
Deep Structured Learning (IST, Spring 2023)

Homework 1

Instructors: André Martins and Chryssa Zerva

Deadline: Friday, April 14, 2022.

Please turn in the answers to the questions below in a PDF file, together with the
code you implemented to solve them (when applicable).

Please submit a single zip file in Fenix under your name.

Question 1

1. In this exercise, you will design a multilayer perceptron to compute a Boolean function of
D variables, f ∶ {0,1}D → {0,1}, defined as:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∑D
i=1 xi =K,

0 otherwise,
(1)

where K is an integer between 0 and D.

(a) (5 points) Show that the function above cannot generally be computed with a single
perceptron. Hint: think of a simple counter-example.

(b) (15 points) Show that the function above can be computed with a multilayer perceptron
with a single hidden layer with two hidden units and Heaviside step function
activations g∶R→ {0,1} with

g(z) =
⎧⎪⎪⎨⎪⎪⎩

1 if z ≥ 0,
0 otherwise,

(2)

and where all the weights and biases are integers (positive, negative, or zero).
Provide all the weights and biases of such network, and ensure that the resulting network
is robust to infinitesimal perturbation of the inputs, i.e., the resulting function h ∶ RD →
R should be such that limt→0 h(x + tv) = h(x) = f(x) for any x ∈ {0,1}D and v ∈ RD.

(c) (10 points) Repeat the previous exercise if the hidden units use rectified linear unit
activations instead. (You will get partial credit if you solve for D = 2 and K = 1 only.)

Question 2

Image classification with linear classifiers and neural networks. In this exercise, you
will implement a linear classifier for a simple image classification problem. Please do not use
any machine learning library such as scikit-learn or similar for this exercise; just
plain linear algebra (the numpy library is fine).
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You will use the Fashion MNIST dataset, which is available as a torchvision dataset. The
file hw1-dataload-fashionMNIST.py includes code to load, split and save the dataset. Each
example is a 28x28 grayscale image, associated with a label from 10 classes that represent a
clothing garment: T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag,
Ankle boot. There is a correspondence between the Fashion-MNIST and the original MNIST
benchmark dataset.

The dataset statistics can be found in Table 1.

Train Dev Test
Number of sentences 48000 12000 10000

Table 1: Fashion MNIST Dataset split statistics.

Skeleton code For this question, you are recommended but not required to use the skeleton
script hw1-q2-2023-skeleton-fashion.py, which has been provided to you on the course
webpage. The skeleton code also provides a function to load the data into 28x28 representations
and includes a normalisation step. It also includes evaluation and plotting functions.

The script requires Python3, numpy, tqdm, PIL and matplotlib.
The main evaluation metric used is the accuracy:

accuracy = ∑
N
i=0(ŷi == yi)
∑N

i=0 yi
, where N is the test set size. (3)

We will use the pixel values for the feature representation throughout this exercise.

1. In the first part of the exercise, we will focus on linear models.

(a) (10 points) Implement the update_weights method of the Perceptron class in the file
hw1-q2-skeleton-fashion.py. Then train 15 epochs of the perceptron on the training
set and report its performance on the validation and test set. Plot the accuracy as a
function of the epoch number (the functions to plot are already implemented).

(b) (5 points) Repeat the same exercise using logistic regression instead (no regularisation
necessary), using stochastic gradient descent as your training algorithm. Set a fixed
learning rate η = 0.001. This can be solved by implementing the update_weights
method in the LogisticRegression class.

2. Let us now focus on non-linear models: in this part, you will implement a multi-layer
perceptron (a feed-forward neural network).

(a) (15 points) Without using any neural network toolkit, implement a multi-layer perceptron
with a single hidden layer to solve this problem, including the gradient backpropagation
algorithm which is needed to train the model. Use a relu activation function for the
hidden layers, and a multinomial logistic loss (also known as cross-entropy) in the
output layer. Don’t forget to include the bias terms in your hidden units. Train the
model with stochastic gradient descent tuning the learning rate in the {0.001,0.1} in
the validation set.

(b) (5 points) Is the model able to learn feature representations? What about the previous
models? Briefly justify.
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Number of Epochs 15
Learning Rate 0.001
Hidden Sizes [100]
Number of Layers 1
Dropout 0.1
Batch Size 1
Activation ReLU
Optimizer SGD

Table 2: Default hyperparameters for MLP.

Question 3

Image classification with an autodiff toolkit. In the previous question, you had to
manually implement gradient backpropagation. In this question, you will implement the same
system using a deep learning framework with automatic differentiation. A skeleton code for
PyTorch is provided (hw1-q3-skeleton_fashion.py) but if you feel more comfortable with a
different framework you are free to use it instead. The skeleton code also contains the evaluation
functions and code to output a confusion matrix over the test set. You will additionally need
the torch module and optionally (for the confusion matrix: pandas, seaborn and scikit-learn

1. (5 points) Implement a linear model with logistic regression, using stochastic gradient descent
as your training algorithm (use a batch size of 1). Train your model for 15 epochs and tune
the learning rate in your validation data, using values in: [0.0001,0.1].
Report the results for the best configuration and plot:

• Training and validation loss

• Validation accuracy

as a function of the epoch number. Report the final accuracy and F1-score in the test set.

In the skeleton code, you will need to implement the method train_batch() and the class
LogisticRegression’s __init__() and forward() methods.

2. (10 points) Implement a feed-forward neural network with 2 hidden layers, using dropout
regularization and relu activation. Use the hyperparameters and training/model design
choices shown in Table 2 as a starting point.

Tune the values presented in the table as default. Tune each of these hyperparameters while
leaving the remaining at their default value:

• The learning rate: {0.001,0.01}.
• The hidden sizes, within the range of: [200,20].
• The number of layers: {1,2}.
• The dropout probability: {0.1,0.2,0.4}.

Report your best configuration, make similar plots as in the previous question, and report
the final test accuracy.

In the skeleton code, you will need to implement the class FeedforwardNetwork’s __init__()
and forward() methods.

3. In this question we will focus on CNN architectures.
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Figure 1: Initial architecture for the required CNN

Number of Epochs 15
Learning Rate 0.001
# convolutions 2
Kernel size 2 (for all convolutions)
Padding 1
Stride 1
MaxPooling 2x2
Dropout 0.1
Batch Size 1
Activation ReLU
1st Linear Layer (FC1) Output dim 1024
Optimizer SGD

Table 3: Default hyperparameters for MLP.

(a) (15 points) Implement a simple convolutional neural network (CNN) to address the
same task. Use 2 convolutional layers with one layer of max-pooling between them
and batch normalisation after each convolution. They should be followed by a dropout
layer and two fully connected layers with dropout between them. Use the rectified linear
unit activation function for all layers except for the output one, for which you should
use the LogSoftmax activation. The hyper-parameters of the network that should be
used for the starting point model are provided in Table 3 and Figure 1 illustrates the
corresponding architecture.
Hint: use the functions nn.Conv2d nn.BatchNorm2d and nn.MaxPool2d.
Tune the values presented in the table as default. Tune each of these hyperparameters
while leaving the remaining at their default value:

• The learning rate: {0.001,0.01}.
• The kernel size: {2,3}.
• Batch Size: {1,4}.
• The convolution filters (output channels):
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– convolution layer 1: {8,16,32}.
– convolution layer 2: {16,32,64}.

• The dropout probability: {0.1,0.2,0.5}.

(b) (5 points) How does the feature representation of CNN differ to the model you had to
implement for the previous question? What are the advantages of using a CNN over a
FFNN?
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