
1.1

Internet of Things



1.2

The Internet

Yuhai Tu, “How robust is the Internet?”, https://www.nature.com/articles/35019222



1.3

IoT Evolution



1.4

What is IoT?

Internet of Things (IoT) comprises things that  have unique 
identities and are connected to the Internet 

The focus on IoT is in the monitoring, configuration, control 
and networking via the Internet of all sort of devices or 
“Things”

Eg: smartphone sensors, pump, utility meter, car engine

IoT is a new revolution in the capabilities of the endpoints 
that are connected to the internet



1.5

IoT: A Global Ciberphysical System



1.6

IoT: Application Areas

B. Alhafidh, W. Allen, “Design and Simulation of a Smart Home managed by an Intelligent Self-Adaptive System”, Int. Journal 
of Engineering Research and Application, ISSN : 2248-9622, Vol. 6, Issue 8, ( Part -1) August 2016, pp.64-90.



1.7

IoT: Typical Application Architecture



1.8

IoT: People Connecting with Things

Motion sensor
Motion sensor

Motion sensor

ECG sensor

Internet

Dr.Kayarvizhy, “Internet of Things”, http://studyslide.com/doc/20337/iot---dr.-kayarvizhy



1.9

IoT: Things Connecting with Things

- Complex and heterogeneous 
resources and networks 

Dr.Kayarvizhy, “Internet of Things”, http://studyslide.com/doc/20337/iot---dr.-kayarvizhy



1.10

IoT Architecture

Integrated 
Application

Information 
Processing

Network 
Construction

Sensing & 
Identification

Smart Grid Green 
Building

Smart Transport Env. 
Monitor

Data Center Search Engine Smart Decision Info. Security Data Mining

WWAN

WPAN

WMAN

WLAN

Internet

GPS Smart 
Device

RFID Sensor Sensor

Dr.Kayarvizhy, “Internet of Things”, http://studyslide.com/doc/20337/iot---dr.-kayarvizhy



1.11

IoT Cloud: Sensing-As-A-Service Model



1.12

IoT: Sensors and Actuators

Dr.Kayarvizhy, “Internet of Things”, http://studyslide.com/doc/20337/iot---dr.-kayarvizhy



1.13

IoT: Sensors Available in the Market 
(examples)

Dr.Kayarvizhy, “Internet of Things”, http://studyslide.com/doc/20337/iot---dr.-kayarvizhy



1.14

IoT: Smart Objects (examples)
Beaglebone black

Raspberry PiArduino Uno

Nucleo-F303K8



1.15

IoT Communication Technologies

Dr.Kayarvizhy, “Internet of Things”, http://studyslide.com/doc/20337/iot---dr.-kayarvizhy



1.16

Smart Meter Smart Building 
Management

Unified & Horizontal IoT Platform 

Fleet Management Smart Waste Management 
with battery-powered 

sensors

Smart Parking with 
battery-powered 

sensors

2G/3G/LTE/WiFi/Fixed

Device Management/CloudUnlicensed LPWA 
Networks in ISM 
bands (+ other 

bands)

RF Mesh

Concentrator

Smart Meters

+20dB 
Link 

budget 
gain

3GPP 
Licensed 

LPWA 
Network(s)
NB-IoT + 
EC-GSM

IoT Network Topology



1.17

IoT Protocols

CoAP ( Constrained Application Protocol)

MQTT (Message Queue Telemetry Transport)

XMPP (Extensible Messaging and Presence Protocol)

6LoWPAN (Low power Wireless Personal Area Networks)



1.18

IoT Protocol Architectures

Connectivity

Power Management

Security 

Rapid Evolution



1.19

IoT Protocol Stack



1.20v6.12.20096LoWPAN: The Wireless Embedded Internet, Shelby & Bormann

The 6LoWPAN Format

• 6LoWPAN is an adaptation header format
• Enables the use of IPv6 over low-power wireless links 
• IPv6 header compression
• UDP header compression

• Format initially defined in RFC 4944
• Updated by RFC 6282 



1.21

IoT Transport Layer for Smart 
Objects

• TCP for Smart Objects
• Advantages

• Built-in reliability
• Mechanism to recover lost 

packets
• Control of the maximum size of 

its packets
• Use of the TCP MSS 

(Maximum Segment Size) 
option

• Drawbacks
• Many TCP mechanisms e.g., 

sliding-window, congestion 
avoidance are not needed in 
smart object networks

• Large header size introduces a 
significant overhead.

• Unicast only

• UDP for Smart Objects
• Advantages

• Low overhead for header size and 
protocol logic

• Less energy for packet 
transmission and reception

• More space for application data
• Small code footprint

• Well suited for traffic with low 
reliability demand.

• Allows multicast

• Drawbacks
• No provision of recovery mechanism 

for lost packets (application has to 
recover them)

• No mechanism for splitting 
application data into appropriate 
packet sizes.

• Usually, smart object networks 
deal w/ small packet sizes.



1.22

Constrained Application Protocol 
(CoAP)

• IoT oriented and less complex alternative to HTTP
• Open IETF standard (RFC 7252)
• Datagram Transport Layer Security (DTLS) 
• Easy proxy to/from HTTP: GET, POST, PUT, DELETE
• URIs supported (e.g., coap://hostname:port/leds/red?q=state&on)
• RESTfull client-server model
• Implements reliable unicast over UDP
• Supports best effort multicast
• Client-Server model.



1.23

CoAP and HTTP Interworking



1.24

CoAP Message Layer Model

• Confirmed and non-confirmed message exchange models



1.25

CoAP Request/Response Layer Model

• Piggy-backed Confirmed 
Response

• Separate Confirmed 
Response



1.26

CoAP Request/Response Layer Model

• Non-confirmed Response



1.27

CoAP Message Format

CoAP message header Description

Ver It is 2 bit unsigned integer. It mentions CoAP version 
number. Set to one.

Type
It is 2 bit unsigned integer. Indicates message type viz. 
confirmable (0), non-confirmable (1), ACK (2) or 
RESET(3).

TKL It is 4 bit unsigned integer, Indicates length of token (0 to 
8 bytes).

Req/Resp Code It is 8 bit unsigned integer, It is split into two parts viz. 3 
bit class (MSBs) and 5 bit detail (LSBs).

Message ID 16 bit unsigned integer. Used for matching responses. 
Used to detect message duplication.

Options
Zero or more option fields may follow a token. A few 
options are Content Format, Accept, Max-Age, Etag, Uri-
Path, Uri-Query, etc.



1.28

CoAP Req/Resp Code

0 1 2 3 4 5 6 7

Class Code



1.29

Message Queuing Telemetry 
Transport (MQTT)

• Lightweight messaging protocol designed for sensors and devices with 
• Flaky network connectivity
• Low computing power
• Connections where bandwidth is at a premium

• Works on top of TCP
• Transport Layer Security (TLS)
• Protocol specification is open source 
• Applications:

• A way to obtain real world data  
• Information is gathered by an increasing number of sensors and devices deployed 

all over

• A way to provide real time information 
• E.g. Locate an item in a supply chain 
• Accurate current load of any system (e.g. electricity meters)
• Current status of a system (level of liquid in a container, temperature, pressure 

etc.)
• A way to connect all the devices and sensors directly to your messaging 

infrastructure 



1.30

MQTT Features

• Client/Server model with Clients and Brokers
• Publish and subscribe to topics

• Managed by the broker

• 3 qualities of service
• 0Best effort to deliver a message
• 1Deliver at least once
• 2Deliver exactly once

• Supports persistent messages (only most recent per topic)
• Minimal transport overhead to reduce network traffic

• As little as 2 bytes

• Last Will and Testament
• MQTT clients can register a custom “last will and testament” 

message to be sent by the broker if they disconnect.
• These messages can be used to signal to subscribers when a device 

disconnects.



1.31

MQTT Architecture

• All three clients open TCP connections 
with the broker. Clients B and C subscribe 
to the topic temperature .

• At a later time, Client A publishes a value 
of 22.5 for topic temperature. The broker 
forwards the message to all subscribed 
clients.



1.32

MQTT Topics and Topic Matching

• In MQTT, topics are hierarchical, like a filing system (e.g., 
kitchen/oven/temperature).

• Wildcards are allowed when registering a subscription 
(but not when publishing) allowing whole hierarchies to be 
observed by clients.

• The wildcard + matches any single directory name, # 
matches any number of directories of any name.

• Examples:
• kitchen/+/temperature matches kitchen/foo/temperature but 

not kitchen/foo/bar/temperature
• kitchen/# matches 

kitchen/fridge/compressor/valve1/temperature



1.33

MQTT Protocol



1.34

MQTT Message Format

• Message Format



1.35

MQTT Message Format

• Fixed header
bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP 
flag QoS level RETAI

N

byte 2 Remaining Length

Bit position Name Description

3 DUP Duplicate delivery

2-1 QoS Quality of Service

0 RETAIN RETAIN flag

Digits From To

1 0 (0x00) 127 (0x7F)

2 128 (0x80, 0x01) 16 383 (0xFF, 0x7F)

3 16 384 (0x80, 0x80, 
0x01)

2 097 151 (0xFF, 0xFF, 
0x7F)

4 2 097 152 (0x80, 0x80, 
0x80, 0x01)

268 435 455 (0xFF, 
0xFF, 0xFF, 0x7F)



1.36

MQTT Message Examples

• CONNECT

• PUBLISH “HELLO” to topic “OPENLABPRO” (QoS=0)



1.37

MQTT Message Examples

• SUBSCRIBE to topic “OPENLABPRO”



1.38

MQTT QoS

• QoS 0 – at most once

• QoS 1 – at least once

• QoS 2 – exactly once



1.39

MQTT QoS

• QoS 1 – at least once

• QoS level 1 guarantees that a message is delivered at least one time to the 
receiver. The sender stores the message until it gets a PUBACK packet from 
the receiver that acknowledges receipt of the message. It is possible for a 
message to be sent or delivered multiple times.

• The sender uses the packet identifier in each packet to match the PUBLISH 
packet to the corresponding PUBACK packet. If the sender does not receive a 
PUBACK packet in a reasonable amount of time, the sender resends the 
PUBLISH packet. When a receiver gets a message with QoS 1, it can process it 
immediately. For example, if the receiver is a broker, the broker sends the 
message to all subscribing clients and then replies with a PUBACK packet.

• If the publishing client sends the message again it sets a duplicate (DUP) flag. 
In QoS 1, this DUP flag is only used for internal purposes and is not processed 
by broker or client. The receiver of the message sends a PUBACK, regardless of 
the DUP flag.



1.40

MQTT QoS

• QoS 2 – exactly once

• QoS 2 is the highest level of service in MQTT. This level guarantees that each message is received only once by the 
intended recipients. QoS 2 is the safest and slowest quality of service level. The guarantee is provided by at least 
two request/response flows (a four-part handshake) between the sender and the receiver. The sender and receiver 
use the packet identifier of the original PUBLISH message to coordinate delivery of the message.

• When a receiver gets a QoS 2 PUBLISH packet from a sender, it processes the publish message accordingly and 
replies to the sender with a PUBREC packet that acknowledges the PUBLISH packet. If the sender does not get a 
PUBREC packet from the receiver, it sends the PUBLISH packet again with a duplicate (DUP) flag until it receives an 
acknowledgement.

• Once the sender receives a PUBREC packet from the receiver, the sender can safely discard the initial PUBLISH 
packet. The sender stores the PUBREC packet from the receiver and responds with a PUBREL packet.

• After the receiver gets the PUBREL packet, it can discard all stored states and answer with a PUBCOMP packet (the 
same is true when the sender receives the PUBCOMP). Until the receiver completes processing and sends the 
PUBCOMP packet back to the sender, the receiver stores a reference to the packet identifier of the original PUBLISH 
packet. This step is important to avoid processing the message a second time. After the sender receives the 
PUBCOMP packet, the packet identifier of the published message becomes available for reuse.

• When the QoS 2 flow is complete, both parties are sure that the message is delivered and the sender has 
confirmation of the delivery..

• If a packet gets lost along the way, the sender is responsible to retransmit the message within a reasonable amount 
of time. This is equally true if the sender is an MQTT client or an MQTT broker. The recipient has the responsibility 
to respond to each command message accordingly.



1.41

MQTT for Sensor Networks (MQTT-SN)

• Even though MQTT is designed to be lightweight, it has 
two drawbacks for very constrained devices:
• Every MQTT client must support TCP and will typically hold a 

connection open to the broker at all times. For some 
environments where packet loss is high or computing 
resources are scarce, this is a problem.

• MQTT topic names are often long strings which make them 
impractical for 802.15.4 and other low bitrate small packet 
protocols.

• Both of these shortcomings are addressed by the MQTT-
SN protocol:
• MQTT-SN does not require TCP (can use UDP or serial link)
• Broker support for indexing topic names (short topic IDs).

• Requires MQTT-SN to MQTT gateway.



1.42

MQTT vs CoAP

Features MQTT CoAP

Full Form Message Queue 
Telemetry Transport 

Constrained 
Application Protocol

Messages used 

Connect, connect 
ack, publish, 
publish ack, 
subscribe, 
subscribe ack, 
disconnect etc. 

GET, PUT, POST and 
DELETE 

Architecture Publish/Subscribe Request/Response 

Need of centralized 
broker 

required, end 
devices 
communicate via 
broker 

not required, end 
devices directly 
communicate 

Transport protocol TCP/IP UDP/IP

Security protocol TLS DTLS 

fault tolerance broker is SPoF server is SPoF 

scope device to cloud 
cloud to cloud 

device to cloud 
cloud to cloud 



1.43

MQTT & CoAP: Wrap-Up

https://www.electronicdesign.com/technologies/iot/article/21800998/silicon-labs-mqtt-and-
coap-underlying-protocols-for-the-iot



1.44

Acknowledgements

1. Dr.Kayarvizhy, “Internet of Things”, 
http://studyslide.com/doc/20337/iot---dr.-kayarvizhy

2. Augusto Casaca, “Internet of Things”, IFIP TC6 LATIN AMERICA 
TUTORIALS IN NETWORKING

3. Xi Chen, “Constrained Application Protocol for Internet of Things”, 
https://www.cse.wustl.edu/~jain/cse574-14/ftp/coap/index.html

4. MQTT Essentials
https://www.hivemq.com/tags/mqtt-essentials/

5. Toby Jaffey, “MQTT and CoAP, IoT Protocols”, 
https://www.eclipse.org/community/eclipse_newsletter/2014/february/
article2.php

6. “MQTT vs REST”, http://www.rfwireless-world.com/Terminology/MQTT-
vs-REST.html


