω

π

∫ 2π
ω

0

y(t) cosωtdt =
2

T

∫ T

0

y(t) cos
2πt

T
dt (28.25)

b =
ω

π

∫ 2π
ω

0

y(t) sinωtdt =
2

T

∫ T

0

y(t) sin
2πt

T
dt (28.26)

then the approximate gain of the non-linearity is given by

gdf =

√
a2 + b2

U
(28.27)

and the approximate phase is given by

ϕdf = arctan
a

b
(28.28)

These approximate gain and phase depend on ω and so de�ne a complex function
of input amplitude U and frequency ω which is called describing function:

N(U, ω) = gdf(ω)ejϕdf (ω)

=

√
a2 + b2

U

(
cos arctan

a

b︸ ︷︷ ︸
b√

a2+b2

+j sin arctan
a

b︸ ︷︷ ︸
a√

a2+b2

)

=
b+ ja

U
(28.29)

Example 28.4. Let us �nd the describing function of the static two-valued Describing function of on-
o�non-linearity represented in Figure 28.8, known as on-o� (the higher output

standing for on, the lower for o� ):

y =

{
M, if x ≥ 0

−M, if x < 0
(28.30)

When the input is (considering only one period)

x(t) = U sin

(
2πt

T

)
, 0 ≤ t ≤ 2π (28.31)

the output is

y(t) =

{
M, 0 ≤ t ≤ T

2

−M, T
2 < t < T

(28.32)
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Replacing (28.31)�(28.32) in (28.25)�(28.26),

a =
2

T

(∫ T
2

0

M cos
2πt

T
dt+

∫ T

T
2

−M cos
2πt

T
dt

)

=
2M

T

([
T

2π
sin

2πt

T

]T
2

0︸ ︷︷ ︸
0−0

−
[
T

2π
sin

2πt

T

]T
T
2︸ ︷︷ ︸

0−0

)
= 0 (28.33)

b =
2

T

(∫ T
2

0

M sin
2πt

T
dt+

∫ T

T
2

−M sin
2πt

T
dt

)

=
2M

T

([
− T

2π
cos

2πt

T

]T
2

0

−
[
− T

2π
cos

2πt

T

]T
T
2

)

= −M
π

( −2︷ ︸︸ ︷
cosπ︸ ︷︷ ︸
−1

− cos 0︸︷︷︸
1

−
2︷ ︸︸ ︷

(cos 2π︸ ︷︷ ︸
1

− cosπ︸ ︷︷ ︸
−1

)
)

=
4M

π
(28.34)

Thus, we can assume for input (28.31) an approximate output given by

ỹ(t) =
4M

π
sin

(
2πt

T

)
, 0 ≤ t ≤ 2π (28.35)

this being the Fourier series truncated after the �rst term, as seen in Figure 28.8;
and the describing function is

N(U, ω) =
4M
π sin

(
2πt
T

)
U sin

(
2πt
T

) =
4M

πU
(28.36)

Compare this result with what you get from (28.29).

Remark 28.2. Notice that, as is clear from Figure 28.8, the input x(t) andN(U) of static non-
linearities does not depend
on ω

the truncated Fourier series of the output ỹ(t) are in phase, always; this is an
obvious consequence of the non-linearity being static. Thus the phase of the
describing function is always 0◦, and there is in fact no dependency at all from
ω. This happens with all static non-linearities, not just on-o�.

Example 28.5. Let us �nd the describing function of the dynamic non-linearityDescribing function of a
reset integrator called reset integrator (or Clegg integrator), with which the output y(t) of

C(t), which is an integral, is reset to zero whenever the input u(t) is zero. By
convention, this is represented as

y(s) =
�
�
��
0

1

s
u(s) (28.37)

Let the input be
u(t) = sinωt, t > 0 (28.38)

which has a frequency ω = 2π
T and a period T = 2π

ω ; the amplitude is 1, without
loss of generality, since for this non-linearity the amplitude of the output is
linear with respect to the amplitude of the input. Without reset, the output
would be given by

y(t) =
1

ω
− 1

ω
cosωt (28.39)

(where the integration constant ensures y(0) = 0) and, with reset, by

y(t) =


1

ω
− 1

ω
cosωt, kT ≤ t < kT +

T

2
, k ∈ N0

− 1

ω
− 1

ω
cosωt, kT +

T

2
≤ t < (k + 1)T, k ∈ N0

(28.40)

as seen in Figure 28.9.
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t

−2

−1

0

1

2

π 2π 3π 4π

sin t, input of C(s) = 1
s

output of controller C(s) without reset

output of controller C(s) with reset

Figure 28.9: E�ects of reset control on the control action for controller C(s) = 1
s

Using (28.19)�(28.20), the �rst coe�cients of the Fourier series of (28.40)
are

a =
ω

π

∫ π
ω

0

(
1

ω
− cosωt

)
cosωtdt+

ω

π

∫ 2π
ω

π
ω

(
− 1

ω
− cosωt

)
cosωtdt

=
1

π

∫ π
ω

0

cosωtdt− 1

π

∫ 2π
ω

π
ω

cosωtdt− 1

π

∫ 2π
ω

0

cos2 ωtdt

=
1

π

[
1

ω
sinωt

] π
ω

0︸ ︷︷ ︸
0

− 1

π

[
1

ω
sinωt

] 2π
ω

π
ω︸ ︷︷ ︸

0

− 1

π

∫ 2π
ω

0

1 + cos 2ωt

2
dt

= − 1

π

[
t

2
+

1

4ω
sin 2ωt

] 2π
ω

0

= − 1

ω
(28.41)

b =
ω

π

∫ π
ω

0

(
1

ω
− cosωt

)
sinωtdt+

ω

π

∫ 2π
ω

π
ω

(
− 1

ω
− cosωt

)
sinωtdt

=
1

π

∫ π
ω

0

sinωtdt− 1

π

∫ 2π
ω

π
ω

sinωtdt− 1

π

∫ 2π
ω

0

sinωt cosωtdt

=
1

π

[
− 1

ω
cosωt

] π
ω

0

− 1

π

[
− 1

ω
cosωt

] 2π
ω

π
ω

− 1

π

∫ 2π
ω

0

1

2
sin 2ωtdt

= − 1

ωπ
(−1− 1) +

1

ωπ
(1 + 1)− 1

2π

[
− 1

2ω
cos 2ωt

] 2π
ω

0︸ ︷︷ ︸
0

=
4

ωπ
(28.42)

Hence, applying (28.29) the describing function is found as

N(U, ω) =
4

ωπU
− 1

ωU
j (28.43)

and according to (28.27)�(28.28), the corresponding (approximations of) gain
and phase are

gdf(U, ω) =

√
16

ω2π2U2
+

1

ω2U2
=

√
16 + π2

ωπU
(28.44)

gdf(1, 1) =

√
16 + π2

π
≈ 4 dB (28.45)

ϕdf(U, ω) = arctan
− 1
ωU
4

ωπU

= − arctan
π

4
≈ −38◦, ∀U (28.46)

The Bode diagram of N(U, ω) is compared in Figure 28.10 with that of 1
s . It

is clear that the phase margin increases, that the slope of the gain is the same,
and that there is a gain o�set.
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◦

dB

ω

ω

40

44

−40

−36
10−2 102

−90

−38

10−2 102

transfer function 1
s , without reset

describing function of 1
s , with reset

Figure 28.10: Bode diagram of controller C(s) = 1
s , with and without reset

control

Remark 28.3. Notice that this non-linearity has a describing function depend-N(U, ω) of dynamic non-
linearities depends on ω ing from ω, since it is dynamic. But, because the amplitude of the output is

linearly dependent on the amplitude of the input (it is determined by an in-
tegral, which is linear if there is no reset), N(U, ω) does not depend on input
amplitude U .

Just as Laplace transforms are in practice found from tables, so are de-
scribing functions. Table 28.1 gives describing functions of some common non-
linearities.

28.3 Predicting limit cycles

If a non-linearity causes a limit cycle in a control loop such as the one in Fig-
ure 28.2, the oscillations will take place also when the input is a step ending in
0, as seen in the bottom plot of Figure 28.7 from Example 28.3.

Consequently, since r = 0 and y 6= 0,

y = GNe = GN(−y)⇒ y(1 +GN) = 0⇒ G = − 1

N
(28.47)

We can thus expect a limit cycle wheneverLimit cycle if G = − 1
N

G(jω) = − 1

N(U, ω)
(28.48)

The best way to see this for a static non-linearity is to plot − 1
N(U) on the polarPlot − 1

N on the Nyquist
diagram plot of G(s) (or on the Nyquist diagram, considering only the polar plot), and

verify if there are intersections:

� the frequency ω for which there is an intersection will be the frequency ofFrequency and amplitude
of the limit cycle the limit cycle;

� the amplitude U for which there is an intersection is the amplitude of the
limit cycle.

In the case of a dynamic non-linearity, di�erent curves − 1
N(U,ω) for several values

of ω have to be drawn; a limit cycle will exist if there is an intersection between
G(jω) and the curve − 1

N(U,ω) for the same value of frequency ω.
Two things must be had into account:



28.3. PREDICTING LIMIT CYCLES 425

Describing functions 

 
Table 28.1: Table of describing functions



426 CHAPTER 28. NON-LINEARITIES IN CONTROL SYSTEMS

Figure 28.11: Block diagram of Example 28.6 and Exercise 5.

� The describing function is an approximation. Thus, the amplitude and
frequency of the limit cycle found from (28.48) are approximations too.

� The approximation will be good if in the control loop of Figure 28.2 G(s)Good approximation if
G(s) is low pass is a low pass �lter with a cut-o� frequency such that the frequency of

the limit cycle is is the pass band, and its integer multiples are in the
rejection band. (Remember that the describing function is a truncated
Fourier series.)

Example 28.6. The plant in Figure 28.11 includes a linear part

G(s) =
1.4

s (s+ 1)
2 (28.49)

and a backlash non-linearity with A = 1.1 and k = 1. To verify if there is a
limit cycle we plot curve − 1

N over the Nyquist diagram of G(s) and look for
intersections with the polar diagram. Figure 28.12 shows there are two. To �nd
their values of frequency ω and amplitude X, we must solve

1.4

jω (jω + 1)
2 = − 1

1
2

(
1− 2

π

[
arcsin

(
2− X

1.1
X
1.1

)
+

2− X
1.1
X
1.1

cos
(

arcsin
(

2− X
1.1
X
1.1

))])
− 4j 1.1(X−1.1)

πX2

(28.50)

This is better found numerically with Matlab; we �nd that{
X = 1.37↔ ω = 0.31 rad/s

X = 4.72↔ ω = 0.76 rad/s
(28.51)

Remark 28.4. Sometimes solutions for (28.48) can be found analytically. This
is easier if the non-linearity is static. In that case, − 1

N is real and negative, andFinding limit cycles for
static non-linearities ω is a phase crossover frequency.

(28.50) is one of those cases where a numerical solution has to be sought.

Some of the limit cycles found from (28.48) are never found in practice
because they are unstable. The ones actually found are those which are stable.
The Nyquist diagram is used to tell them apart:

� Suppose that, when the amplitude of the limit cycle increases, curve − 1
NStable limit cycle

enters a zone of the Nyquist plane where the number of encirclements
is such that the Nyquist stability criterion proves that the closed loop
is unstable. In that case, the amplitude increases even more. Likewise,
when the amplitude of the limit cycle decreases, curve − 1

N will enter a
zone of the Nyquist plane where the number of encirclements is such that
the Nyquist stability criterion proves that the closed loop is stable. Thus,
the amplitude will decrease even more. Whichever case happens, the limit
cycle will disappear.

� Suppose that, when the amplitude of the limit cycle increases, curve − 1
NUnstable limit cycle

enters a zone of the Nyquist plane where the number of encirclements is
such that the Nyquist stability criterion proves that the closed loop is
stable. In that case, the amplitude will stop increasing and will rather
decrease. Likewise, when the amplitude of the limit cycle decreases, curve
− 1
N will enter a zone of the Nyquist plane where the number of encir-

clements is such that the Nyquist stability criterion proves that the closed
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Figure 28.12: Nyquist diagram of (28.49) and − 1
N for the backlash in Fig-

ure 28.11.
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Figure 28.13: Simulink implementation of Figure 28.11 for Examples 28.6
and 28.7.

Figure 28.14: Output of the control system in Figure 28.11 for Example 28.7.

loop is unstable. Thus, the amplitude will stop decreasing and will rather
increase. Whichever case happens, the amplitude of the limit cycle will
remain roughly the same.

This is better seen through an example.

Example 28.7. Simulating the closed loop of Example 28.6 as shown in Fig-
ure 28.13, we obtain the result in Figure 28.14, with a limit cycle of frequency

2π
188.76−180.48 = 0.76 rad/s and an amplitude quite close to the expected one,
22.34− 17.66 = 4.68.

This is because, of the two limit cycles, this one is stable. Notice that
G(s) has no unstable poles. Consequently, by the Nyquist stability criterion,
gains corresponding to no encirclements of the Nyquist plot lead to stable closed
loop, and one or more encirclements correspond to an unstable closed loop. The
Nyquist diagram in Figure 28.12 closes on the right, as is clear from

lim
s→0+

G(s) = lim
s→0+

1.4

s (s+ 1)
2 = +∞ (28.52)

So we see that, at the intersection in the upper right corner of the lower plot,
corresponding to X = 4.72 and ω = 0.76 rad/s:

� If the amplitude X increases, the diagram leaves the encirclement. This
is a stable zone of the plane. Thus the amplitude will decrease back to
X = 4.72.

� If the amplitude X decreases, the diagram enters the encirclement. This
is an unstable zone of the plane. Thus the amplitude will increase back
to X = 4.72.

The same Figure shows that, at the intersection in the lower left corner of
the lower plot, corresponding to X = 1.37 and ω = 0.31 rad/s:

� If the amplitude X increases, the diagram enters the encirclement. This
is an unstable zone of the plane. Thus the amplitude will increase away
from X = 1.37, approaching the limit cycle with X = 4.72.
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Figure 28.15: Block diagram of Exercise 1.

� If the amplitude X decreases, the diagram leaves the encirclement. This is
a stable zone of the plane. Thus the amplitude will keep decreasing away
from X = 1.37.

This limit cycle is thus unstable, and will not be observed in practice.

Glossary

He was not loved, Guy knew, either by his household or in the town.
He was accepted and respected but he was not simpatico. Grä�n von
Gluck, who spoke no word of Italian and lived in undisguised con-
cubinage with her butler, was simpatica. Mrs. Garry was simpatica,
who distributed Protestant tracts, interfered with the �shermen's
methods of killing octopuses and �lled her house with stray cats.

Guy's uncle, Peregrine, a bore of international repute whose dreaded
presence could empty the room in any centre of civilization, � Uncle
Peregrine was considered molto simpatico. The Wilmots were gross
vulgarians; they used Santa Dulcina purely as a pleasure resort,
subscribed to no local funds, gave rowdy parties and wore indecent
clothes, talked of `wops' and often left after the summer with their
bills to the tradesmen unpaid; but they had four boisterous and
ill-favoured daughters whom the Santa-Dulcinesi had watched grow
up. Better than this, they had lost a son bathing here from the
rocks. The Santa-Dulcinesi participated in these joys and sorrows.
They observed with relish their hasty and unobtrusive departures
at the end of the holidays. They were simpatici. Even Musgrave
who had the Castelletto before the Wilmots and bequeathed it his
name, Musgrave who, it was said, could not go to England or Amer-
ica because of warrants for his arrest, `Musgrave the Monster', as
the Crouchbacks used to call him � he was simpatico. Guy alone,
whom they had known from infancy, who spoke their language and
conformed to their religion, who was open-handed in all his deal-
ings and scrupulously respectful of all their ways, whose grandfather
built their school, whose mother had given a set of vestments embroi-
dered by the Royal School of Needlework for the annual procession
of St Dulcina's bones � Guy alone was a stranger among them.

Evelyn Waugh (1903 � �1966), Sword of Honour (Men at arms, 1952), 1 I

describing function função de descrição
equivalent gain ganho equivalente
limit cycle ciclo limite

Exercises

1. Figure 28.15 shows two non-linear elements (a relay and a dead zone) in
series. To which of the following single systems is this equivalent?

(a) A dead zone with A = 0.5.

(b) A relay with M = 0.5.

(c) A relay with M = 1.

(d) None of the above.
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Figure 28.16: Block diagram of Exercise 2.

Figure 28.17: Options of Exercise 2.

2. Figure 28.16 shows two non-linear elements (a relay and a dead zone) in
parallel. To which of the single systems in Figure 28.17 is this equivalent?

3. Repeat the calculations of Example 28.3, when the plant of the diagram
in Figure 28.3 is

G(s) =
s2 + 7s+ 10

s3 + 0.25s2 + s
(28.53)

4. The plant in Figure 28.18 includes a backlash non-linearity with 2A = 0.5

and B = 1, C = 1. Let G(s) =
3

s (s+ 1)
2 . Use the describing function

method to verify if this plant has a limit cycle. If it does, �nd its frequency
and amplitude.

5. The plant in Figure 28.11 includes a backlash non-linearity with A = 1

and k = 1. Let G(s) =
1.5

s (s+ 1)
2 . Use the describing function method

to verify if this plant has a limit cycle. If it does, �nd its frequency and
amplitude.

6. Consider the plant in Figure 28.19.

(a) Let R = 0, A = 4, k = 1 and K1 = 20. Find the frequency and the
amplitude of the limit cycle.

(b) Is this limit cycle stable or unstable?

(c) Increasing gain K1, how does the limit cycle change?

7. The plant in Figure 28.20 includes a saturation non-linearity with M = 1.
Use the describing function method to verify if this plant has a limit cycle.
If it does, �nd its frequency and amplitude.

Figure 28.18: Block diagram of Exercise 4.
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Figure 28.19: Block diagram of Exercise 6.

Figure 28.20: Block diagram of Exercise 7.

8. The plant in Figure 28.21 includes a dead zone non-linearity with A = 1
and K = 1. Use the describing function method to verify if this plant has
a limit cycle. If it does, �nd its frequency and amplitude.

9. Repeat Exercise 7 when the transfer function is G(s) = e−2s

s(s+2) instead.

10. Repeat Exercise 7 when the transfer function isG(s) = 100
s(s+2)(s+3) instead.

Figure 28.21: Block diagram of Exercise 8.
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Chapter 29

Other aspects of controller

design and implementation

Metido tenho a maõ na consciencia,
E naõ fallo senaõ verdades puras,
Que m'ensinou a viua experiencia.

Luís Vaz de Camões (1524? � �1580), Rimas de Luis de Camões, Soneto 87
(1598 edition)

Strictly proper systems. Placing extra poles. PID as PI+D. Windup. Reset.
Modelling errors. Robustness. Gain modelling. Waterbed e�ect. The small gain
theorem.

This chapter is still being written.
In the picture: National Pantheon, or Church of Saint Engratia, Lisbon

(source: http://www.panteaonacional.gov.pt/171-2/historia-2/), some-
when during its construction (1682�1966).

Glossary

�Listen to me for a moment,� said the steady voice of Moreau; �and
then say what you will.�
�Well?� said I.
He coughed, thought, then shouted: �Latin, Prendick! bad Latin,
schoolboy Latin; but try and understand. Hi non sunt homines;
sunt animalia qui nos habemus�vivisected. A humanising process.
I will explain. Come ashore.�
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H. G. Wells (1866 � �1946), The Island of Doctor Moreau (1896), XIII

word in English word in Portuguese
palavra em inglês palavra em português

Exercises

1. Question.



Part VI

System identi�cation
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`Yes. Dr Hartman has a theory. In any investigation, my Bunter, it
is most damnably dangerous to have a theory.'

`I have heard you say so, my lord.'

`Confound you � you know it as well as I do! What is wrong with
the doctor's theories, Bunter?'

`You wish me to reply, my lord, that he only sees the facts which �t
into the theory.'

`Thought-reader!' exclaimed Lord Peter bitterly.

`And that he supplies them to the police, my lord.'

Dorothy L. Sayers (1893 � �1957), Lord Peter Views the Body (1928), The
vindictive story of the footsteps that ran

In this part of the lecture notes:

Chapter 30 addresses general questions related to system identi�cation.

Chapter 31 is about the identi�cation of transfer functions from time responses.

Chapter 32 concerns the identi�cation of transfer functions from frequency responses.

Chapter 33 shows how to identify non-linearities.

Here is what you need to know beforehand to follow these chapters:

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4;

� System theory, from Part II;

� Filters, from Sections 12.2 and 12.3 of Chapter 12;

� Discrete transfer functions, from Chapter 25, Sections 26.1 to 26.5 of
Chapter 26, and Sections 27.1, 27.2 and 27.6 of Chapter 27.

For Chapter 33, you also need to know the following:

� Soft non-linearities, from Section 8.3 of Chapter 8;

� Hard non-linearities, from Chapter 28;

� Delays, from Chapter 24.
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Chapter 30

Overview and general issues

Je n'ay jamais jugé d'une mesme chose exactement de mesme, je ne
puis juger d'un ouvrage en le faisant ; il faut que je fasse comme
les peintres & que je m'en eloigne, mais non pas trop. De combien
donc ? Devinez.

Blaise Pascal (1623 � �1662), Pensées diverses (1670, posth.), I, 12/37

We already saw in Section 3.3 that system identi�cation is the obtention of
models from experimental data. More generally, it is the obtention of models
for a plant from its behaviour. In some cases, a controller can be obtained iden-
tifying its model from its desired behaviour, determined analytically from the
plant to control and the speci�cations to be followed. But the usual case is, in-
deed, the identi�cation of a model for a plant from its behaviour experimentally
determined, and that will be the situation presumed by default in what follows.
The models we address are transfer functions; we will not consider the identi�- Identi�cation of transfer

functionscation of NN and fuzzy models, mentioned in Figures 3.18 and 3.19, which are
beyond our scope. This chapter sums up some general questions before entering
into particular methods and algorithms.

30.1 Types of data, types of identi�cation meth-
ods, and types of models

The experimental data always consists of responses in time. Chapter 31 ad-
dresses identi�cation methods directly from time responses.

It is possible to obtain from time responses a frequency response: this is
obvious if the responses in time that we have are responses to sinusoids, but
from other types of time responses a frequency response can be obtained as well.
In Chapter 32 we will see identi�cation methods from frequency responses.

As we saw in Section 3.2 and in Chapter 13, nowadays experimental data
is nearly always a digital signal, and thus sampled in time. We will address
some graphical methods that seem to implicitly require an analogical signal.
Remember that:

� if the sampling time was well chosen, according to the criteria in Sec-
tion 25.4, the digital signal will reproduce the analogical signal with ac-
curacy;

� �tting a curve (this includes a straight line, of course) or �nding a slope
can be done numerically with a set of points.

Even though signals are almost always digital, some identi�cation methods Continuous and discrete
identi�ed modelsprovide a continuous transfer function, while others provide a discrete transfer

function. If the desired transfer function is of the other type, a conversion using
the Tustin approximation or a pole-zero match is then performed.

The identi�cation methods addressed in this part presume SISO models. If How to deal with MIMO
plantsthe plant is linear, this poses no restriction at all:

� if there are several outputs, each of them is identi�ed separately, i.e. the
MIMO plant is treated as several MISO plants;
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Figure 30.1: How to identify a MIMO plant as several MISO plants (top), and
a linear MISO plant as several SISO plants (bottom).

� if there are several inputs, since the plant is linear, the output is a linear
combination of SISO plants. Consequently:

� all inputs are set to zero, save one of them, and a model for the
relation between that input and the output is found;

� the step above is repeated for each input;

� the model of the MISO plant is the sum of the SISO models found.

All this is illustrated in Figure 30.1. But if there are non-linearities the above
method fails. We will address the identi�cation of non-linearities only for SISO
models, in Chapter 33.

Identi�cation methods can be performed using data as it becomes available.
This is called real time identi�cation, and if it works as expected the modelIdenti�cation in real time
obtained gets more accurate with time, as more data becomes available. (Obvi-
ously, if the model becomes worst, the identi�cation is a failure.) Identi�cation
can also be carried out only after all data becomes available, using a batch ofO�ine identi�cation
measured values all at once. This is called o�ine identi�cation.

The case where there already is a model of the plant based upon �rst prin-If there is a model based
upon �rst principles ciples has been mentioned in Section 3.3. Remember that:

� in this case, identi�cation from experimental data can be used to con�rm,
or correct, the values of the parameters of a model for which the structure
is known;

� experimental data can also be used to con�rm (or not) the said structure
of the model. It may show that some neglected phenomenon (say, a non-
linearity, or a friction force) is after all so signi�cant that, for the model
to have the desired accuracy, additional details must be included (a non-
linearity, or additional poles or zeros, etc.).

If there is no model available before identi�cation, then a model structure must
be found before model parameters are identi�ed; or, in other identi�cation meth-
ods, both the model structure and its parameters are found simultaneously.

Some plants have to be identi�ed when they are already controlled in closedIdenti�cation in closed
loop loop. This may happen for several reasons:

� it is somehow impossible to turn o� or disconnect the controller;

� without control, outputs may reach unacceptable values (e.g. some temper-
ature may become so high that the plant will be damaged; some pressure
may rise to values that endanger operators' lives; forces will be applied in
a structure that will yield);

� the plant is marginally stable or unstable, and without control outputs will
reach saturation values so fast that almost no data at all can be recorded.
Such plants usually have the problem of unacceptable values too.

In this case, a known controller C must be used, and what is identi�ed is the
closed loop transfer function F . If the closed loop is the one from Figure 9.13,
plant G is found as

F =
CG

1 + CG
⇒ F + FCG = CG

⇒ F = CG(1− F )

⇒ G =
F

C(1− F )
(30.1)

Di�erent con�gurations of the closed loop are dealt with similarly.
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30.2 Comparing model performance

Model accuracy has already been mentioned a few times. It is the di�erence
between the experimental outputs and those of the model for the same inputs.
Of course, a model can be accurate for some cases and inaccurate for others
(hopefully less relevant). Some models are good during the transient regime
but not in steady-state; for others, it is the other way round. Some models
reproduce step responses but not those of other inputs, or the plant's frequency
response; with other models the reverse can be true. It is surely desirable, Trade-o� between accu-

racy and simplicitybut seldom possible, to have a model which is always accurate. Or perhaps
increasing the accuracy of the model requires a model structure which is too
complicated (with too many poles and zeros). Quite often, it is better to have
a manageable model with a moderate number of zeros and poles than a very
accurate model which is very complicated and di�cult to study and simulate.
What is to be considered too complicated depends on the case.

The following performance indexes are often used to measure accuracy. For
each of them, two expressions are given: one for analogical signals, another for
digital signals. The experimental variable is y, and the variable that approxi-
mates y is ŷ. In the digital case, there are N + 1 samples, numbered from 0 to
N . The analogical case is given for time varying from 0 to tf ; should the signal
depend on frequency (say, from ωl to ωh), the di�erence in the calculations is
obvious.

� Mean absolute error (MAE): MAE

MAE(y(t)− ŷ(t)) =
1

tf

∫ tf

0

|y(t)− ŷ(t)|dt (30.2)

MAE(yk − ŷk) =
1

N + 1

N∑
k=0

|yk − ŷk| (30.3)

� Mean square error (MSE): MSE

MSE(y(t)− ŷ(t)) =
1

tf

∫ tf

0

(y(t)− ŷ(t))2 dt (30.4)

MSE(yk − ŷk) =
1

N + 1

N∑
k=0

(yk − ŷk)2 (30.5)

� Root mean square error (RMS): RMS

RMS(y(t)− ŷ(t)) =

√
1

tf

∫ tf

0

(y(t)− ŷ(t))2 dt (30.6)

RMS(yk − ŷk) =

√√√√ 1

N + 1

N∑
k=0

(yk − ŷk)2 (30.7)

� Coe�cient of determination (R2): R2

R2(y(t)− ŷ(t)) = 1−

∫ tf

0

(y(t)− ŷ(t))2 dt∫ tf

0

(
y(t)− 1

tf

∫ tf

0

y(t) dt︸ ︷︷ ︸
average value of y

)2

dt

(30.8)

R2(yk − ŷk) = 1−

N∑
k=0

(yk − ŷk)2

N∑
k=0

(
yk −

1

N + 1

N∑
k=0

yk︸ ︷︷ ︸
average value of y

)2
(30.9)
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� Variance accounted for (VAF): VAF

VAF(y − ŷ) = 1− σ2(y − ŷ)

σ2(y)
(30.10)

Here σ2(x) is the variance of x, be it continuous or discrete. Notice thatVariance
σ2(y − ŷ) = MSE(y − ŷ).

The best model according to one criterion may not be the best according to
another, and the best performance index depends on the case. Very often it is
a good idea to take a look at several of them. Notice that:

� MAE and RMS have the same units as y;

� MSE has units of y2;

� R2 and VAF have no dimensions;

� MAE, MSE and RMS are 0 if there is no error;There is no error if
MAE=MSE=RMS=0 and
R2=VAF=1=100% � R2 and VAF are 1 if there is no error;

� VAF is often given as a percentage.

The performance indexes above do not help to solve the trade-o� between ac-
curacy and simplicity mentioned above. For that purpose, the following ones are
employed. Data is assumed to be discrete in time; models have K parameters.

� Akaike Information Criterion (AIC):AIC

AIC(yk − ŷk) = N logMSE(yk − ŷk) + 2K +

correction for
small data sets︷ ︸︸ ︷
2K(K + 1)

N −K − 1

= N logMSE(yk − ŷk) + 2K
N

N −K − 1︸ ︷︷ ︸
correction for
small data sets

(30.11)

The correction for small data sets can be neglected if N � K; say, if
N > 40K. Indeed, the value of N

N−K−1 is

� only 1.053 if K = 1 and N = 40K (and so neglecting it correspond
to an error of about 5%),

� even lower, if K > 1,

� also lower, if N > 40.

� Bayesian Information Criterion (BIC):BIC

BIC(yk − ŷk) = N logMSE(yk − ŷk) +K logN (30.12)

This expression has no correction for small data sets, and so applies only
if N � K. Compared with the AIC, the BIC favours models with less
parameters.

� Normalised AIC and BIC, needed to compare models found from data
with di�erent lengths N :

nAIC(yk − ŷk) =
AIC(yk − ŷk)

N
(30.13)

nBIC(yk − ŷk) =
BIC(yk − ŷk)

N
(30.14)

The lower the value of the AIC or of the BIC, the better the model is considered;
the values themselves have no signi�cance, and only serve to compare di�erent
models. Given n models with outputs iŷk, i = 1, . . . , n, it is possible to �nd
from their values of the AIC or of the BIC a probability of each model being
the best. (De�ning precisely in which sense this probability is to be understood
falls outside our scope.) This probability is given by the Akaike weights forAkaike weights
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Table 30.1: Values of the AIC, BIC, and corresponding weights for four models
of plant (30.17).

G1(s) G2(s) G3(s) G4(s)
AIC −0.98 −0.98 −4635.0 −4630.1
w(AIC) 0.0% 0.0% 92.2% 7.8%
BIC 15.8 15.8 −4618.2 −4613.3
w(BIC) 0.0% 0.0% 92.2% 7.8%

the AIC, or the Schwarz weights for the BIC:Schwarz weights

wi(AIC) =

exp

(
−
AICi − min

m=1...n
AICm

2

)
n∑
p=1

exp

(
−
AICp − min

m=1...n
AICm

2

) , i = 1 . . . n (30.15)

wi(BIC) =

exp

(
−
BICi − min

m=1...n
BICm

2

)
n∑
p=1

exp

(
−
BICp − min

m=1...n
BICm

2

) , i = 1 . . . n (30.16)

Example 30.1. Consider the unit step response of plant

G(s) =
10

s2 + 0.6s+ 1
(30.17)

sampled with Ts = 0.01 s from 0 s to 20 s, comprising thus N = 2001 points.
Suppose that four models were somehow obtained from this response:

G1(s) =
11

s2 + 0.6s+ 1
(30.18)

G2(s) =
9

s2 + 0.6s+ 1
(30.19)

G3(s) =
10

s2 + 0.5s+ 1
(30.20)

G4(s) =
10

s2 + 0.726s+ 1
(30.21)

All these models have the same number of parameters: 2 poles and the gain,
with no zeros, i.e. K1 = K2 = K3 = K4 = 3. Figure 30.2 compares the desired
unit step response with those of the models, and gives the corresponding values
of the MSE. The corresponding values of the AIC, the BIC, the Akaike weights,
and the Schwarz weights are given in Table 30.1. Notice that:

� Since K is the same for all models, it is unsurprising that ranking the
models using the MSE and the AIC gives the very same result.

� For the same reason, even though the values of the AIC and the BIC are
di�erent, the ranking and even the weights are the same.

� Since G1(s) and G2(s) have the same MSE and the same K, the AIC and
the BIC are also equal for these two models.

Suppose that two additional models are also obtained:

G5(s) =
10(s+ 11.2705)

(s2 + 0.6s+ 1)(s+ 11)
(30.22)

G6(s) =
10(s+ 11.01× 100× 50)

(s2 + 0.6s+ 1)(s+ 11)(s+ 100)(s+ 50)
(30.23)

G5(s) has 3 poles, 1 zero, and the gain, i.e. K5 = 5; while G6(s) has 5 poles,
1 zero, and the gain, i.e. K6 = 7. Figure 30.3 compares the desired unit step
response with those of the new models, and gives the corresponding values of the
MSE. The MSE is lower for G6(s), but this model is clearly the more complex.
Table 30.1 shows that:
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Figure 30.2: Unit step responses of plant (30.17) and of four models thereof.

Figure 30.3: Unit step responses of plant (30.17) and of two models thereof.

� the lowest AIC is that of G5(s), which results in a very high probability
of being the best;

� G5(s) is neither the model with less parameters nor the model with lower
MSE;

� that the BIC favours G5(s) even more; in fact, a slightly higher MSE of
G5(s) could make Akaike weights attribute a higher probability for G6(s),
while the Schwarz weights would still favour G5(s);

� G3(s) and G4(s), which had signi�cant weights when there were only four
models, are now considered highly improbable.

30.3 Noise

All experimental data is more or less corrupted by noise. Explicit consideration
of noise in models and in the identi�cation process leads to models of a type
called stochastic models, addressed below in Part VIII. Here we address the way
to try to eliminate it from data.

Suppose that a signal y is corrupted with noise yn, so that the measuredSNR
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Table 30.2: Values of the AIC, BIC, and corresponding weights for six models
of plant (30.17).

G1(s) G2(s) G3(s) G4(s) G5(s) G6(s)
AIC already given in Table 30.1 −5620.7 −5617.7
w(AIC) 0.0% 0.0% 0.0% 0.0% 81.6% 18.4%
BIC already given in Table 30.1 −5592.7 −5578.6
w(BIC) 0.0% 0.0% 0.0% 0.0% 92.9% 0.1%

Figure 30.4: Bode diagram of (30.27), when n = 1 and Ts = 1 s.

value ỹ is
ỹ = y + yn (30.24)

Then the signal to noise ratio (SNR) is de�ned as

SNR =
RMS(y)

RMS(yn)
(30.25)

The SNR is often given in dB, i.e. as

20 log10 SNR = 20 log10

RMS(y)

RMS(yn)
(30.26)

When SNR< 1 (i.e. below 0 dB) noise is larger than the signal itself. It is
obviously desirable that SNR� 1 (i.e. 20 log10 SNR� 0 dB).

To eliminate noise, a �lter is applied. O�ine identi�cation can use non-
causal �lters.

Example 30.2. A centred moving average �lter of order 2n+ 1 is a non- Centred moving average
causal digital low-pass �lter given by

F (z) =
z−n + . . .+ z−1 + 1 + z + . . .+ zn

2n+ 1
(30.27)

It has a zero phase until the rejection band, thus introducing no phase distortion.
Its gain is almost constant in a large passband. See Figure 30.4.

When a too small sampling time was employed, data should be subsampled, Subsampling
i.e. only the measurements at regular intervals are kept. This corresponds to a
low pass �ltering of a signal. When there is so much experimental data that the
computational e�ort of using it all would be excessive, there are two options:

� subsample the data, which eliminates high frequency behaviour (since sub- Truncating and subsam-
pling eliminate low and
high frequencies respec-
tively

sampling has the e�ect of a low pass �lter);

� truncate the data, which eliminates low frequency behaviour (which is not
captured in a shorter time range).
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Figure 30.5: Interpolating (left) and �tting by least squares a second order
polynomial (right) to 11 points.

The discussion above presumes that it is known what in the measured values
is the signal and what is the noise. Sometimes this is not clear at the outset or
by a mere inspection of the data. It is necessary to have some previous estimate
of the bandwidth of the plant to known what is to be �ltered. Remember that:

� noise with frequencies inside that bandwidth can only be eliminated dam-
aging the response of the plant itself;

� �lters attenuate but seldom, if ever, completely eliminate;

� any behaviour of the plant (or of the noise) that is �ltered cannot be
expected to be modelled acurately.

Noise is not everything that has to be eliminated from data: initial conditions
must be set to zero; remember Example 8.1. Some identi�cation methods require
normalising all variables involved, but since the methods we are dealing with
are for transfer function models, which are linear, this should not make any
di�erence.

The results of identi�cation methods must be critically analysed rather than
accepted without reserve. It often happens that identi�cation methods provide
models with unnecessary poles and zeros, that is to say:

� poles and zeros that cancel out, or nearly cancel out and only do not
because of slight numerical di�erences (these can be removed in Matlab
using function minreal);Matlab's command

minreal
� poles and zeros with frequencies outside the range of frequencies whereRange of frequencies where

good results can lie experimental data can lead to acceptable results.

Remember from what we saw in Chapter 25 that a signal measured from time
0 to time tf with sampling frequency Ts cannot carry information outside fre-
quency range

π

tf
≤ ω ≤ π

Ts
(30.28)

which corresponds to a bare minimum of two points per period; and that in
practice, since we need at least some 10 points to sample a period of a sinusoid
with an error in its amplitude below 5%, it is better to consider the narrower
frequency range

10
2π

tf
≤ ω ≤ 2π

10Ts
(30.29)

instead. Eliminating the poles and zeros of a model that fall outside this range
of frequencies is also a sort of �ltering, since less frequencies are being considered
in the end.

30.4 Interpolation vs. curve �tting

There are two major ways of adjusting a model's parameters to data: interpo-
lation and curve �tting (see Figure 30.5).

When data is interpolated:
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� The model passes through all the data points. This makes more sense if
there is little (or, better still, no) noise, since the model will account for
all the noise in the data.

� The order of the model depends on how many points are interpolated.
Passing through more data points requires more parameters, unless there
is no noise.

� These two characteristics mean that increasing the number of data points
usually leads to a model with many parameters that mostly tries to re-
produce noise (in short, a poorer model).

When using curve �tting:

� The model seldom passes through all data points. This makes more sense
if there is noise; parameter adjustment automatically involves some sort
of noise �ltering.

� The order of the model is �xed in advance. More points do not require a
larger model.

� These two characteristics mean that increasing the number of data points
usually leads to a better model if the model structure is good enough to
explain the data. When a poorer model appears with increasing data, this
often means that the model structure is insu�cient.

Given this, it is not surprising that system identi�cation relies more often System identi�cation uses
curve �tting often, inter-
polation seldom

on curve �tting that on interpolation. The most usual method of curve �tting is
�nding the least squares solution to an overdetermined system, which will only
have an exact solution under ideal conditions � an exact model, no noise, no
measurement errors, etc. � seldom, if ever, found in practice. The least-squares
solution of a linear problem can be found using the pseudo-inverse of a matrix.
To de�ne it, some results are needed.

De�nition 30.1. Let x be a n× 1 vector. Given a scalar function of vectorial

variable f(x), derivative
d

dx
f(x) is de�ned as

d

dx
f(x) =



∂

∂x1
f(x)

∂

∂x2
f(x)

...
∂

∂xn
f(x)


(30.30)

Lemma 30.1.

d

dx

(
bTx

)
=



∂

∂x1

n∑
k=1

bkxk

∂

∂x2

n∑
k=1

bkxk

...
∂

∂xn

n∑
k=1

bkxk


=


b1

b2

...
bn

 = b (30.31)
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Lemma 30.2. Let C be a square n× n matrix. Then

d

dx

(
xTCx

)
=

d

dx

[x1 x2 · · · xn
]

C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn



x1

x2

...
xn




=
d

dx


[

n∑
k=1

xkCk1

n∑
k=1

xkCk2 · · ·
n∑
k=1

xkCkn

]
x1

x2

...
xn




=



∂

∂x1

n∑
l=1

n∑
k=1

xkCklxl

∂

∂x2

n∑
l=1

n∑
k=1

xkCklxl

...
∂

∂xn

n∑
l=1

n∑
k=1

xkCklxl


=



n∑
l=1

C1lxl +

n∑
k=1

xkCk1

n∑
l=1

C2lxl +

n∑
k=1

xkCk2

...
n∑
l=1

Cnlxl +

n∑
k=1

xkCkn



=



2

n∑
m=1

Cm1xm

2

n∑
m=1

Cm2xm

...

2

n∑
m=1

Cmnxm


= 2


C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn



x1

x2

...
xn



= 2Cx (30.32)

Lemma 30.3. Given any matrix B, the product BTB is a symmetric matrix.

Proof. Let B be a n×m matrix. Then

BTB =


B11 B21 · · · Bn1

B12 B22 · · · Bn2

...
...

. . .
...

B1m B2m · · · Bnm



B11 B12 · · · B1m

B21 B22 · · · B2m

...
...

. . .
...

Bn1 Bn2 · · · Bnm



=



n∑
k=1

Bk1Bk1

n∑
k=1

Bk1Bk2 · · ·
n∑
k=1

Bk1Bkm

n∑
k=1

Bk2Bk1

n∑
k=1

Bk2Bk2 · · ·
n∑
k=1

Bk2Bkm

...
...

. . .
...

n∑
k=1

BkmBk1

n∑
k=1

BkmBk2 · · ·
n∑
k=1

BkmBkm


(30.33)

Thus, in the m×m resulting matrix, both element l, c and element c, l are given

by
n∑
k=1

BklBkc.

We are now in condition to prove the following.

Theorem 30.1. Let A be a m×n matrix, and b a m× 1 vector. The solution
in the least-squares sense of problem

Ax = b (30.34)

is the n× 1 vector x given by

x = A+b (30.35)
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where the n×m matrix A+ is the pseudo-inverse (or Moore-Penrose inverse)Pseudo-inverse
of matrix A, given by

A+ =
(
ATA

)−1
AT (30.36)

Proof. The error is the m× 1 vector

ε = b−Ax (30.37)

and the least-squares solution minimises the MSE, that is

MSE =
1

n

n∑
k=1

ε2
k =

1

n
εTε

=
1

n
(b−Ax)T (b−Ax)

=
1

n

(
bT − xTAT

)
(b−Ax)

=
1

n

(
bTb− bTAx− xTATb + xTATAx

)
(30.38)

Because MSE is a scalar, we know immediately that both bTAx and xTATb =
(bTAx)T are equal. Thus

MSE =
1

n

(
bTb− 2bTAx + xTATAx

)
(30.39)

We apply (30.31), (30.32) and (30.33) to get

d

dx
MSE = 0

⇔ 0− 2
(
bTA

)T
+ 2ATAx = 0

⇔ ATAx = ATb

⇔ x =
(
ATA

)−1
AT︸ ︷︷ ︸

A+

b (30.40)

Glossary

�Just a few novels, with `Paul Alexis' inside, and some with nothing
at all, and one or two paper-backed books written in Chinese.�

�Chinese?�

�Well, it looked like it. Russian, maybe. Not in proper letters,
anyhow.�

Dorothy L. Sayers (1893 � �1957), Have his carcase (1932), 10

centred moving average média móvel centrada
coe�cent of determination coe�ciente de determinação
mean absolute error erro absoluto médio
mean square error erro quadrático médio
o�ine identi�cation identi�cação em diferido
real time identi�cation identi�cação em tempo real
root mean square error raiz do erro quadrático médio, valor e�caz do erro
pseudo-inverse matrix matriz pseudo-inversa
signal to noise ratio razão sinal�ruído, relação sinal�ruído
stochastic model modelo estocástico
variance accounted for variância contabilizada

Exercises

1. Plot the Bode diagram of (30.27) for di�erent values of n. For each case,
�nd the passband and the largest gain in the rejection band.
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Chapter 31

Identi�cation from time

responses

�Oh ! avec les chi�res on prouve tout ce qu'on veut !

�Et avec les faits, mon garçon, en est-il de même ?

Jules Verne (1828 � �1905), Voyage au centre de la Terre (1864), VI

This chapter concerns identi�cation methods from responses in time.
Some identi�cation methods are based upon time responses for a particular

input. The most frequently used inputs for this purpose are:

� steps, not necessarily of unit amplitude (remember the passing comments
in Section 10.1);

� squares waves, in lieu of a step (remember the passing comments in Sec-
tion 10.4);

� triangle waves, in lieu of a ramp (remember the passing comments in
Section 10.4).

Responses to sinusoidal inputs are usually obtained to �nd the frequency re-
sponse. They can, however, be used as responses to any other signal. Responses
to impulses are seldom attempted and never really attained: as we saw in Sec- No experimental impulse

responsestion 10.1, an impulse is a mathematical abstraction, and in practice the best
approximation is a pulse. Things being so, it is better to explicitly consider a
square wave instead.

Other identi�cation methods, as we will see, work with any input whatsoever.

31.1 Identi�cation of the order of the model

The characteristics of the time response can be used to estimate the number of
poles and zeros that a model needs to have. Remember in particular the results
from Section 11.6.

The following observations apply to step responses; similar considerations
for other types of responses are found in a similar manner.

� If there is an overshoot, the plant has at least two poles.

� An overshoot is frequently the result of a pair of complex conjugate poles.

� An overshoot can also be caused by a zero with a frequency which is low
when compared with the frequency of the poles.

� Oscillations (which are not the same as an overshoot: an overshoot can
occur without being followed by oscillations) are either the result of a pair
of complex conjugate poles, or a limit cycle caused by a non-linearity.

� An undershoot implies a non-minimum phase zero.

451
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� The di�erence between the numbers of zeros and poles can be found from
the way the step response behaves for t = 0, according to Theorem 11.3.
This becomes di�cult if noise is so signi�cant that this behaviour in a
short period of time is hard to assess.

� The signal can be di�erentiated to better see how the behaviour for t = 0
is. But remember that di�erentiating ampli�es high-frequency noise.

� If the output settles at a steady state value y∞, there are no poles at the
origin, and the gain of the plant K is the ratio between that steady state
value and the amplitude of the step u∞:

K =
y∞
u∞

(31.1)

� If the plant is marginally stable, or is unstable because of two or more
poles at the origin (integrations), the response can be di�erentiated one
or more times, until a steady state is found. The number of di�erentiations
is the number os poles at the origin. But it is never too often repeated
that di�erentiating ampli�es high-frequency noise.

31.2 Identi�cation from analytical characteristics
of the response

Once a desired model structure is known, its parameters, or at least some of
them, may be found from characteristics of the response. Remember in partic-
ular the results from Sections 11.1 to 11.3 and 11.6.

The following observations apply to step responses; similar considerations
for other types of responses are found in a similar manner.

� The gain of the plant is found from (31.1).

� The pole of a (stable) �rst order model, or a (stable) dominant real pole of
a model with more poles and zeros, can be found from the settling time,
or from any other point given by (11.12)�(11.18) or in the general case
by (11.11). The slope at t = 0, given by (11.19), can be used to �nd
the gain. Since the response at t = 0 is linear with time, this slope can
be found �tting a straight line with least squares during a short interval.
This corresponds to a low pass �ltering of noise.

� The two real poles of an overdamped second order model without zeros
can be found as follows:

� the dominant pole is found as if it were the only one;

� the other pole is found from the in�ection point using (11.54).

� The coe�cients of an underdamped second order model without zeros can
be found as follows:

� the damping factor is found from the maximum overshoot using
(11.72);

� the natural frequency is then found from the settling time using
(11.73) and the particular values given immediately after;

� the frequency of the oscillations ωn
√

1− ξ2 can be used to con�rm
these two values or to correct one of them once the other is known.

Example 31.1. An electrical motor can be modelled as

θ(s)

U(s)
=

10

s(1 + 0.15s)
(31.2)

and its unit step response is shown in Figure 31.1. A linear regression easily
shows that the response is going to in�nity linearly (not exponentially, as when
there is an unstable pole; not quadratically, as when there are two poles at the
origin; etc.) and thus that there is one pole at the origin. As an alternative,
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Figure 31.1: Left: unit step response of (31.2), from Example 31.1. Right: its
�rst derivative.

the derivative of θ(t) can be numerically calculated (with a �rst order �nite
di�erence) and plotted, and, as seen also in Figure 31.1, it easy to establish for
θ̇(s)
U(s) a �rst order model with steady state gain 10 and time constant 0.15:

θ̂(s)

U(s)
=

10

1 + 0.15s
(31.3)

From this, (31.2) comes immediately.

31.3 Identi�cation by minimisation of error

Identifying a model as described in the previous section consists in �nding pa-
rameters from the values of only some of the measured outputs. Most of the
measured values are wasted; this is the price to pay for fairly simple calculations.
Using all the measured outputs may lead to more accurate results.

Example 31.2. The response of model G(s) = b
s+a to a step of amplitude K

is y(t) = bK
a (1− e−at), as we saw in (11.11).

From the values of y(t) for large t, we can get steady state gain b
a . Then we

calculate

log

(
y(t)− bK

a

)
= −at (31.4)

and a linear regression on t gives a. See Exercise 4 of Chapter 11.

While in the Example above the calculations are still fairly simple, this is
not the case for models with more than one pole.

Example 31.3. An overdamped second order model with poles which are not
too close may still be identi�ed in a likewise manner. Consider the unit step
response of

G(s) =
1

(s+ 1)(s+ 10)
(31.5)

which is given by (see Table 2.1)

y(t) =
1

10
+

1

10(−9)

(
10e−t − e−10t

)
(31.6)

and has a steady state given by limt→+∞ y(t) = 1
10 , as seen in Figure 31.2.

Suppose that our model uses the correct structure

Ĝ(s) =
1
10p1p2

(s+ p1)(s+ p2)
(31.7)

and already includes the correct steady-state gain 1
10 easily read in Figure 31.2.

Plotting

log

(
−(y(t)− 1

10
)

)
= log

(
90
(
10e−t − e−10t

))
= log 90 + log

(
10e−t − e−10t

)
(31.8)
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Figure 31.2: Left: unit step response of (31.5), from Example 31.3. Right: plot
of (31.8).

gives us a practically straight line, since the faster pole (which is −10, as we
saw in Section 11.6) has a vanishing e�ect that can only be seen near t = 0.
The slope shown in Figure 31.2 gives us the pole p1 = −1.

As to the other pole, it could be found from the in�ection point using (11.54),
but it is quite hard to �nd it using a method similar to the one used for p1,
since we now know that

y(t) =
p2

10

1

p2

(
1 +

1

1− p2

(
p2e
−t − e−p2t

))
⇒

(10y(t)− 1)(1− p2) = p2e
−t − e−p2t ⇒

−p2t = log
(
p2e
−t − (10y(t)− 1)(1− p2)

)
(31.9)

This expression has p2 on both sides, and so we would have to �nd some value
p2 with which the right hand side of 31.9 is a straight line for small values of
t, with slope −p2. Searching for this value can be done by trial and error until
p2 = 10 is found, but there are better methods than that.

Remark 31.1. The method of Example 31.3 can be used for other plants with
a dominant real negative pole.

In the general case, �nding the parameters of a continuous model that pro-
vide the best �t between its response and the experimental data is a non-linear
problem. Consequently, optimisation methods such as the Nelder-Mead simplex
search method (implemented in Matlab with function fminsearch), or meta-
heuristic methods (of which genetic algorithms and particle swarm optimisationMetaheuristics for identi�-

cation are well known examples) can be used. We will not study such methods, but
once you learn them in a course on that subject you can apply them easily in
identi�cation:

� The objective is to minimise one of the performance indexes (30.2)�(30.10),
or a linear combination thereof.

� An initial estimate of the parameters is provided if available; otherwise,
random values are used to begin with.

� Some algorithms use only one initial estimate; others use several di�erent
sets of values.

� These algorithms are iterative, and in each iteration the time response
of the plant for the parameters currently being evaluated is found and
compared with the experimental data.

� In this way, identi�cation can be performed with responses to any input,
not just steps.

This strategy can work for complicated problems, but can also get stuck becauseMetaheuristics do not
guarantee the optimal
result, and not even good
results

of numerical problems, and these algorithms do not ensure that the parameters
they �nd actually correspond to the minimum value of the performance index.

The problem is far easier if discrete models
Identifying parameters of
models in z−1
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Figure 31.3: Output of (31.14) for a sinusoidal output and normally distributed
error.

yk
uk

=
b0 + b1z

−1 + . . .+ bmz
−m

1 + a1z−1 + . . .+ anz−n
⇒

yk = b0uk + b1uk−1 + . . .+ bmuk−m − a1yk−1 − . . .− anyk−n (31.10)

are used instead, since we can arrange data and parameters to be identi�ed as

y︷ ︸︸ ︷
yk
yk−1

yk−2

...

 =

n +m + 1 columns

A︷ ︸︸ ︷
uk uk−1 · · · uk−m −yk−1 · · · −yk−n
uk−1 uk−2 · · · uk−m−1 −yk−2 · · · −yk−n−1

uk−2 uk−3 · · · uk−m−2 −yk−3 · · · −yk−n−2

...
...

...
...

...
...

...



n +m + 1 rows

θ︷ ︸︸ ︷

b0
b1
...
bm
a1

...
an


(31.11)

and then solve for θ. We need y and A to have at least n + m + 1 rows, and
thus n+m+ max{n,m} samples of uk and yk are needed. Likely there will be
more, and Aθ = y will be overdetermined. A solution in the least-squares sense
is then found, as seen in Section 30.4:

θ = A+y (31.12)

Example 31.4. Consider plant

G
(
z−1
)

=
2 + 3z−1

1 + 0.5z−1 − 0.4z−2
(31.13)

with sample time Ts = 1 s, which, allowing for additive noise at the output,
corresponds to the di�erence equation

yk = −0.5yk−1 + 0.4yk−2 + 2uk + 3uk−1 + ek

⇔ yk = a1 (−yk−1) + a2 (−yk−2) + b0uk + b1uk−1 + ek, (31.14)

a1 = 0.5, a2 = −0.4, b0 = 2, b1 = 3

Its output is tabulated in Table 31.1 and shown in Figure 31.3 for a sinusoidal
input, when the error is normally distributed with variance 0.001.

Suppose we know that the model has two poles and one zero, i.e. we know
that it is given by (31.14), and want to know the values of parameters a1, a2,
b0 and b1. We know that there will be an error, and since we cannot measure
it or estimate it the best we can do is to replace it by its expected value, which
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Table 31.1: Input and output data of Figure 31.3.
t[s] 0 1 2 3 4 5 6
input 0.0000 0.7071 1.0000 0.7071 0.0000 −0.7071 −1.0000
output 0.0007 1.4237 3.4108 3.2732 1.8618 −1.0272 −2.8700
t[s] 7 8 9 10 11 12 13
input −0.7071 0.0000 0.7071 1.0000 0.7071 0.0000 −0.7071
output −3.3999 −1.5776 0.8401 3.0635 3.2140 1.7455 −1.0050
t[s] 14 15 16 17 18 19 20
input −1.0000 −0.7071 0.0000 0.7071 1.0000 0.7071 0.0000
output −2.9193 −3.3469 −1.6351 0.8849 3.0279 3.2467 1.7052

we assume to be E[ek] = 0. We can write

y20 = a1 (−y19) + a2 (−y18) + b0u20 + b1u19 (31.15)

y19 = a1 (−y18) + a2 (−y17) + b0u19 + b1u18 (31.16)

y18 = a1 (−y17) + a2 (−y16) + b0u18 + b1u17 (31.17)

...

y2 = a1 (−y1) + a2 (−y0) + b0u2 + b1u1 (31.18)

y1 = a1 (−y0) + a2 (−y−1) + b0u1 + b1u0 (31.19)

y0 = a1 (−y−1) + a2 (−y−2) + b0u0 + b1u−1 (31.20)

We can now replace values, assuming that before t = 0 s both input and output
were 0 (if we could not assume this, we would just discard the last two equations
right away):

1.7052 = −3.2467a1 − 3.0279a2 + 0.0000b0 + 0.7071b1 (31.21)

3.2467 = −3.0279a1 − 0.8849a2 + 0.7071b0 + 1.0000b1 (31.22)

3.0279 = −0.8849a1 + 1.6351a2 + 1.0000b0 + 0.7071b1 (31.23)

...

3.4108 = −1.4237a1 − 0.0007a2 + 1.0000b0 + 0.7071b1 (31.24)

1.4237 = −0.0007a1 + 0.0000a2 + 0.7071b0 + 0.0000b1 (31.25)

0.0007 = 0.0000a1 + 0.0000a2 + 0.0000b0 + 0.0000b1 (31.26)

The last equation being clearly impossible � which is a result of the output
being nothing but noise without depending from the parameters in any way �
, we discard it; the other 20 equations can be easily put in the form of (31.11).
Solving for θ,

θ =


a1

a2

b0
b1

 =


0.4969
−0.4024
2.0114
2.9812

 (31.27)

31.4 Deconvolution

We know from (10.25) that the output of a transfer function is given by the
convolution of its impulse response with the input. If signals are discretised in
time, we can approximate the integral in (10.25)

y(t) =

∫ t

0

g(t− τ)u(τ) dτ (31.28)

using a rectangular forward approximation (illustrated in Figure 31.4):

yk = Ts

k−1∑
i=0

uigk−1−i (31.29)
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Figure 31.4: Rectangular forward approximation of an integral, consisting of
the areas of the rectangles built from the highlighted points.

Data to be identi�ed, from t = 0 to tf = N Ts, can be arranged in matrixes:

N rows
y︷ ︸︸ ︷
y1

y2

y3

...
yN

 = Ts

N × N matrix

U︷ ︸︸ ︷
u0 0 0 · · · 0
u1 u0 0 · · · 0
u2 u1 u0 · · · 0
...

...
...

. . .
...

uN−1 uN−2 uN−3 · · · u0



N rows
g︷ ︸︸ ︷
g0

g1

g2

...
gN−1

 (31.30)

The impulse response g is found as g = U−1y. Since U is square, there is no
need to use a pseudo-inverse, and, because it is triangular, the solution can be
found solving the equations line by line:

g0 =
1

u0

y1

Ts
(31.31)

g1 =
1

u0

(
y2

Ts
− u1g0

)
(31.32)

g2 =
1

u0

(
y3

Ts
− u2g0 − u1g1

)
(31.33)

...

gk =
1

u0

(
yk + 1

Ts
− ukg0 − uk−1g1 − . . .− u1gk − 1

)
(31.34)

...

gN−1 =
1

u0

(
yN
Ts
− uN−1g0 − uN−2g1 − . . .− u1gN − 2

)
(31.35)

On the other hand, we can force (31.30) to be overdetermined by calculating Filtering noise in deconvo-
lutionthe impulse response gk in less time instants than the N time instants for which

this is possible:

N×1︷︸︸︷
y = Ts

N×K︷︸︸︷
U

K×1︷︸︸︷
g , K < N (31.36)

In this case the impulse response vector g must be found in a least-squares
sense:

g =
1

Ts
U+y (31.37)

This alternative is useful to �lter high-frequency noise.
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Since a convolution �nds the response to an arbitrary input from the input
and the impulse response, and now the impulse response is determined from
an arbitrary input and its response, this operation (31.31)�(31.35) or (31.37) is
called deconvolution.

Once the impulse response of the model is found, it can be used in several
di�erent ways.

� It can be used to �nd the model's response to an arbitrary input, by
convolution.

� It can in particular be used to �nd the model's response to sinusoids, so
as to obtain the model's frequency response.

� The Laplace transform of the impulse response can be found numerically.
We know from Theorem 10.1 that the result is the transfer function of the
model. Since we will only have numerical values, and not an analytical
expression, this may not be very useful. But instead of the Laplace trans-
form (with s ∈ C) we can just �nd the Fourier transform (2.87), thereby
obtaining the model's frequency response without the cumbersome and
tedious intermediate step of sinusoidal inputs.

� The impulse response can be used to obtain the parameters of a model,
either using (31.11) or using a simpli�ed formulation as in the following
Example, which is possible because the impulse is di�erent from zero in
one time instant only.

Example 31.5. Consider model

G(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
⇒

yk = b0uk + b1uk−1 + b2uk−2 − a1yk−1 − a2yk−2 (31.38)

Replacing the impulse

u0 =
1

Ts
(31.39)

uk = 0, ∀k 6= 0 (31.40)

in (31.38), the output yk will be the impulse response gk:

g0 = b0
1

Ts
(31.41)

g1 = b1
1

Ts
− a1g0 (31.42)

g2 = b2
1

Ts
− a1g1 − a2g0 (31.43)

g3 = −a1g2 − a2g1 (31.44)

g4 = −a1g3 − a2g2 (31.45)

...

There are 5 unkowns (2 on the denominator and 3 on the numerator), which
can be found with at least 5 values of the impulse response, corresponding to
the 5 equations above.

Using more values of gk, and thus more equations, the solution of the overde-
termined system will once more be found in a least-squares sense (and be more
robust to noise).

Remark 31.2. (31.41)�(31.45) can be arranged in matrix form, collecting the
terms on numerator coe�cients bk on one side and all the other terms on the
other:

1

Ts



b0
b1
b2
0
0
...


=



1 0 0 0 0 · · ·
a1 1 0 0 0 · · ·
a2 a1 1 0 0 · · ·
0 a2 a1 1 0 · · ·
0 0 a2 a1 1 · · ·
...

...
...

...
...

. . .





g0

g1

g2

g3

g4

...


(31.46)
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Figure 31.5: Example of forgetting factor αi for online identi�cation. In this
case, the weight decreases exponentially; a power law or a linear decrease can
be used instead.

This is not as useful as (31.11) or (31.30), since the coe�cients are in the matrix,
but gives a better idea of the general case.

31.5 Real time identi�cation

When identi�cation is carried out in real time, applying (31.12) in each sampling
instant k means that a (possibly overdetermined) linear system of equations,
with an ever-increasing size, will have to be solved, to �nd a completely di�erent
set of parameters θk. It is possible to improve this method in two ways:

� the estimate of the parameters θk at time instant k is obtained from the
previous estimate as

θk = θk−1 + ∆θk (31.47)

and so only the variation ∆θk has to be determined;

� a forgetting factor αi, i = 0, 1, . . . , k is used, so that older measurements Forgetting factor
carry less weight than recent ones. In this way, it is possible to identify
a quasi-stationary process, i.e. a process which is not time invariant but Quasi-stationary process
which undergoes changes in parameters much slower than its dynamics.
Of course, αi = 1, ∀i can be used to get the same e�ect of employing
no forgetting factor at all. Otherwise, something like what is shown in
Figure 31.5 is used.

These changes can be used in o�ine identi�cation as well: in this case, the
algorithm is run while being fed previously recorded data successively, as if
it were being measured online. The algorithm can be represented in a block
diagram as shown in Figure 31.6.

It is expedient to separate the several lines of matrix A from (31.11) as
follows:

ak =

1 × (m + n + 1)︷ ︸︸ ︷[
uk uk−1 · · · uk−m −yk−1 · · · −yk−n

]
(31.48)

A =


ak

ak−1

ak−2

...
a0


︸ ︷︷ ︸

(k + 1) × (m + n + 1)

(31.49)
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Figure 31.6: Block diagram for online identi�cation by error minimisation. The
arrow crossing the block with model Ĝ(s) of processG(s) means that the transfer
function is modi�ed.

This allows rewriting the least-squares solution (31.12) as

θ = A+y =
(
ATA

)−1
ATy

=

[aTk aTk−1 · · · aT0
]


ak
ak−1

...
a0



−1

[
aTk aTk−1 · · · aT0

]

yk
yk−1

...
y0


=

(
k∑
i=0

aTi ai

)−1

︸ ︷︷ ︸
R−1
k

k∑
i=0

aTi yi (31.50)

The forgetting factor can then be added both to matrix Rk and output yk:

θ = R−1
k

k∑
i=0

αiyia
T
i (31.51)

Rk =

k∑
i=0

αia
T
i ai︸ ︷︷ ︸

(n +m + 1) × (n +m + 1)

(31.52)

Lemma 31.1. The least-squares solution (31.12) of the identi�cation problem,
with a forgetting factor αk, can be recursively found as

θk = θk−1 + αkR
−1
k aTk (yk − akθk−1) (31.53)

Rk = Rk−1 + αka
T
k ak (31.54)

Proof. From (31.51), we can get two expressions for the estimate θ at time
instant k − 1 and time instant k:

Rk−1θk−1 =

k−1∑
i=0

αiyia
T
i (31.55)

Rkθk =

k∑
i=0

αiyia
T
i

=

k−1∑
i=0

αiyia
T
i + αkyka

T
k

= Rk−1θk−1 + αkyka
T
k (31.56)

From (31.52), we can get an expression for matrix R at time instant k − 1:

Rk =

Rk−1︷ ︸︸ ︷
k−1∑
i=0

αia
T
i ai +αka

T
k ak

⇒ Rk−1 = Rk − αkaTk ak (31.57)
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Replacing this in (31.56),

θk = R−1
k

(
Rk−1θk−1 + αkyka

T
k

)
= R−1

k

(
Rk − αkaTk ak

)
θk−1 + R−1

k αkyka
T
k

= R−1
k Rkθk−1 − αkR−1

k aTk akθk−1 + αkykR
−1
k aTk (31.58)

whence (31.53) follows immediately.

With (31.53)�(31.54), there are no longer matrixes with an ever-increasing
size, but the problem of having to solve a linear system of equations in each
iteration remains (there is a matrix inverse in (31.53)). This can be solved with
the following lemma:

Lemma 31.2.

(A + BCD)
−1

= A−1 −A−1B
(
C−1 + DA−1B

)−1
DA−1 (31.59)

provided that matrixes have compatible dimensions, and that matrixes A and
C are square and invertible.

Proof.

(A + BCD)
(
A−1 −A−1B

(
C−1 + DA−1B

)−1
DA−1

)
=AA−1 + BCDA−1 −AA−1B

(
C−1 + DA−1B

)−1
DA−1 −BCDA−1B

(
C−1 + DA−1B

)−1
DA−1

=I + BCDA−1 −
(
B + BCDA−1B

) (
C−1 + DA−1B

)−1
DA−1

=I + BCDA−1 −BC

I︷ ︸︸ ︷(
C−1 + DA−1B

) (
C−1 + DA−1B

)−1
DA−1︸ ︷︷ ︸

0

= I

(31.60)

In the above, the inverses of A and C appear, and if they exist the calculations
hold, irrespective of the values of B and D.

Theorem 31.1. The least-squares solution (31.12) of the identi�cation prob- These are the equations
implemented for real time
identi�cation

lem, with a forgetting factor αk, can be recursively found as

θk = θk−1 +
Pk−1a

T
k

1
αk

+ akPk−1aTk
(yk − akθk−1) (31.61)

Pk = Pk−1 −
Pk−1a

T
k akPk−1

1
αk

+ akPk−1aTk
(31.62)

Proof. Using (31.59) in (31.54),

Rk =

A︷ ︸︸ ︷
Rk−1 +

B︷︸︸︷
aTk

C︷︸︸︷
αk

D︷︸︸︷
ak

⇒ R−1
k = R−1

k−1 −R−1
k−1a

T
k

(
1

αk
+ akR

−1
k−1a

T
k

)−1

akR
−1
k−1 (31.63)

Notice that:

� matrix C = αk is in fact a scalar;

� matrixes R and R−1 are square, with dimensions (n+m+1)×(n+m+1);

� vector ak has dimensions 1×(n+m+1), and thus vector aTk has dimensions
(n+m+ 1)× 1;

� thus, product akR
−1
k−1a

T
k is a scalar, and so is

(
1
αk

+ akR
−1
k−1a

T
k

)−1

;

� product aTk ak has dimensions (n + m + 1) × (n + m + 1), and so does
product R−1

k−1a
T
k akR

−1
k−1.
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We can thus write (31.63) as

R−1
k = R−1

k−1 −
R−1
k−1a

T
k akR

−1
k−1

1
αk

+ akR
−1
k−1a

T
k

(31.64)

Replacing this result in (31.53),

θk = θk−1 + αk

(
R−1
k−1 −

R−1
k−1a

T
k akR

−1
k−1

1
αk

+ akR
−1
k−1a

T
k

)
aTk (yk − akθk−1)

= θk−1 +

(
αkR

−1
k−1a

T
k −

αkR
−1
k−1a

T
k akR

−1
k−1a

T
k

1
αk

+ akR
−1
k−1a

T
k

)
(yk − akθk−1)

= θk−1 +
αkR

−1
k−1a

T
k

(
1
αk

+ akR
−1
k−1a

T
k

)
− αkR−1

k−1a
T
k akR

−1
k−1a

T
k

1
αk

+ akR
−1
k−1a

T
k

(yk − akθk−1)

= θk−1 +
R−1
k−1a

T
k

1
αk

+ akR
−1
k−1a

T
k

(yk − akθk−1) (31.65)

(31.61)�(31.62) are in fact (31.65) and (31.64), making R−1 = P to stress that
there is no matrix inversion involved (there are only matrix multiplications and
divisions by scalars).

In practice:

� if there is an estimate of θ, this is used as initial value;Initialising the algorithm

� otherwise, the initial value θ = 0 is used;

� we should have

R0 =



u0

0
...
0
0
...
0


[
u0 0 · · · 0 0 · · · 0

]
(31.66)

and thus P0 = R−1
0 should have 1

u2
0
in line 1, column 1, and be zero

otherwise. But this often brings numerical problems. Consequently, it is
usual to make P0 = cI, where c > 0 is a scalar. Larger values of c make
θ update (and thus hopefully converge) faster, but sometimes may cause
the identi�cation algorithm to become unstable.

� (31.61)�(31.62) are then applied in each sampling instant.

31.6 Digital model validation

To validate a model's time responses, we give it an input and compare its output
with the experimental response. Suppose that the model is discrete in time:

yk
uk

=
b0 + b1z

−1 + . . .+ bmz
−m

1 + a1z−1 + . . .+ anz−n
⇔

yk = b0uk + b1uk−1 + . . .+ bmuk−m − a1yk−1 − . . .− anyk−n (31.67)

Let the experimental data at instant k be yk, and the estimate provided by the
model be ŷk. We can validate the model in several di�erent ways.

� Giving the model an input and comparing it to the experimental response,
as mentioned above, is

ŷk = b0uk + b1uk−1 + . . .+ bmuk−m − a1ŷk−1 − . . .− anŷk−n (31.68)
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Table 31.2: Unit step response of Exercise 2.
time output
0.0 0.0000
0.1 0.0025
0.2 0.0100
0.3 0.0225
0.4 0.0400
0.5 0.0625
0.6 0.0900

time output
0.7 0.1225
0.8 0.1600
0.9 0.2025
1.0 0.2500
1.1 0.3025
1.2 0.3600
1.3 0.4225

time output
1.4 0.4900
1.5 0.5625
1.6 0.6400
1.7 0.7225
1.8 0.8100
1.9 0.9025
2.0 1.0000

� On the other hand, since the experimental output is known, we can makeOne step ahead prediction

ŷk = b0uk + b1uk−1 + . . .+ bmuk−m − a1yk−1 − . . .− anyk−n (31.69)

Clearly (31.69) is not as demanding on the model as (31.68). This is called
one step ahead prediction, since the model is only required to provide
an estimate of the output one time step after the data it is provided with.

� One step ahead prediction can be generalised intoN step ahead prediction: N step ahead prediction

ŷk = b0uk + b1uk−1 + . . .+ bmuk−m − a1ŷk−1 − . . .− aN−1ŷk−N+1 − aNyk−N − . . .− anyk−n
(31.70)

The more estimated outputs ŷ are used instead of experimental outputs
y, the more is being demanded from the model.

Glossary

Though it be appointed in the afore written preface, that al thinges
shalbe read and sõg in the churche, in the Englishe tongue, to thende
t

y the congregacion maie be therby edi�ed: yet it is not meant, but
when men saye Matins and Euensong priuately, they maye saie the
same in any language that they themselues do understande.

Thomas Cranmer (attrib.; 1489 � �1556), The booke of the common prayer
and administracion of the Sacramentes, and other rites and ceremonies of the

Churche: after the use of the Churche of England (1549), The preface

deconvolution desconvolução
forgetting factor fator de esquecimento
genetic algorithms algoritmos genéticos
metaheuristic meta-heurística
Nelder-Mead simplex search methodmétodo do simplex, método de Nelder-
Mead
N step ahead prediction predição a N passos
one step ahead prediction predição a um passo
particle swarm optimisation otimização por enxame de partículas
quasi-stationary process processo quase-estacionário

Exercises

1. Find numerically the unit step response of

G(s) =
1

(s+ 0.1)(s2 + 0.3s+ 1)
(31.71)

for the �rst 60 s, using a sampling time you �nd appropriate. Use the
method of Example 31.3 to �nd the dominant pole from the response.

2. Find a model for a plant with the unit step response y(t) in Table 31.2.

3. Consider the data from Exercise 4 of Chapter 11.
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(a) Find discrete models for this plant, using (31.11). Try di�erent num-
bers of zeros and poles, and see how some performance index changes.

(b) Find the plant's impulse response, using (31.37) with di�erent values
of K. Explain the di�erent results obtained.

4. Repeat Exercise 3 using the data from Exercise 2 instead.

5. Find an expression similar to (31.46) for the case in which plant (31.38)
has 3 zeros and poles, 4 zeros and poles, and so on. What happens if there
are more poles than zeros?



Chapter 32

Identi�cation from frequency

responses

He thought he saw an Albatross
That �uttered round the lamp:
He looked again, and found it was
A Penny-Postage-Stamp.

�You'd best be getting home,� he said:
�The nights are very damp!�

Lewis Carroll (1832 � �1898), Sylvie and Bruno (1889), 12

This chapter concerns identi�cation methods from frequency responses.

32.1 Finding frequency response data

A frequency response to identify can be found in di�erent ways.

� Sinusoids of di�erent frequencies are used as inputs. After the transient
regime dies o�, gain and phase are determined comparing the input and
output sinusoids.

� The Fourier transform of an impulse response, obtained by deconvolution,
is numerically calculated, as mentioned in Section 31.4.

� A controller design method provides a particular frequency response for a
controller, desirable for the plant to be controller. (See e.g. Exercise 2.)

� A frequency response is established using one of the methods studied below
in Part VIII.

� Instead of using sinusoids as inputs, a chirp is used.

A chirp is a sinusoid with a time-varying frequency. An up-chirp begins Chirp

Up-chirpwith a low frequency ω0, which increases with time until frequency ωf , reached
at �nal time tf . A down-chirp begins with a high frequency ω0, which decreases Down-chirp
with time until frequency ωf , reached at �nal time tf . More formally:

De�nition 32.1. A chirp is a signal u(t), de�ned from t = 0 to t = tf , given
by

u(t) = A sin (ω(t)t) (32.1)

Example 32.1. In the case of an up-chirp with a frequency increasing linearly
with time, (32.1) becomes

ω(t) = ω0 +
ωf − ω0

tf
t, ω0 < ωf (32.2)

Example 32.2. In the case of an down-chirp with a frequency decreasing ex-
ponentially with time, (32.1) becomes

ω(t) = ω0

(
ωf
ω0

) t
tf

, ω0 > ωf (32.3)

465
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Figure 32.1: Left: responses to chirps of a �rst order plant. Right: responses to
chirps of a second order plant. Top: responses of �rst and second order plants
to a chirp in the [0.01, 1] rad/s frequency range. Bottom: responses of �rst and
second order plants to a chirp in the [1, 100] rad/s frequency range.

Using a chirp instead of several sinusoids with di�erent frequencies to obtain Replacing sinusoids with a
chirpthe frequency response of a plant has the major advantage of being faster. The

major drawback is that, of course, a steady-state is never reached. Consequently,
measurements of both gain and amplitude cannot but be approximations. How-
ever, if the rate of frequency increase is low enough, this approximation may be
acceptable.

Example 32.3. Figure 32.1 shows the response of

G1(s) =
1

s+ 1
(32.4)

G2(s) =
1

s2 + s+ 1
(32.5)

to two exponential up-chirps: one in frequency range [0.01, 1] rad/s, another in
frequency range [1, 100] rad/s. Notice the resonance peak of the underdamped
(ξ = 0.25) second order plant. Also notice that steady state responses are never
reached. For instance:

� at ω = 100 rad/s, |G(100j)| = 0.01, but the amplitude of the output is
still at about 0.3, when the amplitude of the input is 1;

� the maximum gain of G2(s) is 0.5
√

1− 0.252 = 0.48, according to (11.80),
i.e. 48% above the low frequency range, but the maximum amplitude of
the chirp response reaches 1.63.

Clearly this chirp would have had to last longer to explore the frequency response
in this way.

Remark 32.1. It is di�cult to tell, before identi�cation, how fast or slow the
transient regime of a plant may be, and consequently how much time a chirp
ought to take to sweep any particular range of frequencies. Still, responses such
as those in Figure 32.1 can even so be used in identi�cation, with the advantage
of having explored the system's response at many frequencies, but using instead
the techniques we will study in Part VIII.
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32.2 Identi�cation from the Bode diagram

We studied how a Bode diagram can be built from poles, zeros and gain in
Section 11.4. A reverse reasoning can lead us from the Bode diagram to the
poles, zeros and gain of the model. In particular:

� A constant gain and a phase of 0◦ or ±180◦ at low frequency mean that
there are neither poles nor zeros at the origin.

� In that case, if the phase is 0◦, the gain is positive; if it is ±180◦, the gain
is negative.

� A negative slope of −20n dB/decade and a phase of −90◦ × n at low
frequency mean that there are n poles at the origin.

� A positive slope of 20n dB/decade and a phase of 90◦×n at low frequency
mean that there are n zeros at the origin.

� Remember that the phase is periodic and so a phase of θ is the same as a
phase of θ ± 360◦k, k = 1, 2, . . ..

� A negative slope of −20n dB/decade and a phase of −90◦ × n at high
frequency mean that there are n poles more than zeros.

� A positive slope of 20n dB/decade and a phase of 90◦×n at high frequency
mean that there are n zeros more than poles.

� A decrease of the slope of the gain of −20n dB/decade and a decrease of
the phase of −90◦ × n at some frequency mean that there are n poles at
that frequency.

� An increase of the slope of the gain of 20n dB/decade and an increase of
the phase of 90◦ × n at some frequency mean that there are n zeros at
that frequency.

� Pairs of complex conjugate poles with damping coe�cient ξ <
√

2
2 can be

detected from the resonance peak, and (11.80) can be used to �nd ξ; then
(11.79) can be used to �nd ωn.

� Gain slopes can be estimated by eye, or analytically determined with a
linear regression. In the later case, care must be taken to choose wisely
the frequencies to include.

Review Section 11.4 for further insights. See Exercises 10 to 12 of Chapter 11.
Notice that this method can be applied if all that is known about the fre- If only the gain is known

quency response is the gain. This may happen because the phase was not regis-
tered, or is more a�ected by noise than the gain. However, it will be impossible
to determine if poles are stable or unstable, and if zeros are minimum phase or
non-minimum phase. Only with the phase can that be known. Unless there is
some reason to suppose otherwise, stable poles and minimum phase zeros are
presumed.

Something similar happens if all that is known about the frequency response If only the phase is known
is the phase (a more rare occurrence than knowing only the gain).

32.3 Levy's method

Levy's method �ts a transfer function to a frequency response using least squares.

Theorem 32.1. Let a plant's frequency response G(jωp) be known at f fre-
quencies, i.e. p = 1, 2, . . . , f . The model

Ĝ(s) =
N(s)

D(s)
=

m∑
k=0

bks
k

1 +

n∑
k=1

aks
k

(32.6)
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with parameters to be determined

b =
[
b0 · · · bm

]T
(32.7)

a =
[
a1 · · · an

]T
(32.8)

which minimises quadratic errorWhat Levy's method min-
imises

ε =

f∑
p=1

∣∣∣(G(jωp)− Ĝ(jωp)
)
D(jωp)

∣∣∣2
=

f∑
p=1

∣∣∣G(jωp)D(jωp)−N(jωp)
∣∣∣2 (32.9)

is found solving [
A B
C D

] [
b
a

]
=

[
e
g

]
(32.10)

A =

f∑
p=1

Ap (32.11)

B =

f∑
p=1

Bp (32.12)

C =

f∑
p=1

Cp (32.13)

D =

f∑
p=1

Dp (32.14)

e =

f∑
p=1

ep (32.15)

g =

f∑
p=1

gp (32.16)

where the elements in line l and column c of matrixes Ap, Bp, Cp and Dp are
given by

Ap;l,c = −<
[
(jωp)

l
]
< [(jωp)

c]−=
[
(jωp)

l
]
= [(jωp)

c] ,

l = 0 . . .m ∧ c = 0 . . .m (32.17)

Bp;l,c = <
[
(jωp)

l
]
< [(jωp)

c]< [G(jωp)] + =
[
(jωp)

l
]
< [(jωp)

c]= [G(jωp)]

−<
[
(jωp)

l
]
= [(jωp)

c]= [G(jωp)] + =
[
(jωp)

l
]
= [(jωp)

c]< [G(jωp)] ,

l = 0 . . .m ∧ c = 1 . . . n (32.18)

Cp;l,c = −<
[
(jωp)

l
]
< [(jωp)

c]< [G(jωp)] + =
[
(jωp)

l
]
< [(jωp)

c]= [G(jωp)]

−<
[
(jωp)

l
]
= [(jωp)

c]= [G(jωp)]−=
[
(jωp)

l
]
= [(jωp)

c]< [G(jωp)] ,

l = 1 . . . n ∧ c = 0 . . .m (32.19)

Dp;l,c =
(
< [G(jωp)]

2
+ = [G(jωp)]

2
) (
<
[
(jωp)

l
]
< [(jωp)

c] + =
[
(jωp)

l
]
= [(jωp)

c]
)
,

l = 1 . . . n ∧ c = 1 . . . n (32.20)

and the elements of vectors ep and gp are given by

ep;l,1 = −<
[
(jωp)

l
]
< [G(jωp)]−=

[
(jωp)

l
]
= [G(jωp)] ,

l = 0 . . .m (32.21)

gp;l,1 = −<
[
(jωp)

l
] (
< [G(jωp)]

2
+ = [G(jωp)]

2
)
,

l = 1 . . . n (32.22)
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Proof. Error (32.9) is given by

ε = |GD −N |2

=
∣∣∣(<[G] + j=[G]

)(
<[D] + j=[D]

)
−
(
<[N ] + j=[N ]

)∣∣∣2
=
∣∣∣(<[G]<[D]−=[G]=[D]−<[N ]

)
+ j
(
<[G]=[D] + =[G]<[D]−=[N ]

)∣∣∣2
=
(
<[G]<[D]−=[G]=[D]−<[N ]

)2

+
(
<[G]=[D] + =[G]<[D]−=[N ]

)2

(32.23)

To minimise ε, we want its derivatives in order to coe�cients ak and bk to be
zero.

Let us suppose that there is only one frequency ωp. First we �nd

d<[G]

dai
=

d<[G]

dbi
=

d=[G]

dai
=

d=[G]

dbi
= 0 (32.24)

d<[N ]

dai
= 0 (32.25)

d<[N ]

dbi
=

d

dbi

m∑
k=0

bk<
[
(jωp)

k
]

= <
[
(jωp)

i
]

(32.26)

d=[N ]

dai
= 0 (32.27)

d=[N ]

dbi
=

d

dbi

m∑
k=0

bk=
[
(jωp)

k
]

= =
[
(jωp)

i
]

(32.28)

d<[D]

dai
=

d

dai

{
1 +

n∑
k=1

ak<
[
(jωp)

k
]}

= <
[
(jωp)

i
]

(32.29)

d<[D]

dbi
= 0 (32.30)

d=[D]

dai
=

d

dai

{
1 +

n∑
k=1

ak=
[
(jωp)

k
]}

= =
[
(jωp)

i
]

(32.31)

d=[D]

dbi
= 0 (32.32)

(Notice that jk can only assume four values: ±1 and ±j. In the �rst case, there
will be a real part, and the imaginary part is zero; in the later case, there will
be an imaginary part, and the real part is zero.) Consequently,

∂ε

∂ai
= 2
(
<[G]<[D]−=[G]=[D]−<[N ]

)(
<[G]<

[
(jωp)

i
]
−=[G]=

[
(jωp)

i
] )

+ 2
(
<[G]=[D] + =[G]<[D]−=[N ]

)(
<[G]=

[
(jωp)

i
]

+ =[G]<
[
(jωp)

i
] )

(32.33)

∂ε

∂bi
= 2
(
<[G]<[D]−=[G]=[D]−<[N ]

)(
−<

[
(jωp)

i
] )

+ 2
(
<[G]=[D] + =[G]<[D]−=[N ]

)(
−=

[
(jωp)

i
] )

(32.34)

Equaling to zero,

∂ε

∂ai
= 0⇔ <[D]

(
=[G]2 + <[G]2

)
<
[
(jωp)

i
]

+

=[D]
(
=[G]2 + <[G]2

)
=
[
(jωp)

i
]

+

<[N ]
(
=[G]=

[
(jω)i

]
−<[G]<

[
(jωp)

i
] )

+

=[N ]
(
−=[G]<

[
(jωp)

i
]
−<[G]=

[
(jωp)

i
] )

= 0 (32.35)

∂ε

∂bi
= 0⇔

(
<[G]<[D]−=[G]=[D]−<[N ]

)
<
[
(jωp)

i
]

+(
<[G]=[D] + =[G]<[D]−=[N ]

)
=
[
(jωp)

i
]

= 0 (32.36)
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The m+1 equations given by (32.35) and the n equations given by (32.36) form
linear system (32.10), with matrixes and vectors de�ned by (32.17)�(32.22).

Considering f frequencies instead of only one, we arrive at (32.11)�(32.16).

Remark 32.2. Notice that error was de�ned as in (32.9) so that the minimisa-Why the error is de�ned as
it was tion problem should be linear on coe�cients b and a. That is why the denom-

inator D(jωp) is used as a sort of weighting function. Otherwise, the problem
would not have as solution a system of linear equations such as (32.10).

Remark 32.3. Using D(jωp) is used as a weighting function in error ε givesHigh frequencies are given
more weight more weight to high frequencies, since D(jωp) is a polynomial and thus its

absolute value must increase with frequency ω. If Levy's method is applied,
and the performance of the resulting model is poor at low frequencies, this
e�ect can be counteracted, weighting the contributions of di�erent frequenciesUse weights to improve low

frequencies results in (32.11)�(32.16) with weights that increase the in�uence of low frequencies.

Remark 32.4. Instead of summing matrixes Ap, Bp, Cp and Dp, and vectorsAlternative formulation of
Levy's method ep and gp, they can be stacked. In that case, instead of (32.10)�(32.16), the

coe�cients in b and a will be found solving

A1 B1

C1 D1

A2 B2

C2 D2

...
...

Af Bf

Cf Df


︸ ︷︷ ︸

H

[
b
a

]
=


e1

g1

e2

g2

...
ef
gf


︸ ︷︷ ︸

v

(32.37)

This overdetermined system will have a solution in least squares sense:

[b a]T = H+v (32.38)

Remark 32.5. Model (32.6) is of type 0. If the frequency data corresponds toWhat to do if there are
poles at the origin a model with poles at the origin, the e�ect of such poles must be removed from

the data. Once the model is identi�ed, the poles at the origin are then added.
Zeros at the origin cause no problem.

Example 32.4. The frequency response G(jω) of

G(s) =
5s+ 10

s(s2 + 0.2s+ 1)
(32.39)

is sampled in 31 logarithmically spaced frequencies in [0.1, 100] rad/s. The
numbers of zeros and poles m = 1 and n = 3 can be easily from the Bode
diagram. Levy's method identi�es

Ĝ(s) =
0.02341s− 6.569

0.002116s3 − 1.317s2 − 0.1569s− 1
(32.40)

because a model of type 0 is presumed. This is shown in Figure 32.2.
Since there is obviously a pole at the origin, we should �nd the frequency

response of this pole and subtract it from G(jω):

Gcorrection(s) =
1

s
(32.41)

20 log10 |G∗(jω)| = 20 log10 |G(jω)| − 20 log10 |Gcorrection(jω)| (32.42)

∠G∗(jω) = ∠G(jω)− ∠Gcorrection(jω) (32.43)

From frequency response G∗(jω), Levy's method with m = 1 and n = 2 identi-
�es

Ĝ(s) =
5s+ 10

s2 + 0.2s+ 1
(32.44)

from which (32.39) is immediately recovered, as shown in Figure 32.3.
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Figure 32.2: Frequency response of G(s), given by (32.39), and frequency re-
sponse of identi�ed model Ĝ(s), given by (32.40).

Figure 32.3: Left: frequency response G∗(jω), given by (32.42)�(32.43), and
frequency response of identi�ed model Ĝ(s), given by(32.40). Right: frequency
response of G(s), given by (32.39), and frequency response of the identi�ed
model, which is the same.

Remark 32.6. If, in the example above, the model should have k poles at the
origin, then

Gcorrection(s) =
1

sk
(32.45)

Remark 32.7. Levy's method requires knowing in advance the number of zeros
and poles needed in the model. The inspection of the Bode diagram should be
used beforehand for this purpose.

32.4 Matsuda's method

Matsuda's method identi�es a model from the gain of the frequency behaviour
of a plant. Stable poles and minimum phase zeros are assumed. This method
relies on continued fractions.

De�nition 32.2. A continued fraction is an entity, de�ned from two se- Continued fractions
quences ak and bk, with the form

a0 +
b1

a1 + b2
a2+

b3

a3+
b4

a4+...

(32.46)

Instead of writing continued fractions as in (32.46), they are usually notated,
for the bene�t of clarity, using either

� the Abramowitz notation: Abramowitz notation

a0 +
b1
a1+

b2
a2+

b3
a3+

b4
a4+

· · · (32.47)

� the Pringsheim notation: Pringsheim notation[
a0;

b1
a1
,
b2
a2
,
b3
a3
,
b4
a4
, · · ·

]
=

[
a0,

bk
ak

]+∞

k=1

(32.48)
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Remark 32.8. Just as a series
∑+∞
k=1 ak is built from a sequence ak, so a

continued fraction is built from two sequences ak and bk, and just as series may
or may not converge, continued fractions may converge or not.

Every x0 ∈ R\Z can be written asContinued fraction expan-
sion of real numbers

x0 = bx0c+
1
1

x0−bx0c
= bx0c+

1

x1︸︷︷︸
1

x0−bx0c

(32.49)

and applying this repeatedly we �nd that

x0 = bx0c+
1

bx1c+ 1
bx2c+ 1

bx3c+...

=

[
bx0c;

1

bxkc

]+∞

k=1

(32.50)

xk =
1

xk−1 − bxk−1c
, k ∈ N (32.51)

If x0 ∈ Q, the continued fraction expansion above will terminate (that is to say,
sooner or later one of the xk will be integer, and thus all the following coe�cients
xn, n > k will be zero). If x0 is irrational, all the xk will be di�erent from zero.
Whatever the case, the continued fraction can be truncated after some terms,
providing a rational approximation of x0 which is the best possible for the orderContinued fractions as ap-

proximations of magnitude of the denominator; that is to say, no other fraction closer to x0

can be found with a denominator of the same order of magnitude.
Terminating continued fractions can be evaluated beginning with its lastEvaluating a continued

fraction (innermost) fraction, but it is more expedient to use the following result whether
the continued fraction terminates or not.

Theorem 32.2. Let ak and bk be two sequences de�ning a continued fraction
given by (32.46)�(32.48), and let

P−1 = 1 (32.52)

P0 = a0 (32.53)

Pk = akPk−1 + bkPk−2, k ∈ N (32.54)

Q−1 = 0 (32.55)

Q0 = 1 (32.56)

Qk = akQk−1 + bkQk−2, k ∈ N (32.57)

Then Rk = Pk
Qk

is the value of the continued fraction, truncated after k terms.

Proof. This is proved by mathematical induction. For k = 1,

R1 =
P1

Q1
=
a1a0 + b1
a1 + 0

= a0 +
b1
a1

(32.58)

To prove the inductive step, notice that adding a further pair of coe�cients
means that the last denominator ak will be added a new fraction bk+1

ak+1
. So, if in

Rk = Pk
Qk

= akPk−1+bkPk−2

akQk−1+bkQk−2
we replace ak with ak + bk+1

ak+1
,

Rk+1 =

(
ak + bk+1

ak+1

)
Pk−1 + bkPk−2(

ak + bk+1

ak+1

)
Qk−1 + bkQk−2

=
ak+1

Pk︷ ︸︸ ︷
(akPk−1 + bkPk−2) +bk+1Pk−1

ak (akQk−1 + bkQk−2)︸ ︷︷ ︸
Qk

+bk+1Qk−1
=
Pk+1

Qk+1
(32.59)

Remark 32.9. By computing the Pk and Qk in this way, additional terms
can be added to the truncated continued fraction without having to begin the
computation anew.

Just as series can be used to de�ne functions by letting the terms of the
summed sequence depend on t, so can continued fractions.
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Theorem 32.3. If function f0(t) is known at t0, t1, t2, . . . tp, it can be inter-
polated by continued fraction

f0(t) ≈ f0(t0) +
t− t0
f1(t1)+

t− t1
f2(t2)+

t− t2
f3(t3)+

· · · =
[
f0(t0);

t− tk
fk+1(tk+1)

]p
k=0

(32.60)

fk+1(t) =
t− tk

fk(t)− fk(tk)
, k ∈ N0 (32.61)

Proof. Let p ≥ k+1. The continued fraction (32.60), evaluated at tk+1, becomes

f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
f2(t2)+

· · · tk+1 − tk−2

fk−1(tk−1)+

tk+1 − tk−1

fk(tk)+

tk+1 − tk
fk+1(tk+1) + 0

=f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
f2(t2)+

· · · tk+1 − tk−2

fk−1(tk−1)+

tk+1 − tk−1

fk(tk)+

tk+1 − tk
tk+1−tk

fk(tk+1)−fk(tk)

=f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
f2(t2)+

· · · tk+1 − tk−2

fk−1(tk−1)+

tk+1 − tk−1

fk(tk+1)

=f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
f2(t2)+

· · · tk+1 − tk−2

fk−1(tk−1)+

tk+1 − tk−1
tk+1−tk

fk−1(tk+1)−fk−1(tk−1)

=f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
f2(t2)+

· · · tk+1 − tk−2

fk−1(tk+1)
(32.62)

And so on, until

f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
f2(tk+1)

=f0(t0) +
tk+1 − t0
f1(t1)+

tk+1 − t1
tk+1−t1

f1(tk+1)−f1(t1)

=f0(t0) +
tk+1 − t0
f1(tk+1)

=f0(t0) +
tk+1 − t0
tk+1−t0

f0(tk+1)−f0(t0)

=f0(tk+1) (32.63)

Remark 32.10. Notice that points tk do not need to be ordered. The same
points, ordered in di�erent manners, lead to di�erent interpolating continued
fractions.

(32.60) interpolates a real function of a real variable; Matsuda's identi�cation Matsuda's method
method is a generalisation for complex variables. Given a frequency behaviour
G(jω), known at frequencies ω0, ω1, . . . ωN , which do not need to be ordered,

G(s) ≈ d0(ω0) +
s− ω0

d1(ω1)+

s− ω1

d2(ω2)+

s− ω2

d3(ω3)+
. . . =

[
d0(ω0);

s− ωk−1

dk(ωk)

]N
k=1

(32.64)

d0(ω) = |G(jω)| (32.65)

dk(ω) =
ω − ωk−1

dk−1(ω)− dk−1(ωk−1)
, k = 1, 2, . . . N (32.66)

Remark 32.11. Models obtained with (32.64) have
⌈
N
2

⌉
zeros and

⌊
N
2

⌋
poles,

which means that they will be causal only if N is even (and thus the number of
frequencies, which is N + 1, is odd).

32.5 Oustaloup's method

Oustaloup's method identi�es a model from the phase of the frequency behaviour
of a plant. Stable poles and minimum phase zeros are assumed. Proving the
method is exceedingly tedious; we will only state the result.

Suppose we want to �nd a transfer function

Ĝ(s) = G0

m∏
k=1

1 +
s

bk
n∏
k=1

1 +
s

ak

, G0 > 0 (32.67)
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with the phase behaviour φi at frequencies ωi, i = 1 . . . f ; that is to say, we
want that

arg Ĝ(jωi) = arg

m∏
k=1

1 +
jωi
bk

n∏
k=1

1 +
jωi
ak

= φi, i = 1 . . . f (32.68)

Let C be a f × (m+ n+ 1) matrix given by

C =


tanφ1 1 − tanφ1 −1 tanφ1 1 − tanφ1 . . .

tanφ2
ω2

ω1
− tanφ2

(
ω2

ω1

)2

−
(
ω2

ω1

)3

tanφ2

(
ω2

ω1

)4 (
ω2

ω1

)5

− tanφ2

(
ω2

ω1

)6

. . .

...
...

...
...

...
...

... . . .

tanφf
ωf
ω1

− tanφf

(
ωf
ω1

)2

−
(
ωf
ω1

)3

tanφf

(
ωf
ω1

)4 (
ωf
ω1

)5

− tanφf

(
ωf
ω1

)6

. . .


(32.69)

and let s be a (m+n+1)×1 vector such that Cs = 0. Because in practice there
will be a solution only if there is no noise and the model structure is correct, we
make

s = arg min
s
‖Cs‖2 (32.70)

instead. We then �nd the m+ n roots yk, k = 1 . . .m+ n of a polynomial built
with the elements of s as coe�cients:

m+n∑
k=0

(−1)ksk y
m+n−k = 0 (32.71)

Then for each k = 1, . . . ,m+ n we make

ak =
ω1

yk
, if yk > 0 (32.72)

bk = −ω1

yk
, if yk < 0 (32.73)

and thus obtain the m+ n poles and zeros of model (32.67). Notice that, while
the total number of poles and zeros is in fact m + n, it is possible that the
number of poles and the number of zeros are not n and m.

Glossary

Every concept that can ever be needed, will be expressed by exactly
one word, with its meaning rigidly de�ned and all its subsidiary
meanings rubbed out and forgotten. Already, in the Eleventh Edi-
tion, we're not far from that point. But the process will still be
continuing long after you and I are dead. Every year fewer and
fewer words, and the range of consciousness always a little smaller.

George Orwell (1903 � �1950), Nineteen Eighty-Four (1949), I 5

chirp chirp
continued fraction fração contínua
down-chirp chirp descendente
up-chirp chirp ascendente

Exercises

1. Find a model for the frequency response in Table 32.1 using every method
in this chapter.

2. A controller is wanted for plant

G(s) =
s+ 1

s3 + 2.2s2 + 100.4s+ 20
(32.74)

You want a constant phase margin of 45◦ in [1, 10] rad/s.
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Table 32.1: Frequency response of Exercise 1.

f [Hz] gain [dB] phase [◦]
0.1 7.1 −6.35
0.2 7.0 −12.6
0.3 6.7 −18.5
0.4 6.4 −24.1
0.5 6.0 −29.2
0.6 5.6 −33.8
0.7 5.1 −38.0
0.8 4.6 −41.8
0.9 4.1 −45.1

f [Hz] gain [dB] phase [◦]
1.0 3.7 −48.1
1.2 2.7 −53.3
1.5 1.4 −59.1
2.0 −0.6 −65.9
2.5 −2.3 −70.3
3.0 −3.7 −73.4
4.0 −6.0 −77.4
5.0 −7.9 −79.8
7.0 −10.8 −82.7
10.0 −13.8 −84.9

(a) Find the frequency response of G(s) in a suitable frequency range.

(b) Find the desirable phase of the frequency response of the controller.
Sample it at suitable frequency values.

(c) Use Oustaloup's identi�cation method to design a controller. The
phase margin will never be really constant in the desired range, but
may be within a narrow band centred on the desired value. Use a
suitable performance index to verify the in�uence on results of the
frequency values chosen to sample the desired controller behaviour.

3. Consider plant

G(s) =
5s

s3 + s2 + 0.2s+ 1
(32.75)

(a) Find its frequency response in some set of frequency values you �nd
appropriate.

(b) Use Levy's method to identify a transfer function from that frequency
response.

(c) Repeat this for di�erent sets of frequency values, and for di�erent
model structures (with more, and less, poles and zeros than those of
G(s)).

(d) Use Matsuda's method and Oustaloup's method to identify models
from the gain and the phase of a frequency response that had good
results with Levy's method.

4. Figure 32.4 shows the Bode diagram of a LTI system. Find its transfer
function.

Figure 32.4: Bode diagram of Exercise 4.

5. Figure 32.5 shows the Bode diagram of a LTI system. Find its transfer
function.
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Figure 32.5: Bode diagram of Exercise 5.

6. Figure 32.6 shows steady state responses of a LTI system to sinusoidal
inputs with amplitude 1.

� Find its transfer function, assuming that it has no non-minimum
phase zeros, from the asymptotes of the Bode diagram.

� Do the same, using Matsuda's method.

� Could you use Levy's method? If so, how?

Figure 32.6: Time responses of Exercise 6.



Chapter 33

Identi�cation of

non-linearities

`Somewhere to run,' suggested Paul.

`Why, God bless my soul, they've got the whole park! How did you
manage yesterday for the heats?

`We judged the distance by eye.'

Evelyn Waugh (19035 � �1966), Decline and fall (1928), 1 VIII

This chapter concerns the identi�cation of non-linearities, introduced in Sec-
tion 8.3 and already studied above in Chapter 28 as to their in�uence in control
systems.

33.1 Identifying the presence of a non-linearity

There are three main ways of identifying the presence of a non-linearity. How to detect a non-
linearityThe �rst is to verify if the amplitude of the output is proportional to the
Non-linear systems do not
have outputs proportional
to inputs

amplitude of the input. This can be seen, for instance, providing steps or
sinusoids of di�erent amplitudes as inputs. If the corresponding outputs are not
proportional to the amplitude of the input, then there is a non-linearity.

The second is to check if the steady-state response of a system to a sinusoidal Non-linear systems do not
have sinusoidal outputs for
sinusoidal inputs

input is sinusoidal. Remember that Theorem 10.4 was established assuming that
the system is linear. So, if a stable system has a sinusoidal input, and the output
never becomes sinusoidal, there clearly is a non-linearity involved, even if it is
not easy to see which; review Example 10.12. Remember that, because of this,
non-linear systems have no frequency response; describing functions (introduced
in Section 28.2) are only approximations of frequency responses.

The third is to study the behaviour of the system in closed loop, looking for

� responses that are unexpectedly stable or unstable, indicating an equiva-
lent gain in the closed loop caused by a non-linearity (see Section 28.1);

� limit cycles (see Section 28.2). We will address this possibility further
below in Section 33.3.

33.2 Identi�cation from a time response

Recall the distinction introduced in Section 8.3 between soft non-linearities
and hard non-linearities. As mentioned there, soft non-linearities can be
approximated by a linearised model around some point of operation, typically
the steady-state. If necessary, several di�erent linear models, corresponding to
di�erent operation points, can be found.

Hard non-linearities can have no e�ect in time responses if the input is such
that the output never reaches values where the non-linearity has its e�ect. This
is obvious for a saturation, for example: if the outputs are always small enough,
saturation values are never reached and can seem non-existent.

Hard non-linearities can be distinguished one from another looking carefully
at how time responses behave.

477
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Figure 33.1: E�ects of non-linearities. The variable is assumed to be a position.
In one case, the position saturates, i.e. there are end stops. In the other, the
velocity has a dead zone.

Example 33.1. Figure 33.1 shows that the e�ects of a saturation and of a dead
zone can be similar.

Figure 33.2 shows experimental data of the output of a system (controlledSaturation vs. dead zone in
time responses in closed loop) for a sinusoidal input. While one might think that this plot

shows the existence of output saturation at values corresponding to sensor mea-
surements about ±0.6 V, it is in fact a dead zone that causes the non-linear
behaviour. Indeed, the value of the apparent saturation is not always the same
over di�erent periods of the sinusoid; even during the same period there are
small �uctuations that are hardly a consequence of sensor noise. Even though
this makes clear that the visible non-linearity is not a saturation, we could con-
�rm this using sinusoids of di�erent amplitudes as input: a saturation would
always correspond to outputs limited at the same value,

33.3 Identi�cation from a limit cycle

We saw in Sections 28.2 and 28.3 that a closed loop with a non-linearity will
have a limit cycle if the curve of the frequency response of the linear part and
the curve of − 1

N intersect, as expressed by condition (28.48):

G(jω) = − 1

N(U, ω)
(33.1)

The amplitude of the limit cycle will be U and its frequency ω. Additionally,
the limit cycle should be stable to be observed.

If a limit cycle is observed, the describing function N of the non-linearity can
be found from the measured values of U and ω. These non-linear calculations,
however, are often a�ected by numerical problems in practice.

Example 33.2. Consider the situation of Examples 28.6 and 28.7. The plantCalculations of the limit
cycle, backwards has already been identi�ed in open loop as

G(s) =
1.4

s (s+ 1)
2 (33.2)

When controlling the plant in closed loop, a limit cycle is found with frequency
0.76 rad/s and amplitude 4.68. Since there are no marginally stable poles, this
means that there is a non-linearity. If it can be ascertained that the non-linearity
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Figure 33.2: Plant with a dead zone. (Data collection: Mariana Preto Nunes
and André Nakamura.)

is due to backlash, then

1.4

jω (jω + 1)
2 = − 1

k
2

(
1− 2

π

[
arcsin

(
2− 4.68

A
4.68
A

)
+

2− 4.68
A

4.68
A

cos
(

arcsin
(

2− 4.68
A

4.68
A

))])
− 4kAj (4.68−A)

π 4.682

(33.3)

Compare this with (28.50). There are two unknowns, both of them real numbers.
The real and the imaginary parts of (33.3) provide a system of equations to �nd
them.

33.4 Identi�cation of a pure delay

In Chapter 24, we saw that a pure delay is a non-linear element when using con-
tinuous transfer functions, and in Chapter 25 we saw that it is a linear element
when using discrete transfer functions. Whatever the case, its identi�cation is
done in the same way:

� In the case of a time response, the system should �rst be brought to steady
state, and then a change in the input applied. A step is not necessary, as
long as it is possible to measure the time to a change in the output. This
should be done for several di�erent types of input changes (steps with
di�erent amplitudes, ramps. . . ), to make sure that the delay observed is
always the same. If it is not, then the apparent delay is in reality due to
some other non-linearity.

� In the case of a frequency response, since

∠e−θjω = ∠ [cos(−θω) + j sin(−θω)]

= ∠ [cos(θω)− j sin(θω)]

= arctan
− sin θω

cos θω
= −θω (33.4)

a delay can be expected if the phase decreases at high frequencies while
the gain has a constant slope. It is identi�ed �tting a straight line by
minimum squares to the phase values at high frequency. Do not forget
that, as we saw in Chapter 24, phase (33.4) appears in a Bode diagram as The phase of the delay in

the Bode diagram is expo-
nential

an exponential, because of the semi-logarithmic scale of frequencies.

In Chapter 39 we will see additional techniques that may be used to identify a
pure delay.
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Figure 33.3: Block diagram of Exercise 1.

Figure 33.4: Block diagram of Exercise 2.

Exercises

1. The control system in Figure 33.3 includes plant G(s) =
1.5

s (s+ 1)
2 and an

actuator with backlash. A limit cycle with period 7.757 s and amplitude
5.45 is observed. Find A and k.

2. The control system in Figure 33.4 includes plant G(s) =
3

s (s+ 1)
2 and

the represented non-linearity, with C = 1. A limit cycle with 0.882 rad/s
and amplitude 2.155 is observed. Find A and B.

3. The control system in Figure 33.5 includes the represented non-linearity,
with k = 1. A limit cycle with 0.39 Hz and amplitude 10.2 is observed.
Find A and K1.

Figure 33.5: Block diagram of Exercise 3.



Part VII

Fractional order systems
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`I just take the train from platform nine and three-quarters at eleven
o'clock,' he read.

His aunt and uncle stared.

`Platform what?'

`Nine and three-quarters.'

`Don't talk rubbish,' said Uncle Vernon, `there is no platform nine
and three-quarters.'

J. K. Rowling (1965 � . . . ), Harry Potter and the Philosopher's Stone
(1997), 6

In this part of the lecture notes:

Chapter 34 introduces fractional order systems from their frequency responses and the
corresponding identi�cation methods.

Chapter 35 shows how fractional derivatives are the origin of fractional order systems.

Chapter 36 concerns the time responses of fractional order systems and the corre-
sponding identi�cation methods.

Here is what you need to know beforehand to follow these chapters:

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4;

� System theory, from Part II;

� Filters, from Sections 12.2 and 12.3 of Chapter 12;

� System identi�cation, from Chapters 30 to 32.
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Chapter 34

Fractional order systems and

their frequency responses

Bien que la notion de dérivation non entière date du début du
XIXème siècle à travers les travaux de CAUCHY, elle reste néan-
moins une énigme dans le domaine de la physique appliquée et no-
tamment en automatique.

Alain Oustaloup (1950 � . . . ), La commande CRONE: commande robuste
d'ordre non entier (1991), Avant-propos

In this chapter we take a look at frequency responses that need to be mod-
elled with fractional powers of s.

34.1 Frequency responses that require fractional
order systems

We know from Chapter 11 that the frequency response of

G(s) = sk, k ∈ Z (34.1)

is

G(jω) = (jω)k (34.2)

20 log10 |G(jω)| = 20k log10 ω (34.3)

argG(jω) = k 90◦ (34.4)

At both high and low frequencies, given a transfer function

G(s) =
bms

m + bm−1s
m−1 + . . .+ b1s+ b0

sn + an−1sn−1 + . . .+ a1s+ a0
(34.5)

there will be one term that is increasingly larger than all others, and that is
why, in both cases:

� the gain is linear with a slope which is an integer multiple of 20 dB/decade;

� the phase is constant and equal to an integer multiple of 90◦.

As we saw in Sections 11.4 and 32.2, at low frequencies these values give us
the number of poles or zeros at the origin, and at high frequencies n −m (the
di�erence between the number of poles and zeros).

Frequency responses with other gain slopes or constant values for phases re-
quire transfer functions with non-integer powers of the Laplace transform vari-
able s, called fractional transfer functions. Such is the case of the response
in Figure 34.1, which has, at high frequencies, a gain slope of −10 dB/decade,
and a phase of 45◦. It is easy to see that such a frequency response can be
obtained with transfer function

G1(s) =
1

s
1
2 + 1

(34.6)

G1(jω) =
1

(jω)
1
2 + 1

(34.7)
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Figure 34.1: Frequency response of
(

1
s+1

) 1
2

.

since, for high frequencies, ω � 1 and

G1(jω) ≈ (jω)−
1
2 (34.8)

20 log10 |G1(jω)| ≈ 20 log10 ω
− 1

2 = −10 log10 ω (34.9)

∠G1(jω) ≈ ∠j−
1
2 = −45◦ (34.10)

and also by transfer function

G2(s) =

(
1

s+ 1

) 1
2

(34.11)

G2(jω) =

(
1

jω + 1

) 1
2

(34.12)

since, for high frequencies,

G2(jω) ≈ (jω)−
1
2 (34.13)

as well.
Notice, however, that the frequency responses of G1(s) and G2(s) are not the

same. (Figure 34.1 actually corresponds to G2(jω), given by (34.12).) Transfer
functions G1(s) and G2(s) belong to two di�erent types of fractional transfer
functions.

De�nition 34.1. A fractional order transfer function is a transfer function with
non-integer powers of the Laplace transform variable s and can be:

� implicit, given by:Implicit fractional transfer
function

G(s) =

(
b0 + b1s+ . . .+ bms

m

a0 + a1s+ . . .+ ansn

)α

=


m∑
k=0

bks
k

n∑
k=0

aks
k


α

, α ∈ R+\N (34.14)

� explicit, in which case it is the ratio of two linear combinations of powersExplicit fractional transfer
function of s, and may be

� commensurable, if all powers of s are integer multiples of some α ∈Commensurable fractional
transfer function R+\N, and thus the transfer function is a ratio of two polynomials
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in sα:

G(s) =
b0 + b1s

α + . . .+ bms
mα

a0 + a1sα + . . .+ ansnα

=

m∑
k=0

bks
kα

n∑
k=0

aks
kα

(34.15)

� non-commensurable, if it cannot be put in the form of (34.15): Non-commensurable frac-
tional transfer function

G(s) =
b0 + b1s

β1 + . . .+ bms
βm

a0 + a1sα1 + . . .+ ansαn

=

b0 +

m∑
k=1

bks
βk

a0 +

n∑
k=1

aks
αk

, αk, βk > 0, ∃k αk /∈ N ∨ βk /∈ N (34.16)

By contrast with these, transfer functions given by (9.3) may be called integer
order transfer functions.

Remark 34.1. (34.16) reduces to (34.15) if it turns out that all the βk in
the numerator and all the αk in the denominator are integer multiples of some
commensurability order α. Both (34.14) and (34.15) reduce to integer order
transfer functions if condition α /∈ N is relaxed.

Remark 34.2. Non-integer transfer functions would be a better name, since �Fractional� orders can be
irrational�fractional� orders may in fact be irrational, but the name fractional stuck.

Remark 34.3. Implicit fractional transfer functions have this name because
fractional powers of s are only implicitly found in (34.14). They are explicitly
seen in (34.15)�(34.16).

We know that, as (2.45) shows, the Laplace transforms of derivatives orig- Where do fractional pow-
ers of s come from?inate integer powers of s. We will defer to the next chapter the study of frac-

tional order derivatives that originate fractional powers of s, and proceed with
the study of frequency responses of fractional transfer functions.

34.2 Frequency responses of fractional order sys-
tems

We must study separately each of the types of fractional order transfer functions
in De�nition 34.1.

Theorem 34.1. The gain and the phase of an implicit fractional transfer func- Frequency response of an
implicit fractional transfer
function

tion G(s) given by

G(s) = [Gi(s)]
α (34.17)

are the gain and the phase of the integer transfer function Gi(s) scaled by α,
i.e.

20 log10 |G(jω)| = 20α log10 |Gi(jω)| (34.18)

∠G(jω) = α∠Gi(jω) (34.19)

Proof. This is a straightforward result of the properties of the logarithm.

Example 34.1. The frequency response of (34.12) shown in Figure 34.1 is the
frequency response of 1

s+1 with the values of gains and phases halved.

A commensurable fractional transfer function G(s) can be written as the Frequency response of a
commensurable fractional
transfer function

product of simpler terms with only one or two powers of s. From their fre-
quency responses it is possible to �nd that of G(s), as done in Section 11.4 for
integer transfer functions. In addition to (11.84)�(11.155), the other frequency
responses that now serve as building blocks are the following:
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� sα, a fractional power of s with α > 0: Frequency response of sα

G(jω) = (jω)α (34.20)

20 log10 |G(jω)| = 20α log10 ω dB (34.21)

∠G(jω) = 90◦α (34.22)

� 1
sα , a fractional power of 1

s with α > 0:Frequency response of 1
sα

G(jω) =
1

(jω)α
(34.23)

20 log10 |G(jω)| = −20α log10 ω dB (34.24)

∠G(jω) = −90◦α (34.25)

� 1

( sa )
α

+1
, a �rst-order polynomial on sα in the denominator with α, a ∈ R+:Frequency response of

1

( sa )
α

+1

G(jω) =
1

( jωa )α + 1

=
1(

cos απ2 + j sin απ
2

) (
ω
a

)α
+ 1

(34.26)

|G(jω)| = 1√(
1 +

(
ω
a

)α
cos απ2

)2
+
(
ω
a

)2α
sin2 απ

2

=
1√

1 +
(ω
a

)2α

+ 2
(ω
a

)α
cos

απ

2︸ ︷︷ ︸√
ζ(ω)

(34.27)

20 log10 |G(jω)| ≈ 0 dB, ω � a (34.28)

∠G(jω) ≈ 0◦, ω � a (34.29)

20 log10 |G(ja)| = 20 log10

∣∣∣∣ 1

cos απ2 + j sin απ
2 + 1

∣∣∣∣
= 20 log10

1∣∣1 + 2 cos απ2 + cos2 απ
2 + sin2 απ

2

∣∣
= 20 log10

1√
2 + 2 cos απ2

= −10 log10

(
2 + 2 cos

απ

2

)
(34.30)

∠G(ja) = arctan
− sin απ

2

1 + cos απ2
= arctan

−2 sin απ
4 cos απ4

2 cos απ4 cos απ4

= −απ
4
± 2kπ, k ∈ Z (34.31)

20 log10 |G(jω)| ≈ 20α log10 a− 20α log10 ω dB, ω � a (34.32)

∠G(jω) ≈ −90◦α, ω � a (34.33)

Notice that the gain may decrease monotonously or it may �rst go up,
have a peak value, and then decrease, depending on the value of α. Indeed,
equaling the derivative of (34.27) to zero,

d

dω

1√
ζ(ω)

= 0

⇔
d

dω ζ(ω)

−2ζ(ω)
√
ζ(ω)

= 0

⇔ 2αω2α−1

a2α
+

2αωα−1

aα
cos

απ

2
= 0

⇔
(ω
a

)α
= − cos

απ

2
(34.34)

Notice that the left hand side of the equation is always positive, while
the right hand side will be positive if cos απ2 < 0. So (34.34) will have a
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solution when

π

2
+ 2kπ <

απ

2
<

3π

2
+ 2kπ, k ∈ Z+

0 ⇔

⇔ 4k + 1 < α < 4k + 3, k ∈ Z+
0 (34.35)

In other words, the gain will have a peak when 1 < α < 3∨5 < α < 7∨9 < When the gain of 1

( sa )
α

+1

has a peakα < 11 ∨ . . .. (We known that this point where the derivative is equal to
zero is a maximum, and not a minimum or a saddle point, because the
gain is constant for low frequencies and decreases for high frequencies.)
The frequency at which there is a peak is found from (34.34):

ωpeak = a
(
− cos

απ

2

) 1
α

(34.36)

The peak of the gain is found replacing this in (34.27):

max
ω
|G(jω)| = 1√

1 + cos2 απ
2 + 2

(
− cos απ2

)
cos απ2

=
1√

1− cos2 απ
2

=
1∣∣sin απ

2

∣∣ (34.37)

The phase may decrease monotonously or increase monotonously, depend-
ing on the value of α. Indeed, the derivative of the phase

∠G(jω) = ∠
1(

cos απ2 + j sin απ
2

) (
ω
a

)α
+ 1

= − arctan

S(ω)︷ ︸︸ ︷(ω
a

)α
sin

απ

2

1 +
(ω
a

)α
cos

απ

2︸ ︷︷ ︸
C(ω)

(34.38)

is given by

d

dω
∠G(jω) = −

αωα−1

aα sin απ
2 (1+(ωa )

α
cos απ2 )−(ωa )

α
sin απ

2
αωα−1

aα cos απ2
(1+C(ω))2

1 +
(

S(ω)
1+C(ω)

)2

(34.39)

Notice that the denominator is always positive, and the numerator is a
fraction with a denominator which cannot be negative. So, supposing that
the derivative exists, its sign σ is

σ

(
d

dω
∠G(jω)

)
(34.40)

= σ
(
− αωα−1

aα︸ ︷︷ ︸
∈R+

sin
απ

2
−αω

2α−1

a2α
sin

απ

2
cos

απ

2
+
αω2α−1

a2α
sin

απ

2
cos

απ

2︸ ︷︷ ︸
0

)

This means that the sign of the derivative is that of − sin απ
2 . Conse- When the phase of 1

( sa )
α

+1

goes up or downquently:

� the phase will decrease from 0◦ to
⌊
α
4

⌋
360◦ − α90◦ if

2kπ <
απ

2
< (2k + 1)π, k ∈ Z+

0 ⇔

4k < α < 4k + 2, k ∈ Z+
0 (34.41)

that is to say, if 0 < α < 2 ∨ 4 < α < 6 ∨ 8 < α < 10 ∨ . . .;
� the phase will increase from 0◦ to

(
1 +

⌊
α
4

⌋)
360◦ − α90◦ if

(2k − 1)π <
απ

2
< 2kπ, k ∈ Z+ ⇔

4k − 2 < α < 4k, k ∈ Z+ (34.42)

that is to say, if 2 < α < 4 ∨ 6 < α < 8 ∨ 10 < α < 12 ∨ . . .;
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Figure 34.2: Bode diagram of 1

( sa )
α

+1
, α > 0.

� the phase will remain constant and equal to 0◦ if

απ

2
= 2kπ, k ∈ Z+ ⇔

α = 4k, k ∈ Z+ (34.43)

that is to say, if α ∈ {4, 8, 12, 16 . . .}, since in that case the derivative
is equal to 0;

� the phase will have a discontinuity and jump from 0◦ to ±180◦ if

απ

2
= (2k + 1)π, k ∈ Z+

0 ⇔

α = 2 + 4k, k ∈ Z+
0 (34.44)

that is to say, if α ∈ {2, 6, 10, 14 . . .}, since in that case, when ω =

a rad/s, the denominator (1 + C(ω))
2 in (34.39) is equal to (1 + C(a))

2
=

1 + cos απ2 = 0, and so the derivative is in�nite at that point.

The two most common cases are 0 < α ≤ 1 and 1 < α < 2 (as we will
see in Chapter 36, no other cases can be stable). They correspond to the
Bode diagrams in Figure 34.2.

�
(
s
a

)α
+ 1, a �rst-order polynomial on sα in the numerator with α, a ∈ R+:Frequency response of(

s
a

)α
+ 1

G(jω) =

(
jω

a

)α
+ 1

=
(

cos
απ

2
+ j sin

απ

2

)(ω
a

)α
+ 1 (34.45)

20 log10 |G(jω)| ≈ 0 dB, ω � a (34.46)

∠G(jω) ≈ 0◦, ω � a (34.47)

20 log10 |G(ja)| = 20 log10

∣∣∣cos
απ

2
+ j sin

απ

2
+ 1
∣∣∣

= 20 log10

√
2 + 2 cos

απ

2

= 10 log10

(
2 + 2 cos

απ

2

)
(34.48)

∠G(ja) = arctan
1 + cos απ2
− sin απ

2

= arctan
2 cos απ4 cos απ4
−2 sin απ

4 cos απ4

= α
π

4
± 2kπ, k ∈ Z (34.49)

20 log10 |G(jω)| ≈ 20α log10 ω − 20α log10 a dB, ω � a (34.50)

∠G(jω) ≈ 90◦α, ω � a (34.51)

The corresponding Bode diagram is that of 1

( sa )
α

+1
, upside down.

� 1

( sa )
2α

+2ζ( sa )
α

+1
, a second order polynomial on sα in the denominator withFrequency response of

1

( sa )
2α

+2ζ( sa )
α

+1
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Figure 34.3: Frequency behaviour of 1

( sa )
2α

+2ζ( sa )
α

+1
.

α, a ∈ R+:

G(jω) =
1(

jω
a

)2α
+ 2ζ

(
jω
a

)α
+ 1

(34.52)

20 log10 |G(jω)| ≈ 0 dB, ω � a (34.53)

∠G(jω) ≈ 0◦, ω � a (34.54)

20 log10 |G(jω)| ≈ 40α log10 a− 40α log10 ω dB, ω � a (34.55)

∠G(jω) ≈ −180◦α, ω � a (34.56)

While it is simple to �nd the conditions in which the gain has a resonance
peak if α = 1, when the order is fractional it is more expedient to �nd
such conditions numerically. Figure 34.3 shows the combinations of values
of α and ζ for which there are zero, one or two resonance frequencies (that
is to say, for which the gain plot of the Bode diagram has zero, one or two
local maxima).

�
(
s
a

)2α
+ 2ζ

(
s
a

)α
+ 1, a second order polynomial on sα in the numerator Frequency response of(

s
a

)2α
+ 2ζ

(
s
a

)α
+ 1with α, a ∈ R+:

G(jω) =

(
jω

a

)2α

+ 2ζ

(
jω

a

)α
+ 1 (34.57)

20 log10 |G(jω)| ≈ 0 dB, ω � a (34.58)

∠G(jω) ≈ 0◦, ω � a (34.59)

20 log10 |G(jω)| ≈ 40α log10 ω − 40α log10 a dB, ω � a (34.60)

∠G(jω) ≈ 180◦α, ω � a (34.61)

The corresponding Bode diagram is that of 1

( sa )
2α

+2ζ( sa )
α

+1
, upside down.

� In any of the cases above, if a ∈ R−, the gain behaviour remains the same,
and the phase behaviour is symmetrical.

As to a non-commensurable fractional transfer function G(s), if is can be Frequency response of a
non-commensurable frac-
tional transfer function

written as a product of the terms above, its frequency response can be found in
the same manner. Otherwise the only option is to compute G(jω).

Example 34.2. Figure 34.4 shows the Bode diagram of

G(s) =
s

1
2 + 1((

s
10−5

) 2
3 + 1

)((
s

105

)0.7
+ 1
) (34.62)
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Figure 34.4: Bode diagram of (34.62), from Example 34.2.

which can be found from the frequency responses of its three constituent �rst
order polynomials in fractional powers of s. Notice that:

� At ω = 10−5 rad/s, the phase goes down towards −60◦, and the gain
slopes down at −13.33 dB/decade.

� At ω = 1 rad/s, the phase godes up 45◦, towards −15◦, and the gain bends
up 10 dB/decade, ending with a still downwards slope of −3.33 dB/decade.

� At ω = 105 rad/s, the phase goes down 63◦, ending at −78◦, and the
gain bends down −14 dB/decade, ending with a downwards slope of
−17.33 dB/decade.

� All this is in accord with the powers of s found in G(s).

34.3 Identi�cation from the Bode diagram

Just as an integer model can be found from a Bode diagram by observation, so
can a fractional model. The di�erence is that, with fractional models, all gain
slopes and all phases are possible. If the model is implicit or commensurable,
only a �nite set of values will be found:

� gain slopes will have k20α dB/decade, k ∈ Z;

� phases will have kα90◦, k ∈ Z.

If the model is non-commensurable, any values can be found.
When slopes are close to integer multiples of 20 dB/decade, and phasesFractional orders close to

integers are hard to iden-
tify

are close to integer multiples of 90◦, it is di�cult to distinguish a fractional
order. And, after all, if that is the case, there may be no reason why the model

Why this should not be a
problem

should have a fractional order: the increase in model accuracy obtained with
a fractional order may not compensate the di�culty of using a more di�cult
mathematical concept.

Example 34.3. Consider the frequency response in Figure 34.5:

� At low frequencies, the gain is constant and the phase is 0◦. The plant
behaves as a gain.

� At high frequencies, the gain has a slope of −10 dB and the phase is −45◦.
The plant behaves like s−

1
2 .

� The asymptotes of the gain for low and high frequencies are shown in the
�gure, and intersect at 10 rad/s. It is also at that frequency that the phase
is halfway between its low and high frequency values.



34.4. LEVY'S METHOD EXTENDED 493

Figure 34.5: Frequency response of Example 34.3.

Beware of the temptation of writing the model asAccounting for the corner
frequency

G(s) =
k1

s
1
2 + 10

(34.63)

as if the plant were of integer order, and then �nding the numerator k1 from
the value of the gain for low frequencies. As (34.30)�(34.31) show, the actual
model should be

G(s) =
k2(

s
10

) 1
2 + 1

(34.64)

Since the order is not 1, (34.63) can never be the same as (34.64). The numerator
k2 is now found from the low frequency gain (20 dB for ω ≈ 0) as

20 = 20 log10

k2(
0
10

) 1
2 + 1

⇒ k2 = 10 (34.65)

Thus, G(s) =
10(

s
10

) 1
2 + 1

.

34.4 Levy's method extended

Levy's method can be extended to identify implicit and commensurable frac-
tional transfer functions.

Theorem 34.2. Let a plant's frequency response G(jωp) be known at f fre- Levy's method for implicit
fractional order modelsquencies, i.e. p = 1, 2, . . . , f . The implicit fractional model given by

Ĝ(s) = Ĝαi (s) =
Nα(s)

Dα(s)
=

(
b0 + b1s+ . . .+ bms

m

1 + a1s+ . . .+ ansn

)α
=


m∑
k=0

bks
k

1 +

n∑
k=1

aks
k


α

(34.66)

which minimises quadratic error What Levy's method min-
imises

ε =

f∑
p=1

∣∣∣G 1
α (jωp)D(jωp)−N(jωp)

∣∣∣2 (34.67)

is found identifying integer model Ĝi(s) from G
1
α (jωp) using Levy's method.

Proof. This is a straightforward consequence of (34.18)�(34.19).
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Theorem 34.3. Let a plant's frequency response G(jωp) be known at f fre- Levy's method for com-
mensurate fractional order
models

quencies, i.e. p = 1, 2, . . . , f . The model

Ĝ(s) =
N(s)

D(s)
=

m∑
k=0

bks
kα

1 +

n∑
k=1

aks
kα

(34.68)

with parameters to be determined

b =
[
b0 · · · bm

]T
(34.69)

a =
[
a1 · · · an

]T
(34.70)

which minimises quadratic errorWhat Levy's method min-
imises

ε =

f∑
p=1

∣∣∣(G(jωp)− Ĝ(jωp)
)
D(jωp)

∣∣∣2
=

f∑
p=1

∣∣∣G(jωp)D(jωp)−N(jωp)
∣∣∣2 (34.71)

is found solving [
A B
C D

] [
b
a

]
=

[
e
g

]
(34.72)

A =

f∑
p=1

Ap (34.73)

B =

f∑
p=1

Bp (34.74)

C =

f∑
p=1

Cp (34.75)

D =

f∑
p=1

Dp (34.76)

e =

f∑
p=1

ep (34.77)

g =

f∑
p=1

gp (34.78)

where the elements in line l and column c of matrixes Ap, Bp, Cp and Dp are
given by

Ap;l,c = −<
[
(jωp)

lα
]
< [(jωp)

cα]−=
[
(jωp)

lα
]
= [(jωp)

cα] ,

l = 0 . . .m ∧ c = 0 . . .m (34.79)

Bp;l,c = <
[
(jωp)

lα
]
< [(jωp)

cα]< [G(jωp)] + =
[
(jωp)

lα
]
< [(jωp)

cα]= [G(jωp)]

−<
[
(jωp)

lα
]
= [(jωp)

cα]= [G(jωp)] + =
[
(jωp)

lα
]
= [(jωp)

cα]< [G(jωp)] ,

l = 0 . . .m ∧ c = 1 . . . n (34.80)

Cp;l,c = −<
[
(jωp)

lα
]
< [(jωp)

cα]< [G(jωp)] + =
[
(jωp)

lα
]
< [(jωp)

cα]= [G(jωp)]

−<
[
(jωp)

lα
]
= [(jωp)

cα]= [G(jωp)]−=
[
(jωp)

lα
]
= [(jωp)

cα]< [G(jωp)] ,

l = 1 . . . n ∧ c = 0 . . .m (34.81)

Dp;l,c =
(
< [G(jωp)]

2
+ = [G(jωp)]

2
) (
<
[
(jωp)

lα
]
< [(jωp)

cα] + =
[
(jωp)

lα
]
= [(jωp)

cα]
)
,

l = 1 . . . n ∧ c = 1 . . . n (34.82)
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and the elements of vectors ep and gp are given by

ep;l,1 = −<
[
(jωp)

lα
]
< [G(jωp)]−=

[
(jωp)

lα
]
= [G(jωp)] ,

l = 0 . . .m (34.83)

gp;l,1 = −<
[
(jωp)

lα
] (
< [G(jωp)]

2
+ = [G(jωp)]

2
)
,

l = 1 . . . n (34.84)

Proof. The proof is similar to that of Theorem 32.1. Error (34.71) is given by

ε = |GD −N |2

=
∣∣∣(<[G] + j=[G]

)(
<[D] + j=[D]

)
−
(
<[N ] + j=[N ]

)∣∣∣2
=
∣∣∣(<[G]<[D]−=[G]=[D]−<[N ]

)
+ j
(
<[G]=[D] + =[G]<[D]−=[N ]

)∣∣∣2
=
(
<[G]<[D]−=[G]=[D]−<[N ]

)2

+
(
<[G]=[D] + =[G]<[D]−=[N ]

)2

(34.85)

To minimise ε, we want its derivatives in order to coe�cients ak and bk to be
zero.

Let us suppose that there is only one frequency ωp. First we �nd

d<[G]

dai
=

d<[G]

dbi
=

d=[G]

dai
=

d=[G]

dbi
= 0 (34.86)

d<[N ]

dai
= 0 (34.87)

d<[N ]

dbi
=

d

dbi

m∑
k=0

bk<
[
(jωp)

kα
]

= <
[
(jωp)

iα
]

(34.88)

d=[N ]

dai
= 0 (34.89)

d=[N ]

dbi
=

d

dbi

m∑
k=0

bk=
[
(jωp)

kα
]

= =
[
(jωp)

iα
]

(34.90)

d<[D]

dai
=

d

dai

{
1 +

n∑
k=1

ak<
[
(jωp)

kα
]}

= <
[
(jωp)

iα
]

(34.91)

d<[D]

dbi
= 0 (34.92)

d=[D]

dai
=

d

dai

{
1 +

n∑
k=1

ak=
[
(jωp)

kα
]}

= =
[
(jωp)

iα
]

(34.93)

d=[D]

dbi
= 0 (34.94)

(Notice that jkα can now assume any value, and will, in the general case, have
both a real part and an imaginary part is zero. This makes matrixes and vectors
(34.79)�(34.84) more complicated than in the integer case.) Consequently,

∂ε

∂ai
= 2
(
<[G]<[D]−=[G]=[D]−<[N ]

)(
<[G]<

[
(jωp)

iα
]
−=[G]=

[
(jωp)

iα
] )

+ 2
(
<[G]=[D] + =[G]<[D]−=[N ]

)(
<[G]=

[
(jωp)

iα
]

+ =[G]<
[
(jωp)

iα
] )

(34.95)

∂ε

∂bi
= 2
(
<[G]<[D]−=[G]=[D]−<[N ]

)(
−<

[
(jωp)

iα
] )

+ 2
(
<[G]=[D] + =[G]<[D]−=[N ]

)(
−=

[
(jωp)

iα
] )

(34.96)
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Equaling to zero,

∂ε

∂ai
= 0⇔ <[D]

(
=[G]2 + <[G]2

)
<
[
(jωp)

iα
]

+

=[D]
(
=[G]2 + <[G]2

)
=
[
(jωp)

iα
]

+

<[N ]
(
=[G]=

[
(jω)iα

]
−<[G]<

[
(jωp)

iα
] )

+

=[N ]
(
−=[G]<

[
(jωp)

iα
]
−<[G]=

[
(jωp)

iα
] )

= 0 (34.97)

∂ε

∂bi
= 0⇔

(
<[G]<[D]−=[G]=[D]−<[N ]

)
<
[
(jωp)

iα
]

+(
<[G]=[D] + =[G]<[D]−=[N ]

)
=
[
(jωp)

iα
]

= 0 (34.98)

The m+1 equations given by (34.97) and the n equations given by (34.98) form
linear system (34.72), with matrixes and vectors de�ned by (34.79)�(34.84).

Considering f frequencies instead of only one, we arrive at (34.73)�(34.78).

Remark 34.4. Remarks on Theorem 32.1 apply here too. In particular, if the
model should have a0 = 0 in the denominator, the frequency response of sα

must be subtracted �rst, just as was done for the integer case.

Remark 34.5. Notice that in the fractional case not only n and m (which
are integer) must be �xed in advance, but also α (which has the additional
disadvantage of not being an integer). Reasonable ranges for these parameters
may be found by inspection of the Bode diagram.

Glossary

Lo anterior se re�ere a los idiomas del hemisferio austral. En los
del hemisferio boreal (de cuya Ursprache hay muy pocos datos en
el Onceno Tomo) la célula primordial no es el verbo, sino el adje-
tivo monosilábico. El sustantivo se forma por acumulación de adje-
tivos. No se dice luna: se dice aéreo-claro sobre oscuro-redondo o
anaranjado-tenue-del cielo o cualquier otra agregación. En el caso
elegido la masa de adjetivos corresponde a un objeto real; el hecho
es puramente fortuito.

Jorge Luis Borges (1899 � �1986), Tlön, Uqbar, Orbis Tertius (1940), II

commensurate fractional transfer function função de transferência fra-
cionária comensurável
explicit fractional transfer function função de transferência fracionária ex-
plícita
implicit fractional transfer function função de transferência fracionária im-
plícita
integer order transfer function função de transferência de ordem inteira
fractional order transfer function função de transferência de ordem fra-
cionária

Exercises

1. Establish a correspondence between Bode diagrams a and b in Figure 34.6,
polar plots A and B in Figure 34.7, and the following transfer functions:

G1(s) =
1

s(s+ 1)1.5(s+ 2)
(34.99)

G2(s) =
64.47 + 12.46s

0.598 + 39.96s1.25
(34.100)
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a b

Figure 34.6: Bode diagrams of Exercise 1.

Figure 34.7: Polar plots of Exercise 1.
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Figure 34.8: Polar plots of Exercise 2.

2. Establish a correspondence between polar plots A to D in Figure 34.8,
Bode diagrams a to d in Figure 34.9, and the following transfer functions:

G1(s) =
1

s1.3 + 1
(34.101)

G2(s) =
1

s(s1.3 + 1)
(34.102)

G3(s) =
1

s0.6(s1.3 + 1)
(34.103)

G4(s) =
s1.1 + 2

s1.9 + 1
(34.104)

3. Figure 34.10 shows the Bode diagram of a LTI system. Find its transfer
function.

4. Figure 34.11 shows the Bode diagram of a LTI system. Find its transfer
function.
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a b

c d

Figure 34.9: Bode diagrams of Exercise 2.
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Figure 34.10: Bode diagram of Exercise 3.

Figure 34.11: Bode diagram of Exercise 4.



Chapter 35

Fractional order derivatives

Students of mathematics early encounter the di�erential operators
d/dx, d2/dx2, d3/dx3, etc., and some doubtless ponder whether it
is necessary for the order of di�erentiation to be an integer. Why
should there not be a d

1
2 /dx

1
2 operator, for instance? Or d−1/dx−1

or even d
√

2/dx
√

2? It is to these and related questions that the
present work is addressed. It will come as no surprise to one versed
in the calculus that the operator d−1/dx−1 is nothing but an indef-
inite integral in disguise, but fractional orders of di�erentiation are
more mysterious because they have no obvious geometric interpre-
tation along the lines of the customary introduction to derivatives
and integrals as slopes and areas. The reader who is prepared to dis-
pense with a pictorial representation, however, will soon �nd that
fractional order derivatives and integrals are just as tangible as those
of integer order and that a new dimension in mathematics opens to
him when the order q of the operator dq/dxq becomes an arbitrary
parameter. Nor is this a sterile exercise in pure mathematics�many
problems in the physical sciences can be expressed and solved suc-
cintly by recourse to the fractional calculus.

Keith B. Oldham (1929 � . . . ), Jerome Spanier (1930 � . . . ), The
Fractional Calculus: Theory and Applications of Di�erentiation and

Integration to Arbitrary Order (1974), Preface

In this chapter, fractional derivatives are introduced. They are at the origin
of fractional order transfer functions, and generalise the concept of derivative
to orders that do not need to be integer numbers. In fact, at the same time,
they also generalise the concept of integral, since the Fundamental Theorem of

Calculus shows we can identify df(t)
dt with

∫
f(t) dt, d2f(t)

dt2 with
∫ ∫

f(t) dtdt,
and so on.

35.1 Gamma function

Before generalising derivatives to arbitrary orders, it is necessary to generalise
the factorial to arbitrary orders. This is done with the Gamma function.

De�nition 35.1. For x ∈ R+, function Γ is de�ned as De�nition of Γ

Γ(x) =

∫ +∞

0

e−yyx−1 dy (35.1)

Lemma 35.1.

Γ(1) =

∫ +∞

0

e−y dy =
[
−e−y

]+∞
0

= 1 (35.2)

Theorem 35.1.

Γ(x+ 1) = xΓ(x) (35.3)

501
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Proof.

Γ(x+ 1) =

∫ +∞

0

e−yyx dy =
[
−e−yyx

]+∞
y=0︸ ︷︷ ︸

0

−
∫ +∞

0

−e−yxyx−1 dy︸ ︷︷ ︸
xΓ(x)

(35.4)

Remark 35.1. From (35.2) and from (35.3) it can be easily seen thatΓ(n) = (n− 1)!

Γ(2) = 1× Γ(1) = 1× 1 = 1 = 1! (35.5)

Γ(3) = 2× Γ(2) = 2× 1 = 2 = 2! (35.6)

Γ(4) = 3× Γ(3) = 3× 2 = 6 = 3! (35.7)

Γ(5) = 4× Γ(4) = 4× 6 = 24 = 4! (35.8)

...

Γ(n) = (n− 1)!, n ∈ N (35.9)

It is this property that makes function Γ a generalisation of the factorial, in
spite of the shift in the argument.

Theorem 35.2.

lim
x→0+

Γ(x) = +∞ (35.10)

Proof.

Γ(x) =

∫ +∞

0

e−yyx−1 dy >

∫ 1

0

e−yyx−1 dy >

∫ 1

0

e−1yx−1 dy =
1

e

[
yx

x

]1

y=0

=
1

ex

(35.11)

and since lim
x→0+

1

ex
= +∞ the result follows.

Iterating (35.3), we get

Γ(x+ n) = (x+ n− 1) (x+ n− 2) . . .

Γ(x+2)︷ ︸︸ ︷
(x+ 1)

Γ(x+1)︷ ︸︸ ︷
xΓ(x)︸ ︷︷ ︸

Γ(x+n−1)︸ ︷︷ ︸
Γ(x+n)

= Γ(x)

n−1∏
k=0

(x+ k), n ∈ N

(35.12)
This expression allows de�ning the Γ function for negative arguments:

De�nition 35.2. For x ∈ R−\Z−, function Gamma is de�ned as

Γ(x) =
Γ(x− bxc)
−bxc−1∏
k=0

(x+ k)

(35.13)

In this way, by construction, (35.3) and (35.12) remain valid for all x ∈ R.
The evolution of Γ(x) around x = 0 is shown in �gure 35.1. From the �gure it
is clear that all non-positive integers are poles of function Γ. In other words:

Theorem 35.3.

lim
x→n

Γ(x) =∞, n ∈ Z−0 (35.14)

Proof. This is a consequence of (35.10) and (35.13).

Below we will need the following results:

Theorem 35.4. For any n ∈ Z,

Γ(x)Γ(−x+ 1) = (−1)nΓ(−x− n+ 1)Γ(x+ n) (35.15)
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Figure 35.1: The Γ function.

Proof. If n = 0, the equality is obvious. For positive values of n, the equality is
proved by mathematical induction. Using (35.3) twice, (35.15) is seen to hold
for n = 1:

Γ(x)Γ(−x+ 1) =
Γ(x+ 1)

x
(−xΓ(−x)) = −Γ(−x)Γ(x+ 1) (35.16)

The inductive step is proved applying (35.16) to the right hand side of (35.15):

Γ(x)Γ(−x+ 1) = (−1)nΓ(−x− n+ 1)Γ(x+ n)

= (−1)n [−Γ(−x− n)Γ(x+ n+ 1)]

= (−1)n+1Γ (−x− (n+ 1) + 1) Γ (x+ (n+ 1)) (35.17)

For negative values of n, the equality is also proved by mathematical induction,
in a similar manner. Using (35.3) twice, (35.15) is seen to hold for n = −1:

Γ(x)Γ(−x+ 1) = (x− 1)Γ(x− 1)
Γ(−x+ 2)

−x+ 1
= −Γ(−x+ 2)Γ(x− 1) (35.18)

The inductive step is proved applying this to the right hand side of (35.15):

Γ(x)Γ(−x+ 1) = (−1)nΓ(−x− n+ 1)Γ(x+ n)

= (−1)n [−Γ(−x− n+ 2)Γ(x+ n− 1)]

= (−1)n+1Γ (−x− (n− 1) + 1) Γ (x+ (n− 1)) (35.19)

Corollary 35.1. From (35.12) and (35.15) we obtain

n−1∏
k=0

(x+ k) =
Γ(x+ n)

Γ(x)
= (−1)n

Γ(−x+ 1)

Γ(−x− n+ 1)
(35.20)

n−1∏
k=0

(x− k) =

n−1∏
k=0

(−1)(−x+ k) = (−1)n
Γ(−x+ n)

Γ(−x)
=

Γ(x+ 1)

Γ(x− n+ 1)

(35.21)

Thanks to this generalisation of the factorial, combinations of a things, b at Combinations of a things,
b at a timea time, usually de�ned for integer non-negative arguments as(

a
b

)
=

a!

b!(a− b)!
, a, b ∈ Z+

0 (35.22)

can be generalised as (
a
b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
(35.23)

which makes sense if a, b, a−b ∈ R\Z−. Replacing (35.15) in (35.23), we obtain(
a
b

)
=

(−1)bΓ(b− a)

Γ(b+ 1)Γ(−a)
(35.24)
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which makes sense also if a ∈ Z− ∧ b ∈ Z+
0 . (But notice that, if b − a ∈ Z−

or if a = 0, it may be that (35.23) makes sense, while (35.24) never does.)
Furthermore,

� when n ∈ Z− ∧ a /∈ Z−,

lim
b→n

(
a
b

)
=

∈R\{0}︷ ︸︸ ︷
Γ(a+ 1)

lim
b→n

Γ(b+ 1)︸ ︷︷ ︸
∞

lim
b→n

Γ(a− b+ 1)︸ ︷︷ ︸
∈R\{0}

= 0 (35.25)

� when n ∈ Z− ∧ a /∈ Z−,

lim
a−b→n

(
a
b

)
=

∈R\{0}︷ ︸︸ ︷
Γ(a+ 1)

lim
b→a−n

Γ(b+ 1)︸ ︷︷ ︸
∈R\{0}

lim
a−b→n

Γ(a− b+ 1)︸ ︷︷ ︸
∞

= 0 (35.26)

� when m,n ∈ Z− ∧ |m| > |n|,

lim
(a,b)→(m,n)

(
a
b

)
=

(−1)b

∈R\{0}︷ ︸︸ ︷
lim

b−a→n−m∈N
Γ(b− a)

lim
b→n

Γ(b+ 1)︸ ︷︷ ︸
∞

lim
a→m

Γ(−a)︸ ︷︷ ︸
∈R\{0}

= 0 (35.27)

Putting all this together, combinations are de�ned as follows.

De�nition 35.3.

(
a
b

)
=



Γ(a+ 1)
Γ(b+ 1)Γ(a− b+ 1)

, if a, b, a− b /∈ Z−

(−1)bΓ(b− a)
Γ(b+ 1)Γ(−a)

, if a ∈ Z− ∧ b ∈ Z+
0

0, if [(b ∈ Z− ∨ b− a ∈ N) ∧ a /∈ Z−] ∨ (a, b ∈ Z− ∧ |a| > |b|)
(35.28)

Later in this chapter, we will need the following results:

Theorem 35.5. (
a
b

)
+

(
a

b− 1

)
=

(
a+ 1
b

)
(35.29)

for all a, b ∈ R for which the combinations above exist.

Proof. From (35.23),(
a
b

)
+

(
a

b− 1

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
+

Γ(a+ 1)

Γ(b)Γ(a− b+ 2)
(35.30)

=
(a− b+ 1)Γ(a+ 1)

Γ(b+ 1) (a− b+ 1)Γ(a− b+ 1)︸ ︷︷ ︸
Γ(a−b+2)

+
bΓ(a+ 1)

bΓ(b)︸ ︷︷ ︸
Γ(b+1)

Γ(a− b+ 2)

=
(a− b+ 1 + b)Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 2)
=

Γ(a+ 2)

Γ(b+ 1)Γ(a− b+ 2)
=

(
a+ 1
b

)
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and, from (35.24),(
a
b

)
+

(
a

b− 1

)
=

(−1)bΓ(b− a)

Γ(b+ 1)Γ(−a)
+

(−1)b−1Γ(b− 1− a)

Γ(b)Γ(−a)

=
(−1)b

Γ(b−a)︷ ︸︸ ︷
(b− a− 1)Γ(b− a− 1)

Γ(b+ 1)Γ(−a)
+
−b(−1)bΓ(b− 1− a)

bΓ(b)︸ ︷︷ ︸
Γ(b+1)

Γ(−a)

=
(−1)b(b− a− 1− b)Γ(b− a− 1)

Γ(b+ 1)Γ(−a)
=

(−1)bΓ(b− a− 1)

Γ(b+ 1)Γ(−a− 1)

=

(
a+ 1
b

)
(35.31)

It is easy to see that in (35.29) it is impossible to use simultaneously two di�erent
branches of (35.28).

Theorem 35.6. (
a
0

)
= 1 (35.32)(

a
a

)
= 1 (35.33)

for all a ∈ R for which the combinations above exist.

Proof. (35.32) is obtained from (35.23) because Γ(a+1)
Γ(1)Γ(a+1) = 1, and from (35.24)

because (−1)0Γ(−a)
Γ(1)Γ(−a) = 1; the last branch of (35.28) never applies.

(35.33) is obtained from (35.23) because Γ(a+1)
Γ(a+1)Γ(a−a+1) = 1; the last two

branches of (35.28) never apply.

35.2 Two apparently simple examples

Since fractional derivatives generalise to arbitrary orders both derivatives and
integrals, it is expedient to denote them in a same way. So let us introduce a
functional operator D, associated to an order n ∈ Z, as follows: Operator D

De�nition 35.4.

cD
n
t f(t) =


dnf(t)

dtn
, if n ∈ N

f(t), if n = 0∫ t

c
cD

n+1
t f(t) dt, if n ∈ Z−

(35.34)

tD
n
c f(t) =


(−1)n

dnf(t)

dtn
, if n ∈ N

f(t), if n = 0∫ c

t
tD

n+1
c f(t) dt, if n ∈ Z−

(35.35)

Remark 35.2. The recursion used to de�ne the n ∈ Z− branches means that

cD
n
xf(t) =

∫ x

c

· · ·
∫ x

c

f(t) dt · · · dt︸ ︷︷ ︸
|n| integrations

, n ∈ Z− (35.36)

xD
n
c f(t) =

∫ c

x

· · ·
∫ c

x

f(t) dt · · · dt︸ ︷︷ ︸
|n| integrations

, n ∈ Z− (35.37)

Remark 35.3. When n ∈ Z+
0 , operator D

n is local, and hence subscripts c and When D is local or non-
localt are useless. Thus, for instance, 0D

2
t f(t) = −∞D

2
t f(t). But, when n ∈ Z−, the

operator is no longer local; changing the value of c will, in general, change the
result.
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Of course, Dnf(t), n ∈ N only makes sense if f is n times di�erentiable,
and cD

−n
t f(t), n ∈ N only makes sense if f is n times integrable.

Thanks toD, two cases in which it seems obvious what a fractional derivative
should be can be easily presented.

Example 35.1. FromDerivatives of eλt

−∞D
n
t f(t) =

eλt

λ−n
= λneλt, n ∈ Z− (35.38)

...∫ t

−∞

∫ t

−∞

∫ t

−∞
f(t) dtdtdt =

eλt

λ3
(35.39)∫ t

−∞

∫ t

−∞
f(t) dtdt =

eλt

λ2
(35.40)∫ t

−∞
f(t) dt =

eλt

λ
(35.41)

f(t) = eλt, λ 6= 0 (35.42)

df(t)

dt
= λeλt (35.43)

d2f(t)

dt2
= λ2eλt (35.44)

d3f(t)

dt3
= λ3eλt (35.45)

...

Dnf(t) = λneλt, n ∈ N (35.46)

we are tempted to write

−∞D
α
t e

λt = λαeλt, λ > 0 (35.47)

even when α /∈ Z. Notice that λ should now be positive to prevent the appear-
ance of complex quantities.

Example 35.2. FromDerivatives of tλ

0D
n
t g(t) =

tλ−n

−n−1∏
k=0

(λ+ 1 + k)

=
Γ(λ+ 1)

Γ(λ− n+ 1)
tλ−n, n ∈ Z−

(35.48)

...∫ t

0

∫ t

0

∫ t

0

g(t) dtdtdt =
tλ+3

(λ+ 1)(λ+ 2)(λ+ 3)
(35.49)∫ t

0

∫ t

0

g(t) dtdt =
tλ+2

(λ+ 1)(λ+ 2)
(35.50)∫ t

0

g(t) dt =
tλ+1

λ+ 1
(35.51)

g(t) = tλ, t ∈ R+, λ /∈ Z− (35.52)

dg(t)

dt
= λtλ−1 (35.53)

d2g(t)

dt2
= λ(λ− 1)tλ−2 (35.54)

d3g(t)

dt3
= λ(λ− 1)(λ− 2)tλ−3 (35.55)

...

Dng(t) = tλ−n
n−1∏
k=0

(λ− k) =
Γ(λ+ 1)

Γ(λ− n+ 1)
tλ−n, n ∈ N, n ≤ λ

(35.56)
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(where the last equalities in (35.48) and (35.56) are a result of (35.20)�(35.21))
we are tempted to write

0D
α
t t
λ =

Γ(λ+ 1)

Γ(λ− α+ 1)
tλ−α, t ∈ R+, λ /∈ Z (35.57)

also when α /∈ Z.

Remark 35.4. Notice how in these two examples of apparently simple gener-
alisation of D to non-integer orders the lower limit of integration is in one case
c = −∞ and in the other c = 0.

35.3 The Grünwald-Letniko� de�nition of frac-
tional derivatives

To generalise derivatives to non-integer orders, let us �rst remember what they
are for integer ones.

De�nition 35.5. The derivative of function f(t) is given by De�nition of derivative

D1f(t) =
df(t)

dt
= lim
h→0

f(t)− f(t− h)

h
(35.58)

Notice that h in (35.58) can be positive or negative. Restricting h to positive
values, we will have the left-side derivative; restricting h to negative values, we
will have the right-side derivative. If f is di�erentiable at t, the left-side and
right-side derivatives coincide.

Theorem 35.7. The derivative of order n ∈ N of function f(t) is given by Derivative of order n

Dnf(t) =
dnf(t)

dtn
= lim
h→0

n∑
k=0

(−1)k
(
n
k

)
f(t− kh)

hn
(35.59)

Proof. This is proved by mathematical induction. For n = 1, (35.59) becomes

D1f(t) = lim
h→0

(−1)0

(
1
0

)
f(t− 0) + (−1)1

(
1
1

)
f(t− h)

h1
(35.60)
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which is equal to (35.58). The inductive step is proved as follows:

DDnf(t) = lim
h→0

n∑
k=0

(−1)k
(
n
k

)
f(t− kh)

hn
−

n∑
k=0

(−1)k
(
n
k

)
f(t− kh− h)

hn

h

= lim
h→0

n∑
k=0

(−1)k
(
n
k

)
f(t− kh)−

n+1∑
k=1

(−1)k−1

(
n

k − 1

)
f(t− kh)

hn+1

= lim
h→0

(−1)0

1︷ ︸︸ ︷(
n
0

)
f(t− 0h) +

n∑
k=1

(−1)k
(
n
k

)
f(t− kh)+

+

n∑
k=1

(−1)k
(

n
k − 1

)
f(t− kh)+

+(−1)n+1

(
n
n

)
︸ ︷︷ ︸

1

f(t− (n+ 1)h)

hn+1

= lim
h→0

(−1)0

1︷ ︸︸ ︷(
n+ 1

0

)
f(t− 0h)+

+

n∑
k=1

(−1)k
(
n+ 1
k

)
f(t− kh)+

+(−1)n+1

(
n+ 1
n+ 1

)
︸ ︷︷ ︸

1

f(t− (n+ 1)h)

hn+1

= lim
h→0

n+1∑
k=0

(−1)k
(
n+ 1
k

)
f(t− kh)

hn+1 (35.61)

where we used (35.29) and (35.32)�(35.33).

Since (35.28) generalises combinations for non-integer arguments, we are
easily tempted to generalise (35.59) for an order α ∈ R as

Dαf(t) = lim
h→0

?∑
k=0

(−1)k
(
α
k

)
f(t− kh)

hα
(35.62)

and all that is left is to know what the upper limit of the summation should be.
In fact, for integer orders,

� the upper limit in (35.59) is n;

� it might as well be +∞ that the de�nition would not change. All the extra
terms would be zero, thanks to the �rst branch of (35.28) and to (35.10).

For non-integer orders, it is unclear what it should be, but, since we want
D−1f(t) =

∫
f(t) dt, we make α = −1 in (35.62); then, using (35.24) we get

D−1f(t) = lim
h→0

?∑
k=0

(−1)k
(
−1
k

)
f(t− kh)

h−1

= lim
h→0

h

?∑
k=0

(−1)k
(−1)kΓ(k + 1)

Γ(k + 1)Γ(1)
f(t− kh) (35.63)

If this is to be a Riemann integral
∫ t
c
f(t) dt = cD

−1
t f(t), the upper limit of the

summation must be
⌊
t−c
h

⌋
, and h must be restricted to positive values. Thus,

we arrive at
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Grünwald-Letniko� de�ni-
tion of fractional deriva-
tives

De�nition 35.6.

cD
α
t f(t) = lim

h→0+

b t−ch c∑
k=0

(−1)k
(
α
k

)
f(t− kh)

hα
(35.64)

Remark 35.5. If we make α = 0 in (35.64) or in (35.68), we get

cD
0
t f(t) = lim

h→0+

1︷ ︸︸ ︷
(−1)0

1︷ ︸︸ ︷(
0
0

)
f(t− 0) +

b t−ch c∑
k=1

(−1)k

0︷ ︸︸ ︷(
0
n

)
f(t− kh)

h0︸︷︷︸
1

= f(t)

(35.65)

and so we will obtain f(t) back.

Remark 35.6. Only when α ∈ N does the summation have a �nite number of D is non-local in the gen-
eral caseterms. In other words, α ∈ N is the only case in which (35.64) does not depend

on c. That is to say, D is a non-local operator (depending on what happens
to f(t) between the integration limits c and t), except for the case of natural But D is local for positive

integer ordersorder derivatives ( d
dt ,

d2

dt2 ,
d3

dt3 and so on) and the case α = 0. In this respect,
fractional derivatives look like the integrals, not the derivatives, we are used to
from Calculus; and this irrespective of the sign of α.

Theorem 35.8. D is a linear operator: D is a linear operator

cD
α
t [af(t) + bg(t)] = acD

α
t f(t) + bcD

α
t g(t), a, b ∈ R (35.66)

Proof.

cD
α
t (af(t) + bg(t)) = lim

h→0+

b t−ch c∑
k=0

(−1)k
(
α
k

)
(af(t) + bg(t))

hα

= a lim
h→0+

b t−ch c∑
k=0

(−1)k
(
α
k

)
f(t)

hα
+ b lim

h→0+

b t−ch c∑
k=0

(−1)k
(
α
k

)
g(t)

hα

= a cD
α
t f(t) + b cD

α
t g(t) (35.67)

Remark 35.7. If the order of the terminals is reversed, as in (35.35), then
(35.64) is replaced by

tD
α
c f(t) = lim

h→0+

b c−th c∑
k=0

(−1)k
(
α
k

)
f(t+ kh)

hα
(35.68)

35.4 The Riemann-Liouville de�nition of fractional
derivatives

While the Grünwald-Letniko� de�nition is the most straightforward de�nition of
fractional derivatives, there is an alternative de�nition which is sometimes use-
ful. It is based upon two results for integer order derivatives that are extended
for the non-integer case:

Theorem 35.9. If all the derivatives exist, the equality Law of exponents

cD
m
t cD

n
t f(t) = cD

m+n
t f(t) (35.69)
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holds in each of the three following cases:

m,n ∈ Z+
0 (35.70)

m,n ∈ Z−0 (35.71)

m ∈ Z+ ∧ n ∈ Z− (35.72)

Proof. The �rst two cases wherein (35.69) holds are obvious consequences of
de�nition (35.34). The third case can be easily proven by mathematical induc-
tion from the fact that di�erentiation is the left inverse operator of integration,
that is to say, D1

cD
−1
t f(t) = f(t).

Remark 35.8. If none of (35.70)�(35.72) holds, that is to say, if m ∈ Z− ∧n ∈
Z+, then, when calculating cD

m
t cD

n
t f(t), integration constants appear, related

to initial conditions at t = c. This means that (35.69) will only hold if all the
integration constants are equal to zero.

Theorem 35.10. The inde�nite integral of order n ∈ N of function f(t) isCauchy's formula
given by

cD
−n
x f(t) =

n integrations︷ ︸︸ ︷∫ x

c

· · ·
∫ x

c

f(t) dt · · · dt =

∫ x

c

(x− t)n−1

(n− 1)!
f(t) dt (35.73)

xD
−n
c f(t) =

∫ c

x

· · ·
∫ c

x

f(t) dt · · · dt︸ ︷︷ ︸
n integrations

=

∫ c

x

(t− x)n−1

(n− 1)!
f(t) dt (35.74)

Proof. For n = 1, both (35.73) and (35.74) are trivial. The proof proceeds by
mathematical induction and is based upon Dirichlet's equality for a function of
two variables x1 and x2:∫ x

c

∫ x1

c

f(x1, x2) dx2 dx1 =

∫ x

c

∫ x

x2

f(x1, x2) dx1 dx2 (35.75)

If f does not depend on x1, but on x2 alone (see the integration area in �g-
ure 35.2),∫ x

c

∫ x1

c

f(x2) dx2 dx1 =

∫ x

c

∫ x

x2

f(x2) dx1 dx2 (35.76)

=

∫ x

c

f(x2)

∫ x

x2

dx1 dx2 =

∫ x

c

f(x2)(x− x2) dx2

Clearly, this is a particular case of (35.73), when n = 2. The inductive step is
proved applying it to (35.73):∫ x

c
cD
−n
x f(t) dx =

∫ x

c

∫ x

c

(x− t)n−1

(n− 1)!
f(t) dtdx

=

∫ x

c

∫ x

t

(x− t)n−1

(n− 1)!
f(t) dx dt

=

∫ x

c

f(t)

∫ x

t

(x− t)n−1

(n− 1)!
dxdt

=

∫ x

c

f(t)

[
(x− t)n

n!

]x
x=t

dt

=

∫ x

c

f(t)
(x− t)n

n!
dt (35.77)

When the inde�nite limit of integration comes �rst, (35.76) becomes (see the
integration area in �gure 35.2)∫ c

x

∫ c

x1

f(x2) dx2 dx1 =

∫ c

x

∫ x2

x

f(x2) dx1 dx2 (35.78)

=

∫ c

x

f(x2)

∫ x2

x

dx1 dx2 =

∫ c

x

f(x2)(x2 − x) dx2
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Clearly, this is a particular case of (35.74), when n = 2. The inductive step is
proved applying it to (35.74):∫ c

x
xD
−n
c f(t) dx =

∫ c

x

∫ c

x

(t− x)n−1

(n− 1)!
f(t) dtdx

=

∫ c

x

∫ t

x

(t− x)n−1

(n− 1)!
f(t) dxdt

=

∫ c

x

f(t)

∫ t

x

(t− x)n−1

(n− 1)!
dxdt

=

∫ c

x

f(t)

[
− (t− x)n

n!

]t
x=x

dt

=

∫ c

x

f(t)
(t− x)n

n!
dt (35.79)

x1

x2 x1 = x2

c

c

x

x

x1

x2 x1 = x2

x

x

c

c

Figure 35.2: Left: integration area of (35.76); right: integration area of (35.78).

Generalising the law of exponents (35.69) for positive values of α, and
Cauchy's formula (35.73)�(35.74) for negative values of α, we arrive at the
following:

De�nition 35.7 (Riemann-Liouville fractional derivatives).

cD
α
t f(t) =



∫ t

c

(t− τ)−α−1

Γ(−α)
f(τ) dτ, if α ∈ R−

f(t), if α = 0
ddαe

dtdαe c
D
α−dαe
t f(t), if α ∈ R+

(35.80)

tD
α
c f(t) =


∫ c

t

(τ − t)−α−1

Γ(−α)
f(τ) dτ, if α ∈ R−

f(t), if α = 0

(−1)dαe
ddαe

dtdαe t
Dα−dαe
c f(t), if α ∈ R+

(35.81)

Remark 35.9. Notice that, if α ∈ Z, (35.80) reduces to (35.34) and (35.81)
reduces to (35.35); in particular, if α ∈ N, we will have

cD
α
t f(t) =

d
αf(t)

dtα
(35.82)

tD
α
c f(t) = (−1)α

d
αf(t)

dtα
(35.83)

The Riemann-Liouville and Grünwald-Letniko� de�nitions of fractional deriva-RL and GL de�nitions
give the same resulttives give the same result, provided that the function satis�es the conditions for

the application of both the de�nitions. We will not prove this result, which
is very di�cult to arrive at. You can, however, implement numerically both
de�nitions, and check that the results are the same (up to the numerical error
resulting from the approximations, of course).

Theorem 35.11. If f(t) has max{0, bαc} continuous derivatives, andDmax{0,dαe}f(t)
is integrable, then cD

α
t f(t) exists according to both the Riemann-Liouville and

Grünwald-Letniko� de�nitions, which provide the same result.
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35.5 Properties of fractional derivatives

It is because of the following result that di�erential equations with fractional
derivatives originate fractional transfer functions.

Theorem 35.12. The Laplace transform of D isL [Dαf(t)]

L [0D
α
t f(t)] =


sαF (s), if α ∈ R−
F (s), if α = 0

sαF (s)−
dαe−1∑
k=0

sk0D
α−k−1
t f(0), if α ∈ R+

(35.84)

Proof. This is easily proved using the Riemann-Liouville de�nition. The result
is trivial for α = 0. For α < 0,

L [0D
α
t f(t)] = L

[
1

Γ(−α)

∫ t

0

(t− τ)−α−1f(τ) dτ

]
(35.85)

By (2.78) this is equal to

L [0D
α
t f(t)] =

1

Γ(−α)
L
[
t−α−1

]
L [f(t)] (35.86)

Using the Laplace transform of the power function

L
[
tλ
]

=
Γ(λ+ 1)

sλ+1
, λ > −1 (35.87)

this becomes

L [0D
α
t f(t)] =

1

Γ(−α)

Γ(−α)

s−α
L [f(t)] = sαL [f(t)] (35.88)

For α > 0,

L [0D
α
t f(t)] = L

[
Ddαe0D

α−dαe
t f(t)

]
(35.89)

According to (2.45) and (2.47), this becomes

L [0D
α
t f(t)] = sdαesα−dαeF (s)−

dαe−1∑
k=0

skDdαe−k−1
0D

α−dαe
t f(0) (35.90)

which is the expression in (35.84).

Theorem 35.13. When input

u(t) = A sin(ωt) (35.91)

is applied to a stable fractional system G(s), the output, after the transient
regime has passed away, is

y(t) = |G(jω)|A sin(ωt+ ∠G(jω)) (35.92)

That is to say, the frequency response of a fractional transfer function may be
found replacing s with jω, as is the case for integer transfer functions; i.e. it can
be obtained evaluatingG(s) at the positive imaginary semiaxis, s = jω, ω ∈ R+.

Proof. The proof is similar to that of Theorem 10.4. The di�erences are that
stability conditions and vanishing terms in the response are as we will study
below in Chapter 36.

Let us take a �nal look at the Grünwald-Letniko� de�nition of Dα and showHow Riemann integrals
are recovered with the GL
de�nition

that, if α ∈ Z−, the result is in fact equal to a Riemann integral. It is worthwhile
to repeat that, though the upper limit of the summation in (35.64) is diverging
to +∞, if α ∈ N then all terms with k > α will be zero, and thus (35.64) reduces
to (35.59) when h > 0. In other words, (35.64) will be a right derivative of f .
If f is di�erentiable, the right and left side derivatives will be equal, and no
problem arises from restricting h to positive values.

As to higher order integrals, we need the following result.
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Lemma 35.2.

cD
−n
x f(t) = lim

h→0+

b x−ch c∑
k=0

h
(kh)n−1

(n− 1)!
f(x− kh) (35.93)

Proof. Apply the de�nition of the Riemann integral

∫ x

c

f(t) dt = lim
h→0+

b x−ch c∑
k=0

hf(x− kh) (35.94)

to (35.73).

We can now show using the Grünwald-Letniko� de�nition that cD
−n
t f(t) is

in fact equal to ∫ x

c

· · ·
∫ x

c

f(t) dt · · · dt︸ ︷︷ ︸
n integrations

(35.95)

If we make α = −n < −1, n ∈ N in (35.64), we get, according to (35.24) and
(35.20),

cD
−n
t f(t) = lim

h→0+
hn
b t−ch c∑
k=0

(−1)k
(−1)kΓ(k + n)

Γ(k + 1)Γ(n)
f(t− kh)

= lim
h→0+

b t−ch c∑
k=0

hn

n−1∏
i=1

(k + i)

(n− 1)!
f(t− kh) (35.96)

Whatever the value of n ∈ N,
n−1∏
i=1

(k + i) = kn−1 +

n−2∑
i=0

aik
i (35.97)

where ai ∈ N. Thus (35.96) becomes

cD
−n
t f(t) = lim

h→0+

b t−ch c∑
k=0

h
(hk)n−1

(n− 1)!
f(t− kh)

+
n−2∑
i=0

 lim
h→0+

i! ai h
n−1−i

(n− 1)!

b t−ch c∑
k=0

h
(hk)i

i!
f(t− kh)

 (35.98)

According to (35.93), the limits inside the summation with index i would be
the integrals of f of order i+ 1 if it were not for the fraction i! ai h

n−1−i

(n−1)! . Since

hn−1−i → 0, these fractions converge to zero and thus the entire summation is
equal to zero: all that is left is the �rst limit, which, again according to (35.93),
is indeed the nth order integral of f , as we might expect.

35.6 Applications of fractional derivatives

Fractional derivatives have many applications in practice. They can be used for
controller design, for solving physical problems (as in Exercise 3), and they can
model physical systems.

Example 35.3. The stress-strain model for an elastic material is

σ(t) = Eε(t) (35.99)

where σ is the stress, ε is the strain, and E is Young's modulus. For a viscous
material,

σ(t) = η
dε(t)

dt
(35.100)
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where η is viscosity.
Inbetween elasticity and viscosity lies viscoelasticity. The behaviour of the Viscoelasticity

material may be modelled as

σ(t) = Eτ
1
2

0D
1
2
t ε(t) (35.101)

where τ is a time constant. Actually the fractional order can change according
to whether the viscoelastic behaviour is closer to elasticity or viscosity.

Heat di�usion and mass di�usion are also areas of application of fractionalDi�usion
order models, as in Example 36.5 of Chapter 36.

Glossary

And behold, when ye shall come unto me, ye shall write them and
shall seal them up, that no one can interpret them; for ye shall write
them in a language that they cannot be read. And behold, these
two stones will I give unto thee, and ye shall seal them up also, with
the things which ye shall write. For behold, the language which ye
shall write, I have confounded; wherefore I will cause in my own due
time that these stones shall magnify to the eyes of men, these things
which ye shall write.

Joseph Smith Jr. (1805 � �1844), The Book of Mormon (1830), Book of
Ether, iii 22-24

combinations of a things, b at a time combinações de a, b a b
cycloid cicloide
fractional derivative derivada fracionária
tautochrone curve curva tautócrona

Exercises

1. Consider a commensurable transfer function G(s) given by

G(s) =

m∑
k=0

bks
kα

n∑
k=0

aks
kα

(35.102)

and consider an integer transfer function

G̃(s) =

m∑
k=0

bks
k

n∑
k=0

aks
k

(35.103)

built with the same numerator and denominator coe�cients. Show that
the frequency response G(jω):

(a) can be obtained calculating G̃(jαωα);

(b) can be obtained evaluating G̃(s) over the ray s = jαωα, ω ∈ R+,
shown in �gure 35.3.

2. Prove (35.87) from the de�nition of L .

3. Consider a mass m at rest on a frictionless curve surface de�ned by curveTautochrone curve
y(x), as seen in �gure 35.4. For convenience, the �nal point of the curve
is set to (x, y) = (0, 0). The initial height of the mass is h and it slides
down to the end of the curve, under the in�uence of gravity acceleration
g, with an ever increasing velocity V . Our objective is to �nd the shape
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<[σ]

=[σ]

απ
2 <[σ]

=[σ]

απ
2

Figure 35.3: Ray where G̃(s) is evaluated to obtain G(jω); left: 0 < α < 1;
right: 1 < α < 2.

x

y

m
h

Figure 35.4: The tautochrone curve, the cycloid.

of the curve such that the time T that the mass takes to reach the bot-
tom of the curve be constant, irrespective of the value of h. Such curve
is thereby called tautochrone (from the Greek words ταὐτός, same, and
χρόνος, time).

(a) Find an expression for the total mechanical energy of the mass at
any height y.

(b) Show that
V =

√
2g(h− y) (35.104)

at any height y.

(c) Let ` be the distance travelled along the curve by the mass, from
height y to the end of the curve, given by

`(y) =

∫ y

0

√
1 +

(
dx

dy

)2

dy (35.105)

Show that T (h) is given by

T (h) =

∫ h

0

1√
2g(h− y)

d`(y)

dy
dy (35.106)

(d) If the curve is tautochrone, T (h) does not depend on h. Knowing
that

Γ

(
1

2

)
=
√
π (35.107)

show from the Riemann-Liouville de�nition of D that

0D
− 1

2
y

d`(y)

dy
=

√
2gT 2

π
(35.108)

(e) Apply a 1
2 order derivative to both sides of the last result and show

that
d`(y)

dy
=

√
2gT

π︸ ︷︷ ︸
a

y−
1
2 (35.109)
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Take into account that, according to the law of exponents,

0D
1
2
t 0D

− 1
2

t f(t) = f(t) (35.110)

(f) From this last result, show that

x(y) =

∫ y

0

√
a2

v
− 1 dv (35.111)

(g) Show that this last result is equivalent to parametrisation

x(θ) = rθ + r sin θ (35.112)

y(θ) = r − r cos θ (35.113)

which is that of a cycloid, the curve described by a circle rolling on
a horizontal straight line, with radius r = a2

2 = gT 2

π2 .



Chapter 36

Time responses of fractional

order systems

After studying the frequency responses of fractional order transfer functions,
and the fractional derivatives that originate them, this chapter addresses their
responses in time.

36.1 The Mittag-Le�er function

Just as we needed to generalise the factorial with the Gamma function, we now
need to generalise the exponential function with a more general function, called
Mittag-Le�er function.

De�nition 36.1 (Mittag-Le�er functions). The one-parameter and the two-
parameter Mittag-Le�er functions are de�ned as

Eα(t) =

+∞∑
k=0

tk

Γ(αk + 1)
= Eα,1(t), α > 0 (36.1)

Eα,β(t) =

+∞∑
k=0

tk

Γ(αk + β)
, α, β > 0 (36.2)

The two-parameter Mittag-Le�er function will be referred to below simply as
the Mittag-Le�er function.

Some particular values of these functions include

E1(t) = E1,1(t) =

+∞∑
k=0

tk

Γ(k + 1)
=

+∞∑
k=0

tk

k!
= et (36.3)

E1(at) = E1,1(at) = eat (36.4)

E2(t) = E2,1(t2) =

+∞∑
k=0

t2k

Γ(2k + 1)
=

+∞∑
k=0

t2k

(2k)!
= cosh(t) (36.5)

E2,2(t2) =

+∞∑
k=0

t2k

Γ(2k + 2)
=

1

t

+∞∑
k=0

t2k+1

(2k + 1)!
=

sinh(t)

t
(36.6)

tβ−1E1,β(0) = tβ−1
+∞∑
k=0

0k

Γ(k + β)
=
tβ−1

Γ(β)
(36.7)

Lemma 36.1. The (integer) derivatives of 1
1∓t are given by

Dk 1

1∓ t
=

k!(±1)k

(1∓ t)k+1
, k ∈ Z+

0 (36.8)

Proof. This is proved by mathematical induction. For k = 0 the equality is
obvious, and the inductive step is proved as follows:

d

dt

k!(±1)k

(1∓ t)k+1
= (−k − 1)k!(±1)k(1∓ t)−k−2 =

(k + 1)!(±1)k+1

(1∓ t)k+2
(36.9)

517
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Corollary 36.1. The MacLaurin series of
1

1∓ t
is

+∞∑
k=0

(±t)k.

Proof. When t = 0 the derivative of order k reduces to k!(±1)k, and replacing
this in

f(t) =

+∞∑
k=0

tk

k!

d
k

dtk
f(0) (36.10)

we obtain

+∞∑
k=0

k!

k!
(±1)ktk (36.11)

The series converges for |t| < 1; otherwise its terms do not converge to 0 when
k → +∞.

Theorem 36.1. The Laplace transform of tαk+β−1 dkEα,β(±atα)
d(±atα)k

, k ∈ Z+
0 is

L

[
tαk+β−1 dkEα,β(±atα)

d(±atα)k

]
=

k!sα−β

(sα ∓ a)k+1
(36.12)

Proof. First we notice that∫ +∞

0

e−ttβ−1Eα,β(±ztα) dt =

∫ +∞

0

e−ttβ−1
+∞∑
k=0

(±z)ktαk

Γ(αk + β)
dt

=

+∞∑
k=0

(±z)k

Γ(αk + β)

∫ +∞

0

e−ttαk+β−1 dt︸ ︷︷ ︸
Γ(αk+β)

=
1

1∓ z
(36.13)

Di�erentiating the rightmost and the leftmost members of (36.13) k ∈ Z+
0 times,

k!(±1)k

(1∓ z)k+1
=

dk

dzk

∫ +∞

0

e−ttβ−1Eα,β(±ztα) dt

=

∫ +∞

0

e−ttβ−1(±tα)k
dk

d(±ztα)k
Eα,β(±ztα) dt (36.14)

We now replace t with st (and thus dt with sdt) and get

k!(±1)k

(1∓ z)k+1
=

∫ +∞

0

e−stsβ−1tβ−1(±1)ksαktαk
dkEα,β(±zsαtα)

d(±zsαtα)k
sdt (36.15)

Rearranging the terms and replacing zsα with a (and thus z with a
sα ),

k!

sβsαk
(
1∓ a

sα

)k+1
=

∫ +∞

0

e−sttαk+β−1 dkEα,β(±atα)

d(±atα)k
dt (36.16)

By comparison with (2.1), the right hand member can be seen to be the Laplace
transform in (36.12). The left hand member is k!s−βsα

sα(k+1)(1∓ a
sα )

k+1 = k!sα−β

(sα∓a)k+1 .

Corollary 36.2. Making k = 0 in (36.12),

L
[
tβ−1Eα,β(±atα)

]
=

sα−β

sα ∓ a
(36.17)

Corollary 36.3. Making α = β in (36.17),

L
[
tα−1Eα,α(±atα)

]
=

1

sα ∓ a
(36.18)

Corollary 36.4. Making α = 1 in (36.17),

L
[
tβ−1E1,β(±at)

]
=
s1−β

s∓ a
(36.19)
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Corollary 36.5. Making a = 0 in (36.19),

L
[
tβ−1E1,β(0)

]
= L

[
tβ−1

Γ(β)

]
=

1

sβ
(36.20)

The inverse Laplace transforms corresponding to the relations above becomeApproximation of E for
large t easier to evaluate for |t| → +∞ using the following approximations, given here

without proof:

Eα,β(t) ≈ 1

α
t

1−β
α et

1/α

(36.21)

dnEα,β(t)

dtn
≈

n∑
k=0

ak,n(α, β)

αn+1
t

1−(2n−k)α−β+2(n−k)
α et

1/α

(36.22)

Inverse Laplace transforms can be found in the usual way.

Example 36.1. Suppose we want to calculate the inverse Laplace transform of
4s1/2 − 1

s+ s1/2 − 2
. We apply a partial fraction expansion, and then (36.18):

L −1

[
4s1/2 − 1

s+ s1/2 − 2

]
= L −1

[
1

s1/2 − 1
+

3

s1/2 + 2

]
= t−

1
2E 1

2 ,
1
2
(t

1
2 ) + 3t−

1
2E 1

2 ,
1
2
(−2t

1
2 ) (36.23)

Example 36.2. Suppose we want to calculate the inverse Laplace transform of

s+ s2/3 −
√

2s1/3 −
√

2

s4/3 −
√

2s−
√

2s1/3 + 2
=

1

s1/3 −
√

2
+

s1/3

s−
√

2
(36.24)

We will solve this in two ways.

� If we are aware of the equality above, we can apply (36.18)�(36.19) to the
right-hand side of (36.24) and get

L −1

[
1

s1/3 −
√

2
+

s1/3

s−
√

2

]
= t−

2
3E 1

3 ,
1
3
(
√

2t
1
3 ) + t−

1
3E1, 23

(
√

2t) (36.25)

� But if we simply apply a partial fraction expansion to the left-hand side
of (36.24), we are led to

L −1

[
s+ s2/3 −

√
2s1/3 −

√
2

s4/3 −
√

2s−
√

2s1/3 + 2

]
=

L −1

 1

s1/3 −
√

2
+

1
3×21/6

s1/3 − 21/6
+

1
3
√

3 21/6

(
−
√

3
2 −

3
2j
)

s1/3 − 2−5/6(−1 +
√

3)
+

1
3
√

3 21/6

(
−
√

3
2 + 3

2j
)

s1/3 − 2−5/6(−1−
√

3)

 =

t−
2
3E 1

3 ,
1
3
(
√

2t
1
3 ) +

1

3× 2
1
6

t−
2
3E 1

3 ,
1
3
(2

1
6 t

1
3 )+

1

3
√

3 2
1
6

(
−
√

3

2
− 3

2
j

)
t−

2
3E 1

3 ,
1
3

(
2−

5
6 (−1 +

√
3)t

1
3

)
+

1

3
√

3 2
1
6

(
−
√

3

2
+

3

2
j

)
t−

2
3E 1

3 ,
1
3

(
2−

5
6 (−1−

√
3)t

1
3

)
(36.26)

This far more complicated expression, however, turns out to be equal to
(36.25): its imaginary parts cancel out. While it is not trivial to prove
this analytically, the reader can easily check numerically that it is so.

36.2 Time responses of simple fractional order
transfer functions

The Laplace transforms above can be used to �nd the following impulse, unit Impulse, step and ramp re-
sponses
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step and unit ramp responses:

L −1

[
1

sα
L [δ(t)]

]
=
tα−1

Γ(α)
(36.27)

L −1

[
1

sα
L [H(t)]

]
=

tα

Γ(α+ 1)
(36.28)

L −1

[
1

sα
L [t]

]
=

tα+1

Γ(α+ 2)
(36.29)

L −1

[
1

sα ∓ a
L [δ(t)]

]
= tα−1Eα,α(±atα) (36.30)

L −1

[
1

sα ∓ a
L [H(t)]

]
= tαEα,α+1(±atα) (36.31)

L −1

[
1

sα ∓ a
L [t]

]
= tα+1Eα,α+2(±atα) (36.32)

L −1

[
1

(sα ∓ a)k+1
L [δ(t)]

]
=
tα(k+1)−1

Γ(k + 1)

dkEα,α(±atα)

d(±atα)k
, k ∈ Z+

0 (36.33)

L −1

[
1

(sα ∓ a)k+1
L [H(t)]

]
=

tα(k+1)

Γ(k + 1)

dkEα,α+1(±atα)

d(±atα)k
, k ∈ Z+

0 (36.34)

L −1

[
1

(sα ∓ a)k+1
L [t]

]
=
tα(k+1)+1

Γ(k + 1)

dkEα,α+2(±atα)

d(±atα)k
, k ∈ Z+

0 (36.35)

Because of (36.21), when t→ +∞, the following approximations can be used
instead of (36.30)-(36.32):

L −1

[
1

sα ∓ a
L [δ(t)]

]
≈ tα−1

α
(±atα)

1−α
α eta

1/α

=
1

(±a)
α−1
α α

eta
1/α

(36.36)

L −1

[
1

sα ∓ a
L [H(t)]

]
≈ tα

α

1

±atα
eta

1/α

=
1

±aα
eta

1/α

(36.37)

L −1

[
1

sα ∓ a
L [t]

]
≈ tα+1

α
(±atα)

−1−α
α eta

1/α

=
1

(±a)
α+1
α α

eta
1/α

(36.38)

(36.22) can likewise be used to approximate (36.33)-(36.35).
Time responses of other fractional transfer functions can be found from these

using the convolution theorem (10.25), normally evaluated numerically.

Example 36.3. The impulse response of G(s) =
2

(s
1
2 + 1)(s

1
3 + 4)

can be found

from

L −1

[
1

s
1
2 + 1

]
= t−

1
2E 1

2 ,
1
2
(−t 1

2 ) (36.39)

L −1

[
1

s
1
3 + 4

]
= t−

2
3E 1

3 ,
1
3
(−4t

1
3 ) (36.40)

and is equal to

L −1

[
2

(s
1
2 + 1)(s

1
3 + 4)

L [δ(t)]

]
= 2

∫ t

0

E 1
2 ,

1
2
(−
√
t− τ)E 1

3 ,
1
3
(−4 3
√
τ)

√
t− τ 3

√
τ2

dτ

(36.41)

36.3 Stability of fractional systems

Just as an integer transfer function is stable when all its poles lie in the left-
hand complex half-plane, a similar condition must be veri�ed for the stability
of fractional transfer functions.
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Theorem 36.2. System G(s) = N(s)
D(s) is stable if

∀ s : D(s) = 0, |∠s| > π

2
(36.42)

restricting ∠s to [−π,+π] rad.

We will not prove this theorem in the general case; only in the form it takes
for the particular case of commensurable transfer functions:

Corollary 36.6. Let σk, k = 1 . . . n be the roots of the polynomial Matignon's theorem

A(σ) =

n∑
k=0

akσ
k (36.43)

built with the denominator coe�cients of transfer function

G(s) =

m∑
k=0

bks
kα

n∑
k=0

aks
kα

(36.44)

Then G(s) is stable if and only if

|∠σk| > α
π

2
, ∀ k (36.45)

restricting ∠σk to [−π,+π] rad.

Proof. If A(σ) has no roots with multiplicity higher than one, G(s) can be
written as a partial fraction expansion:

G(s) =

n∑
k=1

ρk
sα − σk

(36.46)

Applying (36.30), it is seen that the impulse response of (36.46) is given by

y(t) =

n∑
k=1

ρkt
α−1Eα,α(σkt

α) (36.47)

The asymptotic behaviour (36.21) shows that for t large enough this will become

y(t) ≈
n∑
k=1

ρkt
α−1 1

α
(σkt

α)
1−α
α e(σkt

α)
1
α =

n∑
k=1

ρk
α
σ

1−α
α

k etσ
1/α
k (36.48)

This response will tend to zero if <
[
σ

1/α
k

]
< 0. Since

<
[
σ

1/α
k

]
= <

[
(|σk|ej∠σk)1/α

]
= <

[
|σk|1/α

(
cos

∠σk
α

+ j sin
∠σk
α

)]
(36.49)

the condition above will be satis�ed if cos ∠σk
α < 0 ⇔ |∠σkα | >

π
2 . Since α is

positive, the result follows.
If A(σ) has roots with multiplicity higher than one, (36.46) is replaced with

G(s) =

nd∑
k=1

mk∑
q=1

ρk,q
(sα − σk)q

(36.50)

where nd is the number of di�erent roots and mk is the multiplicity of root σk
(which means that

∑nd
k=1mk = n). Thus (36.47) is replaced by

y(t) =

nd∑
k=1

mk∑
q=1

ρk,q
tαq−1

Γ(q)

dq−1Eα,α(σkt
α)

d(σktα)q−1
(36.51)
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and, according to (36.22), the asymptotic response (36.48) will become

y(t) ≈
nd∑
k=1

mk∑
q=1

ρk,q
tαq−1

Γ(q)

q−1∑
r=0

ar,q−1(α, α)

αq
(σkt

α)
1−(2q−r−3)α+2(q−r−2)

α e(σkt
α)1/α

=

nd∑
k=1

mk∑
q=1

q−1∑
r=0

ρk,qar,q−1(α, α)

αqΓ(q)
σ

1−(2q−r−3)α+2(q−r−2)
α

k t−(q−r−3)α+2(q−r−2)etσ
1/α
k

(36.52)

Since the exponential tends to zero faster than the power function tends to

in�nity, all terms will again tend to zero if <
[
σ

1/α
k

]
< 0.

The regions where the σ may lie in the case of a stable commensurable
transfer function are shown in �gure 36.1.

<[σ]

=[σ]

απ
2 <[σ]

=[σ]

απ
2

Figure 36.1: In grey: regions of the complex plane where the roots of A(σ)
may lie in the case of a stable commensurate transfer function, according to
Matignon's theorem; left: 0 < α < 1; right: 1 < α < 2.

Remark 36.1. For integer systems we reach the usual criterion of stability: all
poles must have a negative real part.

Orders α > 2 make the system necessarily unstable.Orders α > 2 make plants
unstable

Example 36.4. Figure 36.2 shows four applications of Matignon's theorem.

36.4 Identi�cation from time responses

Identi�cation from time responses is done as for the integer case, when using
a model continuous in time. The Mittag-Le�er function cannot be inverted
as easily as the exponential, which means that numerical solutions, using the
Nelder-Mead simplex search method or metaheuristic methods, are the usual
solution.

Example 36.5. In a few cases, analytical calculations to identify a fractional
model are possible. Consider the heat equation

∂T (x, t)

∂t
= d

∂2T (x, t)

∂x2
(36.53)

which describes the transmission of heat by conduction along one dimension x,
as seen in �gure 36.3 for the case of a semi-in�nite body with a plane surface
at x = 0. T (x, t) is the temperature at point x and at time instant t; d is a
parameter called di�usivity. Assume a uniform initial temperature T0 in the
body at time t = 0 and a constant surface temperature Tsf . Using variable
change θ = T − T0, (36.53) and the border conditions can be rewritten as

∂θ(x, t)

∂t
= d

∂2θ(x, t)

∂x2
(36.54)

θ(x, 0) = 0 (36.55)

θ(0, t) = Tsf − T0 (36.56)



36.4. IDENTIFICATION FROM TIME RESPONSES 523

Transfer function σ α σ in the complex plane Stable

1
s2/3 − 4s1/3 + 8

2± 2j 1
3 Yes

1
s− 4s1/2 + 8

2± 2j 1
2 No (on the limit)

1
s4/3 − 4s2/3 + 8

2± 2j 2
3 No

s4/3 − 2
s8/3 + 4s4/3 + 8

−2± 2j 4
3 Yes

Figure 36.2: Stability of four plants veri�ed by Matignon's theorem

Applying the Laplace transform to the time derivative,

sΘ(x, s) = d
∂2Θ(x, s)

∂x2
⇒

Θ = k1e
x
√

s
d + k2e

−x
√

s
d (36.57)

for indeed

∂Θ(x, s)

∂x
= k1

√
s

d
ex
√

s
d − k2

√
s

d
e−x
√

s
d (36.58)

∂2Θ(x, s)

∂x2
= k1

s

d
ex
√

s
d + k2

s

d
e−x
√

s
d (36.59)

Because

∣∣∣∣ lim
x→−∞

Θ(x, s)

∣∣∣∣ < +∞ (which means that the temperature inside the

body cannot grow in�nitely), it is necessary that k2 = 0. Hence the solution
must verify

Θ = k1e
x
√

s
d (36.60)

where Θ = L [θ].
An estimate of the age of the Earth estimate was arrived at by Lord Kelvin Age of the Earth

from the heat equation, and redone by Heaviside using fractional derivatives in
a manner similar to the following. From (36.60) we get

∂Θ(x, s)

∂x
= k1

√
s

d
ex
√

s
d = s

1
2

1√
d

Θ(x, s) (36.61)

Using an inverse Laplace transform (with zero initial conditions) and making
x = 0 we conclude that the temperature gradient at the surface must verify

∂θ(0, t)

∂x
=

1√
d

0D
1
2
t θ(0, t) (36.62)

We now assume that the radius of the Earth is large enough for the planet to
be compared to a semi-in�nite solid; that its temperature, when it was formed,
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x

y

Tsf

Figure 36.3: The heat conduction problem.

was θ(0, 0) = 3900 ◦C, which is the temperature of molten rock; and that
its surface has a constant temperature of 0 ◦C. It immediately follows from
(36.75), proved in Exercise 7, that an expression for the temperature gradient
at the surface when the Earth was formed is

∂θ(0, 0)

∂x
=

1√
d

3900 ◦C√
πt

(36.63)

Assuming that the expression found is valid in the future, knowing that d =
1.178× 10−6 m2/s and that nowadays the temperature gradient at the surface
of the Earth is 1 ◦C for every 27.43 m (as measured in the 19th century), we
can now estimate the age of the Earth: rather than making t = 0 in (36.63),
substituting numerical values and solving in order to t we get t = 3.0923 ×
1015 s = 98× 106 years.

Actually, the currently accepted age for the Earth is 4.54× 109 years: Lord
Kelvin's estimate is faulty because it does not take into account heat production
due to radioactive decay, unsuspected at the time. Of course, as the Earth is
heated from inside, it takes longer to cool down that it otherwise would.

Example 36.6. Fractional order models in heat conduction can be experimen-
tally veri�ed using an apparatus depicted in Figure 36.4, where the length of the
rod is very large in comparison with its diameter. Using one such apparatus,
and turning the heater on and o� repeatedly, a sequence of step responses was
obtained, also shown in the Figure. The response is a piecewise function; while
exponentials can be �tted to the successive pieces, the �t is far more accurate
using the Mittag-Le�er function with α = 0.5.

Figure 36.4: Top: experimental apparatus to measure heat conduction in a semi-
in�nite solid. Bottom: experimental response to a sequence of steps, obtained
turning the heater on and o� (source: DOI 10.1115/1.2833910).
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36.5 Final comments about models of fractional
order

Many dynamic systems can be modelled accurately using integer derivatives
only. Fractional order models should be used as an alternative in identi�cation
only if either

� the nature of the system is such that a fractional order model can be
expected (presence of di�usion, or viscoelasticity, or another phenomenon
known to lead to such models); or

� the experimental data clearly corresponds to the behaviour of a fractional
order plant.

Even in such cases, it is possible that a mathematically simpler integer order
model can achieve enough accuracy to be preferred. Fractional order models
should be chosen over integer order ones when they are simpler for a similar
accuracy, or only they achieve the necessary accuracy. In this respect, fractional
order models can be compared with integer order models as in Figure 36.5.

Figure 36.5: Left: integer order models. Right: fractional order models.
(Source: Wikimedia. Credit for the idea in this Figure goes to Professors
YangQuan Chen, Igor Podlubny and Blas Vinagre.)

Exercises

1. Use Matignon's theorem to �nd whether the following transfer functions
are stable.

G1(s) =
1

s− 6s1/2 + 18
(36.64)

G2(s) =
1

s4/3 − 6s2/3 + 18
(36.65)

G3(s) =
s4/3 − 2

s8/3 + 6s4/3 + 18
(36.66)

G4(s) =
1

s2/3 − 6s1/3 + 18
(36.67)
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Table 36.1: Unit step response of Exercise 6.
t 0 1 2 3 4 5 6 7 8 9 10

y(t) 0.0000 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000 3.1623

2. Explain whether or not the plant from Exercise 4 of Chapter 34 is stable.

3. Find analytically the impulse and step responses of a plant with transfer
function G(s) = 10

s
1
2 +100

.

4. Show that the impulse response of G(s) = 3

(s
1
2 +1)(s

1
3 +11)

is

g(t) = 3

∫ t

0

E 1
2 ,

1
2
(−
√
t− τ)E 1

3 ,
1
3
(−11 3

√
τ)

√
t− τ 3

√
τ2

dτ (36.68)

Hint: use inverse Laplace transforms and the convolution theorem.

5. Find the analytic expression of the output of the plant from Exercise 3 of
Chapter 34, when the input is a ramp with slope −10.

6. The unit step response of a LTI system is tabulated in Table 36.1. Sketch
a plot of this unit step response, �nd the transfer function of this plant,
and plot its Bode diagram. Hint: notice that the tabulated value for 2 s
is
√

2. Can you recognise the tabulated values for 1, 4 and 9 s? What
about the other time instants?

7. Prove that

0D
α
t t
λ =

Γ(λ+ 1)

Γ(λ− α+ 1)
tλ−α, λ > −1 (36.69)

in the following way:

(a) Show from the de�nition of the Laplace transform that

L
[
tλ
]

=
Γ(λ+ 1)

sλ+1
, λ > −1 (36.70)

(b) Show from (35.84) that, when α < 0,

L
[
0D

α
t t
λ
]

= sα
Γ(λ+ 1)

sλ+1
= sα−λ−1Γ(λ+ 1), λ > −1 (36.71)

(c) Use (36.70) again to prove (36.69) for α < 0.

(d) Use this result for α < 0 together with the Riemann-Liouville de�ni-
tion (35.80) to show that, if α > 0,

0D
α
t t
λ =

ddαe

dtdαe 0D
α−dαe
t tλ =

ddαe

dtdαe
Γ(λ+ 1)

Γ(λ− α+ dαe+ 1)
tλ−α+dαe

(36.72)

(e) Use that result together with (35.56) to obtain

0D
α
t t
λ =

Γ(λ+ 1)

Γ(λ− α+ dαe+ 1)

Γ(λ− α+ dαe+ 1)

Γ(λ− α+ dαe+ 1− dαe)
tλ−α+dαe−dαe

(36.73)

(f) Having proved (36.69) for both positive and negative values of α,
show as a corollary that, making λ = 0,

0D
α
t k =

k

Γ(1− α)
t−α (36.74)

(g) Knowing that Γ
(

1
2

)
=
√
π, show as well, using (36.74), that

0D
1
2
t k =

k√
tπ

(36.75)
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Or du hasard il n'est point de science.
S'il en estoit, on auroit tort

De l'appeler hasard, ni fortune, ni sort,
Toutes choses tres-incertaines.

Jean de la Fontaine (1621 � 1695), Fables (1668), 2 XIII (L'astrologue qui
se laisse tomber dans un puits)

In this part of the lecture notes:

Chapter 37 introduces stochastic processes and systems, and the tools to characte-
terise them.

Chapter 38 introduces the important concept of spectral density; it is yet another tool
to characterise stochastic processes and systems, but is so important that
it deserves a chapter on its own.

Chapter 39 is about the identi�cation of stochastic models.

Chapter 40 presents design methods for �lters for stochastic systems.

Chapter 41 describes di�erent types of models for digital stochastic systems and how
to identify them from data.

Chapter 42 concerns the design of controllers for stochastic systems.

Here is what you need to know beforehand to follow these chapters:

� Probability and Statistics, up to the usual level of an undergraduate course
on the subject;

� The Laplace and Fourier transforms, from Chapter 2;

� Transfer functions, from Sections 4.1 and 4.2 of Chapter 4;

� System theory, from Part II;

� Filters, from Sections 12.2 and 12.3 of Chapter 12;

� Discrete transfer functions, from Chapter 25, Sections 26.1 to 26.5 of
Chapter 26, and Sections 27.1, 27.2 and 27.6 of Chapter 27;

� System identi�cation, from Chapters 30 to 32.
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Chapter 37

Stochastic processes and

systems

Ah, the evening when I took those seventy gülden to the gaming ta-
ble was a memorable one for me. I began by staking ten gülden upon
passe. For passe I had always had a sort of predilection, yet I lost
my stake upon it. This left me with sixty gülden in silver. After a
moment's thought I selected zero�beginning by staking �ve gülden
at a time. Twice I lost, but the third round suddenly brought up the
desired coup. I could almost have died with joy as I received my one
hundred and seventy-�ve gülden. Indeed, I have been less pleased
when, in former times, I have won a hundred thousand gülden. Los-
ing no time, I staked another hundred gülden upon the red, and
won; two hundred upon the red, and won; four hundred upon the
black, and won; eight hundred upon manque, and won. Thus, with
the addition of the remainder of my original capital, I found myself
possessed, within �ve minutes, of seventeen hundred gülden. Ah,
at such moments one forgets both oneself and one's former failures!
This I had gained by risking my very life. I had dared so to risk,
and behold, again I was a member of mankind!

I went and hired a room, I shut myself up in it, and sat counting
my money until three o'clock in the morning. To think that when I
awoke on the morrow, I was no lacquey! I decided to leave at once
for Homburg. There I should neither have to serve as a footman nor
to lie in prison. Half an hour before starting, I went and ventured a
couple of stakes�no more; with the result that, in all, I lost �fteen
hundred �orins. Nevertheless, I proceeded to Homburg, and have
now been there for a month.

Fyodor Dostoyevsky (1821 � �1881), The Gambler (1866), XVII (transl. C.
J. Hogarth)

Many systems have inputs with values that cannot be measured, but which
can be described as random variables with a known distribution. Such systems
are called stochastic systems. Stochastic system

37.1 Stochastic processes

De�nition 37.1. A stochastic process is a process that generates a signal Stochastic process
X(t) that depends on time t and is in each time instant a random variable.
While we may want to make a distinction between the particular random vari-
able corresponding to time t which is X(t), the signal X(t) that assumes those
successive values, and the process {X(t)} that may originate di�erent signals
consisting of random values X(t), the process itself is often denoted by X(t) as
well.

Remark 37.1. A more general de�nition of a stochastic process as a math-
ematical entity can be given, but the above su�ces for our purpose, which is
the study of stochastic systems in time and the identi�cation of models for such
systems.

531
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Figure 37.1: One dimensional random walk, as a function of time.

Figure 37.2: Two dimensional random walk. Left: the x and y coordinates as
functions of time. Right: the movement on the plane, beginning at (0, 0) and
following the random walks in the left plot.

A stochastic process is eitherContinuous and discrete
stochastic processes

� continuous, if t ∈ R+
0 ;

� discrete, if t = k Ts, where Ts > 0 is the sample time and k ∈ Z+
0 is the

sample. In this case, sample k corresponding to value X(k Ts) is usually
denoted as Xk.

Example 37.1. A random walk is a discrete stochastic process given byRandom walk

X0 = 0 (37.1)

Xk+1 = Xk + xk, k = 0, 1, 2, 3 . . . (37.2)

P (xk = +1) =
1

2
(37.3)

P (xk = −1) =
1

2
(37.4)

More precisely, if the probabilities of variation xk being −1 and +1 are equal as
in (37.3)�(37.4), we have an unbiased random walk. When these probabilities
are di�erent, we have a biased random walk.

Figure 37.1 shows an unbiased random walk with 50 instants. Two random
walks can be used to de�ne the movement of a particle on a plane, as shown
in Figure 37.2 for 1000 instants. Three random walks de�ne a movement in
three-dimensional space, which can be used to model the random movement of
a particle in suspension in a �uid. This movement is called Brownian motion.Brownian motion

Notice that a random walk only assumes integer values. Just as time samples
can correspond to multiples of an arbitrary sample time Ts, these integer values
assumed by the random walk can correspond to multiples of some unit of length.

Example 37.2. Brownian motion can be better modelled replacing the unbi-
ased random walk by a stochastic process which is also discrete in time but
continuous in amplitude:

� in each time instant, the particle travels a distance d which is a random
number, following a normal distribution with zero mean and variance σ2;
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Figure 37.3: Simulation of Brownian motion as in Example 37.2, beginning at
(0, 0), for 1000 time samples.

� the direction in which this movement takes place is uniformly distributed.
If the movement takes place on a plane, there is only one angle θ, uniformly
distributed in [0, 2π[ (or any other geometrically equivalent interval of
angles). In three-dimensional space, two angles are needed.

Notice that a travel with distance d and angle θ is the same as a travel with
distance −d and angle θ+π. Figure 37.3 shows one such simulation of Brownian
motion.

De�nition 37.2. The random value X(t) assumed by a stochastic process is
characterised by a probability distribution, given either by Probability distribution

� the probability mass function (PMF) fX(x), if the variable assumes PMF
values in a discrete set, in which situation each of the N possible outcomes
xk, k = 1, 2 . . . N has a probability P

(
X(t) = xk

)
which veri�es

0 ≤ P
(
X(t) = xk

)
≤ 1, ∀k = 1, 2 . . . N (37.5)

N∑
k=1

P
(
X(t) = xk

)
= 1 (37.6)

fX(x) = P
(
X(t) = x

)
(37.7)

� the probability distribution function (PDF) fX(x), if the variable as- PDF
sumes values in a continuous set, in which situation each possible outcome
x has a probability

P
(
X(t) = x

)
= 0, ∀x (37.8)

since there are in�nitely many outcomes. The PDF is de�ned so that

fX(x) ≥ 0, ∀x (37.9)

P
(
x1 ≤ X(t) ≤ x2

)
=

∫ x2

x1

fX(x) dx, x1 < x2 (37.10)∫ +∞

−∞
fX(x) dx = 1 (37.11)

De�nition 37.3. The cumulative distribution function (CDF) of a prob- CDF
ability distribution is a function FX(x) such that

P (X(t) ≤ x) = FX(x) (37.12)

Notice that:

� For a PMF fX(x), the CDF is given by the sum of all probabilities up to
x, and will be discontinuous at every possible outcome xk.

FX(x) =

N∑
k=1

fX(xk), x1, x2, . . . , xk ≤ x < xk+1, xk+2, . . . , xN (37.13)
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� For a PDF fX(x), as a consequence of (37.10), the CDF is its inde�nite
integral.

FX(x) =

∫ x

−∞
fX(x) dx (37.14)

fX(x) =
dFX(x)

dx
(37.15)

A stochastic process may have a time-varying probability distribution, in
which case it is said to be non-stationary. A stochastic process with a prob-Stationarity
ability distribution that remains the same is stationary.

If it is possible to characterise the probability distribution of a stochastic
process from measurements, the process is said to be ergodic. Obviously, ifErgodicity
the probability distribution keeps changing with time, the statistical proper-
ties of the probability distribution cannot be found from measurements, since
measurements of di�erent distributions are mixed up, and the process is not
ergodic. On the other hand, it is possible to devise stationary processes that
are not ergodic, as the one in the next example. In other words, stationarityOnly stationary processes

can be ergodic is a necessary, but not su�cient, condition for ergodicity. In what follows we
assume ergodic � and hence stationary � stochastic processes; at least, it isWe assume stationary, er-

godic stochastic processes assumed that changes in the probability distribution are slow enough for this to
be possible, in which case we have a quasi-stationary stochastic process.

Example 37.3. Consider a stochastic process given by

X(t) = A sin(t+ θ) (37.16)

where θ is a random constant uniformly distributed in [0, 2π], and A is a random
constant with a normal distribution. X(t) will be in each instance a sinusoid,
and is stationary because A and θ are constants and thus do not have a distri-
bution varying with time; in fact, because these are constants, X(t) will even be
deterministic, i.e. we can predict future values without any uncertainty, if there
is no noise in the measurements of past values of X(t). We can �nd the values
of A and θ from measurements of a particular instance of X(t), but since they
are random they will not have the same value in other instances. Consequently,
knowing A and θ from one instance of X(t) will tell us nothing about the values
they will have when X(t) takes place again (say, after stopping and restarting).
Thus, this stochastic process, even though stationary and even deterministic, is
not ergodic.

Remark 37.2. Examples 37.1 and 37.2 show Matlab simulations, that use
pseudo-random number generators. As you surely know, the outputs
of such algorithms are not really random, but follow a speci�ed distribution.
Among others, the following Matlab commands are useful for this purpose:Matlab pseudo-random

number generators
� rand(a,b) returns an a × b matrix of numbers uniformly distributed in

[0, 1];

� randi(n,a,b) returns an a× b matrix of natural numbers uniformly dis-
tributed in {1, 2, . . . , n};.

� rand(a,b) returns an a×b matrix of numbers following a standard normal
distribution (i.e. with mean 0 and standard deviation 1);

� all these functions, if arguments a and b are not provided, return only one
number.

37.2 Characterisation of stochastic processes

Several statistical properties are of interest when studying probability distribu-
tions and stochastic processes:

� expected value;

� variance;

� standard deviation;
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� autocorrelation;

� autocorrelation coe�cient;

� autocovariance.

For each of them, we will:

� de�ne it for a stochastic process;

� provide a numerical approximation of the de�nition to estimate it from
a signal that measures a particular instance of the stochastic process.
These expressions can be applied to any signal, not just in the presence
of a stochastic process.

De�nition 37.4. The expected value E[X(t)] of a stochastic process X(t) is Expected value
the centroid of its distribution:

E[X(t)] =

∫ +∞

−∞
x fX(x) dx, for a PDF (37.17)

E[X(t)] =

N∑
k=1

xkfX(xk), for a PMF (37.18)

To estimate the expected value of a stochastic process from the values ob- Mean
served up to time t, the mean of the observed values X(t) is used.

De�nition 37.5. The mean of a signal continuous in time, for measurements
from t = 0 to t = t�nal, is

X(t) =
1

t�nal

∫ t�nal

0

x(t) dt (37.19)

De�nition 37.6. The mean of a signal sampled in time with sampling time Ts,
for n+ 1 measurements from t = 0 to t = Tsn, is

X(t) =
1

n+ 1

n∑
k=0

Xk (37.20)

The discrete time case is more often found in practice.

Remark 37.3. Since

lim
t→+∞

X(t) = E[X(t)] (37.21)

it is usual to employ E[X(t)] and X(t) interchangeably.

De�nition 37.7. The variance σ2
X is the average of the squares of the devia- Variance

tions:

σ2
X = E

[
(X(t)− E[X(t)])

2
]

(37.22)

Theorem 37.1. For a stationary stochastic process,

σ2
X = E

[
(X(t)− E[X(t)])

2
]

= E
[
X2(t)− 2X(t)E[X(t)] + (E[X(t)])

2
]

= E
[
X2(t)

]
− E[X(t)

constants︷ ︸︸ ︷
2E[X(t)]]︸ ︷︷ ︸

2E[X(t)]E[X(t)]

+E
[ constant︷ ︸︸ ︷

(E[X(t)])
2
]

︸ ︷︷ ︸
(E[X(t)])2

= E
[
X2(t)

]
− (E[X(t)])

2
= X2(t)−X(t)

2
(37.23)

Corollary 37.1.

X2(t) = X(t)
2

+ σ2
X (37.24)
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The variance of a stochastic process is estimated from observed values apply-
ing (37.19)�(37.20) to (37.23), i.e. approximating the variance of the distribution
by the variance of the observed values.

� In the continuous case, for measurements from t = 0 to t = t�nal:

σ2
X =

1

t�nal

∫ t�nal

0

x2(t) dt−
(

1

t�nal

∫ t�nal

0

x(t) dt

)2

(37.25)

� In discrete time with sampling time Ts, for n+1 measurements from t = 0
to t = Tsn:

σ2
X =

1

n+ 1

n∑
k=0

X2
k −

(
1

n+ 1

n∑
k=0

Xk

)2

(37.26)

De�nition 37.8. The standard deviation σX is the square root of the vari-Standard deviation
ance:

σX =
√
σ2
X (37.27)

Example 37.4. The more samples of a process we have, the better our esti-
mation of its mean and variance is. Consider a uniform distribution X in [0, 1],
which has, applying (37.17) and (37.23),

fX(x) =

{
1, if 0 ≤ x ≤ 1

0, otherwise
(37.28)

E[X] =

∫ 1

0

xdx =
1

2
(37.29)

σ2
X =

∫ 1

0

x2 dx−
(

1

2

)2

=
1

3
− 1

4
=

1

12
(37.30)

In three instances of 10 samples of this stochastic process, the mean and theMatlab's commands
mean and var variance are

>> for k=1:4, X=rand(1,10); disp(['mean ' num2str(mean(X))...

', variance ' num2str(var(X))]), end

mean 0.62386, variance 0.11961

mean 0.66021, variance 0.10946

mean 0.58731, variance 0.086137

mean 0.39782, variance 0.13008

Means and variances do not stray much from the expected values, but are much
closer to them with 100 samples:

>> for k=1:4, X=rand(1,100); disp(['mean ' num2str(mean(X))...

', variance ' num2str(var(X))]), end

mean 0.49027, variance 0.080127

mean 0.46436, variance 0.071762

mean 0.49628, variance 0.084483

mean 0.49745, variance 0.078337

And even more with 1000:

>> for k=1:4, X=rand(1,1000); disp(['mean ' num2str(mean(X))...

', variance ' num2str(var(X))]), end

mean 0.50516, variance 0.081755

mean 0.48485, variance 0.082201

mean 0.49836, variance 0.082948

mean 0.4916, variance 0.083498

Remark 37.4. Notice how the estimates of the mean and the variance are
random variables themselves. That is why, in the previous example, several
instances of each were found for the same number of samples. If they are
updated in real time, their time-changing values will be stochastic processes
too.
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De�nition 37.9. The autocorrelation RX(t1, t2) of a stochastic process de-Autocorrelation
pends on two time instants t1 and t2 and is given by

RX(t1, t2) = E [X(t1)X(t2)] (37.31)

Autocorrelation has several important properties.

Lemma 37.1. Autocorrelation is an even function:

RX(t1, t2) = E [X(t1)X(t2)] = E [X(t2)X(t1)] = RX(t2, t1) (37.32)

Remark 37.5. For a stationary stochastic process,

RX(t1, t2) = RX(t1 + ∆t, t2 + ∆t), ∀t1, t2,∆t (37.33)

Since ∆t can take any value, we can make ∆t = −t1 and conclude that

RX(t1, t2) = RX(0, t2 − t1), ∀t1, t2 (37.34)

In other words, for a stationary process the autocorrelation only depends on the
time interval between two instants τ = t2 − t1:

RX(τ) = E [X(t)X(t+ τ)] (37.35)

The following result is a consequence of (37.35).

Theorem 37.2. Autocorrelation as a function of τ is an even function: RX(τ) = RX(−τ)

RX(τ) = E [X(t)X(t+ τ)] = E
[
X(t+ τ︸ ︷︷ ︸

t′

)X(t)
]

= E [X(t′)X(t′ − τ)] = RX(−τ)

(37.36)

Remark 37.6. (37.36) can also be seen as a consequence of (37.32) and (37.34):
since RX(t1, t2) in fact only depends on τ = t2 − t1, then

RX(τ) = RX(t2 − t1) = RX(t1, t2) = RX(t2, t1) = RX(t1 − t2) = RX(−τ)
(37.37)

Theorem 37.3. For τ = 0,

RX(0) = E [X(t)X(t)] = X2(t) = X(t)
2

+ σ2
X (37.38)

The last equality is taken from (37.24).

To estimate the autocorrelation, the expected value in (37.35) is estimated
using a mean, as in (37.19)�(37.20):

� In the continuous case, for measurements from t = 0 to t = t�nal:

RX(τ) =
1

t�nal − τ

∫ t�nal−τ

0

x(t)x(t+ τ) dt (37.39)

Notice that we cannot integrate from 0 to t�nal, as in (37.19) or (37.25),
because the second measurement would be out of range. Values of τ so
large that they are close to t�nal will lead to bad estimations of RX(τ),
because measurements will be few. In practice it is often a good idea to
make 0 ≤ τ ≤ 1

3 t�nal or 0 ≤ τ ≤ 1
2 t�nal. Because RX(τ) is an even function,

we will know its values for − 1
3 t�nal ≤ τ ≤

1
3 t�nal or −

1
2 t�nal ≤ τ ≤

1
2 t�nal.

� In discrete time with sampling time Ts, for n+1 measurements from t = 0
to t = Tsn:

RX(ν) =
1

n− ν + 1

n−ν∑
k=0

XkXk+ν (37.40)

Notice that in the discrete case it is usual to give the autocorrelation
depending on the number of samples ν between t1 and t2, rather than the
time τ = Tsν.
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Remark 37.7. If τ � t�nal, or ν � n, (37.39)-(37.40) can be approximated as Parzen (biased) estimator
of RX(τ)

RX(τ) =
1

t�nal

∫ t�nal−τ

0

x(t)x(t+ τ) dt (37.41)

RX(ν) =
1

n+ 1

n−ν∑
k=0

XkXk+ν (37.42)

These biased approximations with a constant denominator are the so-called
Parzen estimator of the autocorrelation.

Example 37.5. The autocorrelation can be numerically found from (37.40) as
follows:

Ts = 0.01; tfinal = 100;

t = 0 : Ts : tfinal;

x = exp(0.05*t);

N = length(t)-1; % there are N+1 points; the first is labelled 0

M = floor(N*.5); % number of points for which Rx is found

Rx = zeros(1,M);

for k = 0 : M-1

Rx(k+1) = sum( x(1:N-k+1).*x(1+k:N+1) ) / (N-k+1);

end

figure,subplot(2,1,1),plot(t,x),xlabel('t'),ylabel('x')

subplot(2,1,2),plot((0:M-1)*Ts,Rx),xlabel('t'),ylabel('R_x'),xlim([0,tfinal])

The result of the example above, for X(t) = e0.05t, is shown in Figure 37.4
together with that of X(t) = e−0.05t. Values are given only for τ ≥ 0, but
remember that the function is even. Notice how the largest value is that for
RX(0).

Figure 37.5 shows the result for two random signals. There are negative
values of RX(τ) now; no value has an absolute larger than RX(0).

Figure 37.6 shows the result for two periodic functions. In these cases RX(0)
has the largest absolute value, which recurs with the period of the function.

This example suggests the following result.

Theorem 37.4. The maximum absolute value of the autocorrelation is found
at τ = 0:

|RX(τ)| ≤ RX(0), ∀τ (37.43)

Proof. Since (X(t+ τ)±X(t))
2 ≥ 0, its expected value is also non-negative:

E
[
(X(t+ τ)±X(t))

2
]
≥ 0

⇒E
[
(X(t+ τ))

2 ± 2X(t)X(t+ τ) + (X(t))
2
]
≥ 0

⇒E
[
(X(t+ τ))

2
]
± E [2X(t)X(t+ τ)] + E

[
(X(t))

2
]
≥ 0

⇒E
[
(X(t+ τ))

2
]

︸ ︷︷ ︸
RX(0)

±E [2X(t)X(t+ τ)]︸ ︷︷ ︸
2RX(τ)

+E
[
(X(t))

2
]

︸ ︷︷ ︸
RX(0)

≥ 0

⇒2RX(0)± 2RX(τ) ≥ 0 (37.44)

where the last result was obtained applying (37.38). From these two inequalities,{
RX(0) +RX(τ) ≥ 0

RX(0)−RX(τ) ≥ 0
⇒

{
RX(τ) ≥ −RX(0)

RX(0) ≥ RX(τ)
⇒ −RX(0) ≤ RX(τ) ≤ RX(0)

(37.45)

This range can actually be narrowed down further, as seen below in (37.55).
Meanwhile, it is possible to better understand why (37.43) is true with the
following reasoning:

� RX(τ) is the expected value of the product X(t)X(t+ τ).
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Figure 37.4: Top: autocorrelation of e0.05t. Bottom: autocorrelation of e−0.05t.
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Figure 37.5: Top: autocorrelation of uniformly distributed values in [0, 1]. Bot-
tom: autocorrelation of standard normally distributed values.
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Figure 37.6: Top: autocorrelation of sin(t). Bottom: autocorrelation of a square
wave with frequency 0.5 rad/s.
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Figure 37.7: Nothing is more similar to a signal than itself. The �gures show
how the product X(t)X(t + τ), used to calculate the autocorrelation RX(τ) =
E [X(t)X(t+ τ)], is found.

Figure 37.8: Left: how RX(0) recurs in the autocorrelation when τ is a multi-
ple of the period. Centre: how −RX(0) recurs in the autocorrelation when a
periodic signal is symmetrical. Right: periodic signal with zero mean for which
it is impossible that RX(τ) = −RX(0).

� When τ = 0, then X(t) is multipled by X(t) itself. The result is positive
everywhere. Furthermore, wherever |X| is large, it is multiplied by a large
value, which is itself.

� When τ 6= 0, then X(t)X(t + τ) may be negative for some values of τ .Nothing is more similar to
a signal than itself Even where this is not so, large values of |X| will be multiplied by smaller

values. Thus, |RX(τ)| < RX(0). This is illustrated in Figure 37.7.

� The only exception of the above occurs when the signal is periodic andAutocorrelation of periodic
signals τ is such that local maxima and minima are again aligned. In that case,

RX(0) is obtained again. This is illustrated in Figure 37.8.

� If the periodic signal is symmetric around zero, a time shift of half period
will, so to say, turn the signal upside down. This happens for instance for
X(t) = sin(t), since

sin(t+ (2k + 1)π) = − sin(t), k ∈ Z (37.46)

In cases such as this, −RX(0) recurs whenever X(t) and X(t + τ) are in
phase opposition.

The reasoning above also justi�es the following results.

Theorem 37.5. If X(t) is not periodic,

|RX(τ)| < RX(0), ∀τ 6= 0 (37.47)

If X(t) is periodic with period T , then RX(τ) = RX(0) if and only if τ is a
multiple of T , i.e. τ = kT, k ∈ Z.

If X(t) is not only periodic but also symmetric, then RX(τ) = −RX(0) if
and only if τ is a multiple of T plus half period, i.e. τ =

(
k + 1

2

)
T, k ∈ Z.

Proof. If X(t) is periodic,

X(t+ kT ) = X(t), k ∈ Z
⇒ X(t)X(t+ kT ) = X2(t)

⇒ RX(kT )︸ ︷︷ ︸
E[X(t)X(t+kT )]

= RX(0)︸ ︷︷ ︸
E[X(t)X(t)]

(37.48)
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If X(t) is symmetric,

X

(
t+

(
k +

1

2

)
T

)
= −X(t), k ∈ Z

⇒ X(t)X

(
t+

(
k +

1

2

)
T

)
= −X2(t)

⇒ RX

((
k +

1

2

)
T

)
︸ ︷︷ ︸
E[X(t)X(t+(k+ 1

2 )T)]

= −RX(0)︸ ︷︷ ︸
−E[X2(t)]

(37.49)

As to the necessity of the conditions, suppose that RX(τ) = RX(0) for some
value of τ . This means that X(t)X(t + τ) = X2(t) ⇒ X(t + τ) = X(t), and,
since this must be true for all values of t, we conclude that τ is a period of X(t).
The reasoning for the cases when RX(τ) = −RX(0) is similar.

De�nition 37.10. The autocovariance CX(t1, t2) of a stochastic process is Autocovariance
de�ned similarly to the autocorrelation, but using deviations from the mean:

CX(t1, t2) = E
[

(X(t1)− E[X]) (X(t2)− E[X])
]

(37.50)

Remark 37.8. In this de�nition it is assumed that X is ergodic, and hence
stationary; and thus E[X] is constant. This means that CX will, just like RX ,
depend only on τ = t2 − t1:

CX(τ) = E
[

(X(t)− E[X]) (X(t+ τ)− E[X])
]

(37.51)

Remark 37.9. The autocovariance CX(t1, t2) of X(t) is the autocorrelation
of X(t) − E[X], which has zero mean. This is another way to show that it
only depends on τ if X(t) is ergodic. It also shows immediately that CX(τ) =
CX(−τ).

Furthermore, the code from Example 37.5 can be used to �nd the autoco-
variance, provided that the mean is subtracted from the signal.

Relation between autocor-
relation and covarianceLemma 37.2.

CX(τ) = E
[

(X(t)− E[X]) (X(t+ τ)− E[X])
]

= E
[
X(t)X(t+ τ)−X(t)E[X]−X(t+ τ)E[X] + E[X]2

]
= E [X(t)X(t+ τ)]− E [X(t)E[X]]− E [X(t+ τ)E[X]] + E

[
E[X]2

]
= E [X(t)X(t+ τ)]︸ ︷︷ ︸

RX(τ)

−E[X]

E[X]︷ ︸︸ ︷
E [X(t)]︸ ︷︷ ︸
E[X]2

−E[X]

E[X]︷ ︸︸ ︷
E [X(t+ τ)]︸ ︷︷ ︸
E[X]2

+E[X]2

= RX(τ)− E[X]2 (37.52)

Corollary 37.2. If X = 0 then RX(τ) = CX(τ).

Corollary 37.3. From (37.52), (37.38) and (37.24),

CX(0) = RX(0)− E[X]2

= E[X2]− E[X]2

= E[X]2 + σ2
X − E[X]2 = σ2

X (37.53)

Corollary 37.4. Since CX(τ) is the autocorrelation of X(t) − X, it veri�es
(37.43), and thus, from (37.53),

|CX(τ)| ≤ CX(0) = σ2
X , ∀τ (37.54)

Theorem 37.6. The autocorrelation is limited by Autocorrelation is bounded

X
2 − σ2

X ≤ RX(τ) ≤ X2
+ σ2

X = X2 = RX(0), ∀τ (37.55)
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Proof. From (37.52) we know that

RX(τ) = CX(τ) + E[X]2 (37.56)

So, from (37.54),

−σ2
X ≤CX(τ) ≤ σ2

X

⇒ −σ2
X +X

2 ≤CX(τ) +X
2︸ ︷︷ ︸

RX(τ)

≤ σ2
X +X

2
(37.57)

Concerning the upper limit, see (37.24) and (37.38).

Remark 37.10. This shows that if X(t) has a mean value then RX(τ) also hasMean value of RX(τ)

a mean value. This mean value is in fact X
2
. This is clear from (37.55) for a

constant signal (which has σ2
X = 0).

The limits in (37.55) show that autocorrelation can be normalised.Autocorrelation coe�cient

De�nition 37.11. The autocorrelation coe�cient ρX(τ), that veri�es−1 ≤
ρX(τ) ≤ 1, is given by

ρX(τ) =
RX(τ)−X2

σ2
X

=
CX(τ)

σ2
X

(37.58)

Remark 37.11. Some authors call autocorrelation to the autocorrelation co-
e�cient.

Consider a signal in discrete time given byAutocorrelation and auto-
covariance matrices

X =
[
X0 X1 X2 · · ·Xn

]T
=
[
X(0) X(Ts) X(2Ts) · · ·X(nTs)

]T
(37.59)

We can arrange in matrices the values of its autocorrelation

RX =


RX(0) RX(1) RX(2) · · · RX(n)
RX(−1) RX(0) RX(1) · · · RX(n− 1)
RX(−2) RX(−1) RX(0) · · · RX(n− 2)

...
...

...
. . .

...
RX(−n) RX(−n+ 1) RX(−n+ 2) · · · RX(0)



= E


X0X0 X0X1 X0X2 · · · X0Xn

X1X0 X1X1 X1X2 · · · X1Xn

X2X0 X2X1 X2X2 · · · X2Xn

...
...

...
. . .

...
XnX0 XnX1 XnX2 · · · XnXn



= E


X(0)X(0) X(0)X(Ts) X(0)X(2Ts) · · · X(0)X(nTs)
X(Ts)X(0) X(Ts)X(Ts) X(Ts)X(2Ts) · · · X(Ts)X(nTs)
X(2Ts)X(0) X(2Ts)X(Ts) X(2Ts)X(2Ts) · · · X(2Ts)X(nTs)

...
...

...
. . .

...
X(nTs)X(0) X(nTs)X(Ts) X(nTs)X(2Ts) · · · X(nTs)X(nTs)


= E

[
XXT

]
(37.60)
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and the values of its autocovariance

CX =


CX(0) CX(1) CX(2) · · · CX(n)
CX(−1) CX(0) CX(1) · · · CX(n− 1)
CX(−2) CX(−1) CX(0) · · · CX(n− 2)

...
...

...
. . .

...
CX(−n) CX(−n+ 1) CX(−n+ 2) · · · CX(0)



= σ2
X


ρX(0) ρX(1) ρX(2) · · · ρX(n)
ρX(−1) ρX(0) ρX(1) · · · ρX(n− 1)
ρX(−2) ρX(−1) ρX(0) · · · ρX(n− 2)

...
...

...
. . .

...
ρX(−n) ρX(−n+ 1) ρX(−n+ 2) · · · ρX(0)



= E


X0X0 X0X1 X0X2 · · · X0Xn

X1X0 X1X1 X1X2 · · · X1Xn

X2X0 X2X1 X2X2 · · · X2Xn

...
...

...
. . .

...
XnX0 XnX1 XnX2 · · · XnXn



= E


(X(0)−X)(X(0)−X) (X(0)−X)(X(Ts)−X) (X(0)−X)(X(2Ts)−X) · · · (X(0)−X)(X(nTs)−X)
(X(Ts)−X)(X(0)−X) (X(Ts)−X)(X(Ts)−X) (X(Ts)−X)(X(2Ts)−X) · · · (X(Ts)−X)(X(nTs)−X)
(X(2Ts)−X)(X(0)−X) (X(2Ts)−X)(X(Ts)−X) (X(2Ts)−X)(X(2Ts)−X) · · · (X(2Ts)−X)(X(nTs)−X)

...
...

...
. . .

...
(X(nTs)−X)(X(0)−X) (X(nTs)−X)(X(Ts)−X) (X(nTs)−X)(X(2Ts)−X) · · · (X(nTs)−X)(X(nTs)−X)


= E

[(
X−X

) (
X−X

)T ]
(37.61)

Since RX(τ) = RX(−τ) and CX(τ) = CX(−τ), matrices RX and CX are RX = RT
X

CX = CT
X

symmetric. The farther from the main diagonal, the poorer the estimations will
be, as already mentioned about RX(τ).

37.3 Relations between stochastic processes

Since we are studying systems, we often have to study two stochastic processes
simultaneously: an input and an output. In this situation, their joint proba- Joint probability distribu-

tionbility distribution is needed.

De�nition 37.12. The joint probability distribution function (joint PDF) Joint PDF
fXY (x, y), of two variables that assume values in a continuous set is de�ned so
that

fX,Y (x, y) ≥ 0, ∀x, y (37.62)

P
(
x1 ≤ X(t) ≤ x2 ∧ y1 ≤ Y (t) ≤ y2

)
= P

(
x1 ≤ X(t) ≤ x2 | y1 ≤ Y (t) ≤ y2

)
P
(
y1 ≤ Y (t) ≤ y2

)
= P

(
y1 ≤ Y (t) ≤ y2 | x1 ≤ X(t) ≤ x2

)
P
(
x1 ≤ X(t) ≤ x2

)
=

∫ y2

y1

∫ x2

x1

fXY (x, y) dx dy, x1 < x2, y1 < y2

(37.63)∫ +∞

−∞

∫ +∞

−∞
fXY (x, y) dxdy = 1 (37.64)

De�nition 37.13. The joint probability mass function (joint PMF) fXY (x, y),Joint PMF
of two variables that assume values in a discrete set is de�ned so that

fXY (x, y) = P
(
X(t) = x ∧ Y (t) = y

)
= P

(
X(t) = x | Y (t) = y

)
P (Y (t) = y)

= P
(
Y (t) = y | X(t) = x

)
P (X(t) = x) (37.65)

0 ≤ fXY (x, y) ≤ 1, ∀x, y (37.66)∑
x

∑
y

fXY (x, y) = 1 (37.67)
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De�nition 37.14. The joint cumulative distribution function (joint CDF) Joint CDF
of two probability distributions is a function FXY (x, y) such that

FXY (x, y) = P (X(t) ≤ x ∧ Y (t) ≤ y)

= P (X(t) ≤ x | Y (t) ≤ y)P (Y (t) ≤ y)

= P (Y (t) ≤ y | X(t) ≤ x)P (X(t) ≤ x) (37.68)

The joint CDF of a joint PDF is given by

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (x, y) dxdy (37.69)

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
(37.70)

and the joing CDF of a joint PMF is given by

FX,Y (x, y) =

Ny∑
m=1

Ny∑
k=1

fX,Y (xk, ym), (37.71)

x1, x2, . . . , xk ≤ x < xk+1, xk+2, . . . , xNx

y1, y2, . . . , xm ≤ y < ym+1, ym+2, . . . , yNy

Just as we did when we had only one stochastic process, each of the following
statistical properties will be

� de�ned for two stochastic processes;

� numerically approximated from the de�nition to be estimated from two
signals that measure particular instances of the stochastic processes. Again,
these expressions can be applied to any signals, not just in the presence
of stochastic processes.

De�nition 37.15. The cross-correlation, or simply correlation, RXY (t1, t2)Correlation
of two stochastic processes depends on two time instants t1 and t2 and is given
by

RXY (t1, t2) = E [X(t1)Y (t2)] (37.72)

Remark 37.12. The autocorrelation RX(t1, t2) is the correlation of a signal
with itself RXX(t1, t2).

Remark 37.13. For stationary stochastic processes,

RXY (t1, t2) = RXY (t1 + ∆t, t2 + ∆t), ∀t1, t2,∆t (37.73)

Since ∆t can take any value, we can make ∆t = −t1 and conclude that

RXY (t1, t2) = RXY (0, t2 − t1), ∀t1, t2 (37.74)

In other words, for stationary processes the correlation only depends on the
time interval between two instants τ = t2 − t1:

RXY (τ) = E [X(t)Y (t+ τ)] , ∀t (37.75)

While this is similar to what happens with the autocorrelation, the corre-
lation, unlike the autocorrelation, is not an even function in the general case.
Figure 37.9 illustrates why.

Additionally, the order of the signals X(t) and Y (t) matters.RXY (τ) = RY X(−τ)

Theorem 37.7.

RXY (τ) = E [X(t)Y (t+ τ)] = E
[
Y (t+ τ︸ ︷︷ ︸

t′

)X(t)
]

=

= E [Y (t′)X(t′ − τ)] = RY X(−τ) (37.76)

Theorem 37.8.

−
√
RX(0)RY (0) ≤ RXY (τ) ≤

√
RX(0)RY (0), ∀τ (37.77)
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Figure 37.9: Top: in autocorrelation, a signal is correlated with itself, so it does
not matter which of the two is shifted in time. Bottom: in the correlation of
two di�erent signals, the product depends on which signal is being shifted in
time.

Proof. The proof di�ers from that of (37.43): a similar reasoning would lead
to more conservative boundaries for RXY (τ). This time it has to be argued
that the expected value E[x] is a norm, and consequently, the Cauchy-Schwartz
inequality, which in the general case states that a norm veri�es

|〈u,v〉|2 ≤ 〈u,u〉 〈v,v〉 (37.78)

gives, for the expected value,∣∣∣E[ab]
∣∣∣2 ≤ E [a2

]
E
[
b2
]

(37.79)

Consequently,∣∣∣E [X(t)Y (t+ τ)]
∣∣∣2 ≤ E [(X(t))

2
]
E
[
(Y (t+ τ))

2
]

= E [X(t)X(t)]︸ ︷︷ ︸
RX(t−t)=RX(0)

E [Y (t+ τ)Y (t+ τ)]︸ ︷︷ ︸
RY (t+τ−(t+τ))=RY (0)

(37.80)

and the result follows immediately.

Once more, narrower limits can be found, given below in (37.93).

Remark 37.14. Notice that, while (37.43) shows that RX(τ) has its maximum
value at τ = 0, (37.77) shows no such thing for RXY (τ). Its maximum value
can be anywhere.

Example 37.6. Let X(t) = sin(2πt) and Y (t) = cos(2πt), and remember that
nothing is more similar to a signal than itselft. Obviously, RXY (τ) will have a
maximum when the two sinusoids are in phase, i.e. for τ = 3

4 + 2kπ, k ∈ Z.
When τ = 0, the sinusoids are not in phase, and there is no maximum. See
Figure 37.10.

Estimating a correlation is similar to estimating an autocorrelation, but care
must be taken since RXY (τ) is not even. The same comments apply on how τ
cannot get close to t�nal, or ν close to n:

� In the continuous case, for measurements from t = 0 to t = t�nal:

RXY (τ) =
1

t�nal − τ

∫ t�nal−τ

0

x(t)y(t+ τ) dt, τ ≥ 0 (37.81)

RXY (τ) =
1

t�nal − τ

∫ t�nal

−τ
x(t)y(t+ τ) dt, τ ≤ 0 (37.82)
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Figure 37.10: Correlation of X(t) = sin(2πt) and Y (t) = cos(2πt). When τ = 3
4 ,

signals X(t) and Y (t+ 3
4 ) are in phase, and their correlation has a maximum.

Figure 37.11: Correlation of two independent random signals with normal dis-
tribution.

� In discrete time with sampling time Ts, for n+1 measurements from t = 0
to t = Tsn:

RXY (ν) =
1

n− ν + 1

n−ν∑
k=0

XkYk+ν ν ≥ 0 (37.83)

RXY (ν) =
1

n− ν + 1

n∑
k=−ν

XkYk+ν ν ≤ 0 (37.84)

� If τ � t�nal, or ν � n, (37.81)-(37.84) can be approximated with biased
estimations as in (37.41)�(37.42).

� Adapting the Matlab code from Example 37.5 for the correlation of two
signals is obvious.

� The correlation can also be found in Matlab using function xcorr (theMatlab function xcorr

x stands for cross), using option 'unbiased', as in the next example.
Option 'biased' returns the biased a estimation as in (37.41)�(37.42).
Of course, this function can also be used for the autocorrelation, if given
the same signal twice.

Example 37.7. The correlation of two independent random signals with normal
distribution can be found as

figure,plot(xcorr(randn(1,1000),randn(1,1000),'unbiased'))

and is shown in Figure 37.11. There are 1000 points in each signal; xcorr

returns 1999 points and τ = 0 is found halfway through, in the 1000th point.
The result should be zero everywhere, and is in fact close to zero save for large
values of |τ |. That is because very few points are left to calculate the correlation;
never forget that results can only be trusted when |τ | � t�nal.

De�nition 37.16. The covariance CXY (t1, t2) of two stochastic processes isCovariance
the correlation of their deviations from the mean:

CXY (t1, t2) = E
[

(X(t1)− E[X]) (Y (t2)− E[Y ])
]

(37.85)
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Remark 37.15. Since the covariance is a correlation, then

� for stationary processes it depends only on the time delay τ :

CXY (τ) = E
[

(X(t)− E[X]) (Y (t+ τ)− E[Y ])
]

(37.86)

� it is not in general even, but

CXY (τ) = CY X(−τ) (37.87)

� it is estimated numerically in the same way.
Relation between correla-
tion and covarianceLemma 37.3.

CXY (τ) = E
[

(X(t)− E[X]) (Y (t+ τ)− E[Y ])
]

= E [X(t)Y (t+ τ)−X(t)E[Y ]− E[X]Y (t+ τ) + E[X]E[Y ]]

= E [X(t)Y (t+ τ)]− E [X(t)E[Y ]]− E [E[X]Y (t+ τ)] + E [E[X]E[Y ]]

= E [X(t)Y (t+ τ)]︸ ︷︷ ︸
RXY (τ)

−E[X]E[Y ]− E[X]E[Y ] + E[X]E[Y ]

= RXY (τ)− E[X]E[Y ] (37.88)

Corollary 37.5. If either X = 0 or Y = 0, then CXY (τ) = RXY (τ).
Covariance is bounded

Theorem 37.9.

−σXσY ≤ CXY (τ) ≤ σXσY , ∀τ (37.89)

Proof. Again, the covariance is a correlation:

CXY (τ) = E
[

(X(t)− E[X]) (Y (t+ τ)− E[Y ])
]

= R(X−X)(Y−Y )(τ) (37.90)

Thus, it veri�es (37.77):

−
√
RX−X(0)RY−Y (0) ≤ R(X−X)(Y−Y )(τ)︸ ︷︷ ︸

CXY (τ)

≤
√
RX−X(0)RY−Y (0) (37.91)

(37.38) shows that RX−X(0) = σ2
X , so

−
√
σ2
Xσ

2
Y ≤ CXY (τ) ≤

√
σ2
Xσ

2
Y (37.92)

and the result follows immediately.

Corollary 37.6. From (37.88) and (37.89), Correlation is bounded

E[X]E[Y ]− σXσY ≤ CXY (τ) + E[X]E[Y ]︸ ︷︷ ︸
RXY (τ)

≤ E[X]E[Y ] + σXσY (37.93)

Correlation (and covariance) can be normalised just like the autocorrelation Correlation coe�cient
(and the autocovariance).

De�nition 37.17. The correlation coe�cient ρXY (τ), that veri�es −1 ≤
ρXY (τ) ≤ 1, is given by

ρXY (τ) =
RXY (τ)−X Y

σXσY
=
CXY (τ)

σXσY
(37.94)

Remark 37.16. A scalar ρXY is sometimes given as correlation coe�cient.
This is understood to be ρXY (0).

The correlation coe�cient is returned by Matlab function xcorr using op-
tion 'coeff'.

Matrices with the values of the correlation Correlation and covari-
ance matrices
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RXY =


RXY (0) RXY (1) RXY (2) · · · RXY (n)
RXY (−1) RXY (0) RXY (1) · · · RXY (n− 1)
RXY (−2) RXY (−1) RXY (0) · · · RXY (n− 2)

...
...

...
. . .

...
RXY (−n) RXY (−n+ 1) RXY (−n+ 2) · · · RXY (0)



= E


X0Y0 X0Y1 X0Y2 · · · X0Yn
X1Y0 X1Y1 X1Y2 · · · X1Yn
X2Y0 X2Y1 X2Y2 · · · X2Yn
...

...
...

. . .
...

XnY0 XnY1 XnY2 · · · XnYn



= E


X(0)Y (0) X(0)Y (Ts) X(0)Y (2Ts) · · · X(0)Y (nTs)
X(Ts)Y (0) X(Ts)Y (Ts) X(Ts)Y (2Ts) · · · X(Ts)Y (nTs)
X(2Ts)Y (0) X(2Ts)Y (Ts) X(2Ts)Y (2Ts) · · · X(2Ts)Y (nTs)

...
...

...
. . .

...
X(nTs)Y (0) X(nTs)Y (Ts) X(nTs)Y (2Ts) · · · X(nTs)Y (nTs)


= E

[
XYT

]
(37.95)

and the covariance

CXY =


CXY (0) CXY (1) CXY (2) · · · CXY (n)
CXY (−1) CXY (0) CXY (1) · · · CXY (n− 1)
CXY (−2) CXY (−1) CXY (0) · · · CXY (n− 2)

...
...

...
. . .

...
CXY (−n) CXY (−n+ 1) CXY (−n+ 2) · · · CXY (0)



= σXσY


ρXY (0) ρXY (1) ρXY (2) · · · ρXY (n)
ρXY (−1) ρXY (0) ρXY (1) · · · ρXY (n− 1)
ρXY (−2) ρXY (−1) ρXY (0) · · · ρXY (n− 2)

...
...

...
. . .

...
ρXY (−n) ρXY (−n+ 1) ρXY (−n+ 2) · · · ρXY (0)


︸ ︷︷ ︸

ρXY

= E


(X0 −X)(Y0 − Y ) (X0 −X)(Y1 − Y ) (X0 −X)(Y2 − Y ) · · · (X0 −X)(Yn − Y )
(X1 −X)(Y0 − Y ) (X1 −X)(Y1 − Y ) (X1 −X)(Y2 − Y ) · · · (X1 −X)(Yn − Y )
(X2 −X)(Y0 − Y ) (X2 −X)(Y1 − Y ) (X2 −X)(Y2 − Y ) · · · (X2 −X)(Yn − Y )

...
...

...
. . .

...
(Xn −X)(Y0 − Y ) (Xn −X)(Y1 − Y ) (Xn −X)(Y2 − Y ) · · · (Xn −X)(Yn − Y )



= E


(X(0)−X)(Y (0)− Y ) (X(0)−X)(Y (Ts)− Y ) (X(0)−X)(Y (2Ts)− Y ) · · · (X(0)−X)(Y (nTs)− Y )
(X(Ts)−X)(Y (0)− Y ) (X(Ts)−X)(Y (Ts)− Y ) (X(Ts)−X)(Y (2Ts)− Y ) · · · (X(Ts)−X)(Y (nTs)− Y )
(X(2Ts)−X)(Y (0)− Y ) (X(2Ts)−X)(Y (Ts)− Y ) (X(2Ts)−X)(Y (2Ts)− Y ) · · · (X(2Ts)−X)(Y (nTs)− Y )

...
...

...
. . .

...
(X(nTs)−X)(Y (0)− Y ) (X(nTs)−X)(Y (Ts)− Y ) (X(nTs)−X)(Y (2Ts)− Y ) · · · (X(nTs)−X)(Y (nTs)− Y )


= E

[(
X−X

) (
Y −Y

)T ]
(37.96)

can be found as in the case of RX and CX . But, unlike them, matrices RXY

and CXY are not symmetric. The matrix denoted by ρXY in (37.96) is theCorrelation coe�cient ma-
trix correlation coe�cient matrix.

37.4 Operations with stochastic processes

Theorem 37.10. Let X(t) and Y (t) be stochastic processes with correlation
coe�cient ρXY = ρXY (0). Then

E [X(t) + Y (t)] = E [X(t)] + E [Y (t)] (37.97)

σ2
X+Y = σ2

X + σ2
Y + 2ρXY σXσY (37.98)

E [X(t)− Y (t)] = E [X(t)]− E [Y (t)] (37.99)

σ2
X−Y = σ2

X + σ2
Y − 2ρXY σXσY (37.100)

E [X(t)Y (t)] = E [X(t)]E [Y (t)] + ρXY σXσY (37.101)
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Proof. (37.97) and (37.99) have already been used and can be proved from the
fact that the limit of the mean is the expected value, as stated in (37.21).
Assuming continuous time,

E[X(t)± Y (t)] = lim
t�nal→+∞

1

t�nal

∫ t�nal

0

x(t)± y(t) dt

= lim
t�nal→+∞

1

t�nal

∫ t�nal

0

x(t) dt± lim
t�nal→+∞

1

t�nal

∫ t�nal

0

y(t) dt = E[X(t)]± E[Y (t)]

(37.102)

The discrete time case is similar.
(37.101) is an obvious consequence of de�nition (37.94) when τ = 0:

ρXY =

RXY (0)︷ ︸︸ ︷
E[X(t)Y (t)]−X Y

σXσY
(37.103)

(37.98) and (37.100) are obtained from

E
[
(X(t)± Y (t))2

]
= E

[
(X(t))2 ± 2X(t)Y (t) + (Y (t))2

]
= E

[
(X(t))2

]︸ ︷︷ ︸
E[X(t)]2+σ2

X

±2 E [X(t)Y (t)]︸ ︷︷ ︸
E[X(t)]E[Y (t)]+ρXY σXσY

+E
[
(Y (t))2

]︸ ︷︷ ︸
E[Y (t)]2+σ2

Y

(37.104)

where we made use of (37.24) and (37.101). Thus

E
[
(X(t)± Y (t))2

]
= E[X(t)]2 + σ2

X ± 2E[X(t)]E[Y (t)]± 2ρXY σXσY + E[Y (t)]2 + σ2
Y

= σ2
X + σ2

Y ± 2ρXY σXσY +
(
E[X(t)]± E[Y (t)]

)2

︸ ︷︷ ︸(
E[X(t)±Y (t)]

)2

(37.105)

Applying (37.24) once more,

E
[
(X(t)± Y (t))2

]
=
(
E[X(t)± Y (t)]

)2

+ σ2
X + σ2

Y ± 2ρXY σXσY︸ ︷︷ ︸
σ2
X±Y

(37.106)

Example 37.8. The following commands show what happens for two uncorre-
lated signals with normal distribution:

>> X = randn(1,10000);

>> Y = randn(1,10000);

>> rho = xcorr(X,Y,0,'coeff')

rho =

0.0068

>> % this is the correlation coefficient for tau=0; it should be zero

>> meanX = mean(X), meanY = mean(Y) % these should be zero

meanX =

-0.0078

meanY =

0.0139

>> varX = var(X), varY = var(Y) % these should be one

varX =

1.0198

varY =

1.0156

>> S = X+Y;

>> mean(S), meanX+meanY % these should be the same

ans =

0.0061

ans =

0.0061
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>> var(S), varX+varY+2*rho*sqrt(varX*varY) % these should be the same

ans =

2.0495

ans =

2.0493

>> D = X-Y;

>> mean(D), meanX-meanY % these should be the same

ans =

-0.0216

ans =

-0.0216

>> var(D), varX+varY-2*rho*sqrt(varX*varY) % these should be the same

ans =

2.0212

ans =

2.0214

>> P = X.*Y;

>> mean(P), meanX*meanY+rho*sqrt(varX*varY) % these should be the same

ans =

0.0070

ans =

0.0069

Example 37.9. Variables X and S of the previous example are correlated,
since S was obtained from X.

>> rhoXS = xcorr(X,S,0,'coeff')

rhoXS =

0.7102

>> meanS = mean(S); varS = var(S);

>> S2 = X+S;

>> mean(S2), mean(X)+mean(S) % these should be the same

ans =

-0.0016

ans =

-0.0016

>> var(S2), varX+varS+2*rhoXS*sqrt(varX*varS) % these should be the same

ans =

5.1231

ans =

5.1229

Glossary

E o senhor extraterrestre
viu-se um pouco atrapalhado.
Quis falar mas disse �pi�,
estava mal sintonizado.

Carlos Paião (1957 � �1988), O Senhor Extraterrestre (1982)

autocorrelation autocorrelação
autocorrelation coe�cient coe�ciente de autocorrelação
autocovariance autocovariância
bias viés
biased enviesado
Brownian motion movimento Browniano
correlation correlação
correlation coe�cient coe�cient correlação
covariance covariância
cross correlation correlação cruzada
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cumulative distribution function função de distribuição acumulada
ergodicity ergodicidade
ergodic process processo ergódico
expected value valor esperado
joint probability distribution distribuição conjunta de probabilidades
mean média
probability distribution distribuição de probabilidades
probability distribution function função densidade de probabilidade
probability mass function função de probabilidade
pseudo-random number generator gerador de números pseudo-aleatórios
quasi-stationarity quase-estacionaridade
random walk passeio aleatório
standard deviation desvio padrão
stationarity estacionaridade
stochasticity estocasticidade
stochastic process processo estocástico
variance variância

Exercises

1. Question.
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Chapter 38

Spectral density

But what was peculiar about it was its colour. It was an entirely
new colour�not a new shade or combination, but a new primary
colour, as vivid as blue, red, or yellow, but quite di�erent. When
he inquired, she told him that it was known as ul�re. Presently he
met with a second new colour. This she designated jale. The sense-
impressions caused in Maskull by these two additional primary colors
can only be vaguely hinted at by analogy. Just as blue is delicate
and mysterious, yellow clear and unsubtle, and red sanguine and
passionate, so he felt ul�re to be wild and painful, and jale dreamlike,
feverish, and voluptuous.

David Lindsay (1876 � �1945), A voyage to Arcturus (1920), 6

In the last chapter, stochastic processes and systems were characterised using
di�erent statistical properties. These were often functions of time. Among
them were the autocorrelation and the crosscorrelation; assuming ergodicity,
they depended on a time di�erence.

The bilateral Fourier transforms of the autocorrelation and the crosscorre-
lation, which of course depend on frequency, turn out to be very important
functions. To see why, �rst we must study the Fourier transform better.

38.1 The bilateral Fourier transform

De�nition 38.1. The bilateral Fourier transform is the Fourier transform, as
in (2.87), corresponding to the bilateral Laplace transform (2.2); that is to say,

F [f(t)] =

∫ +∞

−∞
f(t)e−jωt dt (38.1)

We will need an explicit expression for the inverse Fourier transform, which
we already met in Example 2.25. To �nd it, we �rst need a result about function
δ(t), which we met in Remark 10.2.

Integral form of δ(t)
Lemma 38.1. ∫ +∞

−∞
ejωt dω = 2πδ(t) (38.2)

Proof.

∫ +∞

−∞
ejωt dω =

∫ 0
+∞ e−jΩt d(−Ω)︷ ︸︸ ︷∫ 0

−∞
ejωt dω +

∫ +∞

0

ejωt dω

=

∫ +∞

0

e−jωt dω +

∫ +∞

0

ejωt dω (38.3)

These integrals have integrands which are limited but do not vanish at in�nity,
since∫ +∞

0

e−jωt dω +

∫ +∞

0

ejωt dω =

∫ +∞

0

(
cos(−ωt) + j sin(−ωt)

)
dω +

∫ +∞

0

(cosωt+ j sinωt) dω

(38.4)

555
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It is possible to limit them with a subterfuge:

∫ +∞

−∞
ejωt dω = lim

ε→0+

(∫ +∞

0

e−jωt︸ ︷︷ ︸
limited

vanishes at +∞︷︸︸︷
e−ωε dω +

∫ +∞

0

ejωt︸︷︷︸
limited

vanishes at +∞︷︸︸︷
e−ωε dω

)

= lim
ε→0+

(∫ +∞

0

e−jωte−jω(−jε) dω +

∫ +∞

0

ejωtejω(jε) dω

)

= lim
ε→0+

∫ +∞

0

e−j(t−jε)ω︸ ︷︷ ︸
vanishes at +∞

dω +

∫ +∞

0

ej(t+jε)ω︸ ︷︷ ︸
vanishes at +∞

dω


= lim
ε→0+

([
1

−j(t− jε)
e−j(t−jε)ω

]+∞

ω=0

+

[
1

j(t+ jε)
ej(t+jε)ω

]+∞

ω=0

)

= lim
ε→0+

(
j

t− jε
(
0− e0

)︸ ︷︷ ︸
−1

+
−j
t+ jε

(
0− e0

)︸ ︷︷ ︸
−1

)

= lim
ε→0+

(
j

t+ jε
− j

t− jε

)
= lim
ε→0+

jt+ ε− jt+ ε

t2 + ε2
= lim
ε→0+

2ε

t2 + ε2

(38.5)

Consequently,

� if t 6= 0, ∫ +∞

−∞
ejωt dω = lim

ε→0+

2ε

t2 + ε2
= 0 (38.6)

� if t = 0, ∫ +∞

−∞
ejωt dω = lim

ε→0+

2ε

ε2
= lim
ε→0+

2

ε
= +∞ (38.7)

This is the same as (10.15)�(10.16), so all that is left is to see if a relation similar
to (10.17)�(10.18) holds. Thus we calculate∫ +∞

−∞

2ε

t2 + ε2
dt = 2

∫ +∞

−∞

1(
t
ε

)2
+ 1

dt

ε
(38.8)

Using variable change

τ =
t

ε
(38.9)

t = −∞⇒ τ = −∞ (38.10)

t = +∞⇒ τ = +∞ (38.11)

dτ =
dt

ε
(38.12)

we obtain∫ +∞

−∞

2ε

t2 + ε2
dt = 2

∫ +∞

−∞

1

τ2 + 1
dτ = 2 [arctan τ ]

+∞
τ=−∞ = 2

(π
2
−
(
−π

2

))
= 2π

(38.13)

Since this integral is 2π larger than (10.17), the result follows.

We can now �nd an explicit expression for F−1 [F (s)].

Theorem 38.1. Let f(t) be a function with bilateral Fourier transform F [f(t)] =Inverse Fourier transform
F (s). Then

f(t) =
1

2π

∫ +∞

−∞
F (jω)ejωt dω (38.14)
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Proof. This can be shown replacing the de�nition of the bilateral Fourier trans-
form (38.1) in (38.14), and applying (38.2) when needed:

f(t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
f(τ)e−jωτ dτ ejωt dω

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
f(τ)ejω(t−τ) dω dτ

=
1

2π

∫ +∞

−∞
f(τ)

∫ +∞

−∞
ejω(t−τ) dω︸ ︷︷ ︸

2πδ(t−τ)

dτ

=

∫ +∞

−∞
f(τ)δ(t− τ) dτ (38.15)

We now apply (10.21), and, since t− τ = 0⇔ τ = t, conclude that this integral
is in fact f(t).

With the inverse Fourier transform, we can prove two important results,
both known either as Parserval's theorem or Plancherel theorem.

Theorem 38.2. Let f(t) be a function with bilateral Fourier transform F [f(t)] =Parseval's theorem
F (jω). Then∫ +∞

−∞
|f(t)|2 dt =

∫ +∞

−∞
f(t)f(t) dt =

1

2π

∫ +∞

−∞
|F (jω)|2 dω =

1

2π

∫ +∞

−∞
F (jω)F (jω) dω

(38.16)

Proof. The proof uses (38.14) to obtain the complex conjugate of f(t):

∫ +∞

−∞
f(t)f(t) dt =

∫ +∞

−∞
f(t)

1
2π

∫ +∞
−∞ F (−jω)e−jωt dω︷ ︸︸ ︷

1

2π

∫ +∞

−∞
F (jω)ejωt dω dt

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
f(t)F (−jω)e−jωt dtdω

=
1

2π

∫ +∞

−∞
F (−jω)

∫ +∞

−∞
f(t)e−jωt dt︸ ︷︷ ︸
F (jω)

dω (38.17)

Theorem 38.3. Let f(t) and g(t) be functions with bilateral Fourier transforms Generalised Parseval's
theoremF [f(t)] = F (jω) and F [g(t)] = G(jω). Then∫ +∞

−∞
f(t)g(t) dt =

1

2π

∫ +∞

−∞
F (jω)G(jω) dω (38.18)

Proof. The proof uses (38.14) to obtain both f(t) and the complex conjugate
of g(t):

∫ +∞

−∞
f(t)g(t) dt =

∫ +∞

−∞

(
1

2π

∫ +∞

−∞
F (jω)ejωt dω

) 1
2π

∫ +∞
−∞ G(−jΩ)e−jΩt dΩ︷ ︸︸ ︷(

1

2π

∫ +∞

−∞
G(jΩ)ejΩt dΩ

)
dt

(38.19)

Now we need (38.2) switching variables t and ω:∫ +∞

−∞
ejtω dt = 2πδ(ω) (38.20)

Replacing this in (38.19),

∫ +∞

−∞
f(t)g(t) dt =

1

2π

∫ +∞

−∞

∫ +∞

−∞
F (jω)G(−jΩ)

1

2π

2πδ(ω−Ω)︷ ︸︸ ︷∫ +∞

−∞
ej(ω−Ω)t dt︸ ︷︷ ︸

δ(ω−Ω)

dΩ dω

(38.21)
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Figure 38.1: Left: a function in time which is zero when t < 0, for which a
unilateral transform makes sense. Right: a cross-correlation of two signals, that
exists for both τ > 0 and τ < 0, and for which only a bilateral transform makes
sense.

Applying (10.21) and taking into account that ω − Ω = 0⇔ Ω = ω,∫ +∞

−∞
f(t)g(t) dt =

1

2π

∫ +∞

−∞
F (jω)

∫ +∞

−∞
G(−jΩ)δ(ω − Ω) dΩ︸ ︷︷ ︸

G(−jω)

dω (38.22)

Remark 38.1. (38.16) can be seen as a particular case of (38.18) for f(t) =
g(t).

38.2 De�nition and properties of the spectral den-
sity

De�nition 38.2. The power spectral density (PSD) SX(jω) of a signalPSD
X(t) is the bilateral Fourier transform of its autocorrelation:

SX(jω) = F [RX(τ)]

=

∫ +∞

−∞
RX(τ)e−jωτ dτ (38.23)

De�nition 38.3. The cross-spectral density (CSD) SXY (jω) of two signalsCSD
X(t) and Y (t) is the bilateral Fourier transform of their correlation:

SXY (jω) = F [RXY (τ)]

=

∫ +∞

−∞
RXY (τ)e−jωτ dτ (38.24)

The reason why the bilateral transform is used for the PSD and the CSD,
while we have used unilateral transforms until now, should be clear:

� We have been using unilateral transforms for time responses, that may
not be de�ned for t < 0, or are equal to 0 for t < 0. See Figure 38.1.

� RX(τ) and RXY (τ) exist both for τ > 0 and τ < 0.

� RXY (τ) 6= RXY (−τ) in the general case, and so values for both τ > 0 and
τ < 0 must be considered when calculating the Fourier transform. See
Figure 38.1.

� While RX(τ) = RX(−τ), and thus we might think a unilateral transform
would su�ce in this case, since RX is a particular case of RXY when
the two signals are the same, it is convenient to always use a bilateral
transform.

Remark 38.2. Spectral densities are sometimes given as Laplace transforms,
not Fourier transforms. The conversion is straightforward:
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� From L to F :

s = jω (38.25)

s2 = −ω2 (38.26)

s3 = −jω3 (38.27)

s4 = ω4 (38.28)

s5 = jω5 (38.29)

...

� From F to L :

ω =
s

j
=
js

j2
= −js (38.30)

ω2 = −s2 (38.31)

ω3 = −s
3

j
= js3 (38.32)

ω4 = s4 (38.33)

ω5 =
s5

j
= −js5 (38.34)

...

When given as Fourier transforms, and thus functions of frequency ω, spectral
densities are often written as SX(ω) and SXY (ω), ommitting the imaginary unit
j.

The PSD has several important properties.

Theorem 38.4.

X2(t) =
1

2π

∫ +∞

−∞
SX(ω) dω (38.35)

Proof. Inverting de�nition (38.23),

RX(τ) = F−1 [SX(ω)]

=
1

2π

∫ +∞

−∞
SX(ω)ejωt dω (38.36)

In particular,

RX(0) =
1

2π

∫ +∞

−∞
SX(ω) ejω0︸︷︷︸

1

dω (38.37)

and we know from (37.38) that RX(0) = X2(t).

Theorem 38.5. A PSD is an even function of ω: SX(ω) = SX(−ω)

SX(ω) = SX(−ω) (38.38)

Proof. The PSD is a Fourier transform:

SX(−ω) =

∫ +∞

−∞
RX(τ)e−j(−ω)τ dτ (38.39)

Now we apply variable change

t = −τ ⇔ τ = −t (38.40)

τ = −∞⇔ t = +∞ (38.41)

τ = +∞⇔ t = −∞ (38.42)

dτ = −dt (38.43)
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to get

SX(−ω) =

∫ −∞
+∞

RX(−t)ejω(−t) (−dt) (38.44)

We know from (37.36) that RX(−t) = RX(t), and so

SX(−ω) =

∫ +∞

−∞
RX(t)e−jωt dt = F [RX(t)] = SX(ω) (38.45)

Remark 38.3. The PSD can be rational or irrational. Because it is even, if it
is rational, it must be a function of even powers of ω when given as a FourierThe PSD only has even

powers of ω or s transform, or of s when given as a Laplace transform: ω0 = 1, ω2, ω4, etc..
There can be no terms in s, s3, etc.. These missing odd powers of s are the ones
that correspond to imaginary parts in the Fourier transform: jω, (jω)3 = −jω3,
(jω)5 = jω5, etc.. Thus, the PSD, when given as a Fourier transform, has noThe PSD is real valued
imaginary part.

Terms in ω2, because of (38.31), correspond to Laplace transforms with pairs
of symmetric poles or zeros: one in the left side of the complex plane and one
in the right side. The same will happen for terms in ω4, ω6, ω10, and so on.

We saw that the correlation, unlike the autocorrelation, is not in the general
case an even function. Consequently, neither is the CSD, its Fourier transform,
an even function in the general case; i.e. it can include odd powers of ω if given
as a Fourier transform, or of s if given as a Laplace transform: s, s3, etc.. These
odd powers of s mean that the CSD, when given as a Fourier transform, has anThe CSD is complex val-

ued imaginary part.

Example 38.1. SX(ω) = 10
ω2+1 corresponds to SX(s) = 10

−s2+1 = − 10
s2−1 , with

poles ±1, which are symmetric.

The usefulness of the PSD can be seen from the following results.

Lemma 38.2. The auto-correlation of X(t) = sin t is

RX(τ) =
1

2
cos t (38.46)

Proof. We will consider an arbitrarily large �nal time:

RX(τ) = lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

sin(t) sin(t+ τ) dt

= lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

sin(t)
(

sin(t) cos(τ) + cos(t) sin(τ)
)

dt

= lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

sin2(t) cos(τ) dt+

lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

sin(t) cos(t) sin(τ) dt

= cos(τ) lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

sin2(t) dt+

sin(τ) lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

1

2
sin(2t) dt (38.47)

The last integral is limited; over each period, it has a zero mean:
∫ π

0
1
2 sin(2t) dt =

0. Thus, the second limit is zero. As to the �rst integral, since

cos(2t) = cos2 t− sin2 t = 1− sin2 t− sin2 t = 1− 2 sin2 t (38.48)

we make

RX(τ) = cos(τ) lim
t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

(
1

2
− 1

2
cos(2t)

)
dt

= cos(τ) lim
t�nal→+∞

1

t�nal − τ

[
t

2

]t�nal−τ
0

− 1

2
cos(τ) lim

t�nal→+∞

1

t�nal − τ

∫ t�nal−τ

0

cos(2t) dt (38.49)



38.2. DEFINITION AND PROPERTIES OF THE SPECTRAL DENSITY561

Again, the last integral is limited, and thus the limit is zero. We are left with

RX(τ) =
1

2
cos(τ) lim

t�nal→+∞

t�nal − τ − 0

t�nal − τ
(38.50)

and the result follows immediately.

Lemma 38.3. The Fourier transform of the complex exponential is

F
[
ejat

]
= 2πδ(ω − a) (38.51)

Proof. From (10.22) we know that L [δ(t)] = 1, and from (24.1) we know that
L [f(t− θ)] = F (s)e−θs. Thus L [δ(t− θ)] = e−θs; the corresponding Fourier
transform is

F [δ(t− θ)] = e−jωθ (38.52)

Using the inverse Fourier transform (38.14),

δ(t− θ) = F−1
[
e−jωθ

]
=

1

2π

∫ +∞

−∞
e−jωθejωt dω

=
1

2π

∫ +∞

−∞
ejω(t−θ) dω (38.53)

We will use this integral to �nd the Fourier transform of the complex exponen-
tial:

F
[
ejat

]
=

∫ +∞

−∞
ejate−jωt dt

=

∫ +∞

−∞
ejt(a−ω) dt (38.54)

The integral in (38.54) is the same as that in (38.53), with the following variable
changes:

ω becomes t (38.55)

t becomes a (38.56)

θ becomes ω (38.57)

Thus, F
[
ejat

]
= 2πδ(a− ω), which is zero everywhere, save at ω = a, just like

2πδ(ω − a).

Theorem 38.6. The PSD of X(t) = sin(at) is PSD of a sinusoid is an
impulse at its frequency

SX(ω) =
π

2
δ(ω − a)− π

2
δ(ω + a) (38.58)

Proof. (38.46) shows that SX(ω) = F
[

1
2 cos(at)

]
, and since{

ejat = cos at+ j sin at

e−jat = cos at− j sin at
⇒ ejat + e−jat = 2 cos at (38.59)

we can get

SX(ω) =
1

4
F
[
ejat

]
+

1

4
F
[
e−jat

]
(38.60)

Applying (38.51), the result follows immediately.

When computing the PSD of a sinusoid in practice, it is not an impulse
that is found, since that is of course impossible, but rather a signi�cant peak
at the frequency of the sinusoid. Likewise, when computing the PSD of a linear A signal's PSD shows its

spectral contentcombination of sinusoids, peaks will be found at the corresponding frequencies,
with heights proportional to the squares of the weights (because the signal is
multiplied by itself when computing RX(τ)). In other words, the PSD of a
signal gives us its spectral content.
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Figure 38.2: Power spectral density of X = sin(t) + 3 sin(10t), found with the
code from Example 38.2.

Example 38.2. The PSD of X(t) = sin(t) + 3 sin(10t) can be found using a
function to compute its autocorrelation

function [autocorrelation,tau] = R_X(t,X,m)

% function [autocorrelation,tau] = R_X(t,X,m)

% Finds the autocorrelation of X(t) at m points (default is length(t)/2).

n = length(t)-1;

if length(X)~=n+1, error('t and X must have the same length'), end

if nargin<3, m = floor(n/2); end

autocorrelation = zeros(1,m);

for k = 0 : m-1

autocorrelation(k+1) = sum( X(1:n-k+1) .* X(k+1:n+1) )/( n-k+1 );

end

autocorrelation = [autocorrelation(end:-1:2) autocorrelation];

tau = [ -t(m:-1:2) 0 t(2:m) ];

and a function that computes the PSD using the one above

function [S,w]=S_X(t,X,number_w)

% function [S,w]=S_X(t,X,number_w)

% Finds the PSD S(w) of X(t) at number_w frequencies (default 100 per

% decade) in a reasonable range of frequencies.

[autocorrelation,tau] = R_X(t,X);

Ts = mean(diff(t)); % sample time

wUp = floor(log10(pi/Ts));

wLow = ceil(log10(pi/t(end))); if wLow == wUp, wLow = wUp-1; end % at least 1 decade

if nargin == 3

wvector = logspace(wLow, wUp, number_w);

else

wvector = logspace(wLow, wUp, (wUp-wLow)*100+1);

end

S = zeros(size(wvector));

for k = 1:length(wvector)

w = wvector(k);

S(k) = trapz( autocorrelation .* exp(-1i*w*tau) ) * Ts;

end

if norm(imag(S))/norm(real(S)) > 1e-6

warning('Imaginary part of S not neglectable, something''s wrong')

end % sanity check

S = real(S);

w = wvector;

In this way, commands

>> Ts = 0.01; tfinal = 100;

>> t = 0 : Ts : tfinal;

>> X = sin(t) + 3*sin(10*t);

>> [S,w] = S_X(t,X); figure,semilogx(w,S),xlabel('\omega [rad/s]'),ylabel('PSD')

result in Figure 38.2.
Notice that:
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Figure 38.3: Power spectral density of X = sin(t) + 3 sin(3t) (left) and X =
sin(t) + 3 sin(3.02t) (right), found with the code from Example 38.2.

� there are ripples in the PSD around the frequencies of the sinusoids;

� the amplitude of the peaks of SX(ω) is very sensitive to the frequencies
where it is found. Figure 38.2 shows the results obtained with the code
above for signals X = sin(t)+3 sin(3t) and X = sin(t)+3 sin(3.02t). Even
though the PSD is being computed for 100 frequencies in each decade,
since in the �rst case there is no precise match for 3 rad/s, the amplitude
is lower than in the second case, where the match is far better.

These numerical problems can be minimised, though never completely elimi-
nated, using windows, addressed in the next section.

38.3 Numerical computation of the PSD and CSD

Matlab's function cpsd(x,y) returns SY X , since the de�nition employed switchesMatlab's command cpds

the roles of the two functions in relation to (37.81); it can be used to �nd both
the CSD and the PSD. It may receive a third argument as cpsd(x,y,window), Windows
which requires an important explanation.

The PSD and the CSD are the Fourier transforms of the autocorrelation
RX(τ) and the cross correlation RXY (τ), and these are in practice found for
data recorded during a �nite time interval t�nal from (37.39) and (37.81). Fur-
thermore, we argued RX(τ) and RXY (τ) cannot be found up to t�nal or down to
−t�nal, but only for part of that interval; let it be [−τm, τm]. Thus, calculations
are done as if RX(τ) and RXY (τ) were being multiplied by a sequence of two
steps: Rectangular window

SX(jω) = F [wr(τ)RX(τ)] (38.61)

SXY (jω) = F [wr(τ)RXY (τ)] (38.62)

wr(τ) =

{
1, if − τm ≤ τ ≤ τm
0, otherwise

(38.63)

Here, wr(τ) is called a rectangular window. Notice that this window is
implicit in the calculation as it can be carried out in practice. The following
result is now needed:

Theorem 38.7. If these Fourier transforms exist, The Fourier transform of
a product is the convolu-
tion of the Fourier trans-
formsF [f(t)g(t)] =

1

2π
F (jω) ∗G(jω) (38.64)
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Proof. Use (38.14) in (38.1) to get

F [f(t)g(t)] =

∫ +∞

−∞
f(t)g(t)e−jωt dt =

∫ +∞

−∞

f(t)︷ ︸︸ ︷
1

2π

∫ +∞

−∞
F (jΩ)ejΩt dΩ g(t)e−jωt dt

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
F (jΩ)g(t)e−j(ω−Ω)t dtdΩ (38.65)

=
1

2π

∫ +∞

−∞
F (jΩ)

∫ +∞

−∞
g(t)e−j(ω−Ω)t dt︸ ︷︷ ︸
G(j(ω−Ω))

dΩ =
1

2π

∫ +∞

−∞
F (jΩ)G(j(ω − Ω)) dΩ

This integral is the form that a convolution assumes when a bilateral transform
is employed.

Thus, when computing a PSD or a CSD, if nothing is done about it, the
result will be the convolution of what we wanted with the Fourier transform
Wr(jω) of a rectangular window wr(τ):

SX(jω) = F [wr(τ)RX(τ)] = Wr(jω) ∗
desired PSD︷ ︸︸ ︷

F [RX(τ)] (38.66)

SXY (jω) = F [wr(τ)RXY (τ)] = Wr(jω) ∗F [RXY (τ)]︸ ︷︷ ︸
desired CSD

(38.67)

It is this convolution that caused the ripples in Example 38.2, seen in Fig-Leakage
ures 38.2 and 38.3. Since the e�ect of each frequency shows up in other frequen-
cies around the correct one, this e�ect is called leakage.

To minimise leakage, rather than trying to undo the e�ect of this convolution
after the calculation is done, it is better to explicitly multiply RX(τ) or RXY (τ)
by some window w(τ) with a more favourable Fourier transform. It turns out
that there no ideal window that works in practice for all signals, but di�erent
signals require di�erent windows.

Some of the most usual windows, represented in Figures 38.4 and 38.5, areUsual windows
the following. They are given as a function of t, in interval [0, t�nal], and are
zero outside this range. Matlab functions to create them are also shown;
they receive as argument the number of samples in interval [0, t�nal], and are
shown in the Figures using command wvtool, which shows the window's Fourier
transform.

� Rectangular window, useful for signals with frequency content in a broad-
band (Matlab function rectwin):

wr(t) = 1 (38.68)

Remember that this window corresponds, in fact, to doing nothing to theUsing no window is using
a rectangular window signal. It is, thus, in a sense, a default window.

� Hann (or Hanning) window, the most used one, useful for signals withA Hann window often
gives good results frequency content in a narrowband (Matlab function hann):

wn(t) = sin2 πt

t�nal
(38.69)

� Hamming window, useful for signals with closely spaced frequencies
(Matlab function hamming):

wm(t) = 0.54− 0.46 cos
2πt

t�nal
(38.70)

Matlab± function cpsd uses Hamming windows by default.

� Flat top window, useful for sinusoidal signals when amplitude accuracy is
more important than frequency accuracy (Matlab function flattopwin):

wf (t) = 0.21557895− 0.41663158 cos
2πt

t�nal
+ 0.277263158 cos

4πt

t�nal

− 0.083578947 cos
6πt

t�nal
+ 0.006947368 cos

8πt

t�nal
(38.71)
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Figure 38.4: Windows, plot for 64 samples between 0 and t�nal, together with
their Fourier transforms. From top to bottom: rectangular window, Hanning
window, Hamming window. Continues in Figure 38.5.

� Bartlett or triangular window (Matlab function bartlett):

wb(t) = 1−
∣∣∣∣ t− t�nal

2
t�nal

2

∣∣∣∣ (38.72)

� Blackman window (Matlab function blackman):

wk(t) = 0.42− 0.5 cos
2πt

t�nal
+ 0.08 cos

4πt

t�nal
(38.73)

Matlab's function cpsd(x,y)may receive a fourth argument as cpsd(x,y,window,N).Matlab's command cpds

To explain it, we need the following result, often used to algorithms to calculate
the PSD or the CSD.

Theorem 38.8. The PSD and CSD can be found as

SX(jω) = lim
t�nal→+∞

1

2t�nal
E [X(jω)X(−jω)]

= lim
t�nal→+∞

1

2t�nal
E
[
|X(jω)|2

]
(38.74)

SXY (jω) = lim
t�nal→+∞

1

2t�nal
E [X(jω)Y (−jω)] (38.75)
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Figure 38.5: Windows, plot for 64 samples between 0 and t�nal, together with
their Fourier transforms. From top to bottom: �at top window, Bartlett win-
dow, Blackman window. Continued from Figure 38.4.
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Figure 38.6: Top: �ve Hanning windows with a 50% overlap. Bottom: three
Hanning windows with a 0% overlap. In both cases, the windows cover the time
interval from 0 up to t�nal = 3 s. Each window has 41 points and the sample
time is Ts = 25 ms; thus, a window covers 1 s of data.

where t�nal is the period of time during which the signal is measured.

Proof. We will not prove these results, but only sketch how the proof proceeds
for the PSD, leaving the CSD as an Exercise. The PSD was de�ned in (38.23)
as the Fourier transform of the autocorrelation (37.35), which, according to
(37.39), is a convolution:

SX(jω) = F [RX(τ)] = F
[
E [X(t)X(t+ τ)]

]
(38.76)

The Fourier transform of a convolution is a product, just as the Laplace trans-
form of a convolution is a product according to (2.78), and (38.74) has a product.
The factor of 2 appears because (37.39) can be written as

RX(τ) =
1

2

1

t�nal − τ

∫ t�nal−τ

−t�nal+τ
x(t)x(t+ τ) dt (38.77)

The expected values in (38.74)�(38.75) can be estimated as the products
X(jω)X(−jω) and X(jω)Y (−jω), as calculated from the available data mea-
sured from 0 to t�nal. But it turns out to be better to:

� slice the data into di�erent segments;

� estimate X(jω)X(−jω) or X(jω)Y (−jω), as the case may be, for each of
the segments;

� and average the estimates.

When doing so, the segments of data may overlap, and the fourth argument of
cpsd(x,y,window,N) determines how much overlap there is. By default, seg-
ments overlap by 50%, which means that each time instant (with the exception
of those at the beginning and at the end) belongs to two segments at once (see
Figure 38.6).

Overlapping the windows not only gives more estimates for the expected val-
ues in (38.74)�(38.75): it also prevents data from being unequally considered in
calculations. For instance, with the 0% overlap Hanning windows of Figure 38.6,
the signal at 0 s, 1 s, 2 s and 3 s is not used at all, and time instants close by
have little in�uence in the result. Of course, when a rectangular window is used
overlap makes no di�erence in what this is concerned.
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38.4 White noise

De�nition 38.4. White noise is a stochastic process X(t) with autocorre-
lation RX(τ) = RX(0) δ(τ), i.e. the value assumed in each instant bears no
relation whatsoever to past values, and has no bearing whatsoever on future
values.

Example 38.3. In Figure 37.5, the signal in the lower plot, with normally
distributed random numbers, is white noise, or, rather, such an approximation
of white noise as is possible in practice.

The signal in the upper plot would also be (an approximation of) white noise
if it had no mean value.

Theorem 38.9. The PSD of white noise is constant over all frequencies.White noise has a constant
PSD

Proof.

L [δ(τ)] = 1⇒ F [δ(τ)] = 1 (38.78)

No analogical signal can have the autocorrelation of white noise. This isWhite noise does not exist
better seen taking the analogical signal as a digital signal with Ts → 0. Since
the autocorrelation is zero, the variation of the signal from one sample to the
next can take any value. For vanishing sampling times, the velocity would
become in�nite, which is impossible in practice, since this would require an
arbitrarily large energy. The same can be seen from the PSD: a constant value
over all frequencies, including arbitrarily large ones, would mean arbitrarily fast
oscillations, with an amplitude that never vanishes. (The argument bears a
resemblance with the one that shows that transfer functions must be strictly
proper, given in Section 11.4.)

Analogical signals can approximate white noise over a certain range of fre-White noise approximated
in a frequency range quencies if they have a (fairly) constant PSD in that range. The PSD will have

to decrease for larger frequencies. Digital signals have their frequency contentDigital approximations of
white noise make more
sense

limited by the sampling time; thus they can have a (fairly) constant PSD over
all frequencies up to ωs, and appear as better approximations of white noise.
Of course, they do not have a constant frequency content for arbitrarily large
frequencies, just as analogical approximations of white noise do not.

So white noise cannot be found in practice � just as an impulse cannot,
and just as unit steps normally have a ramp, fast as it may be, when changing
values. But the mathematical convenience of such signals, and their ability to
approximate situations frequently found in practice, justify their widespread
use.

Remark 38.4. White light is electromagnetic radiation white noise in the vis-Where white noise got its
name from ible spectrum. White noise got its name due to its similarity with white light.

Light, to be white, does not need to have frequency content outside the visi-
ble spectrum; it does not need to have any ultraviolet or infrared content; still
less gamma rays or radio waves (see Figure 38.7). Likewise, all signals that in
practice pass for white noise will have frequency content in a limited range of
frequencies only.

De�nition 38.5. Coloured noise is noise which is not white. The color ofColoured noise
noise is the particular evolution of the PSD with frequency. In particular:

� the PSD of pink noise has a slope of −10 dB/decade;

� the PSD of brown noise has a slope of −20 dB/decade;

� the PSD of blue noise has a slope of +10 dB/decade;

� the PSD of violet noise has a slope of +20 dB/decade.

There are other colours, but these and white are the most frequent. Notice
that pink and blue noise can be obtained from white noise with fractional �lter
s±

1
2 .
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Figure 38.7: The electromagnetic spectrum (source: Wikimedia).

Glossary

�Cornelius, do you and your lawfully wedded spouse speak any lan-
guage other than English?�

�What is English? I speak the language taught to me by my father
and mother, who were taught by their fathers and mothers before
them. It has been the language of our ancestors for nearly two
thousand years. As to its origins, who can be sure?�

Paul Dehn (1912 � �1976), Escape from the Planet of the Apes (1971)

coloured (colored, US) noise ruído colorido
colour (colour, US) of noise cor do ruído
cross-spectral density densidade espetral cruzada
power spectral density densidade de potência espetral
white noise ruído branco

Exercises

1. Prove (38.75).
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Chapter 39

Identi�cation of continuous

stochastic models

�Jenkins is a very good shot,� said Fisher. �A very good shot who can
pretend to be a very bad shot. Shall I tell you the second hint I hit
on, after yours, to make me think it was Jenkins? It was my cousin's
account of his bad shooting. He'd shot a cockade o� a hat and a
weathercock o� a building. Now, in fact, a man must shoot very
well indeed to shoot so badly as that. He must shoot very neatly to
hit the cockade and not the head, or even the hat. If the shots had
really gone at random, the chances are a thousand to one that they
would not have hit such prominent and picturesque objects. They
were chosen because they were prominent and picturesque objects.
They make a story to go the round of society.�

Gilbert K. Chesterton (1874 � �1936), The man who knew too much, I
(Harper's Monthly Magazine, April 1920)

This chapter concerns methods to identify a system when its input and
output are stochastic. These methods provide either the impulse response or
the frequency response of the system. From that point on, the procedures
studied in Part VI are applied.

In all that follows, assume a linear, stable or marginally stable system G(s),
with impulse response g(t) and static gain g0. Its input is X(t) and its output
is

Y (t) = X(t) ∗ g(t) =

∫ t

0

X(t− τ)g(τ) dτ (39.1)

as shown in Figure 39.1.

39.1 Identi�cation in time

Theorem 39.1. The expected value of the output Y is the expected value of Mean value of the output
Ythe input X multiplied by the static gain g0.

Figure 39.1: System studied in this chapter.

571
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Proof.

Y = lim
t→+∞

E

[∫ t

0

X(t− τ)g(τ) dτ

]
= lim
t→+∞

∫ t

0

E
[
X(t− τ)︸ ︷︷ ︸
stochastic

g(τ)︸︷︷︸
deterministic

]
dτ

= lim
t→+∞

∫ t

0

E[X(t− τ)]︸ ︷︷ ︸
X (constant)

g(τ) dτ

= X lim
t→+∞

∫ t

0

g(τ) dτ

= X lim
t→+∞

∫ t

0

g(τ)H(t− τ) dτ

= X lim
t→+∞

g(t) ∗H(t) (39.2)

This last limit is the steady-state value of the unit step response of G(s), i.e.
its static gain g0. As assumed throughout this chapter, the system cannot be
unstable, otherwise the limit does not exist.

Example 39.1. A system with gain 5 receives an input with mean (approxi-
mately) equal to 1

2 :

>> t = 0 : 0.01 : 1000;

>> X = rand(1,length(t));

>> mean(X)

ans =

0.5004

>> s = tf('s'); G = 5/(s+1)

G =

5

-----

s + 1

Continuous-time transfer function.

>> Y = lsim(G,X,t);

>> mean(Y)

ans =

2.4994

The mean of the output is (approximately) 5× 1
2 = 2.5.

Theorem 39.2. The expected value of the square of the output Y 2 isMean square value of the
output

Y 2 =

∫ +∞

0

∫ +∞

0

RX(τ1 − τ2)g(τ1)g(τ2) dτ1 dτ2 (39.3)

Proof.

Y 2 = E

[ Y (t)︷ ︸︸ ︷∫ t

0

X(t− τ1)g(τ1) dτ1

Y (t)︷ ︸︸ ︷∫ t

0

X(t− τ2)g(τ2) dτ2

]
= E

[ ∫ t

0

∫ t

0

X(t− τ1)X(t− τ2)︸ ︷︷ ︸
stochastic

g(τ1)g(τ2)︸ ︷︷ ︸
deterministic

dτ1 dτ2

]

=

∫ t

0

∫ t

0

E [X(t− τ1)X(t− τ2)]︸ ︷︷ ︸
RX(t−τ2−(t−τ1))=RX(τ1−τ2)

g(τ1)g(τ2) dτ1 dτ2 (39.4)

Theorem 39.3. The autocorrelation of the output RY (τ) isAutocorrelation of the out-
put

RY (τ) =

∫ +∞

0

∫ +∞

0

RX(τ + τ1 − τ2)g(τ1)g(τ2) dτ1 dτ2 (39.5)
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Proof.

RY (τ) = E

[ Y (t)︷ ︸︸ ︷∫ t

0

X(t− τ1)g(τ1) dτ1

Y (t+τ)︷ ︸︸ ︷∫ t

0

X(t+ τ − τ2)g(τ2) dτ2

]
= E

[ ∫ t

0

∫ t

0

X(t− τ1)X(t+ τ − τ2)︸ ︷︷ ︸
stochastic

g(τ1)g(τ2)︸ ︷︷ ︸
deterministic

dτ1 dτ2

]

=

∫ t

0

∫ t

0

E [X(t− τ1)X(t+ τ − τ2)]︸ ︷︷ ︸
RX(t+τ−τ2−(t−τ1))=RX(τ−τ2+τ1)

g(τ1)g(τ2) dτ1 dτ2 (39.6)

Theorem 39.4. If G(s) is stable, the correlations of input and output RXY (τ) Correlation of input and
outputand RY X(τ) are

RXY (τ) =

∫ +∞

0

RX(τ − τ1)g(τ1) dτ1 (39.7)

RY X(τ) =

∫ +∞

0

RX(τ + τ1)g(τ1) dτ1 (39.8)

Proof.

RXY (τ) = E

[
X(t)

Y (t+τ)︷ ︸︸ ︷∫ t

0

X(t+ τ − τ1)g(τ1) dτ1

]
= E

[ ∫ t

0

X(t)X(t+ τ − τ1)︸ ︷︷ ︸
stochastic

g(τ1)︸ ︷︷ ︸
deterministic

dτ1

]

=

∫ t

0

E [X(t)X(t+ τ − τ1)]︸ ︷︷ ︸
RX(t+τ−τ1−t)=RX(τ−τ1)

g(τ1) dτ1 (39.9)

RXY (τ) = E

[
X(t+ τ)

Y (t)︷ ︸︸ ︷∫ t

0

X(t− τ1)g(τ1) dτ1

]
= E

[ ∫ t

0

X(t+ τ)X(t− τ1)︸ ︷︷ ︸
stochastic

g(τ1)︸ ︷︷ ︸
deterministic

dτ1

]

=

∫ t

0

E [X(t+ τ)X(t− τ1)]︸ ︷︷ ︸
RX(t−τ1−(t+τ))=RX(−τ1−τ)

g(τ1) dτ1 (39.10)

Since RX(−τ1 − τ) = RX(τ + τ1), (39.8) follows immediately from (39.10).

For discrete signals, the integral in (39.7) is replaced with a rectangular Correlation of input and
output for discrete signalsapproximation. It is more expedient to make use of the fact that RX(τ) is even,

and consider instead

RXY (τ) =

∫ +∞

0

RX(τ − τ1)g(τ1) dτ1

=

∫ +∞

0

RX(τ1 − τ)g(τ1) dτ1 (39.11)

Suppose that there are N + 1 samples of the impulse response g(kTs), from
k = 0 to k = N , separated by sampling time Ts; the autocorrelation R(kTs),
which is an even function, is consequently known from k = −N to k = N . The
integral is approximated by N rectangles, and correlation RxXY (nTs) will be,



574CHAPTER 39. IDENTIFICATION OF CONTINUOUS STOCHASTICMODELS

for successive values of τ = nTs, given by

RXY (0) = Ts

N−1∑
k=0

RX (kTs) g(kTs) (39.12)

RXY (Ts) = Ts

N−1∑
k=0

RX (kTs − Ts) g(kTs) (39.13)

RXY (2Ts) = Ts

N−1∑
k=0

RX (kTs − 2Ts) g(kTs) (39.14)

...

RXY (nTs) = Ts

N−1∑
k=0

RX (kTs − nTs) g(kTs) (39.15)

These results can be arranged in matrix form:

n×1︷ ︸︸ ︷
RXY (0)
RXY (Ts)
RXY (2Ts)

...
RXY (nTs)


︸ ︷︷ ︸

RXY

= Ts

n×N︷ ︸︸ ︷
RX(0) RX(Ts) RX(2Ts) · · · RX ((N − 1)Ts)
RX(−Ts) RX(0) RX(Ts) · · · RX ((N − 2)Ts)
RX(−2Ts) RX(−Ts) RX(0) · · · RX ((N − 3)Ts)

...
...

...
. . .

...
RX(−nTs) RX ((1− n)Ts) RX ((2− n)Ts) · · · RX ((N − 1− n)Ts)


︸ ︷︷ ︸

RX

N×1︷ ︸︸ ︷
g(0)
g(Ts)
g(2Ts)

...
g(nTs)


︸ ︷︷ ︸

g

(39.16)

The matrix is the autocorrelation matrix found in (37.60), save that, if values
of τ are never to approach t�nal, there must be more columns than lines, i.e.
n < N . If the autocorrelation of the input and the correlation of input andFinding the impulse re-

sponse output are known, the impulse response of the plant can be found using the
pseudo-inverse of RX :

h(t) =
1

Ts
R+
XRXY (39.17)

Example 39.2. Suppose we have the response of a plant to a (normal) random
input, obtained as follows:

s = tf('s'); G = 10/(s^2+0.25*s+1);

Ts = 0.01; tfinal = 60; t = 0 : Ts : tfinal;

X = randn(size(t'));

Y = lsim(G,X,t);

The following function computes the correlation of two signals, and thus can
also compute the autocorrelation of a signal:

function [correlation,tau] = R_XY(t,X,Y,m)

% function [correlation,tau] = R_X(t,X,Y,m)

% Finds the cross-correlation of X(t) and Y(t) at m points (default is length(t)/2).

n = length(X)-1;

if n+1 ~= length(Y) || n+1 ~= length(t)

error('t, X and Y must have the same length.')

end

if nargin<4, m = floor(length(X)/2); elseif m>n, m=n; end % too many points

correlation1 = zeros(1,m); % correlation for positive values

for k = 0 : m-1

correlation1(k+1) = sum( X(1:n-k+1).*Y(1+k:n+1) ) / (n-k+1);

end

correlation2 = zeros(1,m); % correlation for negative values

for k = 0 : m-1

correlation2(k+1) = sum( Y(1:n-k+1).*X(1+k:n+1) ) / (n-k+1);

end



39.2. IDENTIFICATION IN FREQUENCY 575

Figure 39.2: Identi�cation of an impulse response from Example 39.2, for dif-
ferent time intervals (5 s, 10 s, 20 s, and 30 s).

% the correlation for 0 was obtained twice; we'll keep only one value

correlation = [correlation2(end:-1:2) correlation1];

tau = [ -t(m:-1:2) 0 t(2:m) ];

The impulse response of the plant can be recovered from the values of the input
and the output as follows, for some desired number of samples, in this case 1000:

N = 1000;

[RXX,tauRXX] = R_XY(t,X,X,N);

[RXY,tauRXY] = R_XY(t,X,Y,N);

matrixRX = zeros(N,N);

for k = 1 : N

matrixRX(k,:) = RXX(N-k+1:end-k+1);

end

estimated_g = 1/Ts * (matrixRX\RXY(N:end)');

Figure 39.2 shows the resulting impulse response obtained for di�erent numbers
of points (changing variable N in the code above), and compares them with
the actual impulse response of the plant. Notice that the estimated impulse
response is poor when N is small, because not enough data is being used for a
good result, and also when N is high, which may be either because the estimates
of RX(τ) and RXY (τ) become poor when τ is large, or because the least squares
problem gets so big that numerical problems appear in its resolution.

39.2 Identi�cation in frequency

The following theorems provide di�erent ways of obtaining the frequency re-
sponse of G(s).

Theorem 39.5. The cross-spectral densities of input and output and the spec-
tral density of the input are related by

SXY (ω) = G(jω)SX(ω) (39.18)

SY X(ω) = G(−jω)SX(ω) (39.19)
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Proof. From (38.24) and (39.7),

SXY (ω) =

∫ +∞

−∞
RXY (τ)e−jωτ dτ

=

∫ +∞

−∞

∫ +∞

0

RX(τ − τ1)g(τ1) dτ1 e
−jωτ dτ

=

∫ +∞

0

g(τ1)

∫ +∞

−∞
RX(τ − τ1)e−jωτ dτ dτ1 (39.20)

We now use the variable change

t = τ − τ1 ⇒ τ = t+ τ1 (39.21)

τ = −∞⇒ t = −∞ (39.22)

τ = +∞⇒ t = +∞ (39.23)

dτ = dt (39.24)

to get

SXY (ω) =

∫ +∞

0

g(τ1)

∫ +∞

−∞
RX(t)e−jωte−jωτ1 dtdτ1

=

∫ +∞

0

g(τ1)e−jωτ1 dτ1︸ ︷︷ ︸
F [g(t)]=G(jω)

∫ +∞

−∞
RX(t)e−jωt dt︸ ︷︷ ︸
SX(ω)

(39.25)

The proof of (39.19) is similar to that of (39.18) and is left as exercise.

Corollary 39.1. From (39.18) and (39.19),

SXY (ω)

SY X(ω)
=

G(jω)SX(ω)

G(−jω)︸ ︷︷ ︸
G(jω)

SX(ω)

=
|G(jω)|ej∠G(jω)

|G(jω)|e−j∠G(jω)

= ej2∠G(jω) (39.26)

Theorem 39.6. The spectral densities of input and output are related by

SY (ω) = SX(ω)|G(jω)|2 (39.27)

Proof. From (38.23) and (39.5),

SY (jω) =

∫ +∞

−∞
RY (τ)e−jωτ dτ

=

∫ +∞

−∞

∫ +∞

0

∫ +∞

0

RX(τ + τ1 − τ2)g(τ1)g(τ2) dτ1 dτ2 e
−jωτ dτ

=

∫ +∞

0

∫ +∞

0

g(τ1)g(τ2)

∫ +∞

−∞
RX(τ + τ1 − τ2)e−jωτ dτ dτ1 dτ2

(39.28)

We now use the variable change

t = τ + τ1 − τ2 ⇒ τ = t− τ1 + τ2 (39.29)

τ = −∞⇒ t = −∞ (39.30)

τ = +∞⇒ t = +∞ (39.31)

dτ = dt (39.32)

to get

SY (jω) =

∫ +∞

0

∫ +∞

0

g(τ1)g(τ2)

∫ +∞

−∞
RX(t)e−jωtejωτ1e−jωτ2 dtdτ1 dτ2

=

∫ +∞

0

g(τ2)e−jωτ2 dτ2︸ ︷︷ ︸
F [g(t)]=G(jω)

∫ +∞

0

g(τ1)ejωτ1 dτ2︸ ︷︷ ︸
G(−jω)

∫ +∞

−∞
RX(t)e−jωt dt︸ ︷︷ ︸
SX(jω)

(39.33)
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Finally, G(jω)G(−jω) = G(jω)G(jω) = |G(jω)|2, which completes the proof.

Corollary 39.2. Replacing (39.27) in (38.35),

Y 2(t) =
1

2π

∫ +∞

−∞
SY (jω) dω

=
1

2π

∫ +∞

−∞
SX(ω)|G(jω)|2 dω

=
1

2π

∫ +∞

−∞
SX(ω)G(jω)G(−jω) dω (39.34)

So this is how the frequency response of G(s) can be found from spectral
densities SX(jω) and SY (jω) and from cross-spectral densities SXY (jω) and
SY X(jω):

� The gain is either found from (39.27) Finding the gain

|G(jω)| =

√
SY (ω)

SX(ω)
(39.35)

or from (39.18)

|G(jω)| =
∣∣∣∣SXY (ω)

SX(ω)

∣∣∣∣ (39.36)

or from (39.19)

|G(jω)| = |G(−jω)| =
∣∣∣∣SY X(ω)

SX(ω)

∣∣∣∣ (39.37)

� The phase is either found from (39.26) Finding the phase

∠G(jω) = =
[

1

2
log

SXY (ω)

SY X(ω)

]
= − j

2
log

SXY (ω)

SY X(ω)
(39.38)

or from (39.18)

∠G(jω) = ∠
SXY (ω)

SX(ω)
(39.39)

or from (39.19)

∠G(jω) = −∠G(−jω) = −∠SY X(ω)

SX(ω)
(39.40)

� The entire frequency response is either found from (39.18) Finding the frequency re-
sponse

G(jω) =
SXY (ω)

SX(ω)
(39.41)

or from (39.19)

G(jω) = G(−jω) =

(
SY X(ω)

SX(ω)

)
(39.42)

or conjugating (39.27) and (39.26)

G(jω) = |G(jω)|ej∠G(jω) =

√
SY (ω)SXY (ω)

SX(ω)SY X(ω)
(39.43)

To verify if an identi�ed frequency response is accurate, a function analogous
to the correlation coe�cient is used.



578CHAPTER 39. IDENTIFICATION OF CONTINUOUS STOCHASTICMODELS

De�nition 39.1. The coherence function γ2
XY is given by Coherence function

γ2
XY (ω) =

|SXY (ω)|2

|SX(ω)||SY (ω)|
(39.44)

Theorem 39.7. In the conditions of Figure 39.1, γ2
XY (ω) = 1 for a LTI if
all noise is accounted for

γ2
XY (ω) ≤ 1, ∀ω (39.45)

Proof. From

γ2
XY (ω) =

|SXY (ω)|2

|SX(ω)||SY (ω)|

=
|G(jω)SX(ω)|2

|SX(ω)|
∣∣∣SX(ω)|G(jω)|2

∣∣∣
=
|G(jω)|2|SX(ω)|2

|G(jω)|2|SX(ω)|2
= 1 (39.46)

In practice, γ2
XY (ω) is seldom 1. The limit case is that of an uncorrelated0 ≤ γ2

XY (ω) ≤ 1
pair of input and output, and then

RXY (τ) = 0⇒ SXY (ω) = 0⇒ γ2
XY (ω) = 0 (39.47)

Consequently:

� When γ2
XY (ω) = 1, a linear model G(s) relating input X with output Y

can be found from the data.

� When γ2
XY (ω) < 1, no model can predict Y solely from X. This may

happen for several reasons: there is noise that could not be measured;
there is another input; there are non-linearities.

� The magnitude of γ2
XY (ω) shows how good the model will be, and at what

frequencies it will perform better and worse.

� When γ2
XY (ω) = 0, no model can be found.

Example 39.3. Consider the following linear system:

Ts = 0.01; % sample time

t = 0 : Ts : 1000;

X = rand(1,length(t)); % input

s = tf('s'); G = 5/(s+1);

Y = lsim(G,X,t); % output

Figure 39.3 shows the values of input X and output Y of plant G(s) during
some seconds.

The gain and phase of the frequency response of G(s) can be obtained from
X and Y using (39.35)�(39.40) as follows. They will be compared with the
result of command freqresp.

% spectral densities

[Syx,F] = cpsd(X,Y,[],[],[],1/Ts); w = 2*pi*F;

Sxy = cpsd(Y,X,[],[],[],1/Ts); % remember that the order of X and Y is like this

Sxx = cpsd(X,X,[],[],[],1/Ts);

Syy = cpsd(Y,Y,[],[],[],1/Ts);

% gain

Gfreqresp = squeeze(freqresp(G,w));

Ggain = 20*log10(abs(Gfreqresp)); % this is what we should obtain

Ggain1 = 20*log10(sqrt(Syy./Sxx));

Ggain2 = 20*log10(abs(Sxy./Sxx));

Ggain3 = 20*log10(abs(Syx./Sxx));

% phase

Gphase = rad2deg(angle(Gfreqresp));

Gphase1 = rad2deg(unwrap(imag(0.5*log(Sxy./Syx))));

Gphase2 = rad2deg(unwrap(angle(Sxy./Sxx)));

Gphase3 = -rad2deg(unwrap(angle(Syx./Sxx)));
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Figure 39.3: Sample of input and output of the plant of Example 39.3.

Figure 39.4: Bode diagrams of the plant of Example 39.3.

The corresponding Bode diagrams are shown in Figure 39.4, as plotted with
the following commands:

figure, subplot(2,1,1), semilogx(w,Ggain, w,Ggain1, w,Ggain2, w,Ggain3)

grid on, xlabel('\omega [rad\cdots^{-1}]'), ylabel('gain [dB]')

legend({'gain','(S_Y/S_X)^{1/2}','|S_{XY}/S_X|','|S_{YX}/S_X|'})

subplot(2,1,2), semilogx(w,Gphase, w,Gphase1, w,Gphase2, w,Gphase3)

grid on, ylabel('phase [^\circ]')

legend({'phase','Im[0.5*(S_{XY}/S_{YX})]','\angle(S_{XY}/S_X)','\angle(S_{YX}/S_X)'})

Two conclusions can at once be taken.

� There are numerical problems with the result of (39.38), namely oscilla-
tions of 180◦ which command unwrap does not solve, since it only deals
with jumps of 360◦. The way around this is to double the angle before
applying unwrap, so that jumps of 180◦ become 360◦ wide, and then halve
it:

Gphase1 = rad2deg(0.5*unwrap(2*imag(0.5*log(Sxy./Syx))));

� Results are poor in the last decade, something we already know to be
expectable. This can be con�rmed with γ2

XY , shown in Figure 39.5 and
obtained as follows:

gamma2 = (abs(Sxy)).^2./(abs(Sxx).*abs(Syy));

figure, semilogx(w,gamma2,'.')

grid on, xlabel('\omega [rad\cdots^{-1}]'), ylabel('\gamma_{XY}^2')

Fixing the phase and neglecting the last decade, the Bode diagram in Fig-
ure 39.6 is obtained.
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Figure 39.5: Coherence function of Example 39.3.

Figure 39.6: Improved Bode diagrams of the plant of Example 39.3.

Glossary

The political dialects to be found in pamphlets, leading articles,
manifestos, White Papers and the speeches of Under-Secretaries do,
of course, vary from party to party, but they are all alike in that
one almost never �nds in them a fresh, vivid, home-made turn of
speech. When one watches some tired hack on the platform me-
chanically repeating the familiar phrases � bestial atrocities, iron
heel, blood-stained tyranny, free peoples of the world, stand shoulder
to shoulder � one often has a curious feeling that one is not watch-
ing a live human being but some kind of dummy: a feeling which
suddenly becomes stronger at moments when the light catches the
speaker's spectacles and turns them into blank discs which seem to
have no eyes behind them. And this is not altogether fanciful. A
speaker who uses that kind of phraseology has gone some distance
toward turning himself into a machine. The appropriate noises are
coming out of his larynx, but his brain is not involved as it would be
if he were choosing his words for himself. If the speech he is making
is one that he is accustomed to make over and over again, he may be
almost unconscious of what he is saying, as one is when one utters
the responses in church. And this reduced state of consciousness, if
not indispensable, is at any rate favourable to political conformity.

George Orwell (1903 � �1950), Politics and the English Language (1946)

coherence function função de coerência

Exercises

1. Prove (39.19).



Chapter 40

Filter design

Other noises were subdued in this city of rubber; the passenger-
circles were a hundred yards away, and the subterranean tra�c lay
too deep for anything but a vibration to make itself felt. It was to
remove this vibration, and silence the hum of the ordinary vehicles,
that the Government experts had been working for the last twenty
years.

Robert Hugh Benson (1871 � �1914), Lord of the world (1907), Prologue

This chapter concerns the design of �lters that receive a signal x(t) corrupted
by additive noise n(t), with the objective of returning an output y(t) as close
as possible to x(t), as seen in Figure 40.1. As might be expected, the ideal
situation y(t) = x(t) is seldom attainable, if ever; but useful approximations
can be usually found.

40.1 Wiener �lters

The output of the �lter with transfer function H(s) in Figure 40.1 will be, in
the general case,

y(t) = L −1 [H(s) (X(s) +N(s))]

= L −1

X̃(s)︷ ︸︸ ︷
[H(s)X(s)]︸ ︷︷ ︸

distorted signal

+ L −1

M(s)︷ ︸︸ ︷
[H(s)N(s)]︸ ︷︷ ︸

residual noise

(40.1)

Consequently, there are two sources of error:

� signal distortion e(t) = L −1 [E(s)] = L −1
[
X(s)− X̃(s)

]
= L −1 [X(s)(1−H(s))];

� residual noise m(t) = L −1 [M(s)] = L −1 [N(s)H(s)].

De�nition 40.1. A Wiener �lter minimises e2(t) +m2(t).

Theorem 40.1. A Wiener �lter H(s) for a signal x(t) with spectral density
SX(s) corrupted by noise n(t) with spectral density SN (s) is given by

H(s) =
SX(s)

SX(s) + SN (s)
(40.2)

Figure 40.1: Block diagram for �lters H(s) addressed in this chapter.

581
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Proof. According to (38.35), using Laplace rather than Fourier transforms thanks
to variable change jω = s⇔ ω = s

j ,

m2 =
1

2π

∫ +∞

−∞
SN (ω)H(jω)H(−jω) dω

=
1

2π

∫ +j∞

−j∞
SN (s)H(s)H(−s) d

(
s

j

)
(40.3)

e2 =
1

2π

∫ +∞

−∞
SX(ω)

(
1−H(jω)

)(
1−H(−jω)

)
dω

=
1

2π

∫ +j∞

−j∞
SX(s)

(
1−H(s)

)(
1−H(−s)

)
d

(
s

j

)
(40.4)

=
1

2πj

∫ +j∞

−j∞

(
SX(s)− SX(s)H(−s)− SX(s)H(s) + SX(s)H(s)H(−s)

)
ds

and thus

e2 +m2 =
1

2πj

∫ +j∞

−j∞

(
SX(s)− SX(s)H(−s)− SX(s)H(s)

+ SX(s)H(s)H(−s) + SN (s)H(s)H(−s)
)

ds (40.5)

It is now expedient to de�ne

Fi(s)Fi(−s) = SX(s) + SN (s) (40.6)

so that

� Fi(s) will only have poles and zeros with negative real parts, or on the
imaginary axis;

� the poles and zeros of Fi(−s) will be the complex conjugates of those of
Fi(s).

We can now write

e2 +m2 =
1

2πj

∫ +j∞

−j∞

((
Fi(s)H(s)− SX(s)

Fi(−s)

)(
Fi(−s)H(−s)− SX(s)

Fi(−s)

)
+
SX(s)SN (s)

Fi(s)Fi(−s)

)
ds

(40.7)

as can be seen working out the products and sums:

1

2πj

∫ +j∞

−j∞

((
Fi(s)H(s)− SX(s)

Fi(−s)

)(
Fi(−s)H(−s)− SX(s)

Fi(s)

)
+
SX(s)SN (s)

Fi(s)Fi(−s)

)
ds

=
1

2πj

∫ +j∞

−j∞

(
Fi(s)Fi(−s)︸ ︷︷ ︸
SX(s)+SN (s)

H(s)H(−s)− Fi(s)H(s)SX(s)

Fi(s)
− Fi(−s)H(−s)SX(s)

Fi(−s)

+
S2
X(s)

Fi(s)Fi(−s)
+
SX(s)SN (s)

Fi(s)Fi(−s)

)
ds

=
1

2πj

∫ +j∞

−j∞

(
SX(s)H(s)H(−s) + SN (s)H(s)H(−s)

+
SX(s)

Fi(s)Fi(−s)︷ ︸︸ ︷
(SX(s) + SN (s))−Fi(s)Fi(−s)H(s)SX(s)− Fi(s)Fi(−s)H(−s)SX(s)

Fi(s)Fi(−s)

)
ds

=
1

2πj

∫ +j∞

−j∞

(
SX(s)H(s)H(−s) + SN (s)H(s)H(−s) + SX(s)−H(s)SX(s)−H(−s)SX(s)

)
ds

(40.8)

This is equal to (40.5).
We can now take a better look at the integrand of (40.7):



40.1. WIENER FILTERS 583

�
SX(s)SN (s)
Fi(s)Fi(−s) = SX(s)SN (s)

SX(s)+SN (s) does not depend on H(s), so there is nothing to
do to this term;

� Fi(s)H(s)− SX(s)
Fi(−s) and Fi(−s)H(−s)− SX(s)

Fi(−s) depend on H(s). We know
from (38.38) that the second term veri�es

Fi(−s)H(−s)− SX(s)

Fi(−s)
= Fi(−s)H(−s)− SX(−s)

Fi(−s)
(40.9)

Consequently, these two terms are complex conjugates, and their product
is always positive or zero; it cannot be negative.

Thus, to minimise the integrand and thereby minimise e2 +m2, we must have

Fi(s)H(s)− SX(s)

Fi(−s)
= 0 (40.10)

from which the result is immediate.

Example 40.1. Let

SX(s) = − 24

s2 − 1
(40.11)

SN (s) = − 1

s2
(40.12)

Then

H(s) =
− 24
s2−1

− 24
s2−1 −

1
s2

=
−24s2

−25s2 + 1
(40.13)

which has poles at 25s2 = 1⇔ s = ± 1
5 .

In the example above, the Wiener �lter has a pole on the right-side of the
complex plane. We saw in Remark 38.3 the reason why poles and zeros with a
positive real part will often appear. Since this is undesirable, a causal Wiener
�lter is needed, which will no longer minimise e2(t)+m2(t), but will provide the
best possible proper approximation to a �lter that does. Notice that the causal
Wiener �lter has this name even though the problem it solves is not necessarily
that of causality. To distinguish it from the causal Wiener �lter, the Wiener
�lter from De�nition 40.1 is known as in�nite Wiener �lter. In�nite Wiener �lter

De�nition 40.2. A causal Wiener �lter is the result of removing zeros and
poles with a positive real part from a Wiener �lter.

When solving (40.10), Fi(s) has by de�nition no poles and zeros with positive
real part: these will appear (if they do) in SX(s)

Fi(−s) . A partial fraction expansion

can then be used to separate SX(s)
Fi(−s) into the sum of

� a rational function without poles and zeros with positive real part
[
SX(s)
Fi(−s)

]
left

,

and

� a rational function without poles and zeros with negative real part
[
SX(s)
Fi(−s)

]
right

,

so that (40.10) becomes

Fi(s)H(s)−
[
SX(s)

Fi(−s)

]
left

−
[
SX(s)

Fi(−s)

]
right

= 0 (40.14)

Term
[
SX(s)
Fi(−s)

]
right

is neglected, and the causal Wiener �lter is given by

H(s) =
1

Fi(s)

[
SX(s)

Fi(−s)

]
left

(40.15)

While it might seem that it would su�ce to neglect completely Fi(−s), since
by de�nition all its poles and zeros have non-negative real parts, it is better
to proceed as above since such zeros and poles may cancel poles and zeros of
SX(s).
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Example 40.2. In Example 40.1, we make

Fi(s)Fi(−s) =

SX(s)︷ ︸︸ ︷
−24

s2 − 1
+

SN (s)︷︸︸︷
−1

s2

=
−25s2 + 1

(s2 − 1)s2
=

(5s− 1)(5s+ 1)

−s2(s− 1)(s+ 1)

=
5s+ 1

s(s+ 1)︸ ︷︷ ︸
Fi(s)

−5s+ 1

−s(−s+ 1)︸ ︷︷ ︸
Fi(−s)

(40.16)

Then

SX(s)

Fi(−s)
=

SX(s)︷ ︸︸ ︷
−24

s2 − 1

1
Fi(−s)︷ ︸︸ ︷

−s(−s+ 1)

−5s+ 1

=
24s(s− 1)(−1)

(s+ 1)(s− 1)(5s− 1)(−1)
=

24s

(s+ 1)(5s− 1)
(40.17)

A straightforward partial fraction expansion gives

SX(s)

Fi(−s)
=

24s

(s+ 1)(5s− 1)
=

4

s+ 1︸ ︷︷ ︸[
SX (s)

Fi(−s)

]
left

+
4

5s− 1︸ ︷︷ ︸[
SX (s)

Fi(−s)

]
right

(40.18)

Consequently

H(s) =
s(s+ 1)

5s+ 1︸ ︷︷ ︸
1

Fi(s)

4

s+ 1︸ ︷︷ ︸[
SX (s)

Fi(−s)

]
left

=
4s

5s+ 1
(40.19)

Wiener �lters can also be used:

� To estimate x(t − τ), i.e. the value that signal x(t) had, −τ seconds intoExtrapolation
the past. This is called extrapolation.

� To estimate x(t + τ), i.e. the value that signal x(t) will have, τ secondsPrediction
into the future. This is called prediction.

As a consequence of what we saw in Section 24.1, both estimations are obtained
replacing the (causal) Wiener �lter H(s) with H(s)e±τs.

40.2 Whitening �lters

Filters may have di�erent objectives than those of a Wiener �lter.

De�nition 40.3. A whitening �lter is a �lter that outputs white noise.

Theorem 40.2. A causal whitening �lter H(s) for a signal x(t) with spectral
density SX(s) corrupted by noise n(t) with spectral density SN (s) is given by

H(s) =
1

Fi(s)
(40.20)

where Fi(s) is de�ned as in (40.6).

Proof. According to (39.27), we shall have

SY (s) = (SX(s) + SN (s)) |H(s)|2

= (SX(s) + SN (s))
1

Fi(s)

1

Fi(−s)︸ ︷︷ ︸
1

SX (s)+SN (s)

= 1 (40.21)
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As was the case with the Wiener �lter, whitening �lters may have poles and
zeros with positive real parts, which in practice have to be neglected; or be
non-causal and need to have additional poles added. Such approximations, of
course, make the output of the �lter deviate more from white noise.

Example 40.3. In Example 40.1, the whitening �lter will be

H(s) =
1

Fi(s)
=
s(s+ 1)

5s+ 1
(40.22)

which, being an improper transfer function, will have to have two additional
poles added to become causal.

Glossary

Entam elle por lhe querer a cudir descuidara de si e o foguo �zeralhe
alg�u nojo por �ptes de seu corpo, e direito do caualeiro topou com
outro mateiro que pera ho mato hia que lhe perguntou vendo ho vir
assi sem lenha que pera que fora ao mato. Respondendolhe o mateiro
queimado falandolhe galego estas soos palauras, Bimarder, olhou o
caualeiro pelo barbarismo das letras mudadas na pronunciaçam do,
b, por, v, e pareceolhe misterio por que elle tambem na quelle se
fora arder, e quis se chamar assi da hi auante (. . . )

Bernardim Ribeiro (1482? � �1552?), Hystoria de Menina e Moça (1554,
posth.)

causal Wiener �lter �ltro de Wiener causal
in�nite Wiener �lter �ltro de Wiener in�nito
Wiener �lter �ltro de Wiener
whitening �lter �ltro de branqueamento

Exercises

1. A signal with SX(s) = −1
s2−1 is corrupted by noise with SN (s) = −1

s2−4 .
Find:

(a) A Wiener �lter.

(b) A causal Wiener �lter.

(c) A causal Wiener �lter to extrapolate the signal 5 seconds in the past.

2. A signal with SX(s) = −1
s2−4 is corrupted by noise with SN (s) = −1

s2−16 .
Find:

(a) A Wiener �lter.

(b) A causal Wiener �lter.

(c) A causal Wiener �lter to predict the signal 2 seconds in the future.

3. A signal with SX(s) = −9
s2−9 is corrupted by noise with SN (s) = −1

s2−16 .
Find:

(a) A Wiener �lter.

(b) A causal Wiener �lter.

(c) A causal Wiener �lter to extrapolate the signal 1 second in the past.

4. Find whitening �lters for the inputs of the previous exercises.

5. Consider an input consisting exclusively of brown noise. Find:

(a) A whitening �lter.

(b) A causal whitening �lter.



586 CHAPTER 40. FILTER DESIGN

6. A stochastic signal X(t), corrupted with noise N(t), is �ltered by a �lter
with transfer functionH(t), that has an output Y (t) consisting of distorted
signal X(t) and residual noise M(t). The power spectral densities of the
original signal and the noise are

SX(ω) =
144

ω2 + 1
(40.23)

SN (ω) =
25

ω2
(40.24)

(a) Find H(s), if the �lter is a Wiener �lter.

(b) What does the �lter you have just found minimise, and why is it that
you cannot implement it?

(c) Find the whitening �lter 1
Fi(s)

.

(d) Find H(s), if the �lter is a causal Wiener �lter.



Chapter 41

Digital stochastic models

He held the last coin between his �ngers, staring absently at it.

�Multivac is not the �rst computer, friends, nor the best-known, nor
the one that can most e�ciently lift the load of decision from the
shoulders of the executive. A machine did win the war, John; at
least a very simple computing device did; one that I used every time
I had a particularly hard decision to make.�

With a faint smile of reminiscence, he �ipped the coin he held. It
glinted in the air as it spun and came down in Swift's outstretched
palm. His hand closed over it and brought it down on the back of
his left hand. His right hand remained in place, hiding the coin.

�Heads or tails, gentlemen?� said Swift.

Isaac Asimov (1920 � �1992), The machine that won the war, The Magazine
of Fantasy & Science Fiction, October 1961

We now turn our attention to digital stochastic models, often useful given
that most signals are, as we saw in Chapter 3, discrete in time.

41.1 Types of digital stochastic models

Consider a digital system G(z−1) with two inputs:

� uk is a manipulated input, and is known as the exogenous input;

� ek is stochastic, and thus, from the point of view of a control system, a
disturbance. This is usually assumed to be white noise.

G(z−1) is assumed as linear and proper, and thus its output yk is a linear
combination of the inputs and their past values. It will be a stochastic system if
yk depends only on ek but not on uk, or if it depends on both. Several paradigms
of digital stochastic systems are usually found.

De�nition 41.1. The following digital stochastic systems have particular names.

� Models that only depend on the stochastic input ek:

� Autoregressive model of order p, AR(p): AR

yk = ek + a1yk−1 + a2yk−2 + . . .+ apyk−p

⇔ yk − a1yk−1 − a2yk−2 − . . .− apyk−p = ek

⇔ yk
(
1− a1z

−1 − a2z
−2 − . . .− apz−p

)︸ ︷︷ ︸
A(z−1)

= ek

⇔ yk
ek

=
1

A(z−1)
(41.1)

� Moving average model of order q, MA(q): MA

587
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yk = ek − c1ek−1 − c2ek−2 − . . .− cqek−q
⇔ yk = ek

(
1− c1z−1 − c2z−2 − . . .− cqz−q

)︸ ︷︷ ︸
C(z−1)

⇔ yk
ek

= C(z−1) (41.2)

� Autorregressive, moving average model of orders p, q, ARMA(p, q):ARMA

yk = ek − c1ek−1 − c2ek−2 − . . .− cqek−q + a1yk−1 + a2yk−2 + . . .+ apyk−p

⇔ yk
(
1− a1z

−1 − a2z
−2 − . . .− apz−p

)︸ ︷︷ ︸
A(z−1)

= ek
(
1− c1z−1 − c2z−2 − . . .− cqz−q

)︸ ︷︷ ︸
C(z−1)

⇔ yk
ek

=
C(z−1)

A(z−1)
(41.3)

� Autoregressive, integral, moving average model of orders p, q, d,
ARIMA(p, q, d):ARIMA

yk
ek

=
C(z−1)

A(z−1) (1− z−1)d
(41.4)

The poles in z = 1 correspond, as seen in Chapter 25, to integra-
tions. In fact an ARIMA(p, q, d) model is only a particular case of
an ARMA(p, q + d), as the denominator of (41.4) is a polynomial of
order q + d.

� Models that depend both on the stochastic input ek and the exogenous
input uk:

� Autoregressive, exogenous model of orders p,m, ARX(p,m):ARX

yk = ek + a1yk−1 + a2yk−2 + . . .+ apyk−p + b0uk − b1uk−1 − b2uk2
− . . .− bmuk−m

⇔ yk
(
1− a1z

−1 − a2z
−2 − . . .− apz−p

)︸ ︷︷ ︸
A(z−1)

= ek + uk
(
b0 − b1z−1 − b2z−2 − . . .− bmz−m

)︸ ︷︷ ︸
B(z−1)

⇔ yk =
1

A(z−1)
ek +

B(z−1)

A(z−1)
uk (41.5)

An ARX model is sometimes given as ARX(p,m, d), allowing for
a delay z−d that a�ects the manipulated input (i.e. the exogenous
input):

yk =
1

A(z−1)
ek +

B(z−1)z−d

A(z−1)
uk (41.6)

This is the same as an ARX(p,m + d) model, since the numerator
of the second transfer function is of order m + d. It makes no sense
to allow for a delay in the noise, precisely because it is noise, but a
delay in a control action may exist, as seen in Chapter 24.

� Autorregressive, moving average, exogenous model of orders
p, q,m, ARMAX(p, q,m):

yk = ek − c1ek−1 − c2ek−2 − . . .− cqek−q + a1yk−1 + a2yk−2 + . . .+ apyk−p

+ b0uk − b1uk−1 − b2uk2
− . . .− bmuk−m

⇔ yk
(
1− a1z

−1 − a2z
−2 − . . .− apz−p

)︸ ︷︷ ︸
A(z−1)

= ek
(
1− c1z−1 − c2z−2 − . . .− cqz−q

)︸ ︷︷ ︸
C(z−1)

+uk
(
b0 − b1z−1 − b2z−2 − . . .− bmz−m

)︸ ︷︷ ︸
B(z−1)

⇔ yk =
C(z−1)

A(z−1)
ek +

B(z−1)

A(z−1)
uk (41.7)

An ARMAX model is sometimes given as ARX(p, q,m, d), allowing
for a delay z−d that a�ects the manipulated input (i.e. the exogenous
input):

yk =
C(z−1)

A(z−1)
ek +

B(z−1)z−d

A(z−1)
uk (41.8)

This is the same as an ARMAX(p, q,m+ d) model, since the numer-
ator of the second transfer function is of order m+ d.
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� Autoregressive, integral, moving average, exogenous model
of orders p, q, d,m, ARIMAX(p, q, d,m): ARIMAX

yk =
C(z−1)

A(z−1) (1− z−1)d
ek +

B(z−1)z−d

A(z−1)
uk (41.9)

� Box-Jenkins model of orders p, q, n,m, BJ(p, q, n,m): BJ

yk =
C(z−1)

D(z−1)
ek +

B(z−1)

F (z−1)
uk (41.10)

n and m are the orders of the denominators corresponding to p and
q.

� Output error model of orders n,m, OE(n,m): OE

yk = ek +
B(z−1)

F (z−1)
uk (41.11)

This is in fact a BJ(0, 0, p, q) model.

� General linear model (GLM): GLM

A(z−1) yk =
C(z−1)

D(z−1)
ek +

B(z−1)z−d

F (z−1)
uk (41.12)

Multiplying both members by A(z−1), this becomes a BJ model.

De�nition 41.2. A digital system can have:

� a �nite impulse response (FIR), if its impulse response is zero after FIR
some time, or

� an in�nite impulse response (IIR), otherwise. FIR

More formally, a FIR system is a system with an impulse response gk that
veri�es

∃n∀m>k gm = 0, k, n,m ∈ N0 (41.13)

and an IIR system is one that does not verify (41.13).

Obviously,

� all FIR systems are stable;

� some stable digital systems have an IIR;

� all unstable digital systems have an IIR;

� a MA system has a FIR;

� a AR system has an IIR.

Example 41.1. Consider a MA(2) given by

yk = ek + 5ek−1 − 7ek−2 (41.14)

Letting the input ek, which should be stochastic, be an impulse, the MA impulse
response is found:

y0 = e0︸︷︷︸
1

+5 e−1︸︷︷︸
0

−7 e−2︸︷︷︸
0

= 1 (41.15)

y1 = e1︸︷︷︸
0

+5 e0︸︷︷︸
1

−7 e−1︸︷︷︸
0

= 5 (41.16)

y2 = e2︸︷︷︸
0

+5 e1︸︷︷︸
0

−7 e0︸︷︷︸
1

= −7 (41.17)

y3 = e3︸︷︷︸
0

+5 e2︸︷︷︸
0

−7 e1︸︷︷︸
0

= 0 (41.18)

Clearly, yk = 0 for all subsequent time samples.
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Remark 41.1. It is evident that a MA(q) has an impulse response which is
zero after q time samples.

Example 41.2. Consider an AR(2) given by

yk = ek + 0.1yk−1 − 0.2yk2
(41.19)

This system is stable, since its transfer function is

yk
ek

=
1

1− 0.1z−1 + 0.2z−2
(41.20)

and its poles are 0.05±0.444j. Letting the input ek, which should be stochastic,
be an impulse, the MA impulse response is found:

y0 = e0︸︷︷︸
1

+0.1 y−1︸︷︷︸
0

−0.2 y−2︸︷︷︸
0

= 1 (41.21)

y1 = e1︸︷︷︸
0

+0.1 y0︸︷︷︸
1

−0.2 y−1︸︷︷︸
0

= 0.1 (41.22)

y2 = e2︸︷︷︸
0

+0.1 y1︸︷︷︸
0.1

−0.2 y0︸︷︷︸
1

= 0.01− 0.2 = −0.19 (41.23)

y3 = e3︸︷︷︸
0

+0.1 y2︸︷︷︸
0.19

−0.2 y1︸︷︷︸
0.1

= −0.019− 0.02 = −0.039 (41.24)

y4 = e4︸︷︷︸
0

+0.1 y3︸︷︷︸
−0.039

−0.2 y2︸︷︷︸
−0.19

= −0.0039 + 0.038 = 0.0341 (41.25)

...

The impulse response converges to zero, but asymptotically.

The identi�cation of a digital stochastic system follows the usual steps: iden-
tifying the order of the model or models, identifying model parameters, and
assessing performance (which includes, if several models were found, selecting
one of them). Model parameter identi�cation is done as seen in Section 31.3,
and peformance assessment as was covered in Section 30.2. To �nd reasonable
orders for models, however, there are methods particularly suited to stochastic
systems.

41.2 Autocorrelation of a MA

Theorem 41.1. The autocorrelation RY (τ) of the output yk of a MA(q) model
veri�es

RY (τ) 6= 0, if |τ | ≤ q (41.26)

RY (τ) = 0, if |τ | > q (41.27)

provided that ek is white noise.
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Proof.

RY (τ) = E [(ek − c1ek−1 − c2ek−2 − . . .− cqek−q) (ek+τ − c1ek+τ−1 − c2ek+τ−2 − . . .− cqek+τ−q)]

= E [ekek+τ − c1ekek+τ−1 − c2ekek+τ−2 − . . .− cqekek+τ−q

− c1ek−1ek+τ + c21ek−1ek+τ−1 + c1c2ek−1ek+τ−2 + . . .+ c1cqek−1ek+τ−q

− c2ek−2ek+τ + c1c2ek−2ek+τ−1 + c22ek−2ek+τ−2 + . . .+ c2cqek−2ek+τ−q

. . .

−cqek−qek+τ + c1cqek−qek+τ−1 + c2cqek−qek+τ−2 + . . .+ c2qek−qek+τ−q
]

= E [ekek+τ ]− c1E [ekek+τ−1]− c2E [ekek+τ−2]− . . .− cqE [ekek+τ−q]

− c1E [ek−1ek+τ ] + c21E [ek−1ek+τ−1] + c1c2E [ek−1ek+τ−2] + . . .+ c1cqE [ek−1ek+τ−q]

− c2E [ek−2ek+τ ] + c1c2E [ek−2ek+τ−1] + c22E [ek−2ek+τ−2] + . . .+ c2cqE [ek−2ek+τ−q]

. . .

− cqE [ek−qek+τ ] + c1cqE [ek−qek+τ−1] + c2cqE [ek−qek+τ−2] + . . .+ c2qE [ek−qek+τ−q]

= RE(τ)− c1RE(τ − 1)− c2RE(τ − 2)− . . .− cqRE(τ − q)
− c1RE(τ + 1) + c21RE(τ) + c1c2RE(τ − 1) + . . .+ c1cqRE(τ − q + 1)

− c2RE(τ + 2) + c1c2RE(τ + 1) + c22RE(τ) + . . .+ c2cqRE(τ − q + 2)

. . .

− cqRE(τ + q) + c1cqRE(τ + q − 1) + c2cqRE(τ + q − 2) + . . .+ c2qRE(τ)

(41.28)

If τ > q, or if τ < −q, the autocorrelation RE(0) never appears above. Since
ek is white noise, RE(0) is the only autocorrelation that is not zero. If −q ≤
τ ≤ q, autocorrelation RE(0) appears at least once, with at least one coe�cient
di�erent from zero, and thus the result is not zero.

In practice, this can be used to �nd the order of a MA model with an
input which is white noise: calculate the autocorrelation of the output, and the
number of delays for which it is not zero is the order of the model. However,
there are some problems:

� No noise, as we know, is really white. � Nothing can be done about this.

� The input may be clearly di�erent from white noise. � This may be
solved if a whitening �lter can be applied at the input of the plant.

� There is always a �nite number of samples, and consequently even white
noise itself would not have a zero autocorrelation for τ 6= 0. � This can
be improved increasing the number of samples, if possible. But, whatever
the case, it is always necessary to establish a threshold below which the
autocorrelation is assumed as zero. The usual threshold is the one in the
following result, quoted without proof.

Theorem 41.2. If xk is normally distributed, its autocorrelation coe�cient
ρX(τ) for τ 6= 0, computed from N samples, is equal to zero, with a 5% signi�-
cance level, if

−1.959964√
N

< ρX(τ) <
1.959964√

N
(41.29)

Corollary 41.1. If xk is normally distributed, its autocorrelation RX(τ) for
τ 6= 0, computed from N samples, is equal to zero, with a 5% signi�cance level,
if

−1.959964σ2
X√

N
< RX(τ) <

1.959964σ2
X√

N
(41.30)

Proof. This is an obvious consequence of the de�nition of ρX(τ) (37.58).

In (41.29)�(41.30), the number in the numerators, usually approximated by
1.96 and sometimes even by 2, appears as shown in Figure 41.1.
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Figure 41.1: The normal distribution and the �gure for a 5% signi�cance level
(source: Wikimedia). If X is a normally distributed random process with aver-
age 0 and variance 1, then P (X > 1.96) = 2.5%, and P (X < −1.96) = 2.5%.
Consequently, P (−1.96 < X < 1.96) = 95%.

Figure 41.2: Autocorrelation coe�cient of the output of plant (41.31) from
Example 41.3.

Example 41.3. Consider a plant given by

yk
uk

= 3 + 4z−1 + 2z−2

⇔ yk = 3uk + 4uk−1 + 2uk−2 (41.31)

The autocorrelation of this plant's output when fed 2001 samples of normally
distributed white noise is shown in Figure 41.2 together with the threshold
given by (41.29), which is −0.044 < RX(τ) < 0.044. The �rst three values,
corresponding to three coe�cients of the plant, are large enought to be outside
the threshold.

The autocorrelation can be used as well to �nd the order of a model that
only depends on an exogenous variable, as long as this variable can be approx-
imated by white noise, and the MA part of the model can be neglected. In
practice, orders adjacent to those found with this method should be considered
for potential models as well, since numerical errors or noise can a�ect the results.

41.3 Partial autocorrelation of an AR

The role that the autocorrelation coe�cient has in a MA model is taken by
the partial autocorrelation coe�cient when using an AR model instead. To
introduce the partial autocorrelation, we must �rst establish some properties of
an AR.

Theorem 41.3. If yk is given by an AR with white noise input, its mean valueThe mean of an AR is 0
y is 0.

Proof. Since

yk = ek + a1yk−1 + a2yk−2 + . . .+ apyk−p (41.32)
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then

E [y0] = E [e0]︸ ︷︷ ︸
0

(41.33)

E [y1] = E [e1]︸ ︷︷ ︸
0

+a1E [y0]︸ ︷︷ ︸
0

(41.34)

E [y2] = E [e2]︸ ︷︷ ︸
0

+a1E [y2]︸ ︷︷ ︸
0

+a2E [y0]︸ ︷︷ ︸
0

(41.35)

and so on for all outputs.

Corollary 41.2. If yk is given by an AR with white noise input:

� the autocovariance Cy(τ) = Ry(τ) − y2 is equal to the autocorrelation
Ry(τ),

� the autocorrelation at 0 Ry(0) = y2 + σ2
y is the variance σ2

y,

� the autocorrelation coe�cient ρy(τ) =
Cy(τ)
σ2
y

is given by

ρy(τ) =
Ry(τ)

Ry(0)
(41.36)

Theorem 41.4. If yk is given by an AR with white noise input, its parameters Yule-Walker equations
a1, a2, . . . , ap can be found from the Yule-Walker equations:

a1

a2

a3

...
ap−1

ap


=



1 ρy(1) ρy(2) · · · ρy(p− 2) ρy(p− 1)
ρy(1) 1 ρy(1) · · · ρy(p− 3) ρy(p− 2)
ρy(2) ρy(1) 1 · · · ρy(p− 4) ρy(p− 3)
...

...
...

. . .
...

...
ρy(p− 2) ρy(p− 3) ρy(p− 4) · · · 1 ρy(1)
ρy(p− 1) ρy(p− 2) ρy(p− 3) · · · ρy(1) 1



−1 

ρy(1)
ρy(2)
ρy(3)
...

ρy(p− 1)
ρy(p)


(41.37)

Proof. From (41.32), we can write

yk+1 = ek+1 + a1yk + a2yk + . . .+ apyk−p+1

= ek+1 +

p∑
j=1

ajyk−j+1 (41.38)

To �nd the autocorrelation for a delay of 1, we multiply (41.38) by yk:

ykyk+1 = ykek+1 +

p∑
j=1

ajykyk−j+1

⇒ E [ykyk+1]︸ ︷︷ ︸
Ry(1)

= E [ykek+1]︸ ︷︷ ︸
0

+

p∑
j=1

aj E [ykyk−j+1]︸ ︷︷ ︸
Ry(−j+1)=Ry(j−1)

(41.39)

Notice that E [ykek+1] = 0 because yk is an output previous to ek+1, and thus
not yet a�ected by it. Dividing both sides by variance σ2

y,

ρy(1) =

p∑
j=1

ajρy(j − 1) (41.40)

For the autocorrelation with 2 delays, we multiply (41.38) by yk−1:

yk−1yk+1 = yk−1ek+1 +

p∑
j=1

ajyk−1yk−j+1

⇒ E [yk−1yk+1]︸ ︷︷ ︸
Ry(2)

= E [yk−1ek+1]︸ ︷︷ ︸
0

+

p∑
j=1

aj E [yk−1yk−j+1]︸ ︷︷ ︸
Ry(−j+2)=Ry(j−2)

⇒ ρy(2) =

p∑
j=1

ajρy(j − 2) (41.41)



594 CHAPTER 41. DIGITAL STOCHASTIC MODELS

And, for a general case of i delays, we multiply (41.38) by yk−(i−1):

yk−i+1yk+1 = yk−i+1ek+1 +

p∑
j=1

ajyk−i+1yk−j+1

⇒ E [yk−i+1yk+1]︸ ︷︷ ︸
Ry(i)

= E [yk−i+1ek+1]︸ ︷︷ ︸
0

+

p∑
j=1

aj E [yk−i+1yk−j+1]︸ ︷︷ ︸
Ry(−j+i)=Ry(j−i)

⇒ ρy(i) =

p∑
j=1

ajρy(j − i) (41.42)

We can thus collect p equations that give the autocorrelation coe�cients from
ρy(1) to ρy(p):

ρy(1)
ρy(1)
ρy(1)
...

ρy(p− 1)
ρy(p)


=



ρy(0) ρy(1) ρy(2) · · · ρy(p− 2) ρy(p− 1)
ρy(−1) ρy(0) ρy(1) · · · ρy(p− 3) ρy(p− 2)
ρy(−2) ρy(−1) ρy(0) · · · ρy(p− 4) ρy(p− 3)

...
...

...
. . .

...
...

ρy(−p+ 2) ρy(−p+ 3) ρy(−p+ 4) · · · ρy(0) ρy(1)
ρy(−p+ 1) ρy(−p+ 2) ρy(−p+ 3) · · · ρy(−1) ρy(0)





a1

a2

a3

...
ap−1

ap


(41.43)

Since ρy(0) = 1, and ρy(−i) = ρy(i), and since the matrix is invertible, the
Yule-Walker equations result.

The Yule-Walker equations can be used to �nd the parameters of an ARFinding an AR from the
Yule-Walker equations model, if only its order p is known. What if it is not? In that case, we could

try di�erent values of p, and check if the last coe�cient is still not zero. When
the last coe�cient is zero, we would have found the order of the model.

This is in fact not so, since we could have a model in which one coe�cient is
zero but is followed by another which is not � as, say, in yk = ek + 0.5yk−1 −
0.4yk−2, a model for which a1 = 0.5, then a2 = 0, and �nally a3 = −0.4,
followed at last by a4 = a5 = a6 = . . . = 0. So, what we really need to do is
to try successive values of p; at some point, the last coe�cient will always be
zero, how much we keep increasing p. The order of the model will be given by
the value of p for which the last coe�cient was not zero.

This is how, for an AR, we arrive at a variable that is di�erent from zero for
as long as there are coe�cients in the model, and becomes zero when coe�cients
are over � just as the autocorrelation for a MA. Its de�nition is as follows.

De�nition 41.3. Given a discrete signal yk, let

Rτ =



1 ρy(1) ρy(2) · · · ρy(τ − 2) ρy(τ − 1)
ρy(1) 1 ρy(1) · · · ρy(τ − 3) ρy(τ − 2)
ρy(2) ρy(1) 1 · · · ρy(τ − 4) ρy(τ − 3)
...

...
...

. . .
...

...
ρy(τ − 2) ρy(τ − 3) ρy(τ − 4) · · · 1 ρy(1)
ρy(τ − 1) ρy(τ − 2) ρy(τ − 3) · · · ρy(1) 1


(41.44)

rτ =



ρy(1)
ρy(1)
ρy(1)
...

ρy(τ − 1)
ρy(τ)


(41.45)



a1,τ

a2,τ

a3,τ

...
aτ−1,τ

aτ,tau


= R−1

τ rτ (41.46)
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The partial autocorrelation coe�cient φy(τ) of signal yk is given byPartial autocorrelation co-
e�cient φy(τ) = aτ,tau. The partial autocorrelation Φy(τ) of signal yk is given by
Partial autocorrelation Φy(τ) = φy(τ)σ2

y.
The above holds for τ 6= 0; by de�nition, φy(0) = ρy(0) = 1 and thus

Φy(τ) = Ry(0) = σ2
y.

Corollary 41.3. The partial autocorrelation coe�cient for τ = 1 is given by

R1 = [1] (41.47)

r1 = [ρy(1)] (41.48)

a1,1 = 1−1ρy(1) (41.49)

Thus φy(1) = ρy(1) and Φy(1) = Ry(1).

Remark 41.2. The partial autocorrelation is so called because it correlates the
output with one of its previous values, removing the dependence from interme-
diate outputs; that is to say,

Φy(τ) = E [ykyk+τ | yk+1, yk+2, . . . , yk+τ−1] (41.50)

The conditional expected value above can be justi�ed as follows. The last line
of

Rτ

[
a1,τ a2,τ a3,τ · · · aτ−1,τ aτ,tau

]T
= rτ (41.51)

is

ρy(τ − 1)a1,τ + ρy(τ − 2)a2,τ + ρy(τ − 3)a3,τ + . . .+ ρy(1)aτ−1,τ + aτ,tau = ρy(τ)

⇔ φy(τ) = aτ,tau = ρy(τ)−
τ−1∑
j=1

ρy(τ − j)aj,τ

⇔ Φy(τ) = Ry(τ)−
τ−1∑
j=1

Ry(τ − j)aj,τ

= E [y(k)yk+τ ]−
τ−1∑
j=1

aj,τE [y(k)yk+τ ]

(41.52)

To the extent that the estimated model coe�cients aj,τ are correct, this is
(41.50). And since, from (41.50),

Φy(0) = E [ykyk] (41.53)

Φy(1) = E [ykyk+1] (41.54)

without any conditional expectation (as there are no intermediate values of y),
it makes sense that Φy(1) = Ry(1), as we saw above, and also that we should
de�ne Φy(0) = Ry(0).

Just as in (41.29)�(41.30) for the autocorrelation, the partial autocorrelation
of a signal Xk computed from N samples is usually considered zero, with a 5%
signi�cance level, if

−1.959964√
N

< φX(τ) <
1.959964√

N
(41.55)

−1.959964σ2
X√

N
< ΦX(τ) <

1.959964σ2
X√

N
(41.56)

In an AR model, additive noise at the output keeps in�uencing it in future
samples. For this reason, the presence of noise easily leads to an overestimation
of the order of the model.

Example 41.4. Consider a plant given by

yk
uk

=
1

3 + 4z−1 + 2z−2

⇔ yk =
1

3
uk −

4

3
yk−1 −

2

3
yk−2 (41.57)
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Figure 41.3: Left: partial autocorrelation of the output of plant (41.57) from
Example 41.4. Right: the same, when there is noise as in (41.58).

The partial autocorrelation of this plant's output when fed 2001 samples of nor-
mally distributed white noise is shown in Figure 41.3 together with the threshold
given by (41.29), which is −0.044 < RX(τ) < 0.044. The �rst three values, cor-
responding to three coe�cients of the plant, are large enough to be outside the
threshold.

The partial autocorrelation is also shown for the situation when there is
additive noise at the output:

yk =
1

3
uk −

4

3
yk−1 −

2

3
yk−2 + 0.05ek (41.58)

Here ek is normally distributed white noise, with zero-mean and variance 1.
Notice how there are now four delays outside the threshold.

Matlab commands autocorr and parcorr plot the autocorrelation andMatlab's commands
autocorr and parcorr the partial autocorrelation of a variable, and plot the threshold given by (41.29)

approximating the numerator by 2.

41.4 Finding the orders of an ARMA

When we have the output of an ARMA model,

� we can �nd from the autocorrelation the order q of an MA(q) that might
model it instead;

� we can �nd from the partial autocorrelation the order p of an AR(p) that
might model it instead.

The number of coe�cients of the ARMA model should not be larger than the
smallest of these two orders; otherwise, there would be no interest in using
an ARMA. Once this upper limit min{p, q} is established, all ARMA(p′, q′)
models such that p′ + q′ ≤ min{p, q} should be tried, and the performance of
the resulting models compared with the AIC or the BIC, to determine the best
option.

Example 41.5. Figure 41.4 shows the autocorrelation and partial autocorre-
lation coe�cients of the 10000 samples long output of

G(z−1) =
4 + 5z−1 + 6z−2

1 + 1
2z
−1 + 1

3z
−2

(41.59)

From the �gures, we can expect an AR model of order 13 or a MA model of
order 6 to be able to model this output. So, an ARMA model should have,
at most, 6 coe�cients. Thus, we should �nd ARMA(p, q) models such that
p+ q ≤ 6, and compare their AIC or BIC to choose one.

Another way to determine the orders of an ARMA model would be to verify
which of them are needed using statistical tests such as those using t-values or
p-values. We will not study this possibility further.
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Figure 41.4: Autocorrelation and partial autocorrelation coe�cients of the out-
put of (41.59).

Glossary

I understood him in many Things, and let him know, I was very well
pleas'd with him; in a little Time I began to speak to him, and teach
him to speak to me; and �rst, I made him know his Name should
be Friday, which was the Day I sav'd his Life; I call'd him so for the
Memory of the Time; (. . . )

Daniel Defoe (1660? � �1731), The life and Strange Surprizing adventures of
Robinson Crusoe, of York, Mariner (1719)

autoregressive model modelo autorregressivo
autoregressive exogenous model modelo autorregressivo com variável exó-
gena
autoregressive, integral, moving average, exogenous model modelo au-
torregressivo integral de média móvel com variável exógena
autoregressive, integral, moving average model modelo autorregressivo
integral de média móvel
autoregressive, moving average, exogenous model modelo autorregres-
sivo de média móvel com variável exógena
autoregressive, moving average model modelo autorregressivo de média
móvel
Box-Jenkins model modelo de Box-Jenkins
�nite impulse response resposta �nita ao impulso, resposta impulsional �nita
general linear model modelo linear genérico
in�nite impulse response resposta in�nita ao impulso, resposta impulsional
in�nita
moving average model modelo de média móvel
output error model modelo de média da saída
partial autocorrelation autocorrelação parcial
partial autocorrelation coe�cient coe�ciente de autocorrelação parcial

Exercises

1. Question.
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Chapter 42

Control of stochastic systems

Prince Andrew listened attentively to Bagratión's colloquies with
the commanding o�cers and the orders he gave them and, to his
surprise, found that no orders were really given, but that Prince
Bagratión tried to make it appear that everything done by necessity,
by accident, or by the will of subordinate commanders was done, if
not by his direct command, at least in accord with his intentions.
Prince Andrew noticed, however, that though what happened was
due to chance and was independent of the commander's will, ow-
ing to the tact Bagratión showed, his presence was very valuable.
O�cers who approached him with disturbed countenances became
calm; soldiers and o�cers greeted him gaily, grew more cheerful in
his presence, and were evidently anxious to display their courage
before him.

Leo Tolstoy (1828 � �1910), War and Peace (1869), II 17 (transl. Louise
Maude and Aylmer Maude, 1922�1923)

In this chapter, three di�erent ways of designing closed-loop controllers for
stochastic processes are presented. The �rst two can only be applied to follow
constant references, i.e. in regulation problems.

42.1 Minimum variance control

This technique can be used to design a regulator. The e�ect of the noise in the
output can be minimised, but not eliminated.

Theorem 42.1. Consider a plant with an output given by

y(t) =
B(z−1)

A(z−1)
z−du(t) +

C(z−1)

A(z−1)
e(t) (42.1)

where u(t) is a manipulated input, and e(t) is white noise. (If there is no
pure delay of d sample times from u(t) to the output, then d = 0.) This
plant is controlled in closed loop, as seen in Figure 42.1, and, without loss of
generality, reference r(t) is taken as 0 (otherwise a variable change is used). In
this situation, the controller that minimises the variance of error ε(t) = −y(t)

Figure 42.1: Closed loop control of a stochastic digital system.

599
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is given by

u(t) = − G(z−1)

B(z−1)F (z−1)
y(t) (42.2)

where F (z−1) and G(z−1) are found solving

C(z−1) = F (z−1)A(z−1) +G(z−1)z−d (42.3)

The output when control law (42.2) is used is given by the MA

y(t) = F (z−1)e(t) (42.4)

Proof. Dropping the dependence on z−1 to alleviate the notation, (42.1) can be
rewritten as

y(t+ d) =
B

A
u(t) +

C

A
e(t+ d) (42.5)

(42.3) is the same as separating the dynamics of the noise C(z−1)
A(z−1) into two parts

by means of polynomial division:

C

A
= F +

G

A
z−d

⇔ F =
C −Gz−d

A
(42.6)

Replacing (42.6) in (42.5),

y(t+ d) =
B

A
u(t) + Fe(t+ d) +

G

A
e(t) (42.7)

Now notice that (42.1) can also be rewritten as

e(t) =
A

C
y(t)− B

C
z−du(t) (42.8)

Replacing this in (42.7), and using (42.6),

y(t+ d) =
B

A
u(t) + Fe(t+ d) +

G

A

(
A

C
y(t)− B

C
z−du(t)

)
= Fe(t+ d) +

G

C
y(t)− BG

CA
z−du(t) +

B

A
u(t)

= Fe(t+ d) +
G

C
y(t) +

B
(
C −Gz−d

)
CA︸ ︷︷ ︸
BF
C

u(t)

= Fe(t+ d)︸ ︷︷ ︸
this can only be

known at time t + d

+
G

C
y(t) +

BF

C
u(t)︸ ︷︷ ︸

this is already known at time t

(42.9)

Consequently, to minimise E
[
(ε(t))

2
]
, we minimise

E
[
(y(t+ d))

2
]

= E

[(
Fe(t+ d) +

G

C
y(t) +

BF

C
u(t)

)2
]

= E
[
(Fe(t+ d))

2
]

+ E

[(
G

C
y(t) +

BF

C
u(t)

)2
]

(42.10)

where there are no cross-terms because white noise e(t+d) is independent from
y(t) and u(t). There is nothing to do about the expected value that depends on
the white noise, but the second term can be minimised:

G

C
y(t) +

BF

C
u(t) = 0 (42.11)

From here (42.2) is immediate.
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As to the performance of the controller, replacing (42.2) in (42.9) gives

y(t+ d) = Fe(t+ d) +
G

C
y(t) +

BF

C

(
− G

BF
y(t)

)
︸ ︷︷ ︸

−GC y(t)

(42.12)

which is (42.4).

Remark 42.1. Let the orders of polynomials A(z−1), B(z−1), etc. be nA, nB ,
etc.. Orders nF and nG must be large enough for (42.3) to be possible. They
can be found by inspection in each case; these orders turn out to be, in every
situation, the following:

nF = d− 1 (42.13)

nG = max{nA − 1, nC − d} (42.14)

Example 42.1. Consider a plant with an output given by

y(t) = 0.5y(t− Ts) + 0.2y(t− 2Ts) + 0.7u(t− Ts) + 0.3u(t− 2Ts)

+ e(t) + 0.4e(t− Ts) + 0.1e(t− 2Ts)

⇔ y(t)
(
1− 0.5z−1 − 0.2z−2

)
= u(t)

(
0.7z−1 + 0.3z−2

)︸ ︷︷ ︸
z−1(0.7+0.3z−1)

+e(t)
(
1 + 0.4z−1 + 0.1z−2

)
(42.15)

That is to say,

A
(
z−1
)

= 1− 0.5z−1 − 0.2z−2 (42.16)

B
(
z−1
)

= 0.7 + 0.3z−1 (42.17)

C
(
z−1
)

= 1 + 0.4z−1 + 0.1z−2 (42.18)

d = 1 (42.19)

We must solve (42.3):

1 + 0.4z−1 + 0.1z−2 =
(
1− 0.5z−1 − 0.2z−2

)
F
(
z−1
)

+ z−1G
(
z−1
)

(42.20)

The left side of the equation is of order 2. The right side will be of order 2
if nF = 0 and nG = 1, i.e. F

(
z−1
)

= f0 and G
(
z−1
)

= g0 + g1z
−1. Notice

that the only independent term on the right side will be f0; thus we must have
f0 = 1. This still leaves two variables, g0 and g1, which su�ce to make the
equation possible.

Instead of reasoning like this we could apply (42.13)�(42.14) and write

1 + 0.4z−1 + 0.1z−2 =
(
1− 0.5z−1 − 0.2z−2

)
(f0) + z−1

(
g0 + g1z

−1
)

= f0 − 0.5f0z
−1 − 0.2f0z

−2 + g0z
−1 + g1z

−2 (42.21)

Equalling the coe�cients of the same order on both sides,
1 = f0

0.4 = −0.5f0 + g0

0.1 = −0.2f0 + g1

⇔


f0 = 1

g0 = 0.9

g1 = 0.3

⇒

{
F
(
z−1
)

= 1

G
(
z−1
)

= 0.9 + 0.3z−1

(42.22)

Thus

u(t) = −y(t)
0.9 + 0.3z−1

0.7 + 0.3z−1
(42.23)

and this control law will achieve y(t) = e(t). This is not surprising, since the
noise itself cannot be eliminated; it is impossible to do any better.

Figure 42.2 shows the output, equal to the error, and the control action, for
a simulation with 100 time steps.
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Figure 42.2: Simulation of plant (42.15) controlled by (42.23), from Exam-
ple 42.1.

Example 42.2. Consider a plant similar to that of Example 42.1, save that
now the output is given by

y(t) = 0.5y(t− Ts) + 0.2y(t− 2Ts) + 0.7u(t− 2Ts) + 0.3u(t− 3Ts)

+ e(t) + 0.4e(t− Ts) + 0.1e(t− 2Ts)

⇔ y(t)
(
1− 0.5z−1 − 0.2z−2

)︸ ︷︷ ︸
A(z−1)

= u(t)
(
0.7z−2 + 0.3z−3

)︸ ︷︷ ︸
z−2︸︷︷︸
z−d

(0.7+0.3z−1)︸ ︷︷ ︸
B(z−1)

+e(t)
(
1 + 0.4z−1 + 0.1z−2

)︸ ︷︷ ︸
C(z−1)

(42.24)

This is in fact the same plant of Example 42.1 but with d = 2. We must solve
(42.3):

1 + 0.4z−1 + 0.1z−2 =
(
1− 0.5z−1 − 0.2z−2

)
F
(
z−1
)

+ z−2G
(
z−1
)

(42.25)

The left side of the equation is still of order 2. The right side will be of order 2
if nF = 0 and nG = 0, i.e. F

(
z−1
)

= f0 and G
(
z−1
)

= g0. Once more, the only
independent term on the right side will be f0; thus we must have f0 = 1. This
leaves only one variable, g0, and the equation is impossible. Consequently, we
need nF = 1 and nG = 1, i.e. F

(
z−1
)

= f0 + f1z
−1 and G

(
z−1
)

= g0 + g1z
−1;

the right member will be of order 3, and the terms of order 3 will have to cancel,
since there is none on the right member.

Instead of reasoning like this we could apply (42.13)�(42.14) and write

1 + 0.4z−1 + 0.1z−2 =
(
1− 0.5z−1 − 0.2z−2

) (
f0 + f1z

−1
)

+ z−2
(
g0 + g1z

−1
)

= f0 − 0.5f0z
−1 − 0.2f0z

−2 + f1z
−1 − 0.5f1z

−2 − 0.2f1z
−3 + g0z

−2 + g1z
−3

(42.26)

Equalling the coe�cients of the same order on both sides,
1 = f0

0.4 = −0.5f0 + f1

0.1 = −0.2f0 − 0.5f1 + g0

0 = −0.2f1 + g1

⇔


f0 = 1

f1 = 0.9

g0 = 0.3 + 0.5× 0.9 = 0.75

g1 = 0.2× 0.9 = 0.18

⇒

{
F
(
z−1
)

= 1 + 0.9z−1

G
(
z−1
)

= 0.75 + 0.18z−1

(42.27)

Thus

u(t) = −y(t)
0.75 + 0.18z−1

(0.7 + 0.3z−1) (1 + 0.9z−1)
(42.28)

and this control law will achieve y(t) = e(t)
(
1 + 0.9z−1

)
. Notice how one

additional delay from the control action to the output leads to more complicated
calculations, to a controller of higher order (there are two poles now rather than
only one), and to an output with more noise.

Figure 42.3 shows the output, no longer equal to the error, and the control
action, for a simulation with 100 time steps.
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Figure 42.3: Simulation of plant (42.24) controlled by (42.28), from Exam-
ple 42.2.

Figure 42.4: Simulation of plant (42.29) controlled by (42.33), from Exam-
ple 42.3.

Example 42.3. Consider yet another plant similar to that of Example 42.1,E�ect of a non-minimum
phase zero save that now the output is given by

y(t) = 0.5y(t− Ts) + 0.2y(t− 2Ts) + 0.3u(t− Ts) + 0.7u(t− 2Ts)

+ e(t) + 0.4e(t− Ts) + 0.1e(t− 2Ts)

⇔ y(t)
(
1− 0.5z−1 − 0.2z−2

)︸ ︷︷ ︸
A(z−1)

= u(t)
(
0.3z−1 + 0.7z−2

)︸ ︷︷ ︸
z−1︸︷︷︸
z−d

(0.3+0.7z−1)︸ ︷︷ ︸
B(z−1)

+e(t)
(
1 + 0.4z−1 + 0.1z−2

)︸ ︷︷ ︸
C(z−1)

(42.29)

This is the same plant of Example 42.1 but this time with a non-minimum phase
zero, since

B
(
z−1
)

= 0⇔ 0.7z−1 = −0.3⇔ z−1 = −3

7
⇔ z = −7

3
(42.30)

which is outside the unit radius circle. Solving (42.3) is done as in Example 42.1;
the results are the same:

F
(
z−1
)

= 1 (42.31)

G
(
z−1
)

= 0.9 + 0.3z−1 (42.32)

Consequently, the control action will be

u(t) = −y(t)
0.9 + 0.3z−1

0.3 + 0.7z−1
(42.33)

and this control law will achieve y(t) = e(t).
Figure 42.4 shows the output, which equal to the error, and the control

action that achieves this result. Notice how the amplitude of the control action
grows exponentially. This is because control law is unstable: (42.2) cancels the
zeros of the plant, and so in this case the controller tries to cancel the non-
minimum phase zero. Such a controller is of course impossible in practice: as
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soon as actuators saturate, the output will be far from what is desired. (In fact,
even in simulation, sooner or later an over�ow prevents good results; that is the
reason why Figure 42.4 only shows 40 time steps).

This last example shows that, if there are non-minimum phase zeros inWhat to do with non-
minimum phase zeros B(z−1), we cannot have (42.2), but must use only the minimum-phase zeros

in the denominator. That is to say, we separate B(z−1) as product

B(z−1) = Bmin(z
−1)Bnon(z

−1) (42.34)

so that Bnon(z
−1) will have all the non-minimum phase zeros, and Bmin(z

−1) all
the minimum phase zeros; and then make

u(t) = − G(z−1)

Bmin(z−1)F (z−1)
y(t) (42.35)

The e�ect of the error in the output will be larger, but the control system (andPrice to pay for a stable
control action in particular the control action) will be stable.

Theorem 42.2. Consider a plant with an output given by

y(t) =

B(z−1)︷ ︸︸ ︷
Bmin(z

−1)Bnon(z
−1)

A(z−1)
z−du(t) +

C(z−1)

A(z−1)
e(t) (42.36)

where u(t) is a manipulated input, and e(t) is white noise. (If there is no pure
delay of d sample times from u(t) to the output, then d = 0.) All the roots
of Bnon(z

−1) have positive real parts; none of the roots of Bmin(z
−1) do. This

plant is controlled in closed loop, as seen in Figure 42.1, and, without loss of
generality, reference r(t) is taken as 0 (otherwise a variable change is used). In
this situation, the controller that minimises the variance of error ε(t) = −y(t)
and ensures a stable control action is given by

u(t) = − G(z−1)

Bmin(z−1)F (z−1)
y(t) (42.37)

where F (z−1) and G(z−1) are found solving

C(z−1)Bmin(z
−1) = F (z−1)A(z−1) +Bnon(z

−1)G(z−1)z−d (42.38)

The output when control law (42.37) is used is given by

y(t) =
F (z−1)

Bmin(z−1)
e(t) (42.39)

Proof. Replacing the desired control action (42.37) in (42.36), and dropping the
dependence on t and z−1 to alleviate the notation,

y =
BminBnon

A
z−d

(
− G

BminF
y

)
+
C

A
e

⇔ y

(
1 +

BnonGz
−d

AF

)
︸ ︷︷ ︸

AF+BnonGz−d
AF

=
C

A
e

⇔ y =
C

A

AF

AF +BnonGz−d
e =

CF

AF +BnonGz−d
e (42.40)

If (42.38) holds, the denominator is C(z−1)Bmin(z
−1) and (42.39) is obtained.

Remark 42.2. As before, orders nF and nG must be enough for (42.57) to be
possible, and can be found by inspection in each case; these orders now turn
out to be:

nF = nBnon
+ d− 1 (42.41)

nG = max{nA − 1, nC − d} (42.42)
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Example 42.4. We are now in position of �nding a much better controller for
the non-minimum phase plant (42.29) of Example 42.3. We have

A
(
z−1
)

= 1− 0.5z−1 − 0.2z−2 (42.43)

Bnon

(
z−1
)

= 0.3 + 0.7z−1 (42.44)

Bmin

(
z−1
)

= 1 (42.45)

C
(
z−1
)

= 1 + 0.4z−1 + 0.1z−2 (42.46)

z−d = z−1 (42.47)

Instead of solving (42.3), we solve (42.38):(
1 + 0.4z−1 + 0.1z−2

)
× 1 =

(
1− 0.5z−1 − 0.2z−2

)
F
(
z−1
)

+ z−1
(
0.3 + 0.7z−1

)
G
(
z−1
)

(42.48)

The reasoning of Example 42.2 applies here and shows that nF = 1 and nG = 1,
i.e. F

(
z−1
)

= f0 +f1z
−1 and G

(
z−1
)

= g0 +g1z
−1. Or we could apply (42.41)�

(42.42) and write(
1 + 0.4z−1 + 0.1z−2

)
× 1 =

(
1− 0.5z−1 − 0.2z−2

) (
f0 + f1z

−1
)

+ z−1
(
0.3 + 0.7z−1

) (
g0 + g1z

−1
)

= f0 − 0.5f0z
−1 − 0.2f0z

−2 + f1z
−1 − 0.5f1z

−2 − 0.2f1z
−3

+ 0.3g0z
−1 + 0.3g1z

−2 + 0.7g0z
−2 + 0.7g1z

−3

(42.49)

Equaling the coe�cients of the same order on both sides,
1 = f0

0.4 = −0.5f0 + f1 + 0.3g0

0.1 = −0.2f0 − 0.5f1 + 0.3g1 + 0.7g0

0 = −0.2f1 + 0.7g1

⇔


f0 = 1

f1 + 0.3g0 = 0.9

−0.5f1 + 0.7g0 + 0.3g1 = 0.3

−0.2f1 + 0.7g1 = 0

(42.50)

The last three equations are better solved with Matlab:

>> [1 0.3 0; -0.5 0.7 0.3; -0.2 0 0.7]\[0.9 0.3 0]'

ans =

0.6551

0.8163

0.1872

Thus

F
(
z−1
)

= 1 + 0.6551z−1 (42.51)

G
(
z−1
)

= 0.8163 + 0.1872z−1 (42.52)

and so, according to (42.37),

u(t) = −y(t)
0.8163 + 0.1872z−1

1× (1 + 0.6551z−1)
(42.53)

As shown in Figure 42.5, this control law will achieve y(t) = e(t)
(
1 + 0.6551z−1

)
,

an output larger than that of Example 42.3: the controller (42.37) is not in Sub-optimal minimum
variance controlfact a minimum variance controller; it is known as a sub-optimal minimum

variance controller. However, this output is in practice feasible (since the
control action is now bounded), unlike the original controller, which would be
optimal � if only it could ever work.

Remark 42.3. Minimum variance control minimises the variance of the error
E
[
(ε(t))

2
]
, however large the control action has to be. It can be generalised so

as to minimise a cost function J instead, given by

J = P E
[
(ε(t))

2
]

+QE
[
(u(t))

2
]

(42.54)
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Figure 42.5: Simulation of plant (42.29) controlled by (42.53), from Exam-
ple 42.4.

where P and Q are weights. J de�nes how large we are willing to have the
control action to lower the variance of the output. Of course, when Q = 0 we
get minimum variance control back.

We will not explore this possibility, called generalised minimum variance
control, and which is a particular case of optimal control, addressed below
in Section 43.5.

42.2 Pole-assignment control

Digital stochastic systems can be controlled by pole-assignment, as done in
Chapters 21 and 22 for deterministic plants in continuous time and in Chapter 27
for digital deterministic plants. We will assume a regulation problem, as we did
for minimum variance control.

Theorem 42.3. Consider a plant with an output given by

y(t) =
B(z−1)

A(z−1)
z−du(t) +

C(z−1)

A(z−1)
e(t) (42.55)

where u(t) is a manipulated input, and e(t) is white noise. (If there is no
pure delay of d sample times from u(t) to the output, then d = 0.) This
plant is controlled in closed loop, as seen in Figure 42.1, and, without loss of
generality, reference r(t) is taken as 0 (otherwise a variable change is used).
In this situation, the controller that places the poles of the closed loop in the
locations de�ned by T (z−1) is given by

u(t) = −G(z−1)

F (z−1)
y(t) (42.56)

where F (z−1) and G(z−1) are found solving

T (z−1)C(z−1) = F (z−1)A(z−1) +B(z−1)G(z−1)z−d (42.57)

The output when control law (42.2) is used is given by

y(t) =
F (z−1)

T (z−1)
e(t) (42.58)

Proof. Replacing (42.56) in (42.55), and dropping the dependence on t and z−1

to alleviate the notation,

y =
Bz−d

A

(
−G
F
y

)
+
C

A
e

⇔ y

(
1 +

BGz−d

AF

)
︸ ︷︷ ︸

AF+BGz−d
AF

=
C

A
e

⇔ y =
C

A

AF

AF +BGz−d
e =

CF

AF +BGz−d
e (42.59)
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We want the denominator to be equal to TC, i.e. we want (42.57) to hold, so
that

y =
CF

AF +BGz−d︸ ︷︷ ︸
TC

e =
F

T
e (42.60)

which is (42.58).

Remark 42.4. Orders nF and nG must again be enough for (42.57) to be
possible, and can be found by inspection in each case; these orders turn out to
be:

nF = nB + d− 1 (42.61)

nG = nA − 1 (42.62)

The maximum number of poles that can be placed is given by

nT ≤ nA + nB + d− 1− nC (42.63)

Example 42.5. Consider a plant with an output given by

y(t) = 2y(t− Ts) + u(t− Ts) + 0.5u(t− 2Ts) + e(t) + 0.3e(t− Ts)
⇔ y(t)

(
1− 2z−1

)︸ ︷︷ ︸
A(z−1)

= u(t) z−1︸︷︷︸
z−d

(
1 + 0.5z−1

)︸ ︷︷ ︸
B(z−1)

+e(t)
(
1 + 0.3z−1

)︸ ︷︷ ︸
C(z−1)

(42.64)

for which we want a controller placing a pole at z = 0.5, i.e.

T
(
z−1
)

= 1− 0.5z−1 (42.65)

We must solve (42.57):(
1− 0.5z−1

) (
1 + 0.3z−1

)
=
(
1− 2z−1

)
F
(
z−1
)

+ z−1
(
1 + 0.5z−1

)
G
(
z−1
)

(42.66)

The left side of the equation is of order 2. The right side will be of order 2
if nF = 1 and nG = 0, i.e. F

(
z−1
)

= f0 + f1z
−1 and G

(
z−1
)

= g0. Notice
that the only independent term on the right side will be f0; thus we must have
f0 = 1. This still leaves two variables, g0 and f1, which su�ce to make the
equation possible.

Instead of reasoning like this we could apply (42.61)�(42.62) and write

1− 0.2z−1 − 0.15z−2 =
(
1− 2z−1

) (
f0 + f1z

−1
)

+
(
z−1 + 0.5z−2

)
g0

= f0 + f1z
−1 − 2f0z

−1 − 2f1z
−2 + g0z

−1 + 0.5g0z
−2

(42.67)

Equalling the coe�cients of the same order on both sides,
1 = f0

−0.2 = f1 − 2f0 + g0

−0.15 = −2f1 + 0.5g0

⇔


f0 = 1

f1 + g0 = 1.8

−4f1 + g0 = −0.3

⇒

{
F
(
z−1
)

= 1 + 0.42z−1

G
(
z−1
)

= 1.38

(42.68)

Thus

u(t) = −y(t)
1.38

1 + 0.42z−1
(42.69)

and this control law will achieve

y(t) = −e(t)1 + 0.42z−1

1− 0.5z−1
(42.70)

with the desired pole. Notice that (42.69) is stable.

Remark 42.5. Unlike (42.2), which has poles that cancel the zeros of the plant, Always check if a pole
placement controller is
stable

and can therefore be known in advance, the controller given by (42.56) has poles
wherever the roots of F

(
z−1
)
turn out to be. Consequently, its stability should

always be veri�ed; an unstable controller would result in a situation similar to
that of Example 42.3.

If the controller is unstable, the only solution is changing T
(
z−1
)
.
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42.3 Control design for time-varying references

When the reference varies with time, controllers are more di�cult to design,
and let through more noise to the output.

Theorem 42.4. Consider a plant with an output given byTracking controller

y(t) =
B(z−1)

A(z−1)
z−du(t) +

C(z−1)

A(z−1)
e(t) (42.71)

where u(t) is a manipulated input, and e(t) is white noise. (If there is no pure
delay of d sample times from u(t) to the output, then d = 0.) This plant is
controlled in closed loop, as seen in Figure 42.1, and no restriction on reference
r(t) is assumed. In this situation, the controller given by

u(t) =
G(z−1)

B(z−1)F (z−1)

1

1− z−1︸ ︷︷ ︸
integration

(
r(t)− y(t)

)
(42.72)

where F (z−1) and G(z−1) are found solving

C(z−1) = A(z−1)F (z−1)
(
1− z−1

)
+ z−dG(z−1) (42.73)

achieves an output given by

y(t) = F (z−1)
(
1− z−1

)
e(t) +

G
(
z−1
)

C (z−1)
z−dr(t) (42.74)

Proof. Replacing (42.72) in (42.71), and dropping the dependence on t and z−1

to alleviate the notation,

y =
B

A
z−d

G

BF

1

1− z−1
(r − y) +

C

A
e

⇔ y

(
1 +

G

AF

z−d

1− z−1

)
︸ ︷︷ ︸

AF(1−z−1)+Gz−d

AF(1−z−1)

=
C

A
e+

G

AF

z−d

1− z−1
r

⇔ y =
CF

(
1− z−1

)
AF (1− z−1) +Gz−d

e+
Gz−d

AF (1− z−1) +Gz−d
r

(42.75)

Replacing (42.73) in the denominator, (42.74) is obtained.

Remark 42.6. Once more, orders nF and nG must be enough for (42.73) to
be possible, can be found by inspection in each case, and turn out to be:

nF = d− 1 (42.76)

nG = max{nA, nC − d} (42.77)

Example 42.6. Consider plant (42.64) from Example 42.5:

A
(
z−1
)

= 1− 2z−1 (42.78)

B
(
z−1
)

= 1 + 0.5z−1 (42.79)

C
(
z−1
)

= 1 + 0.3z−1 (42.80)

d = 1 (42.81)

To �nd a tracking controller, we must solve (42.73):

1 + 0.3z−1 =
(
1− 2z−1

) (
1− z−1

)
F
(
z−1
)

+ z−1G
(
z−1
)

(42.82)

The left side of the equation is of order 1. The right side is at least of order 2; this
is the case when nF = 1 and nG = 2, i.e. F

(
z−1
)

= f0 andG
(
z−1
)

= g0+g1z
−1.

Notice that the only independent term on the right side will be f0; thus we must
have f0 = 1. This still leaves two variables, g0 and g1, which su�ce to make the
equation possible.



42.4. ADAPTIVE CONTROL 609

Figure 42.6: Simulation of plant (42.64) controlled by (42.85), from Exam-
ple 42.6.

Instead of reasoning like this we could apply (42.76)�(42.77) and write

1 + 0.3z−1 =
(
1− 2z−1

) (
1− z−1

)
f0 + z−1

(
g0 + g1z

−1
)

= f0 − 3f0z
−1 + 2f0z

−2 + g0z
−1 + g1z

−2 (42.83)

Equalling the coe�cients of the same order on both sides,
1 = f0

0.3 = −3f0 + g0

0 = 2f0 + g1

⇔


f0 = 1

g0 = 3.3

g1 = −2

⇒

{
F
(
z−1
)

= 1

G
(
z−1
)

= 3.3− 2z−1
(42.84)

Thus

u(t) = −y(t)
3.3− 2z−1

(1 + 0.5z−1) (1− z−1)
= − 3.3− 2z−1

1− 0.5z−1 − 0.5z−2
y(t) (42.85)

and this control law will achieve

y(t) =
(
1− z−1

)
e(t) +

3.3− 2z−1

1 + 0.3z−1
z−1r(t) (42.86)

Figure 42.6 shows the results of a simulation with 50 time steps and a sinusoidal
reference. Notice that the output is not much far from the reference corrupted
by the noise (which as usual cannot be eliminated).

42.4 Adaptive control

In the adaptive control of a discrete time plant, in each time instant:

� its model is updated using a recursive identi�cation algorithm, as we saw
in Section 31.5;

� the updated model is then used to update its controller, using one of the
methods from this Chapter;

� the controller provides a control action for the next time instant.

This corresponds to what is represented in Figure 42.7.
Adaptive control may have stability problems caused by the identi�cation

algorithm, by the controller design algorithm, or even by any abrupt change
of the control action resulting from an abrupt change in the model or in the
controller. We will not further address these problems or their possible solutions.

Glossary

I shook my head: I could not see how poor people had the means
of being kind; and then to learn to speak like them, to adopt their
manners, to be uneducated, to grow up like one of the poor women
I saw sometimes nursing their children or washing their clothes at
the cottage doors of the village of Gateshead: no, I was not heroic
enough to purchase liberty at the price of caste.
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Figure 42.7: Adaptive control. G(z−1) is the plant, Ĝ(z−1) is the model of the
plant, H(z−1) is the sensor, and C(z−1) is the controller. r(t) is the reference,
u(t) is the control action, y(t) is the output, ỹ(t) is the measured output, and
ŷ(t) is the estimated output.

Charlotte Brontë (1816 � �1855), Jane Eyre: An Autobiography (1847), III

adaptive control controlo adaptativo
minimum variance control controlo de variância mínima
generalised (generalized, US) minimum variance control controlo de
variância mínima generalizado
sub-optimal minimum variance control controlo sub-ótimo de variância
mínima
pole assignment control controlo por colocação de polos

Exercises

1. Consider a plant with sampling time Ts and an output given by

y(t) = 0.6 y(t−Ts)+0.1 y(t−2Ts)+u(t−Ts)+2u(t−2Ts)+e(t)−0.5 e(t−Ts)
(42.87)

where e(t) is white noise and u(t) is a manipulated input. Find the transfer
function R

(
z−1
)
of a minimum variance regulator for this plant. Hint:

notice that there is a non-minimum phase zero.

2. Find a controller for plant (42.15) of Example 42.1 that places the poles
of the closed loop at z = 1

10 and z = 1
20 . Hint: use Matlab for the

calculations.
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Chapter 43

What next?

Beloved pupil! Tamed by thee, Caro discípulo, que bem dominas
Addish-, Subtrac-, Multiplica-tion, somas, produtos e subtrações,

Division, Fractions, Rule of Three, regras de três, razões e quocientes,
Attest thy deft manipulation! fazendo dextras manipulações:

Then onward! Let the voice of Fame avança, pois, para que a voz da Fama
From Age to Age repeat thy story, de era em era ecoe a tua história,

Till thou hast won thyself a name até que alcances para ti um nome
Exceeding even Euclid's glory! que exceda até de Euclides mesmo a glória!

Lewis Carroll (1832 � �1898), A tangled tale (1885), To my pupil (transl.
Duarte Valério, 2002)

This chapter not only brings together some odd ends left behind in previous
chapters, as it tries to show that what you have learned is related to many
subjects outside the scope of these Lecture Notes, which you may with this
background easily learn in dedicated courses.

This chapter is still being written. In the picture: National Pantheon, or
Church of Saint Engratia, Lisbon (source: http://www.panteaonacional.gov.
pt/171-2/historia-2/).

43.1 Discrete events and automation

This section concerns a particular type of control systems, called automation
systems, involving binary variables.

43.2 State-space representations of systems con-
tinuous in time

Linear systems, both continuous in time and discrete, can be put in a matrix
form that is convenient for several techniques of modelling, control, and identi-
�cation. Let us �rst see how this can be done for continuous time.

43.3 State-space representations of systems dis-
crete in time

Systems which are discrete in time can also be put in a state-space representa-
tion.

43.4 MIMO systems and MIMO control

While we have only been concerned with SISO systems, MIMO systems are in
fact ubiquitous. They can be represented in matrix form, either using transfer
functions or state-space representations.

613

http://www.panteaonacional.gov.pt/171-2/historia-2/
http://www.panteaonacional.gov.pt/171-2/historia-2/
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43.5 Optimal control

In this section we have a very brief introduction to techniques of controller
design called optimal control.

43.6 Fractional order control

Fractional order derivatives and systems, which were dealt with in Part VII, can
be used for controller design in a variety of ways. In short, the main ones are:

� Fractional PID control

� First-generation CRONE control

� Second-generation CRONE control

� Third-generation CRONE control

� Non-linear fractional control

� Variable order fractional control

43.7 Other areas

In this course we have studied many tools of modelling, control, and identi�ca-
tion that can be applied to systems and signals that have little or nothing to
do with mechatronics. They can be used in many areas as di�erent as biology,
economy, or military sciences, once you grasp how.

This chapter is still being written. In the picture: National Pantheon, or
Church of Saint Engratia, Lisbon (source: http://www.panteaonacional.gov.
pt/171-2/historia-2/).

Glossary

HadWe revealed it as a non-Arabic Quran, they would have certainly
argued, �If only its verses were made clear [in our language]. What!
A non-Arabic revelation for an Arab audience!�

Muhammad ibn Abdullah (570? � �632), Quran (610�632), xli 44, Mustafa
Khattab version (2015)

http://www.panteaonacional.gov.pt/171-2/historia-2/
http://www.panteaonacional.gov.pt/171-2/historia-2/
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discrete event evento discreto
demand procura (demanda, bras.)
optimal control controlo ótimo
predator�prey predador�presa
supply oferta
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