
Reliability and Quality Control
LMAC, MMA

2nd. Semester – 2022/2023
2023/06/28 — 8:00

Exam 1

Duration: 120 minutes

• Add your answers to this and the following page.

• Please justify all your answers.

• This test has TWO PAGES. The total of points is 20.0.

1. A data center needs three servers (components 1, 2, and 3) to work, one power supply (component 4),
one cooling system (component 5), and one network connection. This (network) connection consists of
two parallel connections (components 6 and 7).

(a) i) Draw a reliability block diagram of the data center system. (1.5)

ii) Identify the minimal path sets of this system.

iii) Provide an expression for its structure function in terms of the minimal path sets.

• Reliability block diagram

1 2 3 4 5

6

7

• Minimal path sets
P 1 = {1,2,3,4,5,6}
P2 = {1,2,3,4,5,7}

p∗ = 2 minimal path sets

• Structure function (in terms of the minimal path sets)

φ(X )
T h.1.30= 1−

p∗∏
j=1

(
1− ∏

i∈P j

Xi

)
= 1− (1−X1X2X3X4X5X6)× (1−X1X2X3X4X5X7)

X 2
i ∼Xi= X1X2X3X4X5X6 +X1X2X3X4X5X7 −X1X2X3X4X5X6X7

(b) Admit that the components of the data center system operate independently, and their reliabilities (1.0)

are equal to pi = p (i = 1, . . . ,7).

Determine an upper bound to the reliability of this system.

• Upper bound

r (p) = E [φ(X )]
T h.,1.68≤ 1−

p∗∏
j=1

(
1− ∏

i∈P j

pi

)

pi=p= 1−
p∗∏
j=1

(
1−p#P j

)
#P j=6,∀ j= 1−

p∗∏
j=1

(
1−p6)

p∗=2= 1− (
1−p6)2

[2p6 −p12 = p6 (
2−p6)].

(c) Now, admit that: the power supply is a subsystem with component 4a and a standby component (1.5)

4b; the times to failure of components 1, 2, 3, 4a, 4b, 5, 6, and 7 of the data center system are
independent and exponentially distributed with parameter λ.
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Write the time to failure of the data center system (T ) in terms of the failure times of these eights
components. Derive an expression for RT (t ).

• Time to failure (components)
Ti = time to failure of component i

Ti
i .i .d .∼ exp(λ), i = 1,2,3,5,6,7, and i = 4a,4b [because the power supply has a standby

component]

For i = 1,2,3,5,6,7,

Ri (t ) = P (Ti > t ) = R(t ) =
{

e−λ t , t ≥ 0

1, t < 0.
(1)

For i = 4, T4 = T4a +T4b ∼ gamma(2,λ) ∼ Erlang(2,λ), thus

R4(t ) = REr l ang (2,λ)(t )
(4.27)=

{
e−λ t +e−λ t (λ t ) = R(t )(1+λ t ), t ≥ 0

1, t < 0.
(2)

• Time to failure (system)
T = min{T1,T2,T3,T4a +T4b ,T5,max{T6,T7}}

• Requested reliability

RT (t ) = P (T > t )

= R1(t )×R2(t )×R3(t )×R4(t )×R5(t )× {1− [1−R6(t )]× [1−R7(t )]}
(1), (2)= [R(t )]3 × [R(t )(1+λ t )]×R(t )× {1− [1−R(t )]2}

= [R(t )]4 × [R(t )(1+λ t )]× {[2R(t )−R(t )]2}

= [R(t )]6 × (1+λ t )× [2−R(t )]

= e−6λt × (1+λ t )×
(
2−e−λt

)
, t > 0.

(d) Determine a lower bound (as sharp as reasonably possible) for the expected time to failure of the (1.5)

data center system.

Note: Assume all failure times are NBUE.

• [Minimal path sets
P1 = {1,2,3,4,5,6}, P2 = {1,2,3,4,5,7}, p∗ = 2 minimal path sets]

• Individual expected times to failure
µi = E [exp(λ)] =λ−1, i = 1,2,3,5,6,7

µ4 = E [Erlang(2,λ)] = 2λ−1

• Upper bound for µ= E(T )
Since all times to failure are independent and Ti ∈ N BU E , we can apply Th. 3.65 and provide
an lower bound to µ= E(T ):

µ
T h.3.65≥ max

j=1,...,p∗

{( ∑
i∈P j

µ−1
i

)−1}

=
( ∑

i∈P1

µ−1
i

)−1

[two “similar” path sets]

µi= 1
λ

, i 6=4; µ4= 2
λ=

(
λ+λ+λ+ λ

2
+λ+λ

)−1

= 2

11λ
.

(e) T has hazard rate function given by λ
(
− 1
λt+1 + 1

1−2eλt +6
)
, for t ≥ 0. (1.0)

i) Prove that T ∈ I HR.
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ii) Determine the limit of the hazard rate function when t →+∞. Comment.

• Hazard rate function of T
h(t ) = fT (t )

RR (t ) =λ
(
− 1
λt+1

1
1−2eλt +6

)
, t > 0.

• Devising the stochastic ageing character of T
Since T is a non-negative continuous r.v., T ∈ I HR iff h(t ) is an increasing function for t ≥ 0
(see the second part of Definition 3.14). We have:

d h(t )

d t
= λ2

(λt +1)2 + 2λ2 eλt

(1−2eλt )2

≥ 0, t ≥ 0.

Hence, h(t ) ↑t and T ∈ I HR.

• Requested limit

lim
t→+∞λ(t ) = lim

t→+∞λ

(
− 1

λt +1
+ 1

1−2eλt
+6

)
= 6λ.

• Comment
The hazard rate function increases and “soon” gets closer to its limiting value 6λ, as shown by
the following plot for λ= 1:

2 4 6 8 10

1

2

3

4

5

6

This means that the time to failure has a “sort of memoryless character” for large values of t .

(f) Capitalize on the stochastic ageing behaviour of T and on the fact that ξ0.5 = F−1
T (0.5) ' 0.164423, (1.0)

when λ= 1, to provide a lower and an upper limit to E(T ).

Compare the lower limit with the one obtained in (d).

• Requested lower and upper limit to E(T )
Since T ∈ I HR, p = 0.5 ≤ 1 − e−1 ' 0.632121, and we were given the median of T (ξ0.5 '
0.164423), we can invoke Theorem 3.52 and write

− ξp ×p

log(1−p)
≤ E(T ) ≤ − ξp

log(1−p)

−0.632121×0.5

log(1−0.5)
≤ E(T ) ≤ − 0.632121

log(1−0.5)
0.118606 ≤ E(T ) ≤ 0.237213.

• Comment
The lower limit we just obtained, 0.118606, is less sharp than the one we got in (d), 2

11λ =
0.1818(18).
Note that in (d) we used information referring to all the components (NBUE, E(Ti )), and
the configuration of the system (minimal path sets), whereas in (f) we used less information,
concerning the system (IHR, median).
[The true value of E(T ) is 199

882λ ' 0.225624.]
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2. A statistician working in a plant simultaneously activated 20 identical transfer pumps and decided that (2.5)

the test was terminated at the 12th failure. The ordered observed failure times are: 0.8, 3.6, 10.2, 23.3,
28.0, 30.4, 31.6, 41.2, 54.0, 73.2, 89.6, 96.0.

i) What type of censoring is this and what is the value of the cumulative total time in test ?

ii) After stating a reasonable distributional assumption, obtain the ML estimate and a 95% confidence
interval for the third quartile of the time to failure of a transfer pump.

• Censored data

Since the test ended when the 12th failure occurred and it seems that none of the 12 (out of 20)
transfer pumps that failed were replaced during the test, we are dealing with

◦ Type II/item censored testing without replacement

◦ n = 20

◦ r = 12

◦ (t(1), . . . , t(r )) = (0.8, . . . ,96.0).

• Cumulative total time in test

t̃
De f . 5.17=

r∑
i=1

t(i ) + (n − r )× t(r )

= (0.8+·· ·+96.0)+ (20−12)×96.0

= 1249.9.

• Failure times; distribution assumption

Ti = time to failure of transfer pump i

Ti
i .i .d .∼ T ∼ exponential(λ), i = 1, . . . ,n

• ML estimate of F−1
T (0.75)

According to tables 5.10 and 5.13 and invoking the invariance property of the ML estimators,
the ML estimate of F−1

T (0.75) = − 1
λ ln(1 − 0.75), under Type II/item censored testing without

replacement, is equal to

F̂−1
T (0.75) = − 1

λ̂
ln(1−0.75) =− 1

r /t̃
ln(1−0.75) =−1249.9

12
× ln(1−0.75)

' 144.394.

• Confidence interval for λ

C I(1−α)×100%(λ)
Table 5.16=

F−1
χ2

(2r )
(α/2)

2× t̃
;

F−1
χ2

(2r )
(1−α/2)

2× t̃


C I95%(λ) =

F−1
χ2

(2×12)
(0.025)

2× t̃
;

F−1
χ2

(2×12)
(0.975)

2× t̃


t ables=

[
12.40

2×1249.9
;

39.36

2×1249.9

]
' [0.0049604; 0.0157453]

= [λL ; λU ].

• Confidence interval for F−1
T (0.75)

F−1
T (0.75) =− 1

λ ln(1−0.75) is a decreasing function of λ> 0, thus

C I95%(F−1
T (0.75)) =

[
− 1

λU
ln(1−0.75); − 1

λL
ln(1−0.75)

]
' [88.0452; 279.4725] .
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3. A supply chain engineering group monitors shipments of materials. Errors on either the delivered
material or the accompanying documentation are tracked on a weekly basis. Fifty randomly selected
shipments are examined and the errors recorded. Data for ten weeks are shown below:

Sample 1 2 3 4 5 6 7 8 9 10

Number of errors 2 3 8 1 1 4 1 4 5 1

(a) i) Set up a c-chart with 3–sigma limits and nominal expected number of errors (per sample) equal (1.5)

to λ0 = 3.

ii) Does the production process appear to be in statistical control ?

iii) Is this chart able to quickly detect decreases in λ ? Justify your answer.

• Control statistic of the c−chart and its distribution
YN = number of errors in the N th sample

YN
i ndep∼ Poisson(λ), N ∈N

• 3-sigma control limits
[The control statistic only takes values in N0, therefore the control limits are given by the
following ceiling and floor functions of the target expected number of defects (per batch),
λ0:]

LC L =
⌈

max{0, λ0 −3×
√
λ0}

⌉
=

⌈
max

{
0, 3−3×p

3
}⌉

= 0

UC L =
⌊
λ0 +3×

√
λ0

⌋
=

⌊
3+3×p

3
⌋

= 8.

• Checking whether the process is in statistical control
Since yN ∈ [LC L,UC L] = [0,8], for all N = 1, . . . ,10, we deem the production process in-
control.

• Comment
No! This chart is unable to quickly detect decreases in λ.
Since LC L = 0, we are dealing with an upper one-sided c-chart with 3-sigma limits, the
associated ARL function decreases with λ (λ ∈ R+), and this c-chart is unable to signal a
decrease in λ sooner (in average) than to trigger a false alarm.

(b) Since the leader of the engineering group anticipated both downward and upward shifts, she (2.0)

decided to adopt an ARL-unbiased c−chart. This chart has control limits L = 0 and U = 10, in-
control ARL equal to ARL(0) ' 370.4, and triggers a signal with:

• probability one if the sample number of errors is below L or above U ;

• probabilities γL = 0.038733 and γU = 0.591561 if the sample number of errors is equal to L and
U , respectively.

Compare the in-control ARL with the out-of-control ARL when the expected number of errors (per
sample) decreases from its target value λ0 = 3 to 2. Comment.

• Probability of triggering a signal when λ= 3+θ = 2
Judging by the description above, when λ = λ0 +θ (θ ∈ (−λ0,+∞)), this alternative c−chart
triggers a signal with probability

ξ(θ) = 1×P (YN 6∈ [L,U ] |λ=λ0 +θ)

+γL ×P (YN = L |λ=λ0 +θ)

+γUC L? ×P (YN =U |λ=λ0 +θ)
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ξ(θ) = 1− [
FPoi sson(λ0+θ)(U )−FPoi sson(λ0+θ)(L−1)

]
+γL ×

[
FPoi sson(λ0+θ)(L)−FPoi sson(λ0+θ)(L−1)

]
+γU × [

FPoi sson(λ0+θ)(U )−FPoi sson(λ0+θ)(U −1)
]

.

Thus,

ξ(−1) = 1− [
FPoi sson(3−1)(10)−FPoi sson(3−1)(0−1)

]
+0.038733× [

FPoi sson(3−1)(0)−FPoi sson(3−1)(0−1)
]

+0.591561× [
FPoi sson(3−1)(10)−FPoi sson(3−1)(10−1)

]
ξ(−1)

t ables= 1− (1.0000−0)+0.038733× (0.1353−0)+0.591561× (1.0000−0.9998)

' 0.00535889.

• Requested out-of-control ARL
We are still dealing with RL(θ) ∼ geometric(ξ(θ)) and ARL(θ) = 1

ξ(θ) . Consequently,

ARL(−1) = 1

ξ?(−1)
' 1

0.00535889
' 186.606.

• Comment
In this case, we have ARL(−1) ' 186.606 < 370.4 = ARL(0).
Unlike the upper one-sided c-chart with 3-sigma limits, the ARL-unbiased c-chart is able to
signal a decrease in λ (from the target value 3 to 2) sooner (in average) than to trigger a false
alarm — a very desirable property.

(c) A statistician suggested an ARL-unbiased EWMA chart (1.0)

for monitoring this independent Poisson output.
i) Identify the control statistic of this chart,
when the initial value is equal to λ0.
ii) The ARL profiles of the ARL-unbiased EWMA-
and c-charts can be found in the plot on the right.
Which profile corresponds to the ARL-unbiased
EWMA chart ? 1.5 2.0 2.5

0
10
0

20
0

30
0

40
0

λ

AR
L

• Control statistic of the EWMA chart for independent Poisson output

ZN =
{
λ0, N = 0

(1−µ) ZN−1 +µYN , N ∈N,
where µ ∈ (0,1].

• Identifying the requested ARL profile
The solid line corresponds to the ARL profile of the EWMA chart because it is well known that
the EWMA charts tend to have smaller ARL values than the Shewhart charts, namely in the
presence of small and moderate shifts in the parameter being monitored.

4. Admit that we are dealing with samples of size n of independent output and the quality characteristic (2.0)

is normally distributed with nominal mean and variance equal to µ0 and σ2
0. When the process mean is

off-target (i.e., δ =p
n (µ−µ0)/σ0 = 0.1) and the standard deviation is on-target (i.e., θ = σ/σ0 = 1), the

standard X̄−chart and the upper one-sided S2−chart have ARL equal to ARLµ(δ= 0.1,θ = 1) = 475.1454
and ARLσ(θ = 1) = 500 (resp.).

Rewrite the formula P MS IV (δ) = [1−ξµ(δ,1)]×ξσ(1)
ξµ,σ(δ,1) in terms of the ARL of the individual charts for µ and σ2

and obtain P MS IV (δ= 0.1).

• Quality characteristic

X ∼ normal(µ,σ2), where µ = µ0 + δσ0/
p

n and σ2 = θ2σ2
0 represent the process mean and

variance, respectively.
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• Probabilities of triggering a signal

The STANDARD X̄−chart and the UPPER ONE-SIDED S2−chart trigger a signal with probabilities:
ξµ(δ,θ), δ ∈R; ξσ(θ), θ ≥ 1.

Moreover, according to Exercise 10.38, the joint scheme triggers a signal with probability
ξµ,σ(δ,θ) = ξµ(δ,θ)+ξσ(θ)−ξµ(δ,θ)×ξσ(θ), δ ∈R, θ ≥ 1.

• Probability of a misleading signal of Type IV

Taking into account the previous result and the fact the RL of the individual charts are
geometrically distributed with parameters equal to the probabilities given above, we get:

P MS IV (θ) = [1−ξµ(δ,1)]×ξσ(1)

ξµ,σ(δ,1)
=

[
1− 1

ARLµ(δ,1)

]
× 1

ARLσ(1)

1
ARLµ(δ,1) + 1

ARLσ(1) − 1
ARLµ(δ,1) × 1

ARLσ(1)

. (3)

• Requested PMS of Type IV

Capitalizing on (3) and since ARLµ(δ= 0.1,θ = 1) = 475.1454 and ARLσ(θ = 1) = 500,

P MS IV (δ= 0.1) =
(
1− 1

475.1454

)× 1
500

1
475.1454 + 1

500 − 1
475.1454 × 1

500

' 0.486730.

5. A quality control practitioner is using a single sampling plan for attributes with (n,c) = (20,1), which (1.5)

complies with the producer’s and consumer’s risk points (p1 = AQL = 0.5%,1 −α = 0.95) and (p2 =
LT PD = 17.5%,β= 0.15).

Calculate and comment the ATI when the lot of size N = 1000 contains 10% of defective items and
rectifying inspection has been adopted.

• Single sampling plan for attributes with rectifying inspection

N = 1000 (lot size), n = 20 (sample size), c = 1 (acceptance number)

• Auxiliary r.v. and its approximate distribution

D = number of defective items in the sample a∼ binomial(20, p)

• Probability of lot acceptance

Pa(p) = P (D ≤ c) ' Fbi nomi al (n,p)(c)

• Requested average total inspection

AT I (p)
(13.15)= n Pa(p)+N [1−Pa(p)]

AT I (p = 0.1) ' 20×0.3917+1000× (1−0.3917)

' 616.134.

• Comment

Since AQL = 0.5% < p = 10% < 17.5% = LT PD , the probability of lot acceptance is between β =
0.05 and 1−α = 0.95. Consequently, we reject the lot rather frequently, around 39% of the time,
and we have to inspect the remaining N −n = 1000−20 items of the rejected lot more often [than
we wished for]. Unsurprisingly, the average number of items we have to inspected is larger than
half the lot size, N = 1000.

6. Consider a sampling plan by variables with unknown standard deviation, ns = 59, and ks = 1.937713. (2.0)

i) Verify that it meets the risk points (p1,1−α) = (1%,0.95) and (p2,β) = (5%,0.1).

ii) Make the necessary calculations to determine whether the lot should be accepted when the upper
specification limit and the sample mean and standard deviation are equal to U = 3, x̄ = 3.207, and s =
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0.120.

• Sampling plan by variables with UNKNOWN STANDARD DEVIATION

ns = 59 (sample size),

ks = 1.937713 (acceptance constant)

• Producer’s and consumer’s risk points

(p1,1−α) = (1%,0.95)

(p2,β) = (10%,0.1)

• Requested verification

If we consider ns = 59 and ks = 1.937713 then

Pa(p1)
(13.39)' Φ(θp1 )

(13.41)' Φ


Φ−1(1−p1)−ks

√
3ns−4
3ns−3√

1+ 3ns k2
s

6ns−8

ns



= Φ

2.3263−1.937713
√

3×59−4
3×59−3√

1+ 3×59×1.9377132

6×59−8
59


' Φ(1.77)

t able= 0.9616

≥ 1−α= 0.95

Pa(p2) = Φ

1.6449−1.937713
√

3×59−4
3×59−3√

1+ 3×59×1.9377132

6×59−8
59


' Φ(−1.29)

t able= 1−0.9015

= 0.0985

≤ β= 0.1.

Hence, the sampling plan complies with the two given risk points.

• Checking whether or not the lot should be accepted

The lot should be accepted iff

Q = U − X̄

S
≥ ks ,

[where Q is the quality index, U is the upper specification limit, X̄ and S represent the mean and
standard deviation of a random sample with size ns , and ks the acceptance constant]. For this
sample, we have

q = U − x̄

s

= 3−3.207

0.120
= −1.725

6≥ 1.937713,

therefore we should reject the lot.
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