(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 172305, 3956] NotebookOptionsPosition[ 167588, 3811] NotebookOutlinePosition[ 167996, 3829] CellTagsIndexPosition[ 167953, 3826] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["Exam 2", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, {3.887203586315774*^9, 3.8872035919214087`*^9}, { 3.8965692908918962`*^9, 3.8965692949985943`*^9}, {3.8981766835833597`*^9, 3.898176683657514*^9}}], Cell["Question 1", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, {3.8872035562635403`*^9, 3.887203561802981*^9}}], Cell[CellGroupData[{ Cell["Lifetime and Warranty of Solar Panels ", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, 3.896569580567226*^9, {3.896570756364573*^9, 3.8965707665759983`*^9}, 3.89780166106242*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Show", "[", RowBox[{"Graphics", "[", RowBox[{"{", "\[IndentingNewLine]", RowBox[{ RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", "0"}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", "0"}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "0"}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Circle", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", RowBox[{"-", "4.5"}]}], "}"}], ",", "1"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<1\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", "0"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<2\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", "0"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<3\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "0"}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<1\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<2\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<4\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<1\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<3\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<4\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<2\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "18"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<3\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "14"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<4\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Text", "[", RowBox[{"\"\<5\>\"", ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", RowBox[{"-", "4.5"}]}], "}"}]}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "19"}], ",", "0"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "17"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "15"}], ",", "0"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "13"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "11"}], ",", "0"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", "0"}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "19"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "17"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "15"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "13"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "11"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", RowBox[{"-", "3"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", RowBox[{"-", "3"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "19"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "17"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "15"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "13"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "11"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", RowBox[{"-", "6"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", RowBox[{"-", "6"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "19"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "17"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "15"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "13"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "11"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", RowBox[{"-", "9"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "21"}], ",", RowBox[{"-", "4.5"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", RowBox[{"-", "4.5"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "20"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", RowBox[{"-", "9"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", RowBox[{"-", "4.5"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "7"}], ",", RowBox[{"-", "4.5"}]}], "}"}]}], "}"}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Line", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", RowBox[{"-", "4.5"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", RowBox[{"-", "4.5"}]}], "}"}]}], "}"}], "]"}]}], "\[IndentingNewLine]", "}"}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.608196740367448*^9, 3.608196753251458*^9}, { 3.608196789359242*^9, 3.608196914843504*^9}, {3.8866635020392427`*^9, 3.8866638554757957`*^9}, {3.8866639215155153`*^9, 3.886664287744197*^9}, { 3.8965741606635733`*^9, 3.8965742542662153`*^9}, {3.897801862826344*^9, 3.897801975710602*^9}, {3.897802025503611*^9, 3.897802484095091*^9}, { 3.897802537211795*^9, 3.897802607366744*^9}, {3.89780307788334*^9, 3.8978030833776817`*^9}, {3.897803115531279*^9, 3.8978031250650454`*^9}, { 3.897803166833251*^9, 3.897803303237267*^9}, {3.897803343868086*^9, 3.897803408041856*^9}}], Cell[BoxData[ GraphicsBox[{CircleBox[{-18, 0}], CircleBox[{-14, 0}], CircleBox[{-10, 0}], CircleBox[{-18, -3}], CircleBox[{-14, -3}], CircleBox[{-10, -3}], CircleBox[{-18, -6}], CircleBox[{-14, -6}], CircleBox[{-10, -6}], CircleBox[{-18, -9}], CircleBox[{-14, -9}], CircleBox[{-10, -9}], CircleBox[{-6, -4.5}], InsetBox["\<\"1\"\>", {-18, 0}], InsetBox["\<\"2\"\>", {-14, 0}], InsetBox["\<\"3\"\>", {-10, 0}], InsetBox["\<\"1\"\>", {-18, -3}], InsetBox["\<\"2\"\>", {-14, -3}], InsetBox["\<\"4\"\>", {-10, -3}], InsetBox["\<\"1\"\>", {-18, -6}], InsetBox["\<\"3\"\>", {-14, -6}], InsetBox["\<\"4\"\>", {-10, -6}], InsetBox["\<\"2\"\>", {-18, -9}], InsetBox["\<\"3\"\>", {-14, -9}], InsetBox["\<\"4\"\>", {-10, -9}], InsetBox["\<\"5\"\>", {-6, -4.5}], LineBox[{{-20, 0}, {-19, 0}}], LineBox[{{-17, 0}, {-15, 0}}], LineBox[{{-13, 0}, {-11, 0}}], LineBox[{{-9, 0}, {-8, 0}}], LineBox[{{-20, -3}, {-19, -3}}], LineBox[{{-17, -3}, {-15, -3}}], LineBox[{{-13, -3}, {-11, -3}}], LineBox[{{-9, -3}, {-8, -3}}], LineBox[{{-20, -6}, {-19, -6}}], LineBox[{{-17, -6}, {-15, -6}}], LineBox[{{-13, -6}, {-11, -6}}], LineBox[{{-9, -6}, {-8, -6}}], LineBox[{{-20, -9}, {-19, -9}}], LineBox[{{-17, -9}, {-15, -9}}], LineBox[{{-13, -9}, {-11, -9}}], LineBox[{{-9, -9}, {-8, -9}}], LineBox[{{-21, -4.5}, {-20, -4.5}}], LineBox[{{-20, 0}, {-20, -9}}], LineBox[{{-8, 0}, {-8, -9}}], LineBox[{{-8, -4.5}, {-7, -4.5}}], LineBox[{{-5, -4.5}, {-4, -4.5}}]}]], "Output", CellChangeTimes->{{3.89780196930553*^9, 3.897801976340225*^9}, { 3.89780204487953*^9, 3.8978020747774*^9}, {3.8978021478479757`*^9, 3.897802163425777*^9}, 3.8978023092552977`*^9, 3.897802367188541*^9, 3.897802417513629*^9, {3.897802459707049*^9, 3.8978024848235188`*^9}, 3.8978026171802197`*^9, 3.8978030871949472`*^9, {3.897803171712084*^9, 3.897803196327229*^9}, 3.897803264427704*^9, {3.8978033600834093`*^9, 3.8978033778382*^9}, 3.897803408647451*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{ RowBox[{"https", ":"}], "//", RowBox[{ RowBox[{ RowBox[{ RowBox[{"www", ".", "wolfram", ".", "com"}], "/", "mathematica"}], "/", "new"}], "-", "in", "-", RowBox[{ RowBox[{"9", "/", "reliability"}], "/", "lifetime"}], "-", "and", "-", "warranty", "-", "of", "-", "solar", "-", RowBox[{"panels", ".", "html"}]}]}], " ", "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]", RowBox[{ RowBox[{"ClearAll", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"BernoulliDistribution", "[", "p", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[ScriptCapitalR]SolarPanel", "=", RowBox[{"ReliabilityDistribution", "[", RowBox[{ RowBox[{ RowBox[{"BooleanCountingFunction", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z", ",", "v"}], "}"}]}], "]"}], "\[And]", "w"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"v", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"w", ",", "dist"}], "}"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"r", "[", "p_", "]"}], "=", RowBox[{"FullSimplify", "[", RowBox[{"Mean", "[", "\[ScriptCapitalR]SolarPanel", "]"}], "]"}]}]}]}]], "Input", CellChangeTimes->{ 3.728987454155408*^9, {3.8866630499093018`*^9, 3.8866631065763187`*^9}, { 3.8866631474618673`*^9, 3.8866632949709387`*^9}, {3.886666467050343*^9, 3.886666472168633*^9}, {3.8868196813306293`*^9, 3.886819687605598*^9}, { 3.896573300165407*^9, 3.896573350711197*^9}, {3.897803643594887*^9, 3.897803820881843*^9}, {3.897803852075261*^9, 3.897804008260591*^9}, { 3.8978040511326923`*^9, 3.8978041329436007`*^9}, 3.897804203710889*^9, { 3.8978042817794647`*^9, 3.897804282242838*^9}, {3.89780436200843*^9, 3.897804389905437*^9}, 3.897804503930373*^9, {3.897809202502056*^9, 3.8978092248392878`*^9}, {3.897812704996964*^9, 3.897812729107072*^9}, { 3.8978205492637663`*^9, 3.8978205806130753`*^9}}, CellID->522227289], Cell[BoxData[ RowBox[{ RowBox[{"(", RowBox[{"4", "-", RowBox[{"3", " ", "p"}]}], ")"}], " ", SuperscriptBox["p", "4"]}]], "Output", CellChangeTimes->{ 3.8866632462219687`*^9, 3.886663327579009*^9, 3.8866664730382547`*^9, 3.886666505051875*^9, 3.886819735317889*^9, 3.88720329573217*^9, { 3.8965733218439837`*^9, 3.8965733559761868`*^9}, 3.896579014690997*^9, 3.896582277287055*^9, 3.896587478379489*^9, 3.896588501065769*^9, 3.8965885635956507`*^9, 3.896782080613895*^9, {3.897804105437386*^9, 3.897804133655912*^9}, 3.8978042043948708`*^9, 3.897804282951524*^9, 3.8978043906430407`*^9, 3.8978045043954687`*^9, {3.8978092048141117`*^9, 3.897809210734803*^9}, {3.8978127296977253`*^9, 3.8978127385193443`*^9}, 3.8978147222753277`*^9, 3.897815249293294*^9, 3.897820581697957*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ClearAll", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"ExponentialDistribution", "[", "\[Lambda]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[ScriptCapitalR]SolarPanel", "=", RowBox[{"ReliabilityDistribution", "[", RowBox[{ RowBox[{ RowBox[{"BooleanCountingFunction", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z", ",", "v"}], "}"}]}], "]"}], "\[And]", "w"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"v", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"w", ",", "dist"}], "}"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", RowBox[{"SurvivalFunction", "[", RowBox[{"\[ScriptCapitalR]SolarPanel", ",", "t"}], "]"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Mean", "[", "\[ScriptCapitalR]SolarPanel", "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", RowBox[{"HazardFunction", "[", RowBox[{"\[ScriptCapitalR]SolarPanel", ",", "t"}], "]"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"h", "[", "t_", "]"}], "=", RowBox[{"FullSimplify", "[", RowBox[{"HazardFunction", "[", RowBox[{"\[ScriptCapitalR]SolarPanel", ",", "t"}], "]"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"FullSimplify", "[", RowBox[{ SubscriptBox["\[PartialD]", "t"], " ", RowBox[{"h", "[", "t", "]"}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.886663255298806*^9, 3.886663265145617*^9}, { 3.8866633003841133`*^9, 3.886663323350614*^9}, {3.886666547619432*^9, 3.886666564208694*^9}, {3.8965779935627527`*^9, 3.896578080757229*^9}, { 3.896578249042924*^9, 3.896578263824471*^9}, {3.896579054660852*^9, 3.896579061862083*^9}, {3.896582287114835*^9, 3.896582324807736*^9}, { 3.896587620413219*^9, 3.896587689929969*^9}, {3.896588478101186*^9, 3.8965885215316257`*^9}, {3.896588576897984*^9, 3.896588585632997*^9}, { 3.896588894372101*^9, 3.896588896203104*^9}, {3.896600252394491*^9, 3.896600253231295*^9}, {3.897812312827054*^9, 3.897812319877061*^9}, { 3.897812614526338*^9, 3.897812617298252*^9}, {3.897812654437039*^9, 3.8978126960276527`*^9}, {3.897812747393169*^9, 3.897812762610917*^9}, { 3.897812833530448*^9, 3.8978128381920633`*^9}, {3.897812953646144*^9, 3.897812999428297*^9}, 3.897813440086006*^9, {3.8978135032171917`*^9, 3.8978135327274446`*^9}, {3.897814700097007*^9, 3.897814734295373*^9}, { 3.897820585328545*^9, 3.8978205943763113`*^9}}], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"1", RowBox[{"t", "<", "0"}]}, { RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", "5"}], " ", "t", " ", "\[Lambda]"}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"t", " ", "\[Lambda]"}]]}]}], ")"}]}], TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}, Selectable->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{ 3.8866633296679897`*^9, 3.88666650751689*^9, {3.88666654907437*^9, 3.88666656494932*^9}, 3.887203303425775*^9, 3.896578027437621*^9, { 3.89657806923717*^9, 3.896578081564866*^9}, 3.896578264884604*^9, { 3.896579005369419*^9, 3.89657901926206*^9}, 3.896579062696122*^9, 3.8965822908952627`*^9, 3.896582325589251*^9, 3.896587484025586*^9, { 3.896587650652997*^9, 3.896587690642049*^9}, {3.896588492787896*^9, 3.896588522470093*^9}, 3.89658858643631*^9, 3.896588897089941*^9, 3.89660025435573*^9, 3.8967821324280787`*^9, 3.8978127635328608`*^9, 3.897812838908815*^9, 3.897813000680972*^9, {3.897813436172002*^9, 3.897813441107101*^9}, {3.897813508669517*^9, 3.897813533720022*^9}, { 3.897814724675295*^9, 3.897814751021896*^9}, 3.897815261532625*^9, 3.897820596231288*^9}], Cell[BoxData[ FractionBox["2", RowBox[{"5", " ", "\[Lambda]"}]]], "Output", CellChangeTimes->{ 3.8866633296679897`*^9, 3.88666650751689*^9, {3.88666654907437*^9, 3.88666656494932*^9}, 3.887203303425775*^9, 3.896578027437621*^9, { 3.89657806923717*^9, 3.896578081564866*^9}, 3.896578264884604*^9, { 3.896579005369419*^9, 3.89657901926206*^9}, 3.896579062696122*^9, 3.8965822908952627`*^9, 3.896582325589251*^9, 3.896587484025586*^9, { 3.896587650652997*^9, 3.896587690642049*^9}, {3.896588492787896*^9, 3.896588522470093*^9}, 3.89658858643631*^9, 3.896588897089941*^9, 3.89660025435573*^9, 3.8967821324280787`*^9, 3.8978127635328608`*^9, 3.897812838908815*^9, 3.897813000680972*^9, {3.897813436172002*^9, 3.897813441107101*^9}, {3.897813508669517*^9, 3.897813533720022*^9}, { 3.897814724675295*^9, 3.897814751021896*^9}, 3.897815261532625*^9, 3.897820596238454*^9}], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ { RowBox[{ RowBox[{"(", RowBox[{"4", "+", FractionBox["3", RowBox[{"3", "-", RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"t", " ", "\[Lambda]"}]]}]}]]}], ")"}], " ", "\[Lambda]"}], RowBox[{"t", "\[GreaterEqual]", "0"}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}, Selectable->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{ 3.8866633296679897`*^9, 3.88666650751689*^9, {3.88666654907437*^9, 3.88666656494932*^9}, 3.887203303425775*^9, 3.896578027437621*^9, { 3.89657806923717*^9, 3.896578081564866*^9}, 3.896578264884604*^9, { 3.896579005369419*^9, 3.89657901926206*^9}, 3.896579062696122*^9, 3.8965822908952627`*^9, 3.896582325589251*^9, 3.896587484025586*^9, { 3.896587650652997*^9, 3.896587690642049*^9}, {3.896588492787896*^9, 3.896588522470093*^9}, 3.89658858643631*^9, 3.896588897089941*^9, 3.89660025435573*^9, 3.8967821324280787`*^9, 3.8978127635328608`*^9, 3.897812838908815*^9, 3.897813000680972*^9, {3.897813436172002*^9, 3.897813441107101*^9}, {3.897813508669517*^9, 3.897813533720022*^9}, { 3.897814724675295*^9, 3.897814751021896*^9}, 3.897815261532625*^9, 3.897820596372714*^9}], Cell[BoxData[ TagBox[GridBox[{ {"\[Piecewise]", GridBox[{ {"Indeterminate", RowBox[{"t", "\[Equal]", "0"}]}, { FractionBox[ RowBox[{"12", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"t", " ", "\[Lambda]"}]], " ", SuperscriptBox["\[Lambda]", "2"]}], SuperscriptBox[ RowBox[{"(", RowBox[{ RowBox[{"-", "3"}], "+", RowBox[{"4", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"t", " ", "\[Lambda]"}]]}]}], ")"}], "2"]], RowBox[{"t", ">", "0"}]}, {"0", TagBox["True", "PiecewiseDefault", AutoDelete->True]} }, AllowedDimensions->{2, Automatic}, Editable->True, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.84]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}, Selectable->True]} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.35]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "Piecewise", DeleteWithContents->True, Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{ 3.8866633296679897`*^9, 3.88666650751689*^9, {3.88666654907437*^9, 3.88666656494932*^9}, 3.887203303425775*^9, 3.896578027437621*^9, { 3.89657806923717*^9, 3.896578081564866*^9}, 3.896578264884604*^9, { 3.896579005369419*^9, 3.89657901926206*^9}, 3.896579062696122*^9, 3.8965822908952627`*^9, 3.896582325589251*^9, 3.896587484025586*^9, { 3.896587650652997*^9, 3.896587690642049*^9}, {3.896588492787896*^9, 3.896588522470093*^9}, 3.89658858643631*^9, 3.896588897089941*^9, 3.89660025435573*^9, 3.8967821324280787`*^9, 3.8978127635328608`*^9, 3.897812838908815*^9, 3.897813000680972*^9, {3.897813436172002*^9, 3.897813441107101*^9}, {3.897813508669517*^9, 3.897813533720022*^9}, { 3.897814724675295*^9, 3.897814751021896*^9}, 3.897815261532625*^9, 3.897820596500021*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"\[Lambda]", "=", "1."}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"R", "[", "t_", "]"}], "=", RowBox[{"SurvivalFunction", "[", RowBox[{"\[ScriptCapitalR]SolarPanel", ",", "t"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"f", "[", "t_", "]"}], "=", RowBox[{"-", RowBox[{ SubscriptBox["\[PartialD]", "t"], " ", RowBox[{"R", "[", "t", "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"h", "[", "t_", "]"}], "=", RowBox[{ RowBox[{"f", "[", "t", "]"}], "/", RowBox[{"R", "[", "t", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"h", "[", "t", "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0.001", ",", "10."}], "}"}], ",", RowBox[{"AxesOrigin", "\[Rule]", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.886663255298806*^9, 3.886663265145617*^9}, { 3.8866633003841133`*^9, 3.886663323350614*^9}, {3.886666547619432*^9, 3.886666564208694*^9}, {3.88907604087598*^9, 3.889076053392647*^9}, { 3.889076442467484*^9, 3.889076493440548*^9}, {3.889076608342888*^9, 3.889076613765264*^9}, {3.88907874297992*^9, 3.889078803584547*^9}, { 3.889080123564246*^9, 3.8890803338583*^9}, {3.889176655926646*^9, 3.8891768279544764`*^9}, {3.889230890351398*^9, 3.889230983275075*^9}, { 3.889231612811893*^9, 3.889231659540691*^9}, 3.8892326676627083`*^9, { 3.8892327651608143`*^9, 3.88923286672547*^9}, {3.8892330665876083`*^9, 3.8892330725229692`*^9}, {3.889233481153637*^9, 3.889233483431973*^9}, { 3.8892339073828707`*^9, 3.8892339082127943`*^9}, {3.8965784726702957`*^9, 3.8965785269397573`*^9}, {3.8965785703328667`*^9, 3.896578639006274*^9}, { 3.8965787449066887`*^9, 3.8965790389491987`*^9}, {3.896579073612748*^9, 3.896579159203478*^9}, {3.8965882886565313`*^9, 3.8965882893503857`*^9}, { 3.8965885409103813`*^9, 3.896588541238549*^9}, {3.896588582356346*^9, 3.896588583129958*^9}, 3.8965887922929497`*^9, {3.897813525862423*^9, 3.897813553665617*^9}, 3.897820600104553*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwd1nk41F8XAHDGvsx87fsyjCxREbJU7kkhIURCstOiLJXkFyVJIVQilGRJ ilKoKElE1ghZSpqyK7Lv8d55/5rn89xlzpxz5t4r5+63z4vExMSUz8zExPg0 +fB9XNnDCi2Nrdz8pz6BTooWlx3P9UdbNpV2i1RPoNa3z7YTuqGIk23zV2G7 SWTK9kX2sWoM6kviVVH0m0JsKkPXg9alotom20xS2Ay6t09Rw9U0DVU19ixV /ZtBkuWFR7K33Ecj77rGhYNnUdHQJGesYxZKMni7rvDIHOrT9zd1znyEVn+a uCZuWEDPmuNT9mnloa0uilsfpyygEM+CEeOafGRjq/+jkWURCcWNR20aLUAR ChkDfq2LKNN/ixeTeBGyzG2qDXdcRq1VxQ8+u5ai/mTmFCPZVaQb96GpQeU1 4larfX45YBXds2+frZ56jRzyU1mDK1fRsbFpo9cRZcjh+y/OZNc1RBLVHMzM fYeifBs+ggkTiL+wF9RfqETTaWyCtgeZwTzVVemVUxXafPPO68xzzHDhwpGt Wu+rUIHFpsaQO8wwYHrWY2P0B+RSnVHR080Mz3tvF8lL1SC+q9keMdYkMOXs tOGBOmTZNivgt5EFkrjvGK7k16GUoKG6+3tY4Bevi8aYeD1ylimc9fVmgRD+ IUrzdD0SUhzLHr7LAk8l5utuPmxEq5YDeyLZWCEqiYcay9GCOjKOVY3WsMKz 2ydusxm0IOd3x6NKv7NCR3Iz5fzpFuSz7GGDZlhB/k7CP9+fLcis4frWQCob lKVLfrN68xlFXCpMeRLIBuO5qklCfm3I20Tn6T4hdhB6HEuOfdCGwiz2NFOV 2EE/728EW08bMok51/1Kjx2uPCk6Nbe7HZU+9TDf5cwO1MKt1l3yX9Dk/AzX 32x2sHljxnu3owMNBnC9RSocUNLkE04z+IpY5IuV0gU4wcNr7+Ca/1fkdcRq s6QsJ1D+qe/pyfqKMtNXh4NVOcFTbY4/kesb+sk53E/fyQn8MWEZ7F++oV2t QWEupzjh2O7EihGf74iz9KH7iSZOEKYHKdTc+47k/3tNoC5OqAhyvJr5+Tv6 RP/Zs/CLE0Qeylod1OlFYTdvsSgucEIV2+MfjaQfyHGW47SvHBfEubmsdZrT UXOd4KtpPy7wfGKlYexNR0ZdN9SPBHOB3uIOj+ILdPQ6fmKhNpwL+q8rfLxe SEcP5+qdrRK5YGvFSJyp2E8URl3/KKSUC4ZlTsu86fuJ9D/ubA9e5YIdPVe3 3/uvD7lNOD6yDeEG1kKtN9cS+tDABo6x+EvcUHuFrnsuvw81HD1NfxvNDVaa ulr2vX1IJJPNdSqZG1yjh9YLGPYjq9sVx94Xc0OYrrFYJNcAklGvixYc5YaK WyzTJ5IHUb+/o+s+cx6IOFbg7/R8EDmdL/WX2ccDu+Hg+J76QZR0KbyMfoAH Wn4XjiitDCKj6mtuuz14gG7oTv/pMoR2p3VZ5QTzANNkRdN+pWF0rqDTsyCb B8DifO72lyNoRWx08vwMD+xZ3y1l+nkEhZns2np/kQf2c2jdsP0zgtLpOt0l qzxw7P1IsI/8KLJ9JOLRwskLCdr7zVLiRlGCfFZrqhQvDEqrjc94/0bSPYvh Twx5IXa8WzNfdAxVj1R4GEbxQnKDVu6rzWMop1+NOSCWFzJz46WqLMZQ011h IuUGL7x0N2L7emkMlezuL/qSwgv0jmcdHBNjyKysJo30mBe03l0J9qgdR8FN lU5b6nhh7GOqS+y2CRT6jm3UgYUMQk7DQmqmE8iVdHYlgZ0M+hPa9fX7J9B2 m5GMOi4yRIp91uL0m0AnYgVqlPjIQD3KwX0pYwJ5rFpZP5Migy336eKz7JPI wuz8ukUtMrw2t+DybJlE2rpdTXfcyUCnp5aTvk+iXdaaCXZeZOAIHD6VMYLH ufobyUfw+rRLvb2kKcQa5fsi4AQZxsZKixy0p9C7CDtmvrP4++IVnS1Tp5B9 fXZM3jUcz+e1Qn3PaZSmeGd9RBEZrEay+4YCplHA7fVc3C/JIM68RyjxwjRK XmGOvFZChnz1W4F/U6eRkexCwJW3ZGiLV9bN/jyNMuQ1ivd/xPvvtX5LRjPI 0rXzvf1XHH995ke6+CwK6RNJlF4lQ8Qvk4VYpVm02TavYAcTBSyW/ihv1Z5F mVcOkj1IFKCr6EQnWs2iy1x9WWnsFOCIajDfc2UWRepZlUxRKGBrMvO5aGYW SYwr6FBlKTBeZdQT2TyHpm6G3creToECau3mmZ45FLJRPdofUcA/dE+U2+gc OlYobqe/gwKTWyy3bGObR/F1j0M/7qLAzCP765P688glp9Or1owCy/E+u5xy 5tFRxzG7ww4U4HS6ka8RuoDcgoxPbjxFgboSQZb06AX0UEtD8M1pCkQLJznw Ji+gzUfbhozOUIC3OZV9qHABBbXFbbELpgBhmO16d3gBff1MPHe7QAER5VdC HLaLyKD+7S7FGArQZnpCetYvobyMO/ZnMigQeebCJ3edJXRO7TD5VSYFhhfk qCM7lxBrrPbJuSwK5P/zrpp1WkIK7+P2BeRQQItjkouIX0Ll5Kt3D+RRYJcE 2+0d00toa2r2u6FiCnjChuc5b5ZRtth7Qu4jBWoqm0kbapfRno8lbfq1FFA2 Omlb1L6MQk/EnLWpo8Af01fz78aWkU3fjmMXGyhw2maHQbfsCpJKXBNsaaZA hPf+Bp6IFTRzx/2xXhcFsq+FDvib/0O2byZqjYcp8OhmUCGb4z/EVuQubDtC gafJARdSD/9DQzEPkOsoBUqzvcQ/hP9DoVU+moF/KPCpzMJCtPQfahuQqLgx QYGFP9Iv3q5bReqUgodJCxQwtyiP4F5bRfUcn3m7OQiwtimxTuddQyUJ1aUf OAmwcyiU0ZJYQ2b9fb4FXAS4eeWUHNJeQ+4+nnMXeQg4Exr355nPGnqjf/6O JEHA/SfOtge61pBHUBLIixCwFLnG32rPBBGzc88jaAQ03eWdU3ZhAj/pfd+M FPD8QvGvF7yY4I6btBn7OgJMejUzN5xkghVPA+bLigTc0j6yOSqGCUwPsfYG qxCwsb9lH5QzwdmGv5yGm3A8OzITntKY4VvjnyPW+gTULu8SjhlnBnd7TceE vQSIFgNv5Qwz3Hht903ZkgDv49tYFpeYodv3cvtbbJbvmpPeHCQIqNbWGLQi wKBcvsmQSgI/JJilbkPAizCmy0v4HWBMlqXnHyAgk61s5ugLEoQITtkbuxIQ Smi27w5hgS/vo2TE/Am4F/WVk+MSC2SHnn2egl3OEr69OooF3EqotRIBBKzO t+TsuM0CKSefhUueJCCM7husX8gCqjpqW0VPExDx/LGM2jALkE4Er18IIiDa Rv4oYcsKV3K9j3pcICD5Nv/qF1U2yLln+37hGgFRCqbPqJvZYNC3lWYfS8B/ z8PcfXTZQGmIS/MVtlPD3xomIzb4NdlnfzqOAOpaU7yqMxs4WfbXj8YTkOsd LXfxOhvsbFmOqb1JQKk2i5HaLBtIv3503TSZgK9tMzHh5exwljYiFJBJwF35 rnO21eyg62a6/wO2S8AbH8VGdjB3ct4tmkVAPyXcrL6bHVSEekzKsP+aEjwC s+xQqRldTHpAAGuFSnSGKgeE5xZHXnyI65nvfLUimQNM/faSTfMJuBRRG7F6 khOWXmXdobwgoDIw9cqzYE544JYXbonNdPh4tHsYJyyHXN50HTvElO96TSwn KHLFf+N7ScBpiv2duFxOUL27Ek68wvVOHnou08sJ4uZPDEilBOzJZ/9hYMoF 20V3dJeXESDQvkvvgiw3SM76H0+vIkCuK6f07TpuoPPp9jRjq/dw6q+ockPg LU4Fpg8E7O1v1A/W5Qblx1bbXLGjZmy3nbLmhsiaHQky1Tg+YS90GL8LHP+4 LyTUEDC2/7KR5RA3mJJWI93rcH92VlvLFvCAwsep2MRPOP9pbcTAC3zPTz/Y V4Ed5fGz6XEZDyiFBU2OYu/5u2K6pZ4H2BuZy1EzAY3sWoYWAzxgMnchaQi7 WTtz8zlJXti7XsxD/TMBHQnnBTuv8IIzy1Wbh224HpY6X+JcyVA40Oyn0UVA ovIXvp/e+F57bXzKGtuY+ZS5Jr7Hul5edArAzi18WtUZTAaDLWn0Z9jHhRUL qQlkqN/85fnGbgJmvwrFF1aTYZuZS8y6rwSwe0/t7liPz/W2hAKmHgKUQp6U Sc9SoLM8fV3ADwIei8xrzy9TQEej9lgsttpzKGgh4TxPkG4/wt482JZxiY8A 51auBz+xt1ktRY6o4n3aP6dY0QnYp2Bi/cKdAAmjx4sqP3G9G+kD5i0EnPiu qdLwi4AjlGiO8v18oMV3vKxhgIAhtZwmCQc+cNccZ/6F7W1WmRDkxAdhT420 FrA9ry7JanjwwYJmiYvCID4/SD662f58kNIQ1nYO23HO7Gh0DB8gT7HtSkME mPeSG+ze88F+Pf4o/2HcD09vxP1V44fkxXbHllECxDoCEwTU+aHKer/0T+y1 fw7J2pr8YMce0DqJ/clCPvOcHh5flyMk+Bvnc6zwBYcxP8ynbVmyxX6o1t4j 68IPQfctbDqwZfJEVK1u8AM/6Vhk8x8CeHLvfHw2yw+uJEHpe+ME9Dzb7yO6 yA8vyzVW87HzSwni/Ao/vEg52/oG27zhkp0ZiwD8LMqz7ca+Nu4zMMAnALZn 6RWCfwmgaG9jkVQTAHMzVcNIbIHKHoPL7gIwe/ycpvsEAeI90i8dmgUgtWWC Z2ES5388PTmyVQDmSW4GLFP4PGKSP1f0RQCOGbcepmCvKCgCuQfPN/qSroDd e2JjfcWwAAy/UH5ghZ25ZtCrRBIETaG9PA+x19Nc2ee0BGH1RuYZi2kCth7L tLuZKggxAs4ofIaAwqY7hgVpgiC8Q0g/BltZI3Fj431BsNpetuEWttDCFXb2 h4KQz76w9gB7/PKJl8FFgqCe99qqDvt+hq6IW6MgTK5tzaXM4v7s/vRl06og 1JnU2N7CbjFZtm1yEwITy57Ka3MEbLpW/2ODlxDouHpU3cKOa0k5FndECNqG JN/exTZ30A2z9MPjxbp387HrjgXmfQ4RgpCkKq5G7MrYv8wdt4Xgdh71Idc8 AcVtfU97m4QgTZFDIAw72aWRc0JPGB6bXf3suECA6xOPVpHtwpCSN/LVFVtp eenOdhAGV8vwH97YL5NUNsUYC0N3zpGvJ7HbmyL3K9oIQ2vlqdvR2MS2HZlO x4XBU6pBoxQ7Uuzl1rp7wtD/SYpZcJGAU5/TfTNZRIA/uLWpFFuBidzJyyEC T04Zqb7Dbt/4HwriFgE7f5mID9ha12z5zPlFwHGvgHIz9owxV+GsjAhc/eun 1499puzk7G59ESAUjl0mL+H75aFRyF9/ETB9P9DjhB0e+jtqW68IDFxrtfmL 7f+veTnppwjce1+RMI3tHFp8YrJfBMrHJVvmsfVDQ61zfovALuN1BkzLBEyF EOJ8i3h9V+dfPmz3EM3cPkFR8Ppqk6+BvfPcuZpoU1EwnutN88dmDeZh6S4W hbEllX/92I6kkqLFV6Ig6OqkOYz9LMbTU+KNKBTv4T78G/vQvbfVB9+LQk8a vWYS+2WV39XeJrz/3qdHVrGPUtrJ/YOiUB14cYvoCv6/Zt0V+ysmBvubbDhN sFM+bdjIFioGle47R9Oxu3SfhR4NEwM7zbmaTGyxrM1NTZfEoPeFfsYD7KQg neNJ0WIQI3pxbx72TeqOx0rJYrDpx7ZrL7GvnbRV3FMkBr56OkmN2OdFzsnE j4iBg6Dg1By2u3MtRdxOHB7Y/9xs9I8A7laBtJ0O4nCjd/CgCfZzo0Oqvk7i 0KW85ZIpNtOGKZMqd3FI/+9VowX2vWXJiyf8xMG175iZHXZ3st/0+6vi8LDp 3YI3tlWbSNexN+KwNmgodQXbYLdXRhlVAmyHPRorsWlkJb1OmgTUDa5c/YDN 2TrcMqkoAUH523bVYLcdPM6ktEECJsuLX9ZhH/E75XJDTwIi1LNjWrBvJl2U 9t4nAYHE4bnv2IP9aSlEhAT4HorqmMeOvdhxw31IAlym5OeVVvH7RMm3tmJU AoQTzSJUsNc3sa3JjEuAQdU6PlXsGjHt499mJODuumnaRuzVggRjW5IkOOTx bdPC9u21WjaSlgSTit2bAHvv1gZPFRtJSOamqBzA5pt9pzNRLgk/1WUyL2Ib Z8s+EaqUhPanOz+FY4faXJDXq8bzvUMXL2GPPjcghzdIgou3ukUkdpXv21+C XZJg+Cl3JBr7zPDrWJ1JSWi6FT6fgP3t24u+8zQpuBnyyucBdk5lXjz5qhQk bbP5Vo1dve9nVmCMFBQWJwzWYPf/Ein5HicFnU8mJj5iy7OE058kSkHiehaW euz0nfYae7OkoNYxXeoTdvIH1ra4cinI+eGo2IEdXXNIhG9WCjyn/iYPYPvV E2kC7tJQaakoR1ojYM6DPAFe0hAGraMMn//HvdPviDTsH/lexIJ9TZ19pMFX Gu67iOxiw36ctKJ1+Zw0XCsRP8SJPeg+0jh/SxrGUzoDKNiHlitXej5KQzbz VRUJbDO1M04PN8hA+oudvzdh84n+LqlWlwHlPstYdewOZlfhfk0ZaG/5vlED 27XT9BNVXwZkz4b5b8YODJeGVGMZoGT/HtPCTu/6QIt1kQEd1qef9bCnIwR/ n7whA9JqZ9FO7DvfnwUbzMpA4gr9oy32nkfLp+8vyEAGb4j9fuyF08b+pBUZ GJi4O8ywLW+Pdw1JFqK+BHAcwObdymG7l08WPuw4hRywQ5IPbXRWlYU5ww0p h7CdbLj7Qt1kIXKfxpwXtkydh/nbJllo4+TxCcTWuncmcqBFFs4+2d3FsNmp qApyuyx83KhudAb7rHSBlvNXWYj++k86CPtzwJLU2qAsWGrdaTiLbRhbe4bK RIUMKzHREOxZbRcTd3EqHPbv9w/HPnjl2vCAGRUE3d23x2E7/mL6cseCCvcO xNz7v7cHvre2pEKWudva/z19KPXtPiqs3ydcEY9t77LJPNGBCobnH2y/wfj9 Oq0Fuw5T4ZdGlsot7L1DokFZ4VSgPx2vScEGkyw2t1I83vRLIRu7d0/bHOUN FTwMhwMYDt3LMlxWRoWXsk/KGX6936NerIIKHSOBBx4w8uFJi2+poUJoJldk DrbyxSwxaKfCC4UjnbmMfniTpSr7lwo8B46bP8H+sTHb+ruCHPw2do5+gb1Z R9fdV1EOWKXSPjAcgRpPrinJQZXz01WG11vNJMipyuHzZffJl9inA3Z1eGnI QXe164FX2NzF/Y7j2+XA5tY28VJGPHrrPNfs5GCp9GZIGfbVnTln5KLkwIhE r63Ettz2wK49Wg4uMdevMCyinb3lyjU54Fu8ol6Fna2YOfcnXg5KvMJuM1zB de9MSZIc0AwPe3xg9Fdz4hnLbDmoE9wwXY191OnymdB3ciCvmDBdy+jHQM8z 3bNyoDKke+ETdvXJj4F+83IQdtAnh2HwXx/ItigH3tXnmxjW8Zk4pbEiB2bf d0s2Yyu4hQREkeThU+3xFwz/M791XI+Qh6Jczv4W7GcKH9xTlOWhNlVbtY0R fzvN0uGgPCyqWnt3Yqv/Z2gz5CQPXbZfLjO8h+p2INBZHszYdzxg+Pzxey43 3OSh1aK5j+EhVnH/usPyEB9R59KFXaJNuaF3Wh56f+yy6cZ2uL3QKh6L1092 KH/DvuvYZPe1XB7Uzune7GXUZ9JufXSFPByrc37KcOkV+j+9Snmodz9Rz3BH 8XR2SrU8dNfsJP1g9AMhMW3fKA8Pwjv9GY6o8o7v7JYHrv48Uzr2cTWm2vYZ eeAlxY3+xN66ulmveT0N3Jg2j/Uz4k+hqrmr0UAl4ixpgFEfLYrs7AYadFk+ FWXY2GeEVVKDBlxTQzsYtupKb/HWoUFP661Ehr0LeY+s7qTBFXO63iD2de/B pA2HaHDKK+nMEHb/p5SZmHga+NyVqxrBVmXN/2BxgwbmjzM7GD6pV36LSKDB 6TSBUYaZsn9pJSTRgHb8Hd8otlSwamBqGg0OW+89xLAN7e1sbh4NdET2TjNc GUSfq/5IA3qnnuAfbK4nUzVX6mjw/EaRAsNWv1hvmzbQwG5eegvDveYqOk2f aDC28sGe4UW5k0HtX2hQ4H0ojWH1RpaFX300SNWuoo1hBzGL1GYP0CCk30KL 4fItysneQzTw5a/fxbB5hrnu6CgNnore9mL4yJnEs5OTNJjXvpzDcEHew91F 0zT4pZX2kuE5eqlY4CwN/hN5WMNwhFlvycIC3r/w+iDDDWETV18v0WAlwn+O YYGXJIeQFRrM+RiyjzPOo99CKgarNFgMYBdhOJ2qtLi2RgNydtk6hv8HHScM Dg== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0., 0.}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{0., 10.}, {0., 3.999965948886262}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.889176730914851*^9, {3.8891768167960587`*^9, 3.889176828555921*^9}, 3.889230909149411*^9, 3.889230945140864*^9, 3.889231660372856*^9, 3.889232782631487*^9, 3.889232867523501*^9, 3.889233073194221*^9, 3.889233517067259*^9, 3.8892339088243647`*^9, 3.896578527615899*^9, { 3.896578621491197*^9, 3.896578639755615*^9}, 3.896578754169569*^9, { 3.896578804528798*^9, 3.896578809399897*^9}, {3.896578851633987*^9, 3.896578883276846*^9}, {3.896578918234569*^9, 3.896578986621378*^9}, 3.8965790211757507`*^9, {3.8965790838255043`*^9, 3.896579112197215*^9}, { 3.896579150741479*^9, 3.89657915980765*^9}, 3.896588290282835*^9, 3.8965885424963903`*^9, 3.896588793412013*^9, 3.896600259311976*^9, 3.896782135537678*^9, 3.897813557036744*^9, 3.8978206011536427`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ClearAll", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"ExponentialDistribution", "[", "\[Lambda]", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[ScriptCapitalR]SolarPanel", "=", RowBox[{"ReliabilityDistribution", "[", RowBox[{ RowBox[{ RowBox[{"BooleanCountingFunction", "[", RowBox[{ RowBox[{"{", RowBox[{"3", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", "y", ",", "z", ",", "v"}], "}"}]}], "]"}], "\[And]", "w"}], ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"x", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"z", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"v", ",", "dist"}], "}"}], ",", RowBox[{"{", RowBox[{"w", ",", "dist"}], "}"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Mean", "[", "\[ScriptCapitalR]SolarPanel", "]"}], "\[IndentingNewLine]", RowBox[{"Variance", "[", "\[ScriptCapitalR]SolarPanel", "]"}], "\[IndentingNewLine]", SuperscriptBox[ RowBox[{"Mean", "[", "\[ScriptCapitalR]SolarPanel", "]"}], "2"], "\[IndentingNewLine]", FractionBox["4", RowBox[{"25", " ", SuperscriptBox["\[Lambda]", "2"]}]]}], "Input", CellChangeTimes->{{3.896588642109021*^9, 3.896588659373969*^9}, { 3.896588721413899*^9, 3.896588724515895*^9}, {3.896588775114819*^9, 3.8965888637025414`*^9}, {3.8965889138337*^9, 3.89658904112381*^9}, { 3.8978205090189*^9, 3.8978205176110086`*^9}, {3.897820608327692*^9, 3.8978206421682177`*^9}, {3.897820711559924*^9, 3.897820713039371*^9}, 3.8978367467643347`*^9, {3.897837262532143*^9, 3.897837271735577*^9}, { 3.897837828685822*^9, 3.897837867788837*^9}, {3.8978379128032007`*^9, 3.8978379198175497`*^9}}], Cell[BoxData[ FractionBox["2", RowBox[{"5", " ", "\[Lambda]"}]]], "Output", CellChangeTimes->{{3.8965886477687902`*^9, 3.896588670074689*^9}, 3.896588711559341*^9, 3.896588865054153*^9, {3.89658893742447*^9, 3.896588940575057*^9}, {3.896589027753283*^9, 3.896589042007699*^9}, 3.8966002630978117`*^9, 3.89678213785366*^9, 3.897820522756171*^9, { 3.897820614613309*^9, 3.89782064546704*^9}, 3.897820713738079*^9, 3.897836751340926*^9, {3.89783786172808*^9, 3.89783786861943*^9}, { 3.897837913805118*^9, 3.897837920934265*^9}}], Cell[BoxData[ FractionBox["1", RowBox[{"10", " ", SuperscriptBox["\[Lambda]", "2"]}]]], "Output", CellChangeTimes->{{3.8965886477687902`*^9, 3.896588670074689*^9}, 3.896588711559341*^9, 3.896588865054153*^9, {3.89658893742447*^9, 3.896588940575057*^9}, {3.896589027753283*^9, 3.896589042007699*^9}, 3.8966002630978117`*^9, 3.89678213785366*^9, 3.897820522756171*^9, { 3.897820614613309*^9, 3.89782064546704*^9}, 3.897820713738079*^9, 3.897836751340926*^9, {3.89783786172808*^9, 3.89783786861943*^9}, { 3.897837913805118*^9, 3.8978379209587517`*^9}}], Cell[BoxData[ FractionBox["4", RowBox[{"25", " ", SuperscriptBox["\[Lambda]", "2"]}]]], "Output", CellChangeTimes->{{3.8965886477687902`*^9, 3.896588670074689*^9}, 3.896588711559341*^9, 3.896588865054153*^9, {3.89658893742447*^9, 3.896588940575057*^9}, {3.896589027753283*^9, 3.896589042007699*^9}, 3.8966002630978117`*^9, 3.89678213785366*^9, 3.897820522756171*^9, { 3.897820614613309*^9, 3.89782064546704*^9}, 3.897820713738079*^9, 3.897836751340926*^9, {3.89783786172808*^9, 3.89783786861943*^9}, { 3.897837913805118*^9, 3.8978379209655313`*^9}}], Cell[BoxData[ FractionBox["4", RowBox[{"25", " ", SuperscriptBox["\[Lambda]", "2"]}]]], "Output", CellChangeTimes->{{3.8965886477687902`*^9, 3.896588670074689*^9}, 3.896588711559341*^9, 3.896588865054153*^9, {3.89658893742447*^9, 3.896588940575057*^9}, {3.896589027753283*^9, 3.896589042007699*^9}, 3.8966002630978117`*^9, 3.89678213785366*^9, 3.897820522756171*^9, { 3.897820614613309*^9, 3.89782064546704*^9}, 3.897820713738079*^9, 3.897836751340926*^9, {3.89783786172808*^9, 3.89783786861943*^9}, { 3.897837913805118*^9, 3.897837920971971*^9}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Question 2 \[LongDash]\[NonBreakingSpace]Complete Data", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, {3.8872035562635403`*^9, 3.887203571506999*^9}, { 3.889075948658783*^9, 3.889075948905105*^9}, {3.889233499580864*^9, 3.889233499742189*^9}, {3.896685606598037*^9, 3.896685616824679*^9}, { 3.898176694295431*^9, 3.898176698420259*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"ClearAll", "[", "\"\\"", "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"data", "=", RowBox[{"{", RowBox[{ "17.88", ",", "28.92", ",", "33.00", ",", "41.52", ",", "42.12", ",", "45.60", ",", "48.48", ",", "51.84", ",", "\n", "51.96", ",", "54.12", ",", "55.56", ",", "67.80", ",", "68.64", ",", "68.64", ",", "68.88", ",", "84.12", ",", "\n", "93.12", ",", "98.64", ",", "105.12", ",", "105.84", ",", "127.92", ",", "128.04", ",", "173.40"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"sorteddata", "=", RowBox[{"Sort", "[", "data", "]"}]}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"t", "=", "sorteddata"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", RowBox[{"Length", "[", "t", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"t", "[", RowBox[{"[", "0", "]"}], "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Prepend", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", "/", "n"}], ",", FractionBox[ RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], "i"], RowBox[{ RowBox[{"(", RowBox[{"n", "-", "j", "+", "1"}], ")"}], "\[Times]", RowBox[{"(", RowBox[{ RowBox[{"t", "[", RowBox[{"[", "j", "]"}], "]"}], "-", RowBox[{"t", "[", RowBox[{"[", RowBox[{"j", "-", "1"}], "]"}], "]"}]}], ")"}]}]}], RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], "n"], RowBox[{ RowBox[{"(", RowBox[{"n", "-", "j", "+", "1"}], ")"}], "\[Times]", RowBox[{"(", RowBox[{ RowBox[{"t", "[", RowBox[{"[", "j", "]"}], "]"}], "-", RowBox[{"t", "[", RowBox[{"[", RowBox[{"j", "-", "1"}], "]"}], "]"}]}], ")"}]}]}]]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}]}], "]"}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}], ",", RowBox[{"PlotStyle", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"PointSize", "[", "Large", "]"}], ",", "Black"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"\[ScriptCapitalD]", "=", RowBox[{"EstimatedDistribution", "[", RowBox[{"sorteddata", ",", RowBox[{"WeibullDistribution", "[", RowBox[{"2", ",", "80"}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"KolmogorovSmirnovTest", "[", RowBox[{ "sorteddata", ",", "\[ScriptCapitalD]", ",", "\"\\""}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"\[ScriptCapitalD]estim", "=", RowBox[{"EstimatedDistribution", "[", RowBox[{"sorteddata", ",", RowBox[{"WeibullDistribution", "[", RowBox[{"\[Alpha]", ",", "\[Delta]"}], "]"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"KolmogorovSmirnovTest", "[", RowBox[{ "sorteddata", ",", "\[ScriptCapitalD]estim", ",", "\"\\""}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Quantile", "[", RowBox[{"\[ScriptCapitalD]estim", ",", "0.75"}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"alphaestim", "=", "2.1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"deltaestim", "=", "81.9"}], ";"}], "\[IndentingNewLine]", RowBox[{"deltaestim", "\[Times]", RadicalBox[ RowBox[{"-", RowBox[{"Log", "[", RowBox[{"1", "-", "0.75"}], "]"}]}], "alphaestim"]}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.896680160353107*^9, 3.896680273356593*^9}, { 3.896684846080412*^9, 3.896684857080522*^9}, {3.8966848875284643`*^9, 3.8966849314046373`*^9}, {3.896685301146098*^9, 3.896685338595141*^9}, { 3.8966854791749773`*^9, 3.8966855440449457`*^9}, {3.896685579206609*^9, 3.8966855842342577`*^9}, {3.896685886008314*^9, 3.896685992782037*^9}, { 3.89668618954557*^9, 3.896686200190599*^9}, {3.896687370482834*^9, 3.896687394487364*^9}, {3.897989373096612*^9, 3.897989410335622*^9}, { 3.8979926163775873`*^9, 3.897992671415105*^9}, {3.8979927674409122`*^9, 3.8979928278430967`*^9}, {3.897992865268656*^9, 3.897992901842267*^9}, { 3.897993355564937*^9, 3.897993401438943*^9}, {3.898089272605823*^9, 3.8980893201809998`*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ "17.88`", ",", "28.92`", ",", "33.`", ",", "41.52`", ",", "42.12`", ",", "45.6`", ",", "48.48`", ",", "51.84`", ",", "51.96`", ",", "54.12`", ",", "55.56`", ",", "67.8`", ",", "68.64`", ",", "68.64`", ",", "68.88`", ",", "84.12`", ",", "93.12`", ",", "98.64`", ",", "105.12`", ",", "105.84`", ",", "127.92`", ",", "128.04`", ",", "173.4`"}], "}"}]], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.898089308969244*^9}}], Cell[BoxData[ GraphicsBox[{{}, {{}, {GrayLevel[0], PointSize[Large], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJxTTMoPSmViYGCQAGIQjQ5SFLkjTzgts7eT5JSR2XDeHsLfZn8xzvn4ZOOb 9iCe2KYD9uX/DoQsbrgDlT9mf9lG1nFpx0P7vS9986sun7b32OkffPfAQ6j6 C/Zrw39+P/r1kb0FRIH99oQ0BYvnj6H6r9kLXJkuFfbhif3EVh2g0E37N9WO nWY/n0DNu21/zudvanjfU/tXIO7se/Y/WtZtXPHqKdT8B/YSC75q/d/3wh5s nNgj+9fy3wInvHkBte8xnO8H1v7EvldGw9b8+wuo/c/sFZ1uLCsLeG0Pkv2y 7Lm9jynXCdX2N1D3vLSPWsPRWaX11n65OcjAV/b3Kr8FOJ16C3Xfa3tuBUvT shtv7cHazd/aa/KZbZeXfw917zv7tW7PtvgpvLeHhPIHOA0AIUG0Cw== "]]}, {}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{}, PlotRange->{{0, 1.}, {0, 1.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.898089309000698*^9}}], Cell[BoxData[ RowBox[{"WeibullDistribution", "[", RowBox[{"2", ",", "80"}], "]"}]], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.8980893090030813`*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["HypothesisTestData", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False}, PanelBox[ PaneSelectorBox[{False->GridBox[{ { PaneBox[ ButtonBox[ DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "SquarePlusIconMedium"], ImageSizeCache->{12., {0., 12.}}], Appearance->None, ButtonFunction:>(Typeset`open$$ = True), Evaluator->Automatic, Method->"Preemptive"], Alignment->{Center, Center}, ImageSize-> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAwA2IQvV+g6N7//+IHyh7/qMr9uMOO7VZyUp+w2IFfkzYn Sh58Z/f9/5/PG/4KH7htIzfPZbOi/dT38+JNuIUOmB3ymyXb6m1/7+Zl7nol gQMZNpuWcacV2C9yTOjercBzwDCs3j3VbqL9wyStzVbOHAccTwR7F91faV9i 6/ztoRDLgZ4iRasJkQfs90qxlOq/+b9ffvGd3Q7y5+2dHy5JlXP4sd/n3Lw9 E6Ku2T82OSa5+877/Ru23tpo2nHTfsmXDguHkAf75f3161YvvWYvNsdi39f5 C/f3Rm5wuMtywX7Rd151p+v37C+xnJ1uxHHQnsFk9Sara+/saywuavluXWtf 4Oz1SfLYd/seR+51+6ZPsjdi+tzx8+d/e4sDRVPXWhfZK/ruua11gdlhc3uy xl9Wf/ur8RuuG3xjd9jltzUx46GivcH9SfKlV7kd4veWPWBI+2Q3J0h42Qlm AQfhYtWiqpoddl+sTlXzCws56M1lWjdVvMpuQWRF+dd/wg7Ohid4Eh2t7BZJ 16e6i4g5TDt7qs1T4YMtNPwdPDeu6MsQWwLjH0jZLlQ6c4aNPSw+vI9XlDDK BtjD4iPkrcf+e2ZJ8Pjov7jnbGJEETw+1r3m/37NpBEeH4eOZy+78rofHh/M fWfi7PfPgsdHX6aSxfEXS+HxwWV2y7Ro8QZ4fLDO/HZputp2eHy0LHnA+J1z Pzw+rtv/zTtudBgeH51P9674FnoMHh+acsv3TN1wAh4f5z4H3TdoPwmPj/X1 pobmp07A40O35vzB6K5j8PjYe9+N71nBYXh8NH4U7n/EvR8eHwEfWhe9Xbfd HhYf7kcSN7h3bLCHxUfegdOy63cttYfFR7ef4ONnq2fbw+LDYUfsm8Un+u1h 8dFwaIvgx0+NMP4BBiiAyaPxccoDAAUJngM= "], {{{}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{1, 53, 54, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2}}]]}, {}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{26, 51, 52, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27}}]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[1.], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}]}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[1.], LineBox[{26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}]}}}], AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0.}, Background->GrayLevel[0.93], BaseStyle->{FontFamily -> "Arial"}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ Thickness[Tiny], GrayLevel[0.7]], FrameTicks->{{None, None}, {None, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{Automatic, Dynamic[ 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])]}, LabelStyle->{FontFamily -> "Arial"}, Method->{"ScalingFunctions" -> None, "AxesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0.1}}, Ticks->{Automatic, Automatic}], GridBox[{ { RowBox[{ TagBox["\<\"Type: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["KolmogorovSmirnovTest", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"p-Value: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.7954181744246949`", "SummaryItem"]}]} }, AutoDelete->False, BaseStyle->{ ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]} }, AutoDelete->False, BaselinePosition->{1, 1}, GridBoxAlignment->{"Rows" -> {{Top}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True-> GridBox[{ { PaneBox[ ButtonBox[ DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "SquareMinusIconMedium"]], Appearance->None, ButtonFunction:>(Typeset`open$$ = False), Evaluator->Automatic, Method->"Preemptive"], Alignment->{Center, Center}, ImageSize-> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAwA2IQvV+g6N7//+IHyh7/qMr9uMOO7VZyUp+w2IFfkzYn Sh58Z/f9/5/PG/4KH7htIzfPZbOi/dT38+JNuIUOmB3ymyXb6m1/7+Zl7nol gQMZNpuWcacV2C9yTOjercBzwDCs3j3VbqL9wyStzVbOHAccTwR7F91faV9i 6/ztoRDLgZ4iRasJkQfs90qxlOq/+b9ffvGd3Q7y5+2dHy5JlXP4sd/n3Lw9 E6Ku2T82OSa5+877/Ru23tpo2nHTfsmXDguHkAf75f3161YvvWYvNsdi39f5 C/f3Rm5wuMtywX7Rd151p+v37C+xnJ1uxHHQnsFk9Sara+/saywuavluXWtf 4Oz1SfLYd/seR+51+6ZPsjdi+tzx8+d/e4sDRVPXWhfZK/ruua11gdlhc3uy xl9Wf/ur8RuuG3xjd9jltzUx46GivcH9SfKlV7kd4veWPWBI+2Q3J0h42Qlm AQfhYtWiqpoddl+sTlXzCws56M1lWjdVvMpuQWRF+dd/wg7Ohid4Eh2t7BZJ 16e6i4g5TDt7qs1T4YMtNPwdPDeu6MsQWwLjH0jZLlQ6c4aNPSw+vI9XlDDK BtjD4iPkrcf+e2ZJ8Pjov7jnbGJEETw+1r3m/37NpBEeH4eOZy+78rofHh/M fWfi7PfPgsdHX6aSxfEXS+HxwWV2y7Ro8QZ4fLDO/HZputp2eHy0LHnA+J1z Pzw+rtv/zTtudBgeH51P9674FnoMHh+acsv3TN1wAh4f5z4H3TdoPwmPj/X1 pobmp07A40O35vzB6K5j8PjYe9+N71nBYXh8NH4U7n/EvR8eHwEfWhe9Xbfd HhYf7kcSN7h3bLCHxUfegdOy63cttYfFR7ef4ONnq2fbw+LDYUfsm8Un+u1h 8dFwaIvgx0+NMP4BBiiAyaPxccoDAAUJngM= "], {{{}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{1, 53, 54, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2}}]]}, {}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{26, 51, 52, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27}}]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[1.], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}]}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[1.], LineBox[{26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}]}}}], AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0.}, Background->GrayLevel[0.93], BaseStyle->{FontFamily -> "Arial"}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ Thickness[Tiny], GrayLevel[0.7]], FrameTicks->{{None, None}, {None, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{Automatic, Dynamic[ 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])]}, LabelStyle->{FontFamily -> "Arial"}, Method->{"ScalingFunctions" -> None, "AxesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0.1}}, Ticks->{Automatic, Automatic}], GridBox[{ { RowBox[{ TagBox["\<\"Type: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["KolmogorovSmirnovTest", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"p-Value: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.7954181744246949`", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Test: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\<\"N/A\"\>", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Test statistic: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.12865797719053496`", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Data: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\<\"Univariate\"\>", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Conclusion: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ InterpretationBox[Cell["\<\ The null hypothesis that the data is distributed according to the \ WeibullDistribution[2, 80] is not rejected at the 5 percent level based on \ the Kolmogorov\[Hyphen]Smirnov test.\ \>", CellSize->{300, Automatic}], TextCell[ "The null hypothesis that the data is distributed according to \ the WeibullDistribution[2, 80] is not rejected at the 5 percent level based \ on the Kolmogorov\[Hyphen]Smirnov test.", CellSize -> {300, Automatic}]], "SummaryItem"]}]} }, AutoDelete->False, BaseStyle->{ ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]} }, AutoDelete->False, BaselinePosition->{1, 1}, GridBoxAlignment->{"Rows" -> {{Top}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, Dynamic[ Typeset`open$$], ImageSize->Automatic], BaselinePosition->Baseline], DynamicModuleValues:>{}], "]"}], HypothesisTestData[ KolmogorovSmirnovTest, {{17.88, 28.92, 33., 41.52, 42.12, 45.6, 48.48, 51.84, 51.96, 54.12, 55.56, 67.8, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4}, "SampleToNull", 1, Rational[1, 20], { WeibullDistribution[2, 80], Automatic}, Automatic, {}}, { "Normality" -> 0, "EqualVariance" -> 0, "Symmetry" -> 0}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.898089309008931*^9}}], Cell[BoxData[ RowBox[{"WeibullDistribution", "[", RowBox[{"2.102058875194619`", ",", "81.87833405163153`"}], "]"}]], "Output",\ CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.8980893090113707`*^9}}], Cell[BoxData[ InterpretationBox[ RowBox[{ TagBox["HypothesisTestData", "SummaryHead"], "[", DynamicModuleBox[{Typeset`open$$ = False}, PanelBox[ PaneSelectorBox[{False->GridBox[{ { PaneBox[ ButtonBox[ DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "SquarePlusIconMedium"], ImageSizeCache->{12., {0., 12.}}], Appearance->None, ButtonFunction:>(Typeset`open$$ = True), Evaluator->Automatic, Method->"Preemptive"], Alignment->{Center, Center}, ImageSize-> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAwA2IQvV+g6N7//+IHyh7/qMr9uMOO7VZyUp+w2IFfkzYn Sh58Z/f9/5/PG/4KH7htIzfPZbOi/dT38+JNuIUOmB3ymyXb6m1/7+Zl7nol gQMZNpuWcacV2C9yTOjercBzwDCs3j3VbqL9wyStzVbOHAccTwR7F91faV9i 6/ztoRDLgZ4iRasJkQfs90qxlOq/+b9ffvGd3Q7y5+2dHy5JlXP4sd/n3Lw9 E6Ku2T82OSa5+877/Ru23tpo2nHTfsmXDguHkAf75f3161YvvWYvNsdi39f5 C/f3Rm5wuMtywX7Rd151p+v37C+xnJ1uxHHQnsFk9Sara+/saywuavluXWtf 4Oz1SfLYd/seR+51+6ZPsjdi+tzx8+d/e4sDRVPXWhfZK/ruua11gdlhc3uy xl9Wf/ur8RuuG3xjd9jltzUx46GivcH9SfKlV7kd4veWPWBI+2Q3J0h42Qlm AQfhYtWiqpoddl+sTlXzCws56M1lWjdVvMpuQWRF+dd/wg7Ohid4Eh2t7BZJ 16e6i4g5TDt7qs1T4YMtNPwdPDeu6MsQWwLjH0jZLlQ6c4aNPSw+vI9XlDDK BtjD4iPkrcf+e2ZJ8Pjov7jnbGJEETw+1r3m/37NpBEeH4eOZy+78rofHh/M fWfi7PfPgsdHX6aSxfEXS+HxwWV2y7Ro8QZ4fLDO/HZputp2eHy0LHnA+J1z Pzw+rtv/zTtudBgeH51P9674FnoMHh+acsv3TN1wAh4f5z4H3TdoPwmPj/X1 pobmp07A40O35vzB6K5j8PjYe9+N71nBYXh8NH4U7n/EvR8eHwEfWhe9Xbfd HhYf7kcSN7h3bLCHxUfegdOy63cttYfFR7ef4ONnq2fbw+LDYUfsm8Un+u1h 8dFwaIvgx0+NMP4BBiiAyaPxccoDAAUJngM= "], {{{}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{1, 53, 54, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2}}]]}, {}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{26, 51, 52, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27}}]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[1.], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}]}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[1.], LineBox[{26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}]}}}], AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0.}, Background->GrayLevel[0.93], BaseStyle->{FontFamily -> "Arial"}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ Thickness[Tiny], GrayLevel[0.7]], FrameTicks->{{None, None}, {None, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{Automatic, Dynamic[ 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])]}, LabelStyle->{FontFamily -> "Arial"}, Method->{"ScalingFunctions" -> None, "AxesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0.1}}, Ticks->{Automatic, Automatic}], GridBox[{ { RowBox[{ TagBox["\<\"Type: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["KolmogorovSmirnovTest", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"p-Value: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.6165758813664127`", "SummaryItem"]}]} }, AutoDelete->False, BaseStyle->{ ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]} }, AutoDelete->False, BaselinePosition->{1, 1}, GridBoxAlignment->{"Rows" -> {{Top}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], True-> GridBox[{ { PaneBox[ ButtonBox[ DynamicBox[FEPrivate`FrontEndResource[ "FEBitmaps", "SquareMinusIconMedium"]], Appearance->None, ButtonFunction:>(Typeset`open$$ = False), Evaluator->Automatic, Method->"Preemptive"], Alignment->{Center, Center}, ImageSize-> Dynamic[{ Automatic, 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])}]], GraphicsBox[GraphicsComplexBox[CompressedData[" 1:eJxTTMoPSmViYGAwA2IQvV+g6N7//+IHyh7/qMr9uMOO7VZyUp+w2IFfkzYn Sh58Z/f9/5/PG/4KH7htIzfPZbOi/dT38+JNuIUOmB3ymyXb6m1/7+Zl7nol gQMZNpuWcacV2C9yTOjercBzwDCs3j3VbqL9wyStzVbOHAccTwR7F91faV9i 6/ztoRDLgZ4iRasJkQfs90qxlOq/+b9ffvGd3Q7y5+2dHy5JlXP4sd/n3Lw9 E6Ku2T82OSa5+877/Ru23tpo2nHTfsmXDguHkAf75f3161YvvWYvNsdi39f5 C/f3Rm5wuMtywX7Rd151p+v37C+xnJ1uxHHQnsFk9Sara+/saywuavluXWtf 4Oz1SfLYd/seR+51+6ZPsjdi+tzx8+d/e4sDRVPXWhfZK/ruua11gdlhc3uy xl9Wf/ur8RuuG3xjd9jltzUx46GivcH9SfKlV7kd4veWPWBI+2Q3J0h42Qlm AQfhYtWiqpoddl+sTlXzCws56M1lWjdVvMpuQWRF+dd/wg7Ohid4Eh2t7BZJ 16e6i4g5TDt7qs1T4YMtNPwdPDeu6MsQWwLjH0jZLlQ6c4aNPSw+vI9XlDDK BtjD4iPkrcf+e2ZJ8Pjov7jnbGJEETw+1r3m/37NpBEeH4eOZy+78rofHh/M fWfi7PfPgsdHX6aSxfEXS+HxwWV2y7Ro8QZ4fLDO/HZputp2eHy0LHnA+J1z Pzw+rtv/zTtudBgeH51P9674FnoMHh+acsv3TN1wAh4f5z4H3TdoPwmPj/X1 pobmp07A40O35vzB6K5j8PjYe9+N71nBYXh8NH4U7n/EvR8eHwEfWhe9Xbfd HhYf7kcSN7h3bLCHxUfegdOy63cttYfFR7ef4ONnq2fbw+LDYUfsm8Un+u1h 8dFwaIvgx0+NMP4BBiiAyaPxccoDAAUJngM= "], {{{}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{1, 53, 54, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2}}]]}, {}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[0.2], EdgeForm[ None], GraphicsGroupBox[ PolygonBox[{{26, 51, 52, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27}}]]}, {}, {}, {}, {}, {}, {}}, {{}, {}, {GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[1.], LineBox[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}]}, {GrayLevel[0.65], AbsoluteThickness[1.5], Opacity[1.], LineBox[{26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}]}}}], AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0.}, Background->GrayLevel[0.93], BaseStyle->{FontFamily -> "Arial"}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{None, None}, {None, None}}, FrameStyle->Directive[ Thickness[Tiny], GrayLevel[0.7]], FrameTicks->{{None, None}, {None, None}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImageSize->{Automatic, Dynamic[ 3.5 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[ Magnification])]}, LabelStyle->{FontFamily -> "Arial"}, Method->{"ScalingFunctions" -> None, "AxesInFront" -> True}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{0, 0}, {0, 0.1}}, Ticks->{Automatic, Automatic}], GridBox[{ { RowBox[{ TagBox["\<\"Type: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["KolmogorovSmirnovTest", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"p-Value: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.6165758813664127`", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Test: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\<\"N/A\"\>", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Test statistic: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["0.1510875625868009`", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Data: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox["\<\"Univariate\"\>", "SummaryItem"]}]}, { RowBox[{ TagBox["\<\"Conclusion: \"\>", "SummaryItemAnnotation"], "\[InvisibleSpace]", TagBox[ InterpretationBox[Cell["\<\ The null hypothesis that the data is distributed according to the \ WeibullDistribution[2.10206, 81.8783] is not rejected at the 5 percent level \ based on the Kolmogorov\[Hyphen]Smirnov test.\ \>", CellSize->{300, Automatic}], TextCell[ "The null hypothesis that the data is distributed according to \ the WeibullDistribution[2.10206, 81.8783] is not rejected at the 5 percent \ level based on the Kolmogorov\[Hyphen]Smirnov test.", CellSize -> {300, Automatic}]], "SummaryItem"]}]} }, AutoDelete->False, BaseStyle->{ ShowStringCharacters -> False, NumberMarks -> False, PrintPrecision -> 3, ShowSyntaxStyles -> False}, GridBoxAlignment->{"Columns" -> {{Left}}, "Rows" -> {{Automatic}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{2}}, "Rows" -> {{Automatic}}}]} }, AutoDelete->False, BaselinePosition->{1, 1}, GridBoxAlignment->{"Rows" -> {{Top}}}, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}]}, Dynamic[ Typeset`open$$], ImageSize->Automatic], BaselinePosition->Baseline], DynamicModuleValues:>{}], "]"}], HypothesisTestData[ KolmogorovSmirnovTest, {{17.88, 28.92, 33., 41.52, 42.12, 45.6, 48.48, 51.84, 51.96, 54.12, 55.56, 67.8, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4}, "SampleToNull", 1, Rational[1, 20], { WeibullDistribution[2.102058875194619, 81.87833405163153], Automatic}, Automatic, {}}, {"Normality" -> 0, "EqualVariance" -> 0, "Symmetry" -> 0}], Editable->False, SelectWithContents->True, Selectable->False]], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.89808930903428*^9}}], Cell[BoxData["95.64296974403888`"], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.8980893090365887`*^9}}], Cell[BoxData["95.68285364649296`"], "Output", CellChangeTimes->{{3.896601885840949*^9, 3.896601899732293*^9}, { 3.8966019317590523`*^9, 3.8966019453568373`*^9}, {3.896680253909157*^9, 3.896680274773491*^9}, 3.896685364268423*^9, 3.8966855051672487`*^9, { 3.89668553548955*^9, 3.896685544843717*^9}, 3.8966855851069393`*^9, { 3.896685911157158*^9, 3.896685921122596*^9}, 3.896685983651566*^9, 3.896686192146106*^9, 3.89668650404677*^9, 3.896687395236752*^9, 3.896782144649453*^9, 3.897989417126412*^9, 3.897992631895523*^9, 3.8979926729164963`*^9, 3.8979927738102713`*^9, 3.897992830361392*^9, { 3.897992874505522*^9, 3.8979929027848387`*^9}, {3.89799337248696*^9, 3.897993403720365*^9}, {3.898089284651269*^9, 3.898089309038692*^9}}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Question 3", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, {3.8872035562635403`*^9, 3.887203571506999*^9}, { 3.889075948658783*^9, 3.889075948905105*^9}, {3.889233499580864*^9, 3.889233499742189*^9}, {3.893051552889963*^9, 3.893051553359744*^9}, { 3.893068465963595*^9, 3.893068480337051*^9}, {3.893068535343358*^9, 3.893068536877803*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"ClearAll", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"data", "=", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"15.8", ",", " ", "16.3", ",", " ", "16.2", ",", " ", "16.1"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.3", ",", " ", "15.9", ",", "15.9", ",", "16.2"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.1", ",", " ", "16.2", ",", "16.5", ",", " ", "16.4"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.3", ",", " ", "16.2", ",", "15.9", ",", " ", "16.4"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.1", ",", " ", "16.1", ",", "16.4", ",", " ", "16.5"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.1", ",", " ", "15.8", ",", "16.7", ",", " ", "16.6"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.1", ",", " ", "16.3", ",", " ", "16.5", ",", " ", "16.1"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.2", ",", " ", "16.1", ",", "16.2", ",", " ", "16.1"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.3", ",", " ", "16.2", ",", "16.4", ",", " ", "16.3"}], "}"}], ",", "\n", RowBox[{"{", RowBox[{"16.6", ",", " ", "16.3", ",", "16.4", ",", " ", "16.1"}], "}"}]}], "}"}]}], ";"}], "\n", RowBox[{ RowBox[{"OnesMatrix", "=", RowBox[{"Table", "[", RowBox[{"1", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "4"}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"data", ".", "OnesMatrix"}], "/", "4"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{" ", RowBox[{ RowBox[{ SubscriptBox["\[Mu]", "0"], "=", "16.2"}], ";"}]}], "\[IndentingNewLine]", RowBox[{" ", RowBox[{ RowBox[{ SubscriptBox["\[Sigma]", "0"], "=", SqrtBox["0.01"]}], ";"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", "4"}], ";"}], "\[IndentingNewLine]", RowBox[{"LCL", "=", RowBox[{ SubscriptBox["\[Mu]", "0"], "-", RowBox[{"3", "\[Times]", FractionBox[ SubscriptBox["\[Sigma]", "0"], SqrtBox["n"]]}]}]}], "\[IndentingNewLine]", RowBox[{"UCL", "=", RowBox[{ SubscriptBox["\[Mu]", "0"], "+", RowBox[{"3", "\[Times]", FractionBox[ SubscriptBox["\[Sigma]", "0"], SqrtBox["n"]]}]}]}]}], "Input", CellChangeTimes->{{3.57951102764242*^9, 3.579511196986095*^9}, { 3.6105601066100607`*^9, 3.610560118453377*^9}, {3.610560161503229*^9, 3.610560175996048*^9}, {3.610560515453166*^9, 3.610560627635491*^9}, { 3.610560668811268*^9, 3.610560679858243*^9}, {3.610561022965145*^9, 3.610561061909997*^9}, {3.610561107153459*^9, 3.6105611536145153`*^9}, { 3.610561210183519*^9, 3.610561213637278*^9}, {3.610561268462509*^9, 3.6105613561059093`*^9}, 3.610561396169139*^9, {3.610561550030942*^9, 3.6105615548368397`*^9}, {3.610561589225767*^9, 3.610561716964278*^9}, { 3.610561781717751*^9, 3.6105617839827957`*^9}, {3.610561837584435*^9, 3.610561842161105*^9}, 3.6105619699199753`*^9, {3.610563629476055*^9, 3.610563634207102*^9}, {3.610565822327497*^9, 3.610565835237051*^9}, 3.629018471886993*^9, {3.62920045304277*^9, 3.6292006007139387`*^9}, { 3.629200667521793*^9, 3.629200688197505*^9}, {3.62920103532907*^9, 3.6292010354714537`*^9}, {3.691250450936693*^9, 3.6912504516234426`*^9}, { 3.691250482962205*^9, 3.691250530686264*^9}, {3.691500334377445*^9, 3.691500335664619*^9}, {3.8967126625993567`*^9, 3.896712709464292*^9}, { 3.897995057080514*^9, 3.8979955174750547`*^9}, 3.897995547987907*^9, 3.897995590714553*^9, {3.8979956264148397`*^9, 3.897995637115286*^9}, { 3.897995699628995*^9, 3.897995711490641*^9}, {3.8979957484422493`*^9, 3.897995748641405*^9}, {3.898060782748361*^9, 3.898060965847876*^9}, { 3.898061025736305*^9, 3.898061039913353*^9}, {3.89806740820545*^9, 3.898067429916502*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ "16.1`", ",", "16.075`", ",", "16.299999999999997`", ",", "16.2`", ",", "16.275`", ",", "16.3`", ",", "16.25`", ",", "16.15`", ",", "16.3`", ",", "16.35`"}], "}"}]], "Output", CellChangeTimes->{ 3.897995413088719*^9, {3.8979954890235453`*^9, 3.897995506393243*^9}, 3.897995548547061*^9, 3.897995591398593*^9, {3.8979956311240587`*^9, 3.897995637632616*^9}, {3.897995700375537*^9, 3.897995712362067*^9}, 3.897995759476254*^9, 3.898060791960762*^9, {3.898060900220243*^9, 3.898060935138619*^9}, 3.89806096657699*^9, 3.8980610408865433`*^9, 3.8980611755724173`*^9, {3.898067415501112*^9, 3.898067430523621*^9}}], Cell[BoxData["16.05`"], "Output", CellChangeTimes->{ 3.897995413088719*^9, {3.8979954890235453`*^9, 3.897995506393243*^9}, 3.897995548547061*^9, 3.897995591398593*^9, {3.8979956311240587`*^9, 3.897995637632616*^9}, {3.897995700375537*^9, 3.897995712362067*^9}, 3.897995759476254*^9, 3.898060791960762*^9, {3.898060900220243*^9, 3.898060935138619*^9}, 3.89806096657699*^9, 3.8980610408865433`*^9, 3.8980611755724173`*^9, {3.898067415501112*^9, 3.898067430526218*^9}}], Cell[BoxData["16.349999999999998`"], "Output", CellChangeTimes->{ 3.897995413088719*^9, {3.8979954890235453`*^9, 3.897995506393243*^9}, 3.897995548547061*^9, 3.897995591398593*^9, {3.8979956311240587`*^9, 3.897995637632616*^9}, {3.897995700375537*^9, 3.897995712362067*^9}, 3.897995759476254*^9, 3.898060791960762*^9, {3.898060900220243*^9, 3.898060935138619*^9}, 3.89806096657699*^9, 3.8980610408865433`*^9, 3.8980611755724173`*^9, {3.898067415501112*^9, 3.898067430528249*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"L", "=", RowBox[{ FractionBox[ RowBox[{" ", SuperscriptBox[ SubscriptBox["\[Sigma]", "0"], "2"]}], RowBox[{"n", "-", "1"}]], "*", "0.042541"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"U", "=", RowBox[{ FractionBox[ RowBox[{" ", SuperscriptBox[ SubscriptBox["\[Sigma]", "0"], "2"]}], RowBox[{"n", "-", "1"}]], "*", "18.222384"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Xi]", "[", "\[Theta]_", "]"}], "=", RowBox[{"1", "-", RowBox[{"(", RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", RowBox[{"n", "-", "1"}], "]"}], ",", FractionBox["18.222384", SuperscriptBox["\[Theta]", "2"]]}], "]"}], "-", RowBox[{"CDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", RowBox[{"n", "-", "1"}], "]"}], ",", FractionBox["0.042541", SuperscriptBox["\[Theta]", "2"]]}], "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ARL", "[", "\[Theta]_", "]"}], "=", RowBox[{"1", "/", RowBox[{"\[Xi]", "[", "\[Theta]", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ARL", "[", "1", "]"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"ARL", "[", "\[Theta]", "]"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "0", ",", "2"}], "}"}], ",", RowBox[{"AxesOrigin", "\[Rule]", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", RowBox[{"{", RowBox[{"\[Theta]", ",", RowBox[{ SubscriptBox["ARL", "\[Sigma]"], "[", "\[Theta]", "]"}]}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.57951102764242*^9, 3.579511196986095*^9}, { 3.6105601066100607`*^9, 3.610560118453377*^9}, {3.610560161503229*^9, 3.610560175996048*^9}, {3.610560515453166*^9, 3.610560627635491*^9}, { 3.610560668811268*^9, 3.610560679858243*^9}, {3.610561022965145*^9, 3.610561061909997*^9}, {3.610561107153459*^9, 3.6105611536145153`*^9}, { 3.610561210183519*^9, 3.610561213637278*^9}, {3.610561268462509*^9, 3.6105613561059093`*^9}, 3.610561396169139*^9, {3.610561550030942*^9, 3.6105615548368397`*^9}, {3.610561589225767*^9, 3.610561716964278*^9}, { 3.610561781717751*^9, 3.6105617839827957`*^9}, {3.610561837584435*^9, 3.610561842161105*^9}, 3.6105619699199753`*^9, {3.610563629476055*^9, 3.610563634207102*^9}, {3.610565822327497*^9, 3.610565835237051*^9}, 3.629018471886993*^9, {3.62920045304277*^9, 3.6292006007139387`*^9}, { 3.629200667521793*^9, 3.629200688197505*^9}, {3.62920103532907*^9, 3.6292010354714537`*^9}, {3.691500342401845*^9, 3.691500477764662*^9}, { 3.691500513765565*^9, 3.69150052352726*^9}, {3.691500661453508*^9, 3.691500720591703*^9}, {3.691500899880618*^9, 3.691500905981058*^9}, 3.6915012316452637`*^9, 3.691667047188452*^9, {3.691675403131289*^9, 3.691675565001405*^9}, 3.6916760642110786`*^9, {3.691676172380252*^9, 3.691676178937262*^9}, {3.896713068706211*^9, 3.8967130695123777`*^9}, { 3.8967132104635077`*^9, 3.896713257045137*^9}, {3.896713665900667*^9, 3.8967136747072153`*^9}, {3.896714115688006*^9, 3.8967142201045303`*^9}, { 3.8967143523363113`*^9, 3.896714357836465*^9}, {3.8967144743968267`*^9, 3.896714480059052*^9}, {3.897151692551014*^9, 3.897151708884482*^9}, { 3.898060998648324*^9, 3.898061018835977*^9}, {3.898061059662408*^9, 3.898061275916217*^9}, {3.8980613114304047`*^9, 3.898061336669724*^9}, { 3.898061640560829*^9, 3.8980616493474083`*^9}, {3.898061692648779*^9, 3.898061698573098*^9}, {3.898062111569194*^9, 3.898062120730076*^9}, { 3.898062190082232*^9, 3.898062193894496*^9}}], Cell[BoxData["370.3952911458508`"], "Output", CellChangeTimes->{ 3.896713258854409*^9, 3.896713676521207*^9, {3.89671421255935*^9, 3.896714220734174*^9}, 3.8967143594898987`*^9, 3.896714484059466*^9, 3.896782162109133*^9, {3.8971516972429037`*^9, 3.8971517111330147`*^9}, { 3.898061160508644*^9, 3.898061220275447*^9}, 3.8980612652458563`*^9, 3.898061337688589*^9, 3.898061699048602*^9, 3.8980621216002817`*^9, 3.898062195441843*^9, 3.8980674330931*^9}], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw913k0Vf8XN3BDIUoZQ+Z5jMwke6eIQuaiTEnSYHZFI1EyVWgwpMyRCikl mTOEDJEhFZIk3Gu6Zvc53996nuf8c9dr3XM+6+z92eez1lvshLeVOwMdHd0i PR3df78H3cc6qv6669P976JAVUqtRix/OPw/Xw+NvhDFn/j/bXPMxWNCJAnY /6+lNTTszKXTgC2H5X9OOTveMerxGJqntP9nlo62nEqbJ+C8pET/n7OFP3yU yn4CdH03Gf6zwbn8kej5J5DWr7bxP/9894BxxjAdmvsOsP7nS8wR4kfvp0O9 yD2u/8xv67e3YjQdOkQ2S/7nNxnOLpJaGSA+aYT/2ZpiejXqZgZ8Ndzn/Z8p e3TTKD0ZoLVq8/4/x0bLfLCTzYS+T0fV6AnL93EPlF/IhGq5nRP/uUGaYUW8 KRNSYi8xMBI+GUDmv8WfBb5PP6ZuIKzGGB9S7JMFV6Im5ZgJM8Srf/vWkAXU ffeHWQm3i/bs3iiSDRWmQurbCD9+GZy6k5QNPAN2edsJe+kLrh1pzYaIMgey GGG91grHUMkccJZ37lcmzHbctSL/Yg747r98xoBw/zijSFdnDmzL1m53IPw0 OOfqmlwu6KZk+YQQDmIxGZQOzQV1eca/GYSNHvxDi95ckP73geMrYW7puPRg 5adQO/eIjpeeAr9KVBgybzyF69t2sroTLt735UTL96fQYaVT85Hwtc7A2nn1 PGgzdl7RZaDAYVc+SZGYPBCgq/jYQFiYUhZu/CsPgkbenvNmpMDEFcffvrr5 EHLzr7/GBgq830JnlHI3H2wKTBOENlIgKjUjp24sH0SwpliBiQJHFQyZp+AZ xMgvj7gxU0Cm7I/H9gfPQIN73PUTCwWoxlGNOPUMpj3+XnNjpUBdj6LcGcMC aGS8W6y2mQIJp9puJaQWgKXzxRBgp8CJed/x8tkCmL9K5xm9jQIq4dyHRg8+ BwVWZh5BLgrQOEufbc14Dqf06XmpPBT4nG6/WWfpOSR/k1sX4qdAqsrquRMW L+BaP4ftQ0EKnK1Ma43OfQG7+mLiPUUpoGu+d+fr9RegsMwkcF+SmOfvv+J+ 2L6ENTpTTXE5CvScvUFmfv4SfArqeDh3EvN3mfspH0MhTFUoNniqUaCszv3o c6VCEPhWramkQwHxzaUsBvaFoO/wV8EFKHDLmuXd1/BCyIo1OcBkRPRnOJ+f bqAQElpk897ZUKBSbrUpkbkIOh/Qn2w9TnxvvmYhcmpF4BdSq+jqToF5Grnf KqoIhHQ96LgvUOD4gb3Rf14XgUbb/E7tMKJ/cfG7Lw0VgUEQZ8loDAXihTRS s7WLgVXnpdm/TAosn7xhqnuyGGqkXhgbFlLAtaBn9fPtYgig++a56wPRz90h joujxSCzLdu9vpcCD8Kat8RyvoIF7TJOvz8UWG8SrBDTfwXJ9EJxr6kUaD1a KXzo3it4+JXVmmX7NKg/2db2s+oVPGM4GssvOw2pf1yvBky8Aquq/JB6nWk4 Q9ow+GhfCRR9rLKhOk0DS6JJOmW6BLqGzNUqCqdhRXtoJV3gNbio3C/c93Ea pr5fsLPe9xr+ksR9bPqn4YvMU7Y3ia9BtfJaFB/TDKS9ZyJd1HoDejNLfson Z+CuS1q7ossbaN9iGcl1eQbCN2oq/Ih8Az6X3Uav358Bz8Pug9j/BijrPk83 Nc+A+q/ag0yXS+Gf/dS/PN1ZkIk8ll2aXQrLKpks00dmQUBplnb6cync6+O/ Wxc4CzSS+OtmkbcQXfZ+eNurWfjEGipyt+Yt+Co1XNFXnwMXVf25HSxlINS6 /RPZYh6se7rNW1XKYPBbxZ110jwYXTqfd8W+DA4oJ/ImP5oHhfpUp6H8Mji0 6c/ToIl5oNqvNOaYvQc1V4WjbXeoEBP69tGuhHKgdWxTZZtbgKvSFovD78tB aOTChxnxRfBr/mOVOFIOKY7XBD2tFuEIz3aWBY0P8HdrtgTjq0UQzwv0K+/9 ACeaU87MhCxBabvqgQPClZD+XWhgTmoF4v5OGCsaVYL+QdXw5uMrcIoh9yCH VyU0SQq7KieuAK/6DvNvHyrB792P8ccbVuF9c2h+6c4qcKxhG1ecWIUdymeK Dn2uAu61xxH4dR1u7D6gqj9cBYnmAsocvDSYOSD5SoVaBY1Dhn4BdjT45PKj hEe4GuzlXA7O9dIgJN7q7c/z1fC1I2arnx8d9s/rVvpvqYEQ2w3m3jH0aMTA h6fEauCZtoHxhiJ6LGafrzqqUQNtyrTO3930GCXzsmaPYw24R2aH3BZlQF17 iXrm58T9uw+YXX/HgEnlbK0pprXQYjrMLLrMiEevD/TXRtfB92Z22tdSJtw2 KK3okV4HzvXyZ0+PM2GTnu9l1tI68D4gP3dciBl1qRtFLYfrwH9r1jOfcGbc 4ans/kP7I2wM6vpz6AgL/jAPIy/+/ggBpwvkBbex4kkB2Q07sQGKqv7Ehbdv QcEgP9sO2wbY52HjLrqNHbu/lOcEnG0A+sIwlLdgR6NYS5P39xtAUzfZ61YH O8rQXYwznmwAp+dLCVf7tuL471Y+t+RGaH0V4GZG24beRf5KD+eaINjWMZnF ggun9Ia+NLF8gq07qyb8ArjwXKN5yIrgJygL26DAmcSFp3/KNTgZfoJdm1oY KcNc6LJl0EXq/ifI9d1toxTMjRaeponFWs3wvDNmoe0lD6qISa20hLTA75nZ nhojPnxREJ++HtcC0e0VXDx+fKioTWesktkCZy5835z+iA9lD39LTGhuAX/n ss5T83woevnuTgfBVnjn6kN+nsuPHH1rrn8+tMITLbbbptt34Mydr4309G2Q mzRi8l1CGMvPFcEIbxswnabHBQdhvGkc86ZesQ18d5k3OcQLoyCdQVb00TaY ZyE70uhF0ND7+VWewjZ4EHOerW5EBFukDVISldvhjqZdsdqAKIpu5Ld6+qMd 5C4e3v6+RRw3+t+ITfrbDoWGCnMck+I4PjjbGDXXDn7nGirvbJHA1+Wf4Txr B5ylN4lkOiyBBwPClVQ1OyBtgZze/UUCA36RWcpjO+CKVfZ2vt+S2FhdX9mm 1wnZg0/3/5SWwZyW1ZHYA53w+VPR+deHZDCiR5XV1KoTNKSeiL72kUGDyTSb Ro9OYI7fF77rvQyW8wX9rYrvBG+dc79ErWSx0FuGq3isE8oW+jeRb8rhQ6HI U4mJX8DWhN15mksRPYNNtthPdMHvH95PPftUMH8Hh6MTtQsal0zONJBVcOJD b4EbXTecSXw4oMO0C70YTpt6cXdD5mjj0nG1XRgQfSP6ul43VI/PyT6K24VX H9VuehHTDWIig1NbTFTxXvUeJkalr9D653nNfKsaVm9SpRWc74EVsUa1DQJa KGujUhp1oQeUSlQyNbS18E7aTu/T13tAKpTpYJidFrqoKfyUSOqBH8H8PucT tHD9uGRlcl0PlJyouhTDro26hbxXI3f0grl86O3FTTpYYrey7tbUC5PHlY8N 8uzGnMy6dQGpfqhZcukqCAf0ibAZAuV+uO8RzByfC7jbY6T2pE4/rPJlP7/7 CbBdfsOtF2b90GTArO/DgrhUtI/LgNQP3zqiHjsdRjStqpHxbOiHobpy6Yqf iLMDVRalnt8gLGlyQwGrASLvhwzrFwNgE77K4hq1H5UaBt7Wy/+E4Yj7GaI7 DmIXWk/lTQ1C2+a65YwUCzzHerazW2UYVsiybfwXbLC598gH9rhfwDgXOGJ5 yB6tjY4OjYyMgMDg6fmn75xQ80n0kSeSo8BimN/QrnMCB9cTuk5f/QMB3lfS +t6442+Ttkze2jG4ZsO24+dRTyxM+hncITYOdh++qL4rPo/ZkYy35EL+gWHn ydt98r447+Ywfur9BByfONYd7+6PJK4Vrt6qCTDj2vqB39sfqTUpe0zqJyAG 5B8/ukBY7PsdhY4JYD716FdKtD8u/nTWooxOwPq+MEvi7MDlY+7hwZyTcFnz SsWRVX+ks/ERjvGchIQj/7hN4wLwGiOH8ZrXJJyYvP9b40EA0r8q8vUKmATe FyXRfE8CkIFzts7i6iT8WBB931AUgIztgWd57k2CjvmUYVNXADKZXnybVjUJ 2eLDn9X5A5Ft/w2rou1TkP39TNuF5EDUq/TmqBecginG35ufpgeil659e7/Y FHysEFdqeRqInSqK5hsUpyBvC9l35k0gJgt1mhzBKbhz60x4cWcgyi4I7V07 PQVOzk96vjGT0MGPmY7TawpkjSQfGrKTMGaSUiHtPwUhCbsT0rlJSP5Vq2dx eQqK2W5HKouR8E27p3bm3SlwvMCbkKZDwv35r5VNyqagdBN3e7oHCUlSj6cc K6dA/J6CvsB5Ej59Evncr24Kqh8gT5gfCdkeHFNI/TwFtc23jUQuk7DzOr0M eXgKtgtJFETdJeEG2vhvxrEpqKhmtQ++T0LNkK4svknCHbvWbVNImOSTK26w MAVf3IIv9GaR0MXRTPgeGxnCJkxE196QML5X83veNjIcln8cZveehHXWoqkV PGSQz99/LrWShDIHZ/nHRMiARpNCkw0knNJM4tmtToa6CP/l1B4SihaHdR3W IYOsbNZ9228ktFI6l3BSnwz1ulfNln6Q8LUEcMQZk6H8uMYR+lESXtr2e/PQ cTJY7ulbYJ8loXx/MQ64koHtzdnTm6kk7Mu8FtBzigwJsRNec4tEPVqCA60+ ZIi0H0+6vk7CEbrxrU2BZPDh2Hpenj4IEz6V7qsLIUPxR5Lae8YgpDhaPysL J8Mhhs3LSSxBmCYj9vP1LTK4DQ/m/2ENQrPpKc6iODKQskwLhbcEYX54VEju QzLQ99kJGXME4VHzoy8yHpEhypuspcsVhEx80sOPMsgQ7MW3hYcnCN2eVZsk FhD9uZRpEc4XhJyBty/fLiJDOn9uAJ9AEFbpOxZFvSGDR8b1isQdQejFovA7 4j3Rr/jZTUuCQSjYucgXWkUG/TouNUPhIPyUUm966SNR39ZTvMEiQRjsnngt 6BMZUjd03UkUDUJZ5RMlfm1E/9KLrj4QC8Kvi8pj57vIkL1aWRUqHoThNWs7 PPvIULqorGotEYRqMc2HT/4gg9BiVjGbZBAO2yZdd/5FhtFYLbFnhO+IeJQ6 jJHhtOwFx11SQaj/V/2f7SQZjtf6HkgjPFnMIGI5Q4aY2wWV04RTL7VbmS4Q 9aWr5CpIB+FBo7QbB1bJMH8v8uchwqvMmo7pRA7M06w7aEW4a0JwQZjIbfYC F5v1CT/rYLybSuS0e0Zt+zkIh70ZlxcgcpjxJ+/kJmJ9+5SOugdEDvt0OKXQ g7DKtbdOPFsoMFYifu4f8b7M7o8X47dS4MuDs8U2hH+Y3IjfxkmBrgE/z0yi 3tc7zyvGcRO5QK0tqIfoRwyXTT3bdgrsSH1VRyH6dXJR1+UWkcOi26a1yEQ/ d38XW2Yicpj2x9V3nUS/OWtYEsOFKeDJ8U8thdiP8RyyEoMYBTaYBd82FgrC hz4fXNekKOBoUHLPkthfb9uslRBZCrzwU9r+nNh/I93oe4vyFLjENSIzyRuE 84z2TbPKRC5vVisQIOanZQzcfFUpMBwqtcpMzFdWq/TalDoFjmiwJvaxB6HV gzmVcSK3ddeYH5cj5lPu0rdPHnoUcNPt9cplDkI615qTv/WJ3Ep+FrtpYxC+ lL/zcHAfkZPE2sqDaSTcXKFA12NGgTaVB1ksxPc0aSpaEmVBgbcbFtccyCT8 /I37tL41BU7J0W+L+UfC20trbdlHiVzL5LYn6hcJOTXaHwe4Ebnu7gc+agcJ Z2vrrGVPUSD32EjUnlYSdlm9Yx44TYHt1MPxbo0kvOeT4b3Pi8jdzGHuhypI yFcQAJzBFOAdkrwW9ZSES7qesx8vUoA+ikatzyBhf5NjbvAVYj7+BigMp5Iw 5Y/R1qHrxH7muS2W3CGhsAT/z5dxFJgePHivlURCyeQPV8yyKDAVWxbcr0fC jXLFqvS5FBjSW3Nj1SDhaGnOaEkekdP9W4wElEiY233bXPAlBRalSN79gsR5 wnFC+N87CqgVlQ79XA5ElUimisg2Yj3PuGaRokDk2L7iq9dJgRzyn7/OuYE4 k02WonRR4JAzu1fYo0B8Vdsbe6SfAorvfM943wpETVq+o/RvCoQrnq2ecg7E PaTDa7XLFChKLs8rZg5E6pmxiyZrxP7dZE9eWA3AQufQ5c80CsxuzfskNROA 4iavFvo2TMOhhPhy/YEAZBHcPkNmn4YQ35WS0y8DsKv6x+gOiWmosNnt1WoZ gOe2eLX7H5qGf2I2P4Mi/TE1KyZTInUaAj4Gzhxu9kUnW/XWTYdmoCs54OnA 3bPossPsyVuzGQgR7L2l7n8WXYfc/T0sZuDSCcWpFJuzePL8A/6PtjMw6bYx NHn7WfSMWHa/5kLk0OwyU+e0MxjwumqdGjgD03uSl4xeemIUj5nKyJMZ0JAu qDIc9MCYb+6MCZkzMJ4z+2BbnQfGpl/5ujdnBhK9Cq/M5HrgHaXCS4+fzcBE 1hT/qrcH3jPkanJ4MwN/Bcez5Ok98Elgn2sHkXtDJdm8OGVP4etu94QK6gxE Kq211ESexDv0ErtgaQZafVMSjvqexDNKg58rV4h6FgQ5NjqcROEIB9ZqOiIn R3cdzlA4iTfUD4fWss4Cd6Tlvak2N7RL0PZuFJ6Fs+4h+p2CbrhgwXao02gW 1sNj3zQ3uGLnpcYxK5NZYBxWDd3zyhULnkbc+HJoFoxfVmysT3NFFzq6mi6L WWDSCxDdQXLFxpdz2j0Os7DclF3XJeWKD9l/SA94zYIo5evq5VsuqNNSyDB6 fxZu3vrQ8rrGCQUzLpalJs3CloaN02KpTkh3wcjPOnUWzIpoilWBTtgoMTBU lU7k+p5HFvFyTmh3kbk6pWAWuAYGJyITHNFP3umqZc0sHPpy0yzF5zgWRLKt lk/OgrYzl7GYuQPecfr6yp8yC3X3z01cVnJAf/X0s/Kzs7C/s0iceYsD6g5q fnuwOAsoGBOe1mKPTVonyvwY5+BX88Uv38zscXT07QVZ/jmIjty86n70KIoa nppP2D8HXlEM111i7HDgWneQ4IE5EKuwLK3xs8OH5fuXs0zmYOmau5eRvR1y qEvQXpvPga1e9sciaTtkkBhk6T06B8wXOqq4am3xN52DoOD5OXjty+Y4TG+L +eVm+7LuzcF1z5HHSfet8dRi+UfFh3PQte5jOnjNGiXUFY1fJ8+BnY549r6z 1pj6jNWs/vEceE561jujNcYmN9iN5c1BU41a5d9/VuhzYe8ZxYo52CbQlS5p bIUa6hp3S0bnwMngvfcebktUecBrrvJ3DtK8s+NUGCxRfnmBteDfHJBIMzRd igWKVpWFZ1LmwCNb2vFeiwWymuKF+OU5GP6rmX78hgUOuh1y9mGfh6TQsLMa q4cxKsFVSVFzHvyOSXCyr5hhONVgPFd7Ht7cWN5hO2CGV+0lcyV2z4NI6eOr tR/MMEDkj+gOJO6/YnWJJ9QMnZ+d42Y9OA9shWW+kZvMUL02aOWP4zygK83u kpgp/pyJbcqMmAcDBq8XOucO4gjt0hPbyHnQWzrD2Hb4II5tPhfEHD0P/yis xtFqB5EifVDq7J152K5l+zpoxQTpjjGFqqbMg5d4dD1/rAmK117Rri6cB89V X1bLUmM8leCd++PbPMj0JwlulT6AZ544XbnzYx6ERSgVvOwH0Ou5ma3B0Dzw /Va6r081wqAGBcac0Xlwv3lbdKreCCNX/jidn54HJTaSa4OnEea5ufCuMlHB VYv9tM5rQ5xQs4zgV6VCRcZoyaDrfmzKGZF+pE4Fw71nNk2b78cc/guNolpU cI94Fc+ntx9daGlssnpUSPhqUl3Aux+/fJq4q2lEBb43fSyjLfuwzDUyzdqB CiW3pF9c27MPb92uLI0No0Jb2hXm6zsN8BSDtT1HBBVKHXaCvrABGgSOLife pMKY9Dx5M7sBrjps0U+NocLHmDsWI5N70Uf6WF3+fSrUKewTu/BiLx79QG1v yKfCcL24oJDaXpT+pzRO/4UKvU4REs9NEDeztGW/76aCz8no9gu6RH6T9HEN 7KWCdk3zuyMKiFVOxb1j36mg87P2s/kWRIdOzYa2MSo4zmD/nizAuHeQ9Wid CiZ3rRsdK/Rx/qalk478Aqxx5H5+tnkPDmTN8M8qLoD8y738+TN6WFOd0F2g vABBv547NfbqYdxKt6moxgKwvo8UOZmth7LeDruZcQEuPI714UI9PG7nxtdt uwBeCb+W5S7uxjrJwE6f0AX447N8hZVZF6/nlh1dvb4AO95Z8ijN6KCBPN3P mzcWgC5VbPrUdx2sVo7+lxa9AJI2TGsiJTpYoZu+ofXeAtxcW2PNOqGDpRat mnL5C/BKbeeHvlptzL8klTLUuQCkZ2L2qve10JN2Rux89wLocxyu2xBO5POw wtzFngUAZsk/475amHNzd8nW7wswdqJqYtpMCzPjLVv3/FkAuRbyzjEmLUx9 epmWtLIAzK2hNc6XNPF2V7ebleQiyDtIb+8K0MCYK7GSHdKL8ESJe3CPuwZG yRr+Piy3CHQ9OfWlthoYcanklNnORXCXpqZ809TAi5IJnsbai7D+Rkp7aEkd PQIsvPVNF+ETR7jAlzB1BO7mEPmARfDzFtH8/FgN9SrCdueRFoG6pyCNN14N dU/rrsoEL8L1PQmd58LVUKM877LUlUUoZ/ly1MBTDRVORl4TjVwE0ao11jtq ari9xPAGb+oipMSZFeV+UkWyddVdhrpFsNzQTbVnUEVqbsS50vpFsPsW/lBz fheurxw8cK5pERpSYuXExnbh5qzu1e7PixC+16hD5PMulJ0b98jrW4QTVWEG 1cm70CWRR9+CTNQ3fOJ4hOYubO86M/5IYAmE+D9LPQpSwWJbnn06vkuwGMPc ekxnJ8ZvvTpW6b8EOT+qnp2W3ol+TWOxRqQlKNar1rjJtRN37Snvtb64BA9l hJYXJ5WwUNLNyytiCcafD219nqmEL2YLkzKTlqBop4OkEacS5t81pWypWYLe ywxDb1YUMLP1+qNhzmXglvFbeLsihzG7Vo4/5lmG5LvVex3/ySHpnp/gcb5l GNPeqMzxTQ6NHV1TuoWWYf9Lcm5umRxOTegnNcoug8DE062xIXKovXk58YU+ 8Xxj9YTcmiy2HvSJCTmzDA6gHq+6RRYXGo5f5Kwh/peqzKPZSKOwtVFgTd0y FPcVuRoaS6PRD2Vvv4ZloD+k4Hh/tzTen2Nw62xZhtikvAl7cWlUF8s7GN+z DJ4WclynKFLoFzLPzzm5DBZV177fjJPCCcW4txx8K7B+2jnucackDt6tnN/m tQLd5p/HKoMkcDDMrCzeZwUeF8UlK3lJ4JD/tyvc/itgZdtel3FSgshPC8x8 F1Zg7x9X90xLCfzFrywgErYCohOnWdcUJHA0PU1f6f4KnP/I9YhtWBz/FV2+ aVKxAu56FQ7u1uJI7djNH8a+CmyD97Y/MRFDuvM9Czocq6BKvRW8ea8YsrL4 f53mWoX03rdVV7XFUFg/P8GVfxXk7zweDpERQ8N8Pva9kqvgne9QVLNRDBPD 5hnodFeBv/b4pfhaUVRTezlx2Z1Y75FA6Ib9ouiTKF4VXL4KU7cP/Cl6LoxW 9054Mlauwkf7w6U3nwijxv0MztjqVZj//WDkVIIwLj8Qd39SvwrTJ8bU9wYL Y0SKOGtD+ypkfSRVnTQUxuQMcRvu36vgGByDLj+FsK5QfOzFljWgWf5KpfAL 4fZW8W0jTmtQuie1qi13B1p3F6wKrq/BESVKcq40P844p58byF8HnmvvF+n7 eLHS5WUEuykN7l6dPP+MkQfL2s4d+mFOg0dRRVt5V7nxjb48xwtLGhzS+poZ MceNBYLZqWZHaHA+7nq8/29uTO5NfhVzggZKuYo8UQ3cGGhxY4g1mAa7L13f kRbDjQrouIc5hwbJXa2uRgLcKP1SgLHnKQ1ukpXDDnBxo7hwb2POMxqIN3/l NdvMjXyrVjZGRTS4wq0R577OhUxvjc9GlNOga7jTvHmYC4eU1ZMYv9Ag/PxF yqkCLhxIm3b60k0DbYMrGc+zubB3y0vJzF4aTNL8by+mceHnf3KFBj9oYF3k vDnlLheW54o0hP6lgezlzaqcQVz4lvd7jOUEDWw7ThwLIU74VxHJVmJkGnz8 ZJ016smF+W48P6rmaGCWkXSz+TgXZnd2Zt5ZoIFWA+7Yb8eFT/be8XRZpsGu 7TLVVYe5MLXQTFlljQb5lLXAvSZc+ECEbZ5Go4E0NViz3oAL/w+5MAq0 "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{ FormBox["\[Theta]", TraditionalForm], FormBox[ RowBox[{ SubscriptBox["ARL", "\[Sigma]"], "(", "\[Theta]", ")"}], TraditionalForm]}, AxesOrigin->{1., 0.}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{0, 2}, {0., 370.3950908341017}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.896713258854409*^9, 3.896713676521207*^9, {3.89671421255935*^9, 3.896714220734174*^9}, 3.8967143594898987`*^9, 3.896714484059466*^9, 3.896782162109133*^9, {3.8971516972429037`*^9, 3.8971517111330147`*^9}, { 3.898061160508644*^9, 3.898061220275447*^9}, 3.8980612652458563`*^9, 3.898061337688589*^9, 3.898061699048602*^9, 3.8980621216002817`*^9, 3.898062195441843*^9, 3.898067433125021*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Round", "[", RowBox[{ FractionBox["18.222384", SuperscriptBox["0.99", "2"]], ",", "0.000001"}], "]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", RowBox[{"n", "-", "1"}], "]"}], ",", "%"}], "]"}], ",", "0.000001"}], "]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ FractionBox["0.042541", SuperscriptBox["0.99", "2"]], ",", "0.000001"}], "]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", RowBox[{"n", "-", "1"}], "]"}], ",", "%"}], "]"}], ",", "0.000001"}], "]"}], "\[IndentingNewLine]", FractionBox["1", RowBox[{"1", "-", RowBox[{"(", RowBox[{"0.999668", "-", "0.002374"}], ")"}]}]], "\[IndentingNewLine]", RowBox[{"ARL", "[", "0.99", "]"}]}], "Input", CellChangeTimes->{{3.898061860850534*^9, 3.898061945377185*^9}, { 3.8980621132298813`*^9, 3.898062113529793*^9}, 3.898062235356799*^9, { 3.898062953831012*^9, 3.8980629664699802`*^9}, {3.898063001183229*^9, 3.898063006657608*^9}}], Cell[BoxData["18.592371999999997`"], "Output", CellChangeTimes->{ 3.898061870751423*^9, 3.8980619067593107`*^9, 3.898061946411166*^9, { 3.898062103786474*^9, 3.8980621141786337`*^9}, 3.89806296731461*^9, 3.898063007880278*^9, 3.898063041134239*^9, 3.898067440168594*^9}], Cell[BoxData["0.999668`"], "Output", CellChangeTimes->{ 3.898061870751423*^9, 3.8980619067593107`*^9, 3.898061946411166*^9, { 3.898062103786474*^9, 3.8980621141786337`*^9}, 3.89806296731461*^9, 3.898063007880278*^9, 3.898063041134239*^9, 3.8980674401715183`*^9}], Cell[BoxData["0.043405`"], "Output", CellChangeTimes->{ 3.898061870751423*^9, 3.8980619067593107`*^9, 3.898061946411166*^9, { 3.898062103786474*^9, 3.8980621141786337`*^9}, 3.89806296731461*^9, 3.898063007880278*^9, 3.898063041134239*^9, 3.898067440173847*^9}], Cell[BoxData["0.002374`"], "Output", CellChangeTimes->{ 3.898061870751423*^9, 3.8980619067593107`*^9, 3.898061946411166*^9, { 3.898062103786474*^9, 3.8980621141786337`*^9}, 3.89806296731461*^9, 3.898063007880278*^9, 3.898063041134239*^9, 3.8980674401764*^9}], Cell[BoxData["369.5491500369568`"], "Output", CellChangeTimes->{ 3.898061870751423*^9, 3.8980619067593107`*^9, 3.898061946411166*^9, { 3.898062103786474*^9, 3.8980621141786337`*^9}, 3.89806296731461*^9, 3.898063007880278*^9, 3.898063041134239*^9, 3.8980674401787786`*^9}], Cell[BoxData["369.56264067696895`"], "Output", CellChangeTimes->{ 3.898061870751423*^9, 3.8980619067593107`*^9, 3.898061946411166*^9, { 3.898062103786474*^9, 3.8980621141786337`*^9}, 3.89806296731461*^9, 3.898063007880278*^9, 3.898063041134239*^9, 3.898067440181114*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"n", "=", "4"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SubscriptBox["\[Mu]", "0"], "=", "16.2"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["\[Sigma]", "0"], "=", "0.1"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"distmu", "=", RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Gamma]mu", "=", "3"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Xi]mu", "[", RowBox[{"\[Delta]_", ",", "\[Theta]_"}], "]"}], "=", RowBox[{"1", "-", RowBox[{"(", RowBox[{ RowBox[{"CDF", "[", RowBox[{"distmu", ",", FractionBox[ RowBox[{"\[Gamma]mu", "-", "\[Delta]"}], "\[Theta]"]}], "]"}], "-", RowBox[{"CDF", "[", RowBox[{"distmu", ",", FractionBox[ RowBox[{ RowBox[{"-", "\[Gamma]mu"}], "-", "\[Delta]"}], "\[Theta]"]}], "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ARLmu", "[", RowBox[{"\[Delta]_", ",", "\[Theta]_"}], "]"}], "=", RowBox[{"1", "/", RowBox[{"\[Xi]mu", "[", RowBox[{"\[Delta]", ",", "\[Theta]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ARLmu", "[", RowBox[{"0.", ",", "1."}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ARLmu", "[", RowBox[{"0.", ",", ".99"}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"distsigma", "=", RowBox[{"ChiSquareDistribution", "[", RowBox[{"n", "-", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Xi]sigma", "[", "\[Theta]_", "]"}], "=", RowBox[{"1", "-", RowBox[{"(", RowBox[{ RowBox[{"CDF", "[", RowBox[{"distsigma", ",", FractionBox["18.222384", SuperscriptBox["\[Theta]", "2"]]}], "]"}], "-", RowBox[{"CDF", "[", RowBox[{"distsigma", ",", FractionBox["0.042541", SuperscriptBox["\[Theta]", "2"]]}], "]"}]}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ARLsigma", "[", "\[Theta]_", "]"}], "=", RowBox[{"1", "/", RowBox[{"\[Xi]sigma", "[", "\[Theta]", "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"ARLsigma", "[", "1.", "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Xi]musigma", "[", RowBox[{"\[Delta]_", ",", "\[Theta]_"}], "]"}], "=", RowBox[{ RowBox[{"\[Xi]mu", "[", RowBox[{"\[Delta]", ",", "\[Theta]"}], "]"}], "+", RowBox[{"\[Xi]sigma", "[", "\[Theta]", "]"}], "-", RowBox[{ RowBox[{"\[Xi]mu", "[", RowBox[{"\[Delta]", ",", "\[Theta]"}], "]"}], "\[Times]", RowBox[{"\[Xi]sigma", "[", "\[Theta]", "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ARLmusigma", "[", RowBox[{"\[Delta]_", ",", "\[Theta]_"}], "]"}], "=", RowBox[{"1", "/", RowBox[{"\[Xi]musigma", "[", RowBox[{"\[Delta]", ",", "\[Theta]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"ARLmusigma", "[", RowBox[{"0.", ",", "1."}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"ARLmusigma", "[", RowBox[{"\[Delta]_", ",", "\[Theta]_"}], "]"}], "=", FractionBox[ RowBox[{ RowBox[{"ARLmu", "[", RowBox[{"\[Delta]", ",", "\[Theta]"}], "]"}], "*", RowBox[{"ARLsigma", "[", "\[Theta]", "]"}]}], RowBox[{ RowBox[{"ARLmu", "[", RowBox[{"\[Delta]", ",", "\[Theta]"}], "]"}], "+", RowBox[{"ARLsigma", "[", "\[Theta]", "]"}], "-", "1"}]]}], ";"}], "\[IndentingNewLine]", RowBox[{"ARLmusigma", "[", RowBox[{"0.", ",", ".99"}], "]"}]}], "Input", CellChangeTimes->{{3.610566851562529*^9, 3.610567236912198*^9}, { 3.6105676861101637`*^9, 3.610567688877533*^9}, {3.610600911285817*^9, 3.610600960216777*^9}, {3.610600991170627*^9, 3.6106010412172527`*^9}, { 3.610704762320983*^9, 3.610704762583201*^9}, {3.629216315522439*^9, 3.629216452138616*^9}, {3.629217432516494*^9, 3.62921745745497*^9}, { 3.6292177033925047`*^9, 3.629217735654768*^9}, 3.629217773089197*^9, { 3.6292643556015053`*^9, 3.6292643705074463`*^9}, {3.629269564739069*^9, 3.629269577276051*^9}, {3.6293408145163107`*^9, 3.62934081809447*^9}, { 3.629340849614993*^9, 3.629340899714168*^9}, {3.6293410738113337`*^9, 3.6293411054385777`*^9}, 3.6293418132986794`*^9, {3.629344670455871*^9, 3.6293446963241377`*^9}, {3.69181686049205*^9, 3.691817269191139*^9}, { 3.6918173152889547`*^9, 3.6918173772397957`*^9}, {3.691817756229415*^9, 3.6918177609950523`*^9}, {3.691818934978718*^9, 3.6918189662325373`*^9}, { 3.691819857216969*^9, 3.6918199536372137`*^9}, {3.693992738340912*^9, 3.693992739970517*^9}, {3.693992830553602*^9, 3.6939929888834543`*^9}, { 3.693993074971363*^9, 3.693993106567788*^9}, {3.694072436145273*^9, 3.694072464901731*^9}, {3.694072502280669*^9, 3.694072568903949*^9}, { 3.694072701672122*^9, 3.694072733828229*^9}, {3.694073518272686*^9, 3.694073544691671*^9}, {3.694073788461231*^9, 3.694073794569219*^9}, { 3.8943553547623367`*^9, 3.894355372038225*^9}, {3.894355500615923*^9, 3.8943556423704643`*^9}, {3.894356084544202*^9, 3.894356114818677*^9}, { 3.894356193045001*^9, 3.894356399386421*^9}, 3.894357064791*^9, { 3.894357305220826*^9, 3.894357437561091*^9}, {3.894357955574892*^9, 3.894357961498468*^9}, {3.894358022575542*^9, 3.894358041725114*^9}, { 3.89435809196469*^9, 3.894358118815227*^9}, {3.8943581730796013`*^9, 3.894358174053856*^9}, {3.894358278781322*^9, 3.894358330658637*^9}, { 3.894359301655196*^9, 3.894359418995804*^9}, {3.8967870714409723`*^9, 3.896787090439411*^9}, {3.896787128091507*^9, 3.8967871576042223`*^9}, { 3.896787427072158*^9, 3.8967875364748096`*^9}, {3.896787571888487*^9, 3.896787668765843*^9}, {3.896788612309732*^9, 3.8967886209209146`*^9}, { 3.8980807952040253`*^9, 3.898080831528213*^9}, {3.898080865752611*^9, 3.898080992631055*^9}, {3.8980937280784473`*^9, 3.898093731140358*^9}}], Cell[BoxData["370.3983473449716`"], "Output", CellChangeTimes->{ 3.610567239133748*^9, 3.610567693644808*^9, {3.610601012543502*^9, 3.610601042368022*^9}, 3.6106011187313128`*^9, 3.610642047987028*^9, 3.6107047630913057`*^9, {3.6292163882729607`*^9, 3.629216409185521*^9}, 3.629216452678238*^9, {3.629217433093609*^9, 3.629217458022676*^9}, 3.6292177371686296`*^9, {3.629264356877611*^9, 3.629264371044162*^9}, 3.62926957830231*^9, {3.629341088458417*^9, 3.629341106626956*^9}, 3.629341813942048*^9, 3.629341935060129*^9, 3.6293447157382317`*^9, 3.629377688741724*^9, 3.629464182463147*^9, {3.691817219408803*^9, 3.6918172410763893`*^9}, 3.69181727251726*^9, {3.691817365268092*^9, 3.69181737793106*^9}, 3.691817761849625*^9, 3.6918189669984217`*^9, 3.691819011906039*^9, {3.691819910362315*^9, 3.691819954670439*^9}, 3.693992948138544*^9, 3.693992989450602*^9, {3.6939930792386293`*^9, 3.69399310920816*^9}, 3.694072399384956*^9, 3.694072466563129*^9, { 3.694072528922606*^9, 3.69407257334441*^9}, 3.694072734883706*^9, 3.694073545550599*^9, 3.6940737980672493`*^9, {3.8943553583915653`*^9, 3.894355379550091*^9}, {3.894355596923451*^9, 3.894355600577169*^9}, 3.89435565814253*^9, {3.8943561057526407`*^9, 3.894356120155342*^9}, { 3.894356278183148*^9, 3.8943563037824583`*^9}, 3.894356400011545*^9, 3.894357065951386*^9, {3.894357354932864*^9, 3.894357401056988*^9}, { 3.894357431872126*^9, 3.894357438153936*^9}, 3.894357964946764*^9, 3.894358175615156*^9, 3.894358347109344*^9, 3.894359407883816*^9, 3.89436046677752*^9, 3.896787098249817*^9, 3.896787542236806*^9, { 3.896787602602728*^9, 3.896787632388706*^9}, 3.896787669394834*^9, { 3.896788613505958*^9, 3.896788622319502*^9}, {3.898080917923266*^9, 3.898080936917871*^9}, 3.8980809932548513`*^9, 3.898093254178047*^9, 3.8980937317926483`*^9}], Cell[BoxData["409.3185749764832`"], "Output", CellChangeTimes->{ 3.610567239133748*^9, 3.610567693644808*^9, {3.610601012543502*^9, 3.610601042368022*^9}, 3.6106011187313128`*^9, 3.610642047987028*^9, 3.6107047630913057`*^9, {3.6292163882729607`*^9, 3.629216409185521*^9}, 3.629216452678238*^9, {3.629217433093609*^9, 3.629217458022676*^9}, 3.6292177371686296`*^9, {3.629264356877611*^9, 3.629264371044162*^9}, 3.62926957830231*^9, {3.629341088458417*^9, 3.629341106626956*^9}, 3.629341813942048*^9, 3.629341935060129*^9, 3.6293447157382317`*^9, 3.629377688741724*^9, 3.629464182463147*^9, {3.691817219408803*^9, 3.6918172410763893`*^9}, 3.69181727251726*^9, {3.691817365268092*^9, 3.69181737793106*^9}, 3.691817761849625*^9, 3.6918189669984217`*^9, 3.691819011906039*^9, {3.691819910362315*^9, 3.691819954670439*^9}, 3.693992948138544*^9, 3.693992989450602*^9, {3.6939930792386293`*^9, 3.69399310920816*^9}, 3.694072399384956*^9, 3.694072466563129*^9, { 3.694072528922606*^9, 3.69407257334441*^9}, 3.694072734883706*^9, 3.694073545550599*^9, 3.6940737980672493`*^9, {3.8943553583915653`*^9, 3.894355379550091*^9}, {3.894355596923451*^9, 3.894355600577169*^9}, 3.89435565814253*^9, {3.8943561057526407`*^9, 3.894356120155342*^9}, { 3.894356278183148*^9, 3.8943563037824583`*^9}, 3.894356400011545*^9, 3.894357065951386*^9, {3.894357354932864*^9, 3.894357401056988*^9}, { 3.894357431872126*^9, 3.894357438153936*^9}, 3.894357964946764*^9, 3.894358175615156*^9, 3.894358347109344*^9, 3.894359407883816*^9, 3.89436046677752*^9, 3.896787098249817*^9, 3.896787542236806*^9, { 3.896787602602728*^9, 3.896787632388706*^9}, 3.896787669394834*^9, { 3.896788613505958*^9, 3.896788622319502*^9}, {3.898080917923266*^9, 3.898080936917871*^9}, 3.8980809932548513`*^9, 3.898093254178047*^9, 3.898093731795331*^9}], Cell[BoxData["370.3952911458508`"], "Output", CellChangeTimes->{ 3.610567239133748*^9, 3.610567693644808*^9, {3.610601012543502*^9, 3.610601042368022*^9}, 3.6106011187313128`*^9, 3.610642047987028*^9, 3.6107047630913057`*^9, {3.6292163882729607`*^9, 3.629216409185521*^9}, 3.629216452678238*^9, {3.629217433093609*^9, 3.629217458022676*^9}, 3.6292177371686296`*^9, {3.629264356877611*^9, 3.629264371044162*^9}, 3.62926957830231*^9, {3.629341088458417*^9, 3.629341106626956*^9}, 3.629341813942048*^9, 3.629341935060129*^9, 3.6293447157382317`*^9, 3.629377688741724*^9, 3.629464182463147*^9, {3.691817219408803*^9, 3.6918172410763893`*^9}, 3.69181727251726*^9, {3.691817365268092*^9, 3.69181737793106*^9}, 3.691817761849625*^9, 3.6918189669984217`*^9, 3.691819011906039*^9, {3.691819910362315*^9, 3.691819954670439*^9}, 3.693992948138544*^9, 3.693992989450602*^9, {3.6939930792386293`*^9, 3.69399310920816*^9}, 3.694072399384956*^9, 3.694072466563129*^9, { 3.694072528922606*^9, 3.69407257334441*^9}, 3.694072734883706*^9, 3.694073545550599*^9, 3.6940737980672493`*^9, {3.8943553583915653`*^9, 3.894355379550091*^9}, {3.894355596923451*^9, 3.894355600577169*^9}, 3.89435565814253*^9, {3.8943561057526407`*^9, 3.894356120155342*^9}, { 3.894356278183148*^9, 3.8943563037824583`*^9}, 3.894356400011545*^9, 3.894357065951386*^9, {3.894357354932864*^9, 3.894357401056988*^9}, { 3.894357431872126*^9, 3.894357438153936*^9}, 3.894357964946764*^9, 3.894358175615156*^9, 3.894358347109344*^9, 3.894359407883816*^9, 3.89436046677752*^9, 3.896787098249817*^9, 3.896787542236806*^9, { 3.896787602602728*^9, 3.896787632388706*^9}, 3.896787669394834*^9, { 3.896788613505958*^9, 3.896788622319502*^9}, {3.898080917923266*^9, 3.898080936917871*^9}, 3.8980809932548513`*^9, 3.898093254178047*^9, 3.898093731797389*^9}], Cell[BoxData["185.4487475516169`"], "Output", CellChangeTimes->{ 3.610567239133748*^9, 3.610567693644808*^9, {3.610601012543502*^9, 3.610601042368022*^9}, 3.6106011187313128`*^9, 3.610642047987028*^9, 3.6107047630913057`*^9, {3.6292163882729607`*^9, 3.629216409185521*^9}, 3.629216452678238*^9, {3.629217433093609*^9, 3.629217458022676*^9}, 3.6292177371686296`*^9, {3.629264356877611*^9, 3.629264371044162*^9}, 3.62926957830231*^9, {3.629341088458417*^9, 3.629341106626956*^9}, 3.629341813942048*^9, 3.629341935060129*^9, 3.6293447157382317`*^9, 3.629377688741724*^9, 3.629464182463147*^9, {3.691817219408803*^9, 3.6918172410763893`*^9}, 3.69181727251726*^9, {3.691817365268092*^9, 3.69181737793106*^9}, 3.691817761849625*^9, 3.6918189669984217`*^9, 3.691819011906039*^9, {3.691819910362315*^9, 3.691819954670439*^9}, 3.693992948138544*^9, 3.693992989450602*^9, {3.6939930792386293`*^9, 3.69399310920816*^9}, 3.694072399384956*^9, 3.694072466563129*^9, { 3.694072528922606*^9, 3.69407257334441*^9}, 3.694072734883706*^9, 3.694073545550599*^9, 3.6940737980672493`*^9, {3.8943553583915653`*^9, 3.894355379550091*^9}, {3.894355596923451*^9, 3.894355600577169*^9}, 3.89435565814253*^9, {3.8943561057526407`*^9, 3.894356120155342*^9}, { 3.894356278183148*^9, 3.8943563037824583`*^9}, 3.894356400011545*^9, 3.894357065951386*^9, {3.894357354932864*^9, 3.894357401056988*^9}, { 3.894357431872126*^9, 3.894357438153936*^9}, 3.894357964946764*^9, 3.894358175615156*^9, 3.894358347109344*^9, 3.894359407883816*^9, 3.89436046677752*^9, 3.896787098249817*^9, 3.896787542236806*^9, { 3.896787602602728*^9, 3.896787632388706*^9}, 3.896787669394834*^9, { 3.896788613505958*^9, 3.896788622319502*^9}, {3.898080917923266*^9, 3.898080936917871*^9}, 3.8980809932548513`*^9, 3.898093254178047*^9, 3.89809373179949*^9}], Cell[BoxData["194.46266396775115`"], "Output", CellChangeTimes->{ 3.610567239133748*^9, 3.610567693644808*^9, {3.610601012543502*^9, 3.610601042368022*^9}, 3.6106011187313128`*^9, 3.610642047987028*^9, 3.6107047630913057`*^9, {3.6292163882729607`*^9, 3.629216409185521*^9}, 3.629216452678238*^9, {3.629217433093609*^9, 3.629217458022676*^9}, 3.6292177371686296`*^9, {3.629264356877611*^9, 3.629264371044162*^9}, 3.62926957830231*^9, {3.629341088458417*^9, 3.629341106626956*^9}, 3.629341813942048*^9, 3.629341935060129*^9, 3.6293447157382317`*^9, 3.629377688741724*^9, 3.629464182463147*^9, {3.691817219408803*^9, 3.6918172410763893`*^9}, 3.69181727251726*^9, {3.691817365268092*^9, 3.69181737793106*^9}, 3.691817761849625*^9, 3.6918189669984217`*^9, 3.691819011906039*^9, {3.691819910362315*^9, 3.691819954670439*^9}, 3.693992948138544*^9, 3.693992989450602*^9, {3.6939930792386293`*^9, 3.69399310920816*^9}, 3.694072399384956*^9, 3.694072466563129*^9, { 3.694072528922606*^9, 3.69407257334441*^9}, 3.694072734883706*^9, 3.694073545550599*^9, 3.6940737980672493`*^9, {3.8943553583915653`*^9, 3.894355379550091*^9}, {3.894355596923451*^9, 3.894355600577169*^9}, 3.89435565814253*^9, {3.8943561057526407`*^9, 3.894356120155342*^9}, { 3.894356278183148*^9, 3.8943563037824583`*^9}, 3.894356400011545*^9, 3.894357065951386*^9, {3.894357354932864*^9, 3.894357401056988*^9}, { 3.894357431872126*^9, 3.894357438153936*^9}, 3.894357964946764*^9, 3.894358175615156*^9, 3.894358347109344*^9, 3.894359407883816*^9, 3.89436046677752*^9, 3.896787098249817*^9, 3.896787542236806*^9, { 3.896787602602728*^9, 3.896787632388706*^9}, 3.896787669394834*^9, { 3.896788613505958*^9, 3.896788622319502*^9}, {3.898080917923266*^9, 3.898080936917871*^9}, 3.8980809932548513`*^9, 3.898093254178047*^9, 3.89809373180169*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ FractionBox[ RowBox[{"370.4", "*", "370.4"}], RowBox[{"370.4", "+", "370.4", "-", "1"}]], "\[IndentingNewLine]", FractionBox["1", RowBox[{"1", "-", RowBox[{"(", RowBox[{ RowBox[{"CDF", "[", RowBox[{"distmu", ",", FractionBox[ RowBox[{"\[Gamma]mu", "-", "0"}], "0.99"]}], "]"}], "-", RowBox[{"CDF", "[", RowBox[{"distmu", ",", FractionBox[ RowBox[{ RowBox[{"-", "\[Gamma]mu"}], "-", "0"}], "0.99"]}], "]"}]}], ")"}]}]], "\[IndentingNewLine]", FractionBox[ RowBox[{"%", "*", "369.549"}], RowBox[{"%", "+", "369.549", "-", "1"}]], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ FractionBox[ RowBox[{"\[Gamma]mu", "-", "0"}], "0.99"], ",", "0.01"}], "]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ FractionBox[ RowBox[{ RowBox[{"-", "\[Gamma]mu"}], "-", "0"}], "0.99"], ",", "0.01"}], "]"}], "\[IndentingNewLine]", FractionBox["1", RowBox[{"1", "-", RowBox[{"(", RowBox[{"0.998777", "-", RowBox[{"(", RowBox[{"1", "-", "0.998777"}], ")"}]}], ")"}]}]], "\[IndentingNewLine]", FractionBox[ RowBox[{"%", "*", "369.549"}], RowBox[{"%", "+", "369.549", "-", "1"}]]}], "Input", CellChangeTimes->{{3.898091599397675*^9, 3.898091663406569*^9}, { 3.898092356130591*^9, 3.898092381655242*^9}, {3.8980931270686007`*^9, 3.89809315420618*^9}, {3.898093187407752*^9, 3.898093335046934*^9}, { 3.8980933712116413`*^9, 3.898093394623721*^9}, 3.89809363867794*^9, { 3.8980940235460577`*^9, 3.898094030982729*^9}}], Cell[BoxData["185.45033792917002`"], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.8980940330309153`*^9}], Cell[BoxData["409.3185749764646`"], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.898094033033547*^9}], Cell[BoxData["194.45889625692934`"], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.898094033035531*^9}], Cell[BoxData["3.0300000000000002`"], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.89809403303752*^9}], Cell[BoxData[ RowBox[{"-", "3.0300000000000002`"}]], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.898094033039488*^9}], Cell[BoxData["408.83074407196284`"], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.89809403304147*^9}], Cell[BoxData["194.34902156012942`"], "Output", CellChangeTimes->{{3.8980916349387197`*^9, 3.8980916639126577`*^9}, 3.898092382389605*^9, {3.8980932481918383`*^9, 3.898093300766735*^9}, 3.898093395944104*^9, 3.898093640349573*^9, 3.898094033043456*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["Question 4 \[LongDash]\[NonBreakingSpace]Single sampling plan for \ attributes", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, {3.8872035562635403`*^9, 3.887203571506999*^9}, { 3.889075948658783*^9, 3.889075948905105*^9}, {3.893068488938219*^9, 3.893068489604116*^9}, 3.894353121097001*^9, {3.894355313323731*^9, 3.894355315510623*^9}, {3.89436020311318*^9, 3.894360270691959*^9}, { 3.89678817818736*^9, 3.896788178311158*^9}, {3.898085015886962*^9, 3.898085018973197*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"Clear", "[", RowBox[{"Evaluate", "[", RowBox[{ RowBox[{"Context", "[", "]"}], "<>", "\"\<*\>\""}], "]"}], "]"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["p", "1"], "=", "0.005"}], ";"}], " ", StyleBox[ RowBox[{"(*", " ", "AQL", " ", "*)"}], FontSize->9]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Alpha]", "=", RowBox[{"1", "-", "0.95"}]}], ";"}], " ", StyleBox[ RowBox[{"(*", " ", RowBox[{ RowBox[{"producer", "'"}], "s", " ", "risk"}], " ", "*)"}], FontSize->9]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["p", "2"], "=", "0.035"}], ";"}], RowBox[{"(*", " ", StyleBox["LTPD", FontSize->9], StyleBox[" ", FontSize->9], StyleBox["*)", FontSize->9]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"\[Beta]", "=", "0.05"}], ";"}], " ", StyleBox[ RowBox[{"(*", " ", RowBox[{ RowBox[{"consumer", "'"}], "s", " ", "risk"}], " ", "*)"}], FontSize->9], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"Q", "[", RowBox[{"c_", ",", "x_"}], "]"}], "=", RowBox[{"Quantile", "[", RowBox[{ RowBox[{"ChiSquareDistribution", "[", RowBox[{"2", "\[Times]", RowBox[{"(", RowBox[{"c", "+", "1"}], ")"}]}], "]"}], ",", "x"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"r", "[", "c_", "]"}], "=", FractionBox[ RowBox[{"N", "[", RowBox[{ RowBox[{"Q", "[", RowBox[{"c", ",", RowBox[{"1", "-", "\[Beta]"}]}], "]"}], ",", "5"}], "]"}], RowBox[{"N", "[", RowBox[{ RowBox[{"Q", "[", RowBox[{"c", ",", "\[Alpha]"}], "]"}], ",", "5"}], "]"}]]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"i", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{ RowBox[{"r", "[", "i", "]"}], ">", FractionBox[ SubscriptBox["p", "2"], SubscriptBox["p", "1"]]}], ",", RowBox[{ RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "i", ",", "\"\< because r(c)=\>\"", ",", RowBox[{"N", "[", RowBox[{ RowBox[{"Q", "[", RowBox[{"i", ",", RowBox[{"1", "-", "\[Beta]"}]}], "]"}], ",", "5"}], "]"}], ",", "\"\\"", ",", RowBox[{"N", "[", RowBox[{ RowBox[{"Q", "[", RowBox[{"i", ",", "\[Alpha]"}], "]"}], ",", "5"}], "]"}], " ", ",", "\"\<=\>\"", ",", RowBox[{"r", "[", "i", "]"}], ",", "\"\<>\!\(\*FractionBox[SubscriptBox[\(p\), \(2\)], SubscriptBox[\(p\), \ \(1\)]]\)=\>\"", ",", FractionBox[ SubscriptBox["p", "2"], SubscriptBox["p", "1"]]}], "]"}], ";", RowBox[{"i", "++"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "i", ",", "\"\< because r(c)=\>\"", ",", RowBox[{"N", "[", RowBox[{ RowBox[{"Q", "[", RowBox[{"i", ",", RowBox[{"1", "-", "\[Beta]"}]}], "]"}], ",", "5"}], "]"}], ",", "\"\\"", ",", RowBox[{"N", "[", RowBox[{ RowBox[{"Q", "[", RowBox[{"i", ",", "\[Alpha]"}], "]"}], ",", "5"}], "]"}], " ", ",", "\"\<=\>\"", ",", RowBox[{"r", "[", "i", "]"}], ",", "\"\<\[LessEqual]\!\(\*FractionBox[SubscriptBox[\(p\), \(2\)], \ SubscriptBox[\(p\), \(1\)]]\)=\>\"", ",", FractionBox[ SubscriptBox["p", "2"], SubscriptBox["p", "1"]]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"samplesize", "[", "c_", "]"}], "=", RowBox[{"Ceiling", "[", FractionBox[ RowBox[{"Q", "[", RowBox[{"i", ",", RowBox[{"1", "-", "\[Beta]"}]}], "]"}], RowBox[{"2", "\[Times]", SubscriptBox["p", "2"]}]], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"Ceiling", "[", FractionBox[ RowBox[{"Q", "[", RowBox[{"i", ",", RowBox[{"1", "-", "\[Beta]"}]}], "]"}], RowBox[{"2", "\[Times]", SubscriptBox["p", "2"]}]], "]"}], "\[LessEqual]", RowBox[{"Floor", "[", FractionBox[ RowBox[{"Q", "[", RowBox[{"i", ",", "\[Alpha]"}], "]"}], RowBox[{"2", "\[Times]", SubscriptBox["p", "1"]}]], "]"}]}], ",", RowBox[{"Print", "[", RowBox[{"\"\\"", ",", RowBox[{"samplesize", "[", "i", "]"}], ",", "\"\<.\>\""}], "]"}], ",", RowBox[{"Print", "[", "\"\\"", "]"}]}], "]"}]}], "Input", CellChangeTimes->{ 3.532605428673882*^9, {3.581247455648386*^9, 3.581247466526042*^9}, { 3.58124756210353*^9, 3.5812475670958023`*^9}, {3.581247736672215*^9, 3.581247748140965*^9}, {3.58124785896005*^9, 3.58124785934206*^9}, { 3.5816718651212883`*^9, 3.581671990019285*^9}, {3.581672309336495*^9, 3.581672338433188*^9}, {3.581672452757107*^9, 3.581672453754414*^9}, { 3.62935306064037*^9, 3.629353083908741*^9}, {3.629353119733007*^9, 3.629353179657146*^9}, {3.6293532283641233`*^9, 3.629353297438581*^9}, { 3.629353334092362*^9, 3.629353359557012*^9}, {3.629354115348728*^9, 3.62935417080341*^9}, {3.629354256253642*^9, 3.629354256353353*^9}, { 3.6940819598965*^9, 3.6940819682609453`*^9}, {3.694082011272462*^9, 3.694082032908976*^9}, {3.89436033052048*^9, 3.894360344420833*^9}, { 3.894360386849416*^9, 3.8943603890973*^9}, 3.8943604595757113`*^9, { 3.894360573839727*^9, 3.894360581588643*^9}, {3.89436063457828*^9, 3.8943607093545713`*^9}, {3.894360740880534*^9, 3.894360769643279*^9}, { 3.894361775450355*^9, 3.894361805124662*^9}, {3.894361837317771*^9, 3.8943618682637978`*^9}, {3.894361959492255*^9, 3.894362038117751*^9}, { 3.894362315188889*^9, 3.894362343937152*^9}, {3.894362381989642*^9, 3.8943623844881372`*^9}, {3.8943629797527437`*^9, 3.8943631903567657`*^9}, {3.8943632557464867`*^9, 3.894363304921726*^9}, { 3.898081499003416*^9, 3.898081558041453*^9}}], Cell[CellGroupData[{ Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Do not use acceptance number c=\"\>", "\[InvisibleSpace]", "0", "\[InvisibleSpace]", "\<\" because r(c)=\"\>", "\[InvisibleSpace]", "5.99146454710798`", "\[InvisibleSpace]", "\<\"/\"\>", "\[InvisibleSpace]", "0.10258658877510116`", "\[InvisibleSpace]", "\<\"=\"\>", "\[InvisibleSpace]", "58.4039748143197`", "\[InvisibleSpace]", "\<\">\\!\\(\\*FractionBox[SubscriptBox[\\(p\\), \\(2\ \\)], SubscriptBox[\\(p\\), \\(1\\)]]\\)=\"\>", "\[InvisibleSpace]", "7.000000000000001`"}], SequenceForm[ "Do not use acceptance number c=", 0, " because r(c)=", 5.99146454710798, "/", 0.10258658877510116`, "=", 58.4039748143197, ">\!\(\*FractionBox[SubscriptBox[\(p\), \(2\)], SubscriptBox[\(p\), \ \(1\)]]\)=", 7.000000000000001], Editable->False]], "Print", CellChangeTimes->{ 3.5812474917380743`*^9, 3.58124756819413*^9, {3.581247738136841*^9, 3.5812477489157333`*^9}, 3.58124786471029*^9, 3.581247907080031*^9, { 3.581671949196847*^9, 3.581671963653523*^9}, 3.5816722763239*^9, { 3.5816723099601927`*^9, 3.581672339553278*^9}, {3.581672454501172*^9, 3.581672478471991*^9}, 3.6293530890671186`*^9, {3.6293531215316467`*^9, 3.629353183019148*^9}, {3.629353239100585*^9, 3.629353301142063*^9}, { 3.62935333890705*^9, 3.62935336003929*^9}, 3.6293536945624866`*^9, { 3.629354124092083*^9, 3.629354171309757*^9}, 3.629354258541307*^9, 3.629354404114555*^9, 3.6294708095682697`*^9, 3.629470839978318*^9, 3.629471941234346*^9, 3.629472102060915*^9, 3.6940819702560453`*^9, { 3.694082018098744*^9, 3.694082033410187*^9}, 3.694149959984191*^9, 3.694150969448477*^9, 3.694157752011487*^9, {3.694157838927938*^9, 3.6941578549263906`*^9}, 3.894360345274507*^9, {3.894360460935989*^9, 3.894360470697587*^9}, 3.894360582791684*^9, 3.894360710349966*^9, { 3.894360759040967*^9, 3.894360770673149*^9}, {3.894361776134691*^9, 3.894361806249374*^9}, {3.894361863074456*^9, 3.894361868973769*^9}, { 3.8943619663217707`*^9, 3.894362002302685*^9}, 3.894362039161701*^9, 3.894362084515448*^9, {3.894362335635091*^9, 3.894362344573263*^9}, 3.894362385711423*^9, {3.894362992001525*^9, 3.894363190868415*^9}, { 3.894363259649087*^9, 3.894363305403614*^9}, 3.894539308725625*^9, 3.896878375126075*^9, 3.8980815307264013`*^9, 3.898082100022772*^9, 3.89809487300921*^9}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Do not use acceptance number c=\"\>", "\[InvisibleSpace]", "1", "\[InvisibleSpace]", "\<\" because r(c)=\"\>", "\[InvisibleSpace]", "9.487729036781154`", "\[InvisibleSpace]", "\<\"/\"\>", "\[InvisibleSpace]", "0.7107230213973244`", "\[InvisibleSpace]", "\<\"=\"\>", "\[InvisibleSpace]", "13.349404410916232`", "\[InvisibleSpace]", "\<\">\\!\\(\\*FractionBox[SubscriptBox[\\(p\\), \\(2\ \\)], SubscriptBox[\\(p\\), \\(1\\)]]\\)=\"\>", "\[InvisibleSpace]", "7.000000000000001`"}], SequenceForm[ "Do not use acceptance number c=", 1, " because r(c)=", 9.487729036781154, "/", 0.7107230213973244, "=", 13.349404410916232`, ">\!\(\*FractionBox[SubscriptBox[\(p\), \(2\)], SubscriptBox[\(p\), \ \(1\)]]\)=", 7.000000000000001], Editable->False]], "Print", CellChangeTimes->{ 3.5812474917380743`*^9, 3.58124756819413*^9, {3.581247738136841*^9, 3.5812477489157333`*^9}, 3.58124786471029*^9, 3.581247907080031*^9, { 3.581671949196847*^9, 3.581671963653523*^9}, 3.5816722763239*^9, { 3.5816723099601927`*^9, 3.581672339553278*^9}, {3.581672454501172*^9, 3.581672478471991*^9}, 3.6293530890671186`*^9, {3.6293531215316467`*^9, 3.629353183019148*^9}, {3.629353239100585*^9, 3.629353301142063*^9}, { 3.62935333890705*^9, 3.62935336003929*^9}, 3.6293536945624866`*^9, { 3.629354124092083*^9, 3.629354171309757*^9}, 3.629354258541307*^9, 3.629354404114555*^9, 3.6294708095682697`*^9, 3.629470839978318*^9, 3.629471941234346*^9, 3.629472102060915*^9, 3.6940819702560453`*^9, { 3.694082018098744*^9, 3.694082033410187*^9}, 3.694149959984191*^9, 3.694150969448477*^9, 3.694157752011487*^9, {3.694157838927938*^9, 3.6941578549263906`*^9}, 3.894360345274507*^9, {3.894360460935989*^9, 3.894360470697587*^9}, 3.894360582791684*^9, 3.894360710349966*^9, { 3.894360759040967*^9, 3.894360770673149*^9}, {3.894361776134691*^9, 3.894361806249374*^9}, {3.894361863074456*^9, 3.894361868973769*^9}, { 3.8943619663217707`*^9, 3.894362002302685*^9}, 3.894362039161701*^9, 3.894362084515448*^9, {3.894362335635091*^9, 3.894362344573263*^9}, 3.894362385711423*^9, {3.894362992001525*^9, 3.894363190868415*^9}, { 3.894363259649087*^9, 3.894363305403614*^9}, 3.894539308725625*^9, 3.896878375126075*^9, 3.8980815307264013`*^9, 3.898082100022772*^9, 3.898094873044133*^9}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Do not use acceptance number c=\"\>", "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" because r(c)=\"\>", "\[InvisibleSpace]", "12.591587243743977`", "\[InvisibleSpace]", "\<\"/\"\>", "\[InvisibleSpace]", "1.6353828943279072`", "\[InvisibleSpace]", "\<\"=\"\>", "\[InvisibleSpace]", "7.699473491752975`", "\[InvisibleSpace]", "\<\">\\!\\(\\*FractionBox[SubscriptBox[\\(p\\), \\(2\ \\)], SubscriptBox[\\(p\\), \\(1\\)]]\\)=\"\>", "\[InvisibleSpace]", "7.000000000000001`"}], SequenceForm[ "Do not use acceptance number c=", 2, " because r(c)=", 12.591587243743977`, "/", 1.6353828943279072`, "=", 7.699473491752975, ">\!\(\*FractionBox[SubscriptBox[\(p\), \(2\)], SubscriptBox[\(p\), \ \(1\)]]\)=", 7.000000000000001], Editable->False]], "Print", CellChangeTimes->{ 3.5812474917380743`*^9, 3.58124756819413*^9, {3.581247738136841*^9, 3.5812477489157333`*^9}, 3.58124786471029*^9, 3.581247907080031*^9, { 3.581671949196847*^9, 3.581671963653523*^9}, 3.5816722763239*^9, { 3.5816723099601927`*^9, 3.581672339553278*^9}, {3.581672454501172*^9, 3.581672478471991*^9}, 3.6293530890671186`*^9, {3.6293531215316467`*^9, 3.629353183019148*^9}, {3.629353239100585*^9, 3.629353301142063*^9}, { 3.62935333890705*^9, 3.62935336003929*^9}, 3.6293536945624866`*^9, { 3.629354124092083*^9, 3.629354171309757*^9}, 3.629354258541307*^9, 3.629354404114555*^9, 3.6294708095682697`*^9, 3.629470839978318*^9, 3.629471941234346*^9, 3.629472102060915*^9, 3.6940819702560453`*^9, { 3.694082018098744*^9, 3.694082033410187*^9}, 3.694149959984191*^9, 3.694150969448477*^9, 3.694157752011487*^9, {3.694157838927938*^9, 3.6941578549263906`*^9}, 3.894360345274507*^9, {3.894360460935989*^9, 3.894360470697587*^9}, 3.894360582791684*^9, 3.894360710349966*^9, { 3.894360759040967*^9, 3.894360770673149*^9}, {3.894361776134691*^9, 3.894361806249374*^9}, {3.894361863074456*^9, 3.894361868973769*^9}, { 3.8943619663217707`*^9, 3.894362002302685*^9}, 3.894362039161701*^9, 3.894362084515448*^9, {3.894362335635091*^9, 3.894362344573263*^9}, 3.894362385711423*^9, {3.894362992001525*^9, 3.894363190868415*^9}, { 3.894363259649087*^9, 3.894363305403614*^9}, 3.894539308725625*^9, 3.896878375126075*^9, 3.8980815307264013`*^9, 3.898082100022772*^9, 3.898094873047101*^9}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Use the acceptance number c=\"\>", "\[InvisibleSpace]", "3", "\[InvisibleSpace]", "\<\" because r(c)=\"\>", "\[InvisibleSpace]", "15.50731305586545`", "\[InvisibleSpace]", "\<\"/\"\>", "\[InvisibleSpace]", "2.7326367934996623`", "\[InvisibleSpace]", "\<\"=\"\>", "\[InvisibleSpace]", "5.674853347782594`", "\[InvisibleSpace]", \ "\<\"\[LessEqual]\\!\\(\\*FractionBox[SubscriptBox[\\(p\\), \\(2\\)], \ SubscriptBox[\\(p\\), \\(1\\)]]\\)=\"\>", "\[InvisibleSpace]", "7.000000000000001`"}], SequenceForm[ "Use the acceptance number c=", 3, " because r(c)=", 15.50731305586545, "/", 2.7326367934996623`, "=", 5.674853347782594, "\[LessEqual]\!\(\*FractionBox[SubscriptBox[\(p\), \(2\)], \ SubscriptBox[\(p\), \(1\)]]\)=", 7.000000000000001], Editable->False]], "Print", CellChangeTimes->{ 3.5812474917380743`*^9, 3.58124756819413*^9, {3.581247738136841*^9, 3.5812477489157333`*^9}, 3.58124786471029*^9, 3.581247907080031*^9, { 3.581671949196847*^9, 3.581671963653523*^9}, 3.5816722763239*^9, { 3.5816723099601927`*^9, 3.581672339553278*^9}, {3.581672454501172*^9, 3.581672478471991*^9}, 3.6293530890671186`*^9, {3.6293531215316467`*^9, 3.629353183019148*^9}, {3.629353239100585*^9, 3.629353301142063*^9}, { 3.62935333890705*^9, 3.62935336003929*^9}, 3.6293536945624866`*^9, { 3.629354124092083*^9, 3.629354171309757*^9}, 3.629354258541307*^9, 3.629354404114555*^9, 3.6294708095682697`*^9, 3.629470839978318*^9, 3.629471941234346*^9, 3.629472102060915*^9, 3.6940819702560453`*^9, { 3.694082018098744*^9, 3.694082033410187*^9}, 3.694149959984191*^9, 3.694150969448477*^9, 3.694157752011487*^9, {3.694157838927938*^9, 3.6941578549263906`*^9}, 3.894360345274507*^9, {3.894360460935989*^9, 3.894360470697587*^9}, 3.894360582791684*^9, 3.894360710349966*^9, { 3.894360759040967*^9, 3.894360770673149*^9}, {3.894361776134691*^9, 3.894361806249374*^9}, {3.894361863074456*^9, 3.894361868973769*^9}, { 3.8943619663217707`*^9, 3.894362002302685*^9}, 3.894362039161701*^9, 3.894362084515448*^9, {3.894362335635091*^9, 3.894362344573263*^9}, 3.894362385711423*^9, {3.894362992001525*^9, 3.894363190868415*^9}, { 3.894363259649087*^9, 3.894363305403614*^9}, 3.894539308725625*^9, 3.896878375126075*^9, 3.8980815307264013`*^9, 3.898082100022772*^9, 3.898094873049852*^9}], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"Use the sample size n=\"\>", "\[InvisibleSpace]", "222", "\[InvisibleSpace]", "\<\".\"\>"}], SequenceForm["Use the sample size n=", 222, "."], Editable->False]], "Print", CellChangeTimes->{ 3.5812474917380743`*^9, 3.58124756819413*^9, {3.581247738136841*^9, 3.5812477489157333`*^9}, 3.58124786471029*^9, 3.581247907080031*^9, { 3.581671949196847*^9, 3.581671963653523*^9}, 3.5816722763239*^9, { 3.5816723099601927`*^9, 3.581672339553278*^9}, {3.581672454501172*^9, 3.581672478471991*^9}, 3.6293530890671186`*^9, {3.6293531215316467`*^9, 3.629353183019148*^9}, {3.629353239100585*^9, 3.629353301142063*^9}, { 3.62935333890705*^9, 3.62935336003929*^9}, 3.6293536945624866`*^9, { 3.629354124092083*^9, 3.629354171309757*^9}, 3.629354258541307*^9, 3.629354404114555*^9, 3.6294708095682697`*^9, 3.629470839978318*^9, 3.629471941234346*^9, 3.629472102060915*^9, 3.6940819702560453`*^9, { 3.694082018098744*^9, 3.694082033410187*^9}, 3.694149959984191*^9, 3.694150969448477*^9, 3.694157752011487*^9, {3.694157838927938*^9, 3.6941578549263906`*^9}, 3.894360345274507*^9, {3.894360460935989*^9, 3.894360470697587*^9}, 3.894360582791684*^9, 3.894360710349966*^9, { 3.894360759040967*^9, 3.894360770673149*^9}, {3.894361776134691*^9, 3.894361806249374*^9}, {3.894361863074456*^9, 3.894361868973769*^9}, { 3.8943619663217707`*^9, 3.894362002302685*^9}, 3.894362039161701*^9, 3.894362084515448*^9, {3.894362335635091*^9, 3.894362344573263*^9}, 3.894362385711423*^9, {3.894362992001525*^9, 3.894363190868415*^9}, { 3.894363259649087*^9, 3.894363305403614*^9}, 3.894539308725625*^9, 3.896878375126075*^9, 3.8980815307264013`*^9, 3.898082100022772*^9, 3.898094873052636*^9}] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"c", "=", "3"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", "222"}], ";"}], "\[IndentingNewLine]", RowBox[{"CDF", "[", RowBox[{ RowBox[{"BinomialDistribution", "[", RowBox[{"n", ",", SubscriptBox["p", "1"]}], "]"}], ",", "c"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"BinomialDistribution", "[", RowBox[{"n", ",", SubscriptBox["p", "2"]}], "]"}], ",", "c"}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"CDF", "[", RowBox[{"dist", ",", FractionBox[ RowBox[{"c", "-", RowBox[{"n", " ", SubscriptBox["p", "1"], " "}]}], SqrtBox[ RowBox[{"n", " ", SubscriptBox["p", "1"], " ", RowBox[{"(", RowBox[{"1", "-", SubscriptBox["p", "1"]}], ")"}]}]]]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"CDF", "[", RowBox[{"dist", ",", FractionBox[ RowBox[{"c", "-", RowBox[{"n", " ", SubscriptBox["p", "2"], " "}]}], SqrtBox[ RowBox[{"n", " ", SubscriptBox["p", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SubscriptBox["p", "2"]}], ")"}]}]]]}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ FractionBox[ RowBox[{"c", "-", RowBox[{"n", " ", SubscriptBox["p", "1"], " "}]}], SqrtBox[ RowBox[{"n", " ", SubscriptBox["p", "1"], " ", RowBox[{"(", RowBox[{"1", "-", SubscriptBox["p", "1"]}], ")"}]}]]], ",", "0.01"}], "]"}], "\[IndentingNewLine]", "0.9641", "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ FractionBox[ RowBox[{"c", "-", RowBox[{"n", " ", SubscriptBox["p", "2"], " "}]}], SqrtBox[ RowBox[{"n", " ", SubscriptBox["p", "2"], " ", RowBox[{"(", RowBox[{"1", "-", SubscriptBox["p", "2"]}], ")"}]}]]], ",", "0.01"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"1", "-", "0.9591"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"CDF", "[", RowBox[{"dist", ",", FractionBox[ RowBox[{"c", "-", RowBox[{"n", " ", "*", "0.03", " "}]}], SqrtBox[ RowBox[{"n", " ", "0.03", " ", RowBox[{"(", RowBox[{"1", "-", "0.03"}], ")"}]}]]]}], "]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ FractionBox[ RowBox[{"c", "-", RowBox[{"n", " ", "*", "0.03", " "}]}], SqrtBox[ RowBox[{"n", " ", "0.03", " ", RowBox[{"(", RowBox[{"1", "-", "0.03"}], ")"}]}]]], ",", "0.01"}], "]"}], "\[IndentingNewLine]", RowBox[{"1", "-", "0.9251"}], "\[IndentingNewLine]"}], "Input", CellChangeTimes->{{3.898082132513646*^9, 3.8980821859271*^9}, { 3.898082593371377*^9, 3.898082686722427*^9}, {3.898082885926458*^9, 3.898082898438336*^9}, {3.8980948426464043`*^9, 3.898094865535441*^9}, { 3.8980952726663*^9, 3.898095288915895*^9}, {3.898095410756113*^9, 3.898095416930748*^9}, {3.898095479332307*^9, 3.898095488608901*^9}, { 3.898095519209794*^9, 3.898095540996461*^9}, {3.898095648697404*^9, 3.8980956489610357`*^9}}], Cell[BoxData["0.9738688946996183`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649534358*^9}], Cell[BoxData["0.046707367127515186`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.8980956495372543`*^9}], Cell[BoxData["0.9639439919007562`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.8980956495394573`*^9}], Cell[BoxData["0.04075560402148558`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649541767*^9}], Cell[BoxData["1.8`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.8980956495439873`*^9}], Cell[BoxData["0.9641`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649546204*^9}], Cell[BoxData[ RowBox[{"-", "1.74`"}]], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649548435*^9}], Cell[BoxData["0.04090000000000005`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649550664*^9}], Cell[BoxData["0.07493575789834418`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.89809564955289*^9}], Cell[BoxData[ RowBox[{"-", "1.44`"}]], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649555121*^9}], Cell[BoxData["0.07489999999999997`"], "Output", CellChangeTimes->{{3.898082170234811*^9, 3.898082186473843*^9}, { 3.8980826630911827`*^9, 3.898082687657853*^9}, {3.898082890236814*^9, 3.898082899411365*^9}, {3.898094866723898*^9, 3.898094875012041*^9}, 3.898095291790052*^9, 3.89809541773283*^9, 3.8980954900905933`*^9, { 3.898095523906617*^9, 3.898095542432891*^9}, 3.898095649557353*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"(*", " ", RowBox[{"Unrequested", " ", "verification"}], " ", "*)"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ SubscriptBox["n", "tot"], "=", "1000"}], ";"}], " ", StyleBox[ RowBox[{"(*", " ", RowBox[{"arbitrary", " ", "lot", " ", "size"}], " ", "*)"}], FontSize->10], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"exactdist", "[", "p_", "]"}], "=", RowBox[{"HypergeometricDistribution", "[", RowBox[{ RowBox[{"samplesize", "[", "i", "]"}], ",", RowBox[{"Round", "[", RowBox[{ SubscriptBox["n", "tot"], "\[Times]", "p"}], "]"}], ",", SubscriptBox["n", "tot"]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"exactdist", "[", SubscriptBox["p", "1"], "]"}], ",", "i"}], "]"}], "\[GreaterEqual]", RowBox[{"1", "-", "\[Alpha]"}]}], " ", "&&", RowBox[{ RowBox[{"CDF", "[", RowBox[{ RowBox[{"exactdist", "[", SubscriptBox["p", "2"], "]"}], ",", "i"}], "]"}], "\[LessEqual]", "\[Beta]"}]}], ",", RowBox[{ "Print", "[", "\"\\"", "]"}], ",", RowBox[{ "Print", "[", "\"\\"", "]"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.894361927577982*^9, 3.894361950564671*^9}, { 3.894362059804772*^9, 3.8943622902601147`*^9}, 3.8943624731538677`*^9, { 3.8943625226798477`*^9, 3.8943625472363377`*^9}, {3.894362582079486*^9, 3.894362605293244*^9}, {3.89436263636924*^9, 3.894362641443512*^9}, { 3.894362674982443*^9, 3.8943628235601187`*^9}, 3.89436452325114*^9, { 3.8945393276454763`*^9, 3.894539340194544*^9}, {3.898082943165616*^9, 3.898082952089246*^9}}], Cell[BoxData["\<\"The single sampling plan for attributes complies with the \ producer's and consumer's risk points.\"\>"], "Print", CellChangeTimes->{3.894362825447496*^9, 3.8943629950403347`*^9, 3.894363202045453*^9, 3.8943633233327923`*^9, 3.8943645394988127`*^9, 3.894539314306116*^9, 3.8945393470142603`*^9, 3.896878382490243*^9, 3.898082929605454*^9}] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{3.898094840910182*^9}] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Question 5 \[LongDash]\[NonBreakingSpace]Double sampling plan for atributes \ with rectifying inspection\ \>", "Subsubsection", CellChangeTimes->{{3.728978072142015*^9, 3.728978078436468*^9}, { 3.7289787758916683`*^9, 3.728978777915042*^9}, {3.728979117073182*^9, 3.728979124168069*^9}, {3.72897937739428*^9, 3.7289793834544497`*^9}, { 3.728980621199177*^9, 3.728980659270624*^9}, {3.72898742841497*^9, 3.728987435586033*^9}, {3.8872035562635403`*^9, 3.887203571506999*^9}, { 3.889075948658783*^9, 3.889075948905105*^9}, {3.893068488938219*^9, 3.893068489604116*^9}, 3.894353121097001*^9, {3.894355313323731*^9, 3.894355315510623*^9}, {3.89436020311318*^9, 3.894360270691959*^9}, { 3.894539364307907*^9, 3.8945393803073893`*^9}, {3.89687861519657*^9, 3.896878618083435*^9}, {3.898084984748122*^9, 3.898085004922764*^9}}], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{ SubscriptBox["n", "1"], "=", "20"}], ";", " ", StyleBox[ RowBox[{"(*", " ", RowBox[{ "Collect", " ", "a", " ", "first", " ", "sample", " ", "of", " ", "size", " ", SubscriptBox["n", "1"]}], " ", "*)"}], FontSize->9, FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", RowBox[{ SubscriptBox["c", "1"], "=", "0"}], ";", " ", StyleBox[ RowBox[{"(*", " ", RowBox[{ RowBox[{"Accept", " ", "the", " ", "lot", " ", "if", " ", SubscriptBox["D", "1"]}], "\[LessEqual]", SubscriptBox["c", RowBox[{"1", ",", " ", RowBox[{ RowBox[{"reject", " ", "if", " ", SubscriptBox["D", "1"]}], ">", SubscriptBox["c", "2"]}]}]]}], " ", "*)"}], FontSize->9, FontColor->RGBColor[1, 0, 1]], StyleBox[" ", FontSize->9, FontColor->RGBColor[1, 0, 1]], "\[IndentingNewLine]", RowBox[{ SubscriptBox["n", "2"], "=", "20"}], ";"}], " ", StyleBox[ RowBox[{"(*", " ", RowBox[{ RowBox[{ "Collect", " ", "a", " ", "second", " ", "sample", " ", "of", " ", "size", " ", SubscriptBox["n", "2"], " ", "if", " ", SubscriptBox["c", "1"]}], "<", SubscriptBox["D", "1"], "\[LessEqual]", SubscriptBox["c", "2"]}], " ", "*)"}], FontSize->9, FontColor->RGBColor[1, 0, 1]]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SubscriptBox["c", "2"], "=", "1"}], ";", " ", StyleBox[ RowBox[{"(*", " ", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Accept", " ", "the", " ", "lot", " ", "if", " ", SubscriptBox["D", "1"]}], "+", SubscriptBox["D", "2"]}], "\[LessEqual]", SubscriptBox["c", "2"]}], ",", " ", RowBox[{"reject", " ", "otherwise"}]}], " ", "*)"}], FontSize->9, FontColor->RGBColor[1, 0, 1]], StyleBox["\[IndentingNewLine]", FontSize->9, FontColor->RGBColor[1, 0, 1]], StyleBox["\[IndentingNewLine]", FontSize->9, FontColor->RGBColor[1, 0, 1]], RowBox[{ RowBox[{"pI", "[", "p_", "]"}], "=", RowBox[{"CDF", "[", RowBox[{ RowBox[{"BinomialDistribution", "[", RowBox[{ SubscriptBox["n", "1"], ",", "p"}], "]"}], ",", SubscriptBox["c", "1"]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"pII", "[", "p_", "]"}], "=", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"k", "=", RowBox[{ SubscriptBox["c", "1"], "+", "1"}]}], SubscriptBox["c", "2"]], RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"BinomialDistribution", "[", RowBox[{ SubscriptBox["n", "1"], ",", "p"}], "]"}], ",", "k"}], "]"}], "\[Times]", RowBox[{"CDF", "[", RowBox[{ RowBox[{"BinomialDistribution", "[", RowBox[{ SubscriptBox["n", "2"], ",", "p"}], "]"}], ",", RowBox[{ SubscriptBox["c", "2"], "-", "k"}]}], "]"}]}]}]}], ";"}], " ", "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ SubscriptBox["n", "tot"], "=", "500"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{ RowBox[{"AOQ", "[", "p_", "]"}], "=", FractionBox[ RowBox[{"p", "\[Times]", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["n", "tot"], "-", SubscriptBox["n", "1"]}], ")"}], "\[Times]", RowBox[{"pI", "[", "p", "]"}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubscriptBox["n", "tot"], "-", SubscriptBox["n", "1"], "-", SubscriptBox["n", "2"]}], ")"}], "\[Times]", RowBox[{"pII", "[", "p", "]"}]}]}], ")"}]}], SubscriptBox["n", "tot"]]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Round", "[", RowBox[{ RowBox[{"pI", "[", "0.03", "]"}], ",", "0.0001"}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ RowBox[{"pII", "[", "0.03", "]"}], ",", "0.0001"}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"0.8802", "-", "0.5438"}], ")"}], "*", " ", "0.5438"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Round", "[", RowBox[{ RowBox[{"AOQ", "[", "0.03", "]"}], ",", "0.000001"}], "]"}], "\[IndentingNewLine]", RowBox[{"0.03", "*", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"500", "-", "20"}], ")"}], "*", " ", "0.5438"}], "+", RowBox[{ RowBox[{"(", RowBox[{"500", "-", "20", "-", "20"}], ")"}], "*", " ", "0.182934"}]}], ")"}], "/", "500"}]}]}], "Input", CellChangeTimes->{ 3.532605883741745*^9, {3.5326063420693913`*^9, 3.532606343053547*^9}, { 3.5326064550617867`*^9, 3.532606458377886*^9}, {3.579533934263883*^9, 3.5795339429562407`*^9}, {3.579533985553092*^9, 3.579534010816362*^9}, { 3.898095961415317*^9, 3.898095993777739*^9}, {3.898096338396287*^9, 3.898096347370916*^9}, {3.898096390184867*^9, 3.898096413072785*^9}, { 3.898096448898172*^9, 3.898096461873521*^9}, {3.898096499336635*^9, 3.8980965628997307`*^9}, {3.898096832082636*^9, 3.8980968488669453`*^9}}], Cell[BoxData["0.5438000000000001`"], "Output", CellChangeTimes->{ 3.8980963483930264`*^9, {3.898096398707563*^9, 3.898096413631325*^9}, 3.8980964623624353`*^9, 3.89809655876674*^9, 3.898096653641295*^9, 3.898096834217005*^9, 3.898096864981077*^9}], Cell[BoxData["0.1829`"], "Output", CellChangeTimes->{ 3.8980963483930264`*^9, {3.898096398707563*^9, 3.898096413631325*^9}, 3.8980964623624353`*^9, 3.89809655876674*^9, 3.898096653641295*^9, 3.898096834217005*^9, 3.898096864983218*^9}], Cell[BoxData["0.18293432`"], "Output", CellChangeTimes->{ 3.8980963483930264`*^9, {3.898096398707563*^9, 3.898096413631325*^9}, 3.8980964623624353`*^9, 3.89809655876674*^9, 3.898096653641295*^9, 3.898096834217005*^9, 3.898096864984599*^9}], Cell[BoxData["0.02071`"], "Output", CellChangeTimes->{ 3.8980963483930264`*^9, {3.898096398707563*^9, 3.898096413631325*^9}, 3.8980964623624353`*^9, 3.89809655876674*^9, 3.898096653641295*^9, 3.898096834217005*^9, 3.898096864986074*^9}], Cell[BoxData["0.0207104184`"], "Output", CellChangeTimes->{ 3.8980963483930264`*^9, {3.898096398707563*^9, 3.898096413631325*^9}, 3.8980964623624353`*^9, 3.89809655876674*^9, 3.898096653641295*^9, 3.898096834217005*^9, 3.8980968649874487`*^9}] }, Open ]] }, Open ]] }, WindowSize->{716, 1210}, WindowMargins->{{Automatic, 66}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{1, Automatic}, FrontEndVersion->"10.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (July 29, \ 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[558, 20, 493, 7, 35, "Subsubsection"], Cell[1054, 29, 393, 5, 29, "Subsubsection"], Cell[CellGroupData[{ Cell[1472, 38, 472, 6, 29, "Subsubsection"], Cell[CellGroupData[{ Cell[1969, 48, 13558, 425, 1083, "Input"], Cell[15530, 475, 2009, 29, 253, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17576, 509, 2522, 63, 165, "Input", CellID->522227289], Cell[20101, 574, 826, 15, 32, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20964, 594, 2960, 67, 216, "Input"], Cell[23927, 663, 2684, 67, 53, "Output"], Cell[26614, 732, 911, 15, 48, "Output"], Cell[27528, 749, 2637, 66, 59, "Output"], Cell[30168, 817, 2832, 71, 85, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[33037, 893, 2202, 47, 114, "Input"], Cell[35242, 942, 10214, 178, 242, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[45493, 1125, 2015, 49, 206, "Input"], Cell[47511, 1176, 552, 9, 48, "Output"], Cell[48066, 1187, 580, 10, 49, "Output"], Cell[48649, 1199, 580, 10, 49, "Output"], Cell[49232, 1211, 578, 10, 49, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[49859, 1227, 630, 8, 35, "Subsubsection"], Cell[CellGroupData[{ Cell[50514, 1239, 4879, 124, 540, "Input"], Cell[55396, 1365, 1138, 17, 63, "Output"], Cell[56537, 1384, 1877, 42, 374, "Output"], Cell[58417, 1428, 820, 12, 28, "Output"], Cell[59240, 1442, 12366, 277, 64, "Output"], Cell[71609, 1721, 855, 13, 28, "Output"], Cell[72467, 1736, 12435, 278, 64, "Output"], Cell[84905, 2016, 768, 10, 28, "Output"], Cell[85676, 2028, 766, 10, 28, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[86491, 2044, 635, 9, 35, "Subsubsection"], Cell[CellGroupData[{ Cell[87151, 2057, 3962, 93, 388, "Input"], Cell[91116, 2152, 681, 12, 28, "Output"], Cell[91800, 2166, 489, 7, 28, "Output"], Cell[92292, 2175, 502, 7, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[92831, 2187, 3832, 85, 244, "Input"], Cell[96666, 2274, 475, 7, 28, "Output"], Cell[97144, 2283, 11919, 209, 254, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[109100, 2497, 1190, 33, 186, "Input"], Cell[110293, 2532, 280, 4, 28, "Output"], Cell[110576, 2538, 272, 4, 28, "Output"], Cell[110851, 2544, 270, 4, 28, "Output"], Cell[111124, 2550, 268, 4, 28, "Output"], Cell[111395, 2556, 281, 4, 28, "Output"], Cell[111679, 2562, 280, 4, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[111996, 2571, 6186, 146, 440, "Input"], Cell[118185, 2719, 1899, 27, 28, "Output"], Cell[120087, 2748, 1897, 27, 28, "Output"], Cell[121987, 2777, 1897, 27, 28, "Output"], Cell[123887, 2806, 1896, 27, 28, "Output"], Cell[125786, 2835, 1897, 27, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[127720, 2867, 1612, 46, 299, "Input"], Cell[129335, 2915, 262, 3, 28, "Output"], Cell[129600, 2920, 259, 3, 28, "Output"], Cell[129862, 2925, 260, 3, 28, "Output"], Cell[130125, 2930, 259, 3, 28, "Output"], Cell[130387, 2935, 277, 4, 28, "Output"], Cell[130667, 2941, 259, 3, 28, "Output"], Cell[130929, 2946, 260, 3, 28, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[131238, 2955, 781, 11, 35, "Subsubsection"], Cell[CellGroupData[{ Cell[132044, 2970, 6129, 171, 476, "Input"], Cell[CellGroupData[{ Cell[138198, 3145, 2398, 38, 39, "Print"], Cell[140599, 3185, 2407, 39, 39, "Print"], Cell[143009, 3226, 2408, 39, 39, "Print"], Cell[145420, 3267, 2423, 40, 39, "Print"], Cell[147846, 3309, 1794, 28, 22, "Print"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[149689, 3343, 3352, 104, 477, "Input"], Cell[153044, 3449, 403, 5, 28, "Output"], Cell[153450, 3456, 407, 5, 28, "Output"], Cell[153860, 3463, 405, 5, 28, "Output"], Cell[154268, 3470, 404, 5, 28, "Output"], Cell[154675, 3477, 390, 5, 28, "Output"], Cell[155068, 3484, 391, 5, 28, "Output"], Cell[155462, 3491, 406, 6, 28, "Output"], Cell[155871, 3499, 404, 5, 28, "Output"], Cell[156278, 3506, 403, 5, 28, "Output"], Cell[156684, 3513, 406, 6, 28, "Output"], Cell[157093, 3521, 404, 5, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[157534, 3531, 2054, 52, 199, "Input"], Cell[159591, 3585, 367, 5, 38, "Print"] }, Open ]], Cell[159973, 3593, 68, 1, 28, "Input"] }, Open ]], Cell[CellGroupData[{ Cell[160078, 3599, 863, 13, 35, "Subsubsection"], Cell[CellGroupData[{ Cell[160966, 3616, 5324, 161, 417, "Input"], Cell[166293, 3779, 258, 4, 28, "Output"], Cell[166554, 3785, 246, 4, 28, "Output"], Cell[166803, 3791, 250, 4, 28, "Output"], Cell[167056, 3797, 247, 4, 28, "Output"], Cell[167306, 3803, 254, 4, 28, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)