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Introduction

These lecture notes introduce Control Theory to the students of the Wave En-
ergy course. They have a threefold purpose:

� to provide the vocabulary and the basic notions needed to work together
with control engineers;

� to exemplify some of the techniques needed when controlling devices to
convert ocean energy;

� to pave the way for an in-depth study which will be based on specialised
literature and take more time than that available in this short course.

This version of the lecture notes includes all the subjects covered until 2021. As
the course has been reorganised, an abridged version is also available, covering
only the subjects that can now be addressed. The full version is still provided,
for the benefit of students who may need to deepen some particular subject.
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Chapter 1

Basic concepts about
signals and systems

1.1 Systems

System is the part of the Universe we want to study. System
A system made up of physical components may be called a plant. A system Plant

which is a combination of operations may be called a process. Process

Example 1.1. A Tidal Energy Converter (TEC) is a plant. If we want to study
the wave elevation at a certain onshore location as a function of the weather on
the middle of the ocean, we will be studying a process.

The variables describing the characteristics of the system that we want to
control are its outputs. Outputs

The variables on which the outputs depend are the system’s inputs. Inputs in the general sense
The inputs of the system that cannot be modified are called disturbances. Disturbances

The inputs of the system we can modify are called manipulated variables
or inputs in the strict sense. From now on, when referring to a variable as Inputs in the strict sense
input, we mean that it is an input in the strict sense.

Example 1.2. Consider a Wave Energy Converter (WEC) of the Oscillating
Water Column (OWC) type, with a valve for pressure relief. To study this plant,
we likely want to know, for each time instant, the electric power it is producing,
the pressure inside the chamber, the rotation speed of the turbine, and the air
mass flow through the turbine. So these will be its outputs. They depend on
the incoming wave and on the position of the relief valve, which are the plant’s
inputs in the general sense. As we cannot modify the incoming wave, this will
be a disturbance. As we can open and close the relief valve, its position is an
input in the strict sense.

Remark 1.1. Control is by far easier when disturbances are neglectable. Re-
markably, when extracting energy from the sea, they never are.

A system with only one input and only one output is a Single-Input, Single-
Output (SISO) system. A system with more than one input and more than one SISO system
output is a Multi-Input, Multi-Output (MIMO) system. It is of course possible MIMO system
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Figure 1.1: A linear system without dynamics (lever; source: Wikimedia Com-
mons).

to have Single-Input, Multiple-Output (SIMO) systems, and Multiple-Input,
Single-Output (MISO) systems. These are usually considered as particular
cases of MIMO systems.

Example 1.3. The OWC of Example 1.2 is a MIMO plant. Another one is a
car. When we are driving a car, we want to control its velocity and speed (the
outputs). To do this, we can control the angle of the steering wheel, how far
the gas pedal, the brake pedal and the clutch are operated, and which gear is
engaged (the inputs; an automatic gearbox will mean less inputs). The wind
gusts and the road conditions are disturbances. On the other hand, the lever in
Figure 1.1 is a SISO system: if the extremities are at heights x(t) and y(t), and
the first is actuated, then y(t), the output, depends on position x(t), the input,
and nothing more.

A system’s model is the mathematical relation between its outputs, on theModel
one hand, and its inputs and disturbances, on the other.

A system is linear if its exact model is linear, and non-linear if its exactLinear system

Non-linear system model is non-linear. Of course, exact non-linear models can be approximated
by linear models, and often are, to simplify calculations.

Example 1.4. The lever of Figure 1.1 is a linear plant, since, if its arm lengths
are Lx and Ly for the extremities at heights x(t) and y(t) respectively,

y(t) =
Ly
Lx

x(t). (1.1)

A Cardan joint (see Figure 1.2) connecting two rotating shafts, with a bent
corresponding to angle β, is a non-linear plant, since a rotation of θ1(t) in one
shaft corresponds to a rotation of the other shaft given by

θ2(t) = arctan
tan θ1(t)

cosβ
. (1.2)

A car is also an example of a non-linear plant, as any driver knows.

A system has no dynamics if its outputs in a certain time instant do not
depend on past values of the inputs or on past values of the disturbances. Oth-
erwise, it is a dynamic system.Dynamic system

Example 1.5. Both mechanical systems in Figures 1.1 and 1.2 have no dynam-
ics, since the output y(t) only depends on the current value of the input u(t).
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Figure 1.2: A non-linear mechanical system without dynamics (Cardan joint;
source: Wikimedia Commons).

Past values of the input are irrelevant. The same happens with a faucet that
delivers a flow rate Q(t) given by

Q(t) = kQf(t) (1.3)

where f(t) ∈ [0, 1] is a variable that tells is if the faucet is open (f(t) = 1) or
closed (f(t) = 0). But a faucet placed far from the point where the flow exits
the pipe will deliver a flow given by

Q(t) = kQf(t− τ) (1.4)

This is an example of a dynamic plant, since its output at time instant t depends
on a past value of f(t). Here, τ is the time the water takes from the faucet to
the exit of the pipe. And, again, a car is also an example of a dynamic system,
as any driver knows.

1.2 Signals

A signal is a function of time or space that conveys information about a system. Signal

Example 1.6. One of the outputs of a WEC is the electric power it injects into
the grid. This is a signal that depends on time. One of its disturbances is the
wave it extracts energy from. Wave elevation is a signal that depends on both
time and space.

Some signals can only take values in a discrete set; they are called quantised Quantised signal
signals. Others can take values in a continuous set; they are called analogical Analogical signal
signals.

Example 1.7. The rotation speed of a turbine is real valued; it takes values in
a continuous set. So does the position of the break pedal of a car. The number
of blades of the turbine is an integer number; it takes values in a discrete set.
So does the shift engaged by the gearbox of a car.

Remark 1.2. In engineering, most signals (if not all) are bounded. For in-
stance, the wave elevation at a certain point cannot be less than the depth of
the sea, and cannot be arbitrarily large (a sea wave 1 km high, for instance,
is a physical impossibility). Again, the rotation speed of a turbine, or the lin-
ear velocity of a shaft, or a voltage in a circuit, are always limited by physical
constraints. Still, as these signals can assume values in a continuous set, there
are infinite values they can assume. On the other hand, discrete signals, being
limited, can only assume a limited number of values: a wave farm with a very
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large number of WECs can be conceived, but there is a physical limit for this
too (probably well below the number of devices that would entirely cover all the
oceans on Earth!).

Most signals are nowadays measured using digital equipment. Irrespective of
the number of bits employed, there is a finite resolution implied, and so signals
take only discrete values in practice. In other words, most signals are nowadays
quantised.

The resolution of a quantised signal is the difference between the consec-Resolution
utive discrete values that it may assume. In practice, this depends on how the
signal is measured. The precision of a measurement is the range of valuesPrecision
where the real value may be; in other words, it is the maximum error that can
occur. Precision and resolution should not be confused.

Example 1.8. Figure 1.3 shows an input-output USB device. It can be used
as an analog-to-digital (AD) converter. It reads signals in the −10 V to +10 V
range using 12 bits. Consequently, it has an input resolution of 20

212 = 4.88 ×
10−3 V. It can also be used as a digital-to-analog (DA) converter. It outputs
signals in the 0 V to +5 V range using 12 bits. Consequently, it has an output
resolution of 5

212 = 1.22× 10−3 V.

Figure 1.3: National Instruments USB-6008, http://www.ni.com/en-gb/

support/model.usb-6008.html.

Example 1.9. Analog measurements have resolution and precision too. Con-
sider the weighing scale in Figure 1.4. Mass can be measured in the 5 kg to
100 kg range, with a resolution of 0.1 kg, and a precision of 0.1 kg. There is
no finer resolution because the graduation has ten marks per kilogram. The
precision is a result of the characteristics of the device.

Example 1.10. In Example 1.9 the resolution and the precision have the same
value, but this is often not the case. Figure 1.5 shows luggage scales with a
resolution of 1 g, but with a precision of 5 g or 10 g depending on the range
where the measurement falls. (Varying precisions are found for some types of
sensors, especially because of non-linearities.)

Remark 1.3. It makes sense to have a resolution equal to the precision, as in
Example 1.9, in which case all figures of the measurement are certain; and it
makes sense to have a resolution higher than the precision, as in Example 1.10,
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Figure 1.4: Weighing scales once used in the Be lchatów coal mine, Poland.
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Figure 1.5: Luggage scales.
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in which case the last figure of the measurement is uncertain. It would make no
sense to have a resolution more than 10 times larger than the precision, since in
that case at least the last figure of the measurement would have no significance.
It would also make no sense to have a resolution coarser than the precision,
since the capacities of the sensor would be wasted.

Remark 1.4. The precision of a signal depends on all the elements of the
measuring chain. The value shown at the display of the device in Figure 1.5
has a precision resulting from both the sensor used, and its particular precision,
and the AD converter that the sensor’s signal goes through, with its precision.

Remark 1.5. A naturally quantised signal can be measured with a coarser
resolution. For instance, the population of a country has a resolution of one,
but very often statistics give values rounded to thousands. This is because the
uncertainty of the measured signal does not allow for finer resolutions, the last
figures of which would have no significance.

Some signals take values for all time instants: they are said to be con- Continuous signal
tinuous. Others take values only at some time instants: they are said to be Discrete signal
discrete in time, or, in short, discrete. The time interval between two consec-
utive values of a discrete signal is the sampling time. The sampling time may Sampling time
be variable (if it changes between different samples), or constant. In the later
case, which makes mathematical treatment far more simple, the inverse of the
sampling time is the sampling frequency. Sampling frequency

Example 1.11. The air pressure inside the chamber of an OWC is a continuous
signal: it takes a value for every time instant. The number of students attending
the several classes of a course along the semester is a discrete signal: there is
a value for each class, and the sampling time is the time between consecutive
classes. The sampling time may be constant (if there is e.g. one lecture every
Monday) or variable (if there are e.g. two lectures per week on Mondays and
Tuesdays).

Most sensors nowadays measure the signal they are intended for only at some
time instants, that is to say, with a given sampling time. In other words, nearly
all measurements are discretised in time, just as they are quantised. If we want
to store our data, and since data is normally recorded digitally, this makes all
sense, as it would of course be impossible to record digitally a signal for all time
instants. (An analogical record may sometimes be possible.)

Discretising a signal has to be done with care. If the sampling time is too
big, we will miss many intermediate values that may be important. If it is too
small, we will end up with many consecutive measurements that are either equal
(because the signal does not change that fast) or where changes are irrelevant
(because the measured value changes only due to some noise source).

Example 1.12. It is intuitive that, to study tides, we need not measure the
sea level with a 1 ms sampling time (i.e. a 1000 Hz sampling frequency), as the
period of tides is in the range of hours. It is also intuitive that, to study sea
waves, we cannot measure the sea level once every minute, as we would miss
most of the wave crests and troughs.

While there is a theorem (the Nyquist theorem) about the lowest possible Nyquist theorem
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sampling time that can be used to sample a periodic signal, in practice a higher
sampling frequency should be employed. The following rule of thumb is a fair Rule of thumb for Ts
indication of how the sampling time should be chosen: let ωb be the highest
frequency, in rad/s, we may be interested in studying. Then the sampling time
Ts should verify

2π

20ωb
≤ Ts ≤

2π

10ωb
(1.5)

(Frequency ωb should more precisely be the system’s bandwidth; we will mentionBandwidth
this later on.) If tb = 2π

ωb
is the smallest time interval we are interested in

studying, (1.5) is the same as

tb
10
≤ Ts ≤

tb
20

(1.6)

Example 1.13. If a tide has a period of 12 hours, then it should suffice to
measure the sea level every 1.2 hours (70 minutes) at the least, or every 0.6 hours
(36 minutes) at the most. As (1.5)–(1.6) are a rule of thumb, there would likely
be no problem in measuring the sea level every half hour, or even every quarter
of an hour.

Example 1.14. If we are interested in studying the waves at a shore where
we know that during the entire year the wave spectra have neglectable content
above 2 Hz = 12.57 rad/s, then a sampling time between 25 ms and 50 ms will
be in order.

Figure 1.6: Sampled sinusoid. Left: in a very luck situation, sampling instants
fall on zero crossings, crests and troughs. Right: in an equally unlucky situation,
a crest is missed by as much as possible.

The lower value for the sampling time in rule 1.5 can be justified in the
following way. When sampling a sinusoid, with some luck, sampling instants
may fall on zero crossings and extreme values (crests and troughs), as seen in
Figure 1.6. With an equal lack of luck, zero crossings and extreme values will
be missed by as much as possible, as also shown in the Figure 1.6, for the case
in which there are n sampling instants per period. If n = 10, this corresponds
to an error of 18◦. Since

cos 18◦ = 0.95 (1.7)

8



we see that, using 10 points per period, the amplitude of the sinusoid can be
found from sampled data with an error of, at most, 5%. Decreasing the sampling
time, lower errors in the measured amplitude will be obtained.

1.3 Models

There are basically two ways of modelling a system:

1. A model based upon first principles is a theoretical construction, re- First principles model
sulting from the application of physical laws to the components of the
plant.

2. A model based upon experimental data results from applying identifi- Experimental model
cation methods to data experimentally obtained with the plant.

It is also possible to combine both these methods.

1.3.1 Models based upon first principles

These models can be obtained whenever the way the system works is known.
They are the only possibility if the plant does not exist yet because it is still
being designed, or if no experimental data is available. They may be quite
hard to obtain if the system comprises many complicated interacting sub-parts.
Simplifications can bring down the model to more manageable configurations,
but its theoretical origin may mean that results will differ significantly from
reality if parameters are wrongly estimated, if too many simplifications are
assumed, or if many phenomena are neglected.

Example 1.15. A WEC consisting in a vertically heaving buoy of mass m can
be modelled using Newton’s law:

m ¨x(t) =
∑

F (1.8)

Here x(t) is the vertical position of the buoy (likely measured around its position
for a calm sea). Finding expressions for all the forces involved — excitation force,
radiation force, power take-off (PTO) force. . . — is not a trivial task, but good
approximations can easily be found; in the end an added mass will turn up, as
you know; and after some calculations something like this may be obtained:

(m+m∞)ẍ(t) = Fe(t) +

∫ t

−∞
h(t− τ)ẋ(t) dτ − ρgSx(t) + FPTO(t) (1.9)

Dynamic systems can be modelled using differential equations if variables Differential equations
involved are continuous. This is the case of (1.8)–(1.9) above. If variables
involved are discrete, difference equations are used instead (see examples Difference equations
below in section 1.3.5). Both models using differential equations and models
using difference equations can be, as said in section 1.1, linear or non-linear,
and SISO or MIMO.

In what follows we will assume linear models, and time-invariant parameters
(LTI models). LTI models
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Example 1.16. A plane consumes enormous amounts of fuel. Its mass changes
significantly from take-off to landing. Any reasonable model of a plane will have
to have a time-varying mass. But it is possible to study a plane, for a short
period of time, using an LTI model, as the mass variation is neglectable in that
case. WECs can have time-varying parameters due for instance to the effects of
tides.

1.3.2 Continuous systems: Laplace transforms

Dynamic systems modelled using differential equations benefit enormously from
the use of the Laplace transform, that allows turning a differential equation into
an algebraic equation, far simpler to solve.

The Laplace transform of a real-valued function f(t) of positive real vari-Definition of L
able t ∈ R+

0 is given by

L [f(t)] =

∫ +∞

0

f(t)e−st dt (1.10)

where s ∈ C is a complex variable, and e−st is called the kernel of the integral
transform (1.10). This transform exists if either

� f(t) remains limited, or

� in the case lim
t→+∞

f(t) = ±∞, if f(t) diverges to infinity slower than the

kernel e−st goes to 0.

In either way, the integral in (1.10) exists. L [f(t)] is often denoted by F (s).

Example 1.17. Consider the Heaviside function,Heaviside function

H(t) =

{
0, if t < 0
1, if t ≥ 0

. (1.11)

Its Laplace transform is given byL [H(t)]

L [H(t)] =

∫ +∞

0

H(t)e−st dt =

[
e−st

−s

]+∞
0

=
e−∞

−s
− e0

−s
=

1

s
. (1.12)

Example 1.18. The Laplace transform of a negative exponential isL [e−at]

L
[
e−at

]
=

∫ +∞

0

e−ate−st dt =

[
e−(a+s)t

−a− s

]+∞
0

= − e
−∞

s+ a
−
(
− e0

s+ a

)
=

1

s+ a
.

(1.13)

While Laplace transforms can be found from definition as in the examples
above, in practice they are found from tables, such as the one in Table 1.1,
which can also be used to find inverse Laplace transforms (i.e. finding the f(t)
corresponding to a given L [f(t)]).

Laplace transforms are linear (the demonstration is straightforward) and
have other properties, some of which are given in Table 1.2. One that is most

10



Table 1.1: Table of Laplace transforms

x (t) X (s)

1 δ (t) 1

2 H (t)
1

s

3 t
1

s2

4 t2
2

s3

5 e−at
1

s+ a

6 1− e−at a

s (s+ a)

7 te−at
1

(s+ a)
2

8 sin (ωt)
ω

s2 + ω2

9 cos (ωt)
s

s2 + ω2

10 e−at sin (ωt)
ω

(s+ a)2 + ω2

11 e−at cos (ωt)
s+ a

(s+ a)
2

+ ω2

12
1

b− a
(
e−at − e−bt

) 1

(s+ a)(s+ b)

13
1

ab

(
1 +

1

a− b
(
b e−at − a e−bt

)) 1

s(s+ a)(s+ b)

14
ω

Ξ
e−ξωt sin (ωΞt)

ω2

s2 + 2ξωs+ ω2

15 − 1

Ξ
e−ξωt sin (ωΞt− φ)

s

s2 + 2ξωs+ ω2

16 1− 1

Ξ
e−ξωt sin (ωΞt+ φ)

ω2

s (s2 + 2ξωs+ ω2)

In this table: Ξ =
√

1− ξ2; φ = arctan
Ξ

ξ
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Table 1.2: Laplace transform properties

x (t) X (s)

1 Ax1 (t) +Bx2 (t) AX1 (s) +BX2 (s)

2 ax (at) X
( s
a

)
3 eatx (t) X (s− a)

4

{
x (t− a) t > a
0 t < a

e−asX (s)

5
dx (t)

dt
sX (s)− x(0)

6
d2x (t)

dt2
s2X (s)− sx(0)− x′(0)

7
dnx (t)

dtn
snX (s)− sn−1x(0)− · · · − x(n−1)(0)

8 −tx (t)
dX (s)

ds

9 t2x (t)
d2X (s)

ds2

10 (−1)ntnx (t)
dnX (s)

dsn

11

t∫
0

x (u) du
1

s
X (s)

12

t∫
0

· · ·
t∫

0

x (u) du =

t∫
0

(t− u)(n−1)

(n− 1)!
x (u) du

1

sn
X (s)

13 x1 (t) ∗ x2 (t) =
∫ t
0
x1 (u)x2 (t− u) du X1 (s)X2 (s)

14
1

t
x (t)

∞∫
s

X (u) du

15 x (t) = x (t+ T )
1

1− e−sT

T∫
0

e−suX (u) du

16 x (0) lim
s→∞

sX (s)

17 x (∞) = lim
t→∞

x (t) lim
s→0

sX (s)

12



interesting can be obtained applying integration by parts to definition (1.10):

L [f(t)] =

∫ +∞

0

f(t)e−st dt =

[
f(t)

e−st

−s

]+∞
0

−
∫ +∞

0

f ′(t)
e−st

−s
dt =

= lim
t→+∞

(
f(t)

e−st

−s

)
− f(0)

e0

−s
+

1

s

∫ +∞

0

f ′(t)e−st dt (1.14)

The limit in the first term must be zero, or the Laplace transform would not
exist. And the integral in the last term is L [f ′(t)]. Rearranging terms, we get

L [f ′(t)] = sL [f(t)]− f(0) (1.15)

where f(0) is an initial condition. Initial conditions

1.3.3 Continuous systems: transfer functions

Consider a system with a dynamic behaviour described by

y(t) = 2u(t)− 3ẏ(t) (1.16)

where y(t) is the output, and u(t) the input. We can apply Laplace transforms
to the equation above, assuming that initial conditions are zero (y(0) = 0), and
obtain

Y (s) = 2U(s)− 3sY (s)⇔ Y (s) + 3sY (s) = 2U(s) (1.17)

which can be rearranged into

Y (s)

U(s)
=

2

1 + 3s
(1.18)

This ratio of two polynomials in s is called a transfer function (relating the
input u(t) with the output y(t), or, more exactly, the Laplace transform of the
input U(s) with the Laplace transform of the output Y (s)). Notice that to ob-
tain the transfer function we had to assume zero initial conditions, otherwise
we would not have arrived at a rational function of s. Transfer functions are
often denoted by a capital letter such as G(s).

(1.18) allows finding the output of the system very easily. Suppose that the
input is u(t) = 10H(t), where H(s) is the Heaviside function. According to
(1.12), and because the Laplace transform is linear, U(s) = 10

s . Replacing this
in (1.18) we get

Y (s) =
20

s(1 + 3s)
(1.19)

and from Table 1.1, formula 6, we see that this corresponds to
y(t) = 20(1 − e− t

3 ). Check the calculations: they are easier than those that
would have solved the problem employing (1.16) directly. The more compli-
cated the differential equation and the expression of the input, the greater the
advantage of solving only algebraic equations thanks to the Laplace transform.

Whenever you see a transfer function, remember that it is nothing more than
a differential equation in disguise.

Example 1.19. (1.9) becomes (check the calculations)

X(s)
[
(m+m∞)s2 − sH(s) + ρgS

]
= Fe(s) + FPTO(s). (1.20)
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MIMO plants relate their several inputs and outputs with a matrix of transfer Transfer function matrix
functions, such as

[
Y1(s)
Y2(s)

]
=

 1

s2 + 2s+ 1
0

s− 10

s2 + 2s+ 1
s

s2 + 2s+ 1

5

s2 + 2s+ 1

−s+ 1

s2 + 2s+ 1


U1(s)
U2(s)
U3(s)

 (1.21)

1.3.4 Continuous systems: state-space representations

Consider a plant described by the differential equation

y(t) = u(t)− u̇(t)− 2ẏ(t)− ÿ(t) (1.22)

This can be rearranged in the following form, called a state-space represen-
tation:State-space [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
−1 −2

] [
x1(t)
x2(t)

]
+

[
0
1

]
u(t) (1.23)

y(t) =
[
1 −1

] [x1(t)
x2(t)

]
(1.24)

To prove that (1.23)–(1.24) is in fact the same as (1.22), it is easier to apply a
Laplace transform (and drop the dependence on s for ease of notation):

sX1 = X2 (1.25)

sX2 = −X1 − 2X2 + U (1.26)

Y = X1 −X2 (1.27)

Replacing (1.25) in (1.26) we easily get

X1 =
U

s2 + 2s+ 1
(1.28)

X2 =
sU

s2 + 2s+ 1
(1.29)

Y =
−s+ 1

s2 + 2s+ 1
U (1.30)

and this is the transfer function corresponding to (1.22), as can be easily seen.
The variables in vector [x1(t) x2(t)] are the system’s states.States

A system with transfer function

G(s) =

n∑
k=0

bks
k

sn +

n−1∑
k=0

aks
k

=
b0 + b1s

1 + b2s
2 + . . .+ bns

n

a0 + a1s1 + a2s2 + . . .+ sn
(1.31)

can be represented in state-space form in its so-called controllable canonical
formControllable canonical

form
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d

dt


x1(t)
x2(t)

...
xn−1(t)
xn(t)

 =

A︷ ︸︸ ︷
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1




x1(t)
x2(t)

...
xn−1(t)
xn(t)

+

B︷ ︸︸ ︷
0
0
...
0
1

u(t)

(1.32)

y(t) =
[
b0 − a0bn b1 − a1bn . . . bn−1 − an−1bn

]︸ ︷︷ ︸
C


x1(t)
x2(t)

...
xn(t)

+ bn︸︷︷︸
D

u(t)

(1.33)

or in its so-called observable canonical form Observable canonical form

d

dt


x1(t)
x2(t)

...
xn−1(t)
xn(t)

 =

A︷ ︸︸ ︷
0 0 . . . 0 −a0
1 0 . . . 0 −a1
...

...
...

. . .
...

0 0 . . . 1 −an−1




x1(t)
x2(t)

...
xn−1(t)
xn(t)

+

B︷ ︸︸ ︷
b0 − a0bn
b1 − a1bn

. . .
bn−1 − an−1bn

u(t)

(1.34)

y(t) =
[

0 0 . . . 0 1
]︸ ︷︷ ︸

C


x1(t)
x2(t)

...
xn−1(t)
xn(t)

+ bn︸︷︷︸
D

u(t) (1.35)

There are in fact infinite possible representations of a system in state-space form,
as the states of a system are not unique: any invertible linear transformation can Infinite possible state vec-

torsbe applied to a state-space representation, resulting in yet another state-space
representation. The two above are just the most usual ones.

The matrixes in the state-space representation are usually denoted by A,
B, C and D, as indicated above. MIMO systems can easily be represented in MIMO systems in state-

spacestate-space: they will have a vector of inputs, a vector of outputs, and bigger
matrixes.

1.3.5 Discrete systems: transfer functions and state-space
representations

As mentioned in section 1.3.1, discrete systems are represented by difference
equations, such as

yk =
1

4
uk−1 + yk−1 −

1

4
yk−2 (1.36)

Here uk is the k-th sample of the input, and yk is the k-th sample of the output.
In other words,

y(k Ts) =
1

4
u((k − 1)Ts) + y((k − 1)Ts)−

1

4
y((k − 2)Ts) (1.37)
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Difference equations are often rewritten using the delay operator z−1, definedDelay operator z−1

so that

z−1yk = yk−1 (1.38)

z−2yk = yk−2 (1.39)

z−3yk = yk−3 (1.40)

and so on. For instance, (1.36)–(1.37) becomes

y =
1

4
z−1u+ z−1y − 1

4
z−2y ⇔ y

u
=

z−1

z−2 − 4z−1 + 4
(1.41)

This last relation, a rational function of z−1, is known as discrete transferDiscrete transfer function
function. It can also be written with the forward operator z, defined so thatForward operator z

z yk = yk+1 (1.42)

z2yk = yk+2 (1.43)

z3yk = yk+3 (1.44)

and so on. For instance, (1.41) becomes

y

u
=

z

1− 4z + 4z2
. (1.45)

Just as signals can be discretised, so can continuous models given by transfer
functions. An obvious way of doing so is using a first-order approximation of
the derivative:

ẋ(k Ts) ≈
x(k Ts)− x((k − 1)Ts)

Ts
(1.46)

The Laplace of the left side is sX(s). The right side corresponds to x(1−z−1)
Ts

.
Thus

s ≈ 1− z−1

Ts
⇔ s ≈ z − 1

z Ts
⇔ z−1 ≈ 1− Tss⇔ z ≈ 1

1− Tss
(1.47)

For instance, replacing this, with a sampling time of Ts = 1 s in (1.22), we
obtain (1.41) or (1.45). Other approximations exist; we will not study this
matter further.

Discrete transfer functions can be put in state-space form too. Take forDiscrete state-space
instance [

x1,k+1

x2,k+1

]
=

[
1 − 1

2
1
2 0

] [
x1,k
x2,k

]
+

[
1
2
0

]
uk (1.48)

yk =
[
1
2 0

] [x1,k
x2,k

]
(1.49)

where the states are x1 and x2. We can use the z-operator to rewrite this as

x1z = x1 −
1

2
x2 +

1

2
u (1.50)

x2z =
1

2
x1 (1.51)

y =
1

2
x1 (1.52)

and from here it is not hard to show that (1.48)–(1.49) is the same as (1.41) or
(1.45).
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1.3.6 Models based upon both first principles and exper-
imental data

Experimental data should, whenever available, be used to confirm, and if nec-
essary modify, models based upon first principles. This often means that first
principles are used to find a structure for a model (the orders of the derivatives
in a differential equation, or the orders of the polynomials in a transfer function,
or the size of matrixes in a state-space representation), and then the values of
the parameters are found from experimental data: feeding the model the inputs
measured, checking the results, and tuning the parameters until they are equal
(or at least close) to measured outputs. This can sometimes be done using least
squares; sometimes other optimisation methods, such as genetic algorithms, are
resorted to.

If the outputs of experimental data cannot be made to agree with those
of the model, when the inputs are the same, then another model must be ob-
tained; this often happens just because too many simplifications were assumed
when deriving the model from first principles. It may be possible to find, from
experimental data itself, what modifications to model structure are needed.

1.3.7 Models based upon experimental data

Models based upon first principles can be called white box models, since the White box model
reason why the model has a particular structure is known. If experimental data
requires changing the structure of the model, a physical interpretation of the
new parameters may still be possible. The resulting model is often called a grey
box model. Grey box model

There are methods to find a model from experimental data that result in
something that has no physical interpretation, neither is it expected to have.
Still the resulting mathematical model fits the data available, providing the
correct outputs for the inputs used in the experimental plant. Such models
are called black box models, in the sense that we do not understand how Black box model
they work. Such models are often neural network models (or NN models), NN models
or models based upon fuzzy logic (fuzzy models). We will not study these Fuzzy models
modelling techniques, but it is important to know that they exist.

1.4 Exercises

1. Consider a heaving Wave Energy Converter with a dynamic behaviour
given by

y(t) = 2× 10−6F − 0.2ẏ(t)− 0.6ÿ(t), (1.53)

where y is the vertical position of the heaving element and F the force
acting thereupon. Show that the WEC’s transfer function is

Y (s)

F (s)
=

2× 10−6

0.6s2 + 0.2s+ 1
, (1.54)

where Y (s) and F (s) are the Laplace transforms of the output and the
input.
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2. Find the differential equations represented in transfer function matrix
(1.21).

3. Show that (1.53) is equivalent to the state-space representation

d

dt

[
x1
x2

]
=

[
− 1

3 − 5
3

1 0

] [
x1
x2

]
+

[
0.002

0

]
F (1.55)

y =
[
0 5

3 × 10−3
] [x1
x2

]
. (1.56)

4. Show that (1.53) is equivalent as well to the state-space representation

d

dt

[
x1
x2

]
=

[
− 1

3 1
− 5

3 0

] [
x1
x2

]
+

[
0

1
3 × 10−5

]
F (1.57)

y =
[
1 0

] [x1
x2

]
(1.58)

and verify that in fact a plant’s state-space representation is not unique.

5. Find a state-space representation for each of the five non-null transfer
functions in the matrix of (1.21).

6. Find a transfer function for the WEC with a dynamic behaviour given by

d

dt

[
x1
x2

]
=

[
− 1

3 − 5
3

1 0

] [
x1
x2

]
+

[
1
0

]
F (1.59)

y =
[
− 1

6 × 10−5 1
3 × 10−5

] [x1
x2

]
, (1.60)

and from the transfer function find the corresponding differential equation.

7. Find the differential equation corresponding to a WEC with a dynamic
behaviour given by

Y (s)

F (s)
=

5× 10−6

s2 + 3s+ 2
, (1.61)

and find a state-space representation as well.

8. Discuss if a 100 ms sampling time is appropriate for the following systems,
and propose a different value when it is not:

(a) A system with a 100 rad/s bandwidth.

(b) A system with a 5 rad/s bandwidth.

(c) A system with a 0.3 rad/s bandwidth.

(d) A tidal energy converter.

(e) The controller of the opening of the valves in the engine of a car.

(f) The controller of the opening of the valves in the diesel engine of a
ship running at 80 rpm.
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Chapter 2

Basic concepts about
control

2.1 Supporting software

Many of the things mentioned in this chapter can be numerically verified us-
ing software packages such as Matlab or Octave. Matlab is a commercial Matlab

Octaveproduct and you will need to buy it, to obtain a license (you may get one as
a student of Técnico: check the DSI webpage), or to use a student version
(with limited functionalities and valid for a limited time). Octave is a free soft-
ware (see https://www.gnu.org/software/octave/) that implements many
(though unfortunately not all) functionalities of Matlab. Finally, you may run
Octave online at https://octave-online.net/, which is the simplest way to Octave Online
do so. If you do not have Matlab, and do not want to go through an Octave
installation, just use this Octave Online website for the examples in this chapter.

In what follows we will only use the simplest Octave (or Matlab) commands,
so do not worry if you never used this software before. Just run the examples
to check the results. They could all be found from Laplace transform tables,
but, while using the Laplace transform is far simpler than solving the differen-
tial equations in other ways, it is still rather time consuming, and software to
compute system responses numerically is even simpler to use.

2.2 Stability and robustness

A system is said to be stable if bounded inputs and bounded disturbances Stability
always result in bounded outputs. Systems for which such inputs and/or dis-
turbances results in infinite outputs are called unstable. (Of course, in practice,
the output never reaches an infinite value, but saturates instead; what is meant
is that it would diverge to infinity if there were no limits to its value.)

Obviously, one of the objectives of a control system is to maintain stability,
or achieve stability if the system is not stable.

Example 2.1. We saw in equation (1.13) that

L −1
[

1

s+ a

]
= e−at. (2.1)
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A transfer function with a pole (i.e. a root of the polynomial in the denominator)
at −a will always originate a time response with an exponential e−at. This is
true even if there are other poles, and is true irrespective of the system’s input
(that can be seen using a partial fraction expansion). If a > 0 the pole −a is
negative and the exponential tends to 0. But if a < 0 the pole is positive andStable poles
the exponential diverges to infinity. Thus, any transfer function with at least
one positive pole corresponds to an unstable system.Unstable poles

Remark 2.1. If a transfer function has complex roots, it is the real part of
the roots that originates an exponential that may either tend to 0 or diverge to
infinity. Suppose for instance that a± jb are poles. Then

L −1
[

1

s+ a+ jb

]
= e(−a−jb)t = e−ate−jbt = e−at (cos bt− j sin bt) (2.2)

L −1
[

1

s+ a− jb

]
= e(−a+jb)t = e−atejbt = e−at (cos bt+ j sin bt) . (2.3)

Notice that the imaginary parts cancel out, and the stability depends only onStable poles are in the
complex left half-plane the real part of the poles.

Remark 2.2. Notice from (2.2)–(2.3) that the imaginary part of the poles orig-Complex poles originate
oscillations inates a sinusoidal component. In other words, systems with transfer functions

with complex poles have oscillatory outputs.

Remark 2.3. Remember then polynomials with real coefficients may have com-Complex poles appear in
conjugate pairs plex roots, but these always turn up in complex conjugate pairs.

Robustness of a control system is its ability of not being affected by un-
desirable disturbances (robustness to disturbances) or by changing parametersRobustness to disturbances
(robustness to parameter uncertainty).Robustness to parameter

uncertainty

2.3 Time responses

Systems are often studied and tested by the way the outputs evolve, in time,
when the input is

� an impulse δ(t),

� a unit-step H(t),

� a unit-slope ramp r(t) = t.

In practice, instead of an impulse, a pulse with a finite amplitude and a short
duration must be used instead.

In practice, steps may be impossible, and a short but continuous variation of
the input between two values is used instead. Also notice that 0 and 1 may not
be acceptable values for the input, or an amplitude of 1 may be unfeasible. In
the later case a different amplitude is used instead; the unit-step is used when
possible just because calculations are simpler.

Example 2.2. It is obviously unfeasible to study the suspension of a car by
applying a 1 m step to the tyres. The amplitude is too large: a step in the
range between 0.01 m and 0.1 m is more reasonable. Studying the effects on the
turbine of an OWC when there is a step of 1 Pa in the pressure of the chamber
is similarly ridiculous, this time for the inverse reason.
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In practice, a ramp can only be applied during a limited period of time, since
infinite amplitudes of the input are always impossible. A unit-slope may also
be unfeasible, and a different slope has then to be used instead.

2.3.1 First order systems

First order systems are described by differential equations with first order deriva-
tives only, and, consequently, by transfer functions with first order polynomials
only.

We will study the time responses of systems given by

G(s) =
b

s+ a
. (2.4)

This transfer function has a pole at −a, and does not have any zeroes.

Example 2.3. You can create transfer function G1(s) = 15
s+5 in Octave with

the command
G1 = tf([15],[1 5])

(The coefficients of the numerator and the denominator go inside the square
brackets.) Then plot the system’s impulse response with the command

impulse(G1)

You can create transfer function G2(s) = 20
s+5 in the same way or with the

commands
s = tf(’s’)

G2 = 20/(s+5)

Create transfer function G3(s) = 25
s+5 in either way and then plot their step

responses using
step(G1,G2,G3)

See the result in Figure 2.1. Notice that after some time all responses tend to
a constant value. They are said to be in steady-state. Before the steady-state Steady-state response
is achieved, there is the transient response. Also notice that the steady-state Transient response
response ends at b

a .

Example 2.4. Create now three transfer functions as follows:
Ga = tf(1,[1 1])

Gb = tf(2,[1 2])

Gc = tf(3,[1 3])

We can plot their step responses as we did above, or else defining a vector with
time instants and a vector with the corresponding inputs:

t = 0 : 0.1 : 5;

input = ones(size(t));

(In either case, the semicolon at the end is optional; if you do not put it there,
you will see the numbers in the vectors when you run the command. The first
of these commands puts into variable t all numbers from 0 to 5, with a 0.1 step.
The second puts in variable input a matrix of ones, with the same number of
lines and columns of the matrix in variable t.) Then use command

lsim(Ga,Gb,Gc,input,t)

This is very useful when the input is not a unit step, since you can put any
value you want in vector input. See the result in Figure 2.2. Notice that all
transfer functions have a steady-state of ab = 1, but they respond faster (slower)
for larger (smaller) values of the pole a.
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Figure 2.1: Unit-step responses of three first-order transfer functions with the
same pole and different numerators.

Figure 2.2: Unit-step responses of three first-order transfer functions with a
different poles and numerators.
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Figure 2.3: Unit-step responses of two second order transfer functions, one with
real poles, and another with complex poles.

Example 2.5. Create this transfer function with a pole on the right half-plane:

s = tf(’s’)

G2 = 1/(s-1)

(You do not need to define s again if it already exists, but there is no harm in
redefining it.) Plot its impulse and unit-step responses with commands impulse
and step, as done above, and verify that, as expected, they diverge to infinity,
since the plant in unstable.

2.3.2 Second order systems

Second order systems are described by differential equations with first and sec-
ond order derivatives only, and, consequently, by transfer functions with second
order polynomials only.

We will study the time responses of systems given by

G(s) =
b

s2 + a1s+ a0
. (2.5)

This transfer function has two poles and does not have zeroes.

Example 2.6. Create two transfer functions and plot their step responses:

s = tf(’s’)

A = 12/((s+3)*(s+4))

B = tf([1],[1 0.5 1])

step(A,B)

Notice that A has real poles and B has complex conjugate poles. As expected,
there are no oscillations for real poles, but there are oscillations for complex
poles, as shown in Figure 2.3.
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2.3.3 Responses to sinusoids

LTI systems respond to a sinusoidal input with an output that, in steady state,
is also a sinusoid with the same frequency.

Example 2.7. Let us define the following inputs:
t = 0 : 0.05 : 100;

input0 5 = sin(0.5*t);

input1 = sin(t);

input2 = sin(2*t);

Then we can plot time responses of B (from Example 2.6) as follows:
figure, lsim(B,input0 5,t)

hold, plot(t,input0 5)

(Command figure forces the creation of a new plot, while hold forces the plot
to be superimposed upon the last one.)

figure, lsim(B,input1,t)

hold, plot(t,input1)

figure, lsim(B,input2,t)

hold, plot(t,input2)

axis([0 100 -1.2 1.2])

(This last command sets new limits to the area shown in the plot, since the
automatic setting hides part of the input.) The results are shown in Figure 2.4.
It is clear that, after a shorter or longer transient regime, the output becomes
a sinusoid with the same frequency of the input.

2.4 Frequency responses

The above example of responses to sinusoidal inputs paves the way to the study
of frequency responses. A system’s frequency response is the study of how itFrequency response
responds, in steady-state, to a sinusoidal input. Since the output in steady-state
is a sinusoid with the frequency of the input, two quantities suffice to describe
it — both of them varying with the frequency:

� the gain is the ratio between the amplitude of the output sinusoid AoutputGain
and the amplitude of the input sinusoid Ainput;

� the phase is the difference in phase between the two sinusoids. If thePhase
output has its extreme values and zero crossings later than the input, the
phase is negative; if it is the other way round, it is positive. The phase
is, of course, defined up to an integer multiple of 360◦: but continuous
variations with frequency are assumed, beginning at the phase obtained
for very low frequencies.

Example 2.8. Consider the frequency responses in Figure 2.4. For 0.5 rad/s,
the gain is 1.26 (the amplitude of the output is larger than that of the input,
which is 1) and the phase is −19◦ (notice how the output is delayed in relation
to the input). For 1 rad/s, the gain is 2 and the phase is −90◦ (notice how
the output crosses zero as the input is already at a peak or at a through). For
2 rad/s, the gain is 0.32 (the output is smaller than the input) and the phase is
−162◦ (notice how input and output are almost in phase opposition, i.e. when
one has a peak the other has a through and vice-versa).
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Figure 2.4: Responses of B(s) = 1
s2+0.5s+1 to sinusoids with 0.5 rad/s (top),

1 rad/s (centre) and 2 rad/s (bottom).25



Gains are often given not in absolute value, but in decibel; i.e. instead ofDecibel scale for gains
the ratio

Aoutput

Ainput
, the value 20 log10

Aoutput

Ainput
dB is given instead.

Remark 2.4. Notice that gains in absolute value are in the ]0,+∞[ range:

� a value of 1 means that the output and the input have the same amplitude,

� a value larger than 1 means that the output has an amplitude larger than
that of the input,

� a value smaller than 1 means that the output has an amplitude smaller
than that of the output.

Gains in decibel are in the ]−∞,+∞[ range:

� a value of 0 dB means that the output and the input have the same
amplitude,

� a value larger than 0 dB means that the output has an amplitude largerPositive gains in dB
than that of the input,

� a value smaller than 0 dB means that the output has an amplitude smallerNegative gains in dB
than that of the output.

A Bode diagram is a graphical representation of the frequency response ofBode diagram
a system, as a function of frequency. It actually comprises two plots:

� a top plot, where the gain in dB is shown as a function of the frequency,Gain plot
with a semilogarithmic scale on the x-axis;

� a bottom plot, where the phase in degrees is shown as a function of thePhase plot
frequency, also with a semilogarithmic scale on the x-axis.

Example 2.9. To plot the Bode diagram of B from Examples 2.6 and 2.7, we
give the command

bode(B)

The result is shown in Figure 2.5. Notice how the gain for 2 rad/s is in fact
20 log10 0.32 = −9.9 dB, the gain for 1 rad/s is in fact 20 log10 2 = 6.0 dB, and
the gain for 0.5 rad/s is in fact 20 log10 1.26 = 2.0 dB. Also notice how phases
have the expected values.

Example 2.10. Figure 2.5 shows that at 100 rad/s the gain is −80 dB (in
absolute value, 10−80/20 = 1× 10−4) and the phase is −180◦ = −π rad. So we
know that if the input of B(s) is

y(t) = sin(100t) (2.6)

the output will be
u(t) = 1× 10−4 sin(100t− π). (2.7)

Figure 2.5 also shows that at 0.01 rad/s the gain is 0 dB (in absolute value, 1)
and the phase is 0◦. So we know that if the input of B(s) is

y(t) = sin(0.01t) (2.8)

the output will be
u(t) = sin(0.01t) (2.9)

as well.

26



Figure 2.5: Bode diagram of B(s) = 1
s2+0.5s+1 .

Example 2.11. Because B(s) is linear, if the input is

y(t) = 12.345 sin(100t) (2.10)

the output will be

u(t) = 12.345× 10−4 sin(100t− π). (2.11)

And, again because B(s) is linear, if the input is

y(t) = 0.1 sin
(

0.01t+
π

6

)
+sin

(
0.5t− 3π

7

)
+3.5 sin

(
t− 11π

12

)
+0.2 sin

(
2t+

2π

5

)
(2.12)

the output will be

y(t) = 0.1 sin
(

0.01t+
π

6

)
+1.26 sin

(
0.5t− 3π

7
− 19π

180

)
+7 sin

(
t− 11π

12
− π

2

)
+0.64 sin

(
2t+

2π

5
− 162π

180

)
.

(2.13)

In Naval Engineering the gain is often called Response Amplitude Op- RAO
erator (RAO) and represented in absolute value as a function of the frequency
or the period (in linear scale). Notice that the RAO alone does not suffice to
find the response to a sinusoidal input, since the information on the phase is
missing. If the input is not a sinusoid, but a periodic signal, which can thus
be decomposed into a sum of sinusoids (this is the case of sea waves), knowing
both gain and phase is necessary to accurately find the output.

Example 2.12. The RAO of B(s) from Figure 2.5 is shown in Figure 2.6.

Instead of the Bode diagram — by far the most usual —, frequency responses
may be shown in alternative diagrams, such as the Nyquist diagram or the Nyquist diagram
Nichols diagram, which we will not study. Nichols diagram

Dynamic systems are called:
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Figure 2.6: RAO of B(s) = 1
s2+0.5s+1 .

� low-pass filters, if they attenuate inputs at high frequencies, but not atLow pass filter
low frequencies;

� high-pass filters, if they attenuate inputs at low frequencies, but not atHigh pass filter
high frequencies;

� band-pass filters, if they attenuate inputs at both low and high frequen-Band pass filter
cies, but not at some range of frequencies between.

Example 2.13. See Figure 2.7 for the Bode diagrams of:

� low-pass filter Gl(s) =
10

s+ 10
;

� high-pass filter Gh(s) =
s

s+ 1
;

� band-pass filter Gb(s) =
20s

(s+ 0.5)(s+ 20)
.

A system’s bandwidth is the range of frequencies where its gain is above aBandwidth as range of fre-
quencies certain threshold, important for a particular application. For reasons we need

not enter into, a threshold of −3 dB is often used. With this criterion, outside
its bandwidth, a system will attenuate its input by 10−3/20 = 0.71 or more.

For low pass filters, only the upper limit of the bandwidth is given. It is inBandwidth as the upper
limit of a range of frequen-
cies

this sense that the bandwidth in (1.5) should be understood.

Finally, here is a result, stated for reference purposes only, and that we will
not prove: at frequency ω, transfer function G(s) has a gain given by |G(jω)|,
and a phase given by arg[G(jω)]. This allows plotting Bode diagrams (or other
graphical representations of the frequency response) rather easily, but you will
not be asked to do so.
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Figure 2.7: Bode diagrams of a low-pass filter, a high-pass filter, and a band-pass
filter.

2.5 Open-loop control and closed-loop control

The two simplest configurations of control systems are open-loop control and
closed-loop control.

In open-loop control, a control action is applied, and the result in the Open-loop control
output is not verified. If the output is measured, this measurement is not used
to correct the control action if there is some deviation from the desired value.
In other words, there is no feedback of the output.

In closed-loop control, the value of the output is compared with the de- Closed-loop control
sired reference, and the error between the reference and the output is fed to Closed-loop error
the controller. The control action depends on this error. In other words, there
is feedback of the output.

These two control strategies can be represented in block diagrams as seen Block diagrams
in Figure 2.8, where:

� G(s) is the transfer function of the system to be controlled;

� C(s) is the transfer function of the controller;

� U(s) is (the Laplace transform of) the control action provided by C(s),
and the input of G(s);

� Y (s) is (the Laplace transform of) the output of G(s), i.e. the variable we
want to control;

� R(s) is (the Laplace transform of) the reference for Y (s) to follow; Reference

� E(s) is (the Laplace transform of) the closed-loop error.
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Figure 2.8: Block diagrams of open-loop control (top) and closed-loop control
(bottom).

Since a block corresponds to a transfer function, and the incoming arrow corre-
sponds to the Laplace transform of the input, the outcoming arrow corresponds
to the Laplace transform of the output. So, thanks again to Laplace transforms,
block diagram algebra is very simple, and shows that

� when using open-loop control,

Y (s) = C(s)G(s)R(s)⇔ Y (s)

R(s)
= C(s)G(s); (2.14)

� when using closed-loop control,Closed-loop transfer func-
tion

Y (s) = C(s)G(s)E(s)⇔ Y (s) = C(s)G(s)(R(s)− Y (s))⇔

Y (s) + C(s)G(s)Y (s) = C(s)G(s)R(s)⇔ Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
(2.15)

Open-loop control only makes sense when the system is very well known,
so that the control action needed in each moment can be determined precisely,
without need to check the result.

Example 2.14. Open-loop control can be applied in TECs, for instance, be-
cause tides are well-known in what concerns both their amplitude and the hours
at which they take place; or in a WEC, in a control system that copes with tides.
It is very hard to apply open-loop control in the presence of signals hard to pre-
dict such as waves; even when there is a very good upstream measurement of
the wave it is often better to apply closed-loop control, checking if the control
action is achieving or not its purpose.

Example 2.15. Open-loop control can be applied to achieve on-off control,On-off control
in which the output can only assume two values. That is for instance the case
of a valve that should either be open or closed, actuated by a solenoid: a control
action is applied that will bring the valve to one of its two saturation limits,
and there may be no need to check that this happened.

Closed-loop control has a corrective action and does not require a knowledge
of the system as exact as that which is necessary to apply open-loop control,
though some knowledge is required lest the controller should be badly designed,
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Figure 2.9: Block diagram of a closed-loop with disturbances.

preventing the closed-loop from achieving the desired performance, or even turn-
ing unstable. Notice that closed-loop control only reacts to deviations of the
reference, and thus lacks any preventive or predictive action.

A more complete and realistic block diagram for closed-loop control is shown
in Figure 2.9, where

� DU (s) is (the Laplace transform of) a disturbance affecting the control
action;

� DY (s) is (the Laplace transform of) a disturbance affecting the output;

� DH(s) is (the Laplace transform of) a disturbance affecting the measured
output;

� H(s) is the transfer function of the sensor that measures the output Y (s);

� Ŷ (s) is (the Laplace transform of) the measured value of the output.

Notice that an ideal sensor verifies H(s) = 1 and thus, if there is no sensor
disturbance, Ŷ (s) = Y (s).

2.6 Closed-loop controllers and how to design
them

Closed-loop controllers can have many forms, among which the following are
remarkable for their extended use:

� Proportional controllers: Proportional control

C(s) = Kp ∈ R, (2.16)

and so

u(t) = Kpe(t). (2.17)

In this way, the larger (smaller) the error, the larger (smaller) the control
action.
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� Proportional–integral (PI) controllers: PI control

C(s) = Kp +
Ki

s
, Ki ∈ R, (2.18)

and so

u(t) = Kpe(t) +

∫ t

0

e(t) dt. (2.19)

The control action will have a component proportional to the integral of
the error, and so, if the error does not go to zero fast, the control action
will increase to try to compensate this non-vanishing error.

� Proportional–derivative (PD) controllers:PD control

C(s) = Kp +Kds, Kd ∈ R, (2.20)

and so

u(t) = Kpe(t) +Kd
de(t)

dt
. (2.21)

The control action will have a component proportional to the derivative
of the error, and so, if the error increases abruptly, the control action will
increase to try to compensate this increasing error.

� Proportional–integral–derivative (PID) controllers:PID control

C(s) = Kp +
Ki

s
+Kds, (2.22)

and so

u(t) = Kpe(t) +

∫ t

0

e(t) dt+Kd
de(t)

dt
. (2.23)

This controller has three components, as its name says.

While controllers can have other forms, and have many poles and zeroes, the
expressions above suffice to able to solve a great variety of control problems.

There are several different techniques to design controllers, among which the
following deserve to be mentioned:

� There are several analytical techniques to decide which poles and zeroes
the controller transfer function must have to achieve specifications related
to time responses, to frequencies responses, or both. We will not study
any, save for Internal Model Control, addressed below.

� Tuning rules allow calculating controller parameters from a minimum of
information about a plant. Among the many existing rules, the Ziegler-
Nichols tuning rules for PIDs are particularly widespread; the first ruleZiegler-Nichols PID tun-

ing rule for an S-shaped
step response

is applied to systems with an S-shaped unit-step response, as shown in
Figure 2.10 (if the input step has an amplitude A, then the response will
tend to KA). From the values in the Figure, the following controllers can
be obtained:

CP (s) =
T

LK
(2.24)

CPI(s) =
0.9T

LK

(
1 +

0.3

Ls

)
(2.25)

CPID(s) =
1.2T

LK

(
1 +

1

2Ls
+ 0.5Ls

)
(2.26)
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Figure 2.10: S-shaped step response.

Many other rules can be found in the literature. None can be expected to
provide results as good as those of an analytical method.

� Optimal control consists in defining an objective function that should
be minimised, usually penalising deviations of the output from the refer-
ence, big control actions, and big changes in the control actions (to spare
the actuators); controller parameters are then found minimising this ob-
jective function. Analytical techniques can be found for LTI systems and
quadratic objective functions, and for other well-behaved cases; these con-
trol techniques, based upon state-space representations, were among those
known in the 1960’s as Modern Control. More complicated situations may
require other optimisation methods.

� Predictive control optimises an objective function as well, this time
using a model of the system to predict how different particular control
actions will affect performance during a period of time (the prediction
horizon), finding the best option with a numerical search procedure (of-
ten based upon the branch and bound algorithm), implementing the
best control for a period of time (the control horizon) shorter than the
prediction horizon (because short-time predictions are more reliable than
long-time predictions), and repeating the process (resulting in a receding
horizon control).

� Switching control control consists in having different controllers to be
applied in different situations. This has been used to control WECs under
different sea states. Switching between controllers has to be done with
care, since an abrupt change in controller can easily result in a big change
of the control action, which may render the system unstable.

� Non-linear control is applied to plants with significant non-linearities.
There are several techniques to do so, such as feedback linearisation or
sliding-mode control; we will not study any details.
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Figure 2.11: Objective of latching control for a heaving point absorber.

� On-off control has already been mentioned; it is in fact a very basic non-
linear control technique based upon the saturation of the control variable.

� Latching is a non-linear control technique that consists in stopping anLatching
oscillating variable when it reaches a maximum or a minimum, to release
when it is reckoned that it will be in phase with another variable. This
has been extensively used with heaving WECs, which are latched when
they stop either at the top or at the bottom of the movement (see Figure
2.11), so that the velocity will be in phase with the excitation force (so
as to maximise the extracted power). As sea-waves are irregular, finding
the instant to unlatch the WEC is not trivial, and since the mass that
has to latched is usually significant, huge forces may be involved. This
type of control increases the abrupt variations with time of the power to
be injected into the grid; this is an undesirable consequence, that may
be mitigated if there is a wave farm with many WECs, with the power
variations of the different devices out of phase with each other. Latching
control is similar to what happens in an OWC with a relief valve, that
may as well be used to try to put the variations of pressure in phase with
the excitation force.

2.7 Variations on closed-loop control

Many systems are made up of different parts in sequence, some faster than
others. In that case, rather than trying to control the entire system at once,
it is preferable to control separately the slower and the faster parts. This is
the idea of a particular type of closed-loop control called cascade control (orCascade control
master-slave control), with a block diagram shown in Figure 2.12, where:

� G1(s) is the faster part of the system,

� G2(s) is the slower part of the system.
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Figure 2.12: Block diagram of cascade control.

The remaining signals and blocks are self-evident. Notice that there must be
two sensors, but there is still only one actuator, delivering control action U1(s)
(U2(s) is just a signal that will be used as reference by controller C1(s)). It is
possible to have three, or more, nested loops in this way.

Example 2.16. Consider an OWC controlled by a valve that can assume any
position between 0 (closed) and 1 (open). The input of the system is the tension
applied to the actuator of the valve; the valve’s position is affected by distur-
bances (e.g. a time-varying suction caused by the flow). Rather than designing
only one controller that simultaneously handles the OWC and the valve, it is
better to design first a controller to put the valve in the position desired. The
dynamics of the valve will be G1(s); the controller (likely a PI or a PID) will be
C1(s); a sensor H1(s) that measures the position of the valve Y1(s) is needed; the
control action U1(s) is the tension that controls the valve. G2(s) will correspond
to the dynamics of the OWC; C2(s) will only have to take care of that. If the
inner closed-loop comprising C1(s), G1(s) and H1(s) is fast enough, the valve
will get to a desired position much faster than the OWC reacts to a change: so
C2(s) may even assume that the entire inner-loop has a transfer function of 1
(i.e. responds so fast that it is for practical purposes instantaneous). Even if
this is not the case, at least the dynamics of that part of the system will be
known and fixed in advance, so designing C2(s) will be easier. Figure 2.12 does
not show disturbances, but they will exist: there are those affecting the valve,
and there are of course the waves.

Internal Model Control (IMC) may be considered another variation of IMC
closed-loop control, that can be used when there is a good model of the system
and a good inverse model of the system (i.e. a model that receives the system’s
output y(t) as input, and delivers the system’s input u(t) as output). It is shown
in Figure 2.13, where

� G(s) is the actual system to control,

� G∗(s) is the model of the plant,

� G−1(s) is the inverse model of the plant.

Notice that if the model is perfect (G∗(s) = G(s)) then the error is

E(s) = R(s)−
(
Y (s)− Ŷ (s)

)
= R(s)−D(s)−G(s)U(s)+G∗(s)U(s) = R(s)−D(s).

(2.27)
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Figure 2.13: Block diagram of IMC.

If the inverse model is perfect, then

Y (s) = D(s) +G(s)G−1(s)E(s) = D(s) +R(s)−D(s) = R(s) (2.28)

In other words, with perfect models, IMC achieves perfect disturbance rejection,
i.e. perfect robustness to disturbances. In practice, models are never perfect,
but IMC often works well enough if models are good. IMC is suitable when
using black-box modelling techniques. Notice that IMC is equivalent to a usual
closed-loop (Figure 2.8) if

C(s) =
G−1(s)

1−G−1(s)G∗(s)
. (2.29)

Systems with a delay do not respond immediately to an input, but onlyDelay systems
after a while. Table 1.2, line 4, shows that the transfer function of a delay of
θ seconds is the non-linear term e−θs.

Example 2.17. Figure 2.14 shows the unit-step response of two transfer func-
tions:

A(s) =
8

s2 + 3s+ 2
(2.30)

B(s) =
8

s2 + 3s+ 2
e−2s (2.31)

Unfortunately, Octave does not deal with delay systems; Matlab does, and the
figure was obtained with the following commands:

s = tf(’s’)

A = 8/((s+1)*(s+2))

B = A * exp(-2*s)

step(A,B)

legend(’A’,’B’)

Delays are one of the biggest nuisances in control, as they easily cause closed-Effects of delays in closed-
loop loop control systems to become unstable. The reason for this is intuitive: if a

control action is applied, but there is no immediate response, the controller may
easily increase the control action, to try to elicit some reaction from the system.
The control action will then be so big that, when the system finally responds,
it overshoots, and then the controller may easily try to solve this by decreasing
too much the control action, resulting in an overshoot in the other direction,
and so on. Delays are thus responsible not only for slower responses, but also
for oscillations, and eventually unstable closed-loops.
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Figure 2.14: Unit-step responses of a system without delay and of a system with
delay.

Example 2.18. You likely have had a similar experience when trying to take
a shower in a bathroom you do not know, and where the water takes longer to
reach the shower than you are used to. You will likely have turned too much the
faucet of hot water, and then got burnt; then as reaction you probably turned
the faucets so that water went too cold. In such cases it takes some time to get
to know the system well enough to obtain a comfortable temperature.

What is needed is a controller that waits for the delay and takes it into
account when determining the control action. This is possible with a variation
of IMC called Smith predictor, shown in Figure 2.15, where Smith predictor

� G(s)e−θs is a system with a delay;

� G∗(s) is a model of the system without delay;

� θ̂ is an estimate of the system’s delay.

If G∗(s) and θ̂ are exact (i.e. if the model is perfect), then Y (s) = Ŷ (s), and
thus what is being fed back is

G∗(s)U(s) = G∗(s)C(s)E(s) = G(s)C(s)E(s). (2.32)

Consequently, the error is given by

E(s) = R(s)−G(s)C(s)E(s)⇔ E(s) (1 +G(s)C(s)) = R(s)⇔ E(s) =
R(s)

1 +G(s)C(s)
,

(2.33)
and since Y (s) = G(s)e−θsC(s)E(s) then

Y (s) =
G(s)e−θsC(s)R(s)

1 +G(s)C(s)
⇔ Y (s)

R(s)
=
G(s)e−θsC(s)

1 +G(s)C(s)
(2.34)
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Figure 2.15: Smith predictor.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (seconds)

A
m
p
l
i
t
u
d
e

 

 

A

B

Figure 2.16: Unit-step responses of A(s) controlled with C(s) in closed-loop,
and of B(s) controlled with C(s) and a Smith predictor.

Notice the difference between this and the result of a usual closed-loop:

Y (s)

R(s)
=

G(s)e−θsC(s)

1 +G(s)e−θsC(s)
(2.35)

Example 2.19. Figure 2.16 shows the unit-step response of A(s), given by
(2.30), controlled in closed-loop with the PI controller

C(s) = 0.1 +
0.3

s
(2.36)

B(s), given by (2.31), controlled in closed-loop with C(s), is unstable. When
a Smith predictor is used instead, stability is regained, as also seen in Figure
2.16.

Remark 2.5. It should be stressed that the Smith predictor does not eliminate
the effect of the delay. The response of the controlled system will always be
delayed. What the Smith predictor does is to eliminate the effect of the delay
in the stability of the closed-loop — and this is already much.
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2.8 Exercises

1. Use Octave to define a time vector and a unit-slope ramp as follows:

t = 0 : 0.1 : 20;

input = t;

Then use command lsim to find the responses to this ramp for all the
transfer functions in sections 2.3.1 and 2.3.2.

2. Use (2.1) to explain why it is that

(a)
5

s+ 10
is stable,

(b)
5

s− 10
is unstable,

(c)
s− 10

s+ 20
is stable,

(d)
5

s2 − 4− 12
is unstable,

(e)
13

2s3 + 17s2 + 47s+ 42
is stable and its step response has no oscilla-

tions,

(f)
13

9s3 + 390s2 + 1514s+ 12560
is stable and its step response has os-

cillations.

Hint: you can find the roots of the polynomial in the denominator of the
transfer function of (e) with Octave, using command

roots([2 17 47 42])

3. Use Octave to find the step response of this transfer function, that models
a WEC:

Y (s)

F (s)
=

5× 10−6

s2 + 3s+ 2
. (2.37)

Use the corresponding Ziegler-Nichols rules to find a P controller, a PI
controller, and a PID controller for the plant.

4. Do the same for a WEC described by the following transfer function, that
includes a delay:

Gp(s) =
8× 10−6

s+ 3
e−0.7s (2.38)

Hint: Octave does not implement delays, but what is the effect of the
delay?

5. Figure 2.17 is the step response of this transfer function, that may describe
some electromechanical actuator:

Ga(s) =
−s+ 30

s2 + 20s+ 200
(2.39)

Use the corresponding Ziegler-Nichols rules to find a P controller, a PI
controller, and a PID controller for this plant.
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Figure 2.17: Step response of 2.39.

6. Suppose that WEC Gp(s) from (2.38) is controlled with a proportional
controller k, using a Smith predictor.

(a) Find the transfer function of the closed loop, supposing that we have

a perfect model of the delay (θ̂ = 0.7) and a perfect model of the

plant without delay (G∗ = 8×10−6

s+3 ).

(b) Find the transfer function of the closed loop, supposing now that our

model of the plant without delay is G∗ = 8×10−6

s+2 .

7. Consider the control system in Figure 2.12. To simplify things, we will
assume an almost perfect world: there are no disturbances, and the sensors
give exact measurements instantaneously (H1(s) = H2(s) = 1).

(a) How is this control structure called?

(b) Which part of the plant do you expect to have a faster response:
G1(s) or G2(s)?

(c) Find the transfer function of the inner closed loop, Y2(s)
U1(s)

.

(d) Find the transfer function of the entire system, Y1(s)
R(s) .

(e) Suppose that G2(s) is Ga(s) given by (2.39), that C2(s) is the pro-

portional controller you found for that plant, that G1(s) is Y (s)
F (s) given

by (2.37), and that C1(s) is the PID controller you found for that

plant. Replace values in Y1(s)
R(s) and find the transfer function of the

control system in that case.

8. Explain why on-off control is non-linear.
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Chapter 3

Applications

This section introduces three papers that concern the control of two WECs and
cover most of the subjects addressed so far.

3.1 The Archimedes Wave Swing (AWS)

The Archimedes Wave Swing was an off-shore submerged heaving point ab-
sorber, using a linear electric generator as PTO, and deployed in the north of
Portugal (Figure 3.1).

[1] addresses the following issues:

� identification of a transfer function model;

� reactive control;

� phase and amplitude control (including proportional control);

� latching;

� feedback linearisation.

[2] addresses the following issues:

� identification of a NN model;

� IMC;

� switching control.

3.2 The Inertial Sea Wave Energy Converter (ISWEC)

The Inertial Sea Wave Energy Converter is an off-shore floating pitching point
absorber, using gyroscopes and an electric generator as PTO, and deployed off
Pantelleria island, Italy (Figure 3.2)

[3] addresses the following issues:

� PID control;

� switching control;
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Figure 3.1: The Archimedes Wave Swing.

Figure 3.2: The Inertial Sea Wave Energy Converter.
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� optimal control;

� nonlinear control.
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