Calculation of Cluster Geometries with the Help of Hellmann-Feynman Forces
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The equilibrium geometries of Na,, clusters (n € 7) are calculated by letting randomly generated clusters relax under the action of the Hellmann-
Feynman forces. We find that clusters with five atoms or less have a planar structure whereas larger clusters have closely packed three-dimensional
geometries. The calculated adiabatic ionization potentials are in good agreement with the experimental appearance potentials.

Introduction

The geometrical structure of relatively large metallic clusters,
having more than about 300 atoms, has been experimentally
determined for several metals [1]. It is in particular known that
Ag and Au clusters have a typical five-fold symmetry whereas
Pt, Pd and Al clusters seem to retain the crystallographic struc-
ture of the bulk. However in the case of very small metallic
clusters, of the order of 10 atoms, not even the symmetries are
known. One is forced, in order to calculate their physical
properties, either to choose a reasonable structure or to predict
the geometry from theoretical calculations. In the first case one
usually assumes that the cluster has the same high symmetry as
the bulk and that it is built from bulk unit cells, which is most
unlikely to be true for very small metallic clusters. In the second
case one tries to minimize the total energy respect to the para-
meters describing the cluster structure. Since there are 3/N-6
such parameters for a cluster of NV atoms, this is a very difficult
task, and in most cases the energy minimization is only carried
out with respect to a couple of parameters, the others being
kept constant.

For metallic dimers and trimers it is possible to compute the
whole energy surface [2,3], but for larger aggregates other
approaches must be used to obtain the equilibrium geometry of
the cluster without an a priori assumption on their geometry.

We have developed an approach in which we start from an
initial cluster geometry chosen at random, we then calculate the
forces on the atoms and make use of these forces to relax the
initial geometry till it reaches an equilibrium structure. The
process is repeated with different initial cluster geometries until
a true minimum is found. We have applied this scheme to deter-
mine the equilibrium structure of the sodium clusters Na, and
Na, withn € 7.

Computational Method

The details of the computational method that we have used are
reported elsewhere [2], we only here briefly mention its main charac-
teristics:

i) the core electron effects on the valence electrons are treated within
the pseudopotential approximation. We have chosen an /-de-
pendent ab initio pseudopotential calculated by Bachelet et al. [4].

ii) the exchange and correlation effects are treated self-consistently
within the local spin-density approximation of the density func-
tional formalism. We have used the interpolation formulas of
Perdew and Zunger [5].

iii) the forces on the atoms are obtained by applying the Hellmann-
Feynman theory [6] to the pseudopotential local spin density
scheme [7].

To obtain the equilibrium geometries we start with a randomly
generated cluster structure and we calculate its electronic structure, its
energy, and the forces on the atoms. The cluster structure is then
relaxed in the direction of the forces to give a new cluster structure. The
whole procedure of self-consistent calculation of the energy and forces
followed by the relaxation of the structure is repeated until an equi-
librium geometry is reached. Since the initial cluster geometry is ob-
tained by a random process, there is no a priori geometry assumption in
the calculation of the energy minimum. The traps of the local minima
are avoided by performing several calculations with different starting
geometries for each cluster size. This relaxation method corresponds to
a steepest descent minimization method in the Born-Oppenheimer
energy hypersurface.

Results

The calculated equilibrium geometries of Na, and Na,
clusters with n € 7 are represented in Figs. 1 and 2 respectively.
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Fig. 1
Equilibrium geometries of Na,, clusters. For n € 5 all atoms are in the
same plane, Nag is a pentagonal pyramid and Na; a pentagonal bi-
pyramid. The distances are given in atomic units
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The species with less than 5 atoms have plane equilibrium geo-
metries, with distorted equilateral triangles as the basic building
block. The equilibrium geometries of the hexamers and sep-
tamers are 3-dimensional with a five-fold symmetry axis present
in Nag, Na; and Na7 clusters, Nag has a rather irregular shape.
There is a general agreement in the literature with respect to
the theoretical equilibrium geometries of the alkali trimers
[2, 3, 8, 9] and tetramers [8, 10, 11]. However, our calculated
equilibrium geometries for the Nas, Nag and Na, clusters are
different from those obtained by Flad et al. [8] with a pseudo-
potential Hartree-Fock plus local correlation method. In their
work, Flad et al. concluded that structures with Na, units were
a characteristic feature of the small sodium clusters. In this
work we have not found any tendency for dimerization, un-
stead there is a preference for closely packed structures, either
plane or three-dimensional. Several symmetrical geometries of
the Lig molecule [12] have been calculated with a configuration
interaction method. It is found that a pentagonal pyramidal
geometry is the most stable configuration, which is similar to
our result for the structure of Nag.
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Fig. 2
Equilibrium geometries of Na,’ clusters. For n € 5 all atoms are in the
same plane, Nag has a C; symmetry, Na7 is a pentagonal bipyramid.
The distances are given in atomic units

The appearence potentials of Na, clusters produced in a
molecular beam have been measured by photoionization fol-
lowed by mass spectroscopy. In a clean experiment, where no
fragmentation or multiphoton processes occur [13] and where
the distribution of the excited states is roughly Boltzmanian, the
appearance potential of the clusters is equal to the adiabatic
ionization potentials. We show in Fig. 3 calculated adiabatic
ionization potentials of Na, and two sets of experimental
photoionization values, those of Herrmann et al. [14] and

Peterson et al. [15]. The agreement between the experimental
values is not very good for the Nas, Nag and Nag clusters. Our
calculated values, and in particular their trend, are in better
agreement with the results of Herrmann et al. [14]. Previous
calculations of the ionization potentials of Na clusters have
been reported by Flad et al. [8], they have however calculated
vertical ionization potentials of selected cluster structures,
which can not be directly compared with the experimental ap-
pearance potentials.
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Fig. 3
Ionization potentials of Na, clusters. The circles are the calculated
adiabatic ionization potentials, the squares and the triangles are
respectively the photoionization appearance potentials of Refs. [14]
and [15]. We have only reported the experimental error bars for Nag
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