FUNDAMENTOS DE TOPOLOGIA E ANÁLISE REAL MMA – 1º Semestre 2014/15

2ºTeste – 15-1-2015, Data de entrega: 20-1-2015 (manhã)

- **1.** (4.0 val.) Let $A \subset \mathbb{R}^N$ be bounded, $\mathcal{J}(\mathbb{R}^N)$ denote the class of Jordan measurable sets, c_N , $\overline{c_N}$ the Jordan and upper Jordan content. Show that:
 - (a) if $\overline{c_N}(A) = 0$ then $A \in \mathcal{J}(\mathbb{R}^N)$ and $int(A) = \emptyset$;
 - (b) if $A \in \mathcal{J}(\mathbb{R}^N)$, then $c_N(A) = 0 \Leftrightarrow int(A) = \emptyset$. Is it true in general that $\overline{c_N}(A) = 0 \Leftrightarrow int(A) = \emptyset$?
 - (c) let $D \subset R$ be dense in R, with R some bounded rectangle. If $D \in \mathcal{J}(\mathbb{R}^N)$, then $c_N(D) = c_N(R)$. Show that this is not necessarily true replacing $\mathcal{J}(\mathbb{R}^N)$ by the Lebesgue measurable sets $\mathcal{L}(\mathbb{R}^N)$ and c_N by the Lebesgue measure m_N .
- **2.** (3,0 val.) Let (X, \mathcal{M}, μ) be a measure space, $f_n : X \to \overline{\mathbb{R}}$ be \mathcal{M} -measurable, $n \in \mathbb{N}$, and $E := \{x \in X : \lim f_n(x) \text{ exists in } \overline{\mathbb{R}}\}$. Show that *E* is measurable.
- **3.** (3,0 val.) Let $f \in L^1([0,1])$, $f \ge 0$ and $A = \{x \in [0,1] : f(x) > 0\}$. Then A is Lebesgue measurable, $\sqrt[n]{f(x)} \in L^1([0,1])$, for all $n \in \mathbb{N}$ and

$$\lim_{n} \int_0^1 \sqrt[n]{f(x)} \, dx = m(A).$$

- **4.** (3,0 val.) Prove or disprove:
 - (a) Let (X, \mathcal{M}, μ) be a measure space, $A_n \in \mathcal{M}$, $n \in \mathbb{N}$, such that $A_n \searrow A$, then $A \in \mathcal{M}$ e $\mu(A_n) \longrightarrow \mu(A)$.
 - (b) Let μ^* be an outer measure and $E \subset X$ such that for all $\epsilon > 0$ there is $U \mu^*$ -measurable with $\mu^*(U \setminus E) < \epsilon$. Then *E* is μ^* -measurable.
 - (c) If $E \in \mathcal{L}(\mathbb{R}^{N+M})$, then all its sections E^y , $y \in \mathbb{R}^M$, and E_x , $x \in \mathbb{R}^N$, are Lebesgue measurable.
- **5.** (3,0 val.) Prove Radon-Nikodym's theorem for σ -*finite positive* measures, assuming that it holds for *finite positive* measures.
- **6.** (4,0 val.) Let (*X*, M, μ) be a measure space, μ a positive measure, and S_{μ} be the space of equivalence classes of integrable simple functions μ -a.e.
 - (a) Show that S_{μ} is dense in $L^{p}_{\mu}(X)$, $1 \le p < \infty$.

Let now μ^* be an outer measure such that $\mu = \mu^*_{|\mathcal{M}|}$ and \mathcal{M} is the class of μ^* -measurable sets. Assume that μ^* is induced from a pre-measure on a *countable* algebra \mathcal{A} . Show that:

- (b) For $E \in \mathcal{M}$ such that $\mu(E) < \infty$, given $\epsilon > 0$, there exists $B = \bigcup_{n=1}^{k} A_n$, $A_n \in \mathcal{A}$, such that $\mu(B\Delta E) < \epsilon$, where $B\Delta E = (B \setminus E) \cup (E \setminus B)$. (Hint: start with showing that there is finite measure set $A = \bigcup_{n=1}^{\infty} A_n$, $A_n \in \mathcal{A}$ disjoint, such that $E \subset A$ and $\mu(A \setminus E) < \epsilon$.)
- (c) $L^{p}_{\mu}(X)$ is separable, i.e., contains a countable dense subset.