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Abstract

Support notes for the Algebra course of LMAC in the academic year
2022/2023, meant to provide a construction of free groups which is
different from the usual ones found in algebra books. In particular it
is different from that of Dummit&Foote. The approach via involutive
monoids followed in these notes requires some additional notions, as
compared to more common approaches, but it gains in conceptual
clarity.
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0 Introduction

The notion of subgroup 〈A〉 generated by a subset A of a group G can be
approached in two ways, as we have seen in the lectures. The “top down ap-
proach” defines 〈A〉 to be the intersection of all the subgroups of G that con-
tain A, whereas the “bottom up approach” generates from A all the “words”
constructed in G using the “letters” in A and their inverses. For instance, if
a and b are distinct letters in A, the subgroup 〈A〉 will contain the elements
1, a, b, ab, aa, bb, ba, a−1, a−1b, etc.

Given a set X, not necessarily contained in any given group, the idea of
the free group generated by X is similar to the idea of generating a subgroup
using the bottom up approach. Thinking of the elements of X as “letters,”
the free group F (X) will contain all the “words” generated by the letters
in X and their inverses. Now the “product” of x and y will be interpreted
simply as concatenation of the symbols x and y, and x−1 is just a new copy
of x labelled with the symbol “−1.” Hence, for instance, if x, y ∈ X we have
words such as xy−1xxy. And we have the empty word ε, which contains
no letters and thus is the identity for the multiplication that is given by
concatenation.

The inverse operation on words is easy to define. For instance, we must
have

(xy−1xxy)−1 = y−1x−1x−1yx−1.

The multiplication on words is easy to define, too, but there is a glitch.
Suppose xyx−1 is another word, which we want to multiply by the previous
one. Then concatenation gives us

(xyx−1)(xy−1xxy) = xyx−1xy−1xxy.

Then in the new word we find the product x−1x, which is not the same as
the empty word, so if we replace it by ε we get the different word

xyy−1xxy.

Note that this is really different, since in particular it contains only six sym-
bols, whereas the previous word contained eight symbols. The conclusion is
that the set of all the words which are generated by the elements of X and
their inverses is a monoid, and it even has an operation that resembles an
inverse operation of a group, but whose key property is missing because x−1x
is not the identity.

The common solution to this problem is to consider only the subset of
those words where no occurrences of x−1x or xx−1 exist for any symbol x ∈ X,
and then to redefine the multiplication of words so that after concatenation
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we remove such occurrences. Then it is necessary to prove that the resulting
multiplication is associative, and this involves quite some work. In these
notes we follow a different approach that releases us from the burden of
proving such things.

The important aspect to be retained is that, whatever the construction,
each letter x ∈ X will give rise to an element of F (X), usually again denoted
by x, although technically X may fail to be an actual subset of F (X). This
map of letters into F (X) is called the injection of generators of F (X), and
the elements of X are the generators.

1 Free group on one generator

Let us look at a simple example first, namely X = {x}. The “words” gener-
ated by x should be positive powers xn with n ∈ Z>0 or their inverses x−n,
and the empty word x0. In other words, F (X) should be isomorphic to the
infinite cyclic group Z, with each a ∈ Z representing the “word” xa. With
this idea in mind, the injection of generators

ι : {x} → Z

is defined by ι(x) = 1. Suppose that f : {x} → G is another function into
a group G. It is easy to see that there is a unique group homomorphism
f ] : Z→ G such that f ](1) = f(x), namely given for all a ∈ Z by

f ](a) = f(x)a.

In other words, there is a unique homomorphism f ] : Z → G such that
f ] ◦ ι = f . We should think of f ] as being the unique way in which f can be
extended to the whole of the free group as a homomorphism. Let us state
and prove this carefully:

§1. Proposition. Let ι : {x} → Z be the function defined by ι(x) = 1.
For all groups G and all functions f : {x} → G there is a unique group
homomorphism f ] : Z→ G such that the following diagram commutes:

{x} ι //

f
&&

Z
f]

��
G
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Proof. (Existence.) The function f ] : a 7→ f(x)a is a homomorphism, for

f ](a+ b) = f(x)a+b = f(x)af(x)b = f ](a)f ](b).

Since f ](ι(x)) = f ](1) = f(x)1 = f(x), we have f ] ◦ ι = f , so we have found
a solution f ] to the extension problem as required.

(Uniqueness.) If g : Z → G is any other homomorphism and g ◦ ι = f
then g(1) = g(ι(x)) = f(x), and thus g(a) = g(1)a = f(x)a = f ](a), so
g = f ].

The previous proposition is very important and, as we shall see below, it
can be used as a definition of the (isomorphism class of the) free group on
one generator.

Let us look a little more at this. Suppose we replace Z by Z/nZ and
use ι(x) = 1 as injection of generators. Then the existence part of the proof
of the previous proposition does not work. For instance, taking G = Z and
f(x) = 1, the homomorphism f ] : Z/nZ → Z would have to be defined by
f ](1) = 1, which is impossible. Intuitively, this is because Z/nZ, although it
is indeed generated by a single generator (because 〈1〉 = Z/nZ), is not freely
generated because there are constraints in Z/nZ that do not follow inevitably
from the algebraic laws of groups. Namely, we have 0 = n, whereas in the
actual free group Z we have 0 6= n.

Now suppose we replace Z by Z×Z as our candidate for a free group, using
the injection of generators ι(x) = (1, 0). Now we can find a homomorphism
f ] by defining

f ](a, b) = f(x)a,

but it is not a unique extension. For instance, another would be given by

f ](a, b) = f(x)a+b.

So, in this case there is an extension, but the uniqueness part of the proof
of the above proposition fails. This means that Z × Z is not generated by
the set {x}; that is, there are elements in Z × Z which are not obtained
from “words” of the form xa when we define the injection of generators to
be ι(x) = (1, 0).

This gives us the correct intuition with which to understand what a free
group is all about: it must be a group whose elements can all be obtained by
composing words using the generators, and this group should not be subject
to any constraints except those that are derived by the general laws of group
theory.
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2 Universal property

Let X be any set, and let us suppose there is a group F (X) and a function
ι : X → F (X) with the same property of §1, called the universal property
of the pair (F (X), ι); that is, for all other functions f : X → G to a group
G there is a unique homomorphism f ] : F (X) → G such that the following
diagram commutes:

X ι //

f
''

F (X)

f]

��
G

Then we say that F (X) is a free group generated by X, and that ι is its
injection of generators.

Of course, we have not provided an actual construction of the group F (X),
indeed we do not (yet) know whether such a group exists. To show that it
does is the purpose of these notes. But one thing we can already prove: any
two different constructions of F (X) that satisfy the same universal property
are equivalent because they yield isomorphic groups, as the following theorem
illustrates:

§2. Theorem. Let X be a set, and let F (X) and F ′(X) be two free
groups generated by X, with injections of generators ι and ι′, respectively.
Then there is an isomorphism h : F (X) → F ′(X) such that ι′ = h ◦ ι. In
particular, then, F (X) ∼= F ′(X).

Proof. The universal property of F (X) ensures that there is a unique ho-
momorphism of groups h : F (X)→ F ′(X) such that h◦ ι = ι′. Similarly, the
universal property of F ′(X) implies that there is a unique homomorphism
k : F ′(X)→ F (X) such that k◦ι′ = ι. Hence, we have both k◦h◦ι = ι = id ◦ι
and h◦k ◦ ι′ = ι′ = id ◦ι′. So the uniqueness part of the universal property of
F (X) implies that k ◦ h = id and the uniqueness part of the universal prop-
erty of F ′(X) implies that h ◦ k = id. This shows that h is an isomorphism
with inverse k.

3 Free monoids

Let us begin with the much simpler case of monoids, instead of groups. Let
X be a set, and let us denote by X∗ the set of all the words constructed
with symbols taken from X: each word is simply a finite list of symbols
x1x2 . . . xn. The length of a word is the number of occurrences of symbols
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in it, regardless of how many times each symbol is repeated; for instance,
x1x2 . . . xn has length n. The empty word, with no symbols and length zero,
is denoted by ε.

X∗ has a natural monoid structure: the (associative) product is concate-
nation of words,

(x1 . . . xn) · (y1 . . . ym) = x1 . . . xny1 . . . ym,

and the identity element is the empty word ε. There is also a function
ι : X → X∗ which sends each symbol in X to the corresponding word of
length one, and the following universal property is easy to prove:

§3. Proposition. For all monoids M and all functions f : X →M there
is a unique homomorphism of monoids f ] : X∗ →M such that f ] ◦ ι = f .

Proof. (Existence.) Define, for each word x1 . . . xn with n ∈ Z≥1,

f ](x1 . . . xn) = f(x1) · · · f(xn).

And define f ](ε) = 1. Then f ] is a homomorphism of monoids because for
each two words x = x1 . . . xn and y = y1 . . . ym we have

f ](xy) = f(x1) · · · f(xn)f(y1) · · · f(ym) = f ](x)f ](y).

(Uniqueness.) Let g : X∗ → M be another homomorphism of monoids such
that g ◦ ι = f . Then, g(ε) = 1 = f ](ε) and for all words x = x1 . . . xn we
have, since g preserves products,

g(x) = g(x1 . . . xn) = g(x1) · · · g(xn) = f(x1) · · · f(xn) = f ](x).

4 Involutive sets

§4. Definition. By an involutive set is meant a set S equipped with an
operation (−)∗ : S → S such that for all x ∈ S we have x∗∗ = x. A function
f : S → T between involutive sets is involutive, or a homomorphism of
involutive sets, if for all x ∈ S we have f(x∗) = f(x)∗.

An involutive set is a very simple type of algebraic structure, and there
is an associated universal property, too:
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§5. Proposition. Let X be a set. Define

i(X) = X × {1} ∪X × {2}.

Then i(X) is an involutive set whose involution is defined for all x ∈ X by

(x, 1)∗ = (x, 2) and (x, 2)∗ = (x, 1).

Let ι : X → i(X) be defined by ι(x) = (x, 1) for each x ∈ X. If S is
another involutive set and f : X → S is a function, then there is a unique
homomorphism of involutive sets f ] : i(X)→ S such that f ] ◦ ι = f .

Proof. That i(X) is an involutive set is obvious. Let us prove the universal
property only to call attention to the fact that, contrary to the monoid case
above, now ι cannot be regarded merely as an inclusion.

(Existence.) Let f : X → S be a function. Define for all x ∈ X

f ](x, 1) = f(x) and f ](x, 2) = f(x)∗.

Clearly, this function is involutive, and it satisfies f ] ◦ ι = f because for all
x ∈ X

f ](ι(x)) = f ](x, 1) = f(x).

(Uniqueness.) This is left as an exercise.

§6. Definition. i(X) is called a free involutive set generated by X.

§7. Corollary. Any other involutive set satisfying the same universal
property of i(X) is isomorphic to i(X).

Proof. Exercise (the proof is similar to that of §2).

5 Involutive monoids

By an involutive monoid M is meant a monoid which is also an involutive
set such that for all m,n ∈M we have

(mn)∗ = n∗m∗.

A homomorphism of involutive monoids is a homomorphism of monoids
which is also an involutive function.
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§8. Exercise. Prove that for any involutive monoid we have 1∗ = 1.

§9. Lemma. Let S be an involutive set, and let S∗ be the free monoid on
S, with inclusion function ι : S → S∗. Then S∗ is an involutive monoid if
we define for each word x1 . . . xn ∈ S∗

(x1 . . . xn)∗ = x∗n . . . x
∗
1.

Moreover, if M is another involutive monoid and f : S →M is an involutive
function, the unique homomorphism of monoids f ] : S∗ → M such that
f ] ◦ ι = f is itself involutive.

§10. Corollary. Let X be a set. Then i(X)∗ is an involutive monoid.
Letting

ι : X → i(X)∗

be the function defined for all x ∈ X by ι(x) = (x, 1), for any other function
to an involutive monoid

f : X →M

there is a unique homomorphism of involutive monoids f ] : i(X)∗ such that
f ] ◦ ι = f .

Proof. Exercise.

§11. Definition. Due to the above property, i(X)∗ is called the free
involutive monoid generated by X.

§12. Exercise. Similarly to groups and involutive sets, the universal prop-
erty defines the free involutive monoid generated by X uniquely up to an
isomorphism. State this precisely and prove it.

6 Quotients of involutive monoids

§13. Definition. Let M be an involutive monoid. A congruence relation
on M is an equivalence relation on M which contains (1, 1) and is closed
under products and the involution in the product involutive monoid M ×
M (the identity is (1, 1) and the product and the involution are computed
componentwise: (m,n)(m′, n′) = (mm′, nn′) and (m,n)∗ = (m∗, n∗)).
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§14. Lemma. Let M be an involutive monoid, and let ∼ be a congruence
relation on M . Then the quotient M/∼ is an involutive monoid. The product
and the involution applied to equivalence classes is defined by

[m][n] = [mn] and [m]∗ = [m∗].

If h : M → N is a homomorphism of involutive monoids that is constant
on each equivalence class then there is a unique homomorphism of involutive
monoids h : M/∼ → N such that h([m]) = h(m) for all m ∈M .

Proof. Exercise.

§15. Definition. Let M be an involutive monoid. A group congruence
on M is any congruence of involutive monoids ∼ such that mm∗ ∼ 1 for all
m ∈M . The intersection of all the group congruences on M (exercise: show
that this is a group congruence) is denoted by ∼G.

§16. Lemma. Let M be an involutive monoid. For any group congruence
∼, the quotient M/∼ is a group such that [m]−1 = [m]∗ for each m ∈ M .
If h : M → G is a homomorphism of involutive monoids to a group G
(regarded as an involutive monoid with involution given by inverse) there is
a unique group homomorphism h : M/∼G → G such that h([m]) = h(m) for
all m ∈M .

Proof. Exercise.

§17. Definition. M/∼G in the above lemma is called the universal group
quotient of M .

7 Free groups

The free involutive monoid i(X)∗ is “almost” the free group generated by
X, for its elements can be identified with products of letters x from X and
their “inverses” x∗; more precisely, concretely each element of i(X)∗ is a word
whose letters are “symbols” (x, 1) or (x, 2), standing respectively for x and
x∗. The only problem standing between i(X)∗ and the envisaged construction
of a free group is that this “inverse” x∗ is not an actual inverse, since each
product (x, 1)(x, 2) is a word of length 2, therefore not the same as the empty
word ε, which is the monoid identity. In order to solve this problem we need
to contruct a quotient of involutive monoids i(X)∗ that identifies ε with all
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sequences (x, 1)(x, 2) and (x, 2)(x, 1). This is now an immediate application
of the construction of a quotient on any involutive monoid.

§18. Theorem. Let X be a set. Then i(X)∗/∼G is a free group generated
by X.

Proof. This is a corollary of the previous propositions and lemmas, and a
detailed proof is left as an exercise.

§19. Remark. This particular construction of the free group F (X) is such
that each element of F (X) is an equivalence class of words

(x1, b1)(x2, b2) . . . (xn, bn)

where xi ∈ X and bi ∈ {1, 2}. Each word of length one (x, 1) corresponds
to the “letter” x ∈ X, and (x, 2) corresponds to x−1. In practice, we may
forget that we are working with equivalence classes and instead just write
expressions such as “x1x

−1
2 x3x4” with the understanding that this represents

the equivalence class of (x1, 1)(x2, 2)(x3, 1)(x4, 1). In fact, in general we need
not worry too much about such details, and we simply work with some free
group F (X) without paying too much attention to its particular construction,
at least when all that we need is to identify the free group F (X) up to an
isomorphism.

8 Generators and relations

In a group G any equation g = h with g, h ∈ G can be written equivalently
as gh−1 = 1, and thus any set of equations {gi = hi | i ∈ I} can be identified
with a subset R ⊂ G:

R = {g1h−1i | i ∈ I}.
In what follows F (X) denotes some free group generated by the set X, and
ι : X → F (X) is the injection of generators. Given a function f : X → G to
a group G, the unique homomorphism f ] : F (X) → G such that f ] ◦ ι = f
is called the homomorphic extension of f .

§20. Definition. A group presentation by generators and relations con-
sists of a set X, of generators, and a subset R ⊂ F (X), whose elements are
called relations. The group presented by X and R is denoted by 〈X | R〉 and
it is defined as

〈X | R〉 = F (X)/N(R),
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where N(R) is the normal subgroup of F (X) generated by R. The injection
of generators of 〈X | R〉 is the map x 7→ ι(x)N(R). A function f : X → G to
a group G is said to respect the relations in R if the kernel of its homomorphic
extension f ] : F (X)→ G contains R.

§21. Theorem. Let X be a set, R ⊂ F (X), and G a group. Any
function f : X → G that respects the relations in R extends uniquely to a
homomorphism of groups f ] : 〈X | R〉 → G; in other words, there is a unique
homomorphism of groups f ] such that f ]

(
ι(x)N(R)

)
= f(x) for all x ∈ X.

Proof. Exercise.

§22. Example. D2n
∼= 〈{r, s} | {rn, s2, rsrs}〉. A function f : {r, s} →

G respects the relations if and only if, writing f ] : F (X) → G for the
homomorphic extension of f to the free group,

f ](rn) = f ](s2) = f ](rsrs) = 1.

This is equivalent to

f(r)n = f(s)2 = 1 and f(r)f(s) = f(s)f(r)−1,

which explains the usual recipe for defining homomorphisms whose domains
are groups presented by generators and relations: a function f : X → G
defined on the generators respects the relations if and only if upon replacing
each generator x by f(x) we obtain valid equations in the group G.
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